1c0b746e5SOllivier Robert /* 2c0b746e5SOllivier Robert * refclock_irig - audio IRIG-B/E demodulator/decoder 3c0b746e5SOllivier Robert */ 4c0b746e5SOllivier Robert #ifdef HAVE_CONFIG_H 5c0b746e5SOllivier Robert #include <config.h> 6c0b746e5SOllivier Robert #endif 7c0b746e5SOllivier Robert 8c0b746e5SOllivier Robert #if defined(REFCLOCK) && defined(CLOCK_IRIG) 9c0b746e5SOllivier Robert 10c0b746e5SOllivier Robert #include "ntpd.h" 11c0b746e5SOllivier Robert #include "ntp_io.h" 12c0b746e5SOllivier Robert #include "ntp_refclock.h" 13c0b746e5SOllivier Robert #include "ntp_calendar.h" 14c0b746e5SOllivier Robert #include "ntp_stdlib.h" 15224ba2bdSOllivier Robert 16224ba2bdSOllivier Robert #include <stdio.h> 17224ba2bdSOllivier Robert #include <ctype.h> 18224ba2bdSOllivier Robert #include <math.h> 19224ba2bdSOllivier Robert #ifdef HAVE_SYS_IOCTL_H 20224ba2bdSOllivier Robert #include <sys/ioctl.h> 21224ba2bdSOllivier Robert #endif /* HAVE_SYS_IOCTL_H */ 22224ba2bdSOllivier Robert 23a151a66cSOllivier Robert #include "audio.h" 24c0b746e5SOllivier Robert 25c0b746e5SOllivier Robert /* 26c0b746e5SOllivier Robert * Audio IRIG-B/E demodulator/decoder 27c0b746e5SOllivier Robert * 282b15cb3dSCy Schubert * This driver synchronizes the computer time using data encoded in 292b15cb3dSCy Schubert * IRIG-B/E signals commonly produced by GPS receivers and other timing 302b15cb3dSCy Schubert * devices. The IRIG signal is an amplitude-modulated carrier with 312b15cb3dSCy Schubert * pulse-width modulated data bits. For IRIG-B, the carrier frequency is 322b15cb3dSCy Schubert * 1000 Hz and bit rate 100 b/s; for IRIG-E, the carrier frequenchy is 332b15cb3dSCy Schubert * 100 Hz and bit rate 10 b/s. The driver automatically recognizes which 342b15cb3dSCy Schubert & format is in use. 352b15cb3dSCy Schubert * 362b15cb3dSCy Schubert * The driver requires an audio codec or sound card with sampling rate 8 372b15cb3dSCy Schubert * kHz and mu-law companding. This is the same standard as used by the 382b15cb3dSCy Schubert * telephone industry and is supported by most hardware and operating 392b15cb3dSCy Schubert * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this 402b15cb3dSCy Schubert * implementation, only one audio driver and codec can be supported on a 412b15cb3dSCy Schubert * single machine. 42c0b746e5SOllivier Robert * 43c0b746e5SOllivier Robert * The program processes 8000-Hz mu-law companded samples using separate 44c0b746e5SOllivier Robert * signal filters for IRIG-B and IRIG-E, a comb filter, envelope 45c0b746e5SOllivier Robert * detector and automatic threshold corrector. Cycle crossings relative 46c0b746e5SOllivier Robert * to the corrected slice level determine the width of each pulse and 472b15cb3dSCy Schubert * its value - zero, one or position identifier. 482b15cb3dSCy Schubert * 492b15cb3dSCy Schubert * The data encode 20 BCD digits which determine the second, minute, 502b15cb3dSCy Schubert * hour and day of the year and sometimes the year and synchronization 512b15cb3dSCy Schubert * condition. The comb filter exponentially averages the corresponding 522b15cb3dSCy Schubert * samples of successive baud intervals in order to reliably identify 532b15cb3dSCy Schubert * the reference carrier cycle. A type-II phase-lock loop (PLL) performs 542b15cb3dSCy Schubert * additional integration and interpolation to accurately determine the 552b15cb3dSCy Schubert * zero crossing of that cycle, which determines the reference 562b15cb3dSCy Schubert * timestamp. A pulse-width discriminator demodulates the data pulses, 572b15cb3dSCy Schubert * which are then encoded as the BCD digits of the timecode. 58c0b746e5SOllivier Robert * 59c0b746e5SOllivier Robert * The timecode and reference timestamp are updated once each second 60c0b746e5SOllivier Robert * with IRIG-B (ten seconds with IRIG-E) and local clock offset samples 61c0b746e5SOllivier Robert * saved for later processing. At poll intervals of 64 s, the saved 62c0b746e5SOllivier Robert * samples are processed by a trimmed-mean filter and used to update the 63c0b746e5SOllivier Robert * system clock. 64c0b746e5SOllivier Robert * 65c0b746e5SOllivier Robert * An automatic gain control feature provides protection against 66c0b746e5SOllivier Robert * overdriven or underdriven input signal amplitudes. It is designed to 67c0b746e5SOllivier Robert * maintain adequate demodulator signal amplitude while avoiding 68c0b746e5SOllivier Robert * occasional noise spikes. In order to assure reliable capture, the 69c0b746e5SOllivier Robert * decompanded input signal amplitude must be greater than 100 units and 70c0b746e5SOllivier Robert * the codec sample frequency error less than 250 PPM (.025 percent). 71c0b746e5SOllivier Robert * 722b15cb3dSCy Schubert * Monitor Data 73c0b746e5SOllivier Robert * 74c0b746e5SOllivier Robert * The timecode format used for debugging and data recording includes 75c0b746e5SOllivier Robert * data helpful in diagnosing problems with the IRIG signal and codec 762b15cb3dSCy Schubert * connections. The driver produces one line for each timecode in the 772b15cb3dSCy Schubert * following format: 78c0b746e5SOllivier Robert * 792b15cb3dSCy Schubert * 00 00 98 23 19:26:52 2782 143 0.694 10 0.3 66.5 3094572411.00027 80c0b746e5SOllivier Robert * 812b15cb3dSCy Schubert * If clockstats is enabled, the most recent line is written to the 822b15cb3dSCy Schubert * clockstats file every 64 s. If verbose recording is enabled (fudge 832b15cb3dSCy Schubert * flag 4) each line is written as generated. 84c0b746e5SOllivier Robert * 852b15cb3dSCy Schubert * The first field containes the error flags in hex, where the hex bits 862b15cb3dSCy Schubert * are interpreted as below. This is followed by the year of century, 872b15cb3dSCy Schubert * day of year and time of day. Note that the time of day is for the 882b15cb3dSCy Schubert * previous minute, not the current time. The status indicator and year 892b15cb3dSCy Schubert * are not produced by some IRIG devices and appear as zeros. Following 902b15cb3dSCy Schubert * these fields are the carrier amplitude (0-3000), codec gain (0-255), 912b15cb3dSCy Schubert * modulation index (0-1), time constant (4-10), carrier phase error 922b15cb3dSCy Schubert * +-.5) and carrier frequency error (PPM). The last field is the on- 932b15cb3dSCy Schubert * time timestamp in NTP format. 94c0b746e5SOllivier Robert * 952b15cb3dSCy Schubert * The error flags are defined as follows in hex: 962b15cb3dSCy Schubert * 972b15cb3dSCy Schubert * x01 Low signal. The carrier amplitude is less than 100 units. This 982b15cb3dSCy Schubert * is usually the result of no signal or wrong input port. 992b15cb3dSCy Schubert * x02 Frequency error. The codec frequency error is greater than 250 1002b15cb3dSCy Schubert * PPM. This may be due to wrong signal format or (rarely) 1012b15cb3dSCy Schubert * defective codec. 1022b15cb3dSCy Schubert * x04 Modulation error. The IRIG modulation index is less than 0.5. 1032b15cb3dSCy Schubert * This is usually the result of an overdriven codec, wrong signal 1042b15cb3dSCy Schubert * format or wrong input port. 1052b15cb3dSCy Schubert * x08 Frame synch error. The decoder frame does not match the IRIG 1062b15cb3dSCy Schubert * frame. This is usually the result of an overdriven codec, wrong 1072b15cb3dSCy Schubert * signal format or noisy IRIG signal. It may also be the result of 1082b15cb3dSCy Schubert * an IRIG signature check which indicates a failure of the IRIG 1092b15cb3dSCy Schubert * signal synchronization source. 1102b15cb3dSCy Schubert * x10 Data bit error. The data bit length is out of tolerance. This is 1112b15cb3dSCy Schubert * usually the result of an overdriven codec, wrong signal format 1122b15cb3dSCy Schubert * or noisy IRIG signal. 1132b15cb3dSCy Schubert * x20 Seconds numbering discrepancy. The decoder second does not match 1142b15cb3dSCy Schubert * the IRIG second. This is usually the result of an overdriven 1152b15cb3dSCy Schubert * codec, wrong signal format or noisy IRIG signal. 1162b15cb3dSCy Schubert * x40 Codec error (overrun). The machine is not fast enough to keep up 1172b15cb3dSCy Schubert * with the codec. 1182b15cb3dSCy Schubert * x80 Device status error (Spectracom). 1192b15cb3dSCy Schubert * 1202b15cb3dSCy Schubert * 1212b15cb3dSCy Schubert * Once upon a time, an UltrSPARC 30 and Solaris 2.7 kept the clock 1222b15cb3dSCy Schubert * within a few tens of microseconds relative to the IRIG-B signal. 1232b15cb3dSCy Schubert * Accuracy with IRIG-E was about ten times worse. Unfortunately, Sun 1242b15cb3dSCy Schubert * broke the 2.7 audio driver in 2.8, which has a 10-ms sawtooth 1252b15cb3dSCy Schubert * modulation. 126c0b746e5SOllivier Robert * 127c0b746e5SOllivier Robert * Unlike other drivers, which can have multiple instantiations, this 128c0b746e5SOllivier Robert * one supports only one. It does not seem likely that more than one 129c0b746e5SOllivier Robert * audio codec would be useful in a single machine. More than one would 130c0b746e5SOllivier Robert * probably chew up too much CPU time anyway. 131c0b746e5SOllivier Robert * 132c0b746e5SOllivier Robert * Fudge factors 133c0b746e5SOllivier Robert * 1349c2daa00SOllivier Robert * Fudge flag4 causes the dubugging output described above to be 135ea906c41SOllivier Robert * recorded in the clockstats file. Fudge flag2 selects the audio input 136ea906c41SOllivier Robert * port, where 0 is the mike port (default) and 1 is the line-in port. 137ea906c41SOllivier Robert * It does not seem useful to select the compact disc player port. Fudge 138ea906c41SOllivier Robert * flag3 enables audio monitoring of the input signal. For this purpose, 1392b15cb3dSCy Schubert * the monitor gain is set t a default value. Fudgetime2 is used as a 140ea906c41SOllivier Robert * frequency vernier for broken codec sample frequency. 1412b15cb3dSCy Schubert * 1422b15cb3dSCy Schubert * Alarm codes 1432b15cb3dSCy Schubert * 1442b15cb3dSCy Schubert * CEVNT_BADTIME invalid date or time 1452b15cb3dSCy Schubert * CEVNT_TIMEOUT no IRIG data since last poll 146c0b746e5SOllivier Robert */ 147c0b746e5SOllivier Robert /* 148c0b746e5SOllivier Robert * Interface definitions 149c0b746e5SOllivier Robert */ 150224ba2bdSOllivier Robert #define DEVICE_AUDIO "/dev/audio" /* audio device name */ 151c0b746e5SOllivier Robert #define PRECISION (-17) /* precision assumed (about 10 us) */ 152c0b746e5SOllivier Robert #define REFID "IRIG" /* reference ID */ 153c0b746e5SOllivier Robert #define DESCRIPTION "Generic IRIG Audio Driver" /* WRU */ 1549c2daa00SOllivier Robert #define AUDIO_BUFSIZ 320 /* audio buffer size (40 ms) */ 155a151a66cSOllivier Robert #define SECOND 8000 /* nominal sample rate (Hz) */ 156c0b746e5SOllivier Robert #define BAUD 80 /* samples per baud interval */ 157c0b746e5SOllivier Robert #define OFFSET 128 /* companded sample offset */ 158c0b746e5SOllivier Robert #define SIZE 256 /* decompanding table size */ 1592b15cb3dSCy Schubert #define CYCLE 8 /* samples per bit */ 1602b15cb3dSCy Schubert #define SUBFLD 10 /* bits per frame */ 1612b15cb3dSCy Schubert #define FIELD 100 /* bits per second */ 162c0b746e5SOllivier Robert #define MINTC 2 /* min PLL time constant */ 1632b15cb3dSCy Schubert #define MAXTC 10 /* max PLL time constant max */ 1642b15cb3dSCy Schubert #define MAXAMP 3000. /* maximum signal amplitude */ 1652b15cb3dSCy Schubert #define MINAMP 2000. /* minimum signal amplitude */ 1662b15cb3dSCy Schubert #define DRPOUT 100. /* dropout signal amplitude */ 167c0b746e5SOllivier Robert #define MODMIN 0.5 /* minimum modulation index */ 168a151a66cSOllivier Robert #define MAXFREQ (250e-6 * SECOND) /* freq tolerance (.025%) */ 169c0b746e5SOllivier Robert 170c0b746e5SOllivier Robert /* 1712b15cb3dSCy Schubert * The on-time synchronization point is the positive-going zero crossing 1722b15cb3dSCy Schubert * of the first cycle of the second. The IIR baseband filter phase delay 1732b15cb3dSCy Schubert * is 1.03 ms for IRIG-B and 3.47 ms for IRIG-E. The fudge value 2.68 ms 1742b15cb3dSCy Schubert * due to the codec and other causes was determined by calibrating to a 1752b15cb3dSCy Schubert * PPS signal from a GPS receiver. 1762b15cb3dSCy Schubert * 1772b15cb3dSCy Schubert * The results with a 2.4-GHz P4 running FreeBSD 6.1 are generally 1782b15cb3dSCy Schubert * within .02 ms short-term with .02 ms jitter. The processor load due 1792b15cb3dSCy Schubert * to the driver is 0.51 percent. 180c0b746e5SOllivier Robert */ 1812b15cb3dSCy Schubert #define IRIG_B ((1.03 + 2.68) / 1000) /* IRIG-B system delay (s) */ 1822b15cb3dSCy Schubert #define IRIG_E ((3.47 + 2.68) / 1000) /* IRIG-E system delay (s) */ 183c0b746e5SOllivier Robert 184c0b746e5SOllivier Robert /* 185c0b746e5SOllivier Robert * Data bit definitions 186c0b746e5SOllivier Robert */ 187c0b746e5SOllivier Robert #define BIT0 0 /* zero */ 188c0b746e5SOllivier Robert #define BIT1 1 /* one */ 189c0b746e5SOllivier Robert #define BITP 2 /* position identifier */ 190c0b746e5SOllivier Robert 191c0b746e5SOllivier Robert /* 1922b15cb3dSCy Schubert * Error flags 193c0b746e5SOllivier Robert */ 194c0b746e5SOllivier Robert #define IRIG_ERR_AMP 0x01 /* low carrier amplitude */ 195c0b746e5SOllivier Robert #define IRIG_ERR_FREQ 0x02 /* frequency tolerance exceeded */ 196c0b746e5SOllivier Robert #define IRIG_ERR_MOD 0x04 /* low modulation index */ 197c0b746e5SOllivier Robert #define IRIG_ERR_SYNCH 0x08 /* frame synch error */ 198c0b746e5SOllivier Robert #define IRIG_ERR_DECODE 0x10 /* frame decoding error */ 199c0b746e5SOllivier Robert #define IRIG_ERR_CHECK 0x20 /* second numbering discrepancy */ 200c0b746e5SOllivier Robert #define IRIG_ERR_ERROR 0x40 /* codec error (overrun) */ 2019c2daa00SOllivier Robert #define IRIG_ERR_SIGERR 0x80 /* IRIG status error (Spectracom) */ 202c0b746e5SOllivier Robert 2032b15cb3dSCy Schubert static char hexchar[] = "0123456789abcdef"; 2042b15cb3dSCy Schubert 205c0b746e5SOllivier Robert /* 206c0b746e5SOllivier Robert * IRIG unit control structure 207c0b746e5SOllivier Robert */ 208c0b746e5SOllivier Robert struct irigunit { 2092b15cb3dSCy Schubert u_char timecode[2 * SUBFLD + 1]; /* timecode string */ 210c0b746e5SOllivier Robert l_fp timestamp; /* audio sample timestamp */ 211c0b746e5SOllivier Robert l_fp tick; /* audio sample increment */ 2122b15cb3dSCy Schubert l_fp refstamp; /* reference timestamp */ 2132b15cb3dSCy Schubert l_fp chrstamp; /* baud timestamp */ 2142b15cb3dSCy Schubert l_fp prvstamp; /* previous baud timestamp */ 215c0b746e5SOllivier Robert double integ[BAUD]; /* baud integrator */ 216c0b746e5SOllivier Robert double phase, freq; /* logical clock phase and frequency */ 217c0b746e5SOllivier Robert double zxing; /* phase detector integrator */ 2189c2daa00SOllivier Robert double yxing; /* cycle phase */ 2199c2daa00SOllivier Robert double exing; /* envelope phase */ 220c0b746e5SOllivier Robert double modndx; /* modulation index */ 221c0b746e5SOllivier Robert double irig_b; /* IRIG-B signal amplitude */ 222c0b746e5SOllivier Robert double irig_e; /* IRIG-E signal amplitude */ 223c0b746e5SOllivier Robert int errflg; /* error flags */ 2249c2daa00SOllivier Robert /* 2259c2daa00SOllivier Robert * Audio codec variables 2269c2daa00SOllivier Robert */ 2279c2daa00SOllivier Robert double comp[SIZE]; /* decompanding table */ 2282b15cb3dSCy Schubert double signal; /* peak signal for AGC */ 229c0b746e5SOllivier Robert int port; /* codec port */ 230c0b746e5SOllivier Robert int gain; /* codec gain */ 2319c2daa00SOllivier Robert int mongain; /* codec monitor gain */ 232c0b746e5SOllivier Robert int seccnt; /* second interval counter */ 233c0b746e5SOllivier Robert 234c0b746e5SOllivier Robert /* 235c0b746e5SOllivier Robert * RF variables 236c0b746e5SOllivier Robert */ 2372b15cb3dSCy Schubert double bpf[9]; /* IRIG-B filter shift register */ 238c0b746e5SOllivier Robert double lpf[5]; /* IRIG-E filter shift register */ 2392b15cb3dSCy Schubert double envmin, envmax; /* envelope min and max */ 2402b15cb3dSCy Schubert double slice; /* envelope slice level */ 241c0b746e5SOllivier Robert double intmin, intmax; /* integrated envelope min and max */ 242c0b746e5SOllivier Robert double maxsignal; /* integrated peak amplitude */ 243c0b746e5SOllivier Robert double noise; /* integrated noise amplitude */ 244c0b746e5SOllivier Robert double lastenv[CYCLE]; /* last cycle amplitudes */ 245c0b746e5SOllivier Robert double lastint[CYCLE]; /* last integrated cycle amplitudes */ 246c0b746e5SOllivier Robert double lastsig; /* last carrier sample */ 247c0b746e5SOllivier Robert double fdelay; /* filter delay */ 2489c2daa00SOllivier Robert int decim; /* sample decimation factor */ 249c0b746e5SOllivier Robert int envphase; /* envelope phase */ 250c0b746e5SOllivier Robert int envptr; /* envelope phase pointer */ 251c0b746e5SOllivier Robert int envsw; /* envelope state */ 252c0b746e5SOllivier Robert int envxing; /* envelope slice crossing */ 253c0b746e5SOllivier Robert int tc; /* time constant */ 254c0b746e5SOllivier Robert int tcount; /* time constant counter */ 255c0b746e5SOllivier Robert int badcnt; /* decimation interval counter */ 256c0b746e5SOllivier Robert 257c0b746e5SOllivier Robert /* 258c0b746e5SOllivier Robert * Decoder variables 259c0b746e5SOllivier Robert */ 260c0b746e5SOllivier Robert int pulse; /* cycle counter */ 261c0b746e5SOllivier Robert int cycles; /* carrier cycles */ 262c0b746e5SOllivier Robert int dcycles; /* data cycles */ 2632b15cb3dSCy Schubert int lastbit; /* last code element */ 264c0b746e5SOllivier Robert int second; /* previous second */ 2652b15cb3dSCy Schubert int bitcnt; /* bit count in frame */ 2662b15cb3dSCy Schubert int frmcnt; /* bit count in second */ 2672b15cb3dSCy Schubert int xptr; /* timecode pointer */ 268c0b746e5SOllivier Robert int bits; /* demodulated bits */ 269c0b746e5SOllivier Robert }; 270c0b746e5SOllivier Robert 271c0b746e5SOllivier Robert /* 272c0b746e5SOllivier Robert * Function prototypes 273c0b746e5SOllivier Robert */ 2742b15cb3dSCy Schubert static int irig_start (int, struct peer *); 2752b15cb3dSCy Schubert static void irig_shutdown (int, struct peer *); 2762b15cb3dSCy Schubert static void irig_receive (struct recvbuf *); 2772b15cb3dSCy Schubert static void irig_poll (int, struct peer *); 278c0b746e5SOllivier Robert 279c0b746e5SOllivier Robert /* 280c0b746e5SOllivier Robert * More function prototypes 281c0b746e5SOllivier Robert */ 2822b15cb3dSCy Schubert static void irig_base (struct peer *, double); 2832b15cb3dSCy Schubert static void irig_rf (struct peer *, double); 2842b15cb3dSCy Schubert static void irig_baud (struct peer *, int); 2852b15cb3dSCy Schubert static void irig_decode (struct peer *, int); 2862b15cb3dSCy Schubert static void irig_gain (struct peer *); 287c0b746e5SOllivier Robert 288c0b746e5SOllivier Robert /* 289c0b746e5SOllivier Robert * Transfer vector 290c0b746e5SOllivier Robert */ 291c0b746e5SOllivier Robert struct refclock refclock_irig = { 292c0b746e5SOllivier Robert irig_start, /* start up driver */ 293c0b746e5SOllivier Robert irig_shutdown, /* shut down driver */ 294c0b746e5SOllivier Robert irig_poll, /* transmit poll message */ 295c0b746e5SOllivier Robert noentry, /* not used (old irig_control) */ 296c0b746e5SOllivier Robert noentry, /* initialize driver (not used) */ 297c0b746e5SOllivier Robert noentry, /* not used (old irig_buginfo) */ 298c0b746e5SOllivier Robert NOFLAGS /* not used */ 299c0b746e5SOllivier Robert }; 300c0b746e5SOllivier Robert 301c0b746e5SOllivier Robert 302c0b746e5SOllivier Robert /* 303c0b746e5SOllivier Robert * irig_start - open the devices and initialize data for processing 304c0b746e5SOllivier Robert */ 305c0b746e5SOllivier Robert static int 306c0b746e5SOllivier Robert irig_start( 3079c2daa00SOllivier Robert int unit, /* instance number (used for PCM) */ 308c0b746e5SOllivier Robert struct peer *peer /* peer structure pointer */ 309c0b746e5SOllivier Robert ) 310c0b746e5SOllivier Robert { 311c0b746e5SOllivier Robert struct refclockproc *pp; 312c0b746e5SOllivier Robert struct irigunit *up; 313c0b746e5SOllivier Robert 314c0b746e5SOllivier Robert /* 315c0b746e5SOllivier Robert * Local variables 316c0b746e5SOllivier Robert */ 317c0b746e5SOllivier Robert int fd; /* file descriptor */ 318c0b746e5SOllivier Robert int i; /* index */ 319c0b746e5SOllivier Robert double step; /* codec adjustment */ 320c0b746e5SOllivier Robert 321c0b746e5SOllivier Robert /* 322c0b746e5SOllivier Robert * Open audio device 323c0b746e5SOllivier Robert */ 3249c2daa00SOllivier Robert fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit); 325a151a66cSOllivier Robert if (fd < 0) 326c0b746e5SOllivier Robert return (0); 327a151a66cSOllivier Robert #ifdef DEBUG 328a151a66cSOllivier Robert if (debug) 329a151a66cSOllivier Robert audio_show(); 330a151a66cSOllivier Robert #endif 331c0b746e5SOllivier Robert 332c0b746e5SOllivier Robert /* 333c0b746e5SOllivier Robert * Allocate and initialize unit structure 334c0b746e5SOllivier Robert */ 3352b15cb3dSCy Schubert up = emalloc_zero(sizeof(*up)); 336c0b746e5SOllivier Robert pp = peer->procptr; 337c0b746e5SOllivier Robert pp->io.clock_recv = irig_receive; 3382b15cb3dSCy Schubert pp->io.srcclock = peer; 339c0b746e5SOllivier Robert pp->io.datalen = 0; 340c0b746e5SOllivier Robert pp->io.fd = fd; 341c0b746e5SOllivier Robert if (!io_addclock(&pp->io)) { 3422b15cb3dSCy Schubert close(fd); 3432b15cb3dSCy Schubert pp->io.fd = -1; 344c0b746e5SOllivier Robert free(up); 345c0b746e5SOllivier Robert return (0); 346c0b746e5SOllivier Robert } 3472b15cb3dSCy Schubert pp->unitptr = up; 348c0b746e5SOllivier Robert 349c0b746e5SOllivier Robert /* 350c0b746e5SOllivier Robert * Initialize miscellaneous variables 351c0b746e5SOllivier Robert */ 352c0b746e5SOllivier Robert peer->precision = PRECISION; 353c0b746e5SOllivier Robert pp->clockdesc = DESCRIPTION; 354c0b746e5SOllivier Robert memcpy((char *)&pp->refid, REFID, 4); 355c0b746e5SOllivier Robert up->tc = MINTC; 356c0b746e5SOllivier Robert up->decim = 1; 357a151a66cSOllivier Robert up->gain = 127; 358c0b746e5SOllivier Robert 359c0b746e5SOllivier Robert /* 360c0b746e5SOllivier Robert * The companded samples are encoded sign-magnitude. The table 361c0b746e5SOllivier Robert * contains all the 256 values in the interest of speed. 362c0b746e5SOllivier Robert */ 363c0b746e5SOllivier Robert up->comp[0] = up->comp[OFFSET] = 0.; 364c0b746e5SOllivier Robert up->comp[1] = 1; up->comp[OFFSET + 1] = -1.; 365c0b746e5SOllivier Robert up->comp[2] = 3; up->comp[OFFSET + 2] = -3.; 366c0b746e5SOllivier Robert step = 2.; 367c0b746e5SOllivier Robert for (i = 3; i < OFFSET; i++) { 368c0b746e5SOllivier Robert up->comp[i] = up->comp[i - 1] + step; 369c0b746e5SOllivier Robert up->comp[OFFSET + i] = -up->comp[i]; 370c0b746e5SOllivier Robert if (i % 16 == 0) 371c0b746e5SOllivier Robert step *= 2.; 372c0b746e5SOllivier Robert } 373a151a66cSOllivier Robert DTOLFP(1. / SECOND, &up->tick); 374c0b746e5SOllivier Robert return (1); 375c0b746e5SOllivier Robert } 376c0b746e5SOllivier Robert 377c0b746e5SOllivier Robert 378c0b746e5SOllivier Robert /* 379c0b746e5SOllivier Robert * irig_shutdown - shut down the clock 380c0b746e5SOllivier Robert */ 381c0b746e5SOllivier Robert static void 382c0b746e5SOllivier Robert irig_shutdown( 383c0b746e5SOllivier Robert int unit, /* instance number (not used) */ 384c0b746e5SOllivier Robert struct peer *peer /* peer structure pointer */ 385c0b746e5SOllivier Robert ) 386c0b746e5SOllivier Robert { 387c0b746e5SOllivier Robert struct refclockproc *pp; 388c0b746e5SOllivier Robert struct irigunit *up; 389c0b746e5SOllivier Robert 390c0b746e5SOllivier Robert pp = peer->procptr; 3912b15cb3dSCy Schubert up = pp->unitptr; 3922b15cb3dSCy Schubert if (-1 != pp->io.fd) 393c0b746e5SOllivier Robert io_closeclock(&pp->io); 3942b15cb3dSCy Schubert if (NULL != up) 395c0b746e5SOllivier Robert free(up); 396c0b746e5SOllivier Robert } 397c0b746e5SOllivier Robert 398c0b746e5SOllivier Robert 399c0b746e5SOllivier Robert /* 400c0b746e5SOllivier Robert * irig_receive - receive data from the audio device 401c0b746e5SOllivier Robert * 402c0b746e5SOllivier Robert * This routine reads input samples and adjusts the logical clock to 403c0b746e5SOllivier Robert * track the irig clock by dropping or duplicating codec samples. 404c0b746e5SOllivier Robert */ 405c0b746e5SOllivier Robert static void 406c0b746e5SOllivier Robert irig_receive( 407c0b746e5SOllivier Robert struct recvbuf *rbufp /* receive buffer structure pointer */ 408c0b746e5SOllivier Robert ) 409c0b746e5SOllivier Robert { 410c0b746e5SOllivier Robert struct peer *peer; 411c0b746e5SOllivier Robert struct refclockproc *pp; 412c0b746e5SOllivier Robert struct irigunit *up; 413c0b746e5SOllivier Robert 414c0b746e5SOllivier Robert /* 415c0b746e5SOllivier Robert * Local variables 416c0b746e5SOllivier Robert */ 417c0b746e5SOllivier Robert double sample; /* codec sample */ 418c0b746e5SOllivier Robert u_char *dpt; /* buffer pointer */ 4199c2daa00SOllivier Robert int bufcnt; /* buffer counter */ 420c0b746e5SOllivier Robert l_fp ltemp; /* l_fp temp */ 421c0b746e5SOllivier Robert 4222b15cb3dSCy Schubert peer = rbufp->recv_peer; 423c0b746e5SOllivier Robert pp = peer->procptr; 4242b15cb3dSCy Schubert up = pp->unitptr; 425c0b746e5SOllivier Robert 426c0b746e5SOllivier Robert /* 427c0b746e5SOllivier Robert * Main loop - read until there ain't no more. Note codec 428c0b746e5SOllivier Robert * samples are bit-inverted. 429c0b746e5SOllivier Robert */ 4309c2daa00SOllivier Robert DTOLFP((double)rbufp->recv_length / SECOND, <emp); 4319c2daa00SOllivier Robert L_SUB(&rbufp->recv_time, <emp); 432c0b746e5SOllivier Robert up->timestamp = rbufp->recv_time; 433c0b746e5SOllivier Robert dpt = rbufp->recv_buffer; 4349c2daa00SOllivier Robert for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) { 435c0b746e5SOllivier Robert sample = up->comp[~*dpt++ & 0xff]; 436c0b746e5SOllivier Robert 437c0b746e5SOllivier Robert /* 4389c2daa00SOllivier Robert * Variable frequency oscillator. The codec oscillator 4399c2daa00SOllivier Robert * runs at the nominal rate of 8000 samples per second, 4409c2daa00SOllivier Robert * or 125 us per sample. A frequency change of one unit 4419c2daa00SOllivier Robert * results in either duplicating or deleting one sample 4429c2daa00SOllivier Robert * per second, which results in a frequency change of 4439c2daa00SOllivier Robert * 125 PPM. 444c0b746e5SOllivier Robert */ 4452b15cb3dSCy Schubert up->phase += (up->freq + clock_codec) / SECOND; 4469c2daa00SOllivier Robert up->phase += pp->fudgetime2 / 1e6; 447c0b746e5SOllivier Robert if (up->phase >= .5) { 448c0b746e5SOllivier Robert up->phase -= 1.; 449c0b746e5SOllivier Robert } else if (up->phase < -.5) { 450c0b746e5SOllivier Robert up->phase += 1.; 451c0b746e5SOllivier Robert irig_rf(peer, sample); 452c0b746e5SOllivier Robert irig_rf(peer, sample); 453c0b746e5SOllivier Robert } else { 454c0b746e5SOllivier Robert irig_rf(peer, sample); 455c0b746e5SOllivier Robert } 456c0b746e5SOllivier Robert L_ADD(&up->timestamp, &up->tick); 4572b15cb3dSCy Schubert sample = fabs(sample); 4582b15cb3dSCy Schubert if (sample > up->signal) 4592b15cb3dSCy Schubert up->signal = sample; 4602b15cb3dSCy Schubert up->signal += (sample - up->signal) / 4612b15cb3dSCy Schubert 1000; 462c0b746e5SOllivier Robert 463c0b746e5SOllivier Robert /* 4649c2daa00SOllivier Robert * Once each second, determine the IRIG format and gain. 465c0b746e5SOllivier Robert */ 466a151a66cSOllivier Robert up->seccnt = (up->seccnt + 1) % SECOND; 467c0b746e5SOllivier Robert if (up->seccnt == 0) { 468c0b746e5SOllivier Robert if (up->irig_b > up->irig_e) { 469c0b746e5SOllivier Robert up->decim = 1; 470c0b746e5SOllivier Robert up->fdelay = IRIG_B; 471c0b746e5SOllivier Robert } else { 472c0b746e5SOllivier Robert up->decim = 10; 473c0b746e5SOllivier Robert up->fdelay = IRIG_E; 474c0b746e5SOllivier Robert } 475c0b746e5SOllivier Robert up->irig_b = up->irig_e = 0; 4762b15cb3dSCy Schubert irig_gain(peer); 4772b15cb3dSCy Schubert 478c0b746e5SOllivier Robert } 479c0b746e5SOllivier Robert } 480c0b746e5SOllivier Robert 481c0b746e5SOllivier Robert /* 4829c2daa00SOllivier Robert * Set the input port and monitor gain for the next buffer. 483c0b746e5SOllivier Robert */ 4849c2daa00SOllivier Robert if (pp->sloppyclockflag & CLK_FLAG2) 4859c2daa00SOllivier Robert up->port = 2; 4869c2daa00SOllivier Robert else 4879c2daa00SOllivier Robert up->port = 1; 488c0b746e5SOllivier Robert if (pp->sloppyclockflag & CLK_FLAG3) 4899c2daa00SOllivier Robert up->mongain = MONGAIN; 4909c2daa00SOllivier Robert else 4919c2daa00SOllivier Robert up->mongain = 0; 492c0b746e5SOllivier Robert } 493c0b746e5SOllivier Robert 4942b15cb3dSCy Schubert 495c0b746e5SOllivier Robert /* 496c0b746e5SOllivier Robert * irig_rf - RF processing 497c0b746e5SOllivier Robert * 4982b15cb3dSCy Schubert * This routine filters the RF signal using a bandass filter for IRIG-B 499c0b746e5SOllivier Robert * and a lowpass filter for IRIG-E. In case of IRIG-E, the samples are 5002b15cb3dSCy Schubert * decimated by a factor of ten. Note that the codec filters function as 5012b15cb3dSCy Schubert * roofing filters to attenuate both the high and low ends of the 502c0b746e5SOllivier Robert * passband. IIR filter coefficients were determined using Matlab Signal 503c0b746e5SOllivier Robert * Processing Toolkit. 504c0b746e5SOllivier Robert */ 505c0b746e5SOllivier Robert static void 506c0b746e5SOllivier Robert irig_rf( 507c0b746e5SOllivier Robert struct peer *peer, /* peer structure pointer */ 508c0b746e5SOllivier Robert double sample /* current signal sample */ 509c0b746e5SOllivier Robert ) 510c0b746e5SOllivier Robert { 511c0b746e5SOllivier Robert struct refclockproc *pp; 512c0b746e5SOllivier Robert struct irigunit *up; 513c0b746e5SOllivier Robert 514c0b746e5SOllivier Robert /* 515c0b746e5SOllivier Robert * Local variables 516c0b746e5SOllivier Robert */ 517c0b746e5SOllivier Robert double irig_b, irig_e; /* irig filter outputs */ 518c0b746e5SOllivier Robert 519c0b746e5SOllivier Robert pp = peer->procptr; 5202b15cb3dSCy Schubert up = pp->unitptr; 521c0b746e5SOllivier Robert 522c0b746e5SOllivier Robert /* 5232b15cb3dSCy Schubert * IRIG-B filter. Matlab 4th-order IIR elliptic, 800-1200 Hz 5242b15cb3dSCy Schubert * bandpass, 0.3 dB passband ripple, -50 dB stopband ripple, 5252b15cb3dSCy Schubert * phase delay 1.03 ms. 526c0b746e5SOllivier Robert */ 5272b15cb3dSCy Schubert irig_b = (up->bpf[8] = up->bpf[7]) * 6.505491e-001; 5282b15cb3dSCy Schubert irig_b += (up->bpf[7] = up->bpf[6]) * -3.875180e+000; 5292b15cb3dSCy Schubert irig_b += (up->bpf[6] = up->bpf[5]) * 1.151180e+001; 5302b15cb3dSCy Schubert irig_b += (up->bpf[5] = up->bpf[4]) * -2.141264e+001; 5312b15cb3dSCy Schubert irig_b += (up->bpf[4] = up->bpf[3]) * 2.712837e+001; 5322b15cb3dSCy Schubert irig_b += (up->bpf[3] = up->bpf[2]) * -2.384486e+001; 5332b15cb3dSCy Schubert irig_b += (up->bpf[2] = up->bpf[1]) * 1.427663e+001; 5342b15cb3dSCy Schubert irig_b += (up->bpf[1] = up->bpf[0]) * -5.352734e+000; 5352b15cb3dSCy Schubert up->bpf[0] = sample - irig_b; 5362b15cb3dSCy Schubert irig_b = up->bpf[0] * 4.952157e-003 5372b15cb3dSCy Schubert + up->bpf[1] * -2.055878e-002 5382b15cb3dSCy Schubert + up->bpf[2] * 4.401413e-002 5392b15cb3dSCy Schubert + up->bpf[3] * -6.558851e-002 5402b15cb3dSCy Schubert + up->bpf[4] * 7.462108e-002 5412b15cb3dSCy Schubert + up->bpf[5] * -6.558851e-002 5422b15cb3dSCy Schubert + up->bpf[6] * 4.401413e-002 5432b15cb3dSCy Schubert + up->bpf[7] * -2.055878e-002 5442b15cb3dSCy Schubert + up->bpf[8] * 4.952157e-003; 545c0b746e5SOllivier Robert up->irig_b += irig_b * irig_b; 546c0b746e5SOllivier Robert 547c0b746e5SOllivier Robert /* 5482b15cb3dSCy Schubert * IRIG-E filter. Matlab 4th-order IIR elliptic, 130-Hz lowpass, 5492b15cb3dSCy Schubert * 0.3 dB passband ripple, -50 dB stopband ripple, phase delay 5502b15cb3dSCy Schubert * 3.47 ms. 551c0b746e5SOllivier Robert */ 5522b15cb3dSCy Schubert irig_e = (up->lpf[4] = up->lpf[3]) * 8.694604e-001; 5532b15cb3dSCy Schubert irig_e += (up->lpf[3] = up->lpf[2]) * -3.589893e+000; 5542b15cb3dSCy Schubert irig_e += (up->lpf[2] = up->lpf[1]) * 5.570154e+000; 5552b15cb3dSCy Schubert irig_e += (up->lpf[1] = up->lpf[0]) * -3.849667e+000; 556c0b746e5SOllivier Robert up->lpf[0] = sample - irig_e; 5572b15cb3dSCy Schubert irig_e = up->lpf[0] * 3.215696e-003 5582b15cb3dSCy Schubert + up->lpf[1] * -1.174951e-002 5592b15cb3dSCy Schubert + up->lpf[2] * 1.712074e-002 5602b15cb3dSCy Schubert + up->lpf[3] * -1.174951e-002 5612b15cb3dSCy Schubert + up->lpf[4] * 3.215696e-003; 562c0b746e5SOllivier Robert up->irig_e += irig_e * irig_e; 563c0b746e5SOllivier Robert 564c0b746e5SOllivier Robert /* 565c0b746e5SOllivier Robert * Decimate by a factor of either 1 (IRIG-B) or 10 (IRIG-E). 566c0b746e5SOllivier Robert */ 567c0b746e5SOllivier Robert up->badcnt = (up->badcnt + 1) % up->decim; 568c0b746e5SOllivier Robert if (up->badcnt == 0) { 569c0b746e5SOllivier Robert if (up->decim == 1) 570c0b746e5SOllivier Robert irig_base(peer, irig_b); 571c0b746e5SOllivier Robert else 572c0b746e5SOllivier Robert irig_base(peer, irig_e); 573c0b746e5SOllivier Robert } 574c0b746e5SOllivier Robert } 575c0b746e5SOllivier Robert 576c0b746e5SOllivier Robert /* 577c0b746e5SOllivier Robert * irig_base - baseband processing 578c0b746e5SOllivier Robert * 579c0b746e5SOllivier Robert * This routine processes the baseband signal and demodulates the AM 580c0b746e5SOllivier Robert * carrier using a synchronous detector. It then synchronizes to the 5812b15cb3dSCy Schubert * data frame at the baud rate and decodes the width-modulated data 5822b15cb3dSCy Schubert * pulses. 583c0b746e5SOllivier Robert */ 584c0b746e5SOllivier Robert static void 585c0b746e5SOllivier Robert irig_base( 586c0b746e5SOllivier Robert struct peer *peer, /* peer structure pointer */ 587c0b746e5SOllivier Robert double sample /* current signal sample */ 588c0b746e5SOllivier Robert ) 589c0b746e5SOllivier Robert { 590c0b746e5SOllivier Robert struct refclockproc *pp; 591c0b746e5SOllivier Robert struct irigunit *up; 592c0b746e5SOllivier Robert 593c0b746e5SOllivier Robert /* 594c0b746e5SOllivier Robert * Local variables 595c0b746e5SOllivier Robert */ 596c0b746e5SOllivier Robert double lope; /* integrator output */ 597c0b746e5SOllivier Robert double env; /* envelope detector output */ 5982b15cb3dSCy Schubert double dtemp; 5992b15cb3dSCy Schubert int carphase; /* carrier phase */ 600c0b746e5SOllivier Robert 601c0b746e5SOllivier Robert pp = peer->procptr; 6022b15cb3dSCy Schubert up = pp->unitptr; 603c0b746e5SOllivier Robert 604c0b746e5SOllivier Robert /* 605c0b746e5SOllivier Robert * Synchronous baud integrator. Corresponding samples of current 606c0b746e5SOllivier Robert * and past baud intervals are integrated to refine the envelope 6072b15cb3dSCy Schubert * amplitude and phase estimate. We keep one cycle (1 ms) of the 6082b15cb3dSCy Schubert * raw data and one baud (10 ms) of the integrated data. 609c0b746e5SOllivier Robert */ 610c0b746e5SOllivier Robert up->envphase = (up->envphase + 1) % BAUD; 611c0b746e5SOllivier Robert up->integ[up->envphase] += (sample - up->integ[up->envphase]) / 612c0b746e5SOllivier Robert (5 * up->tc); 613c0b746e5SOllivier Robert lope = up->integ[up->envphase]; 6142b15cb3dSCy Schubert carphase = up->envphase % CYCLE; 6152b15cb3dSCy Schubert up->lastenv[carphase] = sample; 6162b15cb3dSCy Schubert up->lastint[carphase] = lope; 617c0b746e5SOllivier Robert 618c0b746e5SOllivier Robert /* 6192b15cb3dSCy Schubert * Phase detector. Find the negative-going zero crossing 6202b15cb3dSCy Schubert * relative to sample 4 in the 8-sample sycle. A phase change of 6212b15cb3dSCy Schubert * 360 degrees produces an output change of one unit. 622c0b746e5SOllivier Robert */ 6232b15cb3dSCy Schubert if (up->lastsig > 0 && lope <= 0) 6242b15cb3dSCy Schubert up->zxing += (double)(carphase - 4) / CYCLE; 625c0b746e5SOllivier Robert up->lastsig = lope; 626c0b746e5SOllivier Robert 627c0b746e5SOllivier Robert /* 6282b15cb3dSCy Schubert * End of the baud. Update signal/noise estimates and PLL 6292b15cb3dSCy Schubert * phase, frequency and time constant. 630c0b746e5SOllivier Robert */ 631c0b746e5SOllivier Robert if (up->envphase == 0) { 6322b15cb3dSCy Schubert up->maxsignal = up->intmax; up->noise = up->intmin; 6332b15cb3dSCy Schubert up->intmin = 1e6; up->intmax = -1e6; 634c0b746e5SOllivier Robert if (up->maxsignal < DRPOUT) 635c0b746e5SOllivier Robert up->errflg |= IRIG_ERR_AMP; 6369c2daa00SOllivier Robert if (up->maxsignal > 0) 6372b15cb3dSCy Schubert up->modndx = (up->maxsignal - up->noise) / 6382b15cb3dSCy Schubert up->maxsignal; 639c0b746e5SOllivier Robert else 640c0b746e5SOllivier Robert up->modndx = 0; 641c0b746e5SOllivier Robert if (up->modndx < MODMIN) 642c0b746e5SOllivier Robert up->errflg |= IRIG_ERR_MOD; 643c0b746e5SOllivier Robert if (up->errflg & (IRIG_ERR_AMP | IRIG_ERR_FREQ | 644c0b746e5SOllivier Robert IRIG_ERR_MOD | IRIG_ERR_SYNCH)) { 645c0b746e5SOllivier Robert up->tc = MINTC; 646c0b746e5SOllivier Robert up->tcount = 0; 647c0b746e5SOllivier Robert } 648c0b746e5SOllivier Robert 649c0b746e5SOllivier Robert /* 650c0b746e5SOllivier Robert * Update PLL phase and frequency. The PLL time constant 651c0b746e5SOllivier Robert * is set initially to stabilize the frequency within a 652c0b746e5SOllivier Robert * minute or two, then increases to the maximum. The 653c0b746e5SOllivier Robert * frequency is clamped so that the PLL capture range 654c0b746e5SOllivier Robert * cannot be exceeded. 655c0b746e5SOllivier Robert */ 656c0b746e5SOllivier Robert dtemp = up->zxing * up->decim / BAUD; 657c0b746e5SOllivier Robert up->yxing = dtemp; 658c0b746e5SOllivier Robert up->zxing = 0.; 659c0b746e5SOllivier Robert up->phase += dtemp / up->tc; 660c0b746e5SOllivier Robert up->freq += dtemp / (4. * up->tc * up->tc); 661c0b746e5SOllivier Robert if (up->freq > MAXFREQ) { 662c0b746e5SOllivier Robert up->freq = MAXFREQ; 663c0b746e5SOllivier Robert up->errflg |= IRIG_ERR_FREQ; 664c0b746e5SOllivier Robert } else if (up->freq < -MAXFREQ) { 665c0b746e5SOllivier Robert up->freq = -MAXFREQ; 666c0b746e5SOllivier Robert up->errflg |= IRIG_ERR_FREQ; 667c0b746e5SOllivier Robert } 668c0b746e5SOllivier Robert } 669c0b746e5SOllivier Robert 670c0b746e5SOllivier Robert /* 671c0b746e5SOllivier Robert * Synchronous demodulator. There are eight samples in the cycle 6722b15cb3dSCy Schubert * and ten cycles in the baud. Since the PLL has aligned the 6732b15cb3dSCy Schubert * negative-going zero crossing at sample 4, the maximum 6742b15cb3dSCy Schubert * amplitude is at sample 2 and minimum at sample 6. The 675c0b746e5SOllivier Robert * beginning of the data pulse is determined from the integrated 676c0b746e5SOllivier Robert * samples, while the end of the pulse is determined from the 677c0b746e5SOllivier Robert * raw samples. The raw data bits are demodulated relative to 678c0b746e5SOllivier Robert * the slice level and left-shifted in the decoding register. 679c0b746e5SOllivier Robert */ 6802b15cb3dSCy Schubert if (carphase != 7) 681c0b746e5SOllivier Robert return; 682ea906c41SOllivier Robert 683c0b746e5SOllivier Robert lope = (up->lastint[2] - up->lastint[6]) / 2.; 684c0b746e5SOllivier Robert if (lope > up->intmax) 685c0b746e5SOllivier Robert up->intmax = lope; 686c0b746e5SOllivier Robert if (lope < up->intmin) 687c0b746e5SOllivier Robert up->intmin = lope; 688c0b746e5SOllivier Robert 689c0b746e5SOllivier Robert /* 690c0b746e5SOllivier Robert * Pulse code demodulator and reference timestamp. The decoder 691c0b746e5SOllivier Robert * looks for a sequence of ten bits; the first two bits must be 692c0b746e5SOllivier Robert * one, the last two bits must be zero. Frame synch is asserted 693c0b746e5SOllivier Robert * when three correct frames have been found. 694c0b746e5SOllivier Robert */ 695c0b746e5SOllivier Robert up->pulse = (up->pulse + 1) % 10; 696c0b746e5SOllivier Robert up->cycles <<= 1; 697c0b746e5SOllivier Robert if (lope >= (up->maxsignal + up->noise) / 2.) 698c0b746e5SOllivier Robert up->cycles |= 1; 699c0b746e5SOllivier Robert if ((up->cycles & 0x303c0f03) == 0x300c0300) { 7002b15cb3dSCy Schubert if (up->pulse != 0) 7012b15cb3dSCy Schubert up->errflg |= IRIG_ERR_SYNCH; 7022b15cb3dSCy Schubert up->pulse = 0; 7032b15cb3dSCy Schubert } 7042b15cb3dSCy Schubert 7052b15cb3dSCy Schubert /* 7062b15cb3dSCy Schubert * Assemble the baud and max/min to get the slice level for the 7072b15cb3dSCy Schubert * next baud. The slice level is based on the maximum over the 7082b15cb3dSCy Schubert * first two bits and the minimum over the last two bits, with 7092b15cb3dSCy Schubert * the slice level halfway between the maximum and minimum. 7102b15cb3dSCy Schubert */ 7112b15cb3dSCy Schubert env = (up->lastenv[2] - up->lastenv[6]) / 2.; 7122b15cb3dSCy Schubert up->dcycles <<= 1; 7132b15cb3dSCy Schubert if (env >= up->slice) 7142b15cb3dSCy Schubert up->dcycles |= 1; 7152b15cb3dSCy Schubert switch(up->pulse) { 7162b15cb3dSCy Schubert 7172b15cb3dSCy Schubert case 0: 7182b15cb3dSCy Schubert irig_baud(peer, up->dcycles); 7192b15cb3dSCy Schubert if (env < up->envmin) 7202b15cb3dSCy Schubert up->envmin = env; 7212b15cb3dSCy Schubert up->slice = (up->envmax + up->envmin) / 2; 7222b15cb3dSCy Schubert up->envmin = 1e6; up->envmax = -1e6; 7232b15cb3dSCy Schubert break; 7242b15cb3dSCy Schubert 7252b15cb3dSCy Schubert case 1: 7262b15cb3dSCy Schubert up->envmax = env; 7272b15cb3dSCy Schubert break; 7282b15cb3dSCy Schubert 7292b15cb3dSCy Schubert case 2: 7302b15cb3dSCy Schubert if (env > up->envmax) 7312b15cb3dSCy Schubert up->envmax = env; 7322b15cb3dSCy Schubert break; 7332b15cb3dSCy Schubert 7342b15cb3dSCy Schubert case 9: 7352b15cb3dSCy Schubert up->envmin = env; 7362b15cb3dSCy Schubert break; 7372b15cb3dSCy Schubert } 7382b15cb3dSCy Schubert } 7392b15cb3dSCy Schubert 7402b15cb3dSCy Schubert /* 7412b15cb3dSCy Schubert * irig_baud - update the PLL and decode the pulse-width signal 7422b15cb3dSCy Schubert */ 7432b15cb3dSCy Schubert static void 7442b15cb3dSCy Schubert irig_baud( 7452b15cb3dSCy Schubert struct peer *peer, /* peer structure pointer */ 7462b15cb3dSCy Schubert int bits /* decoded bits */ 7472b15cb3dSCy Schubert ) 7482b15cb3dSCy Schubert { 7492b15cb3dSCy Schubert struct refclockproc *pp; 7502b15cb3dSCy Schubert struct irigunit *up; 7512b15cb3dSCy Schubert double dtemp; 752c0b746e5SOllivier Robert l_fp ltemp; 7532b15cb3dSCy Schubert 7542b15cb3dSCy Schubert pp = peer->procptr; 7552b15cb3dSCy Schubert up = pp->unitptr; 756c0b746e5SOllivier Robert 757c0b746e5SOllivier Robert /* 758c0b746e5SOllivier Robert * The PLL time constant starts out small, in order to 759c0b746e5SOllivier Robert * sustain a frequency tolerance of 250 PPM. It 760c0b746e5SOllivier Robert * gradually increases as the loop settles down. Note 761c0b746e5SOllivier Robert * that small wiggles are not believed, unless they 762c0b746e5SOllivier Robert * persist for lots of samples. 763c0b746e5SOllivier Robert */ 7649c2daa00SOllivier Robert up->exing = -up->yxing; 7652b15cb3dSCy Schubert if (abs(up->envxing - up->envphase) <= 1) { 766c0b746e5SOllivier Robert up->tcount++; 7672b15cb3dSCy Schubert if (up->tcount > 20 * up->tc) { 768c0b746e5SOllivier Robert up->tc++; 769c0b746e5SOllivier Robert if (up->tc > MAXTC) 770c0b746e5SOllivier Robert up->tc = MAXTC; 771c0b746e5SOllivier Robert up->tcount = 0; 772c0b746e5SOllivier Robert up->envxing = up->envphase; 773c0b746e5SOllivier Robert } else { 7749c2daa00SOllivier Robert up->exing -= up->envxing - up->envphase; 775c0b746e5SOllivier Robert } 776c0b746e5SOllivier Robert } else { 777c0b746e5SOllivier Robert up->tcount = 0; 778c0b746e5SOllivier Robert up->envxing = up->envphase; 779c0b746e5SOllivier Robert } 780c0b746e5SOllivier Robert 781c0b746e5SOllivier Robert /* 7822b15cb3dSCy Schubert * Strike the baud timestamp as the positive zero crossing of 7832b15cb3dSCy Schubert * the first bit, accounting for the codec delay and filter 7842b15cb3dSCy Schubert * delay. 785c0b746e5SOllivier Robert */ 7862b15cb3dSCy Schubert up->prvstamp = up->chrstamp; 7872b15cb3dSCy Schubert dtemp = up->decim * (up->exing / SECOND) + up->fdelay; 7889c2daa00SOllivier Robert DTOLFP(dtemp, <emp); 7892b15cb3dSCy Schubert up->chrstamp = up->timestamp; 7902b15cb3dSCy Schubert L_SUB(&up->chrstamp, <emp); 791c0b746e5SOllivier Robert 792c0b746e5SOllivier Robert /* 7932b15cb3dSCy Schubert * The data bits are collected in ten-bit bauds. The first two 7942b15cb3dSCy Schubert * bits are not used. The resulting patterns represent runs of 7952b15cb3dSCy Schubert * 0-1 bits (0), 2-4 bits (1) and 5-7 bits (PI). The remaining 7962b15cb3dSCy Schubert * 8-bit run represents a soft error and is treated as 0. 797c0b746e5SOllivier Robert */ 7982b15cb3dSCy Schubert switch (up->dcycles & 0xff) { 799c0b746e5SOllivier Robert 8002b15cb3dSCy Schubert case 0x00: /* 0-1 bits (0) */ 801c0b746e5SOllivier Robert case 0x80: 802c0b746e5SOllivier Robert irig_decode(peer, BIT0); 803c0b746e5SOllivier Robert break; 804c0b746e5SOllivier Robert 8052b15cb3dSCy Schubert case 0xc0: /* 2-4 bits (1) */ 806c0b746e5SOllivier Robert case 0xe0: 807c0b746e5SOllivier Robert case 0xf0: 808c0b746e5SOllivier Robert irig_decode(peer, BIT1); 809c0b746e5SOllivier Robert break; 810c0b746e5SOllivier Robert 8112b15cb3dSCy Schubert case 0xf8: /* (5-7 bits (PI) */ 812c0b746e5SOllivier Robert case 0xfc: 8132b15cb3dSCy Schubert case 0xfe: 814c0b746e5SOllivier Robert irig_decode(peer, BITP); 815c0b746e5SOllivier Robert break; 816c0b746e5SOllivier Robert 8172b15cb3dSCy Schubert default: /* 8 bits (error) */ 8182b15cb3dSCy Schubert irig_decode(peer, BIT0); 819c0b746e5SOllivier Robert up->errflg |= IRIG_ERR_DECODE; 820c0b746e5SOllivier Robert } 821c0b746e5SOllivier Robert } 822c0b746e5SOllivier Robert 823c0b746e5SOllivier Robert 824c0b746e5SOllivier Robert /* 825c0b746e5SOllivier Robert * irig_decode - decode the data 826c0b746e5SOllivier Robert * 8272b15cb3dSCy Schubert * This routine assembles bauds into digits, digits into frames and 8282b15cb3dSCy Schubert * frames into the timecode fields. Bits can have values of zero, one 8292b15cb3dSCy Schubert * or position identifier. There are four bits per digit, ten digits per 8302b15cb3dSCy Schubert * frame and ten frames per second. 831c0b746e5SOllivier Robert */ 832c0b746e5SOllivier Robert static void 833c0b746e5SOllivier Robert irig_decode( 834c0b746e5SOllivier Robert struct peer *peer, /* peer structure pointer */ 835c0b746e5SOllivier Robert int bit /* data bit (0, 1 or 2) */ 836c0b746e5SOllivier Robert ) 837c0b746e5SOllivier Robert { 838c0b746e5SOllivier Robert struct refclockproc *pp; 839c0b746e5SOllivier Robert struct irigunit *up; 840c0b746e5SOllivier Robert 841c0b746e5SOllivier Robert /* 842c0b746e5SOllivier Robert * Local variables 843c0b746e5SOllivier Robert */ 8442b15cb3dSCy Schubert int syncdig; /* sync digit (Spectracom) */ 8452b15cb3dSCy Schubert char sbs[6 + 1]; /* binary seconds since 0h */ 8462b15cb3dSCy Schubert char spare[2 + 1]; /* mulligan digits */ 8472b15cb3dSCy Schubert int temp; 848c0b746e5SOllivier Robert 8492b15cb3dSCy Schubert syncdig = 0; 850c0b746e5SOllivier Robert pp = peer->procptr; 8512b15cb3dSCy Schubert up = pp->unitptr; 852c0b746e5SOllivier Robert 853c0b746e5SOllivier Robert /* 8542b15cb3dSCy Schubert * Assemble frame bits. 855c0b746e5SOllivier Robert */ 8562b15cb3dSCy Schubert up->bits >>= 1; 857c0b746e5SOllivier Robert if (bit == BIT1) { 8582b15cb3dSCy Schubert up->bits |= 0x200; 859c0b746e5SOllivier Robert } else if (bit == BITP && up->lastbit == BITP) { 860c0b746e5SOllivier Robert 861c0b746e5SOllivier Robert /* 8622b15cb3dSCy Schubert * Frame sync - two adjacent position identifiers, which 8632b15cb3dSCy Schubert * mark the beginning of the second. The reference time 8642b15cb3dSCy Schubert * is the beginning of the second position identifier, 8652b15cb3dSCy Schubert * so copy the character timestamp to the reference 8662b15cb3dSCy Schubert * timestamp. 867c0b746e5SOllivier Robert */ 8682b15cb3dSCy Schubert if (up->frmcnt != 1) 8692b15cb3dSCy Schubert up->errflg |= IRIG_ERR_SYNCH; 8702b15cb3dSCy Schubert up->frmcnt = 1; 8712b15cb3dSCy Schubert up->refstamp = up->prvstamp; 8722b15cb3dSCy Schubert } 8732b15cb3dSCy Schubert up->lastbit = bit; 8742b15cb3dSCy Schubert if (up->frmcnt % SUBFLD == 0) { 8759c2daa00SOllivier Robert 8769c2daa00SOllivier Robert /* 8772b15cb3dSCy Schubert * End of frame. Encode two hexadecimal digits in 8782b15cb3dSCy Schubert * little-endian timecode field. Note frame 1 is shifted 8792b15cb3dSCy Schubert * right one bit to account for the marker PI. 8809c2daa00SOllivier Robert */ 8812b15cb3dSCy Schubert temp = up->bits; 8822b15cb3dSCy Schubert if (up->frmcnt == 10) 8832b15cb3dSCy Schubert temp >>= 1; 8842b15cb3dSCy Schubert if (up->xptr >= 2) { 8852b15cb3dSCy Schubert up->timecode[--up->xptr] = hexchar[temp & 0xf]; 8862b15cb3dSCy Schubert up->timecode[--up->xptr] = hexchar[(temp >> 5) & 887c0b746e5SOllivier Robert 0xf]; 8882b15cb3dSCy Schubert } 8892b15cb3dSCy Schubert if (up->frmcnt == 0) { 890c0b746e5SOllivier Robert 891c0b746e5SOllivier Robert /* 8922b15cb3dSCy Schubert * End of second. Decode the timecode and wind 8939c2daa00SOllivier Robert * the clock. Not all IRIG generators have the 8949c2daa00SOllivier Robert * year; if so, it is nonzero after year 2000. 8959c2daa00SOllivier Robert * Not all have the hardware status bit; if so, 8969c2daa00SOllivier Robert * it is lit when the source is okay and dim 8979c2daa00SOllivier Robert * when bad. We watch this only if the year is 8989c2daa00SOllivier Robert * nonzero. Not all are configured for signature 8999c2daa00SOllivier Robert * control. If so, all BCD digits are set to 9009c2daa00SOllivier Robert * zero if the source is bad. In this case the 9019c2daa00SOllivier Robert * refclock_process() will reject the timecode 9029c2daa00SOllivier Robert * as invalid. 903c0b746e5SOllivier Robert */ 9042b15cb3dSCy Schubert up->xptr = 2 * SUBFLD; 905c0b746e5SOllivier Robert if (sscanf((char *)up->timecode, 9062b15cb3dSCy Schubert "%6s%2d%1d%2s%3d%2d%2d%2d", sbs, &pp->year, 9072b15cb3dSCy Schubert &syncdig, spare, &pp->day, &pp->hour, 9089c2daa00SOllivier Robert &pp->minute, &pp->second) != 8) 909c0b746e5SOllivier Robert pp->leap = LEAP_NOTINSYNC; 910c0b746e5SOllivier Robert else 911c0b746e5SOllivier Robert pp->leap = LEAP_NOWARNING; 912c0b746e5SOllivier Robert up->second = (up->second + up->decim) % 60; 9132b15cb3dSCy Schubert 9142b15cb3dSCy Schubert /* 9152b15cb3dSCy Schubert * Raise an alarm if the day field is zero, 9162b15cb3dSCy Schubert * which happens when signature control is 9172b15cb3dSCy Schubert * enabled and the device has lost 9182b15cb3dSCy Schubert * synchronization. Raise an alarm if the year 9192b15cb3dSCy Schubert * field is nonzero and the sync indicator is 9202b15cb3dSCy Schubert * zero, which happens when a Spectracom radio 9212b15cb3dSCy Schubert * has lost synchronization. Raise an alarm if 9222b15cb3dSCy Schubert * the expected second does not agree with the 9232b15cb3dSCy Schubert * decoded second, which happens with a garbled 9242b15cb3dSCy Schubert * IRIG signal. We are very particular. 9252b15cb3dSCy Schubert */ 9262b15cb3dSCy Schubert if (pp->day == 0 || (pp->year != 0 && syncdig == 9272b15cb3dSCy Schubert 0)) 9282b15cb3dSCy Schubert up->errflg |= IRIG_ERR_SIGERR; 929c0b746e5SOllivier Robert if (pp->second != up->second) 930c0b746e5SOllivier Robert up->errflg |= IRIG_ERR_CHECK; 931c0b746e5SOllivier Robert up->second = pp->second; 9322b15cb3dSCy Schubert 9332b15cb3dSCy Schubert /* 9342b15cb3dSCy Schubert * Wind the clock only if there are no errors 9352b15cb3dSCy Schubert * and the time constant has reached the 9362b15cb3dSCy Schubert * maximum. 9372b15cb3dSCy Schubert */ 9382b15cb3dSCy Schubert if (up->errflg == 0 && up->tc == MAXTC) { 9392b15cb3dSCy Schubert pp->lastref = pp->lastrec; 9402b15cb3dSCy Schubert pp->lastrec = up->refstamp; 9412b15cb3dSCy Schubert if (!refclock_process(pp)) 9422b15cb3dSCy Schubert refclock_report(peer, 9432b15cb3dSCy Schubert CEVNT_BADTIME); 9442b15cb3dSCy Schubert } 9452b15cb3dSCy Schubert snprintf(pp->a_lastcode, sizeof(pp->a_lastcode), 9462b15cb3dSCy Schubert "%02x %02d %03d %02d:%02d:%02d %4.0f %3d %6.3f %2d %6.2f %6.1f %s", 9472b15cb3dSCy Schubert up->errflg, pp->year, pp->day, 948c0b746e5SOllivier Robert pp->hour, pp->minute, pp->second, 949a151a66cSOllivier Robert up->maxsignal, up->gain, up->modndx, 9509c2daa00SOllivier Robert up->tc, up->exing * 1e6 / SECOND, up->freq * 9512b15cb3dSCy Schubert 1e6 / SECOND, ulfptoa(&pp->lastrec, 6)); 952c0b746e5SOllivier Robert pp->lencode = strlen(pp->a_lastcode); 9532b15cb3dSCy Schubert up->errflg = 0; 9549c2daa00SOllivier Robert if (pp->sloppyclockflag & CLK_FLAG4) { 955c0b746e5SOllivier Robert record_clock_stats(&peer->srcadr, 956c0b746e5SOllivier Robert pp->a_lastcode); 957c0b746e5SOllivier Robert #ifdef DEBUG 9589c2daa00SOllivier Robert if (debug) 9592b15cb3dSCy Schubert printf("irig %s\n", 9609c2daa00SOllivier Robert pp->a_lastcode); 961c0b746e5SOllivier Robert #endif /* DEBUG */ 962c0b746e5SOllivier Robert } 963c0b746e5SOllivier Robert } 9649c2daa00SOllivier Robert } 9652b15cb3dSCy Schubert up->frmcnt = (up->frmcnt + 1) % FIELD; 966c0b746e5SOllivier Robert } 967c0b746e5SOllivier Robert 968c0b746e5SOllivier Robert 969c0b746e5SOllivier Robert /* 970c0b746e5SOllivier Robert * irig_poll - called by the transmit procedure 971c0b746e5SOllivier Robert * 9729c2daa00SOllivier Robert * This routine sweeps up the timecode updates since the last poll. For 9739c2daa00SOllivier Robert * IRIG-B there should be at least 60 updates; for IRIG-E there should 9742b15cb3dSCy Schubert * be at least 6. If nothing is heard, a timeout event is declared. 975c0b746e5SOllivier Robert */ 976c0b746e5SOllivier Robert static void 977c0b746e5SOllivier Robert irig_poll( 978c0b746e5SOllivier Robert int unit, /* instance number (not used) */ 979c0b746e5SOllivier Robert struct peer *peer /* peer structure pointer */ 980c0b746e5SOllivier Robert ) 981c0b746e5SOllivier Robert { 982c0b746e5SOllivier Robert struct refclockproc *pp; 983c0b746e5SOllivier Robert 984c0b746e5SOllivier Robert pp = peer->procptr; 985c0b746e5SOllivier Robert 9869c2daa00SOllivier Robert if (pp->coderecv == pp->codeproc) { 987c0b746e5SOllivier Robert refclock_report(peer, CEVNT_TIMEOUT); 988c0b746e5SOllivier Robert return; 989ea906c41SOllivier Robert 9902b15cb3dSCy Schubert } 9919c2daa00SOllivier Robert refclock_receive(peer); 9922b15cb3dSCy Schubert if (!(pp->sloppyclockflag & CLK_FLAG4)) { 9939c2daa00SOllivier Robert record_clock_stats(&peer->srcadr, pp->a_lastcode); 9949c2daa00SOllivier Robert #ifdef DEBUG 9959c2daa00SOllivier Robert if (debug) 9962b15cb3dSCy Schubert printf("irig %s\n", pp->a_lastcode); 9979c2daa00SOllivier Robert #endif /* DEBUG */ 998c0b746e5SOllivier Robert } 999c0b746e5SOllivier Robert pp->polls++; 1000c0b746e5SOllivier Robert 1001c0b746e5SOllivier Robert } 1002c0b746e5SOllivier Robert 1003c0b746e5SOllivier Robert 1004c0b746e5SOllivier Robert /* 1005c0b746e5SOllivier Robert * irig_gain - adjust codec gain 1006c0b746e5SOllivier Robert * 10072b15cb3dSCy Schubert * This routine is called at the end of each second. It uses the AGC to 10082b15cb3dSCy Schubert * bradket the maximum signal level between MINAMP and MAXAMP to avoid 10092b15cb3dSCy Schubert * hunting. The routine also jiggles the input port and selectively 10102b15cb3dSCy Schubert * mutes the monitor. 1011c0b746e5SOllivier Robert */ 1012c0b746e5SOllivier Robert static void 1013c0b746e5SOllivier Robert irig_gain( 1014c0b746e5SOllivier Robert struct peer *peer /* peer structure pointer */ 1015c0b746e5SOllivier Robert ) 1016c0b746e5SOllivier Robert { 1017c0b746e5SOllivier Robert struct refclockproc *pp; 1018c0b746e5SOllivier Robert struct irigunit *up; 1019c0b746e5SOllivier Robert 1020c0b746e5SOllivier Robert pp = peer->procptr; 10212b15cb3dSCy Schubert up = pp->unitptr; 1022c0b746e5SOllivier Robert 1023c0b746e5SOllivier Robert /* 1024c0b746e5SOllivier Robert * Apparently, the codec uses only the high order bits of the 1025c0b746e5SOllivier Robert * gain control field. Thus, it may take awhile for changes to 1026a151a66cSOllivier Robert * wiggle the hardware bits. 1027c0b746e5SOllivier Robert */ 10282b15cb3dSCy Schubert if (up->maxsignal < MINAMP) { 1029c0b746e5SOllivier Robert up->gain += 4; 10309c2daa00SOllivier Robert if (up->gain > MAXGAIN) 10319c2daa00SOllivier Robert up->gain = MAXGAIN; 10322b15cb3dSCy Schubert } else if (up->maxsignal > MAXAMP) { 1033c0b746e5SOllivier Robert up->gain -= 4; 1034a151a66cSOllivier Robert if (up->gain < 0) 1035a151a66cSOllivier Robert up->gain = 0; 1036c0b746e5SOllivier Robert } 10379c2daa00SOllivier Robert audio_gain(up->gain, up->mongain, up->port); 1038c0b746e5SOllivier Robert } 1039c0b746e5SOllivier Robert 10402b15cb3dSCy Schubert 1041c0b746e5SOllivier Robert #else 1042*f5f40dd6SCy Schubert NONEMPTY_TRANSLATION_UNIT 1043c0b746e5SOllivier Robert #endif /* REFCLOCK */ 1044