xref: /freebsd/contrib/ntp/ntpd/refclock_irig.c (revision f5f40dd63bc7acbb5312b26ac1ea1103c12352a6)
1c0b746e5SOllivier Robert /*
2c0b746e5SOllivier Robert  * refclock_irig - audio IRIG-B/E demodulator/decoder
3c0b746e5SOllivier Robert  */
4c0b746e5SOllivier Robert #ifdef HAVE_CONFIG_H
5c0b746e5SOllivier Robert #include <config.h>
6c0b746e5SOllivier Robert #endif
7c0b746e5SOllivier Robert 
8c0b746e5SOllivier Robert #if defined(REFCLOCK) && defined(CLOCK_IRIG)
9c0b746e5SOllivier Robert 
10c0b746e5SOllivier Robert #include "ntpd.h"
11c0b746e5SOllivier Robert #include "ntp_io.h"
12c0b746e5SOllivier Robert #include "ntp_refclock.h"
13c0b746e5SOllivier Robert #include "ntp_calendar.h"
14c0b746e5SOllivier Robert #include "ntp_stdlib.h"
15224ba2bdSOllivier Robert 
16224ba2bdSOllivier Robert #include <stdio.h>
17224ba2bdSOllivier Robert #include <ctype.h>
18224ba2bdSOllivier Robert #include <math.h>
19224ba2bdSOllivier Robert #ifdef HAVE_SYS_IOCTL_H
20224ba2bdSOllivier Robert #include <sys/ioctl.h>
21224ba2bdSOllivier Robert #endif /* HAVE_SYS_IOCTL_H */
22224ba2bdSOllivier Robert 
23a151a66cSOllivier Robert #include "audio.h"
24c0b746e5SOllivier Robert 
25c0b746e5SOllivier Robert /*
26c0b746e5SOllivier Robert  * Audio IRIG-B/E demodulator/decoder
27c0b746e5SOllivier Robert  *
282b15cb3dSCy Schubert  * This driver synchronizes the computer time using data encoded in
292b15cb3dSCy Schubert  * IRIG-B/E signals commonly produced by GPS receivers and other timing
302b15cb3dSCy Schubert  * devices. The IRIG signal is an amplitude-modulated carrier with
312b15cb3dSCy Schubert  * pulse-width modulated data bits. For IRIG-B, the carrier frequency is
322b15cb3dSCy Schubert  * 1000 Hz and bit rate 100 b/s; for IRIG-E, the carrier frequenchy is
332b15cb3dSCy Schubert  * 100 Hz and bit rate 10 b/s. The driver automatically recognizes which
342b15cb3dSCy Schubert  & format is in use.
352b15cb3dSCy Schubert  *
362b15cb3dSCy Schubert  * The driver requires an audio codec or sound card with sampling rate 8
372b15cb3dSCy Schubert  * kHz and mu-law companding. This is the same standard as used by the
382b15cb3dSCy Schubert  * telephone industry and is supported by most hardware and operating
392b15cb3dSCy Schubert  * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
402b15cb3dSCy Schubert  * implementation, only one audio driver and codec can be supported on a
412b15cb3dSCy Schubert  * single machine.
42c0b746e5SOllivier Robert  *
43c0b746e5SOllivier Robert  * The program processes 8000-Hz mu-law companded samples using separate
44c0b746e5SOllivier Robert  * signal filters for IRIG-B and IRIG-E, a comb filter, envelope
45c0b746e5SOllivier Robert  * detector and automatic threshold corrector. Cycle crossings relative
46c0b746e5SOllivier Robert  * to the corrected slice level determine the width of each pulse and
472b15cb3dSCy Schubert  * its value - zero, one or position identifier.
482b15cb3dSCy Schubert  *
492b15cb3dSCy Schubert  * The data encode 20 BCD digits which determine the second, minute,
502b15cb3dSCy Schubert  * hour and day of the year and sometimes the year and synchronization
512b15cb3dSCy Schubert  * condition. The comb filter exponentially averages the corresponding
522b15cb3dSCy Schubert  * samples of successive baud intervals in order to reliably identify
532b15cb3dSCy Schubert  * the reference carrier cycle. A type-II phase-lock loop (PLL) performs
542b15cb3dSCy Schubert  * additional integration and interpolation to accurately determine the
552b15cb3dSCy Schubert  * zero crossing of that cycle, which determines the reference
562b15cb3dSCy Schubert  * timestamp. A pulse-width discriminator demodulates the data pulses,
572b15cb3dSCy Schubert  * which are then encoded as the BCD digits of the timecode.
58c0b746e5SOllivier Robert  *
59c0b746e5SOllivier Robert  * The timecode and reference timestamp are updated once each second
60c0b746e5SOllivier Robert  * with IRIG-B (ten seconds with IRIG-E) and local clock offset samples
61c0b746e5SOllivier Robert  * saved for later processing. At poll intervals of 64 s, the saved
62c0b746e5SOllivier Robert  * samples are processed by a trimmed-mean filter and used to update the
63c0b746e5SOllivier Robert  * system clock.
64c0b746e5SOllivier Robert  *
65c0b746e5SOllivier Robert  * An automatic gain control feature provides protection against
66c0b746e5SOllivier Robert  * overdriven or underdriven input signal amplitudes. It is designed to
67c0b746e5SOllivier Robert  * maintain adequate demodulator signal amplitude while avoiding
68c0b746e5SOllivier Robert  * occasional noise spikes. In order to assure reliable capture, the
69c0b746e5SOllivier Robert  * decompanded input signal amplitude must be greater than 100 units and
70c0b746e5SOllivier Robert  * the codec sample frequency error less than 250 PPM (.025 percent).
71c0b746e5SOllivier Robert  *
722b15cb3dSCy Schubert  * Monitor Data
73c0b746e5SOllivier Robert  *
74c0b746e5SOllivier Robert  * The timecode format used for debugging and data recording includes
75c0b746e5SOllivier Robert  * data helpful in diagnosing problems with the IRIG signal and codec
762b15cb3dSCy Schubert  * connections. The driver produces one line for each timecode in the
772b15cb3dSCy Schubert  * following format:
78c0b746e5SOllivier Robert  *
792b15cb3dSCy Schubert  * 00 00 98 23 19:26:52 2782 143 0.694 10 0.3 66.5 3094572411.00027
80c0b746e5SOllivier Robert  *
812b15cb3dSCy Schubert  * If clockstats is enabled, the most recent line is written to the
822b15cb3dSCy Schubert  * clockstats file every 64 s. If verbose recording is enabled (fudge
832b15cb3dSCy Schubert  * flag 4) each line is written as generated.
84c0b746e5SOllivier Robert  *
852b15cb3dSCy Schubert  * The first field containes the error flags in hex, where the hex bits
862b15cb3dSCy Schubert  * are interpreted as below. This is followed by the year of century,
872b15cb3dSCy Schubert  * day of year and time of day. Note that the time of day is for the
882b15cb3dSCy Schubert  * previous minute, not the current time. The status indicator and year
892b15cb3dSCy Schubert  * are not produced by some IRIG devices and appear as zeros. Following
902b15cb3dSCy Schubert  * these fields are the carrier amplitude (0-3000), codec gain (0-255),
912b15cb3dSCy Schubert  * modulation index (0-1), time constant (4-10), carrier phase error
922b15cb3dSCy Schubert  * +-.5) and carrier frequency error (PPM). The last field is the on-
932b15cb3dSCy Schubert  * time timestamp in NTP format.
94c0b746e5SOllivier Robert  *
952b15cb3dSCy Schubert  * The error flags are defined as follows in hex:
962b15cb3dSCy Schubert  *
972b15cb3dSCy Schubert  * x01	Low signal. The carrier amplitude is less than 100 units. This
982b15cb3dSCy Schubert  *	is usually the result of no signal or wrong input port.
992b15cb3dSCy Schubert  * x02	Frequency error. The codec frequency error is greater than 250
1002b15cb3dSCy Schubert  *	PPM. This may be due to wrong signal format or (rarely)
1012b15cb3dSCy Schubert  *	defective codec.
1022b15cb3dSCy Schubert  * x04	Modulation error. The IRIG modulation index is less than 0.5.
1032b15cb3dSCy Schubert  *	This is usually the result of an overdriven codec, wrong signal
1042b15cb3dSCy Schubert  *	format or wrong input port.
1052b15cb3dSCy Schubert  * x08	Frame synch error. The decoder frame does not match the IRIG
1062b15cb3dSCy Schubert  *	frame. This is usually the result of an overdriven codec, wrong
1072b15cb3dSCy Schubert  *	signal format or noisy IRIG signal. It may also be the result of
1082b15cb3dSCy Schubert  *	an IRIG signature check which indicates a failure of the IRIG
1092b15cb3dSCy Schubert  *	signal synchronization source.
1102b15cb3dSCy Schubert  * x10	Data bit error. The data bit length is out of tolerance. This is
1112b15cb3dSCy Schubert  *	usually the result of an overdriven codec, wrong signal format
1122b15cb3dSCy Schubert  *	or noisy IRIG signal.
1132b15cb3dSCy Schubert  * x20	Seconds numbering discrepancy. The decoder second does not match
1142b15cb3dSCy Schubert  *	the IRIG second. This is usually the result of an overdriven
1152b15cb3dSCy Schubert  *	codec, wrong signal format or noisy IRIG signal.
1162b15cb3dSCy Schubert  * x40	Codec error (overrun). The machine is not fast enough to keep up
1172b15cb3dSCy Schubert  *	with the codec.
1182b15cb3dSCy Schubert  * x80	Device status error (Spectracom).
1192b15cb3dSCy Schubert  *
1202b15cb3dSCy Schubert  *
1212b15cb3dSCy Schubert  * Once upon a time, an UltrSPARC 30 and Solaris 2.7 kept the clock
1222b15cb3dSCy Schubert  * within a few tens of microseconds relative to the IRIG-B signal.
1232b15cb3dSCy Schubert  * Accuracy with IRIG-E was about ten times worse. Unfortunately, Sun
1242b15cb3dSCy Schubert  * broke the 2.7 audio driver in 2.8, which has a 10-ms sawtooth
1252b15cb3dSCy Schubert  * modulation.
126c0b746e5SOllivier Robert  *
127c0b746e5SOllivier Robert  * Unlike other drivers, which can have multiple instantiations, this
128c0b746e5SOllivier Robert  * one supports only one. It does not seem likely that more than one
129c0b746e5SOllivier Robert  * audio codec would be useful in a single machine. More than one would
130c0b746e5SOllivier Robert  * probably chew up too much CPU time anyway.
131c0b746e5SOllivier Robert  *
132c0b746e5SOllivier Robert  * Fudge factors
133c0b746e5SOllivier Robert  *
1349c2daa00SOllivier Robert  * Fudge flag4 causes the dubugging output described above to be
135ea906c41SOllivier Robert  * recorded in the clockstats file. Fudge flag2 selects the audio input
136ea906c41SOllivier Robert  * port, where 0 is the mike port (default) and 1 is the line-in port.
137ea906c41SOllivier Robert  * It does not seem useful to select the compact disc player port. Fudge
138ea906c41SOllivier Robert  * flag3 enables audio monitoring of the input signal. For this purpose,
1392b15cb3dSCy Schubert  * the monitor gain is set t a default value. Fudgetime2 is used as a
140ea906c41SOllivier Robert  * frequency vernier for broken codec sample frequency.
1412b15cb3dSCy Schubert  *
1422b15cb3dSCy Schubert  * Alarm codes
1432b15cb3dSCy Schubert  *
1442b15cb3dSCy Schubert  * CEVNT_BADTIME	invalid date or time
1452b15cb3dSCy Schubert  * CEVNT_TIMEOUT	no IRIG data since last poll
146c0b746e5SOllivier Robert  */
147c0b746e5SOllivier Robert /*
148c0b746e5SOllivier Robert  * Interface definitions
149c0b746e5SOllivier Robert  */
150224ba2bdSOllivier Robert #define	DEVICE_AUDIO	"/dev/audio" /* audio device name */
151c0b746e5SOllivier Robert #define	PRECISION	(-17)	/* precision assumed (about 10 us) */
152c0b746e5SOllivier Robert #define	REFID		"IRIG"	/* reference ID */
153c0b746e5SOllivier Robert #define	DESCRIPTION	"Generic IRIG Audio Driver" /* WRU */
1549c2daa00SOllivier Robert #define	AUDIO_BUFSIZ	320	/* audio buffer size (40 ms) */
155a151a66cSOllivier Robert #define SECOND		8000	/* nominal sample rate (Hz) */
156c0b746e5SOllivier Robert #define BAUD		80	/* samples per baud interval */
157c0b746e5SOllivier Robert #define OFFSET		128	/* companded sample offset */
158c0b746e5SOllivier Robert #define SIZE		256	/* decompanding table size */
1592b15cb3dSCy Schubert #define CYCLE		8	/* samples per bit */
1602b15cb3dSCy Schubert #define SUBFLD		10	/* bits per frame */
1612b15cb3dSCy Schubert #define FIELD		100	/* bits per second */
162c0b746e5SOllivier Robert #define MINTC		2	/* min PLL time constant */
1632b15cb3dSCy Schubert #define MAXTC		10	/* max PLL time constant max */
1642b15cb3dSCy Schubert #define	MAXAMP		3000.	/* maximum signal amplitude */
1652b15cb3dSCy Schubert #define	MINAMP		2000.	/* minimum signal amplitude */
1662b15cb3dSCy Schubert #define DRPOUT		100.	/* dropout signal amplitude */
167c0b746e5SOllivier Robert #define MODMIN		0.5	/* minimum modulation index */
168a151a66cSOllivier Robert #define MAXFREQ		(250e-6 * SECOND) /* freq tolerance (.025%) */
169c0b746e5SOllivier Robert 
170c0b746e5SOllivier Robert /*
1712b15cb3dSCy Schubert  * The on-time synchronization point is the positive-going zero crossing
1722b15cb3dSCy Schubert  * of the first cycle of the second. The IIR baseband filter phase delay
1732b15cb3dSCy Schubert  * is 1.03 ms for IRIG-B and 3.47 ms for IRIG-E. The fudge value 2.68 ms
1742b15cb3dSCy Schubert  * due to the codec and other causes was determined by calibrating to a
1752b15cb3dSCy Schubert  * PPS signal from a GPS receiver.
1762b15cb3dSCy Schubert  *
1772b15cb3dSCy Schubert  * The results with a 2.4-GHz P4 running FreeBSD 6.1 are generally
1782b15cb3dSCy Schubert  * within .02 ms short-term with .02 ms jitter. The processor load due
1792b15cb3dSCy Schubert  * to the driver is 0.51 percent.
180c0b746e5SOllivier Robert  */
1812b15cb3dSCy Schubert #define IRIG_B	((1.03 + 2.68) / 1000)	/* IRIG-B system delay (s) */
1822b15cb3dSCy Schubert #define IRIG_E	((3.47 + 2.68) / 1000)	/* IRIG-E system delay (s) */
183c0b746e5SOllivier Robert 
184c0b746e5SOllivier Robert /*
185c0b746e5SOllivier Robert  * Data bit definitions
186c0b746e5SOllivier Robert  */
187c0b746e5SOllivier Robert #define BIT0		0	/* zero */
188c0b746e5SOllivier Robert #define BIT1		1	/* one */
189c0b746e5SOllivier Robert #define BITP		2	/* position identifier */
190c0b746e5SOllivier Robert 
191c0b746e5SOllivier Robert /*
1922b15cb3dSCy Schubert  * Error flags
193c0b746e5SOllivier Robert  */
194c0b746e5SOllivier Robert #define IRIG_ERR_AMP	0x01	/* low carrier amplitude */
195c0b746e5SOllivier Robert #define IRIG_ERR_FREQ	0x02	/* frequency tolerance exceeded */
196c0b746e5SOllivier Robert #define IRIG_ERR_MOD	0x04	/* low modulation index */
197c0b746e5SOllivier Robert #define IRIG_ERR_SYNCH	0x08	/* frame synch error */
198c0b746e5SOllivier Robert #define IRIG_ERR_DECODE	0x10	/* frame decoding error */
199c0b746e5SOllivier Robert #define IRIG_ERR_CHECK	0x20	/* second numbering discrepancy */
200c0b746e5SOllivier Robert #define IRIG_ERR_ERROR	0x40	/* codec error (overrun) */
2019c2daa00SOllivier Robert #define IRIG_ERR_SIGERR	0x80	/* IRIG status error (Spectracom) */
202c0b746e5SOllivier Robert 
2032b15cb3dSCy Schubert static	char	hexchar[] = "0123456789abcdef";
2042b15cb3dSCy Schubert 
205c0b746e5SOllivier Robert /*
206c0b746e5SOllivier Robert  * IRIG unit control structure
207c0b746e5SOllivier Robert  */
208c0b746e5SOllivier Robert struct irigunit {
2092b15cb3dSCy Schubert 	u_char	timecode[2 * SUBFLD + 1]; /* timecode string */
210c0b746e5SOllivier Robert 	l_fp	timestamp;	/* audio sample timestamp */
211c0b746e5SOllivier Robert 	l_fp	tick;		/* audio sample increment */
2122b15cb3dSCy Schubert 	l_fp	refstamp;	/* reference timestamp */
2132b15cb3dSCy Schubert 	l_fp	chrstamp;	/* baud timestamp */
2142b15cb3dSCy Schubert 	l_fp	prvstamp;	/* previous baud timestamp */
215c0b746e5SOllivier Robert 	double	integ[BAUD];	/* baud integrator */
216c0b746e5SOllivier Robert 	double	phase, freq;	/* logical clock phase and frequency */
217c0b746e5SOllivier Robert 	double	zxing;		/* phase detector integrator */
2189c2daa00SOllivier Robert 	double	yxing;		/* cycle phase */
2199c2daa00SOllivier Robert 	double	exing;		/* envelope phase */
220c0b746e5SOllivier Robert 	double	modndx;		/* modulation index */
221c0b746e5SOllivier Robert 	double	irig_b;		/* IRIG-B signal amplitude */
222c0b746e5SOllivier Robert 	double	irig_e;		/* IRIG-E signal amplitude */
223c0b746e5SOllivier Robert 	int	errflg;		/* error flags */
2249c2daa00SOllivier Robert 	/*
2259c2daa00SOllivier Robert 	 * Audio codec variables
2269c2daa00SOllivier Robert 	 */
2279c2daa00SOllivier Robert 	double	comp[SIZE];	/* decompanding table */
2282b15cb3dSCy Schubert 	double	signal;		/* peak signal for AGC */
229c0b746e5SOllivier Robert 	int	port;		/* codec port */
230c0b746e5SOllivier Robert 	int	gain;		/* codec gain */
2319c2daa00SOllivier Robert 	int	mongain;	/* codec monitor gain */
232c0b746e5SOllivier Robert 	int	seccnt;		/* second interval counter */
233c0b746e5SOllivier Robert 
234c0b746e5SOllivier Robert 	/*
235c0b746e5SOllivier Robert 	 * RF variables
236c0b746e5SOllivier Robert 	 */
2372b15cb3dSCy Schubert 	double	bpf[9];		/* IRIG-B filter shift register */
238c0b746e5SOllivier Robert 	double	lpf[5];		/* IRIG-E filter shift register */
2392b15cb3dSCy Schubert 	double	envmin, envmax;	/* envelope min and max */
2402b15cb3dSCy Schubert 	double	slice;		/* envelope slice level */
241c0b746e5SOllivier Robert 	double	intmin, intmax;	/* integrated envelope min and max */
242c0b746e5SOllivier Robert 	double	maxsignal;	/* integrated peak amplitude */
243c0b746e5SOllivier Robert 	double	noise;		/* integrated noise amplitude */
244c0b746e5SOllivier Robert 	double	lastenv[CYCLE];	/* last cycle amplitudes */
245c0b746e5SOllivier Robert 	double	lastint[CYCLE];	/* last integrated cycle amplitudes */
246c0b746e5SOllivier Robert 	double	lastsig;	/* last carrier sample */
247c0b746e5SOllivier Robert 	double	fdelay;		/* filter delay */
2489c2daa00SOllivier Robert 	int	decim;		/* sample decimation factor */
249c0b746e5SOllivier Robert 	int	envphase;	/* envelope phase */
250c0b746e5SOllivier Robert 	int	envptr;		/* envelope phase pointer */
251c0b746e5SOllivier Robert 	int	envsw;		/* envelope state */
252c0b746e5SOllivier Robert 	int	envxing;	/* envelope slice crossing */
253c0b746e5SOllivier Robert 	int	tc;		/* time constant */
254c0b746e5SOllivier Robert 	int	tcount;		/* time constant counter */
255c0b746e5SOllivier Robert 	int	badcnt;		/* decimation interval counter */
256c0b746e5SOllivier Robert 
257c0b746e5SOllivier Robert 	/*
258c0b746e5SOllivier Robert 	 * Decoder variables
259c0b746e5SOllivier Robert 	 */
260c0b746e5SOllivier Robert 	int	pulse;		/* cycle counter */
261c0b746e5SOllivier Robert 	int	cycles;		/* carrier cycles */
262c0b746e5SOllivier Robert 	int	dcycles;	/* data cycles */
2632b15cb3dSCy Schubert 	int	lastbit;	/* last code element */
264c0b746e5SOllivier Robert 	int	second;		/* previous second */
2652b15cb3dSCy Schubert 	int	bitcnt;		/* bit count in frame */
2662b15cb3dSCy Schubert 	int	frmcnt;		/* bit count in second */
2672b15cb3dSCy Schubert 	int	xptr;		/* timecode pointer */
268c0b746e5SOllivier Robert 	int	bits;		/* demodulated bits */
269c0b746e5SOllivier Robert };
270c0b746e5SOllivier Robert 
271c0b746e5SOllivier Robert /*
272c0b746e5SOllivier Robert  * Function prototypes
273c0b746e5SOllivier Robert  */
2742b15cb3dSCy Schubert static	int	irig_start	(int, struct peer *);
2752b15cb3dSCy Schubert static	void	irig_shutdown	(int, struct peer *);
2762b15cb3dSCy Schubert static	void	irig_receive	(struct recvbuf *);
2772b15cb3dSCy Schubert static	void	irig_poll	(int, struct peer *);
278c0b746e5SOllivier Robert 
279c0b746e5SOllivier Robert /*
280c0b746e5SOllivier Robert  * More function prototypes
281c0b746e5SOllivier Robert  */
2822b15cb3dSCy Schubert static	void	irig_base	(struct peer *, double);
2832b15cb3dSCy Schubert static	void	irig_rf		(struct peer *, double);
2842b15cb3dSCy Schubert static	void	irig_baud	(struct peer *, int);
2852b15cb3dSCy Schubert static	void	irig_decode	(struct peer *, int);
2862b15cb3dSCy Schubert static	void	irig_gain	(struct peer *);
287c0b746e5SOllivier Robert 
288c0b746e5SOllivier Robert /*
289c0b746e5SOllivier Robert  * Transfer vector
290c0b746e5SOllivier Robert  */
291c0b746e5SOllivier Robert struct	refclock refclock_irig = {
292c0b746e5SOllivier Robert 	irig_start,		/* start up driver */
293c0b746e5SOllivier Robert 	irig_shutdown,		/* shut down driver */
294c0b746e5SOllivier Robert 	irig_poll,		/* transmit poll message */
295c0b746e5SOllivier Robert 	noentry,		/* not used (old irig_control) */
296c0b746e5SOllivier Robert 	noentry,		/* initialize driver (not used) */
297c0b746e5SOllivier Robert 	noentry,		/* not used (old irig_buginfo) */
298c0b746e5SOllivier Robert 	NOFLAGS			/* not used */
299c0b746e5SOllivier Robert };
300c0b746e5SOllivier Robert 
301c0b746e5SOllivier Robert 
302c0b746e5SOllivier Robert /*
303c0b746e5SOllivier Robert  * irig_start - open the devices and initialize data for processing
304c0b746e5SOllivier Robert  */
305c0b746e5SOllivier Robert static int
306c0b746e5SOllivier Robert irig_start(
3079c2daa00SOllivier Robert 	int	unit,		/* instance number (used for PCM) */
308c0b746e5SOllivier Robert 	struct peer *peer	/* peer structure pointer */
309c0b746e5SOllivier Robert 	)
310c0b746e5SOllivier Robert {
311c0b746e5SOllivier Robert 	struct refclockproc *pp;
312c0b746e5SOllivier Robert 	struct irigunit *up;
313c0b746e5SOllivier Robert 
314c0b746e5SOllivier Robert 	/*
315c0b746e5SOllivier Robert 	 * Local variables
316c0b746e5SOllivier Robert 	 */
317c0b746e5SOllivier Robert 	int	fd;		/* file descriptor */
318c0b746e5SOllivier Robert 	int	i;		/* index */
319c0b746e5SOllivier Robert 	double	step;		/* codec adjustment */
320c0b746e5SOllivier Robert 
321c0b746e5SOllivier Robert 	/*
322c0b746e5SOllivier Robert 	 * Open audio device
323c0b746e5SOllivier Robert 	 */
3249c2daa00SOllivier Robert 	fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
325a151a66cSOllivier Robert 	if (fd < 0)
326c0b746e5SOllivier Robert 		return (0);
327a151a66cSOllivier Robert #ifdef DEBUG
328a151a66cSOllivier Robert 	if (debug)
329a151a66cSOllivier Robert 		audio_show();
330a151a66cSOllivier Robert #endif
331c0b746e5SOllivier Robert 
332c0b746e5SOllivier Robert 	/*
333c0b746e5SOllivier Robert 	 * Allocate and initialize unit structure
334c0b746e5SOllivier Robert 	 */
3352b15cb3dSCy Schubert 	up = emalloc_zero(sizeof(*up));
336c0b746e5SOllivier Robert 	pp = peer->procptr;
337c0b746e5SOllivier Robert 	pp->io.clock_recv = irig_receive;
3382b15cb3dSCy Schubert 	pp->io.srcclock = peer;
339c0b746e5SOllivier Robert 	pp->io.datalen = 0;
340c0b746e5SOllivier Robert 	pp->io.fd = fd;
341c0b746e5SOllivier Robert 	if (!io_addclock(&pp->io)) {
3422b15cb3dSCy Schubert 		close(fd);
3432b15cb3dSCy Schubert 		pp->io.fd = -1;
344c0b746e5SOllivier Robert 		free(up);
345c0b746e5SOllivier Robert 		return (0);
346c0b746e5SOllivier Robert 	}
3472b15cb3dSCy Schubert 	pp->unitptr = up;
348c0b746e5SOllivier Robert 
349c0b746e5SOllivier Robert 	/*
350c0b746e5SOllivier Robert 	 * Initialize miscellaneous variables
351c0b746e5SOllivier Robert 	 */
352c0b746e5SOllivier Robert 	peer->precision = PRECISION;
353c0b746e5SOllivier Robert 	pp->clockdesc = DESCRIPTION;
354c0b746e5SOllivier Robert 	memcpy((char *)&pp->refid, REFID, 4);
355c0b746e5SOllivier Robert 	up->tc = MINTC;
356c0b746e5SOllivier Robert 	up->decim = 1;
357a151a66cSOllivier Robert 	up->gain = 127;
358c0b746e5SOllivier Robert 
359c0b746e5SOllivier Robert 	/*
360c0b746e5SOllivier Robert 	 * The companded samples are encoded sign-magnitude. The table
361c0b746e5SOllivier Robert 	 * contains all the 256 values in the interest of speed.
362c0b746e5SOllivier Robert 	 */
363c0b746e5SOllivier Robert 	up->comp[0] = up->comp[OFFSET] = 0.;
364c0b746e5SOllivier Robert 	up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
365c0b746e5SOllivier Robert 	up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
366c0b746e5SOllivier Robert 	step = 2.;
367c0b746e5SOllivier Robert 	for (i = 3; i < OFFSET; i++) {
368c0b746e5SOllivier Robert 		up->comp[i] = up->comp[i - 1] + step;
369c0b746e5SOllivier Robert 		up->comp[OFFSET + i] = -up->comp[i];
370c0b746e5SOllivier Robert 		if (i % 16 == 0)
371c0b746e5SOllivier Robert 			step *= 2.;
372c0b746e5SOllivier Robert 	}
373a151a66cSOllivier Robert 	DTOLFP(1. / SECOND, &up->tick);
374c0b746e5SOllivier Robert 	return (1);
375c0b746e5SOllivier Robert }
376c0b746e5SOllivier Robert 
377c0b746e5SOllivier Robert 
378c0b746e5SOllivier Robert /*
379c0b746e5SOllivier Robert  * irig_shutdown - shut down the clock
380c0b746e5SOllivier Robert  */
381c0b746e5SOllivier Robert static void
382c0b746e5SOllivier Robert irig_shutdown(
383c0b746e5SOllivier Robert 	int	unit,		/* instance number (not used) */
384c0b746e5SOllivier Robert 	struct peer *peer	/* peer structure pointer */
385c0b746e5SOllivier Robert 	)
386c0b746e5SOllivier Robert {
387c0b746e5SOllivier Robert 	struct refclockproc *pp;
388c0b746e5SOllivier Robert 	struct irigunit *up;
389c0b746e5SOllivier Robert 
390c0b746e5SOllivier Robert 	pp = peer->procptr;
3912b15cb3dSCy Schubert 	up = pp->unitptr;
3922b15cb3dSCy Schubert 	if (-1 != pp->io.fd)
393c0b746e5SOllivier Robert 		io_closeclock(&pp->io);
3942b15cb3dSCy Schubert 	if (NULL != up)
395c0b746e5SOllivier Robert 		free(up);
396c0b746e5SOllivier Robert }
397c0b746e5SOllivier Robert 
398c0b746e5SOllivier Robert 
399c0b746e5SOllivier Robert /*
400c0b746e5SOllivier Robert  * irig_receive - receive data from the audio device
401c0b746e5SOllivier Robert  *
402c0b746e5SOllivier Robert  * This routine reads input samples and adjusts the logical clock to
403c0b746e5SOllivier Robert  * track the irig clock by dropping or duplicating codec samples.
404c0b746e5SOllivier Robert  */
405c0b746e5SOllivier Robert static void
406c0b746e5SOllivier Robert irig_receive(
407c0b746e5SOllivier Robert 	struct recvbuf *rbufp	/* receive buffer structure pointer */
408c0b746e5SOllivier Robert 	)
409c0b746e5SOllivier Robert {
410c0b746e5SOllivier Robert 	struct peer *peer;
411c0b746e5SOllivier Robert 	struct refclockproc *pp;
412c0b746e5SOllivier Robert 	struct irigunit *up;
413c0b746e5SOllivier Robert 
414c0b746e5SOllivier Robert 	/*
415c0b746e5SOllivier Robert 	 * Local variables
416c0b746e5SOllivier Robert 	 */
417c0b746e5SOllivier Robert 	double	sample;		/* codec sample */
418c0b746e5SOllivier Robert 	u_char	*dpt;		/* buffer pointer */
4199c2daa00SOllivier Robert 	int	bufcnt;		/* buffer counter */
420c0b746e5SOllivier Robert 	l_fp	ltemp;		/* l_fp temp */
421c0b746e5SOllivier Robert 
4222b15cb3dSCy Schubert 	peer = rbufp->recv_peer;
423c0b746e5SOllivier Robert 	pp = peer->procptr;
4242b15cb3dSCy Schubert 	up = pp->unitptr;
425c0b746e5SOllivier Robert 
426c0b746e5SOllivier Robert 	/*
427c0b746e5SOllivier Robert 	 * Main loop - read until there ain't no more. Note codec
428c0b746e5SOllivier Robert 	 * samples are bit-inverted.
429c0b746e5SOllivier Robert 	 */
4309c2daa00SOllivier Robert 	DTOLFP((double)rbufp->recv_length / SECOND, &ltemp);
4319c2daa00SOllivier Robert 	L_SUB(&rbufp->recv_time, &ltemp);
432c0b746e5SOllivier Robert 	up->timestamp = rbufp->recv_time;
433c0b746e5SOllivier Robert 	dpt = rbufp->recv_buffer;
4349c2daa00SOllivier Robert 	for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
435c0b746e5SOllivier Robert 		sample = up->comp[~*dpt++ & 0xff];
436c0b746e5SOllivier Robert 
437c0b746e5SOllivier Robert 		/*
4389c2daa00SOllivier Robert 		 * Variable frequency oscillator. The codec oscillator
4399c2daa00SOllivier Robert 		 * runs at the nominal rate of 8000 samples per second,
4409c2daa00SOllivier Robert 		 * or 125 us per sample. A frequency change of one unit
4419c2daa00SOllivier Robert 		 * results in either duplicating or deleting one sample
4429c2daa00SOllivier Robert 		 * per second, which results in a frequency change of
4439c2daa00SOllivier Robert 		 * 125 PPM.
444c0b746e5SOllivier Robert 		 */
4452b15cb3dSCy Schubert 		up->phase += (up->freq + clock_codec) / SECOND;
4469c2daa00SOllivier Robert 		up->phase += pp->fudgetime2 / 1e6;
447c0b746e5SOllivier Robert 		if (up->phase >= .5) {
448c0b746e5SOllivier Robert 			up->phase -= 1.;
449c0b746e5SOllivier Robert 		} else if (up->phase < -.5) {
450c0b746e5SOllivier Robert 			up->phase += 1.;
451c0b746e5SOllivier Robert 			irig_rf(peer, sample);
452c0b746e5SOllivier Robert 			irig_rf(peer, sample);
453c0b746e5SOllivier Robert 		} else {
454c0b746e5SOllivier Robert 			irig_rf(peer, sample);
455c0b746e5SOllivier Robert 		}
456c0b746e5SOllivier Robert 		L_ADD(&up->timestamp, &up->tick);
4572b15cb3dSCy Schubert 		sample = fabs(sample);
4582b15cb3dSCy Schubert 		if (sample > up->signal)
4592b15cb3dSCy Schubert 			up->signal = sample;
4602b15cb3dSCy Schubert 		up->signal += (sample - up->signal) /
4612b15cb3dSCy Schubert 		    1000;
462c0b746e5SOllivier Robert 
463c0b746e5SOllivier Robert 		/*
4649c2daa00SOllivier Robert 		 * Once each second, determine the IRIG format and gain.
465c0b746e5SOllivier Robert 		 */
466a151a66cSOllivier Robert 		up->seccnt = (up->seccnt + 1) % SECOND;
467c0b746e5SOllivier Robert 		if (up->seccnt == 0) {
468c0b746e5SOllivier Robert 			if (up->irig_b > up->irig_e) {
469c0b746e5SOllivier Robert 				up->decim = 1;
470c0b746e5SOllivier Robert 				up->fdelay = IRIG_B;
471c0b746e5SOllivier Robert 			} else {
472c0b746e5SOllivier Robert 				up->decim = 10;
473c0b746e5SOllivier Robert 				up->fdelay = IRIG_E;
474c0b746e5SOllivier Robert 			}
475c0b746e5SOllivier Robert 			up->irig_b = up->irig_e = 0;
4762b15cb3dSCy Schubert 			irig_gain(peer);
4772b15cb3dSCy Schubert 
478c0b746e5SOllivier Robert 		}
479c0b746e5SOllivier Robert 	}
480c0b746e5SOllivier Robert 
481c0b746e5SOllivier Robert 	/*
4829c2daa00SOllivier Robert 	 * Set the input port and monitor gain for the next buffer.
483c0b746e5SOllivier Robert 	 */
4849c2daa00SOllivier Robert 	if (pp->sloppyclockflag & CLK_FLAG2)
4859c2daa00SOllivier Robert 		up->port = 2;
4869c2daa00SOllivier Robert 	else
4879c2daa00SOllivier Robert 		up->port = 1;
488c0b746e5SOllivier Robert 	if (pp->sloppyclockflag & CLK_FLAG3)
4899c2daa00SOllivier Robert 		up->mongain = MONGAIN;
4909c2daa00SOllivier Robert 	else
4919c2daa00SOllivier Robert 		up->mongain = 0;
492c0b746e5SOllivier Robert }
493c0b746e5SOllivier Robert 
4942b15cb3dSCy Schubert 
495c0b746e5SOllivier Robert /*
496c0b746e5SOllivier Robert  * irig_rf - RF processing
497c0b746e5SOllivier Robert  *
4982b15cb3dSCy Schubert  * This routine filters the RF signal using a bandass filter for IRIG-B
499c0b746e5SOllivier Robert  * and a lowpass filter for IRIG-E. In case of IRIG-E, the samples are
5002b15cb3dSCy Schubert  * decimated by a factor of ten. Note that the codec filters function as
5012b15cb3dSCy Schubert  * roofing filters to attenuate both the high and low ends of the
502c0b746e5SOllivier Robert  * passband. IIR filter coefficients were determined using Matlab Signal
503c0b746e5SOllivier Robert  * Processing Toolkit.
504c0b746e5SOllivier Robert  */
505c0b746e5SOllivier Robert static void
506c0b746e5SOllivier Robert irig_rf(
507c0b746e5SOllivier Robert 	struct peer *peer,	/* peer structure pointer */
508c0b746e5SOllivier Robert 	double	sample		/* current signal sample */
509c0b746e5SOllivier Robert 	)
510c0b746e5SOllivier Robert {
511c0b746e5SOllivier Robert 	struct refclockproc *pp;
512c0b746e5SOllivier Robert 	struct irigunit *up;
513c0b746e5SOllivier Robert 
514c0b746e5SOllivier Robert 	/*
515c0b746e5SOllivier Robert 	 * Local variables
516c0b746e5SOllivier Robert 	 */
517c0b746e5SOllivier Robert 	double	irig_b, irig_e;	/* irig filter outputs */
518c0b746e5SOllivier Robert 
519c0b746e5SOllivier Robert 	pp = peer->procptr;
5202b15cb3dSCy Schubert 	up = pp->unitptr;
521c0b746e5SOllivier Robert 
522c0b746e5SOllivier Robert 	/*
5232b15cb3dSCy Schubert 	 * IRIG-B filter. Matlab 4th-order IIR elliptic, 800-1200 Hz
5242b15cb3dSCy Schubert 	 * bandpass, 0.3 dB passband ripple, -50 dB stopband ripple,
5252b15cb3dSCy Schubert 	 * phase delay 1.03 ms.
526c0b746e5SOllivier Robert 	 */
5272b15cb3dSCy Schubert 	irig_b = (up->bpf[8] = up->bpf[7]) * 6.505491e-001;
5282b15cb3dSCy Schubert 	irig_b += (up->bpf[7] = up->bpf[6]) * -3.875180e+000;
5292b15cb3dSCy Schubert 	irig_b += (up->bpf[6] = up->bpf[5]) * 1.151180e+001;
5302b15cb3dSCy Schubert 	irig_b += (up->bpf[5] = up->bpf[4]) * -2.141264e+001;
5312b15cb3dSCy Schubert 	irig_b += (up->bpf[4] = up->bpf[3]) * 2.712837e+001;
5322b15cb3dSCy Schubert 	irig_b += (up->bpf[3] = up->bpf[2]) * -2.384486e+001;
5332b15cb3dSCy Schubert 	irig_b += (up->bpf[2] = up->bpf[1]) * 1.427663e+001;
5342b15cb3dSCy Schubert 	irig_b += (up->bpf[1] = up->bpf[0]) * -5.352734e+000;
5352b15cb3dSCy Schubert 	up->bpf[0] = sample - irig_b;
5362b15cb3dSCy Schubert 	irig_b = up->bpf[0] * 4.952157e-003
5372b15cb3dSCy Schubert 	    + up->bpf[1] * -2.055878e-002
5382b15cb3dSCy Schubert 	    + up->bpf[2] * 4.401413e-002
5392b15cb3dSCy Schubert 	    + up->bpf[3] * -6.558851e-002
5402b15cb3dSCy Schubert 	    + up->bpf[4] * 7.462108e-002
5412b15cb3dSCy Schubert 	    + up->bpf[5] * -6.558851e-002
5422b15cb3dSCy Schubert 	    + up->bpf[6] * 4.401413e-002
5432b15cb3dSCy Schubert 	    + up->bpf[7] * -2.055878e-002
5442b15cb3dSCy Schubert 	    + up->bpf[8] * 4.952157e-003;
545c0b746e5SOllivier Robert 	up->irig_b += irig_b * irig_b;
546c0b746e5SOllivier Robert 
547c0b746e5SOllivier Robert 	/*
5482b15cb3dSCy Schubert 	 * IRIG-E filter. Matlab 4th-order IIR elliptic, 130-Hz lowpass,
5492b15cb3dSCy Schubert 	 * 0.3 dB passband ripple, -50 dB stopband ripple, phase delay
5502b15cb3dSCy Schubert 	 * 3.47 ms.
551c0b746e5SOllivier Robert 	 */
5522b15cb3dSCy Schubert 	irig_e = (up->lpf[4] = up->lpf[3]) * 8.694604e-001;
5532b15cb3dSCy Schubert 	irig_e += (up->lpf[3] = up->lpf[2]) * -3.589893e+000;
5542b15cb3dSCy Schubert 	irig_e += (up->lpf[2] = up->lpf[1]) * 5.570154e+000;
5552b15cb3dSCy Schubert 	irig_e += (up->lpf[1] = up->lpf[0]) * -3.849667e+000;
556c0b746e5SOllivier Robert 	up->lpf[0] = sample - irig_e;
5572b15cb3dSCy Schubert 	irig_e = up->lpf[0] * 3.215696e-003
5582b15cb3dSCy Schubert 	    + up->lpf[1] * -1.174951e-002
5592b15cb3dSCy Schubert 	    + up->lpf[2] * 1.712074e-002
5602b15cb3dSCy Schubert 	    + up->lpf[3] * -1.174951e-002
5612b15cb3dSCy Schubert 	    + up->lpf[4] * 3.215696e-003;
562c0b746e5SOllivier Robert 	up->irig_e += irig_e * irig_e;
563c0b746e5SOllivier Robert 
564c0b746e5SOllivier Robert 	/*
565c0b746e5SOllivier Robert 	 * Decimate by a factor of either 1 (IRIG-B) or 10 (IRIG-E).
566c0b746e5SOllivier Robert 	 */
567c0b746e5SOllivier Robert 	up->badcnt = (up->badcnt + 1) % up->decim;
568c0b746e5SOllivier Robert 	if (up->badcnt == 0) {
569c0b746e5SOllivier Robert 		if (up->decim == 1)
570c0b746e5SOllivier Robert 			irig_base(peer, irig_b);
571c0b746e5SOllivier Robert 		else
572c0b746e5SOllivier Robert 			irig_base(peer, irig_e);
573c0b746e5SOllivier Robert 	}
574c0b746e5SOllivier Robert }
575c0b746e5SOllivier Robert 
576c0b746e5SOllivier Robert /*
577c0b746e5SOllivier Robert  * irig_base - baseband processing
578c0b746e5SOllivier Robert  *
579c0b746e5SOllivier Robert  * This routine processes the baseband signal and demodulates the AM
580c0b746e5SOllivier Robert  * carrier using a synchronous detector. It then synchronizes to the
5812b15cb3dSCy Schubert  * data frame at the baud rate and decodes the width-modulated data
5822b15cb3dSCy Schubert  * pulses.
583c0b746e5SOllivier Robert  */
584c0b746e5SOllivier Robert static void
585c0b746e5SOllivier Robert irig_base(
586c0b746e5SOllivier Robert 	struct peer *peer,	/* peer structure pointer */
587c0b746e5SOllivier Robert 	double	sample		/* current signal sample */
588c0b746e5SOllivier Robert 	)
589c0b746e5SOllivier Robert {
590c0b746e5SOllivier Robert 	struct refclockproc *pp;
591c0b746e5SOllivier Robert 	struct irigunit *up;
592c0b746e5SOllivier Robert 
593c0b746e5SOllivier Robert 	/*
594c0b746e5SOllivier Robert 	 * Local variables
595c0b746e5SOllivier Robert 	 */
596c0b746e5SOllivier Robert 	double	lope;		/* integrator output */
597c0b746e5SOllivier Robert 	double	env;		/* envelope detector output */
5982b15cb3dSCy Schubert 	double	dtemp;
5992b15cb3dSCy Schubert 	int	carphase;	/* carrier phase */
600c0b746e5SOllivier Robert 
601c0b746e5SOllivier Robert 	pp = peer->procptr;
6022b15cb3dSCy Schubert 	up = pp->unitptr;
603c0b746e5SOllivier Robert 
604c0b746e5SOllivier Robert 	/*
605c0b746e5SOllivier Robert 	 * Synchronous baud integrator. Corresponding samples of current
606c0b746e5SOllivier Robert 	 * and past baud intervals are integrated to refine the envelope
6072b15cb3dSCy Schubert 	 * amplitude and phase estimate. We keep one cycle (1 ms) of the
6082b15cb3dSCy Schubert 	 * raw data and one baud (10 ms) of the integrated data.
609c0b746e5SOllivier Robert 	 */
610c0b746e5SOllivier Robert 	up->envphase = (up->envphase + 1) % BAUD;
611c0b746e5SOllivier Robert 	up->integ[up->envphase] += (sample - up->integ[up->envphase]) /
612c0b746e5SOllivier Robert 	    (5 * up->tc);
613c0b746e5SOllivier Robert 	lope = up->integ[up->envphase];
6142b15cb3dSCy Schubert 	carphase = up->envphase % CYCLE;
6152b15cb3dSCy Schubert 	up->lastenv[carphase] = sample;
6162b15cb3dSCy Schubert 	up->lastint[carphase] = lope;
617c0b746e5SOllivier Robert 
618c0b746e5SOllivier Robert 	/*
6192b15cb3dSCy Schubert 	 * Phase detector. Find the negative-going zero crossing
6202b15cb3dSCy Schubert 	 * relative to sample 4 in the 8-sample sycle. A phase change of
6212b15cb3dSCy Schubert 	 * 360 degrees produces an output change of one unit.
622c0b746e5SOllivier Robert 	 */
6232b15cb3dSCy Schubert 	if (up->lastsig > 0 && lope <= 0)
6242b15cb3dSCy Schubert 		up->zxing += (double)(carphase - 4) / CYCLE;
625c0b746e5SOllivier Robert 	up->lastsig = lope;
626c0b746e5SOllivier Robert 
627c0b746e5SOllivier Robert 	/*
6282b15cb3dSCy Schubert 	 * End of the baud. Update signal/noise estimates and PLL
6292b15cb3dSCy Schubert 	 * phase, frequency and time constant.
630c0b746e5SOllivier Robert 	 */
631c0b746e5SOllivier Robert 	if (up->envphase == 0) {
6322b15cb3dSCy Schubert 		up->maxsignal = up->intmax; up->noise = up->intmin;
6332b15cb3dSCy Schubert 		up->intmin = 1e6; up->intmax = -1e6;
634c0b746e5SOllivier Robert 		if (up->maxsignal < DRPOUT)
635c0b746e5SOllivier Robert 			up->errflg |= IRIG_ERR_AMP;
6369c2daa00SOllivier Robert 		if (up->maxsignal > 0)
6372b15cb3dSCy Schubert 			up->modndx = (up->maxsignal - up->noise) /
6382b15cb3dSCy Schubert 			    up->maxsignal;
639c0b746e5SOllivier Robert  		else
640c0b746e5SOllivier Robert 			up->modndx = 0;
641c0b746e5SOllivier Robert 		if (up->modndx < MODMIN)
642c0b746e5SOllivier Robert 			up->errflg |= IRIG_ERR_MOD;
643c0b746e5SOllivier Robert 		if (up->errflg & (IRIG_ERR_AMP | IRIG_ERR_FREQ |
644c0b746e5SOllivier Robert 		   IRIG_ERR_MOD | IRIG_ERR_SYNCH)) {
645c0b746e5SOllivier Robert 			up->tc = MINTC;
646c0b746e5SOllivier Robert 			up->tcount = 0;
647c0b746e5SOllivier Robert 		}
648c0b746e5SOllivier Robert 
649c0b746e5SOllivier Robert 		/*
650c0b746e5SOllivier Robert 		 * Update PLL phase and frequency. The PLL time constant
651c0b746e5SOllivier Robert 		 * is set initially to stabilize the frequency within a
652c0b746e5SOllivier Robert 		 * minute or two, then increases to the maximum. The
653c0b746e5SOllivier Robert 		 * frequency is clamped so that the PLL capture range
654c0b746e5SOllivier Robert 		 * cannot be exceeded.
655c0b746e5SOllivier Robert 		 */
656c0b746e5SOllivier Robert 		dtemp = up->zxing * up->decim / BAUD;
657c0b746e5SOllivier Robert 		up->yxing = dtemp;
658c0b746e5SOllivier Robert 		up->zxing = 0.;
659c0b746e5SOllivier Robert 		up->phase += dtemp / up->tc;
660c0b746e5SOllivier Robert 		up->freq += dtemp / (4. * up->tc * up->tc);
661c0b746e5SOllivier Robert 		if (up->freq > MAXFREQ) {
662c0b746e5SOllivier Robert 			up->freq = MAXFREQ;
663c0b746e5SOllivier Robert 			up->errflg |= IRIG_ERR_FREQ;
664c0b746e5SOllivier Robert 		} else if (up->freq < -MAXFREQ) {
665c0b746e5SOllivier Robert 			up->freq = -MAXFREQ;
666c0b746e5SOllivier Robert 			up->errflg |= IRIG_ERR_FREQ;
667c0b746e5SOllivier Robert 		}
668c0b746e5SOllivier Robert 	}
669c0b746e5SOllivier Robert 
670c0b746e5SOllivier Robert 	/*
671c0b746e5SOllivier Robert 	 * Synchronous demodulator. There are eight samples in the cycle
6722b15cb3dSCy Schubert 	 * and ten cycles in the baud. Since the PLL has aligned the
6732b15cb3dSCy Schubert 	 * negative-going zero crossing at sample 4, the maximum
6742b15cb3dSCy Schubert 	 * amplitude is at sample 2 and minimum at sample 6. The
675c0b746e5SOllivier Robert 	 * beginning of the data pulse is determined from the integrated
676c0b746e5SOllivier Robert 	 * samples, while the end of the pulse is determined from the
677c0b746e5SOllivier Robert 	 * raw samples. The raw data bits are demodulated relative to
678c0b746e5SOllivier Robert 	 * the slice level and left-shifted in the decoding register.
679c0b746e5SOllivier Robert 	 */
6802b15cb3dSCy Schubert 	if (carphase != 7)
681c0b746e5SOllivier Robert 		return;
682ea906c41SOllivier Robert 
683c0b746e5SOllivier Robert 	lope = (up->lastint[2] - up->lastint[6]) / 2.;
684c0b746e5SOllivier Robert 	if (lope > up->intmax)
685c0b746e5SOllivier Robert 		up->intmax = lope;
686c0b746e5SOllivier Robert 	if (lope < up->intmin)
687c0b746e5SOllivier Robert 		up->intmin = lope;
688c0b746e5SOllivier Robert 
689c0b746e5SOllivier Robert 	/*
690c0b746e5SOllivier Robert 	 * Pulse code demodulator and reference timestamp. The decoder
691c0b746e5SOllivier Robert 	 * looks for a sequence of ten bits; the first two bits must be
692c0b746e5SOllivier Robert 	 * one, the last two bits must be zero. Frame synch is asserted
693c0b746e5SOllivier Robert 	 * when three correct frames have been found.
694c0b746e5SOllivier Robert 	 */
695c0b746e5SOllivier Robert 	up->pulse = (up->pulse + 1) % 10;
696c0b746e5SOllivier Robert 	up->cycles <<= 1;
697c0b746e5SOllivier Robert 	if (lope >= (up->maxsignal + up->noise) / 2.)
698c0b746e5SOllivier Robert 		up->cycles |= 1;
699c0b746e5SOllivier Robert 	if ((up->cycles & 0x303c0f03) == 0x300c0300) {
7002b15cb3dSCy Schubert 		if (up->pulse != 0)
7012b15cb3dSCy Schubert 			up->errflg |= IRIG_ERR_SYNCH;
7022b15cb3dSCy Schubert 		up->pulse = 0;
7032b15cb3dSCy Schubert 	}
7042b15cb3dSCy Schubert 
7052b15cb3dSCy Schubert 	/*
7062b15cb3dSCy Schubert 	 * Assemble the baud and max/min to get the slice level for the
7072b15cb3dSCy Schubert 	 * next baud. The slice level is based on the maximum over the
7082b15cb3dSCy Schubert 	 * first two bits and the minimum over the last two bits, with
7092b15cb3dSCy Schubert 	 * the slice level halfway between the maximum and minimum.
7102b15cb3dSCy Schubert 	 */
7112b15cb3dSCy Schubert 	env = (up->lastenv[2] - up->lastenv[6]) / 2.;
7122b15cb3dSCy Schubert 	up->dcycles <<= 1;
7132b15cb3dSCy Schubert 	if (env >= up->slice)
7142b15cb3dSCy Schubert 		up->dcycles |= 1;
7152b15cb3dSCy Schubert 	switch(up->pulse) {
7162b15cb3dSCy Schubert 
7172b15cb3dSCy Schubert 	case 0:
7182b15cb3dSCy Schubert 		irig_baud(peer, up->dcycles);
7192b15cb3dSCy Schubert 		if (env < up->envmin)
7202b15cb3dSCy Schubert 			up->envmin = env;
7212b15cb3dSCy Schubert 		up->slice = (up->envmax + up->envmin) / 2;
7222b15cb3dSCy Schubert 		up->envmin = 1e6; up->envmax = -1e6;
7232b15cb3dSCy Schubert 		break;
7242b15cb3dSCy Schubert 
7252b15cb3dSCy Schubert 	case 1:
7262b15cb3dSCy Schubert 		up->envmax = env;
7272b15cb3dSCy Schubert 		break;
7282b15cb3dSCy Schubert 
7292b15cb3dSCy Schubert 	case 2:
7302b15cb3dSCy Schubert 		if (env > up->envmax)
7312b15cb3dSCy Schubert 			up->envmax = env;
7322b15cb3dSCy Schubert 		break;
7332b15cb3dSCy Schubert 
7342b15cb3dSCy Schubert 	case 9:
7352b15cb3dSCy Schubert 		up->envmin = env;
7362b15cb3dSCy Schubert 		break;
7372b15cb3dSCy Schubert 	}
7382b15cb3dSCy Schubert }
7392b15cb3dSCy Schubert 
7402b15cb3dSCy Schubert /*
7412b15cb3dSCy Schubert  * irig_baud - update the PLL and decode the pulse-width signal
7422b15cb3dSCy Schubert  */
7432b15cb3dSCy Schubert static void
7442b15cb3dSCy Schubert irig_baud(
7452b15cb3dSCy Schubert 	struct peer *peer,	/* peer structure pointer */
7462b15cb3dSCy Schubert 	int	bits		/* decoded bits */
7472b15cb3dSCy Schubert 	)
7482b15cb3dSCy Schubert {
7492b15cb3dSCy Schubert 	struct refclockproc *pp;
7502b15cb3dSCy Schubert 	struct irigunit *up;
7512b15cb3dSCy Schubert 	double	dtemp;
752c0b746e5SOllivier Robert 	l_fp	ltemp;
7532b15cb3dSCy Schubert 
7542b15cb3dSCy Schubert         pp = peer->procptr;
7552b15cb3dSCy Schubert 	up = pp->unitptr;
756c0b746e5SOllivier Robert 
757c0b746e5SOllivier Robert 	/*
758c0b746e5SOllivier Robert 	 * The PLL time constant starts out small, in order to
759c0b746e5SOllivier Robert 	 * sustain a frequency tolerance of 250 PPM. It
760c0b746e5SOllivier Robert 	 * gradually increases as the loop settles down. Note
761c0b746e5SOllivier Robert 	 * that small wiggles are not believed, unless they
762c0b746e5SOllivier Robert 	 * persist for lots of samples.
763c0b746e5SOllivier Robert 	 */
7649c2daa00SOllivier Robert 	up->exing = -up->yxing;
7652b15cb3dSCy Schubert 	if (abs(up->envxing - up->envphase) <= 1) {
766c0b746e5SOllivier Robert 		up->tcount++;
7672b15cb3dSCy Schubert 		if (up->tcount > 20 * up->tc) {
768c0b746e5SOllivier Robert 			up->tc++;
769c0b746e5SOllivier Robert 			if (up->tc > MAXTC)
770c0b746e5SOllivier Robert 				up->tc = MAXTC;
771c0b746e5SOllivier Robert 			up->tcount = 0;
772c0b746e5SOllivier Robert 			up->envxing = up->envphase;
773c0b746e5SOllivier Robert 		} else {
7749c2daa00SOllivier Robert 			up->exing -= up->envxing - up->envphase;
775c0b746e5SOllivier Robert 		}
776c0b746e5SOllivier Robert 	} else {
777c0b746e5SOllivier Robert 		up->tcount = 0;
778c0b746e5SOllivier Robert 		up->envxing = up->envphase;
779c0b746e5SOllivier Robert 	}
780c0b746e5SOllivier Robert 
781c0b746e5SOllivier Robert 	/*
7822b15cb3dSCy Schubert 	 * Strike the baud timestamp as the positive zero crossing of
7832b15cb3dSCy Schubert 	 * the first bit, accounting for the codec delay and filter
7842b15cb3dSCy Schubert 	 * delay.
785c0b746e5SOllivier Robert 	 */
7862b15cb3dSCy Schubert 	up->prvstamp = up->chrstamp;
7872b15cb3dSCy Schubert 	dtemp = up->decim * (up->exing / SECOND) + up->fdelay;
7889c2daa00SOllivier Robert 	DTOLFP(dtemp, &ltemp);
7892b15cb3dSCy Schubert 	up->chrstamp = up->timestamp;
7902b15cb3dSCy Schubert 	L_SUB(&up->chrstamp, &ltemp);
791c0b746e5SOllivier Robert 
792c0b746e5SOllivier Robert 	/*
7932b15cb3dSCy Schubert 	 * The data bits are collected in ten-bit bauds. The first two
7942b15cb3dSCy Schubert 	 * bits are not used. The resulting patterns represent runs of
7952b15cb3dSCy Schubert 	 * 0-1 bits (0), 2-4 bits (1) and 5-7 bits (PI). The remaining
7962b15cb3dSCy Schubert 	 * 8-bit run represents a soft error and is treated as 0.
797c0b746e5SOllivier Robert 	 */
7982b15cb3dSCy Schubert 	switch (up->dcycles & 0xff) {
799c0b746e5SOllivier Robert 
8002b15cb3dSCy Schubert 	case 0x00:		/* 0-1 bits (0) */
801c0b746e5SOllivier Robert 	case 0x80:
802c0b746e5SOllivier Robert 		irig_decode(peer, BIT0);
803c0b746e5SOllivier Robert 		break;
804c0b746e5SOllivier Robert 
8052b15cb3dSCy Schubert 	case 0xc0:		/* 2-4 bits (1) */
806c0b746e5SOllivier Robert 	case 0xe0:
807c0b746e5SOllivier Robert 	case 0xf0:
808c0b746e5SOllivier Robert 		irig_decode(peer, BIT1);
809c0b746e5SOllivier Robert 		break;
810c0b746e5SOllivier Robert 
8112b15cb3dSCy Schubert 	case 0xf8:		/* (5-7 bits (PI) */
812c0b746e5SOllivier Robert 	case 0xfc:
8132b15cb3dSCy Schubert 	case 0xfe:
814c0b746e5SOllivier Robert 		irig_decode(peer, BITP);
815c0b746e5SOllivier Robert 		break;
816c0b746e5SOllivier Robert 
8172b15cb3dSCy Schubert 	default:		/* 8 bits (error) */
8182b15cb3dSCy Schubert 		irig_decode(peer, BIT0);
819c0b746e5SOllivier Robert 		up->errflg |= IRIG_ERR_DECODE;
820c0b746e5SOllivier Robert 	}
821c0b746e5SOllivier Robert }
822c0b746e5SOllivier Robert 
823c0b746e5SOllivier Robert 
824c0b746e5SOllivier Robert /*
825c0b746e5SOllivier Robert  * irig_decode - decode the data
826c0b746e5SOllivier Robert  *
8272b15cb3dSCy Schubert  * This routine assembles bauds into digits, digits into frames and
8282b15cb3dSCy Schubert  * frames into the timecode fields. Bits can have values of zero, one
8292b15cb3dSCy Schubert  * or position identifier. There are four bits per digit, ten digits per
8302b15cb3dSCy Schubert  * frame and ten frames per second.
831c0b746e5SOllivier Robert  */
832c0b746e5SOllivier Robert static void
833c0b746e5SOllivier Robert irig_decode(
834c0b746e5SOllivier Robert 	struct	peer *peer,	/* peer structure pointer */
835c0b746e5SOllivier Robert 	int	bit		/* data bit (0, 1 or 2) */
836c0b746e5SOllivier Robert 	)
837c0b746e5SOllivier Robert {
838c0b746e5SOllivier Robert 	struct refclockproc *pp;
839c0b746e5SOllivier Robert 	struct irigunit *up;
840c0b746e5SOllivier Robert 
841c0b746e5SOllivier Robert 	/*
842c0b746e5SOllivier Robert 	 * Local variables
843c0b746e5SOllivier Robert 	 */
8442b15cb3dSCy Schubert 	int	syncdig;	/* sync digit (Spectracom) */
8452b15cb3dSCy Schubert 	char	sbs[6 + 1];	/* binary seconds since 0h */
8462b15cb3dSCy Schubert 	char	spare[2 + 1];	/* mulligan digits */
8472b15cb3dSCy Schubert 	int	temp;
848c0b746e5SOllivier Robert 
8492b15cb3dSCy Schubert 	syncdig = 0;
850c0b746e5SOllivier Robert 	pp = peer->procptr;
8512b15cb3dSCy Schubert 	up = pp->unitptr;
852c0b746e5SOllivier Robert 
853c0b746e5SOllivier Robert 	/*
8542b15cb3dSCy Schubert 	 * Assemble frame bits.
855c0b746e5SOllivier Robert 	 */
8562b15cb3dSCy Schubert 	up->bits >>= 1;
857c0b746e5SOllivier Robert 	if (bit == BIT1) {
8582b15cb3dSCy Schubert 		up->bits |= 0x200;
859c0b746e5SOllivier Robert 	} else if (bit == BITP && up->lastbit == BITP) {
860c0b746e5SOllivier Robert 
861c0b746e5SOllivier Robert 		/*
8622b15cb3dSCy Schubert 		 * Frame sync - two adjacent position identifiers, which
8632b15cb3dSCy Schubert 		 * mark the beginning of the second. The reference time
8642b15cb3dSCy Schubert 		 * is the beginning of the second position identifier,
8652b15cb3dSCy Schubert 		 * so copy the character timestamp to the reference
8662b15cb3dSCy Schubert 		 * timestamp.
867c0b746e5SOllivier Robert 		 */
8682b15cb3dSCy Schubert 		if (up->frmcnt != 1)
8692b15cb3dSCy Schubert 			up->errflg |= IRIG_ERR_SYNCH;
8702b15cb3dSCy Schubert 		up->frmcnt = 1;
8712b15cb3dSCy Schubert 		up->refstamp = up->prvstamp;
8722b15cb3dSCy Schubert 	}
8732b15cb3dSCy Schubert 	up->lastbit = bit;
8742b15cb3dSCy Schubert 	if (up->frmcnt % SUBFLD == 0) {
8759c2daa00SOllivier Robert 
8769c2daa00SOllivier Robert 		/*
8772b15cb3dSCy Schubert 		 * End of frame. Encode two hexadecimal digits in
8782b15cb3dSCy Schubert 		 * little-endian timecode field. Note frame 1 is shifted
8792b15cb3dSCy Schubert 		 * right one bit to account for the marker PI.
8809c2daa00SOllivier Robert 		 */
8812b15cb3dSCy Schubert 		temp = up->bits;
8822b15cb3dSCy Schubert 		if (up->frmcnt == 10)
8832b15cb3dSCy Schubert 			temp >>= 1;
8842b15cb3dSCy Schubert 		if (up->xptr >= 2) {
8852b15cb3dSCy Schubert 			up->timecode[--up->xptr] = hexchar[temp & 0xf];
8862b15cb3dSCy Schubert 			up->timecode[--up->xptr] = hexchar[(temp >> 5) &
887c0b746e5SOllivier Robert 			    0xf];
8882b15cb3dSCy Schubert 		}
8892b15cb3dSCy Schubert 		if (up->frmcnt == 0) {
890c0b746e5SOllivier Robert 
891c0b746e5SOllivier Robert 			/*
8922b15cb3dSCy Schubert 			 * End of second. Decode the timecode and wind
8939c2daa00SOllivier Robert 			 * the clock. Not all IRIG generators have the
8949c2daa00SOllivier Robert 			 * year; if so, it is nonzero after year 2000.
8959c2daa00SOllivier Robert 			 * Not all have the hardware status bit; if so,
8969c2daa00SOllivier Robert 			 * it is lit when the source is okay and dim
8979c2daa00SOllivier Robert 			 * when bad. We watch this only if the year is
8989c2daa00SOllivier Robert 			 * nonzero. Not all are configured for signature
8999c2daa00SOllivier Robert 			 * control. If so, all BCD digits are set to
9009c2daa00SOllivier Robert 			 * zero if the source is bad. In this case the
9019c2daa00SOllivier Robert 			 * refclock_process() will reject the timecode
9029c2daa00SOllivier Robert 			 * as invalid.
903c0b746e5SOllivier Robert 			 */
9042b15cb3dSCy Schubert 			up->xptr = 2 * SUBFLD;
905c0b746e5SOllivier Robert 			if (sscanf((char *)up->timecode,
9062b15cb3dSCy Schubert 			   "%6s%2d%1d%2s%3d%2d%2d%2d", sbs, &pp->year,
9072b15cb3dSCy Schubert 			    &syncdig, spare, &pp->day, &pp->hour,
9089c2daa00SOllivier Robert 			    &pp->minute, &pp->second) != 8)
909c0b746e5SOllivier Robert 				pp->leap = LEAP_NOTINSYNC;
910c0b746e5SOllivier Robert 			else
911c0b746e5SOllivier Robert 				pp->leap = LEAP_NOWARNING;
912c0b746e5SOllivier Robert 			up->second = (up->second + up->decim) % 60;
9132b15cb3dSCy Schubert 
9142b15cb3dSCy Schubert 			/*
9152b15cb3dSCy Schubert 			 * Raise an alarm if the day field is zero,
9162b15cb3dSCy Schubert 			 * which happens when signature control is
9172b15cb3dSCy Schubert 			 * enabled and the device has lost
9182b15cb3dSCy Schubert 			 * synchronization. Raise an alarm if the year
9192b15cb3dSCy Schubert 			 * field is nonzero and the sync indicator is
9202b15cb3dSCy Schubert 			 * zero, which happens when a Spectracom radio
9212b15cb3dSCy Schubert 			 * has lost synchronization. Raise an alarm if
9222b15cb3dSCy Schubert 			 * the expected second does not agree with the
9232b15cb3dSCy Schubert 			 * decoded second, which happens with a garbled
9242b15cb3dSCy Schubert 			 * IRIG signal. We are very particular.
9252b15cb3dSCy Schubert 			 */
9262b15cb3dSCy Schubert 			if (pp->day == 0 || (pp->year != 0 && syncdig ==
9272b15cb3dSCy Schubert 			    0))
9282b15cb3dSCy Schubert 				up->errflg |= IRIG_ERR_SIGERR;
929c0b746e5SOllivier Robert 			if (pp->second != up->second)
930c0b746e5SOllivier Robert 				up->errflg |= IRIG_ERR_CHECK;
931c0b746e5SOllivier Robert 			up->second = pp->second;
9322b15cb3dSCy Schubert 
9332b15cb3dSCy Schubert 			/*
9342b15cb3dSCy Schubert 			 * Wind the clock only if there are no errors
9352b15cb3dSCy Schubert 			 * and the time constant has reached the
9362b15cb3dSCy Schubert 			 * maximum.
9372b15cb3dSCy Schubert 			 */
9382b15cb3dSCy Schubert 			if (up->errflg == 0 && up->tc == MAXTC) {
9392b15cb3dSCy Schubert 				pp->lastref = pp->lastrec;
9402b15cb3dSCy Schubert 				pp->lastrec = up->refstamp;
9412b15cb3dSCy Schubert 				if (!refclock_process(pp))
9422b15cb3dSCy Schubert 					refclock_report(peer,
9432b15cb3dSCy Schubert 					    CEVNT_BADTIME);
9442b15cb3dSCy Schubert 			}
9452b15cb3dSCy Schubert 			snprintf(pp->a_lastcode, sizeof(pp->a_lastcode),
9462b15cb3dSCy Schubert 			    "%02x %02d %03d %02d:%02d:%02d %4.0f %3d %6.3f %2d %6.2f %6.1f %s",
9472b15cb3dSCy Schubert 			    up->errflg, pp->year, pp->day,
948c0b746e5SOllivier Robert 			    pp->hour, pp->minute, pp->second,
949a151a66cSOllivier Robert 			    up->maxsignal, up->gain, up->modndx,
9509c2daa00SOllivier Robert 			    up->tc, up->exing * 1e6 / SECOND, up->freq *
9512b15cb3dSCy Schubert 			    1e6 / SECOND, ulfptoa(&pp->lastrec, 6));
952c0b746e5SOllivier Robert 			pp->lencode = strlen(pp->a_lastcode);
9532b15cb3dSCy Schubert 			up->errflg = 0;
9549c2daa00SOllivier Robert 			if (pp->sloppyclockflag & CLK_FLAG4) {
955c0b746e5SOllivier Robert 				record_clock_stats(&peer->srcadr,
956c0b746e5SOllivier Robert 				    pp->a_lastcode);
957c0b746e5SOllivier Robert #ifdef DEBUG
9589c2daa00SOllivier Robert 				if (debug)
9592b15cb3dSCy Schubert 					printf("irig %s\n",
9609c2daa00SOllivier Robert 					    pp->a_lastcode);
961c0b746e5SOllivier Robert #endif /* DEBUG */
962c0b746e5SOllivier Robert 			}
963c0b746e5SOllivier Robert 		}
9649c2daa00SOllivier Robert 	}
9652b15cb3dSCy Schubert 	up->frmcnt = (up->frmcnt + 1) % FIELD;
966c0b746e5SOllivier Robert }
967c0b746e5SOllivier Robert 
968c0b746e5SOllivier Robert 
969c0b746e5SOllivier Robert /*
970c0b746e5SOllivier Robert  * irig_poll - called by the transmit procedure
971c0b746e5SOllivier Robert  *
9729c2daa00SOllivier Robert  * This routine sweeps up the timecode updates since the last poll. For
9739c2daa00SOllivier Robert  * IRIG-B there should be at least 60 updates; for IRIG-E there should
9742b15cb3dSCy Schubert  * be at least 6. If nothing is heard, a timeout event is declared.
975c0b746e5SOllivier Robert  */
976c0b746e5SOllivier Robert static void
977c0b746e5SOllivier Robert irig_poll(
978c0b746e5SOllivier Robert 	int	unit,		/* instance number (not used) */
979c0b746e5SOllivier Robert 	struct peer *peer	/* peer structure pointer */
980c0b746e5SOllivier Robert 	)
981c0b746e5SOllivier Robert {
982c0b746e5SOllivier Robert 	struct refclockproc *pp;
983c0b746e5SOllivier Robert 
984c0b746e5SOllivier Robert 	pp = peer->procptr;
985c0b746e5SOllivier Robert 
9869c2daa00SOllivier Robert 	if (pp->coderecv == pp->codeproc) {
987c0b746e5SOllivier Robert 		refclock_report(peer, CEVNT_TIMEOUT);
988c0b746e5SOllivier Robert 		return;
989ea906c41SOllivier Robert 
9902b15cb3dSCy Schubert 	}
9919c2daa00SOllivier Robert 	refclock_receive(peer);
9922b15cb3dSCy Schubert 	if (!(pp->sloppyclockflag & CLK_FLAG4)) {
9939c2daa00SOllivier Robert 		record_clock_stats(&peer->srcadr, pp->a_lastcode);
9949c2daa00SOllivier Robert #ifdef DEBUG
9959c2daa00SOllivier Robert 		if (debug)
9962b15cb3dSCy Schubert 			printf("irig %s\n", pp->a_lastcode);
9979c2daa00SOllivier Robert #endif /* DEBUG */
998c0b746e5SOllivier Robert 	}
999c0b746e5SOllivier Robert 	pp->polls++;
1000c0b746e5SOllivier Robert 
1001c0b746e5SOllivier Robert }
1002c0b746e5SOllivier Robert 
1003c0b746e5SOllivier Robert 
1004c0b746e5SOllivier Robert /*
1005c0b746e5SOllivier Robert  * irig_gain - adjust codec gain
1006c0b746e5SOllivier Robert  *
10072b15cb3dSCy Schubert  * This routine is called at the end of each second. It uses the AGC to
10082b15cb3dSCy Schubert  * bradket the maximum signal level between MINAMP and MAXAMP to avoid
10092b15cb3dSCy Schubert  * hunting. The routine also jiggles the input port and selectively
10102b15cb3dSCy Schubert  * mutes the monitor.
1011c0b746e5SOllivier Robert  */
1012c0b746e5SOllivier Robert static void
1013c0b746e5SOllivier Robert irig_gain(
1014c0b746e5SOllivier Robert 	struct peer *peer	/* peer structure pointer */
1015c0b746e5SOllivier Robert 	)
1016c0b746e5SOllivier Robert {
1017c0b746e5SOllivier Robert 	struct refclockproc *pp;
1018c0b746e5SOllivier Robert 	struct irigunit *up;
1019c0b746e5SOllivier Robert 
1020c0b746e5SOllivier Robert 	pp = peer->procptr;
10212b15cb3dSCy Schubert 	up = pp->unitptr;
1022c0b746e5SOllivier Robert 
1023c0b746e5SOllivier Robert 	/*
1024c0b746e5SOllivier Robert 	 * Apparently, the codec uses only the high order bits of the
1025c0b746e5SOllivier Robert 	 * gain control field. Thus, it may take awhile for changes to
1026a151a66cSOllivier Robert 	 * wiggle the hardware bits.
1027c0b746e5SOllivier Robert 	 */
10282b15cb3dSCy Schubert 	if (up->maxsignal < MINAMP) {
1029c0b746e5SOllivier Robert 		up->gain += 4;
10309c2daa00SOllivier Robert 		if (up->gain > MAXGAIN)
10319c2daa00SOllivier Robert 			up->gain = MAXGAIN;
10322b15cb3dSCy Schubert 	} else if (up->maxsignal > MAXAMP) {
1033c0b746e5SOllivier Robert 		up->gain -= 4;
1034a151a66cSOllivier Robert 		if (up->gain < 0)
1035a151a66cSOllivier Robert 			up->gain = 0;
1036c0b746e5SOllivier Robert 	}
10379c2daa00SOllivier Robert 	audio_gain(up->gain, up->mongain, up->port);
1038c0b746e5SOllivier Robert }
1039c0b746e5SOllivier Robert 
10402b15cb3dSCy Schubert 
1041c0b746e5SOllivier Robert #else
1042*f5f40dd6SCy Schubert NONEMPTY_TRANSLATION_UNIT
1043c0b746e5SOllivier Robert #endif /* REFCLOCK */
1044