xref: /freebsd/contrib/ntp/ntpd/refclock_gpsdjson.c (revision 895f86f15fbf6540071feb9328c3c50ed1f027b8)
1 /*
2  * refclock_gpsdjson.c - clock driver as GPSD JSON client
3  *	Juergen Perlinger (perlinger@ntp.org)
4  *	Feb 11, 2014 for the NTP project.
5  *      The contents of 'html/copyright.html' apply.
6  *
7  *	Heavily inspired by refclock_nmea.c
8  *
9  * Special thanks to Gary Miller and Hal Murray for their comments and
10  * ideas.
11  *
12  * Note: This will currently NOT work with Windows due to some
13  * limitations:
14  *
15  *  - There is no GPSD for Windows. (There is an unofficial port to
16  *    cygwin, but Windows is not officially supported.)
17  *
18  *  - To work properly, this driver needs PPS and TPV/TOFF sentences
19  *    from GPSD. I don't see how the cygwin port should deal with the
20  *    PPS signal.
21  *
22  *  - The device name matching must be done in a different way for
23  *    Windows. (Can be done with COMxx matching, as done for NMEA.)
24  *
25  * Apart from those minor hickups, once GPSD has been fully ported to
26  * Windows, there's no reason why this should not work there ;-) If this
27  * is ever to happen at all is a different question.
28  *
29  * ---------------------------------------------------------------------
30  *
31  * This driver works slightly different from most others, as the PPS
32  * information (if available) is also coming from GPSD via the data
33  * connection. This makes using both the PPS data and the serial data
34  * easier, but OTOH it's not possible to use the ATOM driver to feed a
35  * raw PPS stream to the core of NTPD.
36  *
37  * To go around this, the driver can use a secondary clock unit
38  * (units>=128) that operate in tandem with the primary clock unit
39  * (unit%128). The primary clock unit does all the IO stuff and data
40  * decoding; if a a secondary unit is attached to a primary unit, this
41  * secondary unit is feed with the PPS samples only and can act as a PPS
42  * source to the clock selection.
43  *
44  * The drawback is that the primary unit must be present for the
45  * secondary unit to work.
46  *
47  * This design is a compromise to reduce the IO load for both NTPD and
48  * GPSD; it also ensures that data is transmitted and evaluated only
49  * once on the side of NTPD.
50  *
51  * ---------------------------------------------------------------------
52  *
53  * trouble shooting hints:
54  *
55  *   Enable and check the clock stats. Check if there are bad replies;
56  *   there should be none. If there are actually bad replies, then the
57  *   driver cannot parse all JSON records from GPSD, and some record
58  *   types are vital for the operation of the driver. This indicates a
59  *   problem on the protocol level.
60  *
61  *   When started on the command line with a debug level >= 2, the
62  *   driver dumps the raw received data and the parser input to
63  *   stdout. Since the debug level is global, NTPD starts to create a
64  *   *lot* of output. It makes sense to pipe it through '(f)grep
65  *   GPSD_JSON' before writing the result to disk.
66  *
67  *   A bit less intrusive is using netcat or telnet to connect to GPSD
68  *   and snoop what NTPD would get. If you try this, you have to send a
69  *   WATCH command to GPSD:
70  *
71  * ?WATCH={"device":"/dev/gps0","enable":true,"json":true,"pps":true};<CRLF>
72  *
73  *   should show you what GPSD has to say to NTPD. Replace "/dev/gps0"
74  *   with the device link used by GPSD, if necessary.
75  */
76 
77 
78 #ifdef HAVE_CONFIG_H
79 #include <config.h>
80 #endif
81 
82 #include "ntp_types.h"
83 
84 #if defined(REFCLOCK) && defined(CLOCK_GPSDJSON) && !defined(SYS_WINNT)
85 
86 /* =====================================================================
87  * Get the little JSMN library directly into our guts. Use the 'parent
88  * link' feature for maximum speed.
89  */
90 #define JSMN_PARENT_LINKS
91 #include "../libjsmn/jsmn.c"
92 
93 /* =====================================================================
94  * JSON parsing stuff
95  */
96 
97 #define JSMN_MAXTOK	350
98 #define INVALID_TOKEN (-1)
99 
100 typedef struct json_ctx {
101 	char        * buf;
102 	int           ntok;
103 	jsmntok_t     tok[JSMN_MAXTOK];
104 } json_ctx;
105 
106 typedef int tok_ref;
107 
108 /* Not all targets have 'long long', and not all of them have 'strtoll'.
109  * Sigh. We roll our own integer number parser.
110  */
111 #ifdef HAVE_LONG_LONG
112 typedef signed   long long int json_int;
113 typedef unsigned long long int json_uint;
114 #define JSON_INT_MAX LLONG_MAX
115 #define JSON_INT_MIN LLONG_MIN
116 #else
117 typedef signed   long int json_int;
118 typedef unsigned long int json_uint;
119 #define JSON_INT_MAX LONG_MAX
120 #define JSON_INT_MIN LONG_MIN
121 #endif
122 
123 /* =====================================================================
124  * header stuff we need
125  */
126 
127 #include <netdb.h>
128 #include <unistd.h>
129 #include <fcntl.h>
130 #include <string.h>
131 #include <ctype.h>
132 #include <math.h>
133 
134 #include <sys/types.h>
135 #include <sys/socket.h>
136 #include <sys/stat.h>
137 #include <netinet/tcp.h>
138 
139 #if defined(HAVE_SYS_POLL_H)
140 # include <sys/poll.h>
141 #elif defined(HAVE_SYS_SELECT_H)
142 # include <sys/select.h>
143 #else
144 # error need poll() or select()
145 #endif
146 
147 #include "ntpd.h"
148 #include "ntp_io.h"
149 #include "ntp_unixtime.h"
150 #include "ntp_refclock.h"
151 #include "ntp_stdlib.h"
152 #include "ntp_calendar.h"
153 #include "timespecops.h"
154 
155 /* get operation modes from mode word.
156 
157  * + SERIAL (default) evaluates only serial time information ('STI') as
158  *   provided by TPV and TOFF records. TPV evaluation suffers from a
159  *   bigger jitter than TOFF, sine it does not contain the receive time
160  *   from GPSD and therefore the receive time of NTPD must be
161  *   substituted for it. The network latency makes this a second rate
162  *   guess.
163  *
164  *   If TOFF records are detected in the data stream, the timing
165  *   information is gleaned from this record -- it contains the local
166  *   receive time stamp from GPSD and therefore eliminates the
167  *   transmission latency between GPSD and NTPD. The timing information
168  *   from TPV is ignored once a TOFF is detected or expected.
169  *
170  *   TPV is still used to check the fix status, so the driver can stop
171  *   feeding samples when GPSD says that the time information is
172  *   effectively unreliable.
173  *
174  * + STRICT means only feed clock samples when a valid STI/PPS pair is
175  *   available. Combines the reference time from STI with the pulse time
176  *   from PPS. Masks the serial data jitter as long PPS is available,
177  *   but can rapidly deteriorate once PPS drops out.
178  *
179  * + AUTO tries to use STI/PPS pairs if available for some time, and if
180  *   this fails for too long switches back to STI only until the PPS
181  *   signal becomes available again. See the HTML docs for this driver
182  *   about the gotchas and why this is not the default.
183  */
184 #define MODE_OP_MASK   0x03
185 #define MODE_OP_STI    0
186 #define MODE_OP_STRICT 1
187 #define MODE_OP_AUTO   2
188 #define MODE_OP_MAXVAL 2
189 #define MODE_OP_MODE(x)		((x) & MODE_OP_MASK)
190 
191 #define	PRECISION	(-9)	/* precision assumed (about 2 ms) */
192 #define	PPS_PRECISION	(-20)	/* precision assumed (about 1 us) */
193 #define	REFID		"GPSD"	/* reference id */
194 #define	DESCRIPTION	"GPSD JSON client clock" /* who we are */
195 
196 #define MAX_PDU_LEN	1600
197 #define TICKOVER_LOW	10
198 #define TICKOVER_HIGH	120
199 #define LOGTHROTTLE	3600
200 
201 /* Primary channel PPS avilability dance:
202  * Every good PPS sample gets us a credit of PPS_INCCOUNT points, every
203  * bad/missing PPS sample costs us a debit of PPS_DECCOUNT points. When
204  * the account reaches the upper limit we change to a mode where only
205  * PPS-augmented samples are fed to the core; when the account drops to
206  * zero we switch to a mode where TPV-only timestamps are fed to the
207  * core.
208  * This reduces the chance of rapid alternation between raw and
209  * PPS-augmented time stamps.
210  */
211 #define PPS_MAXCOUNT	60	/* upper limit of account  */
212 #define PPS_INCCOUNT     3	/* credit for good samples */
213 #define PPS_DECCOUNT     1	/* debit for bad samples   */
214 
215 /* The secondary (PPS) channel uses a different strategy to avoid old
216  * PPS samples in the median filter.
217  */
218 #define PPS2_MAXCOUNT 10
219 
220 #ifndef BOOL
221 # define BOOL int
222 #endif
223 #ifndef TRUE
224 # define TRUE 1
225 #endif
226 #ifndef FALSE
227 # define FALSE 0
228 #endif
229 
230 #define PROTO_VERSION(hi,lo) \
231 	    ((((uint32_t)(hi) << 16) & 0xFFFF0000u) | \
232 	     ((uint32_t)(lo) & 0x0FFFFu))
233 
234 /* some local typedefs: The NTPD formatting style cries for short type
235  * names, and we provide them locally. Note:the suffix '_t' is reserved
236  * for the standard; I use a capital T instead.
237  */
238 typedef struct peer         peerT;
239 typedef struct refclockproc clockprocT;
240 typedef struct addrinfo     addrinfoT;
241 
242 /* =====================================================================
243  * We use the same device name scheme as does the NMEA driver; since
244  * GPSD supports the same links, we can select devices by a fixed name.
245  */
246 static const char * s_dev_stem = "/dev/gps";
247 
248 /* =====================================================================
249  * forward declarations for transfer vector and the vector itself
250  */
251 
252 static	void	gpsd_init	(void);
253 static	int	gpsd_start	(int, peerT *);
254 static	void	gpsd_shutdown	(int, peerT *);
255 static	void	gpsd_receive	(struct recvbuf *);
256 static	void	gpsd_poll	(int, peerT *);
257 static	void	gpsd_control	(int, const struct refclockstat *,
258 				 struct refclockstat *, peerT *);
259 static	void	gpsd_timer	(int, peerT *);
260 
261 static  int     myasprintf(char**, char const*, ...) NTP_PRINTF(2, 3);
262 
263 static void     enter_opmode(peerT *peer, int mode);
264 static void	leave_opmode(peerT *peer, int mode);
265 
266 struct refclock refclock_gpsdjson = {
267 	gpsd_start,		/* start up driver */
268 	gpsd_shutdown,		/* shut down driver */
269 	gpsd_poll,		/* transmit poll message */
270 	gpsd_control,		/* fudge control */
271 	gpsd_init,		/* initialize driver */
272 	noentry,		/* buginfo */
273 	gpsd_timer		/* called once per second */
274 };
275 
276 /* =====================================================================
277  * our local clock unit and data
278  */
279 struct gpsd_unit;
280 typedef struct gpsd_unit gpsd_unitT;
281 
282 struct gpsd_unit {
283 	/* links for sharing between master/slave units */
284 	gpsd_unitT *next_unit;
285 	size_t      refcount;
286 
287 	/* data for the secondary PPS channel */
288 	peerT      *pps_peer;
289 
290 	/* unit and operation modes */
291 	int      unit;
292 	int      mode;
293 	char    *logname;	/* cached name for log/print */
294 	char    * device;	/* device name of unit */
295 
296 	/* current line protocol version */
297 	uint32_t proto_version;
298 
299 	/* PPS time stamps primary + secondary channel */
300 	l_fp pps_local;	/* when we received the PPS message */
301 	l_fp pps_stamp;	/* related reference time */
302 	l_fp pps_recvt;	/* when GPSD detected the pulse */
303 	l_fp pps_stamp2;/* related reference time (secondary) */
304 	l_fp pps_recvt2;/* when GPSD detected the pulse (secondary)*/
305 	int  ppscount;	/* PPS counter (primary unit) */
306 	int  ppscount2;	/* PPS counter (secondary unit) */
307 
308 	/* TPV or TOFF serial time information */
309 	l_fp sti_local;	/* when we received the TPV/TOFF message */
310 	l_fp sti_stamp;	/* effective GPS time stamp */
311 	l_fp sti_recvt;	/* when GPSD got the fix */
312 
313 	/* precision estimates */
314 	int16_t	    sti_prec;	/* serial precision based on EPT */
315 	int16_t     pps_prec;	/* PPS precision from GPSD or above */
316 
317 	/* fudge values for correction, mirrored as 'l_fp' */
318 	l_fp pps_fudge;		/* PPS fudge primary channel */
319 	l_fp pps_fudge2;	/* PPS fudge secondary channel */
320 	l_fp sti_fudge;		/* TPV/TOFF serial data fudge */
321 
322 	/* Flags to indicate available data */
323 	int fl_nosync: 1;	/* GPSD signals bad quality */
324 	int fl_sti   : 1;	/* valid TPV/TOFF seen (have time) */
325 	int fl_pps   : 1;	/* valid pulse seen */
326 	int fl_pps2  : 1;	/* valid pulse seen for PPS channel */
327 	int fl_rawsti: 1;	/* permit raw TPV/TOFF time stamps */
328 	int fl_vers  : 1;	/* have protocol version */
329 	int fl_watch : 1;	/* watch reply seen */
330 	/* protocol flags */
331 	int pf_nsec  : 1;	/* have nanosec PPS info */
332 	int pf_toff  : 1;	/* have TOFF record for timing */
333 
334 	/* admin stuff for sockets and device selection */
335 	int         fdt;	/* current connecting socket */
336 	addrinfoT * addr;	/* next address to try */
337 	u_int       tickover;	/* timeout countdown */
338 	u_int       tickpres;	/* timeout preset */
339 
340 	/* tallies for the various events */
341 	u_int       tc_recv;	/* received known records */
342 	u_int       tc_breply;	/* bad replies / parsing errors */
343 	u_int       tc_nosync;	/* TPV / sample cycles w/o fix */
344 	u_int       tc_sti_recv;/* received serial time info records */
345 	u_int       tc_sti_used;/* used        --^-- */
346 	u_int       tc_pps_recv;/* received PPS timing info records */
347 	u_int       tc_pps_used;/* used        --^-- */
348 
349 	/* log bloat throttle */
350 	u_int       logthrottle;/* seconds to next log slot */
351 
352 	/* The parse context for the current record */
353 	json_ctx    json_parse;
354 
355 	/* record assemby buffer and saved length */
356 	int  buflen;
357 	char buffer[MAX_PDU_LEN];
358 };
359 
360 /* =====================================================================
361  * static local helpers forward decls
362  */
363 static void gpsd_init_socket(peerT * const peer);
364 static void gpsd_test_socket(peerT * const peer);
365 static void gpsd_stop_socket(peerT * const peer);
366 
367 static void gpsd_parse(peerT * const peer,
368 		       const l_fp  * const rtime);
369 static BOOL convert_ascii_time(l_fp * fp, const char * gps_time);
370 static void save_ltc(clockprocT * const pp, const char * const tc);
371 static int  syslogok(clockprocT * const pp, gpsd_unitT * const up);
372 static void log_data(peerT *peer, const char *what,
373 		     const char *buf, size_t len);
374 static int16_t clamped_precision(int rawprec);
375 
376 /* =====================================================================
377  * local / static stuff
378  */
379 
380 /* The logon string is actually the ?WATCH command of GPSD, using JSON
381  * data and selecting the GPS device name we created from our unit
382  * number. We have an old a newer version that request PPS (and TOFF)
383  * transmission.
384  * Note: These are actually format strings!
385  */
386 static const char * const s_req_watch[2] = {
387 	"?WATCH={\"device\":\"%s\",\"enable\":true,\"json\":true};\r\n",
388 	"?WATCH={\"device\":\"%s\",\"enable\":true,\"json\":true,\"pps\":true};\r\n"
389 };
390 
391 static const char * const s_req_version =
392     "?VERSION;\r\n";
393 
394 /* We keep a static list of network addresses for 'localhost:gpsd' or a
395  * fallback alias of it, and we try to connect to them in round-robin
396  * fashion. The service lookup is done during the driver init
397  * function to minmise the impact of 'getaddrinfo()'.
398  *
399  * Alas, the init function is called even if there are no clocks
400  * configured for this driver. So it makes sense to defer the logging of
401  * any errors or other notifications until the first clock unit is
402  * started -- otherwise there might be syslog entries from a driver that
403  * is not used at all.
404  */
405 static addrinfoT  *s_gpsd_addr;
406 static gpsd_unitT *s_clock_units;
407 
408 /* list of service/socket names we want to resolve against */
409 static const char * const s_svctab[][2] = {
410 	{ "localhost", "gpsd" },
411 	{ "localhost", "2947" },
412 	{ "127.0.0.1", "2947" },
413 	{ NULL, NULL }
414 };
415 
416 /* list of address resolution errors and index of service entry that
417  * finally worked.
418  */
419 static int s_svcerr[sizeof(s_svctab)/sizeof(s_svctab[0])];
420 static int s_svcidx;
421 
422 /* =====================================================================
423  * log throttling
424  */
425 static int/*BOOL*/
426 syslogok(
427 	clockprocT * const pp,
428 	gpsd_unitT * const up)
429 {
430 	int res = (0 != (pp->sloppyclockflag & CLK_FLAG3))
431 	       || (0           == up->logthrottle )
432 	       || (LOGTHROTTLE == up->logthrottle );
433 	if (res)
434 		up->logthrottle = LOGTHROTTLE;
435 	return res;
436 }
437 
438 /* =====================================================================
439  * the clock functions
440  */
441 
442 /* ---------------------------------------------------------------------
443  * Init: This currently just gets the socket address for the GPS daemon
444  */
445 static void
446 gpsd_init(void)
447 {
448 	addrinfoT   hints;
449 	int         rc, idx;
450 
451 	memset(s_svcerr, 0, sizeof(s_svcerr));
452 	memset(&hints, 0, sizeof(hints));
453 	hints.ai_family   = AF_UNSPEC;
454 	hints.ai_protocol = IPPROTO_TCP;
455 	hints.ai_socktype = SOCK_STREAM;
456 
457 	for (idx = 0; s_svctab[idx][0] && !s_gpsd_addr; idx++) {
458 		rc = getaddrinfo(s_svctab[idx][0], s_svctab[idx][1],
459 				 &hints, &s_gpsd_addr);
460 		s_svcerr[idx] = rc;
461 		if (0 == rc)
462 			break;
463 		s_gpsd_addr = NULL;
464 	}
465 	s_svcidx = idx;
466 }
467 
468 /* ---------------------------------------------------------------------
469  * Init Check: flush pending log messages and check if we can proceed
470  */
471 static int/*BOOL*/
472 gpsd_init_check(void)
473 {
474 	int idx;
475 
476 	/* Check if there is something to log */
477 	if (s_svcidx == 0)
478 		return (s_gpsd_addr != NULL);
479 
480 	/* spool out the resolver errors */
481 	for (idx = 0; idx < s_svcidx; ++idx) {
482 		msyslog(LOG_WARNING,
483 			"GPSD_JSON: failed to resolve '%s:%s', rc=%d (%s)",
484 			s_svctab[idx][0], s_svctab[idx][1],
485 			s_svcerr[idx], gai_strerror(s_svcerr[idx]));
486 	}
487 
488 	/* check if it was fatal, or if we can proceed */
489 	if (s_gpsd_addr == NULL)
490 		msyslog(LOG_ERR, "%s",
491 			"GPSD_JSON: failed to get socket address, giving up.");
492 	else if (idx != 0)
493 		msyslog(LOG_WARNING,
494 			"GPSD_JSON: using '%s:%s' instead of '%s:%s'",
495 			s_svctab[idx][0], s_svctab[idx][1],
496 			s_svctab[0][0], s_svctab[0][1]);
497 
498 	/* make sure this gets logged only once and tell if we can
499 	 * proceed or not
500 	 */
501 	s_svcidx = 0;
502 	return (s_gpsd_addr != NULL);
503 }
504 
505 /* ---------------------------------------------------------------------
506  * Start: allocate a unit pointer and set up the runtime data
507  */
508 static int
509 gpsd_start(
510 	int     unit,
511 	peerT * peer)
512 {
513 	clockprocT  * const pp = peer->procptr;
514 	gpsd_unitT  * up;
515 	gpsd_unitT ** uscan    = &s_clock_units;
516 
517 	struct stat sb;
518 
519 	/* check if we can proceed at all or if init failed */
520 	if ( ! gpsd_init_check())
521 		return FALSE;
522 
523 	/* search for matching unit */
524 	while ((up = *uscan) != NULL && up->unit != (unit & 0x7F))
525 		uscan = &up->next_unit;
526 	if (up == NULL) {
527 		/* alloc unit, add to list and increment use count ASAP. */
528 		up = emalloc_zero(sizeof(*up));
529 		*uscan = up;
530 		++up->refcount;
531 
532 		/* initialize the unit structure */
533 		up->logname  = estrdup(refnumtoa(&peer->srcadr));
534 		up->unit     = unit & 0x7F;
535 		up->fdt      = -1;
536 		up->addr     = s_gpsd_addr;
537 		up->tickpres = TICKOVER_LOW;
538 
539 		/* Create the device name and check for a Character
540 		 * Device. It's assumed that GPSD was started with the
541 		 * same link, so the names match. (If this is not
542 		 * practicable, we will have to read the symlink, if
543 		 * any, so we can get the true device file.)
544 		 */
545 		if (-1 == myasprintf(&up->device, "%s%u",
546 				     s_dev_stem, up->unit)) {
547 			msyslog(LOG_ERR, "%s: clock device name too long",
548 				up->logname);
549 			goto dev_fail;
550 		}
551 		if (-1 == stat(up->device, &sb) || !S_ISCHR(sb.st_mode)) {
552 			msyslog(LOG_ERR, "%s: '%s' is not a character device",
553 				up->logname, up->device);
554 			goto dev_fail;
555 		}
556 	} else {
557 		/* All set up, just increment use count. */
558 		++up->refcount;
559 	}
560 
561 	/* setup refclock processing */
562 	pp->unitptr = (caddr_t)up;
563 	pp->io.fd         = -1;
564 	pp->io.clock_recv = gpsd_receive;
565 	pp->io.srcclock   = peer;
566 	pp->io.datalen    = 0;
567 	pp->a_lastcode[0] = '\0';
568 	pp->lencode       = 0;
569 	pp->clockdesc     = DESCRIPTION;
570 	memcpy(&pp->refid, REFID, 4);
571 
572 	/* Initialize miscellaneous variables */
573 	if (unit >= 128)
574 		peer->precision = PPS_PRECISION;
575 	else
576 		peer->precision = PRECISION;
577 
578 	/* If the daemon name lookup failed, just give up now. */
579 	if (NULL == up->addr) {
580 		msyslog(LOG_ERR, "%s: no GPSD socket address, giving up",
581 			up->logname);
582 		goto dev_fail;
583 	}
584 
585 	LOGIF(CLOCKINFO,
586 	      (LOG_NOTICE, "%s: startup, device is '%s'",
587 	       refnumtoa(&peer->srcadr), up->device));
588 	up->mode = MODE_OP_MODE(peer->ttl);
589 	if (up->mode > MODE_OP_MAXVAL)
590 		up->mode = 0;
591 	if (unit >= 128)
592 		up->pps_peer = peer;
593 	else
594 		enter_opmode(peer, up->mode);
595 	return TRUE;
596 
597 dev_fail:
598 	/* On failure, remove all UNIT ressources and declare defeat. */
599 
600 	INSIST (up);
601 	if (!--up->refcount) {
602 		*uscan = up->next_unit;
603 		free(up->device);
604 		free(up);
605 	}
606 
607 	pp->unitptr = (caddr_t)NULL;
608 	return FALSE;
609 }
610 
611 /* ------------------------------------------------------------------ */
612 
613 static void
614 gpsd_shutdown(
615 	int     unit,
616 	peerT * peer)
617 {
618 	clockprocT * const pp = peer->procptr;
619 	gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;
620 	gpsd_unitT ** uscan   = &s_clock_units;
621 
622 	UNUSED_ARG(unit);
623 
624 	/* The unit pointer might have been removed already. */
625 	if (up == NULL)
626 		return;
627 
628 	/* now check if we must close IO resources */
629 	if (peer != up->pps_peer) {
630 		if (-1 != pp->io.fd) {
631 			DPRINTF(1, ("%s: closing clock, fd=%d\n",
632 				    up->logname, pp->io.fd));
633 			io_closeclock(&pp->io);
634 			pp->io.fd = -1;
635 		}
636 		if (up->fdt != -1)
637 			close(up->fdt);
638 	}
639 	/* decrement use count and eventually remove this unit. */
640 	if (!--up->refcount) {
641 		/* unlink this unit */
642 		while (*uscan != NULL)
643 			if (*uscan == up)
644 				*uscan = up->next_unit;
645 			else
646 				uscan = &(*uscan)->next_unit;
647 		free(up->logname);
648 		free(up->device);
649 		free(up);
650 	}
651 	pp->unitptr = (caddr_t)NULL;
652 	LOGIF(CLOCKINFO,
653 	      (LOG_NOTICE, "%s: shutdown", refnumtoa(&peer->srcadr)));
654 }
655 
656 /* ------------------------------------------------------------------ */
657 
658 static void
659 gpsd_receive(
660 	struct recvbuf * rbufp)
661 {
662 	/* declare & init control structure ptrs */
663 	peerT	   * const peer = rbufp->recv_peer;
664 	clockprocT * const pp   = peer->procptr;
665 	gpsd_unitT * const up   = (gpsd_unitT *)pp->unitptr;
666 
667 	const char *psrc, *esrc;
668 	char       *pdst, *edst, ch;
669 
670 	/* log the data stream, if this is enabled */
671 	log_data(peer, "recv", (const char*)rbufp->recv_buffer,
672 		 (size_t)rbufp->recv_length);
673 
674 
675 	/* Since we're getting a raw stream data, we must assemble lines
676 	 * in our receive buffer. We can't use neither 'refclock_gtraw'
677 	 * not 'refclock_gtlin' here...  We process chars until we reach
678 	 * an EoL (that is, line feed) but we truncate the message if it
679 	 * does not fit the buffer.  GPSD might truncate messages, too,
680 	 * so dealing with truncated buffers is necessary anyway.
681 	 */
682 	psrc = (const char*)rbufp->recv_buffer;
683 	esrc = psrc + rbufp->recv_length;
684 
685 	pdst = up->buffer + up->buflen;
686 	edst = pdst + sizeof(up->buffer) - 1; /* for trailing NUL */
687 
688 	while (psrc != esrc) {
689 		ch = *psrc++;
690 		if (ch == '\n') {
691 			/* trim trailing whitespace & terminate buffer */
692 			while (pdst != up->buffer && pdst[-1] <= ' ')
693 				--pdst;
694 			*pdst = '\0';
695 			/* process data and reset buffer */
696 			up->buflen = pdst - up->buffer;
697 			gpsd_parse(peer, &rbufp->recv_time);
698 			pdst = up->buffer;
699 		} else if (pdst != edst) {
700 			/* add next char, ignoring leading whitespace */
701 			if (ch > ' ' || pdst != up->buffer)
702 				*pdst++ = ch;
703 		}
704 	}
705 	up->buflen   = pdst - up->buffer;
706 	up->tickover = TICKOVER_LOW;
707 }
708 
709 /* ------------------------------------------------------------------ */
710 
711 static void
712 poll_primary(
713 	peerT      * const peer ,
714 	clockprocT * const pp   ,
715 	gpsd_unitT * const up   )
716 {
717 	if (pp->coderecv != pp->codeproc) {
718 		/* all is well */
719 		pp->lastref = pp->lastrec;
720 		refclock_report(peer, CEVNT_NOMINAL);
721 		refclock_receive(peer);
722 	} else {
723 		/* Not working properly, admit to it. If we have no
724 		 * connection to GPSD, declare the clock as faulty. If
725 		 * there were bad replies, this is handled as the major
726 		 * cause, and everything else is just a timeout.
727 		 */
728 		peer->precision = PRECISION;
729 		if (-1 == pp->io.fd)
730 			refclock_report(peer, CEVNT_FAULT);
731 		else if (0 != up->tc_breply)
732 			refclock_report(peer, CEVNT_BADREPLY);
733 		else
734 			refclock_report(peer, CEVNT_TIMEOUT);
735 	}
736 
737 	if (pp->sloppyclockflag & CLK_FLAG4)
738 		mprintf_clock_stats(
739 			&peer->srcadr,"%u %u %u %u %u %u %u",
740 			up->tc_recv,
741 			up->tc_breply, up->tc_nosync,
742 			up->tc_sti_recv, up->tc_sti_used,
743 			up->tc_pps_recv, up->tc_pps_used);
744 
745 	/* clear tallies for next round */
746 	up->tc_breply   = 0;
747 	up->tc_recv     = 0;
748 	up->tc_nosync   = 0;
749 	up->tc_sti_recv = 0;
750 	up->tc_sti_used = 0;
751 	up->tc_pps_recv = 0;
752 	up->tc_pps_used = 0;
753 }
754 
755 static void
756 poll_secondary(
757 	peerT      * const peer ,
758 	clockprocT * const pp   ,
759 	gpsd_unitT * const up   )
760 {
761 	if (pp->coderecv != pp->codeproc) {
762 		/* all is well */
763 		pp->lastref = pp->lastrec;
764 		refclock_report(peer, CEVNT_NOMINAL);
765 		refclock_receive(peer);
766 	} else {
767 		peer->precision = PPS_PRECISION;
768 		peer->flags &= ~FLAG_PPS;
769 		refclock_report(peer, CEVNT_TIMEOUT);
770 	}
771 }
772 
773 static void
774 gpsd_poll(
775 	int     unit,
776 	peerT * peer)
777 {
778 	clockprocT * const pp = peer->procptr;
779 	gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;
780 
781 	++pp->polls;
782 	if (peer == up->pps_peer)
783 		poll_secondary(peer, pp, up);
784 	else
785 		poll_primary(peer, pp, up);
786 }
787 
788 /* ------------------------------------------------------------------ */
789 
790 static void
791 gpsd_control(
792 	int                         unit,
793 	const struct refclockstat * in_st,
794 	struct refclockstat       * out_st,
795 	peerT                     * peer  )
796 {
797 	clockprocT * const pp = peer->procptr;
798 	gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;
799 
800 	if (peer == up->pps_peer) {
801 		DTOLFP(pp->fudgetime1, &up->pps_fudge2);
802 		if ( ! (pp->sloppyclockflag & CLK_FLAG1))
803 			peer->flags &= ~FLAG_PPS;
804 	} else {
805 		/* save preprocessed fudge times */
806 		DTOLFP(pp->fudgetime1, &up->pps_fudge);
807 		DTOLFP(pp->fudgetime2, &up->sti_fudge);
808 
809 		if (MODE_OP_MODE(up->mode ^ peer->ttl)) {
810 			leave_opmode(peer, up->mode);
811 			up->mode = MODE_OP_MODE(peer->ttl);
812 			enter_opmode(peer, up->mode);
813 		}
814 	}
815  }
816 
817 /* ------------------------------------------------------------------ */
818 
819 static void
820 timer_primary(
821 	peerT      * const peer ,
822 	clockprocT * const pp   ,
823 	gpsd_unitT * const up   )
824 {
825 	int rc;
826 
827 	/* This is used for timeout handling. Nothing that needs
828 	 * sub-second precison happens here, so receive/connect/retry
829 	 * timeouts are simply handled by a count down, and then we
830 	 * decide what to do by the socket values.
831 	 *
832 	 * Note that the timer stays at zero here, unless some of the
833 	 * functions set it to another value.
834 	 */
835 	if (up->logthrottle)
836 		--up->logthrottle;
837 	if (up->tickover)
838 		--up->tickover;
839 	switch (up->tickover) {
840 	case 4:
841 		/* If we are connected to GPSD, try to get a live signal
842 		 * by querying the version. Otherwise just check the
843 		 * socket to become ready.
844 		 */
845 		if (-1 != pp->io.fd) {
846 			size_t rlen = strlen(s_req_version);
847 			DPRINTF(2, ("%s: timer livecheck: '%s'\n",
848 				    up->logname, s_req_version));
849 			log_data(peer, "send", s_req_version, rlen);
850 			rc = write(pp->io.fd, s_req_version, rlen);
851 			(void)rc;
852 		} else if (-1 != up->fdt) {
853 			gpsd_test_socket(peer);
854 		}
855 		break;
856 
857 	case 0:
858 		if (-1 != pp->io.fd)
859 			gpsd_stop_socket(peer);
860 		else if (-1 != up->fdt)
861 			gpsd_test_socket(peer);
862 		else if (NULL != s_gpsd_addr)
863 			gpsd_init_socket(peer);
864 		break;
865 
866 	default:
867 		if (-1 == pp->io.fd && -1 != up->fdt)
868 			gpsd_test_socket(peer);
869 	}
870 }
871 
872 static void
873 timer_secondary(
874 	peerT      * const peer ,
875 	clockprocT * const pp   ,
876 	gpsd_unitT * const up   )
877 {
878 	/* Reduce the count by one. Flush sample buffer and clear PPS
879 	 * flag when this happens.
880 	 */
881 	up->ppscount2 = max(0, (up->ppscount2 - 1));
882 	if (0 == up->ppscount2) {
883 		if (pp->coderecv != pp->codeproc) {
884 			refclock_report(peer, CEVNT_TIMEOUT);
885 			pp->coderecv = pp->codeproc;
886 		}
887 		peer->flags &= ~FLAG_PPS;
888 	}
889 }
890 
891 static void
892 gpsd_timer(
893 	int     unit,
894 	peerT * peer)
895 {
896 	clockprocT * const pp = peer->procptr;
897 	gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;
898 
899 	if (peer == up->pps_peer)
900 		timer_secondary(peer, pp, up);
901 	else
902 		timer_primary(peer, pp, up);
903 }
904 
905 /* =====================================================================
906  * handle opmode switches
907  */
908 
909 static void
910 enter_opmode(
911 	peerT *peer,
912 	int    mode)
913 {
914 	clockprocT * const pp = peer->procptr;
915 	gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;
916 
917 	DPRINTF(1, ("%s: enter operation mode %d\n",
918 		    up->logname, MODE_OP_MODE(mode)));
919 
920 	if (MODE_OP_MODE(mode) == MODE_OP_AUTO) {
921 		up->fl_rawsti = 0;
922 		up->ppscount  = PPS_MAXCOUNT / 2;
923 	}
924 	up->fl_pps = 0;
925 	up->fl_sti = 0;
926 }
927 
928 /* ------------------------------------------------------------------ */
929 
930 static void
931 leave_opmode(
932 	peerT *peer,
933 	int    mode)
934 {
935 	clockprocT * const pp = peer->procptr;
936 	gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;
937 
938 	DPRINTF(1, ("%s: leaving operation mode %d\n",
939 		    up->logname, MODE_OP_MODE(mode)));
940 
941 	if (MODE_OP_MODE(mode) == MODE_OP_AUTO) {
942 		up->fl_rawsti = 0;
943 		up->ppscount  = 0;
944 	}
945 	up->fl_pps = 0;
946 	up->fl_sti = 0;
947 }
948 
949 /* =====================================================================
950  * operation mode specific evaluation
951  */
952 
953 static void
954 add_clock_sample(
955 	peerT      * const peer ,
956 	clockprocT * const pp   ,
957 	l_fp               stamp,
958 	l_fp               recvt)
959 {
960 	pp->lastref = stamp;
961 	if (pp->coderecv == pp->codeproc)
962 		refclock_report(peer, CEVNT_NOMINAL);
963 	refclock_process_offset(pp, stamp, recvt, 0.0);
964 }
965 
966 /* ------------------------------------------------------------------ */
967 
968 static void
969 eval_strict(
970 	peerT      * const peer ,
971 	clockprocT * const pp   ,
972 	gpsd_unitT * const up   )
973 {
974 	if (up->fl_sti && up->fl_pps) {
975 		/* use TPV reference time + PPS receive time */
976 		add_clock_sample(peer, pp, up->sti_stamp, up->pps_recvt);
977 		peer->precision = up->pps_prec;
978 		/* both packets consumed now... */
979 		up->fl_pps = 0;
980 		up->fl_sti = 0;
981 		++up->tc_sti_used;
982 	}
983 }
984 
985 /* ------------------------------------------------------------------ */
986 /* PPS processing for the secondary channel. GPSD provides us with full
987  * timing information, so there's no danger of PLL-locking to the wrong
988  * second. The belts and suspenders needed for the raw ATOM clock are
989  * unnecessary here.
990  */
991 static void
992 eval_pps_secondary(
993 	peerT      * const peer ,
994 	clockprocT * const pp   ,
995 	gpsd_unitT * const up   )
996 {
997 	if (up->fl_pps2) {
998 		/* feed data */
999 		add_clock_sample(peer, pp, up->pps_stamp2, up->pps_recvt2);
1000 		peer->precision = up->pps_prec;
1001 		/* PPS peer flag logic */
1002 		up->ppscount2 = min(PPS2_MAXCOUNT, (up->ppscount2 + 2));
1003 		if ((PPS2_MAXCOUNT == up->ppscount2) &&
1004 		    (pp->sloppyclockflag & CLK_FLAG1) )
1005 			peer->flags |= FLAG_PPS;
1006 		/* mark time stamp as burned... */
1007 		up->fl_pps2 = 0;
1008 		++up->tc_pps_used;
1009 	}
1010 }
1011 
1012 /* ------------------------------------------------------------------ */
1013 
1014 static void
1015 eval_serial(
1016 	peerT      * const peer ,
1017 	clockprocT * const pp   ,
1018 	gpsd_unitT * const up   )
1019 {
1020 	if (up->fl_sti) {
1021 		add_clock_sample(peer, pp, up->sti_stamp, up->sti_recvt);
1022 		peer->precision = up->sti_prec;
1023 		/* mark time stamp as burned... */
1024 		up->fl_sti = 0;
1025 		++up->tc_sti_used;
1026 	}
1027 }
1028 
1029 /* ------------------------------------------------------------------ */
1030 static void
1031 eval_auto(
1032 	peerT      * const peer ,
1033 	clockprocT * const pp   ,
1034 	gpsd_unitT * const up   )
1035 {
1036 	/* If there's no TPV available, stop working here... */
1037 	if (!up->fl_sti)
1038 		return;
1039 
1040 	/* check how to handle STI+PPS: Can PPS be used to augment STI
1041 	 * (or vice versae), do we drop the sample because there is a
1042 	 * temporary missing PPS signal, or do we feed on STI time
1043 	 * stamps alone?
1044 	 *
1045 	 * Do a counter/threshold dance to decide how to proceed.
1046 	 */
1047 	if (up->fl_pps) {
1048 		up->ppscount = min(PPS_MAXCOUNT,
1049 				   (up->ppscount + PPS_INCCOUNT));
1050 		if ((PPS_MAXCOUNT == up->ppscount) && up->fl_rawsti) {
1051 			up->fl_rawsti = 0;
1052 			msyslog(LOG_INFO,
1053 				"%s: expect valid PPS from now",
1054 				up->logname);
1055 		}
1056 	} else {
1057 		up->ppscount = max(0, (up->ppscount - PPS_DECCOUNT));
1058 		if ((0 == up->ppscount) && !up->fl_rawsti) {
1059 			up->fl_rawsti = -1;
1060 			msyslog(LOG_WARNING,
1061 				"%s: use TPV alone from now",
1062 				up->logname);
1063 		}
1064 	}
1065 
1066 	/* now eventually feed the sample */
1067 	if (up->fl_rawsti)
1068 		eval_serial(peer, pp, up);
1069 	else
1070 		eval_strict(peer, pp, up);
1071 }
1072 
1073 /* =====================================================================
1074  * JSON parsing stuff
1075  */
1076 
1077 /* ------------------------------------------------------------------ */
1078 /* Parse a decimal integer with a possible sign. Works like 'strtoll()'
1079  * or 'strtol()', but with a fixed base of 10 and without eating away
1080  * leading whitespace. For the error codes, the handling of the end
1081  * pointer and the return values see 'strtol()'.
1082  */
1083 static json_int
1084 strtojint(
1085 	const char *cp, char **ep)
1086 {
1087 	json_uint     accu, limit_lo, limit_hi;
1088 	int           flags; /* bit 0: overflow; bit 1: sign */
1089 	const char  * hold;
1090 
1091 	/* pointer union to circumvent a tricky/sticky const issue */
1092 	union {	const char * c; char * v; } vep;
1093 
1094 	/* store initial value of 'cp' -- see 'strtol()' */
1095 	vep.c = cp;
1096 
1097 	/* Eat away an optional sign and set the limits accordingly: The
1098 	 * high limit is the maximum absolute value that can be returned,
1099 	 * and the low limit is the biggest value that does not cause an
1100 	 * overflow when multiplied with 10. Avoid negation overflows.
1101 	 */
1102 	if (*cp == '-') {
1103 		cp += 1;
1104 		flags    = 2;
1105 		limit_hi = (json_uint)-(JSON_INT_MIN + 1) + 1;
1106 	} else {
1107 		cp += (*cp == '+');
1108 		flags    = 0;
1109 		limit_hi = (json_uint)JSON_INT_MAX;
1110 	}
1111 	limit_lo = limit_hi / 10;
1112 
1113 	/* Now try to convert a sequence of digits. */
1114 	hold = cp;
1115 	accu = 0;
1116 	while (isdigit(*(const u_char*)cp)) {
1117 		flags |= (accu > limit_lo);
1118 		accu = accu * 10 + (*(const u_char*)cp++ - '0');
1119 		flags |= (accu > limit_hi);
1120 	}
1121 	/* Check for empty conversion (no digits seen). */
1122 	if (hold != cp)
1123 		vep.c = cp;
1124 	else
1125 		errno = EINVAL;	/* accu is still zero */
1126 	/* Check for range overflow */
1127 	if (flags & 1) {
1128 		errno = ERANGE;
1129 		accu  = limit_hi;
1130 	}
1131 	/* If possible, store back the end-of-conversion pointer */
1132 	if (ep)
1133 		*ep = vep.v;
1134 	/* If negative, return the negated result if the accu is not
1135 	 * zero. Avoid negation overflows.
1136 	 */
1137 	if ((flags & 2) && accu)
1138 		return -(json_int)(accu - 1) - 1;
1139 	else
1140 		return (json_int)accu;
1141 }
1142 
1143 /* ------------------------------------------------------------------ */
1144 
1145 static tok_ref
1146 json_token_skip(
1147 	const json_ctx * ctx,
1148 	tok_ref          tid)
1149 {
1150 	if (tid >= 0 && tid < ctx->ntok) {
1151 		int len = ctx->tok[tid].size;
1152 		/* For arrays and objects, the size is the number of
1153 		 * ITEMS in the compound. Thats the number of objects in
1154 		 * the array, and the number of key/value pairs for
1155 		 * objects. In theory, the key must be a string, and we
1156 		 * could simply skip one token before skipping the
1157 		 * value, which can be anything. We're a bit paranoid
1158 		 * and lazy at the same time: We simply double the
1159 		 * number of tokens to skip and fall through into the
1160 		 * array processing when encountering an object.
1161 		 */
1162 		switch (ctx->tok[tid].type) {
1163 		case JSMN_OBJECT:
1164 			len *= 2;
1165 			/* FALLTHROUGH */
1166 		case JSMN_ARRAY:
1167 			for (++tid; len; --len)
1168 				tid = json_token_skip(ctx, tid);
1169 			break;
1170 
1171 		default:
1172 			++tid;
1173 			break;
1174 		}
1175 		if (tid > ctx->ntok) /* Impossible? Paranoia rulez. */
1176 			tid = ctx->ntok;
1177 	}
1178 	return tid;
1179 }
1180 
1181 /* ------------------------------------------------------------------ */
1182 
1183 static int
1184 json_object_lookup(
1185 	const json_ctx * ctx ,
1186 	tok_ref          tid ,
1187 	const char     * key ,
1188 	int              what)
1189 {
1190 	int len;
1191 
1192 	if (tid < 0 || tid >= ctx->ntok ||
1193 	    ctx->tok[tid].type != JSMN_OBJECT)
1194 		return INVALID_TOKEN;
1195 
1196 	len = ctx->tok[tid].size;
1197 	for (++tid; len && tid+1 < ctx->ntok; --len) {
1198 		if (ctx->tok[tid].type != JSMN_STRING) { /* Blooper! */
1199 			tid = json_token_skip(ctx, tid); /* skip key */
1200 			tid = json_token_skip(ctx, tid); /* skip val */
1201 		} else if (strcmp(key, ctx->buf + ctx->tok[tid].start)) {
1202 			tid = json_token_skip(ctx, tid+1); /* skip key+val */
1203 		} else if (what < 0 || what == ctx->tok[tid+1].type) {
1204 			return tid + 1;
1205 		} else {
1206 			break;
1207 		}
1208 		/* if skipping ahead returned an error, bail out here. */
1209 		if (tid < 0)
1210 			break;
1211 	}
1212 	return INVALID_TOKEN;
1213 }
1214 
1215 /* ------------------------------------------------------------------ */
1216 
1217 static const char*
1218 json_object_lookup_primitive(
1219 	const json_ctx * ctx,
1220 	tok_ref          tid,
1221 	const char     * key)
1222 {
1223 	tid = json_object_lookup(ctx, tid, key, JSMN_PRIMITIVE);
1224 	if (INVALID_TOKEN  != tid)
1225 		return ctx->buf + ctx->tok[tid].start;
1226 	else
1227 		return NULL;
1228 }
1229 /* ------------------------------------------------------------------ */
1230 /* look up a boolean value. This essentially returns a tribool:
1231  * 0->false, 1->true, (-1)->error/undefined
1232  */
1233 static int
1234 json_object_lookup_bool(
1235 	const json_ctx * ctx,
1236 	tok_ref          tid,
1237 	const char     * key)
1238 {
1239 	const char *cp;
1240 	cp  = json_object_lookup_primitive(ctx, tid, key);
1241 	switch ( cp ? *cp : '\0') {
1242 	case 't': return  1;
1243 	case 'f': return  0;
1244 	default : return -1;
1245 	}
1246 }
1247 
1248 /* ------------------------------------------------------------------ */
1249 
1250 static const char*
1251 json_object_lookup_string(
1252 	const json_ctx * ctx,
1253 	tok_ref          tid,
1254 	const char     * key)
1255 {
1256 	tid = json_object_lookup(ctx, tid, key, JSMN_STRING);
1257 	if (INVALID_TOKEN != tid)
1258 		return ctx->buf + ctx->tok[tid].start;
1259 	return NULL;
1260 }
1261 
1262 static const char*
1263 json_object_lookup_string_default(
1264 	const json_ctx * ctx,
1265 	tok_ref          tid,
1266 	const char     * key,
1267 	const char     * def)
1268 {
1269 	tid = json_object_lookup(ctx, tid, key, JSMN_STRING);
1270 	if (INVALID_TOKEN != tid)
1271 		return ctx->buf + ctx->tok[tid].start;
1272 	return def;
1273 }
1274 
1275 /* ------------------------------------------------------------------ */
1276 
1277 static json_int
1278 json_object_lookup_int(
1279 	const json_ctx * ctx,
1280 	tok_ref          tid,
1281 	const char     * key)
1282 {
1283 	json_int     ret;
1284 	const char * cp;
1285 	char       * ep;
1286 
1287 	cp = json_object_lookup_primitive(ctx, tid, key);
1288 	if (NULL != cp) {
1289 		ret = strtojint(cp, &ep);
1290 		if (cp != ep && '\0' == *ep)
1291 			return ret;
1292 	} else {
1293 		errno = EINVAL;
1294 	}
1295 	return 0;
1296 }
1297 
1298 static json_int
1299 json_object_lookup_int_default(
1300 	const json_ctx * ctx,
1301 	tok_ref          tid,
1302 	const char     * key,
1303 	json_int         def)
1304 {
1305 	json_int     ret;
1306 	const char * cp;
1307 	char       * ep;
1308 
1309 	cp = json_object_lookup_primitive(ctx, tid, key);
1310 	if (NULL != cp) {
1311 		ret = strtojint(cp, &ep);
1312 		if (cp != ep && '\0' == *ep)
1313 			return ret;
1314 	}
1315 	return def;
1316 }
1317 
1318 /* ------------------------------------------------------------------ */
1319 #if 0 /* currently unused */
1320 static double
1321 json_object_lookup_float(
1322 	const json_ctx * ctx,
1323 	tok_ref          tid,
1324 	const char     * key)
1325 {
1326 	double       ret;
1327 	const char * cp;
1328 	char       * ep;
1329 
1330 	cp = json_object_lookup_primitive(ctx, tid, key);
1331 	if (NULL != cp) {
1332 		ret = strtod(cp, &ep);
1333 		if (cp != ep && '\0' == *ep)
1334 			return ret;
1335 	} else {
1336 		errno = EINVAL;
1337 	}
1338 	return 0.0;
1339 }
1340 #endif
1341 
1342 static double
1343 json_object_lookup_float_default(
1344 	const json_ctx * ctx,
1345 	tok_ref          tid,
1346 	const char     * key,
1347 	double           def)
1348 {
1349 	double       ret;
1350 	const char * cp;
1351 	char       * ep;
1352 
1353 	cp = json_object_lookup_primitive(ctx, tid, key);
1354 	if (NULL != cp) {
1355 		ret = strtod(cp, &ep);
1356 		if (cp != ep && '\0' == *ep)
1357 			return ret;
1358 	}
1359 	return def;
1360 }
1361 
1362 /* ------------------------------------------------------------------ */
1363 
1364 static BOOL
1365 json_parse_record(
1366 	json_ctx * ctx,
1367 	char     * buf,
1368 	size_t     len)
1369 {
1370 	jsmn_parser jsm;
1371 	int         idx, rc;
1372 
1373 	jsmn_init(&jsm);
1374 	rc = jsmn_parse(&jsm, buf, len, ctx->tok, JSMN_MAXTOK);
1375 	if (rc <= 0)
1376 		return FALSE;
1377 	ctx->buf  = buf;
1378 	ctx->ntok = rc;
1379 
1380 	if (JSMN_OBJECT != ctx->tok[0].type)
1381 		return FALSE; /* not object!?! */
1382 
1383 	/* Make all tokens NUL terminated by overwriting the
1384 	 * terminator symbol. Makes string compares and number parsing a
1385 	 * lot easier!
1386 	 */
1387 	for (idx = 0; idx < ctx->ntok; ++idx)
1388 		if (ctx->tok[idx].end > ctx->tok[idx].start)
1389 			ctx->buf[ctx->tok[idx].end] = '\0';
1390 	return TRUE;
1391 }
1392 
1393 
1394 /* =====================================================================
1395  * static local helpers
1396  */
1397 static BOOL
1398 get_binary_time(
1399 	l_fp       * const dest     ,
1400 	json_ctx   * const jctx     ,
1401 	const char * const time_name,
1402 	const char * const frac_name,
1403 	long               fscale   )
1404 {
1405 	BOOL            retv = FALSE;
1406 	struct timespec ts;
1407 
1408 	errno = 0;
1409 	ts.tv_sec  = (time_t)json_object_lookup_int(jctx, 0, time_name);
1410 	ts.tv_nsec = (long  )json_object_lookup_int(jctx, 0, frac_name);
1411 	if (0 == errno) {
1412 		ts.tv_nsec *= fscale;
1413 		*dest = tspec_stamp_to_lfp(ts);
1414 		retv  = TRUE;
1415 	}
1416 	return retv;
1417 }
1418 
1419 /* ------------------------------------------------------------------ */
1420 /* Process a WATCH record
1421  *
1422  * Currently this is only used to recognise that the device is present
1423  * and that we're listed subscribers.
1424  */
1425 static void
1426 process_watch(
1427 	peerT      * const peer ,
1428 	json_ctx   * const jctx ,
1429 	const l_fp * const rtime)
1430 {
1431 	clockprocT * const pp = peer->procptr;
1432 	gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;
1433 
1434 	const char * path;
1435 
1436 	path = json_object_lookup_string(jctx, 0, "device");
1437 	if (NULL == path || strcmp(path, up->device))
1438 		return;
1439 
1440 	if (json_object_lookup_bool(jctx, 0, "enable") > 0 &&
1441 	    json_object_lookup_bool(jctx, 0, "json"  ) > 0  )
1442 		up->fl_watch = -1;
1443 	else
1444 		up->fl_watch = 0;
1445 	DPRINTF(2, ("%s: process_watch, enabled=%d\n",
1446 		    up->logname, (up->fl_watch & 1)));
1447 }
1448 
1449 /* ------------------------------------------------------------------ */
1450 
1451 static void
1452 process_version(
1453 	peerT      * const peer ,
1454 	json_ctx   * const jctx ,
1455 	const l_fp * const rtime)
1456 {
1457 	clockprocT * const pp = peer->procptr;
1458 	gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;
1459 
1460 	int    len;
1461 	char * buf;
1462 	const char *revision;
1463 	const char *release;
1464 	uint16_t    pvhi, pvlo;
1465 
1466 	/* get protocol version number */
1467 	revision = json_object_lookup_string_default(
1468 		jctx, 0, "rev", "(unknown)");
1469 	release  = json_object_lookup_string_default(
1470 		jctx, 0, "release", "(unknown)");
1471 	errno = 0;
1472 	pvhi = (uint16_t)json_object_lookup_int(jctx, 0, "proto_major");
1473 	pvlo = (uint16_t)json_object_lookup_int(jctx, 0, "proto_minor");
1474 
1475 	if (0 == errno) {
1476 		if ( ! up->fl_vers)
1477 			msyslog(LOG_INFO,
1478 				"%s: GPSD revision=%s release=%s protocol=%u.%u",
1479 				up->logname, revision, release,
1480 				pvhi, pvlo);
1481 		up->proto_version = PROTO_VERSION(pvhi, pvlo);
1482 		up->fl_vers = -1;
1483 	} else {
1484 		if (syslogok(pp, up))
1485 			msyslog(LOG_INFO,
1486 				"%s: could not evaluate version data",
1487 				up->logname);
1488 		return;
1489 	}
1490 	/* With the 3.9 GPSD protocol, '*_musec' vanished from the PPS
1491 	 * record and was replace by '*_nsec'.
1492 	 */
1493 	up->pf_nsec = -(up->proto_version >= PROTO_VERSION(3,9));
1494 
1495 	/* With the 3.10 protocol we can get TOFF records for better
1496 	 * timing information.
1497 	 */
1498 	up->pf_toff = -(up->proto_version >= PROTO_VERSION(3,10));
1499 
1500 	/* request watch for our GPS device if not yet watched.
1501 	 *
1502 	 * The version string is also sent as a life signal, if we have
1503 	 * seen useable data. So if we're already watching the device,
1504 	 * skip the request.
1505 	 *
1506 	 * Reuse the input buffer, which is no longer needed in the
1507 	 * current cycle. Also assume that we can write the watch
1508 	 * request in one sweep into the socket; since we do not do
1509 	 * output otherwise, this should always work.  (Unless the
1510 	 * TCP/IP window size gets lower than the length of the
1511 	 * request. We handle that when it happens.)
1512 	 */
1513 	if (up->fl_watch)
1514 		return;
1515 
1516 	snprintf(up->buffer, sizeof(up->buffer),
1517 		 s_req_watch[up->pf_toff != 0], up->device);
1518 	buf = up->buffer;
1519 	len = strlen(buf);
1520 	log_data(peer, "send", buf, len);
1521 	if (len != write(pp->io.fd, buf, len) && (syslogok(pp, up))) {
1522 		/* Note: if the server fails to read our request, the
1523 		 * resulting data timeout will take care of the
1524 		 * connection!
1525 		 */
1526 		msyslog(LOG_ERR, "%s: failed to write watch request (%m)",
1527 			up->logname);
1528 	}
1529 }
1530 
1531 /* ------------------------------------------------------------------ */
1532 
1533 static void
1534 process_tpv(
1535 	peerT      * const peer ,
1536 	json_ctx   * const jctx ,
1537 	const l_fp * const rtime)
1538 {
1539 	clockprocT * const pp = peer->procptr;
1540 	gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;
1541 
1542 	const char * gps_time;
1543 	int          gps_mode;
1544 	double       ept;
1545 	int          xlog2;
1546 
1547 	gps_mode = (int)json_object_lookup_int_default(
1548 		jctx, 0, "mode", 0);
1549 
1550 	gps_time = json_object_lookup_string(
1551 		jctx, 0, "time");
1552 
1553 	/* accept time stamps only in 2d or 3d fix */
1554 	if (gps_mode < 2 || NULL == gps_time) {
1555 		/* receiver has no fix; tell about and avoid stale data */
1556 		if ( ! up->pf_toff)
1557 			++up->tc_sti_recv;
1558 		++up->tc_nosync;
1559 		up->fl_sti    = 0;
1560 		up->fl_pps    = 0;
1561 		up->fl_nosync = -1;
1562 		return;
1563 	}
1564 	up->fl_nosync = 0;
1565 
1566 	/* convert clock and set resulting ref time, but only if the
1567 	 * TOFF sentence is *not* available
1568 	 */
1569 	if ( ! up->pf_toff) {
1570 		++up->tc_sti_recv;
1571 		/* save last time code to clock data */
1572 		save_ltc(pp, gps_time);
1573 		/* now parse the time string */
1574 		if (convert_ascii_time(&up->sti_stamp, gps_time)) {
1575 			DPRINTF(2, ("%s: process_tpv, stamp='%s',"
1576 				    " recvt='%s' mode=%u\n",
1577 				    up->logname,
1578 				    gmprettydate(&up->sti_stamp),
1579 				    gmprettydate(&up->sti_recvt),
1580 				    gps_mode));
1581 
1582 			/* have to use local receive time as substitute
1583 			 * for the real receive time: TPV does not tell
1584 			 * us.
1585 			 */
1586 			up->sti_local = *rtime;
1587 			up->sti_recvt = *rtime;
1588 			L_SUB(&up->sti_recvt, &up->sti_fudge);
1589 			up->fl_sti = -1;
1590 		} else {
1591 			++up->tc_breply;
1592 			up->fl_sti = 0;
1593 		}
1594 	}
1595 
1596 	/* Set the precision from the GPSD data
1597 	 * Use the ETP field for an estimation of the precision of the
1598 	 * serial data. If ETP is not available, use the default serial
1599 	 * data presion instead. (Note: The PPS branch has a different
1600 	 * precision estimation, since it gets the proper value directly
1601 	 * from GPSD!)
1602 	 */
1603 	ept = json_object_lookup_float_default(jctx, 0, "ept", 2.0e-3);
1604 	ept = frexp(fabs(ept)*0.70710678, &xlog2); /* ~ sqrt(0.5) */
1605 	if (ept < 0.25)
1606 		xlog2 = INT_MIN;
1607 	if (ept > 2.0)
1608 		xlog2 = INT_MAX;
1609 	up->sti_prec = clamped_precision(xlog2);
1610 }
1611 
1612 /* ------------------------------------------------------------------ */
1613 
1614 static void
1615 process_pps(
1616 	peerT      * const peer ,
1617 	json_ctx   * const jctx ,
1618 	const l_fp * const rtime)
1619 {
1620 	clockprocT * const pp = peer->procptr;
1621 	gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;
1622 
1623 	int xlog2;
1624 
1625 	++up->tc_pps_recv;
1626 
1627 	/* Bail out if there's indication that time sync is bad or
1628 	 * if we're explicitely requested to ignore PPS data.
1629 	 */
1630 	if (up->fl_nosync)
1631 		return;
1632 
1633 	up->pps_local = *rtime;
1634 	/* Now grab the time values. 'clock_*' is the event time of the
1635 	 * pulse measured on the local system clock; 'real_*' is the GPS
1636 	 * reference time GPSD associated with the pulse.
1637 	 */
1638 	if (up->pf_nsec) {
1639 		if ( ! get_binary_time(&up->pps_recvt2, jctx,
1640 				       "clock_sec", "clock_nsec", 1))
1641 			goto fail;
1642 		if ( ! get_binary_time(&up->pps_stamp2, jctx,
1643 				       "real_sec", "real_nsec", 1))
1644 			goto fail;
1645 	} else {
1646 		if ( ! get_binary_time(&up->pps_recvt2, jctx,
1647 				       "clock_sec", "clock_musec", 1000))
1648 			goto fail;
1649 		if ( ! get_binary_time(&up->pps_stamp2, jctx,
1650 				       "real_sec", "real_musec", 1000))
1651 			goto fail;
1652 	}
1653 
1654 	/* Try to read the precision field from the PPS record. If it's
1655 	 * not there, take the precision from the serial data.
1656 	 */
1657 	xlog2 = json_object_lookup_int_default(
1658 			jctx, 0, "precision", up->sti_prec);
1659 	up->pps_prec = clamped_precision(xlog2);
1660 
1661 	/* Get fudged receive times for primary & secondary unit */
1662 	up->pps_recvt = up->pps_recvt2;
1663 	L_SUB(&up->pps_recvt , &up->pps_fudge );
1664 	L_SUB(&up->pps_recvt2, &up->pps_fudge2);
1665 	pp->lastrec = up->pps_recvt;
1666 
1667 	/* Map to nearest full second as reference time stamp for the
1668 	 * primary channel. Sanity checks are done in evaluation step.
1669 	 */
1670 	up->pps_stamp = up->pps_recvt;
1671 	L_ADDUF(&up->pps_stamp, 0x80000000u);
1672 	up->pps_stamp.l_uf = 0;
1673 
1674 	if (NULL != up->pps_peer)
1675 		save_ltc(up->pps_peer->procptr,
1676 			 gmprettydate(&up->pps_stamp2));
1677 	DPRINTF(2, ("%s: PPS record processed,"
1678 		    " stamp='%s', recvt='%s'\n",
1679 		    up->logname,
1680 		    gmprettydate(&up->pps_stamp2),
1681 		    gmprettydate(&up->pps_recvt2)));
1682 
1683 	up->fl_pps  = (0 != (pp->sloppyclockflag & CLK_FLAG2)) - 1;
1684 	up->fl_pps2 = -1;
1685 	return;
1686 
1687   fail:
1688 	DPRINTF(1, ("%s: PPS record processing FAILED\n",
1689 		    up->logname));
1690 	++up->tc_breply;
1691 }
1692 
1693 /* ------------------------------------------------------------------ */
1694 
1695 static void
1696 process_toff(
1697 	peerT      * const peer ,
1698 	json_ctx   * const jctx ,
1699 	const l_fp * const rtime)
1700 {
1701 	clockprocT * const pp = peer->procptr;
1702 	gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;
1703 
1704 	++up->tc_sti_recv;
1705 
1706 	/* remember this! */
1707 	up->pf_toff = -1;
1708 
1709 	/* bail out if there's indication that time sync is bad */
1710 	if (up->fl_nosync)
1711 		return;
1712 
1713 	if ( ! get_binary_time(&up->sti_recvt, jctx,
1714 			       "clock_sec", "clock_nsec", 1))
1715 			goto fail;
1716 	if ( ! get_binary_time(&up->sti_stamp, jctx,
1717 			       "real_sec", "real_nsec", 1))
1718 			goto fail;
1719 	L_SUB(&up->sti_recvt, &up->sti_fudge);
1720 	up->sti_local = *rtime;
1721 	up->fl_sti    = -1;
1722 
1723 	save_ltc(pp, gmprettydate(&up->sti_stamp));
1724 	DPRINTF(2, ("%s: TOFF record processed,"
1725 		    " stamp='%s', recvt='%s'\n",
1726 		    up->logname,
1727 		    gmprettydate(&up->sti_stamp),
1728 		    gmprettydate(&up->sti_recvt)));
1729 	return;
1730 
1731   fail:
1732 	DPRINTF(1, ("%s: TOFF record processing FAILED\n",
1733 		    up->logname));
1734 	++up->tc_breply;
1735 }
1736 
1737 /* ------------------------------------------------------------------ */
1738 
1739 static void
1740 gpsd_parse(
1741 	peerT      * const peer ,
1742 	const l_fp * const rtime)
1743 {
1744 	clockprocT * const pp = peer->procptr;
1745 	gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;
1746 
1747 	const char * clsid;
1748 
1749         DPRINTF(2, ("%s: gpsd_parse: time %s '%.*s'\n",
1750                     up->logname, ulfptoa(rtime, 6),
1751 		    up->buflen, up->buffer));
1752 
1753 	/* See if we can grab anything potentially useful. JSMN does not
1754 	 * need a trailing NUL, but it needs the number of bytes to
1755 	 * process. */
1756 	if (!json_parse_record(&up->json_parse, up->buffer, up->buflen)) {
1757 		++up->tc_breply;
1758 		return;
1759 	}
1760 
1761 	/* Now dispatch over the objects we know */
1762 	clsid = json_object_lookup_string(&up->json_parse, 0, "class");
1763 	if (NULL == clsid) {
1764 		++up->tc_breply;
1765 		return;
1766 	}
1767 
1768 	if      (!strcmp("TPV", clsid))
1769 		process_tpv(peer, &up->json_parse, rtime);
1770 	else if (!strcmp("PPS", clsid))
1771 		process_pps(peer, &up->json_parse, rtime);
1772 	else if (!strcmp("TOFF", clsid))
1773 		process_toff(peer, &up->json_parse, rtime);
1774 	else if (!strcmp("VERSION", clsid))
1775 		process_version(peer, &up->json_parse, rtime);
1776 	else if (!strcmp("WATCH", clsid))
1777 		process_watch(peer, &up->json_parse, rtime);
1778 	else
1779 		return; /* nothing we know about... */
1780 	++up->tc_recv;
1781 
1782 	/* if possible, feed the PPS side channel */
1783 	if (up->pps_peer)
1784 		eval_pps_secondary(
1785 			up->pps_peer, up->pps_peer->procptr, up);
1786 
1787 	/* check PPS vs. STI receive times:
1788 	 * If STI is before PPS, then clearly the STI is too old. If PPS
1789 	 * is before STI by more than one second, then PPS is too old.
1790 	 * Weed out stale time stamps & flags.
1791 	 */
1792 	if (up->fl_pps && up->fl_sti) {
1793 		l_fp diff;
1794 		diff = up->sti_local;
1795 		L_SUB(&diff, &up->pps_local);
1796 		if (diff.l_i > 0)
1797 			up->fl_pps = 0; /* pps too old */
1798 		else if (diff.l_i < 0)
1799 			up->fl_sti = 0; /* serial data too old */
1800 	}
1801 
1802 	/* dispatch to the mode-dependent processing functions */
1803 	switch (up->mode) {
1804 	default:
1805 	case MODE_OP_STI:
1806 		eval_serial(peer, pp, up);
1807 		break;
1808 
1809 	case MODE_OP_STRICT:
1810 		eval_strict(peer, pp, up);
1811 		break;
1812 
1813 	case MODE_OP_AUTO:
1814 		eval_auto(peer, pp, up);
1815 		break;
1816 	}
1817 }
1818 
1819 /* ------------------------------------------------------------------ */
1820 
1821 static void
1822 gpsd_stop_socket(
1823 	peerT * const peer)
1824 {
1825 	clockprocT * const pp = peer->procptr;
1826 	gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;
1827 
1828 	if (-1 != pp->io.fd) {
1829 		if (syslogok(pp, up))
1830 			msyslog(LOG_INFO,
1831 				"%s: closing socket to GPSD, fd=%d",
1832 				up->logname, pp->io.fd);
1833 		else
1834 			DPRINTF(1, ("%s: closing socket to GPSD, fd=%d\n",
1835 				    up->logname, pp->io.fd));
1836 		io_closeclock(&pp->io);
1837 		pp->io.fd = -1;
1838 	}
1839 	up->tickover = up->tickpres;
1840 	up->tickpres = min(up->tickpres + 5, TICKOVER_HIGH);
1841 	up->fl_vers  = 0;
1842 	up->fl_sti   = 0;
1843 	up->fl_pps   = 0;
1844 	up->fl_watch = 0;
1845 }
1846 
1847 /* ------------------------------------------------------------------ */
1848 
1849 static void
1850 gpsd_init_socket(
1851 	peerT * const peer)
1852 {
1853 	clockprocT * const pp = peer->procptr;
1854 	gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;
1855 	addrinfoT  * ai;
1856 	int          rc;
1857 	int          ov;
1858 
1859 	/* draw next address to try */
1860 	if (NULL == up->addr)
1861 		up->addr = s_gpsd_addr;
1862 	ai = up->addr;
1863 	up->addr = ai->ai_next;
1864 
1865 	/* try to create a matching socket */
1866 	up->fdt = socket(
1867 		ai->ai_family, ai->ai_socktype, ai->ai_protocol);
1868 	if (-1 == up->fdt) {
1869 		if (syslogok(pp, up))
1870 			msyslog(LOG_ERR,
1871 				"%s: cannot create GPSD socket: %m",
1872 				up->logname);
1873 		goto no_socket;
1874 	}
1875 
1876 	/* Make sure the socket is non-blocking. Connect/reconnect and
1877 	 * IO happen in an event-driven environment, and synchronous
1878 	 * operations wreak havoc on that.
1879 	 */
1880 	rc = fcntl(up->fdt, F_SETFL, O_NONBLOCK, 1);
1881 	if (-1 == rc) {
1882 		if (syslogok(pp, up))
1883 			msyslog(LOG_ERR,
1884 				"%s: cannot set GPSD socket to non-blocking: %m",
1885 				up->logname);
1886 		goto no_socket;
1887 	}
1888 	/* Disable nagling. The way both GPSD and NTPD handle the
1889 	 * protocol makes it record-oriented, and in most cases
1890 	 * complete records (JSON serialised objects) will be sent in
1891 	 * one sweep. Nagling gives not much advantage but adds another
1892 	 * delay, which can worsen the situation for some packets.
1893 	 */
1894 	ov = 1;
1895 	rc = setsockopt(up->fdt, IPPROTO_TCP, TCP_NODELAY,
1896 			(char*)&ov, sizeof(ov));
1897 	if (-1 == rc) {
1898 		if (syslogok(pp, up))
1899 			msyslog(LOG_INFO,
1900 				"%s: cannot disable TCP nagle: %m",
1901 				up->logname);
1902 	}
1903 
1904 	/* Start a non-blocking connect. There might be a synchronous
1905 	 * connection result we have to handle.
1906 	 */
1907 	rc = connect(up->fdt, ai->ai_addr, ai->ai_addrlen);
1908 	if (-1 == rc) {
1909 		if (errno == EINPROGRESS) {
1910 			DPRINTF(1, ("%s: async connect pending, fd=%d\n",
1911 				    up->logname, up->fdt));
1912 			return;
1913 		}
1914 
1915 		if (syslogok(pp, up))
1916 			msyslog(LOG_ERR,
1917 				"%s: cannot connect GPSD socket: %m",
1918 				up->logname);
1919 		goto no_socket;
1920 	}
1921 
1922 	/* We had a successful synchronous connect, so we add the
1923 	 * refclock processing ASAP. We still have to wait for the
1924 	 * version string and apply the watch command later on, but we
1925 	 * might as well get the show on the road now.
1926 	 */
1927 	DPRINTF(1, ("%s: new socket connection, fd=%d\n",
1928 		    up->logname, up->fdt));
1929 
1930 	pp->io.fd = up->fdt;
1931 	up->fdt   = -1;
1932 	if (0 == io_addclock(&pp->io)) {
1933 		if (syslogok(pp, up))
1934 			msyslog(LOG_ERR,
1935 				"%s: failed to register with I/O engine",
1936 				up->logname);
1937 		goto no_socket;
1938 	}
1939 
1940 	return;
1941 
1942   no_socket:
1943 	if (-1 != pp->io.fd)
1944 		close(pp->io.fd);
1945 	if (-1 != up->fdt)
1946 		close(up->fdt);
1947 	pp->io.fd    = -1;
1948 	up->fdt      = -1;
1949 	up->tickover = up->tickpres;
1950 	up->tickpres = min(up->tickpres + 5, TICKOVER_HIGH);
1951 }
1952 
1953 /* ------------------------------------------------------------------ */
1954 
1955 static void
1956 gpsd_test_socket(
1957 	peerT * const peer)
1958 {
1959 	clockprocT * const pp = peer->procptr;
1960 	gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;
1961 
1962 	int       ec, rc;
1963 	socklen_t lc;
1964 
1965 	/* Check if the non-blocking connect was finished by testing the
1966 	 * socket for writeability. Use the 'poll()' API if available
1967 	 * and 'select()' otherwise.
1968 	 */
1969 	DPRINTF(2, ("%s: check connect, fd=%d\n",
1970 		    up->logname, up->fdt));
1971 
1972 #if defined(HAVE_SYS_POLL_H)
1973 	{
1974 		struct pollfd pfd;
1975 
1976 		pfd.events = POLLOUT;
1977 		pfd.fd     = up->fdt;
1978 		rc = poll(&pfd, 1, 0);
1979 		if (1 != rc || !(pfd.revents & POLLOUT))
1980 			return;
1981 	}
1982 #elif defined(HAVE_SYS_SELECT_H)
1983 	{
1984 		struct timeval tout;
1985 		fd_set         wset;
1986 
1987 		memset(&tout, 0, sizeof(tout));
1988 		FD_ZERO(&wset);
1989 		FD_SET(up->fdt, &wset);
1990 		rc = select(up->fdt+1, NULL, &wset, NULL, &tout);
1991 		if (0 == rc || !(FD_ISSET(up->fdt, &wset)))
1992 			return;
1993 	}
1994 #else
1995 # error Blooper! That should have been found earlier!
1996 #endif
1997 
1998 	/* next timeout is a full one... */
1999 	up->tickover = TICKOVER_LOW;
2000 
2001 	/* check for socket error */
2002 	ec = 0;
2003 	lc = sizeof(ec);
2004 	rc = getsockopt(up->fdt, SOL_SOCKET, SO_ERROR, &ec, &lc);
2005 	if (-1 == rc || 0 != ec) {
2006 		const char *errtxt;
2007 		if (0 == ec)
2008 			ec = errno;
2009 		errtxt = strerror(ec);
2010 		if (syslogok(pp, up))
2011 			msyslog(LOG_ERR,
2012 				"%s: async connect to GPSD failed,"
2013 				" fd=%d, ec=%d(%s)",
2014 				up->logname, up->fdt, ec, errtxt);
2015 		else
2016 			DPRINTF(1, ("%s: async connect to GPSD failed,"
2017 				" fd=%d, ec=%d(%s)\n",
2018 				    up->logname, up->fdt, ec, errtxt));
2019 		goto no_socket;
2020 	} else {
2021 		DPRINTF(1, ("%s: async connect to GPSD succeeded, fd=%d\n",
2022 			    up->logname, up->fdt));
2023 	}
2024 
2025 	/* swap socket FDs, and make sure the clock was added */
2026 	pp->io.fd = up->fdt;
2027 	up->fdt   = -1;
2028 	if (0 == io_addclock(&pp->io)) {
2029 		if (syslogok(pp, up))
2030 			msyslog(LOG_ERR,
2031 				"%s: failed to register with I/O engine",
2032 				up->logname);
2033 		goto no_socket;
2034 	}
2035 	return;
2036 
2037   no_socket:
2038 	if (-1 != up->fdt) {
2039 		DPRINTF(1, ("%s: closing socket, fd=%d\n",
2040 			    up->logname, up->fdt));
2041 		close(up->fdt);
2042 	}
2043 	up->fdt      = -1;
2044 	up->tickover = up->tickpres;
2045 	up->tickpres = min(up->tickpres + 5, TICKOVER_HIGH);
2046 }
2047 
2048 /* =====================================================================
2049  * helper stuff
2050  */
2051 
2052 /* -------------------------------------------------------------------
2053  * store a properly clamped precision value
2054  */
2055 static int16_t
2056 clamped_precision(
2057 	int rawprec)
2058 {
2059 	if (rawprec > 0)
2060 		rawprec = 0;
2061 	if (rawprec < -32)
2062 		rawprec = -32;
2063 	return (int16_t)rawprec;
2064 }
2065 
2066 /* -------------------------------------------------------------------
2067  * Convert a GPSD timestamp (ISO8601 Format) to an l_fp
2068  */
2069 static BOOL
2070 convert_ascii_time(
2071 	l_fp       * fp      ,
2072 	const char * gps_time)
2073 {
2074 	char           *ep;
2075 	struct tm       gd;
2076 	struct timespec ts;
2077 	uint32_t        dw;
2078 
2079 	/* Use 'strptime' to take the brunt of the work, then parse
2080 	 * the fractional part manually, starting with a digit weight of
2081 	 * 10^8 nanoseconds.
2082 	 */
2083 	ts.tv_nsec = 0;
2084 	ep = strptime(gps_time, "%Y-%m-%dT%H:%M:%S", &gd);
2085 	if (NULL == ep)
2086 		return FALSE; /* could not parse the mandatory stuff! */
2087 	if (*ep == '.') {
2088 		dw = 100000000u;
2089 		while (isdigit(*(u_char*)++ep)) {
2090 			ts.tv_nsec += (*(u_char*)ep - '0') * dw;
2091 			dw /= 10u;
2092 		}
2093 	}
2094 	if (ep[0] != 'Z' || ep[1] != '\0')
2095 		return FALSE; /* trailing garbage */
2096 
2097 	/* Now convert the whole thing into a 'l_fp'. We do not use
2098 	 * 'mkgmtime()' since its not standard and going through the
2099 	 * calendar routines is not much effort, either.
2100 	 */
2101 	ts.tv_sec = (ntpcal_tm_to_rd(&gd) - DAY_NTP_STARTS) * SECSPERDAY
2102 	          + ntpcal_tm_to_daysec(&gd);
2103 	*fp = tspec_intv_to_lfp(ts);
2104 
2105 	return TRUE;
2106 }
2107 
2108 /* -------------------------------------------------------------------
2109  * Save the last timecode string, making sure it's properly truncated
2110  * if necessary and NUL terminated in any case.
2111  */
2112 static void
2113 save_ltc(
2114 	clockprocT * const pp,
2115 	const char * const tc)
2116 {
2117 	size_t len;
2118 
2119 	len = (tc) ? strlen(tc) : 0;
2120 	if (len >= sizeof(pp->a_lastcode))
2121 		len = sizeof(pp->a_lastcode) - 1;
2122 	pp->lencode = (u_short)len;
2123 	memcpy(pp->a_lastcode, tc, len);
2124 	pp->a_lastcode[len] = '\0';
2125 }
2126 
2127 /* -------------------------------------------------------------------
2128  * asprintf replacement... it's not available everywhere...
2129  */
2130 static int
2131 myasprintf(
2132 	char      ** spp,
2133 	char const * fmt,
2134 	...             )
2135 {
2136 	size_t alen, plen;
2137 
2138 	alen = 32;
2139 	*spp = NULL;
2140 	do {
2141 		va_list va;
2142 
2143 		alen += alen;
2144 		free(*spp);
2145 		*spp = (char*)malloc(alen);
2146 		if (NULL == *spp)
2147 			return -1;
2148 
2149 		va_start(va, fmt);
2150 		plen = (size_t)vsnprintf(*spp, alen, fmt, va);
2151 		va_end(va);
2152 	} while (plen >= alen);
2153 
2154 	return (int)plen;
2155 }
2156 
2157 /* -------------------------------------------------------------------
2158  * dump a raw data buffer
2159  */
2160 
2161 static char *
2162 add_string(
2163 	char *dp,
2164 	char *ep,
2165 	const char *sp)
2166 {
2167 	while (dp != ep && *sp)
2168 		*dp++ = *sp++;
2169 	return dp;
2170 }
2171 
2172 static void
2173 log_data(
2174 	peerT      *peer,
2175 	const char *what,
2176 	const char *buf ,
2177 	size_t      len )
2178 {
2179 	/* we're running single threaded with regards to the clocks. */
2180 	static char s_lbuf[2048];
2181 
2182 	clockprocT * const pp = peer->procptr;
2183 	gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;
2184 
2185 	if (debug > 1) {
2186 		const char *sptr = buf;
2187 		const char *stop = buf + len;
2188 		char       *dptr = s_lbuf;
2189 		char       *dtop = s_lbuf + sizeof(s_lbuf) - 1; /* for NUL */
2190 
2191 		while (sptr != stop && dptr != dtop) {
2192 			u_char uch = (u_char)*sptr++;
2193 			if (uch == '\\') {
2194 				dptr = add_string(dptr, dtop, "\\\\");
2195 			} else if (isprint(uch)) {
2196 				*dptr++ = (char)uch;
2197 			} else {
2198 				char fbuf[6];
2199 				snprintf(fbuf, sizeof(fbuf), "\\%03o", uch);
2200 				dptr = add_string(dptr, dtop, fbuf);
2201 			}
2202 		}
2203 		*dptr = '\0';
2204 		mprintf("%s[%s]: '%s'\n", up->logname, what, s_lbuf);
2205 	}
2206 }
2207 
2208 #else
2209 NONEMPTY_TRANSLATION_UNIT
2210 #endif /* REFCLOCK && CLOCK_GPSDJSON */
2211