xref: /freebsd/contrib/ntp/ntpd/refclock_datum.c (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 /*
2 ** refclock_datum - clock driver for the Datum Programmable Time Server
3 **
4 ** Important note: This driver assumes that you have termios. If you have
5 ** a system that does not have termios, you will have to modify this driver.
6 **
7 ** Sorry, I have only tested this driver on SUN and HP platforms.
8 */
9 
10 #ifdef HAVE_CONFIG_H
11 # include <config.h>
12 #endif
13 
14 #include "ntp_types.h"
15 
16 #if defined(REFCLOCK) && defined(CLOCK_DATUM)
17 
18 /*
19 ** Include Files
20 */
21 
22 #include "ntpd.h"
23 #include "ntp_io.h"
24 #include "ntp_tty.h"
25 #include "ntp_refclock.h"
26 #include "timevalops.h"
27 #include "ntp_stdlib.h"
28 
29 #include <stdio.h>
30 #include <ctype.h>
31 
32 #if defined(STREAM)
33 #include <stropts.h>
34 #endif /* STREAM */
35 
36 #include "ntp_stdlib.h"
37 
38 /*
39 ** This driver supports the Datum Programmable Time System (PTS) clock.
40 ** The clock works in very straight forward manner. When it receives a
41 ** time code request (e.g., the ascii string "//k/mn"), it responds with
42 ** a seven byte BCD time code. This clock only responds with a
43 ** time code after it first receives the "//k/mn" message. It does not
44 ** periodically send time codes back at some rate once it is started.
45 ** the returned time code can be broken down into the following fields.
46 **
47 **            _______________________________
48 ** Bit Index | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
49 **            ===============================
50 ** byte 0:   | -   -   -   - |      H D      |
51 **            ===============================
52 ** byte 1:   |      T D      |      U D      |
53 **            ===============================
54 ** byte 2:   | -   - |  T H  |      U H      |
55 **            ===============================
56 ** byte 3:   | - |    T M    |      U M      |
57 **            ===============================
58 ** byte 4:   | - |    T S    |      U S      |
59 **            ===============================
60 ** byte 5:   |      t S      |      h S      |
61 **            ===============================
62 ** byte 6:   |      m S      | -   -   -   - |
63 **            ===============================
64 **
65 ** In the table above:
66 **
67 **	"-" means don't care
68 **	"H D", "T D", and "U D" means Hundreds, Tens, and Units of Days
69 **	"T H", and "UH" means Tens and Units of Hours
70 **	"T M", and "U M" means Tens and Units of Minutes
71 **	"T S", and "U S" means Tens and Units of Seconds
72 **	"t S", "h S", and "m S" means tenths, hundredths, and thousandths
73 **				of seconds
74 **
75 ** The Datum PTS communicates throught the RS232 port on your machine.
76 ** Right now, it assumes that you have termios. This driver has been tested
77 ** on SUN and HP workstations. The Datum PTS supports various IRIG and
78 ** NASA input codes. This driver assumes that the name of the device is
79 ** /dev/datum. You will need to make a soft link to your RS232 device or
80 ** create a new driver to use this refclock.
81 */
82 
83 /*
84 ** Datum PTS defines
85 */
86 
87 /*
88 ** Note that if GMT is defined, then the Datum PTS must use Greenwich
89 ** time. Otherwise, this driver allows the Datum PTS to use the current
90 ** wall clock for its time. It determines the time zone offset by minimizing
91 ** the error after trying several time zone offsets. If the Datum PTS
92 ** time is Greenwich time and GMT is not defined, everything should still
93 ** work since the time zone will be found to be 0. What this really means
94 ** is that your system time (at least to start with) must be within the
95 ** correct time by less than +- 30 minutes. The default is for GMT to not
96 ** defined. If you really want to force GMT without the funny +- 30 minute
97 ** stuff then you must define (uncomment) GMT below.
98 */
99 
100 /*
101 #define GMT
102 #define DEBUG_DATUM_PTC
103 #define LOG_TIME_ERRORS
104 */
105 
106 
107 #define	PRECISION	(-10)		/* precision assumed 1/1024 ms */
108 #define	REFID "DATM"			/* reference id */
109 #define DATUM_DISPERSION 0		/* fixed dispersion = 0 ms */
110 #define DATUM_MAX_ERROR 0.100		/* limits on sigma squared */
111 #define DATUM_DEV	"/dev/datum"	/* device name */
112 
113 #define DATUM_MAX_ERROR2 (DATUM_MAX_ERROR*DATUM_MAX_ERROR)
114 
115 /*
116 ** The Datum PTS structure
117 */
118 
119 /*
120 ** I don't use a fixed array of MAXUNITS like everyone else just because
121 ** I don't like to program that way. Sorry if this bothers anyone. I assume
122 ** that you can use any id for your unit and I will search for it in a
123 ** dynamic array of units until I find it. I was worried that users might
124 ** enter a bad id in their configuration file (larger than MAXUNITS) and
125 ** besides, it is just cleaner not to have to assume that you have a fixed
126 ** number of anything in a program.
127 */
128 
129 struct datum_pts_unit {
130 	struct peer *peer;		/* peer used by ntp */
131 	int PTS_fd;			/* file descriptor for PTS */
132 	u_int unit;			/* id for unit */
133 	u_long timestarted;		/* time started */
134 	l_fp lastrec;			/* time tag for the receive time (system) */
135 	l_fp lastref;			/* reference time (Datum time) */
136 	u_long yearstart;		/* the year that this clock started */
137 	int coderecv;			/* number of time codes received */
138 	int day;			/* day */
139 	int hour;			/* hour */
140 	int minute;			/* minutes */
141 	int second;			/* seconds */
142 	int msec;			/* miliseconds */
143 	int usec;			/* miliseconds */
144 	u_char leap;			/* funny leap character code */
145 	char retbuf[8];		/* returned time from the datum pts */
146 	char nbytes;			/* number of bytes received from datum pts */
147 	double sigma2;		/* average squared error (roughly) */
148 	int tzoff;			/* time zone offest from GMT */
149 };
150 
151 /*
152 ** PTS static constant variables for internal use
153 */
154 
155 static char TIME_REQUEST[6];	/* request message sent to datum for time */
156 static int nunits;		/* number of active units */
157 
158 /*
159 ** Callback function prototypes that ntpd needs to know about.
160 */
161 
162 static	int	datum_pts_start		(int, struct peer *);
163 static	void	datum_pts_shutdown	(int, struct peer *);
164 static	void	datum_pts_poll		(int, struct peer *);
165 static	void	datum_pts_control	(int, const struct refclockstat *,
166 					 struct refclockstat *, struct peer *);
167 static	void	datum_pts_init		(void);
168 static	void	datum_pts_buginfo	(int, struct refclockbug *, struct peer *);
169 
170 /*
171 ** This is the call back function structure that ntpd actually uses for
172 ** this refclock.
173 */
174 
175 struct	refclock refclock_datum = {
176 	datum_pts_start,		/* start up a new Datum refclock */
177 	datum_pts_shutdown,		/* shutdown a Datum refclock */
178 	datum_pts_poll,		/* sends out the time request */
179 	datum_pts_control,		/* not used */
180 	datum_pts_init,		/* initialization (called first) */
181 	datum_pts_buginfo,		/* not used */
182 	NOFLAGS			/* we are not setting any special flags */
183 };
184 
185 /*
186 ** The datum_pts_receive callback function is handled differently from the
187 ** rest. It is passed to the ntpd io data structure. Basically, every
188 ** 64 seconds, the datum_pts_poll() routine is called. It sends out the time
189 ** request message to the Datum Programmable Time System. Then, ntpd
190 ** waits on a select() call to receive data back. The datum_pts_receive()
191 ** function is called as data comes back. We expect a seven byte time
192 ** code to be returned but the datum_pts_receive() function may only get
193 ** a few bytes passed to it at a time. In other words, this routine may
194 ** get called by the io stuff in ntpd a few times before we get all seven
195 ** bytes. Once the last byte is received, we process it and then pass the
196 ** new time measurement to ntpd for updating the system time. For now,
197 ** there is no 3 state filtering done on the time measurements. The
198 ** jitter may be a little high but at least for its current use, it is not
199 ** a problem. We have tried to keep things as simple as possible. This
200 ** clock should not jitter more than 1 or 2 mseconds at the most once
201 ** things settle down. It is important to get the right drift calibrated
202 ** in the ntpd.drift file as well as getting the right tick set up right
203 ** using tickadj for SUNs. Tickadj is not used for the HP but you need to
204 ** remember to bring up the adjtime daemon because HP does not support
205 ** the adjtime() call.
206 */
207 
208 static	void	datum_pts_receive	(struct recvbuf *);
209 
210 /*......................................................................*/
211 /*	datum_pts_start - start up the datum PTS. This means open the	*/
212 /*	RS232 device and set up the data structure for my unit.		*/
213 /*......................................................................*/
214 
215 static int
216 datum_pts_start(
217 	int unit,
218 	struct peer *peer
219 	)
220 {
221 	struct refclockproc *pp;
222 	struct datum_pts_unit *datum_pts;
223 	int fd;
224 #ifdef HAVE_TERMIOS
225 	int rc;
226 	struct termios arg;
227 #endif
228 
229 #ifdef DEBUG_DATUM_PTC
230 	if (debug)
231 	    printf("Starting Datum PTS unit %d\n", unit);
232 #endif
233 
234 	/*
235 	** Open the Datum PTS device
236 	*/
237 	fd = open(DATUM_DEV, O_RDWR);
238 
239 	if (fd < 0) {
240 		msyslog(LOG_ERR, "Datum_PTS: open(\"%s\", O_RDWR) failed: %m", DATUM_DEV);
241 		return 0;
242 	}
243 
244 	/*
245 	** Create the memory for the new unit
246 	*/
247 	datum_pts = emalloc_zero(sizeof(*datum_pts));
248 	datum_pts->unit = unit;	/* set my unit id */
249 	datum_pts->yearstart = 0;	/* initialize the yearstart to 0 */
250 	datum_pts->sigma2 = 0.0;	/* initialize the sigma2 to 0 */
251 
252 	datum_pts->PTS_fd = fd;
253 
254 	if (-1 == fcntl(datum_pts->PTS_fd, F_SETFL, 0)) /* clear the descriptor flags */
255 		msyslog(LOG_ERR, "MSF_ARCRON(%d): fcntl(F_SETFL, 0): %m.",
256 			unit);
257 
258 #ifdef DEBUG_DATUM_PTC
259 	if (debug)
260 	    printf("Opening RS232 port with file descriptor %d\n",
261 		   datum_pts->PTS_fd);
262 #endif
263 
264 	/*
265 	** Set up the RS232 terminal device information. Note that we assume that
266 	** we have termios. This code has only been tested on SUNs and HPs. If your
267 	** machine does not have termios this driver cannot be initialized. You can change this
268 	** if you want by editing this source. Please give the changes back to the
269 	** ntp folks so that it can become part of their regular distribution.
270 	*/
271 
272 	memset(&arg, 0, sizeof(arg));
273 
274 	arg.c_iflag = IGNBRK;
275 	arg.c_oflag = 0;
276 	arg.c_cflag = B9600 | CS8 | CREAD | PARENB | CLOCAL;
277 	arg.c_lflag = 0;
278 	arg.c_cc[VMIN] = 0;		/* start timeout timer right away (not used) */
279 	arg.c_cc[VTIME] = 30;		/* 3 second timout on reads (not used) */
280 
281 	rc = tcsetattr(datum_pts->PTS_fd, TCSANOW, &arg);
282 	if (rc < 0) {
283 		msyslog(LOG_ERR, "Datum_PTS: tcsetattr(\"%s\") failed: %m", DATUM_DEV);
284 		close(datum_pts->PTS_fd);
285 		free(datum_pts);
286 		return 0;
287 	}
288 
289 	/*
290 	** Initialize the ntpd IO structure
291 	*/
292 
293 	datum_pts->peer = peer;
294 	pp = peer->procptr;
295 	pp->io.clock_recv = datum_pts_receive;
296 	pp->io.srcclock = peer;
297 	pp->io.datalen = 0;
298 	pp->io.fd = datum_pts->PTS_fd;
299 
300 	if (!io_addclock(&pp->io)) {
301 		pp->io.fd = -1;
302 #ifdef DEBUG_DATUM_PTC
303 		if (debug)
304 		    printf("Problem adding clock\n");
305 #endif
306 
307 		msyslog(LOG_ERR, "Datum_PTS: Problem adding clock");
308 		close(datum_pts->PTS_fd);
309 		free(datum_pts);
310 
311 		return 0;
312 	}
313 	peer->procptr->unitptr = datum_pts;
314 
315 	/*
316 	** Now add one to the number of units and return a successful code
317 	*/
318 
319 	nunits++;
320 	return 1;
321 
322 }
323 
324 
325 /*......................................................................*/
326 /*	datum_pts_shutdown - this routine shuts doen the device and	*/
327 /*	removes the memory for the unit.				*/
328 /*......................................................................*/
329 
330 static void
331 datum_pts_shutdown(
332 	int unit,
333 	struct peer *peer
334 	)
335 {
336 	struct refclockproc *pp;
337 	struct datum_pts_unit *datum_pts;
338 
339 #ifdef DEBUG_DATUM_PTC
340 	if (debug)
341 	    printf("Shutdown Datum PTS\n");
342 #endif
343 
344 	msyslog(LOG_ERR, "Datum_PTS: Shutdown Datum PTS");
345 
346 	/*
347 	** We found the unit so close the file descriptor and free up the memory used
348 	** by the structure.
349 	*/
350 	pp = peer->procptr;
351 	datum_pts = pp->unitptr;
352 	if (NULL != datum_pts) {
353 		io_closeclock(&pp->io);
354 		free(datum_pts);
355 	}
356 }
357 
358 
359 /*......................................................................*/
360 /*	datum_pts_poll - this routine sends out the time request to the */
361 /*	Datum PTS device. The time will be passed back in the 		*/
362 /*	datum_pts_receive() routine.					*/
363 /*......................................................................*/
364 
365 static void
366 datum_pts_poll(
367 	int unit,
368 	struct peer *peer
369 	)
370 {
371 	int error_code;
372 	struct datum_pts_unit *datum_pts;
373 
374 	datum_pts = peer->procptr->unitptr;
375 
376 #ifdef DEBUG_DATUM_PTC
377 	if (debug)
378 	    printf("Poll Datum PTS\n");
379 #endif
380 
381 	/*
382 	** Find the right unit and send out a time request once it is found.
383 	*/
384 	error_code = write(datum_pts->PTS_fd, TIME_REQUEST, 6);
385 	if (error_code != 6)
386 		perror("TIME_REQUEST");
387 	datum_pts->nbytes = 0;
388 }
389 
390 
391 /*......................................................................*/
392 /*	datum_pts_control - not used					*/
393 /*......................................................................*/
394 
395 static void
396 datum_pts_control(
397 	int unit,
398 	const struct refclockstat *in,
399 	struct refclockstat *out,
400 	struct peer *peer
401 	)
402 {
403 
404 #ifdef DEBUG_DATUM_PTC
405 	if (debug)
406 	    printf("Control Datum PTS\n");
407 #endif
408 
409 }
410 
411 
412 /*......................................................................*/
413 /*	datum_pts_init - initializes things for all possible Datum	*/
414 /*	time code generators that might be used. In practice, this is	*/
415 /*	only called once at the beginning before anything else is	*/
416 /*	called.								*/
417 /*......................................................................*/
418 
419 static void
420 datum_pts_init(void)
421 {
422 
423 	/*									*/
424 	/*...... open up the log file if we are debugging ......................*/
425 	/*									*/
426 
427 	/*
428 	** Open up the log file if we are debugging. For now, send data out to the
429 	** screen (stdout).
430 	*/
431 
432 #ifdef DEBUG_DATUM_PTC
433 	if (debug)
434 	    printf("Init Datum PTS\n");
435 #endif
436 
437 	/*
438 	** Initialize the time request command string. This is the only message
439 	** that we ever have to send to the Datum PTS (although others are defined).
440 	*/
441 
442 	memcpy(TIME_REQUEST, "//k/mn",6);
443 
444 	/*
445 	** Initialize the number of units to 0 and set the dynamic array of units to
446 	** NULL since there are no units defined yet.
447 	*/
448 
449 	nunits = 0;
450 
451 }
452 
453 
454 /*......................................................................*/
455 /*	datum_pts_buginfo - not used					*/
456 /*......................................................................*/
457 
458 static void
459 datum_pts_buginfo(
460 	int unit,
461 	register struct refclockbug *bug,
462 	register struct peer *peer
463 	)
464 {
465 
466 #ifdef DEBUG_DATUM_PTC
467 	if (debug)
468 	    printf("Buginfo Datum PTS\n");
469 #endif
470 
471 }
472 
473 
474 /*......................................................................*/
475 /*	datum_pts_receive - receive the time buffer that was read in	*/
476 /*	by the ntpd io handling routines. When 7 bytes have been	*/
477 /*	received (it may take several tries before all 7 bytes are	*/
478 /*	received), then the time code must be unpacked and sent to	*/
479 /*	the ntpd clock_receive() routine which causes the systems	*/
480 /*	clock to be updated (several layers down).			*/
481 /*......................................................................*/
482 
483 static void
484 datum_pts_receive(
485 	struct recvbuf *rbufp
486 	)
487 {
488 	int i;
489 	size_t nb;
490 	l_fp tstmp;
491 	struct peer *p;
492 	struct datum_pts_unit *datum_pts;
493 	char *dpt;
494 	int dpend;
495 	int tzoff;
496 	int timerr;
497 	double ftimerr, abserr;
498 #ifdef DEBUG_DATUM_PTC
499 	double dispersion;
500 #endif
501 	int goodtime;
502       /*double doffset;*/
503 
504 	/*
505 	** Get the time code (maybe partial) message out of the rbufp buffer.
506 	*/
507 
508 	p = rbufp->recv_peer;
509 	datum_pts = p->procptr->unitptr;
510 	dpt = (char *)&rbufp->recv_space;
511 	dpend = rbufp->recv_length;
512 
513 #ifdef DEBUG_DATUM_PTC
514 	if (debug)
515 		printf("Receive Datum PTS: %d bytes\n", dpend);
516 #endif
517 
518 	/*									*/
519 	/*...... save the ntp system time when the first byte is received ......*/
520 	/*									*/
521 
522 	/*
523 	** Save the ntp system time when the first byte is received. Note that
524 	** because it may take several calls to this routine before all seven
525 	** bytes of our return message are finally received by the io handlers in
526 	** ntpd, we really do want to use the time tag when the first byte is
527 	** received to reduce the jitter.
528 	*/
529 
530 	nb = datum_pts->nbytes;
531 	if (nb == 0) {
532 		datum_pts->lastrec = rbufp->recv_time;
533 	}
534 
535 	/*
536 	** Increment our count to the number of bytes received so far. Return if we
537 	** haven't gotten all seven bytes yet.
538 	** [Sec 3388] make sure we do not overrun the buffer.
539 	** TODO: what to do with excessive bytes, if we ever get them?
540 	*/
541 	for (i=0; (i < dpend) && (nb < sizeof(datum_pts->retbuf)); i++, nb++) {
542 		datum_pts->retbuf[nb] = dpt[i];
543 	}
544 	datum_pts->nbytes = nb;
545 
546 	if (nb < 7) {
547 		return;
548 	}
549 
550 	/*
551 	** Convert the seven bytes received in our time buffer to day, hour, minute,
552 	** second, and msecond values. The usec value is not used for anything
553 	** currently. It is just the fractional part of the time stored in units
554 	** of microseconds.
555 	*/
556 
557 	datum_pts->day =	100*(datum_pts->retbuf[0] & 0x0f) +
558 		10*((datum_pts->retbuf[1] & 0xf0)>>4) +
559 		(datum_pts->retbuf[1] & 0x0f);
560 
561 	datum_pts->hour =	10*((datum_pts->retbuf[2] & 0x30)>>4) +
562 		(datum_pts->retbuf[2] & 0x0f);
563 
564 	datum_pts->minute =	10*((datum_pts->retbuf[3] & 0x70)>>4) +
565 		(datum_pts->retbuf[3] & 0x0f);
566 
567 	datum_pts->second =	10*((datum_pts->retbuf[4] & 0x70)>>4) +
568 		(datum_pts->retbuf[4] & 0x0f);
569 
570 	datum_pts->msec =	100*((datum_pts->retbuf[5] & 0xf0) >> 4) +
571 		10*(datum_pts->retbuf[5] & 0x0f) +
572 		((datum_pts->retbuf[6] & 0xf0)>>4);
573 
574 	datum_pts->usec =	1000*datum_pts->msec;
575 
576 #ifdef DEBUG_DATUM_PTC
577 	if (debug)
578 	    printf("day %d, hour %d, minute %d, second %d, msec %d\n",
579 		   datum_pts->day,
580 		   datum_pts->hour,
581 		   datum_pts->minute,
582 		   datum_pts->second,
583 		   datum_pts->msec);
584 #endif
585 
586 	/*
587 	** Get the GMT time zone offset. Note that GMT should be zero if the Datum
588 	** reference time is using GMT as its time base. Otherwise we have to
589 	** determine the offset if the Datum PTS is using time of day as its time
590 	** base.
591 	*/
592 
593 	goodtime = 0;		/* We are not sure about the time and offset yet */
594 
595 #ifdef GMT
596 
597 	/*
598 	** This is the case where the Datum PTS is using GMT so there is no time
599 	** zone offset.
600 	*/
601 
602 	tzoff = 0;		/* set time zone offset to 0 */
603 
604 #else
605 
606 	/*
607 	** This is the case where the Datum PTS is using regular time of day for its
608 	** time so we must compute the time zone offset. The way we do it is kind of
609 	** funny but it works. We loop through different time zones (0 to 24) and
610 	** pick the one that gives the smallest error (+- one half hour). The time
611 	** zone offset is stored in the datum_pts structure for future use. Normally,
612 	** the clocktime() routine is only called once (unless the time zone offset
613 	** changes due to daylight savings) since the goodtime flag is set when a
614 	** good time is found (with a good offset). Note that even if the Datum
615 	** PTS is using GMT, this mechanism will still work since it should come up
616 	** with a value for tzoff = 0 (assuming that your system clock is within
617 	** a half hour of the Datum time (even with time zone differences).
618 	*/
619 
620 	for (tzoff=0; tzoff<24; tzoff++) {
621 		if (clocktime( datum_pts->day,
622 			       datum_pts->hour,
623 			       datum_pts->minute,
624 			       datum_pts->second,
625 			       (tzoff + datum_pts->tzoff) % 24,
626 			       datum_pts->lastrec.l_ui,
627 			       &datum_pts->yearstart,
628 			       &datum_pts->lastref.l_ui) ) {
629 
630 			datum_pts->lastref.l_uf = 0;
631 			error = datum_pts->lastref.l_ui - datum_pts->lastrec.l_ui;
632 
633 #ifdef DEBUG_DATUM_PTC
634 			printf("Time Zone (clocktime method) = %d, error = %d\n", tzoff, error);
635 #endif
636 
637 			if ((error < 1799) && (error > -1799)) {
638 				tzoff = (tzoff + datum_pts->tzoff) % 24;
639 				datum_pts->tzoff = tzoff;
640 				goodtime = 1;
641 
642 #ifdef DEBUG_DATUM_PTC
643 				printf("Time Zone found (clocktime method) = %d\n",tzoff);
644 #endif
645 
646 				break;
647 			}
648 
649 		}
650 	}
651 
652 #endif
653 
654 	/*
655 	** Make sure that we have a good time from the Datum PTS. Clocktime() also
656 	** sets yearstart and lastref.l_ui. We will have to set astref.l_uf (i.e.,
657 	** the fraction of a second) stuff later.
658 	*/
659 
660 	if (!goodtime) {
661 
662 		if (!clocktime( datum_pts->day,
663 				datum_pts->hour,
664 				datum_pts->minute,
665 				datum_pts->second,
666 				tzoff,
667 				datum_pts->lastrec.l_ui,
668 				&datum_pts->yearstart,
669 				&datum_pts->lastref.l_ui) ) {
670 
671 #ifdef DEBUG_DATUM_PTC
672 			if (debug)
673 			{
674 				printf("Error: bad clocktime\n");
675 				printf("GMT %d, lastrec %d, yearstart %d, lastref %d\n",
676 				       tzoff,
677 				       datum_pts->lastrec.l_ui,
678 				       datum_pts->yearstart,
679 				       datum_pts->lastref.l_ui);
680 			}
681 #endif
682 
683 			msyslog(LOG_ERR, "Datum_PTS: Bad clocktime");
684 
685 			return;
686 
687 		}else{
688 
689 #ifdef DEBUG_DATUM_PTC
690 			if (debug)
691 			    printf("Good clocktime\n");
692 #endif
693 
694 		}
695 
696 	}
697 
698 	/*
699 	** We have datum_pts->lastref.l_ui set (which is the integer part of the
700 	** time. Now set the microseconds field.
701 	*/
702 
703 	TVUTOTSF(datum_pts->usec, datum_pts->lastref.l_uf);
704 
705 	/*
706 	** Compute the time correction as the difference between the reference
707 	** time (i.e., the Datum time) minus the receive time (system time).
708 	*/
709 
710 	tstmp = datum_pts->lastref;		/* tstmp is the datum ntp time */
711 	L_SUB(&tstmp, &datum_pts->lastrec);	/* tstmp is now the correction */
712 	datum_pts->coderecv++;		/* increment a counter */
713 
714 #ifdef DEBUG_DATUM_PTC
715 	dispersion = DATUM_DISPERSION;	/* set the dispersion to 0 */
716 	ftimerr = dispersion;
717 	ftimerr /= (1024.0 * 64.0);
718 	if (debug)
719 	    printf("dispersion = %d, %f\n", dispersion, ftimerr);
720 #endif
721 
722 	/*
723 	** Pass the new time to ntpd through the refclock_receive function. Note
724 	** that we are not trying to make any corrections due to the time it takes
725 	** for the Datum PTS to send the message back. I am (erroneously) assuming
726 	** that the time for the Datum PTS to send the time back to us is negligable.
727 	** I suspect that this time delay may be as much as 15 ms or so (but probably
728 	** less). For our needs at JPL, this kind of error is ok so it is not
729 	** necessary to use fudge factors in the ntp.conf file. Maybe later we will.
730 	*/
731       /*LFPTOD(&tstmp, doffset);*/
732 	datum_pts->lastref = datum_pts->lastrec;
733 	refclock_receive(datum_pts->peer);
734 
735 	/*
736 	** Compute sigma squared (not used currently). Maybe later, this could be
737 	** used for the dispersion estimate. The problem is that ntpd does not link
738 	** in the math library so sqrt() is not available. Anyway, this is useful
739 	** for debugging. Maybe later I will just use absolute values for the time
740 	** error to come up with my dispersion estimate. Anyway, for now my dispersion
741 	** is set to 0.
742 	*/
743 
744 	timerr = tstmp.l_ui<<20;
745 	timerr |= (tstmp.l_uf>>12) & 0x000fffff;
746 	ftimerr = timerr;
747 	ftimerr /= 1024*1024;
748 	abserr = ftimerr;
749 	if (ftimerr < 0.0) abserr = -ftimerr;
750 
751 	if (datum_pts->sigma2 == 0.0) {
752 		if (abserr < DATUM_MAX_ERROR) {
753 			datum_pts->sigma2 = abserr*abserr;
754 		}else{
755 			datum_pts->sigma2 = DATUM_MAX_ERROR2;
756 		}
757 	}else{
758 		if (abserr < DATUM_MAX_ERROR) {
759 			datum_pts->sigma2 = 0.95*datum_pts->sigma2 + 0.05*abserr*abserr;
760 		}else{
761 			datum_pts->sigma2 = 0.95*datum_pts->sigma2 + 0.05*DATUM_MAX_ERROR2;
762 		}
763 	}
764 
765 #ifdef DEBUG_DATUM_PTC
766 	if (debug)
767 	    printf("Time error = %f seconds\n", ftimerr);
768 #endif
769 
770 #if defined(DEBUG_DATUM_PTC) || defined(LOG_TIME_ERRORS)
771 	if (debug)
772 	    printf("PTS: day %d, hour %d, minute %d, second %d, msec %d, Time Error %f\n",
773 		   datum_pts->day,
774 		   datum_pts->hour,
775 		   datum_pts->minute,
776 		   datum_pts->second,
777 		   datum_pts->msec,
778 		   ftimerr);
779 #endif
780 
781 }
782 #else
783 NONEMPTY_TRANSLATION_UNIT
784 #endif /* REFCLOCK */
785