1 /* 2 * refclock_chu - clock driver for Canadian CHU time/frequency station 3 */ 4 #ifdef HAVE_CONFIG_H 5 #include <config.h> 6 #endif 7 8 #if defined(REFCLOCK) && defined(CLOCK_CHU) 9 10 #include <stdio.h> 11 #include <ctype.h> 12 #include <sys/time.h> 13 #include <time.h> 14 #include <math.h> 15 16 #include "ntpd.h" 17 #include "ntp_io.h" 18 #include "ntp_refclock.h" 19 #include "ntp_calendar.h" 20 #include "ntp_stdlib.h" 21 #ifdef AUDIO_CHU 22 #include "audio.h" 23 #endif /* AUDIO_CHU */ 24 25 #define ICOM 1 /* undefine to suppress ICOM code */ 26 27 #ifdef ICOM 28 #include "icom.h" 29 #endif /* ICOM */ 30 31 /* 32 * Audio CHU demodulator/decoder 33 * 34 * This driver synchronizes the computer time using data encoded in 35 * radio transmissions from Canadian time/frequency station CHU in 36 * Ottawa, Ontario. Transmissions are made continuously on 3330 kHz, 37 * 7335 kHz and 14670 kHz in upper sideband, compatible AM mode. An 38 * ordinary shortwave receiver can be tuned manually to one of these 39 * frequencies or, in the case of ICOM receivers, the receiver can be 40 * tuned automatically using this program as propagation conditions 41 * change throughout the day and night. 42 * 43 * The driver receives, demodulates and decodes the radio signals when 44 * connected to the audio codec of a Sun workstation running SunOS or 45 * Solaris, and with a little help, other workstations with similar 46 * codecs or sound cards. In this implementation, only one audio driver 47 * and codec can be supported on a single machine. 48 * 49 * The driver can be compiled to use a Bell 103 compatible modem or 50 * modem chip to receive the radio signal and demodulate the data. 51 * Alternatively, the driver can be compiled to use the audio codec of 52 * the Sun workstation or another with compatible audio drivers. In the 53 * latter case, the driver implements the modem using DSP routines, so 54 * the radio can be connected directly to either the microphone on line 55 * input port. In either case, the driver decodes the data using a 56 * maximum likelihood technique which exploits the considerable degree 57 * of redundancy available to maximize accuracy and minimize errors. 58 * 59 * The CHU time broadcast includes an audio signal compatible with the 60 * Bell 103 modem standard (mark = 2225 Hz, space = 2025 Hz). It consist 61 * of nine, ten-character bursts transmitted at 300 bps and beginning 62 * each second from second 31 to second 39 of the minute. Each character 63 * consists of eight data bits plus one start bit and two stop bits to 64 * encode two hex digits. The burst data consist of five characters (ten 65 * hex digits) followed by a repeat of these characters. In format A, 66 * the characters are repeated in the same polarity; in format B, the 67 * characters are repeated in the opposite polarity. 68 * 69 * Format A bursts are sent at seconds 32 through 39 of the minute in 70 * hex digits 71 * 72 * 6dddhhmmss6dddhhmmss 73 * 74 * The first ten digits encode a frame marker (6) followed by the day 75 * (ddd), hour (hh in UTC), minute (mm) and the second (ss). Since 76 * format A bursts are sent during the third decade of seconds the tens 77 * digit of ss is always 3. The driver uses this to determine correct 78 * burst synchronization. These digits are then repeated with the same 79 * polarity. 80 * 81 * Format B bursts are sent at second 31 of the minute in hex digits 82 * 83 * xdyyyyttaaxdyyyyttaa 84 * 85 * The first ten digits encode a code (x described below) followed by 86 * the DUT1 (d in deciseconds), Gregorian year (yyyy), difference TAI - 87 * UTC (tt) and daylight time indicator (aa) peculiar to Canada. These 88 * digits are then repeated with inverted polarity. 89 * 90 * The x is coded 91 * 92 * 1 Sign of DUT (0 = +) 93 * 2 Leap second warning. One second will be added. 94 * 4 Leap second warning. One second will be subtracted. 95 * 8 Even parity bit for this nibble. 96 * 97 * By design, the last stop bit of the last character in the burst 98 * coincides with 0.5 second. Since characters have 11 bits and are 99 * transmitted at 300 bps, the last stop bit of the first character 100 * coincides with 0.5 - 10 * 11/300 = 0.133 second. Depending on the 101 * UART, character interrupts can vary somewhere between the beginning 102 * of bit 9 and end of bit 11. These eccentricities can be corrected 103 * along with the radio propagation delay using fudge time 1. 104 * 105 * Debugging aids 106 * 107 * The timecode format used for debugging and data recording includes 108 * data helpful in diagnosing problems with the radio signal and serial 109 * connections. With debugging enabled (-d -d -d on the ntpd command 110 * line), the driver produces one line for each burst in two formats 111 * corresponding to format A and B. Following is format A: 112 * 113 * n b f s m code 114 * 115 * where n is the number of characters in the burst (0-11), b the burst 116 * distance (0-40), f the field alignment (-1, 0, 1), s the 117 * synchronization distance (0-16), m the burst number (2-9) and code 118 * the burst characters as received. Note that the hex digits in each 119 * character are reversed, so the burst 120 * 121 * 10 38 0 16 9 06851292930685129293 122 * 123 * is interpreted as containing 11 characters with burst distance 38, 124 * field alignment 0, synchronization distance 16 and burst number 9. 125 * The nibble-swapped timecode shows day 58, hour 21, minute 29 and 126 * second 39. 127 * 128 * When the audio driver is compiled, format A is preceded by 129 * the current gain (0-255) and relative signal level (0-9999). The 130 * receiver folume control should be set so that the gain is somewhere 131 * near the middle of the range 0-255, which results in a signal level 132 * near 1000. 133 * 134 * Following is format B: 135 * 136 * n b s code 137 * 138 * where n is the number of characters in the burst (0-11), b the burst 139 * distance (0-40), s the synchronization distance (0-40) and code the 140 * burst characters as received. Note that the hex digits in each 141 * character are reversed and the last ten digits inverted, so the burst 142 * 143 * 11 40 1091891300ef6e76ecff 144 * 145 * is interpreted as containing 11 characters with burst distance 40. 146 * The nibble-swapped timecode shows DUT1 +0.1 second, year 1998 and TAI 147 * - UTC 31 seconds. 148 * 149 * In addition to the above, the reference timecode is updated and 150 * written to the clockstats file and debug score after the last burst 151 * received in the minute. The format is 152 * 153 * qq yyyy ddd hh:mm:ss nn dd tt 154 * 155 * where qq are the error flags, as described below, yyyy is the year, 156 * ddd the day, hh:mm:ss the time of day, nn the number of format A 157 * bursts received during the previous minute, dd the decoding distance 158 * and tt the number of timestamps. The error flags are cleared after 159 * every update. 160 * 161 * Fudge factors 162 * 163 * For accuracies better than the low millisceconds, fudge time1 can be 164 * set to the radio propagation delay from CHU to the receiver. This can 165 * be done conviently using the minimuf program. When the modem driver 166 * is compiled, fudge flag3 enables the ppsclock line discipline. Fudge 167 * flag4 causes the dubugging output described above to be recorded in 168 * the clockstats file. 169 * 170 * When the audio driver is compiled, fudge flag2 selects the audio 171 * input port, where 0 is the mike port (default) and 1 is the line-in 172 * port. It does not seem useful to select the compact disc player port. 173 * Fudge flag3 enables audio monitoring of the input signal. For this 174 * purpose, the speaker volume must be set before the driver is started. 175 * 176 * The ICOM code is normally compiled in the driver. It isn't used, 177 * unless the mode keyword on the server configuration command specifies 178 * a nonzero ICOM ID select code. The C-IV trace is turned on if the 179 * debug level is greater than one. 180 */ 181 /* 182 * Interface definitions 183 */ 184 #define SPEED232 B300 /* uart speed (300 baud) */ 185 #define PRECISION (-10) /* precision assumed (about 1 ms) */ 186 #define REFID "CHU" /* reference ID */ 187 #ifdef ICOM 188 #define DWELL 5 /* minutes before qsy */ 189 #define NCHAN 3 /* number of channels */ 190 #endif /* ICOM */ 191 #ifdef AUDIO_CHU 192 #define DESCRIPTION "CHU Modem Receiver" /* WRU */ 193 194 /* 195 * Audio demodulator definitions 196 */ 197 #define SECOND 8000 /* nominal sample rate (Hz) */ 198 #define BAUD 300 /* modulation rate (bps) */ 199 #define OFFSET 128 /* companded sample offset */ 200 #define SIZE 256 /* decompanding table size */ 201 #define MAXSIG 6000. /* maximum signal level */ 202 #define LIMIT 1000. /* soft limiter threshold */ 203 #define AGAIN 6. /* baseband gain */ 204 #define LAG 10 /* discriminator lag */ 205 #else 206 #define DEVICE "/dev/chu%d" /* device name and unit */ 207 #define SPEED232 B300 /* UART speed (300 baud) */ 208 #define DESCRIPTION "CHU Audio Receiver" /* WRU */ 209 #endif /* AUDIO_CHU */ 210 211 /* 212 * Decoder definitions 213 */ 214 #define CHAR (11. / 300.) /* character time (s) */ 215 #define FUDGE .185 /* offset to first stop bit (s) */ 216 #define BURST 11 /* max characters per burst */ 217 #define MINCHAR 9 /* min characters per burst */ 218 #define MINDIST 28 /* min burst distance (of 40) */ 219 #define MINSYNC 8 /* min sync distance (of 16) */ 220 #define MINSTAMP 20 /* min timestamps (of 60) */ 221 #define PANIC (4 * 1440) /* panic restart */ 222 223 /* 224 * Hex extension codes (>= 16) 225 */ 226 #define HEX_MISS 16 /* miss */ 227 #define HEX_SOFT 17 /* soft error */ 228 #define HEX_HARD 18 /* hard error */ 229 230 /* 231 * Status bits (status) 232 */ 233 #define RUNT 0x0001 /* runt burst */ 234 #define NOISE 0x0002 /* noise burst */ 235 #define BFRAME 0x0004 /* invalid format B frame sync */ 236 #define BFORMAT 0x0008 /* invalid format B data */ 237 #define AFRAME 0x0010 /* invalid format A frame sync */ 238 #define AFORMAT 0x0020 /* invalid format A data */ 239 #define DECODE 0x0040 /* invalid data decode */ 240 #define STAMP 0x0080 /* too few timestamps */ 241 #define INYEAR 0x0100 /* valid B frame */ 242 #define INSYNC 0x0200 /* clock synchronized */ 243 244 /* 245 * Alarm status bits (alarm) 246 * 247 * These alarms are set at the end of a minute in which at least one 248 * burst was received. SYNERR is raised if the AFRAME or BFRAME status 249 * bits are set during the minute, FMTERR is raised if the AFORMAT or 250 * BFORMAT status bits are set, DECERR is raised if the DECODE status 251 * bit is set and TSPERR is raised if the STAMP status bit is set. 252 */ 253 #define SYNERR 0x01 /* frame sync error */ 254 #define FMTERR 0x02 /* data format error */ 255 #define DECERR 0x04 /* data decoding error */ 256 #define TSPERR 0x08 /* insufficient data */ 257 258 #ifdef AUDIO_CHU 259 struct surv { 260 double shift[12]; /* mark register */ 261 double es_max, es_min; /* max/min envelope signals */ 262 double dist; /* sample distance */ 263 int uart; /* decoded character */ 264 }; 265 #endif /* AUDIO_CHU */ 266 267 /* 268 * CHU unit control structure 269 */ 270 struct chuunit { 271 u_char decode[20][16]; /* maximum likelihood decoding matrix */ 272 l_fp cstamp[BURST]; /* character timestamps */ 273 l_fp tstamp[MAXSTAGE]; /* timestamp samples */ 274 l_fp timestamp; /* current buffer timestamp */ 275 l_fp laststamp; /* last buffer timestamp */ 276 l_fp charstamp; /* character time as a l_fp */ 277 int errflg; /* error flags */ 278 int status; /* status bits */ 279 int bufptr; /* buffer index pointer */ 280 char ident[10]; /* transmitter frequency */ 281 #ifdef ICOM 282 int chan; /* frequency identifier */ 283 int dwell; /* dwell minutes at current frequency */ 284 int fd_icom; /* ICOM file descriptor */ 285 #endif /* ICOM */ 286 287 /* 288 * Character burst variables 289 */ 290 int cbuf[BURST]; /* character buffer */ 291 int ntstamp; /* number of timestamp samples */ 292 int ndx; /* buffer start index */ 293 int prevsec; /* previous burst second */ 294 int burdist; /* burst distance */ 295 int mindist; /* minimum distance */ 296 int syndist; /* sync distance */ 297 int burstcnt; /* format A bursts this minute */ 298 299 /* 300 * Format particulars 301 */ 302 int leap; /* leap/dut code */ 303 int dut; /* UTC1 correction */ 304 int tai; /* TAI - UTC correction */ 305 int dst; /* Canadian DST code */ 306 307 #ifdef AUDIO_CHU 308 /* 309 * Audio codec variables 310 */ 311 double comp[SIZE]; /* decompanding table */ 312 int port; /* codec port */ 313 int gain; /* codec gain */ 314 int bufcnt; /* samples in buffer */ 315 int clipcnt; /* sample clip count */ 316 int seccnt; /* second interval counter */ 317 318 /* 319 * Modem variables 320 */ 321 l_fp tick; /* audio sample increment */ 322 double bpf[9]; /* IIR bandpass filter */ 323 double disc[LAG]; /* discriminator shift register */ 324 double lpf[27]; /* FIR lowpass filter */ 325 double monitor; /* audio monitor */ 326 double maxsignal; /* signal level */ 327 int discptr; /* discriminator pointer */ 328 329 /* 330 * Maximum likelihood UART variables 331 */ 332 double baud; /* baud interval */ 333 struct surv surv[8]; /* UART survivor structures */ 334 int decptr; /* decode pointer */ 335 int dbrk; /* holdoff counter */ 336 #endif /* AUDIO_CHU */ 337 }; 338 339 /* 340 * Function prototypes 341 */ 342 static int chu_start P((int, struct peer *)); 343 static void chu_shutdown P((int, struct peer *)); 344 static void chu_receive P((struct recvbuf *)); 345 static void chu_poll P((int, struct peer *)); 346 347 /* 348 * More function prototypes 349 */ 350 static void chu_decode P((struct peer *, int)); 351 static void chu_burst P((struct peer *)); 352 static void chu_clear P((struct peer *)); 353 static void chu_a P((struct peer *, int)); 354 static void chu_b P((struct peer *, int)); 355 static int chu_dist P((int, int)); 356 static int chu_major P((struct peer *)); 357 #ifdef AUDIO_CHU 358 static void chu_uart P((struct surv *, double)); 359 static void chu_rf P((struct peer *, double)); 360 static void chu_gain P((struct peer *)); 361 #endif /* AUDIO_CHU */ 362 363 /* 364 * Global variables 365 */ 366 static char hexchar[] = "0123456789abcdef_-="; 367 #ifdef ICOM 368 static double qsy[NCHAN] = {3.33, 7.335, 14.67}; /* frequencies (MHz) */ 369 #endif /* ICOM */ 370 371 /* 372 * Transfer vector 373 */ 374 struct refclock refclock_chu = { 375 chu_start, /* start up driver */ 376 chu_shutdown, /* shut down driver */ 377 chu_poll, /* transmit poll message */ 378 noentry, /* not used (old chu_control) */ 379 noentry, /* initialize driver (not used) */ 380 noentry, /* not used (old chu_buginfo) */ 381 NOFLAGS /* not used */ 382 }; 383 384 385 /* 386 * chu_start - open the devices and initialize data for processing 387 */ 388 static int 389 chu_start( 390 int unit, /* instance number (not used) */ 391 struct peer *peer /* peer structure pointer */ 392 ) 393 { 394 struct chuunit *up; 395 struct refclockproc *pp; 396 int fd; /* file descriptor */ 397 #ifdef ICOM 398 char tbuf[80]; /* trace buffer */ 399 int temp; 400 #endif /* ICOM */ 401 #ifdef AUDIO_CHU 402 int i; /* index */ 403 double step; /* codec adjustment */ 404 405 /* 406 * Open audio device 407 */ 408 fd = audio_init(); 409 if (fd < 0) 410 return (0); 411 #ifdef DEBUG 412 if (debug) 413 audio_show(); 414 #endif 415 #else 416 char device[20]; /* device name */ 417 418 /* 419 * Open serial port in raw mode. 420 */ 421 (void)sprintf(device, DEVICE, unit); 422 if (!(fd = refclock_open(device, SPEED232, LDISC_RAW))) { 423 return (0); 424 } 425 #endif /* AUDIO_CHU */ 426 427 /* 428 * Allocate and initialize unit structure 429 */ 430 if (!(up = (struct chuunit *) 431 emalloc(sizeof(struct chuunit)))) { 432 (void) close(fd); 433 return (0); 434 } 435 memset((char *)up, 0, sizeof(struct chuunit)); 436 pp = peer->procptr; 437 pp->unitptr = (caddr_t)up; 438 pp->io.clock_recv = chu_receive; 439 pp->io.srcclock = (caddr_t)peer; 440 pp->io.datalen = 0; 441 pp->io.fd = fd; 442 if (!io_addclock(&pp->io)) { 443 (void)close(fd); 444 free(up); 445 return (0); 446 } 447 448 /* 449 * Initialize miscellaneous variables 450 */ 451 peer->precision = PRECISION; 452 pp->clockdesc = DESCRIPTION; 453 memcpy((char *)&pp->refid, REFID, 4); 454 DTOLFP(CHAR, &up->charstamp); 455 #ifdef AUDIO_CHU 456 up->gain = 127; 457 458 /* 459 * The companded samples are encoded sign-magnitude. The table 460 * contains all the 256 values in the interest of speed. 461 */ 462 up->comp[0] = up->comp[OFFSET] = 0.; 463 up->comp[1] = 1; up->comp[OFFSET + 1] = -1.; 464 up->comp[2] = 3; up->comp[OFFSET + 2] = -3.; 465 step = 2.; 466 for (i = 3; i < OFFSET; i++) { 467 up->comp[i] = up->comp[i - 1] + step; 468 up->comp[OFFSET + i] = -up->comp[i]; 469 if (i % 16 == 0) 470 step *= 2.; 471 } 472 DTOLFP(1. / SECOND, &up->tick); 473 #endif /* AUDIO_CHU */ 474 strcpy(up->ident, "X"); 475 #ifdef ICOM 476 temp = 0; 477 #ifdef DEBUG 478 if (debug > 1) 479 temp = P_TRACE; 480 #endif 481 if (peer->ttl > 0) { 482 if (peer->ttl & 0x80) 483 up->fd_icom = icom_init("/dev/icom", B1200, 484 temp); 485 else 486 up->fd_icom = icom_init("/dev/icom", B9600, 487 temp); 488 } 489 if (up->fd_icom > 0) { 490 if (icom_freq(up->fd_icom, peer->ttl & 0x7f, 491 qsy[up->chan]) < 0) { 492 NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT) 493 msyslog(LOG_ERR, 494 "ICOM bus error; autotune disabled"); 495 up->errflg = CEVNT_FAULT; 496 close(up->fd_icom); 497 up->fd_icom = 0; 498 } else { 499 sprintf(up->ident, "%.1f", qsy[up->chan]); 500 sprintf(tbuf, "chu: QSY to %s MHz", up->ident); 501 record_clock_stats(&peer->srcadr, tbuf); 502 #ifdef DEBUG 503 if (debug) 504 printf("%s\n", tbuf); 505 #endif 506 } 507 } 508 #endif /* ICOM */ 509 return (1); 510 } 511 512 513 /* 514 * chu_shutdown - shut down the clock 515 */ 516 static void 517 chu_shutdown( 518 int unit, /* instance number (not used) */ 519 struct peer *peer /* peer structure pointer */ 520 ) 521 { 522 struct chuunit *up; 523 struct refclockproc *pp; 524 525 pp = peer->procptr; 526 up = (struct chuunit *)pp->unitptr; 527 io_closeclock(&pp->io); 528 if (up->fd_icom > 0) 529 close(up->fd_icom); 530 free(up); 531 } 532 533 #ifdef AUDIO_CHU 534 535 /* 536 * chu_receive - receive data from the audio device 537 */ 538 static void 539 chu_receive( 540 struct recvbuf *rbufp /* receive buffer structure pointer */ 541 ) 542 { 543 struct chuunit *up; 544 struct refclockproc *pp; 545 struct peer *peer; 546 547 double sample; /* codec sample */ 548 u_char *dpt; /* buffer pointer */ 549 l_fp ltemp; /* l_fp temp */ 550 int isneg; /* parity flag */ 551 double dtemp; 552 int i, j; 553 554 peer = (struct peer *)rbufp->recv_srcclock; 555 pp = peer->procptr; 556 up = (struct chuunit *)pp->unitptr; 557 558 /* 559 * Main loop - read until there ain't no more. Note codec 560 * samples are bit-inverted. 561 */ 562 up->timestamp = rbufp->recv_time; 563 up->bufcnt = rbufp->recv_length; 564 DTOLFP(up->bufcnt * 1. / SECOND, <emp); 565 L_SUB(&up->timestamp, <emp); 566 dpt = (u_char *)&rbufp->recv_space; 567 for (up->bufptr = 0; up->bufptr < up->bufcnt; up->bufptr++) { 568 sample = up->comp[~*dpt & 0xff]; 569 570 /* 571 * Clip noise spikes greater than MAXSIG. If no clips, 572 * increase the gain a tad; if the clips are too high, 573 * decrease a tad. 574 */ 575 if (sample > MAXSIG) { 576 sample = MAXSIG; 577 up->clipcnt++; 578 } else if (sample < -MAXSIG) { 579 sample = -MAXSIG; 580 up->clipcnt++; 581 } 582 up->seccnt = (up->seccnt + 1) % SECOND; 583 if (up->seccnt == 0) { 584 if (pp->sloppyclockflag & CLK_FLAG2) 585 up->port = 2; 586 else 587 up->port = 1; 588 chu_gain(peer); 589 } 590 chu_rf(peer, sample); 591 592 /* 593 * During development, it is handy to have an audio 594 * monitor that can be switched to various signals. This 595 * code converts the linear signal left in up->monitor 596 * to codec format. If we can get the grass out of this 597 * thing and improve modem performance, this expensive 598 * code will be permanently nixed. 599 */ 600 isneg = 0; 601 dtemp = up->monitor; 602 if (sample < 0) { 603 isneg = 1; 604 dtemp-= dtemp; 605 } 606 i = 0; 607 j = OFFSET >> 1; 608 while (j != 0) { 609 if (dtemp > up->comp[i]) 610 i += j; 611 else if (dtemp < up->comp[i]) 612 i -= j; 613 else 614 break; 615 j >>= 1; 616 } 617 if (isneg) 618 *dpt = ~(i + OFFSET); 619 else 620 *dpt = ~i; 621 dpt++; 622 L_ADD(&up->timestamp, &up->tick); 623 } 624 625 /* 626 * Squawk to the monitor speaker if enabled. 627 */ 628 if (pp->sloppyclockflag & CLK_FLAG3) 629 if (write(pp->io.fd, (u_char *)&rbufp->recv_space, 630 (u_int)up->bufcnt) < 0) 631 perror("chu:"); 632 } 633 634 635 /* 636 * chu_rf - filter and demodulate the FSK signal 637 * 638 * This routine implements a 300-baud Bell 103 modem with mark 2225 Hz 639 * and space 2025 Hz. It uses a bandpass filter followed by a soft 640 * limiter, FM discriminator and lowpass filter. A maximum likelihood 641 * decoder samples the baseband signal at eight times the baud rate and 642 * detects the start bit of each character. 643 * 644 * The filters are built for speed, which explains the rather clumsy 645 * code. Hopefully, the compiler will efficiently implement the move- 646 * and-muiltiply-and-add operations. 647 */ 648 static void 649 chu_rf( 650 struct peer *peer, /* peer structure pointer */ 651 double sample /* analog sample */ 652 ) 653 { 654 struct refclockproc *pp; 655 struct chuunit *up; 656 struct surv *sp; 657 658 /* 659 * Local variables 660 */ 661 double signal; /* bandpass signal */ 662 double limit; /* limiter signal */ 663 double disc; /* discriminator signal */ 664 double lpf; /* lowpass signal */ 665 double span; /* UART signal span */ 666 double dist; /* UART signal distance */ 667 int i, j; 668 669 pp = peer->procptr; 670 up = (struct chuunit *)pp->unitptr; 671 672 /* 673 * Bandpass filter. 4th-order elliptic, 500-Hz bandpass centered 674 * at 2125 Hz. Passband ripple 0.3 dB, stopband ripple 50 dB. 675 */ 676 signal = (up->bpf[8] = up->bpf[7]) * 5.844676e-01; 677 signal += (up->bpf[7] = up->bpf[6]) * 4.884860e-01; 678 signal += (up->bpf[6] = up->bpf[5]) * 2.704384e+00; 679 signal += (up->bpf[5] = up->bpf[4]) * 1.645032e+00; 680 signal += (up->bpf[4] = up->bpf[3]) * 4.644557e+00; 681 signal += (up->bpf[3] = up->bpf[2]) * 1.879165e+00; 682 signal += (up->bpf[2] = up->bpf[1]) * 3.522634e+00; 683 signal += (up->bpf[1] = up->bpf[0]) * 7.315738e-01; 684 up->bpf[0] = sample - signal; 685 signal = up->bpf[0] * 6.176213e-03 686 + up->bpf[1] * 3.156599e-03 687 + up->bpf[2] * 7.567487e-03 688 + up->bpf[3] * 4.344580e-03 689 + up->bpf[4] * 1.190128e-02 690 + up->bpf[5] * 4.344580e-03 691 + up->bpf[6] * 7.567487e-03 692 + up->bpf[7] * 3.156599e-03 693 + up->bpf[8] * 6.176213e-03; 694 695 up->monitor = signal / 4.; /* note monitor after filter */ 696 697 /* 698 * Soft limiter/discriminator. The 11-sample discriminator lag 699 * interval corresponds to three cycles of 2125 Hz, which 700 * requires the sample frequency to be 2125 * 11 / 3 = 7791.7 701 * Hz. The discriminator output varies +-0.5 interval for input 702 * frequency 2025-2225 Hz. However, we don't get to sample at 703 * this frequency, so the discriminator output is biased. Life 704 * at 8000 Hz sucks. 705 */ 706 limit = signal; 707 if (limit > LIMIT) 708 limit = LIMIT; 709 else if (limit < -LIMIT) 710 limit = -LIMIT; 711 disc = up->disc[up->discptr] * -limit; 712 up->disc[up->discptr] = limit; 713 up->discptr = (up->discptr + 1 ) % LAG; 714 if (disc >= 0) 715 disc = sqrt(disc); 716 else 717 disc = -sqrt(-disc); 718 719 /* 720 * Lowpass filter. Raised cosine, Ts = 1 / 300, beta = 0.1. 721 */ 722 lpf = (up->lpf[26] = up->lpf[25]) * 2.538771e-02; 723 lpf += (up->lpf[25] = up->lpf[24]) * 1.084671e-01; 724 lpf += (up->lpf[24] = up->lpf[23]) * 2.003159e-01; 725 lpf += (up->lpf[23] = up->lpf[22]) * 2.985303e-01; 726 lpf += (up->lpf[22] = up->lpf[21]) * 4.003697e-01; 727 lpf += (up->lpf[21] = up->lpf[20]) * 5.028552e-01; 728 lpf += (up->lpf[20] = up->lpf[19]) * 6.028795e-01; 729 lpf += (up->lpf[19] = up->lpf[18]) * 6.973249e-01; 730 lpf += (up->lpf[18] = up->lpf[17]) * 7.831828e-01; 731 lpf += (up->lpf[17] = up->lpf[16]) * 8.576717e-01; 732 lpf += (up->lpf[16] = up->lpf[15]) * 9.183463e-01; 733 lpf += (up->lpf[15] = up->lpf[14]) * 9.631951e-01; 734 lpf += (up->lpf[14] = up->lpf[13]) * 9.907208e-01; 735 lpf += (up->lpf[13] = up->lpf[12]) * 1.000000e+00; 736 lpf += (up->lpf[12] = up->lpf[11]) * 9.907208e-01; 737 lpf += (up->lpf[11] = up->lpf[10]) * 9.631951e-01; 738 lpf += (up->lpf[10] = up->lpf[9]) * 9.183463e-01; 739 lpf += (up->lpf[9] = up->lpf[8]) * 8.576717e-01; 740 lpf += (up->lpf[8] = up->lpf[7]) * 7.831828e-01; 741 lpf += (up->lpf[7] = up->lpf[6]) * 6.973249e-01; 742 lpf += (up->lpf[6] = up->lpf[5]) * 6.028795e-01; 743 lpf += (up->lpf[5] = up->lpf[4]) * 5.028552e-01; 744 lpf += (up->lpf[4] = up->lpf[3]) * 4.003697e-01; 745 lpf += (up->lpf[3] = up->lpf[2]) * 2.985303e-01; 746 lpf += (up->lpf[2] = up->lpf[1]) * 2.003159e-01; 747 lpf += (up->lpf[1] = up->lpf[0]) * 1.084671e-01; 748 lpf += up->lpf[0] = disc * 2.538771e-02; 749 750 /* 751 * Maximum likelihood decoder. The UART updates each of the 752 * eight survivors and determines the span, slice level and 753 * tentative decoded character. Valid 11-bit characters are 754 * framed so that bit 1 and bit 11 (stop bits) are mark and bit 755 * 2 (start bit) is space. When a valid character is found, the 756 * survivor with maximum distance determines the final decoded 757 * character. 758 */ 759 up->baud += 1. / SECOND; 760 if (up->baud > 1. / (BAUD * 8.)) { 761 up->baud -= 1. / (BAUD * 8.); 762 sp = &up->surv[up->decptr]; 763 span = sp->es_max - sp->es_min; 764 up->maxsignal += (span - up->maxsignal) / 80.; 765 if (up->dbrk > 0) { 766 up->dbrk--; 767 } else if ((sp->uart & 0x403) == 0x401 && span > 1000.) 768 { 769 dist = 0; 770 j = 0; 771 for (i = 0; i < 8; i++) { 772 if (up->surv[i].dist > dist) { 773 dist = up->surv[i].dist; 774 j = i; 775 } 776 } 777 chu_decode(peer, (up->surv[j].uart >> 2) & 778 0xff); 779 up->dbrk = 80; 780 } 781 up->decptr = (up->decptr + 1) % 8; 782 chu_uart(sp, -lpf * AGAIN); 783 } 784 } 785 786 787 /* 788 * chu_uart - maximum likelihood UART 789 * 790 * This routine updates a shift register holding the last 11 envelope 791 * samples. It then computes the slice level and span over these samples 792 * and determines the tentative data bits and distance. The calling 793 * program selects over the last eight survivors the one with maximum 794 * distance to determine the decoded character. 795 */ 796 static void 797 chu_uart( 798 struct surv *sp, /* survivor structure pointer */ 799 double sample /* baseband signal */ 800 ) 801 { 802 double es_max, es_min; /* max/min envelope */ 803 double slice; /* slice level */ 804 double dist; /* distance */ 805 double dtemp; 806 int i; 807 808 /* 809 * Save the sample and shift right. At the same time, measure 810 * the maximum and minimum over all eleven samples. 811 */ 812 es_max = -1e6; 813 es_min = 1e6; 814 sp->shift[0] = sample; 815 for (i = 11; i > 0; i--) { 816 sp->shift[i] = sp->shift[i - 1]; 817 if (sp->shift[i] > es_max) 818 es_max = sp->shift[i]; 819 if (sp->shift[i] < es_min) 820 es_min = sp->shift[i]; 821 } 822 823 /* 824 * Determine the slice level midway beteen the maximum and 825 * minimum and the span as the maximum less the minimum. Compute 826 * the distance on the assumption the first and last bits must 827 * be mark, the second space and the rest either mark or space. 828 */ 829 slice = (es_max + es_min) / 2.; 830 dist = 0; 831 sp->uart = 0; 832 for (i = 1; i < 12; i++) { 833 sp->uart <<= 1; 834 dtemp = sp->shift[i]; 835 if (dtemp > slice) 836 sp->uart |= 0x1; 837 if (i == 1 || i == 11) { 838 dist += dtemp - es_min; 839 } else if (i == 10) { 840 dist += es_max - dtemp; 841 } else { 842 if (dtemp > slice) 843 dist += dtemp - es_min; 844 else 845 dist += es_max - dtemp; 846 } 847 } 848 sp->es_max = es_max; 849 sp->es_min = es_min; 850 sp->dist = dist / (11 * (es_max - es_min)); 851 } 852 853 854 #else /* AUDIO_CHU */ 855 /* 856 * chu_receive - receive data from the serial interface 857 */ 858 static void 859 chu_receive( 860 struct recvbuf *rbufp /* receive buffer structure pointer */ 861 ) 862 { 863 struct chuunit *up; 864 struct refclockproc *pp; 865 struct peer *peer; 866 867 u_char *dpt; /* receive buffer pointer */ 868 869 peer = (struct peer *)rbufp->recv_srcclock; 870 pp = peer->procptr; 871 up = (struct chuunit *)pp->unitptr; 872 873 /* 874 * Initialize pointers and read the timecode and timestamp. 875 */ 876 up->timestamp = rbufp->recv_time; 877 dpt = (u_char *)&rbufp->recv_space; 878 chu_decode(peer, *dpt); 879 } 880 #endif /* AUDIO_CHU */ 881 882 883 /* 884 * chu_decode - decode the data 885 */ 886 static void 887 chu_decode( 888 struct peer *peer, /* peer structure pointer */ 889 int hexhex /* data character */ 890 ) 891 { 892 struct refclockproc *pp; 893 struct chuunit *up; 894 895 l_fp tstmp; /* timestamp temp */ 896 double dtemp; 897 898 pp = peer->procptr; 899 up = (struct chuunit *)pp->unitptr; 900 901 /* 902 * If the interval since the last character is greater than the 903 * longest burst, process the last burst and start a new one. If 904 * the interval is less than this but greater than two 905 * characters, consider this a noise burst and reject it. 906 */ 907 tstmp = up->timestamp; 908 if (L_ISZERO(&up->laststamp)) 909 up->laststamp = up->timestamp; 910 L_SUB(&tstmp, &up->laststamp); 911 up->laststamp = up->timestamp; 912 LFPTOD(&tstmp, dtemp); 913 if (dtemp > BURST * CHAR) { 914 chu_burst(peer); 915 up->ndx = 0; 916 } else if (dtemp > 2.5 * CHAR) { 917 up->ndx = 0; 918 } 919 920 /* 921 * Append the character to the current burst and append the 922 * timestamp to the timestamp list. 923 */ 924 if (up->ndx < BURST) { 925 up->cbuf[up->ndx] = hexhex & 0xff; 926 up->cstamp[up->ndx] = up->timestamp; 927 up->ndx++; 928 929 } 930 } 931 932 933 /* 934 * chu_burst - search for valid burst format 935 */ 936 static void 937 chu_burst( 938 struct peer *peer 939 ) 940 { 941 struct chuunit *up; 942 struct refclockproc *pp; 943 944 int i; 945 946 pp = peer->procptr; 947 up = (struct chuunit *)pp->unitptr; 948 949 /* 950 * Correlate a block of five characters with the next block of 951 * five characters. The burst distance is defined as the number 952 * of bits that match in the two blocks for format A and that 953 * match the inverse for format B. 954 */ 955 if (up->ndx < MINCHAR) { 956 up->status |= RUNT; 957 return; 958 } 959 up->burdist = 0; 960 for (i = 0; i < 5 && i < up->ndx - 5; i++) 961 up->burdist += chu_dist(up->cbuf[i], up->cbuf[i + 5]); 962 963 /* 964 * If the burst distance is at least MINDIST, this must be a 965 * format A burst; if the value is not greater than -MINDIST, it 966 * must be a format B burst. If the B burst is perfect, we 967 * believe it; otherwise, it is a noise burst and of no use to 968 * anybody. 969 */ 970 if (up->burdist >= MINDIST) { 971 chu_a(peer, up->ndx); 972 } else if (up->burdist <= -MINDIST) { 973 chu_b(peer, up->ndx); 974 } else { 975 up->status |= NOISE; 976 return; 977 } 978 979 /* 980 * If this is a valid burst, wait a guard time of ten seconds to 981 * allow for more bursts, then arm the poll update routine to 982 * process the minute. Don't do this if this is called from the 983 * timer interrupt routine. 984 */ 985 if (peer->outdate != current_time) 986 peer->nextdate = current_time + 10; 987 } 988 989 990 /* 991 * chu_b - decode format B burst 992 */ 993 static void 994 chu_b( 995 struct peer *peer, 996 int nchar 997 ) 998 { 999 struct refclockproc *pp; 1000 struct chuunit *up; 1001 1002 u_char code[11]; /* decoded timecode */ 1003 char tbuf[80]; /* trace buffer */ 1004 l_fp offset; /* timestamp offset */ 1005 int i; 1006 1007 pp = peer->procptr; 1008 up = (struct chuunit *)pp->unitptr; 1009 1010 /* 1011 * In a format B burst, a character is considered valid only if 1012 * the first occurrence matches the last occurrence. The burst 1013 * is considered valid only if all characters are valid; that 1014 * is, only if the distance is 40. 1015 */ 1016 sprintf(tbuf, "chuB %04x %2d %2d ", up->status, nchar, 1017 -up->burdist); 1018 for (i = 0; i < nchar; i++) 1019 sprintf(&tbuf[strlen(tbuf)], "%02x", 1020 up->cbuf[i]); 1021 if (pp->sloppyclockflag & CLK_FLAG4) 1022 record_clock_stats(&peer->srcadr, tbuf); 1023 #ifdef DEBUG 1024 if (debug) 1025 printf("%s\n", tbuf); 1026 #endif 1027 if (up->burdist > -40) { 1028 up->status |= BFRAME; 1029 return; 1030 } 1031 up->status |= INYEAR; 1032 1033 /* 1034 * Convert the burst data to internal format. If this succeeds, 1035 * save the timestamps for later. 1036 */ 1037 for (i = 0; i < 5; i++) { 1038 code[2 * i] = hexchar[up->cbuf[i] & 0xf]; 1039 code[2 * i + 1] = hexchar[(up->cbuf[i] >> 1040 4) & 0xf]; 1041 } 1042 if (sscanf((char *)code, "%1x%1d%4d%2d%2x", &up->leap, &up->dut, 1043 &pp->year, &up->tai, &up->dst) != 5) { 1044 up->status |= BFORMAT; 1045 return; 1046 } 1047 if (up->leap & 0x8) 1048 up->dut = -up->dut; 1049 offset.l_ui = 31; 1050 offset.l_f = 0; 1051 for (i = 0; i < nchar && i < 10; i++) { 1052 up->tstamp[up->ntstamp] = up->cstamp[i]; 1053 L_SUB(&up->tstamp[up->ntstamp], &offset); 1054 L_ADD(&offset, &up->charstamp); 1055 if (up->ntstamp < MAXSTAGE) 1056 up->ntstamp++; 1057 } 1058 } 1059 1060 1061 /* 1062 * chu_a - decode format A burst 1063 */ 1064 static void 1065 chu_a( 1066 struct peer *peer, 1067 int nchar 1068 ) 1069 { 1070 struct refclockproc *pp; 1071 struct chuunit *up; 1072 1073 char tbuf[80]; /* trace buffer */ 1074 l_fp offset; /* timestamp offset */ 1075 int val; /* distance */ 1076 int temp; 1077 int i, j, k; 1078 1079 pp = peer->procptr; 1080 up = (struct chuunit *)pp->unitptr; 1081 1082 /* 1083 * Determine correct burst phase. There are three cases 1084 * corresponding to in-phase, one character early or one 1085 * character late. These cases are distinguished by the position 1086 * of the framing digits x6 at positions 0 and 5 and x3 at 1087 * positions 4 and 9. The correct phase is when the distance 1088 * relative to the framing digits is maximum. The burst is valid 1089 * only if the maximum distance is at least MINSYNC. 1090 */ 1091 up->syndist = k = 0; 1092 val = -16; 1093 for (i = -1; i < 2; i++) { 1094 temp = up->cbuf[i + 4] & 0xf; 1095 if (i >= 0) 1096 temp |= (up->cbuf[i] & 0xf) << 4; 1097 val = chu_dist(temp, 0x63); 1098 temp = (up->cbuf[i + 5] & 0xf) << 4; 1099 if (i + 9 < nchar) 1100 temp |= up->cbuf[i + 9] & 0xf; 1101 val += chu_dist(temp, 0x63); 1102 if (val > up->syndist) { 1103 up->syndist = val; 1104 k = i; 1105 } 1106 } 1107 temp = (up->cbuf[k + 4] >> 4) & 0xf; 1108 if (temp > 9 || k + 9 >= nchar || temp != ((up->cbuf[k + 9] >> 1109 4) & 0xf)) 1110 temp = 0; 1111 #ifdef AUDIO_CHU 1112 sprintf(tbuf, "chuA %04x %4.0f %2d %2d %2d %2d %1d ", 1113 up->status, up->maxsignal, nchar, up->burdist, k, 1114 up->syndist, temp); 1115 #else 1116 sprintf(tbuf, "chuA %04x %2d %2d %2d %2d %1d ", up->status, 1117 nchar, up->burdist, k, up->syndist, temp); 1118 #endif /* AUDIO_CHU */ 1119 for (i = 0; i < nchar; i++) 1120 sprintf(&tbuf[strlen(tbuf)], "%02x", 1121 up->cbuf[i]); 1122 if (pp->sloppyclockflag & CLK_FLAG4) 1123 record_clock_stats(&peer->srcadr, tbuf); 1124 #ifdef DEBUG 1125 if (debug) 1126 printf("%s\n", tbuf); 1127 #endif 1128 if (up->syndist < MINSYNC) { 1129 up->status |= AFRAME; 1130 return; 1131 } 1132 1133 /* 1134 * A valid burst requires the first seconds number to match the 1135 * last seconds number. If so, the burst timestamps are 1136 * corrected to the current minute and saved for later 1137 * processing. In addition, the seconds decode is advanced from 1138 * the previous burst to the current one. 1139 */ 1140 if (temp != 0) { 1141 offset.l_ui = 30 + temp; 1142 offset.l_f = 0; 1143 i = 0; 1144 if (k < 0) 1145 offset = up->charstamp; 1146 else if (k > 0) 1147 i = 1; 1148 for (; i < nchar && i < k + 10; i++) { 1149 up->tstamp[up->ntstamp] = up->cstamp[i]; 1150 L_SUB(&up->tstamp[up->ntstamp], &offset); 1151 L_ADD(&offset, &up->charstamp); 1152 if (up->ntstamp < MAXSTAGE) 1153 up->ntstamp++; 1154 } 1155 while (temp > up->prevsec) { 1156 for (j = 15; j > 0; j--) { 1157 up->decode[9][j] = up->decode[9][j - 1]; 1158 up->decode[19][j] = 1159 up->decode[19][j - 1]; 1160 } 1161 up->decode[9][j] = up->decode[19][j] = 0; 1162 up->prevsec++; 1163 } 1164 } 1165 i = -(2 * k); 1166 for (j = 0; j < nchar; j++) { 1167 if (i < 0 || i > 19) { 1168 i += 2; 1169 continue; 1170 } 1171 up->decode[i][up->cbuf[j] & 0xf]++; 1172 i++; 1173 up->decode[i][(up->cbuf[j] >> 4) & 0xf]++; 1174 i++; 1175 } 1176 up->burstcnt++; 1177 } 1178 1179 1180 /* 1181 * chu_poll - called by the transmit procedure 1182 */ 1183 static void 1184 chu_poll( 1185 int unit, 1186 struct peer *peer /* peer structure pointer */ 1187 ) 1188 { 1189 struct refclockproc *pp; 1190 struct chuunit *up; 1191 char synchar, qual, leapchar; 1192 int minset; 1193 int temp; 1194 #ifdef ICOM 1195 char tbuf[80]; /* trace buffer */ 1196 #endif /* ICOM */ 1197 pp = peer->procptr; 1198 up = (struct chuunit *)pp->unitptr; 1199 if (pp->coderecv == pp->codeproc) 1200 up->errflg = CEVNT_TIMEOUT; 1201 else 1202 pp->polls++; 1203 minset = ((current_time - peer->update) + 30) / 60; 1204 if (up->status & INSYNC) { 1205 if (minset > PANIC) 1206 up->status = 0; 1207 else 1208 peer->reach |= 1; 1209 } 1210 1211 /* 1212 * Process the last burst, if still in the burst buffer. 1213 * Don't mess with anything if nothing has been heard. 1214 */ 1215 chu_burst(peer); 1216 #ifdef ICOM 1217 if (up->burstcnt > 2) { 1218 up->dwell = 0; 1219 } else if (up->dwell < DWELL) { 1220 up->dwell++; 1221 } else if (up->fd_icom > 0) { 1222 up->dwell = 0; 1223 up->chan = (up->chan + 1) % NCHAN; 1224 icom_freq(up->fd_icom, peer->ttl & 0x7f, qsy[up->chan]); 1225 sprintf(up->ident, "%.3f", qsy[up->chan]); 1226 sprintf(tbuf, "chu: QSY to %s MHz", up->ident); 1227 record_clock_stats(&peer->srcadr, tbuf); 1228 #ifdef DEBUG 1229 if (debug) 1230 printf("%s\n", tbuf); 1231 #endif 1232 } 1233 #endif /* ICOM */ 1234 if (up->burstcnt == 0) 1235 return; 1236 temp = chu_major(peer); 1237 if (up->status & INYEAR) 1238 up->status |= INSYNC; 1239 qual = 0; 1240 if (up->status & (BFRAME | AFRAME)) 1241 qual |= SYNERR; 1242 if (up->status & (BFORMAT | AFORMAT)) 1243 qual |= FMTERR; 1244 if (up->status & DECODE) 1245 qual |= DECERR; 1246 if (up->status & STAMP) 1247 qual |= TSPERR; 1248 synchar = leapchar = ' '; 1249 if (!(up->status & INSYNC)) { 1250 pp->leap = LEAP_NOTINSYNC; 1251 synchar = '?'; 1252 } else if (up->leap & 0x2) { 1253 pp->leap = LEAP_ADDSECOND; 1254 leapchar = 'L'; 1255 } else { 1256 pp->leap = LEAP_NOWARNING; 1257 } 1258 #ifdef AUDIO_CHU 1259 sprintf(pp->a_lastcode, 1260 "%c%1X %4d %3d %02d:%02d:%02d.000 %c%x %+d %d %d %s %d %d %d %d", 1261 synchar, qual, pp->year, pp->day, pp->hour, pp->minute, 1262 pp->second, leapchar, up->dst, up->dut, minset, up->gain, 1263 up->ident, up->tai, up->burstcnt, up->mindist, up->ntstamp); 1264 #else 1265 sprintf(pp->a_lastcode, 1266 "%c%1X %4d %3d %02d:%02d:%02d.000 %c%x %+d %d %s %d %d %d %d", 1267 synchar, qual, pp->year, pp->day, pp->hour, pp->minute, 1268 pp->second, leapchar, up->dst, up->dut, minset, 1269 up->ident, up->tai, up->burstcnt, up->mindist, up->ntstamp); 1270 #endif /* AUDIO_CHU */ 1271 pp->lencode = strlen(pp->a_lastcode); 1272 1273 /* 1274 * If timestamps have been stuffed, the timecode is ipso fatso 1275 * correct and can be selected to discipline the clock. 1276 */ 1277 if (temp > 0) { 1278 record_clock_stats(&peer->srcadr, pp->a_lastcode); 1279 refclock_receive(peer); 1280 } else if (pp->sloppyclockflag & CLK_FLAG4) { 1281 record_clock_stats(&peer->srcadr, pp->a_lastcode); 1282 } 1283 #ifdef DEBUG 1284 if (debug) 1285 printf("chu: timecode %d %s\n", pp->lencode, 1286 pp->a_lastcode); 1287 #endif 1288 chu_clear(peer); 1289 if (up->errflg) 1290 refclock_report(peer, up->errflg); 1291 up->errflg = 0; 1292 } 1293 1294 1295 /* 1296 * chu_major - majority decoder 1297 */ 1298 static int 1299 chu_major( 1300 struct peer *peer /* peer structure pointer */ 1301 ) 1302 { 1303 struct refclockproc *pp; 1304 struct chuunit *up; 1305 1306 u_char code[11]; /* decoded timecode */ 1307 l_fp toffset, offset; /* l_fp temps */ 1308 int val1, val2; /* maximum distance */ 1309 int synchar; /* stray cat */ 1310 double dtemp; 1311 int temp; 1312 int i, j, k; 1313 1314 pp = peer->procptr; 1315 up = (struct chuunit *)pp->unitptr; 1316 1317 /* 1318 * Majority decoder. Each burst encodes two replications at each 1319 * digit position in the timecode. Each row of the decoding 1320 * matrix encodes the number of occurences of each digit found 1321 * at the corresponding position. The maximum over all 1322 * occurences at each position is the distance for this position 1323 * and the corresponding digit is the maximumn likelihood 1324 * candidate. If the distance is zero, assume a miss '_'; if the 1325 * distance is not more than half the total number of 1326 * occurences, assume a soft error '-'; if two different digits 1327 * with the same distance are found, assume a hard error '='. 1328 * These will later cause a format error when the timecode is 1329 * interpreted. The decoding distance is defined as the minimum 1330 * distance over the first nine digits. The tenth digit varies 1331 * over the seconds, so we don't count it. 1332 */ 1333 up->mindist = 16; 1334 for (i = 0; i < 9; i++) { 1335 val1 = val2 = 0; 1336 k = 0; 1337 for (j = 0; j < 16; j++) { 1338 temp = up->decode[i][j] + up->decode[i + 10][j]; 1339 if (temp > val1) { 1340 val2 = val1; 1341 val1 = temp; 1342 k = j; 1343 } 1344 } 1345 if (val1 == 0) 1346 code[i] = HEX_MISS; 1347 else if (val1 == val2) 1348 code[i] = HEX_HARD; 1349 else if (val1 <= up->burstcnt) 1350 code[i] = HEX_SOFT; 1351 else 1352 code[i] = k; 1353 if (val1 < up->mindist) 1354 up->mindist = val1; 1355 code[i] = hexchar[code[i]]; 1356 } 1357 code[i] = 0; 1358 1359 /* 1360 * A valid timecode requires at least three bursts and a 1361 * decoding distance greater than half the total number of 1362 * occurences. A valid timecode also requires at least 20 valid 1363 * timestamps. 1364 */ 1365 if (up->burstcnt < 3 || up->mindist <= up->burstcnt) 1366 up->status |= DECODE; 1367 if (up->ntstamp < MINSTAMP) 1368 up->status |= STAMP; 1369 1370 /* 1371 * Compute the timecode timestamp from the days, hours and 1372 * minutes of the timecode. Use clocktime() for the aggregate 1373 * minutes and the minute offset computed from the burst 1374 * seconds. Note that this code relies on the filesystem time 1375 * for the years and does not use the years of the timecode. 1376 */ 1377 if (sscanf((char *)code, "%1x%3d%2d%2d", &synchar, &pp->day, 1378 &pp->hour, &pp->minute) != 4) { 1379 up->status |= AFORMAT; 1380 return (0); 1381 } 1382 if (up->status & (DECODE | STAMP)) { 1383 up->errflg = CEVNT_BADREPLY; 1384 return (0); 1385 } 1386 L_CLR(&offset); 1387 if (!clocktime(pp->day, pp->hour, pp->minute, 0, GMT, 1388 up->tstamp[0].l_ui, &pp->yearstart, &offset.l_ui)) { 1389 up->errflg = CEVNT_BADTIME; 1390 return (0); 1391 } 1392 pp->lastref = offset; 1393 pp->variance = 0; 1394 for (i = 0; i < up->ntstamp; i++) { 1395 toffset = offset; 1396 L_SUB(&toffset, &up->tstamp[i]); 1397 LFPTOD(&toffset, dtemp); 1398 SAMPLE(dtemp + FUDGE + pp->fudgetime1); 1399 } 1400 return (i); 1401 } 1402 1403 1404 /* 1405 * chu_clear - clear decoding matrix 1406 */ 1407 static void 1408 chu_clear( 1409 struct peer *peer /* peer structure pointer */ 1410 ) 1411 { 1412 struct refclockproc *pp; 1413 struct chuunit *up; 1414 int i, j; 1415 1416 pp = peer->procptr; 1417 up = (struct chuunit *)pp->unitptr; 1418 1419 /* 1420 * Clear stuff for the minute. 1421 */ 1422 up->ndx = up->prevsec = 0; 1423 up->burstcnt = up->mindist = up->ntstamp = 0; 1424 up->status &= INSYNC | INYEAR; 1425 up->burstcnt = 0; 1426 for (i = 0; i < 20; i++) { 1427 for (j = 0; j < 16; j++) 1428 up->decode[i][j] = 0; 1429 } 1430 } 1431 1432 1433 /* 1434 * chu_dist - determine the distance of two octet arguments 1435 */ 1436 static int 1437 chu_dist( 1438 int x, /* an octet of bits */ 1439 int y /* another octet of bits */ 1440 ) 1441 { 1442 int val; /* bit count */ 1443 int temp; 1444 int i; 1445 1446 /* 1447 * The distance is determined as the weight of the exclusive OR 1448 * of the two arguments. The weight is determined by the number 1449 * of one bits in the result. Each one bit increases the weight, 1450 * while each zero bit decreases it. 1451 */ 1452 temp = x ^ y; 1453 val = 0; 1454 for (i = 0; i < 8; i++) { 1455 if ((temp & 0x1) == 0) 1456 val++; 1457 else 1458 val--; 1459 temp >>= 1; 1460 } 1461 return (val); 1462 } 1463 1464 1465 #ifdef AUDIO_CHU 1466 /* 1467 * chu_gain - adjust codec gain 1468 * 1469 * This routine is called once each second. If the signal envelope 1470 * amplitude is too low, the codec gain is bumped up by four units; if 1471 * too high, it is bumped down. The decoder is relatively insensitive to 1472 * amplitude, so this crudity works just fine. The input port is set and 1473 * the error flag is cleared, mostly to be ornery. 1474 */ 1475 static void 1476 chu_gain( 1477 struct peer *peer /* peer structure pointer */ 1478 ) 1479 { 1480 struct refclockproc *pp; 1481 struct chuunit *up; 1482 1483 pp = peer->procptr; 1484 up = (struct chuunit *)pp->unitptr; 1485 1486 /* 1487 * Apparently, the codec uses only the high order bits of the 1488 * gain control field. Thus, it may take awhile for changes to 1489 * wiggle the hardware bits. 1490 */ 1491 if (up->clipcnt == 0) { 1492 up->gain += 4; 1493 if (up->gain > 255) 1494 up->gain = 255; 1495 } else if (up->clipcnt > SECOND / 100) { 1496 up->gain -= 4; 1497 if (up->gain < 0) 1498 up->gain = 0; 1499 } 1500 audio_gain(up->gain, up->port); 1501 up->clipcnt = 0; 1502 } 1503 #endif /* AUDIO_CHU */ 1504 1505 1506 #else 1507 int refclock_chu_bs; 1508 #endif /* REFCLOCK */ 1509