xref: /freebsd/contrib/ntp/ntpd/refclock_chu.c (revision d056fa046c6a91b90cd98165face0e42a33a5173)
1 /*
2  * refclock_chu - clock driver for Canadian CHU time/frequency station
3  */
4 #ifdef HAVE_CONFIG_H
5 #include <config.h>
6 #endif
7 
8 #if defined(REFCLOCK) && defined(CLOCK_CHU)
9 
10 #include "ntpd.h"
11 #include "ntp_io.h"
12 #include "ntp_refclock.h"
13 #include "ntp_calendar.h"
14 #include "ntp_stdlib.h"
15 
16 #include <stdio.h>
17 #include <ctype.h>
18 #include <math.h>
19 
20 #ifdef HAVE_AUDIO
21 #include "audio.h"
22 #endif /* HAVE_AUDIO */
23 
24 #define ICOM 	1		/* undefine to suppress ICOM code */
25 
26 #ifdef ICOM
27 #include "icom.h"
28 #endif /* ICOM */
29 
30 /*
31  * Audio CHU demodulator/decoder
32  *
33  * This driver synchronizes the computer time using data encoded in
34  * radio transmissions from Canadian time/frequency station CHU in
35  * Ottawa, Ontario. Transmissions are made continuously on 3330 kHz,
36  * 7335 kHz and 14670 kHz in upper sideband, compatible AM mode. An
37  * ordinary shortwave receiver can be tuned manually to one of these
38  * frequencies or, in the case of ICOM receivers, the receiver can be
39  * tuned automatically using this program as propagation conditions
40  * change throughout the day and night.
41  *
42  * The driver receives, demodulates and decodes the radio signals when
43  * connected to the audio codec of a suported workstation hardware and
44  * operating system. These include Solaris, SunOS, FreeBSD, NetBSD and
45  * Linux. In this implementation, only one audio driver and codec can be
46  * supported on a single machine.
47  *
48  * The driver can be compiled to use a Bell 103 compatible modem or
49  * modem chip to receive the radio signal and demodulate the data.
50  * Alternatively, the driver can be compiled to use the audio codec of
51  * the Sun workstation or another with compatible audio drivers. In the
52  * latter case, the driver implements the modem using DSP routines, so
53  * the radio can be connected directly to either the microphone on line
54  * input port. In either case, the driver decodes the data using a
55  * maximum likelihood technique which exploits the considerable degree
56  * of redundancy available to maximize accuracy and minimize errors.
57  *
58  * The CHU time broadcast includes an audio signal compatible with the
59  * Bell 103 modem standard (mark = 2225 Hz, space = 2025 Hz). It consist
60  * of nine, ten-character bursts transmitted at 300 bps and beginning
61  * each second from second 31 to second 39 of the minute. Each character
62  * consists of eight data bits plus one start bit and two stop bits to
63  * encode two hex digits. The burst data consist of five characters (ten
64  * hex digits) followed by a repeat of these characters. In format A,
65  * the characters are repeated in the same polarity; in format B, the
66  * characters are repeated in the opposite polarity.
67  *
68  * Format A bursts are sent at seconds 32 through 39 of the minute in
69  * hex digits
70  *
71  *	6dddhhmmss6dddhhmmss
72  *
73  * The first ten digits encode a frame marker (6) followed by the day
74  * (ddd), hour (hh in UTC), minute (mm) and the second (ss). Since
75  * format A bursts are sent during the third decade of seconds the tens
76  * digit of ss is always 3. The driver uses this to determine correct
77  * burst synchronization. These digits are then repeated with the same
78  * polarity.
79  *
80  * Format B bursts are sent at second 31 of the minute in hex digits
81  *
82  *	xdyyyyttaaxdyyyyttaa
83  *
84  * The first ten digits encode a code (x described below) followed by
85  * the DUT1 (d in deciseconds), Gregorian year (yyyy), difference TAI -
86  * UTC (tt) and daylight time indicator (aa) peculiar to Canada. These
87  * digits are then repeated with inverted polarity.
88  *
89  * The x is coded
90  *
91  * 1 Sign of DUT (0 = +)
92  * 2 Leap second warning. One second will be added.
93  * 4 Leap second warning. One second will be subtracted.
94  * 8 Even parity bit for this nibble.
95  *
96  * By design, the last stop bit of the last character in the burst
97  * coincides with 0.5 second. Since characters have 11 bits and are
98  * transmitted at 300 bps, the last stop bit of the first character
99  * coincides with 0.5 - 10 * 11/300 = 0.133 second. Depending on the
100  * UART, character interrupts can vary somewhere between the beginning
101  * of bit 9 and end of bit 11. These eccentricities can be corrected
102  * along with the radio propagation delay using fudge time 1.
103  *
104  * Debugging aids
105  *
106  * The timecode format used for debugging and data recording includes
107  * data helpful in diagnosing problems with the radio signal and serial
108  * connections. With debugging enabled (-d on the ntpd command line),
109  * the driver produces one line for each burst in two formats
110  * corresponding to format A and B. Following is format A:
111  *
112  *	n b f s m code
113  *
114  * where n is the number of characters in the burst (0-11), b the burst
115  * distance (0-40), f the field alignment (-1, 0, 1), s the
116  * synchronization distance (0-16), m the burst number (2-9) and code
117  * the burst characters as received. Note that the hex digits in each
118  * character are reversed, so the burst
119  *
120  *	10 38 0 16 9 06851292930685129293
121  *
122  * is interpreted as containing 11 characters with burst distance 38,
123  * field alignment 0, synchronization distance 16 and burst number 9.
124  * The nibble-swapped timecode shows day 58, hour 21, minute 29 and
125  * second 39.
126  *
127  * When the audio driver is compiled, format A is preceded by
128  * the current gain (0-255) and relative signal level (0-9999). The
129  * receiver folume control should be set so that the gain is somewhere
130  * near the middle of the range 0-255, which results in a signal level
131  * near 1000.
132  *
133  * Following is format B:
134  *
135  *	n b s code
136  *
137  * where n is the number of characters in the burst (0-11), b the burst
138  * distance (0-40), s the synchronization distance (0-40) and code the
139  * burst characters as received. Note that the hex digits in each
140  * character are reversed and the last ten digits inverted, so the burst
141  *
142  *	11 40 1091891300ef6e76ecff
143  *
144  * is interpreted as containing 11 characters with burst distance 40.
145  * The nibble-swapped timecode shows DUT1 +0.1 second, year 1998 and TAI
146  * - UTC 31 seconds.
147  *
148  * In addition to the above, the reference timecode is updated and
149  * written to the clockstats file and debug score after the last burst
150  * received in the minute. The format is
151  *
152  *	qq yyyy ddd hh:mm:ss nn dd tt
153  *
154  * where qq are the error flags, as described below, yyyy is the year,
155  * ddd the day, hh:mm:ss the time of day, nn the number of format A
156  * bursts received during the previous minute, dd the decoding distance
157  * and tt the number of timestamps. The error flags are cleared after
158  * every update.
159  *
160  * Fudge factors
161  *
162  * For accuracies better than the low millisceconds, fudge time1 can be
163  * set to the radio propagation delay from CHU to the receiver. This can
164  * be done conviently using the minimuf program.
165  *
166  * Fudge flag4 causes the dubugging output described above to be
167  * recorded in the clockstats file. When the audio driver is compiled,
168  * fudge flag2 selects the audio input port, where 0 is the mike port
169  * (default) and 1 is the line-in port. It does not seem useful to
170  * select the compact disc player port. Fudge flag3 enables audio
171  * monitoring of the input signal. For this purpose, the monitor gain is
172  * set to a default value.
173  *
174  * The audio codec code is normally compiled in the driver if the
175  * architecture supports it (HAVE_AUDIO defined), but is used only if
176  * the link /dev/chu_audio is defined and valid. The serial port code is
177  * always compiled in the driver, but is used only if the autdio codec
178  * is not available and the link /dev/chu%d is defined and valid.
179  *
180  * The ICOM code is normally compiled in the driver if selected (ICOM
181  * defined), but is used only if the link /dev/icom%d is defined and
182  * valid and the mode keyword on the server configuration command
183  * specifies a nonzero mode (ICOM ID select code). The C-IV speed is
184  * 9600 bps if the high order 0x80 bit of the mode is zero and 1200 bps
185  * if one. The C-IV trace is turned on if the debug level is greater
186  * than one.
187  */
188 /*
189  * Interface definitions
190  */
191 #define	SPEED232	B300	/* uart speed (300 baud) */
192 #define	PRECISION	(-10)	/* precision assumed (about 1 ms) */
193 #define	REFID		"CHU"	/* reference ID */
194 #define	DEVICE		"/dev/chu%d" /* device name and unit */
195 #define	SPEED232	B300	/* UART speed (300 baud) */
196 #ifdef ICOM
197 #define TUNE		.001	/* offset for narrow filter (kHz) */
198 #define DWELL		5	/* minutes in a probe cycle */
199 #define NCHAN		3	/* number of channels */
200 #define ISTAGE		3	/* number of integrator stages */
201 #endif /* ICOM */
202 
203 #ifdef HAVE_AUDIO
204 /*
205  * Audio demodulator definitions
206  */
207 #define SECOND		8000	/* nominal sample rate (Hz) */
208 #define BAUD		300	/* modulation rate (bps) */
209 #define OFFSET		128	/* companded sample offset */
210 #define SIZE		256	/* decompanding table size */
211 #define	MAXSIG		6000.	/* maximum signal level */
212 #define	MAXCLP		100	/* max clips above reference per s */
213 #define LIMIT		1000.	/* soft limiter threshold */
214 #define AGAIN		6.	/* baseband gain */
215 #define LAG		10	/* discriminator lag */
216 #define	DEVICE_AUDIO	"/dev/chu_audio" /* device name */
217 #define	DESCRIPTION	"CHU Audio/Modem Receiver" /* WRU */
218 #define	AUDIO_BUFSIZ	240	/* audio buffer size (30 ms) */
219 #else
220 #define	DESCRIPTION	"CHU Modem Receiver" /* WRU */
221 #endif /* HAVE_AUDIO */
222 
223 /*
224  * Decoder definitions
225  */
226 #define CHAR		(11. / 300.) /* character time (s) */
227 #define	FUDGE		.185	/* offset to first stop bit (s) */
228 #define BURST		11	/* max characters per burst */
229 #define MINCHAR		9	/* min characters per burst */
230 #define MINDIST		28	/* min burst distance (of 40)  */
231 #define MINBURST	4	/* min bursts in minute */
232 #define MINSYNC		8	/* min sync distance (of 16) */
233 #define MINSTAMP	20	/* min timestamps (of 60) */
234 #define METRIC		50.	/* min channel metric */
235 #define PANIC		1440	/* panic timeout (m) */
236 #define HOLD		30	/* reach hold (m) */
237 
238 /*
239  * Hex extension codes (>= 16)
240  */
241 #define HEX_MISS	16	/* miss _ */
242 #define HEX_SOFT	17	/* soft error * */
243 #define HEX_HARD	18	/* hard error = */
244 
245 /*
246  * Status bits (status)
247  */
248 #define RUNT		0x0001	/* runt burst */
249 #define NOISE		0x0002	/* noise burst */
250 #define BFRAME		0x0004	/* invalid format B frame sync */
251 #define BFORMAT		0x0008	/* invalid format B data */
252 #define AFRAME		0x0010	/* invalid format A frame sync */
253 #define AFORMAT		0x0020	/* invalid format A data */
254 #define DECODE		0x0040	/* invalid data decode */
255 #define STAMP		0x0080	/* too few timestamps */
256 #define AVALID		0x0100	/* valid A frame */
257 #define BVALID		0x0200	/* valid B frame */
258 #define INSYNC		0x0400	/* clock synchronized */
259 
260 /*
261  * Alarm status bits (alarm)
262  *
263  * These alarms are set at the end of a minute in which at least one
264  * burst was received. SYNERR is raised if the AFRAME or BFRAME status
265  * bits are set during the minute, FMTERR is raised if the AFORMAT or
266  * BFORMAT status bits are set, DECERR is raised if the DECODE status
267  * bit is set and TSPERR is raised if the STAMP status bit is set.
268  */
269 #define SYNERR		0x01	/* frame sync error */
270 #define FMTERR		0x02	/* data format error */
271 #define DECERR		0x04	/* data decoding error */
272 #define TSPERR		0x08	/* insufficient data */
273 
274 #ifdef HAVE_AUDIO
275 /*
276  * Maximum likelihood UART structure. There are eight of these
277  * corresponding to the number of phases.
278  */
279 struct surv {
280 	double	shift[12];	/* mark register */
281 	double	es_max, es_min;	/* max/min envelope signals */
282 	double	dist;		/* sample distance */
283 	int	uart;		/* decoded character */
284 };
285 #endif /* HAVE_AUDIO */
286 
287 #ifdef ICOM
288 /*
289  * CHU station structure. There are three of these corresponding to the
290  * three frequencies.
291  */
292 struct xmtr {
293 	double	integ[ISTAGE];	/* circular integrator */
294 	double	metric;		/* integrator sum */
295 	int	iptr;		/* integrator pointer */
296 	int	probe;		/* dwells since last probe */
297 };
298 #endif /* ICOM */
299 
300 /*
301  * CHU unit control structure
302  */
303 struct chuunit {
304 	u_char	decode[20][16];	/* maximum likelihood decoding matrix */
305 	l_fp	cstamp[BURST];	/* character timestamps */
306 	l_fp	tstamp[MAXSTAGE]; /* timestamp samples */
307 	l_fp	timestamp;	/* current buffer timestamp */
308 	l_fp	laststamp;	/* last buffer timestamp */
309 	l_fp	charstamp;	/* character time as a l_fp */
310 	int	errflg;		/* error flags */
311 	int	status;		/* status bits */
312 	char	ident[5];	/* station ID and channel */
313 #ifdef ICOM
314 	int	fd_icom;	/* ICOM file descriptor */
315 	int	chan;		/* data channel */
316 	int	achan;		/* active channel */
317 	int	dwell;		/* dwell cycle */
318 	struct xmtr xmtr[NCHAN]; /* station metric */
319 #endif /* ICOM */
320 
321 	/*
322 	 * Character burst variables
323 	 */
324 	int	cbuf[BURST];	/* character buffer */
325 	int	ntstamp;	/* number of timestamp samples */
326 	int	ndx;		/* buffer start index */
327 	int	prevsec;	/* previous burst second */
328 	int	burdist;	/* burst distance */
329 	int	syndist;	/* sync distance */
330 	int	burstcnt;	/* format A bursts this minute */
331 
332 	/*
333 	 * Format particulars
334 	 */
335 	int	leap;		/* leap/dut code */
336 	int	dut;		/* UTC1 correction */
337 	int	tai;		/* TAI - UTC correction */
338 	int	dst;		/* Canadian DST code */
339 
340 #ifdef HAVE_AUDIO
341 	/*
342 	 * Audio codec variables
343 	 */
344 	int	fd_audio;	/* audio port file descriptor */
345 	double	comp[SIZE];	/* decompanding table */
346 	int	port;		/* codec port */
347 	int	gain;		/* codec gain */
348 	int	mongain;	/* codec monitor gain */
349 	int	clipcnt;	/* sample clip count */
350 	int	seccnt;		/* second interval counter */
351 
352 	/*
353 	 * Modem variables
354 	 */
355 	l_fp	tick;		/* audio sample increment */
356 	double	bpf[9];		/* IIR bandpass filter */
357 	double	disc[LAG];	/* discriminator shift register */
358 	double	lpf[27];	/* FIR lowpass filter */
359 	double	monitor;	/* audio monitor */
360 	double	maxsignal;	/* signal level */
361 	int	discptr;	/* discriminator pointer */
362 
363 	/*
364 	 * Maximum likelihood UART variables
365 	 */
366 	double	baud;		/* baud interval */
367 	struct surv surv[8];	/* UART survivor structures */
368 	int	decptr;		/* decode pointer */
369 	int	dbrk;		/* holdoff counter */
370 #endif /* HAVE_AUDIO */
371 };
372 
373 /*
374  * Function prototypes
375  */
376 static	int	chu_start	P((int, struct peer *));
377 static	void	chu_shutdown	P((int, struct peer *));
378 static	void	chu_receive	P((struct recvbuf *));
379 static	void	chu_poll	P((int, struct peer *));
380 
381 /*
382  * More function prototypes
383  */
384 static	void	chu_decode	P((struct peer *, int));
385 static	void	chu_burst	P((struct peer *));
386 static	void	chu_clear	P((struct peer *));
387 static	void	chu_a		P((struct peer *, int));
388 static	void	chu_b		P((struct peer *, int));
389 static	int	chu_dist	P((int, int));
390 static	double	chu_major	P((struct peer *));
391 #ifdef HAVE_AUDIO
392 static	void	chu_uart	P((struct surv *, double));
393 static	void	chu_rf		P((struct peer *, double));
394 static	void	chu_gain	P((struct peer *));
395 static	void	chu_audio_receive P((struct recvbuf *rbufp));
396 #endif /* HAVE_AUDIO */
397 #ifdef ICOM
398 static	int	chu_newchan	P((struct peer *, double));
399 #endif /* ICOM */
400 static	void	chu_serial_receive P((struct recvbuf *rbufp));
401 
402 /*
403  * Global variables
404  */
405 static char hexchar[] = "0123456789abcdef_*=";
406 
407 #ifdef ICOM
408 /*
409  * Note the tuned frequencies are 1 kHz higher than the carrier. CHU
410  * transmits on USB with carrier so we can use AM and the narrow SSB
411  * filter.
412  */
413 static double qsy[NCHAN] = {3.330, 7.335, 14.670}; /* freq (MHz) */
414 #endif /* ICOM */
415 
416 /*
417  * Transfer vector
418  */
419 struct	refclock refclock_chu = {
420 	chu_start,		/* start up driver */
421 	chu_shutdown,		/* shut down driver */
422 	chu_poll,		/* transmit poll message */
423 	noentry,		/* not used (old chu_control) */
424 	noentry,		/* initialize driver (not used) */
425 	noentry,		/* not used (old chu_buginfo) */
426 	NOFLAGS			/* not used */
427 };
428 
429 
430 /*
431  * chu_start - open the devices and initialize data for processing
432  */
433 static int
434 chu_start(
435 	int	unit,		/* instance number (not used) */
436 	struct peer *peer	/* peer structure pointer */
437 	)
438 {
439 	struct chuunit *up;
440 	struct refclockproc *pp;
441 	char device[20];	/* device name */
442 	int	fd;		/* file descriptor */
443 #ifdef ICOM
444 	int	temp;
445 #endif /* ICOM */
446 #ifdef HAVE_AUDIO
447 	int	fd_audio;	/* audio port file descriptor */
448 	int	i;		/* index */
449 	double	step;		/* codec adjustment */
450 
451 	/*
452 	 * Open audio device.
453 	 */
454 	fd_audio = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
455 #ifdef DEBUG
456 	if (fd_audio > 0 && debug)
457 		audio_show();
458 #endif
459 
460 	/*
461 	 * Open serial port in raw mode.
462 	 */
463 	if (fd_audio > 0) {
464 		fd = fd_audio;
465 	} else {
466 		sprintf(device, DEVICE, unit);
467 		fd = refclock_open(device, SPEED232, LDISC_RAW);
468 	}
469 #else /* HAVE_AUDIO */
470 
471 	/*
472 	 * Open serial port in raw mode.
473 	 */
474 	sprintf(device, DEVICE, unit);
475 	fd = refclock_open(device, SPEED232, LDISC_RAW);
476 #endif /* HAVE_AUDIO */
477 	if (fd <= 0)
478 		return (0);
479 
480 	/*
481 	 * Allocate and initialize unit structure
482 	 */
483 	if (!(up = (struct chuunit *)
484 	      emalloc(sizeof(struct chuunit)))) {
485 		close(fd);
486 		return (0);
487 	}
488 	memset((char *)up, 0, sizeof(struct chuunit));
489 	pp = peer->procptr;
490 	pp->unitptr = (caddr_t)up;
491 	pp->io.clock_recv = chu_receive;
492 	pp->io.srcclock = (caddr_t)peer;
493 	pp->io.datalen = 0;
494 	pp->io.fd = fd;
495 	if (!io_addclock(&pp->io)) {
496 		close(fd);
497 		free(up);
498 		return (0);
499 	}
500 
501 	/*
502 	 * Initialize miscellaneous variables
503 	 */
504 	peer->precision = PRECISION;
505 	pp->clockdesc = DESCRIPTION;
506 	strcpy(up->ident, "CHU");
507 	memcpy(&peer->refid, up->ident, 4);
508 	DTOLFP(CHAR, &up->charstamp);
509 #ifdef HAVE_AUDIO
510 
511 	/*
512 	 * The companded samples are encoded sign-magnitude. The table
513 	 * contains all the 256 values in the interest of speed. We do
514 	 * this even if the audio codec is not available. C'est la lazy.
515 	 */
516 	up->fd_audio = fd_audio;
517 	up->gain = 127;
518 	up->comp[0] = up->comp[OFFSET] = 0.;
519 	up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
520 	up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
521 	step = 2.;
522 	for (i = 3; i < OFFSET; i++) {
523 		up->comp[i] = up->comp[i - 1] + step;
524 		up->comp[OFFSET + i] = -up->comp[i];
525                 if (i % 16 == 0)
526                 	step *= 2.;
527 	}
528 	DTOLFP(1. / SECOND, &up->tick);
529 #endif /* HAVE_AUDIO */
530 #ifdef ICOM
531 	temp = 0;
532 #ifdef DEBUG
533 	if (debug > 1)
534 		temp = P_TRACE;
535 #endif
536 	if (peer->ttl > 0) {
537 		if (peer->ttl & 0x80)
538 			up->fd_icom = icom_init("/dev/icom", B1200,
539 			    temp);
540 		else
541 			up->fd_icom = icom_init("/dev/icom", B9600,
542 			    temp);
543 	}
544 	if (up->fd_icom > 0) {
545 		if (chu_newchan(peer, 0) != 0) {
546 			NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT)
547 			    msyslog(LOG_NOTICE,
548 			    "icom: radio not found");
549 			up->errflg = CEVNT_FAULT;
550 			close(up->fd_icom);
551 			up->fd_icom = 0;
552 		} else {
553 			NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT)
554 			    msyslog(LOG_NOTICE,
555 			    "icom: autotune enabled");
556 		}
557 	}
558 #endif /* ICOM */
559 	return (1);
560 }
561 
562 
563 /*
564  * chu_shutdown - shut down the clock
565  */
566 static void
567 chu_shutdown(
568 	int	unit,		/* instance number (not used) */
569 	struct peer *peer	/* peer structure pointer */
570 	)
571 {
572 	struct chuunit *up;
573 	struct refclockproc *pp;
574 
575 	pp = peer->procptr;
576 	up = (struct chuunit *)pp->unitptr;
577 	if (up == NULL)
578 		return;
579 
580 	io_closeclock(&pp->io);
581 #ifdef ICOM
582 	if (up->fd_icom > 0)
583 		close(up->fd_icom);
584 #endif /* ICOM */
585 	free(up);
586 }
587 
588 
589 /*
590  * chu_receive - receive data from the audio or serial device
591  */
592 static void
593 chu_receive(
594 	struct recvbuf *rbufp	/* receive buffer structure pointer */
595 	)
596 {
597 #ifdef HAVE_AUDIO
598 	struct chuunit *up;
599 	struct refclockproc *pp;
600 	struct peer *peer;
601 
602 	peer = (struct peer *)rbufp->recv_srcclock;
603 	pp = peer->procptr;
604 	up = (struct chuunit *)pp->unitptr;
605 
606 	/*
607 	 * If the audio codec is warmed up, the buffer contains codec
608 	 * samples which need to be demodulated and decoded into CHU
609 	 * characters using the software UART. Otherwise, the buffer
610 	 * contains CHU characters from the serial port, so the software
611 	 * UART is bypassed. In this case the CPU will probably run a
612 	 * few degrees cooler.
613 	 */
614 	if (up->fd_audio > 0)
615 		chu_audio_receive(rbufp);
616 	else
617 		chu_serial_receive(rbufp);
618 #else
619 	chu_serial_receive(rbufp);
620 #endif /* HAVE_AUDIO */
621 }
622 
623 
624 #ifdef HAVE_AUDIO
625 /*
626  * chu_audio_receive - receive data from the audio device
627  */
628 static void
629 chu_audio_receive(
630 	struct recvbuf *rbufp	/* receive buffer structure pointer */
631 	)
632 {
633 	struct chuunit *up;
634 	struct refclockproc *pp;
635 	struct peer *peer;
636 
637 	double	sample;		/* codec sample */
638 	u_char	*dpt;		/* buffer pointer */
639 	int	bufcnt;		/* buffer counter */
640 	l_fp	ltemp;		/* l_fp temp */
641 
642 	peer = (struct peer *)rbufp->recv_srcclock;
643 	pp = peer->procptr;
644 	up = (struct chuunit *)pp->unitptr;
645 
646 	/*
647 	 * Main loop - read until there ain't no more. Note codec
648 	 * samples are bit-inverted.
649 	 */
650 	DTOLFP((double)rbufp->recv_length / SECOND, &ltemp);
651 	L_SUB(&rbufp->recv_time, &ltemp);
652 	up->timestamp = rbufp->recv_time;
653 	dpt = rbufp->recv_buffer;
654 	for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
655 		sample = up->comp[~*dpt++ & 0xff];
656 
657 		/*
658 		 * Clip noise spikes greater than MAXSIG. If no clips,
659 		 * increase the gain a tad; if the clips are too high,
660 		 * decrease a tad.
661 		 */
662 		if (sample > MAXSIG) {
663 			sample = MAXSIG;
664 			up->clipcnt++;
665 		} else if (sample < -MAXSIG) {
666 			sample = -MAXSIG;
667 			up->clipcnt++;
668 		}
669 		chu_rf(peer, sample);
670 		L_ADD(&up->timestamp, &up->tick);
671 
672 		/*
673 		 * Once each second ride gain.
674 		 */
675 		up->seccnt = (up->seccnt + 1) % SECOND;
676 		if (up->seccnt == 0) {
677 			pp->second = (pp->second + 1) % 60;
678 			chu_gain(peer);
679 		}
680 	}
681 
682 	/*
683 	 * Set the input port and monitor gain for the next buffer.
684 	 */
685 	if (pp->sloppyclockflag & CLK_FLAG2)
686 		up->port = 2;
687 	else
688 		up->port = 1;
689 	if (pp->sloppyclockflag & CLK_FLAG3)
690 		up->mongain = MONGAIN;
691 	else
692 		up->mongain = 0;
693 }
694 
695 
696 /*
697  * chu_rf - filter and demodulate the FSK signal
698  *
699  * This routine implements a 300-baud Bell 103 modem with mark 2225 Hz
700  * and space 2025 Hz. It uses a bandpass filter followed by a soft
701  * limiter, FM discriminator and lowpass filter. A maximum likelihood
702  * decoder samples the baseband signal at eight times the baud rate and
703  * detects the start bit of each character.
704  *
705  * The filters are built for speed, which explains the rather clumsy
706  * code. Hopefully, the compiler will efficiently implement the move-
707  * and-muiltiply-and-add operations.
708  */
709 static void
710 chu_rf(
711 	struct peer *peer,	/* peer structure pointer */
712 	double	sample		/* analog sample */
713 	)
714 {
715 	struct refclockproc *pp;
716 	struct chuunit *up;
717 	struct surv *sp;
718 
719 	/*
720 	 * Local variables
721 	 */
722 	double	signal;		/* bandpass signal */
723 	double	limit;		/* limiter signal */
724 	double	disc;		/* discriminator signal */
725 	double	lpf;		/* lowpass signal */
726 	double	span;		/* UART signal span */
727 	double	dist;		/* UART signal distance */
728 	int	i, j;
729 
730 	pp = peer->procptr;
731 	up = (struct chuunit *)pp->unitptr;
732 
733 	/*
734 	 * Bandpass filter. 4th-order elliptic, 500-Hz bandpass centered
735 	 * at 2125 Hz. Passband ripple 0.3 dB, stopband ripple 50 dB.
736 	 */
737 	signal = (up->bpf[8] = up->bpf[7]) * 5.844676e-01;
738 	signal += (up->bpf[7] = up->bpf[6]) * 4.884860e-01;
739 	signal += (up->bpf[6] = up->bpf[5]) * 2.704384e+00;
740 	signal += (up->bpf[5] = up->bpf[4]) * 1.645032e+00;
741 	signal += (up->bpf[4] = up->bpf[3]) * 4.644557e+00;
742 	signal += (up->bpf[3] = up->bpf[2]) * 1.879165e+00;
743 	signal += (up->bpf[2] = up->bpf[1]) * 3.522634e+00;
744 	signal += (up->bpf[1] = up->bpf[0]) * 7.315738e-01;
745 	up->bpf[0] = sample - signal;
746 	signal = up->bpf[0] * 6.176213e-03
747 	    + up->bpf[1] * 3.156599e-03
748 	    + up->bpf[2] * 7.567487e-03
749 	    + up->bpf[3] * 4.344580e-03
750 	    + up->bpf[4] * 1.190128e-02
751 	    + up->bpf[5] * 4.344580e-03
752 	    + up->bpf[6] * 7.567487e-03
753 	    + up->bpf[7] * 3.156599e-03
754 	    + up->bpf[8] * 6.176213e-03;
755 
756 	up->monitor = signal / 4.;	/* note monitor after filter */
757 
758 	/*
759 	 * Soft limiter/discriminator. The 11-sample discriminator lag
760 	 * interval corresponds to three cycles of 2125 Hz, which
761 	 * requires the sample frequency to be 2125 * 11 / 3 = 7791.7
762 	 * Hz. The discriminator output varies +-0.5 interval for input
763 	 * frequency 2025-2225 Hz. However, we don't get to sample at
764 	 * this frequency, so the discriminator output is biased. Life
765 	 * at 8000 Hz sucks.
766 	 */
767 	limit = signal;
768 	if (limit > LIMIT)
769 		limit = LIMIT;
770 	else if (limit < -LIMIT)
771 		limit = -LIMIT;
772 	disc = up->disc[up->discptr] * -limit;
773 	up->disc[up->discptr] = limit;
774 	up->discptr = (up->discptr + 1 ) % LAG;
775 	if (disc >= 0)
776 		disc = SQRT(disc);
777 	else
778 		disc = -SQRT(-disc);
779 
780 	/*
781 	 * Lowpass filter. Raised cosine, Ts = 1 / 300, beta = 0.1.
782 	 */
783 	lpf = (up->lpf[26] = up->lpf[25]) * 2.538771e-02;
784 	lpf += (up->lpf[25] = up->lpf[24]) * 1.084671e-01;
785 	lpf += (up->lpf[24] = up->lpf[23]) * 2.003159e-01;
786 	lpf += (up->lpf[23] = up->lpf[22]) * 2.985303e-01;
787 	lpf += (up->lpf[22] = up->lpf[21]) * 4.003697e-01;
788 	lpf += (up->lpf[21] = up->lpf[20]) * 5.028552e-01;
789 	lpf += (up->lpf[20] = up->lpf[19]) * 6.028795e-01;
790 	lpf += (up->lpf[19] = up->lpf[18]) * 6.973249e-01;
791 	lpf += (up->lpf[18] = up->lpf[17]) * 7.831828e-01;
792 	lpf += (up->lpf[17] = up->lpf[16]) * 8.576717e-01;
793 	lpf += (up->lpf[16] = up->lpf[15]) * 9.183463e-01;
794 	lpf += (up->lpf[15] = up->lpf[14]) * 9.631951e-01;
795 	lpf += (up->lpf[14] = up->lpf[13]) * 9.907208e-01;
796 	lpf += (up->lpf[13] = up->lpf[12]) * 1.000000e+00;
797 	lpf += (up->lpf[12] = up->lpf[11]) * 9.907208e-01;
798 	lpf += (up->lpf[11] = up->lpf[10]) * 9.631951e-01;
799 	lpf += (up->lpf[10] = up->lpf[9]) * 9.183463e-01;
800 	lpf += (up->lpf[9] = up->lpf[8]) * 8.576717e-01;
801 	lpf += (up->lpf[8] = up->lpf[7]) * 7.831828e-01;
802 	lpf += (up->lpf[7] = up->lpf[6]) * 6.973249e-01;
803 	lpf += (up->lpf[6] = up->lpf[5]) * 6.028795e-01;
804 	lpf += (up->lpf[5] = up->lpf[4]) * 5.028552e-01;
805 	lpf += (up->lpf[4] = up->lpf[3]) * 4.003697e-01;
806 	lpf += (up->lpf[3] = up->lpf[2]) * 2.985303e-01;
807 	lpf += (up->lpf[2] = up->lpf[1]) * 2.003159e-01;
808 	lpf += (up->lpf[1] = up->lpf[0]) * 1.084671e-01;
809 	lpf += up->lpf[0] = disc * 2.538771e-02;
810 
811 	/*
812 	 * Maximum likelihood decoder. The UART updates each of the
813 	 * eight survivors and determines the span, slice level and
814 	 * tentative decoded character. Valid 11-bit characters are
815 	 * framed so that bit 1 and bit 11 (stop bits) are mark and bit
816 	 * 2 (start bit) is space. When a valid character is found, the
817 	 * survivor with maximum distance determines the final decoded
818 	 * character.
819 	 */
820 	up->baud += 1. / SECOND;
821 	if (up->baud > 1. / (BAUD * 8.)) {
822 		up->baud -= 1. / (BAUD * 8.);
823 		sp = &up->surv[up->decptr];
824 		span = sp->es_max - sp->es_min;
825 		up->maxsignal += (span - up->maxsignal) / 80.;
826 		if (up->dbrk > 0) {
827 			up->dbrk--;
828 		} else if ((sp->uart & 0x403) == 0x401 && span > 1000.)
829 		    {
830 			dist = 0;
831 			j = 0;
832 			for (i = 0; i < 8; i++) {
833 				if (up->surv[i].dist > dist) {
834 					dist = up->surv[i].dist;
835 					j = i;
836 				}
837 			}
838 			chu_decode(peer, (up->surv[j].uart >> 2) &
839 			    0xff);
840 			up->dbrk = 80;
841 		}
842 		up->decptr = (up->decptr + 1) % 8;
843 		chu_uart(sp, -lpf * AGAIN);
844 	}
845 }
846 
847 
848 /*
849  * chu_uart - maximum likelihood UART
850  *
851  * This routine updates a shift register holding the last 11 envelope
852  * samples. It then computes the slice level and span over these samples
853  * and determines the tentative data bits and distance. The calling
854  * program selects over the last eight survivors the one with maximum
855  * distance to determine the decoded character.
856  */
857 static void
858 chu_uart(
859 	struct surv *sp,	/* survivor structure pointer */
860 	double	sample		/* baseband signal */
861 	)
862 {
863 	double	es_max, es_min;	/* max/min envelope */
864 	double	slice;		/* slice level */
865 	double	dist;		/* distance */
866 	double	dtemp;
867 	int	i;
868 
869 	/*
870 	 * Save the sample and shift right. At the same time, measure
871 	 * the maximum and minimum over all eleven samples.
872 	 */
873 	es_max = -1e6;
874 	es_min = 1e6;
875 	sp->shift[0] = sample;
876 	for (i = 11; i > 0; i--) {
877 		sp->shift[i] = sp->shift[i - 1];
878 		if (sp->shift[i] > es_max)
879 			es_max = sp->shift[i];
880 		if (sp->shift[i] < es_min)
881 			es_min = sp->shift[i];
882 	}
883 
884 	/*
885 	 * Determine the slice level midway beteen the maximum and
886 	 * minimum and the span as the maximum less the minimum. Compute
887 	 * the distance on the assumption the first and last bits must
888 	 * be mark, the second space and the rest either mark or space.
889 	 */
890 	slice = (es_max + es_min) / 2.;
891 	dist = 0;
892 	sp->uart = 0;
893 	for (i = 1; i < 12; i++) {
894 		sp->uart <<= 1;
895 		dtemp = sp->shift[i];
896 		if (dtemp > slice)
897 			sp->uart |= 0x1;
898 		if (i == 1 || i == 11) {
899 			dist += dtemp - es_min;
900 		} else if (i == 10) {
901 			dist += es_max - dtemp;
902 		} else {
903 			if (dtemp > slice)
904 				dist += dtemp - es_min;
905 			else
906 				dist += es_max - dtemp;
907 		}
908 	}
909 	sp->es_max = es_max;
910 	sp->es_min = es_min;
911 	sp->dist = dist / (11 * (es_max - es_min));
912 }
913 #endif /* HAVE_AUDIO */
914 
915 
916 /*
917  * chu_serial_receive - receive data from the serial device
918  */
919 static void
920 chu_serial_receive(
921 	struct recvbuf *rbufp	/* receive buffer structure pointer */
922 	)
923 {
924 	struct chuunit *up;
925 	struct refclockproc *pp;
926 	struct peer *peer;
927 
928 	u_char	*dpt;		/* receive buffer pointer */
929 
930 	peer = (struct peer *)rbufp->recv_srcclock;
931 	pp = peer->procptr;
932 	up = (struct chuunit *)pp->unitptr;
933 
934 	/*
935 	 * Initialize pointers and read the timecode and timestamp.
936 	 */
937 	up->timestamp = rbufp->recv_time;
938 	dpt = (u_char *)&rbufp->recv_space;
939 	chu_decode(peer, *dpt);
940 }
941 
942 
943 /*
944  * chu_decode - decode the character data
945  */
946 static void
947 chu_decode(
948 	struct peer *peer,	/* peer structure pointer */
949 	int	hexhex		/* data character */
950 	)
951 {
952 	struct refclockproc *pp;
953 	struct chuunit *up;
954 
955 	l_fp	tstmp;		/* timestamp temp */
956 	double	dtemp;
957 
958 	pp = peer->procptr;
959 	up = (struct chuunit *)pp->unitptr;
960 
961 	/*
962 	 * If the interval since the last character is greater than the
963 	 * longest burst, process the last burst and start a new one. If
964 	 * the interval is less than this but greater than two
965 	 * characters, consider this a noise burst and reject it.
966 	 */
967 	tstmp = up->timestamp;
968 	if (L_ISZERO(&up->laststamp))
969 		up->laststamp = up->timestamp;
970 	L_SUB(&tstmp, &up->laststamp);
971 	up->laststamp = up->timestamp;
972 	LFPTOD(&tstmp, dtemp);
973 	if (dtemp > BURST * CHAR) {
974 		chu_burst(peer);
975 		up->ndx = 0;
976 	} else if (dtemp > 2.5 * CHAR) {
977 		up->ndx = 0;
978 	}
979 
980 	/*
981 	 * Append the character to the current burst and append the
982 	 * timestamp to the timestamp list.
983 	 */
984 	if (up->ndx < BURST) {
985 		up->cbuf[up->ndx] = hexhex & 0xff;
986 		up->cstamp[up->ndx] = up->timestamp;
987 		up->ndx++;
988 
989 	}
990 }
991 
992 
993 /*
994  * chu_burst - search for valid burst format
995  */
996 static void
997 chu_burst(
998 	struct peer *peer
999 	)
1000 {
1001 	struct chuunit *up;
1002 	struct refclockproc *pp;
1003 
1004 	int	i;
1005 
1006 	pp = peer->procptr;
1007 	up = (struct chuunit *)pp->unitptr;
1008 
1009 	/*
1010 	 * Correlate a block of five characters with the next block of
1011 	 * five characters. The burst distance is defined as the number
1012 	 * of bits that match in the two blocks for format A and that
1013 	 * match the inverse for format B.
1014 	 */
1015 	if (up->ndx < MINCHAR) {
1016 		up->status |= RUNT;
1017 		return;
1018 	}
1019 	up->burdist = 0;
1020 	for (i = 0; i < 5 && i < up->ndx - 5; i++)
1021 		up->burdist += chu_dist(up->cbuf[i], up->cbuf[i + 5]);
1022 
1023 	/*
1024 	 * If the burst distance is at least MINDIST, this must be a
1025 	 * format A burst; if the value is not greater than -MINDIST, it
1026 	 * must be a format B burst. If the B burst is perfect, we
1027 	 * believe it; otherwise, it is a noise burst and of no use to
1028 	 * anybody.
1029 	 */
1030 	if (up->burdist >= MINDIST) {
1031 		chu_a(peer, up->ndx);
1032 	} else if (up->burdist <= -MINDIST) {
1033 		chu_b(peer, up->ndx);
1034 	} else {
1035 		up->status |= NOISE;
1036 		return;
1037 	}
1038 
1039 	/*
1040 	 * If this is a valid burst, wait a guard time of ten seconds to
1041 	 * allow for more bursts, then arm the poll update routine to
1042 	 * process the minute. Don't do this if this is called from the
1043 	 * timer interrupt routine.
1044 	 */
1045 	if (peer->outdate != current_time)
1046 		peer->nextdate = current_time + 10;
1047 }
1048 
1049 
1050 /*
1051  * chu_b - decode format B burst
1052  */
1053 static void
1054 chu_b(
1055 	struct peer *peer,
1056 	int	nchar
1057 	)
1058 {
1059 	struct	refclockproc *pp;
1060 	struct	chuunit *up;
1061 
1062 	u_char	code[11];	/* decoded timecode */
1063 	char	tbuf[80];	/* trace buffer */
1064 	l_fp	offset;		/* timestamp offset */
1065 	int	i;
1066 
1067 	pp = peer->procptr;
1068 	up = (struct chuunit *)pp->unitptr;
1069 
1070 	/*
1071 	 * In a format B burst, a character is considered valid only if
1072 	 * the first occurrence matches the last occurrence. The burst
1073 	 * is considered valid only if all characters are valid; that
1074 	 * is, only if the distance is 40. Note that once a valid frame
1075 	 * has been found errors are ignored.
1076 	 */
1077 	sprintf(tbuf, "chuB %04x %2d %2d ", up->status, nchar,
1078 	    -up->burdist);
1079 	for (i = 0; i < nchar; i++)
1080 		sprintf(&tbuf[strlen(tbuf)], "%02x", up->cbuf[i]);
1081 	if (pp->sloppyclockflag & CLK_FLAG4)
1082 		record_clock_stats(&peer->srcadr, tbuf);
1083 #ifdef DEBUG
1084 	if (debug)
1085 		printf("%s\n", tbuf);
1086 #endif
1087 	if (up->burdist > -40) {
1088 		up->status |= BFRAME;
1089 		return;
1090 	}
1091 	up->status |= BVALID;
1092 
1093 	/*
1094 	 * Convert the burst data to internal format. If this succeeds,
1095 	 * save the timestamps for later.
1096 	 */
1097 	for (i = 0; i < 5; i++) {
1098 		code[2 * i] = hexchar[up->cbuf[i] & 0xf];
1099 		code[2 * i + 1] = hexchar[(up->cbuf[i] >>
1100 		    4) & 0xf];
1101 	}
1102 	if (sscanf((char *)code, "%1x%1d%4d%2d%2x", &up->leap, &up->dut,
1103 	    &pp->year, &up->tai, &up->dst) != 5) {
1104 		up->status |= BFORMAT;
1105 		return;
1106 	}
1107 	if (up->leap & 0x8)
1108 		up->dut = -up->dut;
1109 	offset.l_ui = 31;
1110 	offset.l_f = 0;
1111 	for (i = 0; i < nchar && i < 10; i++) {
1112 		up->tstamp[up->ntstamp] = up->cstamp[i];
1113 		L_SUB(&up->tstamp[up->ntstamp], &offset);
1114 		L_ADD(&offset, &up->charstamp);
1115 		if (up->ntstamp < MAXSTAGE)
1116 			up->ntstamp++;
1117 	}
1118 }
1119 
1120 
1121 /*
1122  * chu_a - decode format A burst
1123  */
1124 static void
1125 chu_a(
1126 	struct peer *peer,
1127 	int nchar
1128 	)
1129 {
1130 	struct refclockproc *pp;
1131 	struct chuunit *up;
1132 
1133 	char	tbuf[80];	/* trace buffer */
1134 	l_fp	offset;		/* timestamp offset */
1135 	int	val;		/* distance */
1136 	int	temp;
1137 	int	i, j, k;
1138 
1139 	pp = peer->procptr;
1140 	up = (struct chuunit *)pp->unitptr;
1141 
1142 	/*
1143 	 * Determine correct burst phase. There are three cases
1144 	 * corresponding to in-phase, one character early or one
1145 	 * character late. These cases are distinguished by the position
1146 	 * of the framing digits x6 at positions 0 and 5 and x3 at
1147 	 * positions 4 and 9. The correct phase is when the distance
1148 	 * relative to the framing digits is maximum. The burst is valid
1149 	 * only if the maximum distance is at least MINSYNC.
1150 	 */
1151 	up->syndist = k = 0;
1152 	val = -16;
1153 	for (i = -1; i < 2; i++) {
1154 		temp = up->cbuf[i + 4] & 0xf;
1155 		if (i >= 0)
1156 			temp |= (up->cbuf[i] & 0xf) << 4;
1157 		val = chu_dist(temp, 0x63);
1158 		temp = (up->cbuf[i + 5] & 0xf) << 4;
1159 		if (i + 9 < nchar)
1160 			temp |= up->cbuf[i + 9] & 0xf;
1161 		val += chu_dist(temp, 0x63);
1162 		if (val > up->syndist) {
1163 			up->syndist = val;
1164 			k = i;
1165 		}
1166 	}
1167 	temp = (up->cbuf[k + 4] >> 4) & 0xf;
1168 	if (temp > 9 || k + 9 >= nchar || temp != ((up->cbuf[k + 9] >>
1169 	    4) & 0xf))
1170 		temp = 0;
1171 #ifdef HAVE_AUDIO
1172 	if (up->fd_audio)
1173 		sprintf(tbuf, "chuA %04x %4.0f %2d %2d %2d %2d %1d ",
1174 		    up->status, up->maxsignal, nchar, up->burdist, k,
1175 		    up->syndist, temp);
1176 	else
1177 		sprintf(tbuf, "chuA %04x %2d %2d %2d %2d %1d ",
1178 		    up->status, nchar, up->burdist, k, up->syndist,
1179 		    temp);
1180 
1181 #else
1182 	sprintf(tbuf, "chuA %04x %2d %2d %2d %2d %1d ", up->status,
1183 	    nchar, up->burdist, k, up->syndist, temp);
1184 #endif /* HAVE_AUDIO */
1185 	for (i = 0; i < nchar; i++)
1186 		sprintf(&tbuf[strlen(tbuf)], "%02x",
1187 		    up->cbuf[i]);
1188 	if (pp->sloppyclockflag & CLK_FLAG4)
1189 		record_clock_stats(&peer->srcadr, tbuf);
1190 #ifdef DEBUG
1191 	if (debug)
1192 		printf("%s\n", tbuf);
1193 #endif
1194 	if (up->syndist < MINSYNC) {
1195 		up->status |= AFRAME;
1196 		return;
1197 	}
1198 
1199 	/*
1200 	 * A valid burst requires the first seconds number to match the
1201 	 * last seconds number. If so, the burst timestamps are
1202 	 * corrected to the current minute and saved for later
1203 	 * processing. In addition, the seconds decode is advanced from
1204 	 * the previous burst to the current one.
1205 	 */
1206 	if (temp != 0) {
1207 		pp->second = 30 + temp;
1208 		offset.l_ui = 30 + temp;
1209 		offset.l_f = 0;
1210 		i = 0;
1211 		if (k < 0)
1212 			offset = up->charstamp;
1213 		else if (k > 0)
1214 			i = 1;
1215 		for (; i < nchar && i < k + 10; i++) {
1216 			up->tstamp[up->ntstamp] = up->cstamp[i];
1217 			L_SUB(&up->tstamp[up->ntstamp], &offset);
1218 			L_ADD(&offset, &up->charstamp);
1219 			if (up->ntstamp < MAXSTAGE)
1220 				up->ntstamp++;
1221 		}
1222 		while (temp > up->prevsec) {
1223 			for (j = 15; j > 0; j--) {
1224 				up->decode[9][j] = up->decode[9][j - 1];
1225 				up->decode[19][j] =
1226 				    up->decode[19][j - 1];
1227 			}
1228 			up->decode[9][j] = up->decode[19][j] = 0;
1229 			up->prevsec++;
1230 		}
1231 	}
1232 	i = -(2 * k);
1233 	for (j = 0; j < nchar; j++) {
1234 		if (i < 0 || i > 19) {
1235 			i += 2;
1236 			continue;
1237 		}
1238 		up->decode[i][up->cbuf[j] & 0xf]++;
1239 		i++;
1240 		up->decode[i][(up->cbuf[j] >> 4) & 0xf]++;
1241 		i++;
1242 	}
1243 	up->status |= AVALID;
1244 	up->burstcnt++;
1245 }
1246 
1247 
1248 /*
1249  * chu_poll - called by the transmit procedure
1250  */
1251 static void
1252 chu_poll(
1253 	int unit,
1254 	struct peer *peer	/* peer structure pointer */
1255 	)
1256 {
1257 	struct refclockproc *pp;
1258 	struct chuunit *up;
1259 	l_fp	offset;
1260 	char	synchar, qual, leapchar;
1261 	int	minset, i;
1262 	double	dtemp;
1263 
1264 	pp = peer->procptr;
1265 	up = (struct chuunit *)pp->unitptr;
1266 	if (pp->coderecv == pp->codeproc)
1267 		up->errflg = CEVNT_TIMEOUT;
1268 	else
1269 		pp->polls++;
1270 
1271 	/*
1272 	 * If once in sync and the radio has not been heard for awhile
1273 	 * (30 m), it is no longer reachable. If not heard in a long
1274 	 * while (one day), turn out the lights and start from scratch.
1275 	 */
1276 	minset = ((current_time - peer->update) + 30) / 60;
1277 	if (up->status & INSYNC) {
1278 		if (minset > PANIC)
1279 			up->status = 0;
1280 		else if (minset <= HOLD)
1281 			peer->reach |= 1;
1282 	}
1283 
1284 	/*
1285 	 * Process the last burst, if still in the burst buffer.
1286 	 * Don't mess with anything if nothing has been heard. If the
1287 	 * minute contains a valid A frame and valid B frame, assume
1288 	 * synchronized; however, believe the time only if within metric
1289 	 * threshold. Note the quality indicator is only for
1290 	 * diagnostics; the data are used only if in sync and above
1291 	 * metric threshold.
1292 	 */
1293 	chu_burst(peer);
1294 	if (up->burstcnt == 0) {
1295 #ifdef ICOM
1296 		chu_newchan(peer, 0);
1297 #endif /* ICOM */
1298 		return;
1299 	}
1300 	dtemp = chu_major(peer);
1301 	qual = 0;
1302 	if (up->status & (BFRAME | AFRAME))
1303 		qual |= SYNERR;
1304 	if (up->status & (BFORMAT | AFORMAT))
1305 		qual |= FMTERR;
1306 	if (up->status & DECODE)
1307 		qual |= DECERR;
1308 	if (up->status & STAMP)
1309 		qual |= TSPERR;
1310 	if (up->status & AVALID && up->status & BVALID)
1311 		up->status |= INSYNC;
1312 	synchar = leapchar = ' ';
1313 	if (!(up->status & INSYNC)) {
1314 		pp->leap = LEAP_NOTINSYNC;
1315 		synchar = '?';
1316 	} else if (up->leap & 0x2) {
1317 		pp->leap = LEAP_ADDSECOND;
1318 		leapchar = 'L';
1319 	} else if (up->leap & 0x4) {
1320 		pp->leap = LEAP_DELSECOND;
1321 		leapchar = 'l';
1322 	} else {
1323 		pp->leap = LEAP_NOWARNING;
1324 	}
1325 #ifdef HAVE_AUDIO
1326 	if (up->fd_audio)
1327 		sprintf(pp->a_lastcode,
1328 		    "%c%1X %04d %3d %02d:%02d:%02d %c%x %+d %d %d %s %.0f %d",
1329 		    synchar, qual, pp->year, pp->day, pp->hour,
1330 		    pp->minute, pp->second, leapchar, up->dst, up->dut,
1331 		    minset, up->gain, up->ident, dtemp, up->ntstamp);
1332 	else
1333 		sprintf(pp->a_lastcode,
1334 		    "%c%1X %04d %3d %02d:%02d:%02d %c%x %+d %d %s %.0f %d",
1335 		    synchar, qual, pp->year, pp->day, pp->hour,
1336 		    pp->minute, pp->second, leapchar, up->dst, up->dut,
1337 		    minset, up->ident, dtemp, up->ntstamp);
1338 #else
1339 	sprintf(pp->a_lastcode,
1340 	    "%c%1X %04d %3d %02d:%02d:%02d %c%x %+d %d %s %.0f %d",
1341 	    synchar, qual, pp->year, pp->day, pp->hour, pp->minute,
1342 	    pp->second, leapchar, up->dst, up->dut, minset, up->ident,
1343 	    dtemp, up->ntstamp);
1344 #endif /* HAVE_AUDIO */
1345 	pp->lencode = strlen(pp->a_lastcode);
1346 
1347 	/*
1348 	 * If in sync and the signal metric is above threshold, the
1349 	 * timecode is ipso fatso valid and can be selected to
1350 	 * discipline the clock. Be sure not to leave stray timestamps
1351 	 * around if signals are too weak or the clock time is invalid.
1352 	 */
1353 	if (up->status & INSYNC && dtemp > METRIC) {
1354 		if (!clocktime(pp->day, pp->hour, pp->minute, 0, GMT,
1355 		    up->tstamp[0].l_ui, &pp->yearstart, &offset.l_ui)) {
1356 			up->errflg = CEVNT_BADTIME;
1357 		} else {
1358 			offset.l_uf = 0;
1359 			for (i = 0; i < up->ntstamp; i++)
1360 				refclock_process_offset(pp, offset,
1361 				    up->tstamp[i], FUDGE +
1362 				    pp->fudgetime1);
1363 			pp->lastref = up->timestamp;
1364 			refclock_receive(peer);
1365 		}
1366 		record_clock_stats(&peer->srcadr, pp->a_lastcode);
1367 	} else if (pp->sloppyclockflag & CLK_FLAG4) {
1368 		record_clock_stats(&peer->srcadr, pp->a_lastcode);
1369 	}
1370 #ifdef DEBUG
1371 	if (debug)
1372 		printf("chu: timecode %d %s\n", pp->lencode,
1373 		    pp->a_lastcode);
1374 #endif
1375 #ifdef ICOM
1376 	chu_newchan(peer, dtemp);
1377 #endif /* ICOM */
1378 	chu_clear(peer);
1379 	if (up->errflg)
1380 		refclock_report(peer, up->errflg);
1381 	up->errflg = 0;
1382 }
1383 
1384 
1385 /*
1386  * chu_major - majority decoder
1387  */
1388 static double
1389 chu_major(
1390 	struct peer *peer	/* peer structure pointer */
1391 	)
1392 {
1393 	struct refclockproc *pp;
1394 	struct chuunit *up;
1395 
1396 	u_char	code[11];	/* decoded timecode */
1397 	int	mindist;	/* minimum distance */
1398 	int	val1, val2;	/* maximum distance */
1399 	int	synchar;	/* stray cat */
1400 	int	temp;
1401 	int	i, j, k;
1402 
1403 	pp = peer->procptr;
1404 	up = (struct chuunit *)pp->unitptr;
1405 
1406 	/*
1407 	 * Majority decoder. Each burst encodes two replications at each
1408 	 * digit position in the timecode. Each row of the decoding
1409 	 * matrix encodes the number of occurrences of each digit found
1410 	 * at the corresponding position. The maximum over all
1411 	 * occurrences at each position is the distance for this
1412 	 * position and the corresponding digit is the maximum
1413 	 * likelihood candidate. If the distance is zero, assume a miss
1414 	 * '_'; if the distance is not more than half the total number
1415 	 * of occurrences, assume a soft error '*'; if two different
1416 	 * digits with the same distance are found, assume a hard error
1417 	 * '='. These will later cause a format error when the timecode
1418 	 * is interpreted. The decoding distance is defined as the
1419 	 * minimum distance over the first nine digits. The tenth digit
1420 	 * varies over the seconds, so we don't count it.
1421 	 */
1422 	mindist = 16;
1423 	for (i = 0; i < 9; i++) {
1424 		val1 = val2 = 0;
1425 		k = 0;
1426 		for (j = 0; j < 16; j++) {
1427 			temp = up->decode[i][j] + up->decode[i + 10][j];
1428 			if (temp > val1) {
1429 				val2 = val1;
1430 				val1 = temp;
1431 				k = j;
1432 			}
1433 		}
1434 		if (val1 == 0)
1435 			code[i] = HEX_MISS;
1436 		else if (val1 == val2)
1437 			code[i] = HEX_HARD;
1438 		else if (val1 <= up->burstcnt)
1439 			code[i] = HEX_SOFT;
1440 		else
1441 			code[i] = k;
1442 		if (val1 < mindist)
1443 			mindist = val1;
1444 		code[i] = hexchar[code[i]];
1445 	}
1446 	code[i] = 0;
1447 
1448 	/*
1449 	 * A valid timecode requires a minimum distance at least half
1450 	 * the total number of occurrences. A valid timecode also
1451 	 * requires at least 20 valid timestamps.
1452 	 */
1453 	if (up->burstcnt < MINBURST || mindist < up->burstcnt)
1454 		up->status |= DECODE;
1455 	if (up->ntstamp < MINSTAMP)
1456 		up->status |= STAMP;
1457 
1458 	/*
1459 	 * Compute the timecode timestamp from the days, hours and
1460 	 * minutes of the timecode. Use clocktime() for the aggregate
1461 	 * minutes and the minute offset computed from the burst
1462 	 * seconds. Note that this code relies on the filesystem time
1463 	 * for the years and does not use the years of the timecode.
1464 	 */
1465 	if (sscanf((char *)code, "%1x%3d%2d%2d", &synchar, &pp->day,
1466 	    &pp->hour, &pp->minute) != 4) {
1467 		up->status |= AFORMAT;
1468 		return (0);
1469 	}
1470 	if (up->status & (DECODE | STAMP)) {
1471 		up->errflg = CEVNT_BADREPLY;
1472 		return (0);
1473 	}
1474 	return (mindist * 100. / (2. * up->burstcnt));
1475 }
1476 
1477 
1478 /*
1479  * chu_clear - clear decoding matrix
1480  */
1481 static void
1482 chu_clear(
1483 	struct peer *peer	/* peer structure pointer */
1484 	)
1485 {
1486 	struct refclockproc *pp;
1487 	struct chuunit *up;
1488 	int	i, j;
1489 
1490 	pp = peer->procptr;
1491 	up = (struct chuunit *)pp->unitptr;
1492 
1493 	/*
1494 	 * Clear stuff for the minute.
1495 	 */
1496 	up->ndx = up->prevsec = 0;
1497 	up->burstcnt = up->ntstamp = 0;
1498 	up->status &= INSYNC;
1499 	for (i = 0; i < 20; i++) {
1500 		for (j = 0; j < 16; j++)
1501 			up->decode[i][j] = 0;
1502 	}
1503 }
1504 
1505 #ifdef ICOM
1506 /*
1507  * chu_newchan - called once per minute to find the best channel;
1508  * returns zero on success, nonzero if ICOM error.
1509  */
1510 static int
1511 chu_newchan(
1512 	struct peer *peer,
1513 	double	met
1514 	)
1515 {
1516 	struct chuunit *up;
1517 	struct refclockproc *pp;
1518 	struct xmtr *sp;
1519 	char	tbuf[80];	/* trace buffer */
1520 	int	rval;
1521 	double	metric;
1522 	int	i, j;
1523 
1524 	pp = peer->procptr;
1525 	up = (struct chuunit *)pp->unitptr;
1526 
1527 	/*
1528 	 * The radio can be tuned to three channels: 0 (3330 kHz), 1
1529 	 * (7335 kHz) and 2 (14670 kHz). There are five one-minute
1530 	 * dwells in each cycle. During the first dwell the radio is
1531 	 * tuned to one of three probe channels; during the remaining
1532 	 * four dwells the radio is tuned to the data channel. The probe
1533 	 * channel is selects as the least recently used. At the end of
1534 	 * each dwell the channel metrics are measured and the highest
1535 	 * one is selected as the data channel.
1536 	 */
1537 	if (up->fd_icom <= 0)
1538 		return (0);
1539 
1540 	sp = &up->xmtr[up->achan];
1541 	sp->metric -= sp->integ[sp->iptr];
1542 	sp->integ[sp->iptr] = met;
1543 	sp->metric += sp->integ[sp->iptr];
1544 	sp->iptr = (sp->iptr + 1) % ISTAGE;
1545 	metric = 0;
1546 	j = 0;
1547 	for (i = 0; i < NCHAN; i++) {
1548 		up->xmtr[i].probe++;
1549 		if (i == up->achan)
1550 			up->xmtr[i].probe = 0;
1551 		if (up->xmtr[i].metric < metric)
1552 			continue;
1553 		metric = up->xmtr[i].metric;
1554 		j = i;
1555 	}
1556 	if (j != up->chan && metric > 0) {
1557 		up->chan = j;
1558 		sprintf(tbuf, "chu: QSY to %.3f MHz metric %.0f",
1559 		    qsy[up->chan], metric);
1560 		if (pp->sloppyclockflag & CLK_FLAG4)
1561 			record_clock_stats(&peer->srcadr, tbuf);
1562 #ifdef DEBUG
1563 		if (debug)
1564 			printf("%s\n", tbuf);
1565 #endif
1566 	}
1567 
1568 	/*
1569 	 * Start the next dwell. We speed up the initial sync a little.
1570 	 * If not in sync and no bursts were heard the previous dwell,
1571 	 * restart the probe.
1572 	 */
1573 	rval = 0;
1574 	if (up->burstcnt == 0 && !(up->status & INSYNC))
1575 		up->dwell = 0;
1576 #ifdef DEBUG
1577 	if (debug)
1578 		printf(
1579 		    "chu: at %ld dwell %d achan %d metric %.0f chan %d\n",
1580 		    current_time, up->dwell, up->achan, sp->metric,
1581 		    up->chan);
1582 #endif
1583 	if (up->dwell == 0) {
1584 		rval = 0;
1585 		for (i = 0; i < NCHAN; i++) {
1586 			if (up->xmtr[i].probe < rval)
1587 				continue;
1588 			rval = up->xmtr[i].probe;
1589 			up->achan = i;
1590 		}
1591 		rval = icom_freq(up->fd_icom, peer->ttl & 0x7f,
1592 		    qsy[up->achan] + TUNE);
1593 #ifdef DEBUG
1594 		if (debug)
1595 			printf("chu: at %ld probe channel %d\n",
1596 		    current_time, up->achan);
1597 #endif
1598 	} else {
1599 		if (up->achan != up->chan) {
1600 			rval = icom_freq(up->fd_icom, peer->ttl & 0x7f,
1601 			    qsy[up->chan] + TUNE);
1602 			up->achan = up->chan;
1603 		}
1604 	}
1605 	sprintf(up->ident, "CHU%d", up->achan);
1606 	memcpy(&peer->refid, up->ident, 4);
1607 	up->dwell = (up->dwell + 1) % DWELL;
1608 	return (rval);
1609 }
1610 #endif /* ICOM */
1611 
1612 /*
1613  * chu_dist - determine the distance of two octet arguments
1614  */
1615 static int
1616 chu_dist(
1617 	int	x,		/* an octet of bits */
1618 	int	y		/* another octet of bits */
1619 	)
1620 {
1621 	int	val;		/* bit count */
1622 	int	temp;
1623 	int	i;
1624 
1625 	/*
1626 	 * The distance is determined as the weight of the exclusive OR
1627 	 * of the two arguments. The weight is determined by the number
1628 	 * of one bits in the result. Each one bit increases the weight,
1629 	 * while each zero bit decreases it.
1630 	 */
1631 	temp = x ^ y;
1632 	val = 0;
1633 	for (i = 0; i < 8; i++) {
1634 		if ((temp & 0x1) == 0)
1635 			val++;
1636 		else
1637 			val--;
1638 		temp >>= 1;
1639 	}
1640 	return (val);
1641 }
1642 
1643 
1644 #ifdef HAVE_AUDIO
1645 /*
1646  * chu_gain - adjust codec gain
1647  *
1648  * This routine is called once each second. If the signal envelope
1649  * amplitude is too low, the codec gain is bumped up by four units; if
1650  * too high, it is bumped down. The decoder is relatively insensitive to
1651  * amplitude, so this crudity works just fine. The input port is set and
1652  * the error flag is cleared, mostly to be ornery.
1653  */
1654 static void
1655 chu_gain(
1656 	struct peer *peer	/* peer structure pointer */
1657 	)
1658 {
1659 	struct refclockproc *pp;
1660 	struct chuunit *up;
1661 
1662 	pp = peer->procptr;
1663 	up = (struct chuunit *)pp->unitptr;
1664 
1665 	/*
1666 	 * Apparently, the codec uses only the high order bits of the
1667 	 * gain control field. Thus, it may take awhile for changes to
1668 	 * wiggle the hardware bits.
1669 	 */
1670 	if (up->clipcnt == 0) {
1671 		up->gain += 4;
1672 		if (up->gain > MAXGAIN)
1673 			up->gain = MAXGAIN;
1674 	} else if (up->clipcnt > MAXCLP) {
1675 		up->gain -= 4;
1676 		if (up->gain < 0)
1677 			up->gain = 0;
1678 	}
1679 	audio_gain(up->gain, up->mongain, up->port);
1680 	up->clipcnt = 0;
1681 }
1682 #endif /* HAVE_AUDIO */
1683 
1684 
1685 #else
1686 int refclock_chu_bs;
1687 #endif /* REFCLOCK */
1688