1 /* 2 * refclock_chu - clock driver for Canadian CHU time/frequency station 3 */ 4 #ifdef HAVE_CONFIG_H 5 #include <config.h> 6 #endif 7 8 #if defined(REFCLOCK) && defined(CLOCK_CHU) 9 10 #include "ntpd.h" 11 #include "ntp_io.h" 12 #include "ntp_refclock.h" 13 #include "ntp_calendar.h" 14 #include "ntp_stdlib.h" 15 16 #include <stdio.h> 17 #include <ctype.h> 18 #include <math.h> 19 20 #ifdef HAVE_AUDIO 21 #include "audio.h" 22 #endif /* HAVE_AUDIO */ 23 24 #define ICOM 1 /* undefine to suppress ICOM code */ 25 26 #ifdef ICOM 27 #include "icom.h" 28 #endif /* ICOM */ 29 30 /* 31 * Audio CHU demodulator/decoder 32 * 33 * This driver synchronizes the computer time using data encoded in 34 * radio transmissions from Canadian time/frequency station CHU in 35 * Ottawa, Ontario. Transmissions are made continuously on 3330 kHz, 36 * 7335 kHz and 14670 kHz in upper sideband, compatible AM mode. An 37 * ordinary shortwave receiver can be tuned manually to one of these 38 * frequencies or, in the case of ICOM receivers, the receiver can be 39 * tuned automatically using this program as propagation conditions 40 * change throughout the day and night. 41 * 42 * The driver receives, demodulates and decodes the radio signals when 43 * connected to the audio codec of a Sun workstation running SunOS or 44 * Solaris, and with a little help, other workstations with similar 45 * codecs or sound cards. In this implementation, only one audio driver 46 * and codec can be supported on a single machine. 47 * 48 * The driver can be compiled to use a Bell 103 compatible modem or 49 * modem chip to receive the radio signal and demodulate the data. 50 * Alternatively, the driver can be compiled to use the audio codec of 51 * the Sun workstation or another with compatible audio drivers. In the 52 * latter case, the driver implements the modem using DSP routines, so 53 * the radio can be connected directly to either the microphone on line 54 * input port. In either case, the driver decodes the data using a 55 * maximum likelihood technique which exploits the considerable degree 56 * of redundancy available to maximize accuracy and minimize errors. 57 * 58 * The CHU time broadcast includes an audio signal compatible with the 59 * Bell 103 modem standard (mark = 2225 Hz, space = 2025 Hz). It consist 60 * of nine, ten-character bursts transmitted at 300 bps and beginning 61 * each second from second 31 to second 39 of the minute. Each character 62 * consists of eight data bits plus one start bit and two stop bits to 63 * encode two hex digits. The burst data consist of five characters (ten 64 * hex digits) followed by a repeat of these characters. In format A, 65 * the characters are repeated in the same polarity; in format B, the 66 * characters are repeated in the opposite polarity. 67 * 68 * Format A bursts are sent at seconds 32 through 39 of the minute in 69 * hex digits 70 * 71 * 6dddhhmmss6dddhhmmss 72 * 73 * The first ten digits encode a frame marker (6) followed by the day 74 * (ddd), hour (hh in UTC), minute (mm) and the second (ss). Since 75 * format A bursts are sent during the third decade of seconds the tens 76 * digit of ss is always 3. The driver uses this to determine correct 77 * burst synchronization. These digits are then repeated with the same 78 * polarity. 79 * 80 * Format B bursts are sent at second 31 of the minute in hex digits 81 * 82 * xdyyyyttaaxdyyyyttaa 83 * 84 * The first ten digits encode a code (x described below) followed by 85 * the DUT1 (d in deciseconds), Gregorian year (yyyy), difference TAI - 86 * UTC (tt) and daylight time indicator (aa) peculiar to Canada. These 87 * digits are then repeated with inverted polarity. 88 * 89 * The x is coded 90 * 91 * 1 Sign of DUT (0 = +) 92 * 2 Leap second warning. One second will be added. 93 * 4 Leap second warning. One second will be subtracted. 94 * 8 Even parity bit for this nibble. 95 * 96 * By design, the last stop bit of the last character in the burst 97 * coincides with 0.5 second. Since characters have 11 bits and are 98 * transmitted at 300 bps, the last stop bit of the first character 99 * coincides with 0.5 - 10 * 11/300 = 0.133 second. Depending on the 100 * UART, character interrupts can vary somewhere between the beginning 101 * of bit 9 and end of bit 11. These eccentricities can be corrected 102 * along with the radio propagation delay using fudge time 1. 103 * 104 * Debugging aids 105 * 106 * The timecode format used for debugging and data recording includes 107 * data helpful in diagnosing problems with the radio signal and serial 108 * connections. With debugging enabled (-d -d -d on the ntpd command 109 * line), the driver produces one line for each burst in two formats 110 * corresponding to format A and B. Following is format A: 111 * 112 * n b f s m code 113 * 114 * where n is the number of characters in the burst (0-11), b the burst 115 * distance (0-40), f the field alignment (-1, 0, 1), s the 116 * synchronization distance (0-16), m the burst number (2-9) and code 117 * the burst characters as received. Note that the hex digits in each 118 * character are reversed, so the burst 119 * 120 * 10 38 0 16 9 06851292930685129293 121 * 122 * is interpreted as containing 11 characters with burst distance 38, 123 * field alignment 0, synchronization distance 16 and burst number 9. 124 * The nibble-swapped timecode shows day 58, hour 21, minute 29 and 125 * second 39. 126 * 127 * When the audio driver is compiled, format A is preceded by 128 * the current gain (0-255) and relative signal level (0-9999). The 129 * receiver folume control should be set so that the gain is somewhere 130 * near the middle of the range 0-255, which results in a signal level 131 * near 1000. 132 * 133 * Following is format B: 134 * 135 * n b s code 136 * 137 * where n is the number of characters in the burst (0-11), b the burst 138 * distance (0-40), s the synchronization distance (0-40) and code the 139 * burst characters as received. Note that the hex digits in each 140 * character are reversed and the last ten digits inverted, so the burst 141 * 142 * 11 40 1091891300ef6e76ecff 143 * 144 * is interpreted as containing 11 characters with burst distance 40. 145 * The nibble-swapped timecode shows DUT1 +0.1 second, year 1998 and TAI 146 * - UTC 31 seconds. 147 * 148 * In addition to the above, the reference timecode is updated and 149 * written to the clockstats file and debug score after the last burst 150 * received in the minute. The format is 151 * 152 * qq yyyy ddd hh:mm:ss nn dd tt 153 * 154 * where qq are the error flags, as described below, yyyy is the year, 155 * ddd the day, hh:mm:ss the time of day, nn the number of format A 156 * bursts received during the previous minute, dd the decoding distance 157 * and tt the number of timestamps. The error flags are cleared after 158 * every update. 159 * 160 * Fudge factors 161 * 162 * For accuracies better than the low millisceconds, fudge time1 can be 163 * set to the radio propagation delay from CHU to the receiver. This can 164 * be done conviently using the minimuf program. When the modem driver 165 * is compiled, fudge flag3 enables the ppsclock line discipline. Fudge 166 * flag4 causes the dubugging output described above to be recorded in 167 * the clockstats file. 168 * 169 * When the audio driver is compiled, fudge flag2 selects the audio 170 * input port, where 0 is the mike port (default) and 1 is the line-in 171 * port. It does not seem useful to select the compact disc player port. 172 * Fudge flag3 enables audio monitoring of the input signal. For this 173 * purpose, the speaker volume must be set before the driver is started. 174 * 175 * The audio codec code is normally compiled in the driver if the 176 * architecture supports it (HAVE_AUDIO defined), but is used only if the 177 * link /dev/chu_audio is defined and valid. The serial port 178 * code is alwasy compiled in the driver, but is used only if the autdio 179 * codec is not available and the link /dev/chu%d is defined and valid. 180 * The ICOM code is normally compiled in the driver if selected (ICOM 181 * defined), but is used only if the link /dev/icom%d is defined and 182 * valid and the mode keyword on the server configuration command 183 * specifies a nonzero mode (ICOM ID select code). The C-IV speed is 184 * 9600 bps if the high order 0x80 bit of the mode is zero and 1200 bps 185 * if one. The C-IV trace is turned on if the debug level is greater 186 * than one. 187 */ 188 /* 189 * Interface definitions 190 */ 191 #define SPEED232 B300 /* uart speed (300 baud) */ 192 #define PRECISION (-10) /* precision assumed (about 1 ms) */ 193 #define REFID "CHU" /* reference ID */ 194 #define DEVICE "/dev/chu%d" /* device name and unit */ 195 #define SPEED232 B300 /* UART speed (300 baud) */ 196 #ifdef ICOM 197 #define DWELL 5 /* minutes before qsy */ 198 #define NCHAN 3 /* number of channels */ 199 #endif /* ICOM */ 200 #ifdef HAVE_AUDIO 201 202 /* 203 * Audio demodulator definitions 204 */ 205 #define SECOND 8000 /* nominal sample rate (Hz) */ 206 #define BAUD 300 /* modulation rate (bps) */ 207 #define OFFSET 128 /* companded sample offset */ 208 #define SIZE 256 /* decompanding table size */ 209 #define MAXSIG 6000. /* maximum signal level */ 210 #define LIMIT 1000. /* soft limiter threshold */ 211 #define AGAIN 6. /* baseband gain */ 212 #define LAG 10 /* discriminator lag */ 213 #define DEVICE_AUDIO "/dev/chu_audio" /* device name */ 214 #define DESCRIPTION "CHU Audio/Modem Receiver" /* WRU */ 215 #else 216 #define DESCRIPTION "CHU Modem Receiver" /* WRU */ 217 #endif /* HAVE_AUDIO */ 218 219 /* 220 * Decoder definitions 221 */ 222 #define CHAR (11. / 300.) /* character time (s) */ 223 #define FUDGE .185 /* offset to first stop bit (s) */ 224 #define BURST 11 /* max characters per burst */ 225 #define MINCHAR 9 /* min characters per burst */ 226 #define MINDIST 28 /* min burst distance (of 40) */ 227 #define MINSYNC 8 /* min sync distance (of 16) */ 228 #define MINSTAMP 20 /* min timestamps (of 60) */ 229 #define PANIC (4 * 1440) /* panic restart */ 230 231 /* 232 * Hex extension codes (>= 16) 233 */ 234 #define HEX_MISS 16 /* miss */ 235 #define HEX_SOFT 17 /* soft error */ 236 #define HEX_HARD 18 /* hard error */ 237 238 /* 239 * Status bits (status) 240 */ 241 #define RUNT 0x0001 /* runt burst */ 242 #define NOISE 0x0002 /* noise burst */ 243 #define BFRAME 0x0004 /* invalid format B frame sync */ 244 #define BFORMAT 0x0008 /* invalid format B data */ 245 #define AFRAME 0x0010 /* invalid format A frame sync */ 246 #define AFORMAT 0x0020 /* invalid format A data */ 247 #define DECODE 0x0040 /* invalid data decode */ 248 #define STAMP 0x0080 /* too few timestamps */ 249 #define INYEAR 0x0100 /* valid B frame */ 250 #define INSYNC 0x0200 /* clock synchronized */ 251 252 /* 253 * Alarm status bits (alarm) 254 * 255 * These alarms are set at the end of a minute in which at least one 256 * burst was received. SYNERR is raised if the AFRAME or BFRAME status 257 * bits are set during the minute, FMTERR is raised if the AFORMAT or 258 * BFORMAT status bits are set, DECERR is raised if the DECODE status 259 * bit is set and TSPERR is raised if the STAMP status bit is set. 260 */ 261 #define SYNERR 0x01 /* frame sync error */ 262 #define FMTERR 0x02 /* data format error */ 263 #define DECERR 0x04 /* data decoding error */ 264 #define TSPERR 0x08 /* insufficient data */ 265 266 #ifdef HAVE_AUDIO 267 struct surv { 268 double shift[12]; /* mark register */ 269 double es_max, es_min; /* max/min envelope signals */ 270 double dist; /* sample distance */ 271 int uart; /* decoded character */ 272 }; 273 #endif /* HAVE_AUDIO */ 274 275 /* 276 * CHU unit control structure 277 */ 278 struct chuunit { 279 u_char decode[20][16]; /* maximum likelihood decoding matrix */ 280 l_fp cstamp[BURST]; /* character timestamps */ 281 l_fp tstamp[MAXSTAGE]; /* timestamp samples */ 282 l_fp timestamp; /* current buffer timestamp */ 283 l_fp laststamp; /* last buffer timestamp */ 284 l_fp charstamp; /* character time as a l_fp */ 285 int errflg; /* error flags */ 286 int status; /* status bits */ 287 int bufptr; /* buffer index pointer */ 288 char ident[10]; /* transmitter frequency */ 289 #ifdef ICOM 290 int fd_icom; /* ICOM file descriptor */ 291 int chan; /* frequency identifier */ 292 int dwell; /* dwell minutes at current frequency */ 293 #endif /* ICOM */ 294 295 /* 296 * Character burst variables 297 */ 298 int cbuf[BURST]; /* character buffer */ 299 int ntstamp; /* number of timestamp samples */ 300 int ndx; /* buffer start index */ 301 int prevsec; /* previous burst second */ 302 int burdist; /* burst distance */ 303 int mindist; /* minimum distance */ 304 int syndist; /* sync distance */ 305 int burstcnt; /* format A bursts this minute */ 306 307 /* 308 * Format particulars 309 */ 310 int leap; /* leap/dut code */ 311 int dut; /* UTC1 correction */ 312 int tai; /* TAI - UTC correction */ 313 int dst; /* Canadian DST code */ 314 315 #ifdef HAVE_AUDIO 316 /* 317 * Audio codec variables 318 */ 319 int fd_audio; /* audio port file descriptor */ 320 double comp[SIZE]; /* decompanding table */ 321 int port; /* codec port */ 322 int gain; /* codec gain */ 323 int bufcnt; /* samples in buffer */ 324 int clipcnt; /* sample clip count */ 325 int seccnt; /* second interval counter */ 326 327 /* 328 * Modem variables 329 */ 330 l_fp tick; /* audio sample increment */ 331 double bpf[9]; /* IIR bandpass filter */ 332 double disc[LAG]; /* discriminator shift register */ 333 double lpf[27]; /* FIR lowpass filter */ 334 double monitor; /* audio monitor */ 335 double maxsignal; /* signal level */ 336 int discptr; /* discriminator pointer */ 337 338 /* 339 * Maximum likelihood UART variables 340 */ 341 double baud; /* baud interval */ 342 struct surv surv[8]; /* UART survivor structures */ 343 int decptr; /* decode pointer */ 344 int dbrk; /* holdoff counter */ 345 #endif /* HAVE_AUDIO */ 346 }; 347 348 /* 349 * Function prototypes 350 */ 351 static int chu_start P((int, struct peer *)); 352 static void chu_shutdown P((int, struct peer *)); 353 static void chu_receive P((struct recvbuf *)); 354 static void chu_poll P((int, struct peer *)); 355 356 /* 357 * More function prototypes 358 */ 359 static void chu_decode P((struct peer *, int)); 360 static void chu_burst P((struct peer *)); 361 static void chu_clear P((struct peer *)); 362 static void chu_a P((struct peer *, int)); 363 static void chu_b P((struct peer *, int)); 364 static int chu_dist P((int, int)); 365 static int chu_major P((struct peer *)); 366 #ifdef HAVE_AUDIO 367 static void chu_uart P((struct surv *, double)); 368 static void chu_rf P((struct peer *, double)); 369 static void chu_gain P((struct peer *)); 370 static void chu_audio_receive P((struct recvbuf *rbufp)); 371 #endif /* HAVE_AUDIO */ 372 static void chu_serial_receive P((struct recvbuf *rbufp)); 373 374 /* 375 * Global variables 376 */ 377 static char hexchar[] = "0123456789abcdef_-="; 378 #ifdef ICOM 379 static double qsy[NCHAN] = {3.33, 7.335, 14.67}; /* frequencies (MHz) */ 380 #endif /* ICOM */ 381 382 /* 383 * Transfer vector 384 */ 385 struct refclock refclock_chu = { 386 chu_start, /* start up driver */ 387 chu_shutdown, /* shut down driver */ 388 chu_poll, /* transmit poll message */ 389 noentry, /* not used (old chu_control) */ 390 noentry, /* initialize driver (not used) */ 391 noentry, /* not used (old chu_buginfo) */ 392 NOFLAGS /* not used */ 393 }; 394 395 396 /* 397 * chu_start - open the devices and initialize data for processing 398 */ 399 static int 400 chu_start( 401 int unit, /* instance number (not used) */ 402 struct peer *peer /* peer structure pointer */ 403 ) 404 { 405 struct chuunit *up; 406 struct refclockproc *pp; 407 char device[20]; /* device name */ 408 int fd; /* file descriptor */ 409 #ifdef ICOM 410 char tbuf[80]; /* trace buffer */ 411 int temp; 412 #endif /* ICOM */ 413 #ifdef HAVE_AUDIO 414 int fd_audio; /* audio port file descriptor */ 415 int i; /* index */ 416 double step; /* codec adjustment */ 417 418 /* 419 * Open audio device. 420 */ 421 fd_audio = audio_init(DEVICE_AUDIO); 422 #ifdef DEBUG 423 if (fd_audio > 0 && debug) 424 audio_show(); 425 #endif 426 427 /* 428 * Open serial port in raw mode. 429 */ 430 if (fd_audio > 0) { 431 fd = fd_audio; 432 } else { 433 sprintf(device, DEVICE, unit); 434 fd = refclock_open(device, SPEED232, LDISC_RAW); 435 } 436 #else /* HAVE_AUDIO */ 437 438 /* 439 * Open serial port in raw mode. 440 */ 441 sprintf(device, DEVICE, unit); 442 fd = refclock_open(device, SPEED232, LDISC_RAW); 443 #endif /* HAVE_AUDIO */ 444 if (fd <= 0) 445 return (0); 446 447 /* 448 * Allocate and initialize unit structure 449 */ 450 if (!(up = (struct chuunit *) 451 emalloc(sizeof(struct chuunit)))) { 452 close(fd); 453 return (0); 454 } 455 memset((char *)up, 0, sizeof(struct chuunit)); 456 pp = peer->procptr; 457 pp->unitptr = (caddr_t)up; 458 pp->io.clock_recv = chu_receive; 459 pp->io.srcclock = (caddr_t)peer; 460 pp->io.datalen = 0; 461 pp->io.fd = fd; 462 if (!io_addclock(&pp->io)) { 463 close(fd); 464 free(up); 465 return (0); 466 } 467 468 /* 469 * Initialize miscellaneous variables 470 */ 471 peer->precision = PRECISION; 472 pp->clockdesc = DESCRIPTION; 473 memcpy((char *)&pp->refid, REFID, 4); 474 DTOLFP(CHAR, &up->charstamp); 475 #ifdef HAVE_AUDIO 476 477 /* 478 * The companded samples are encoded sign-magnitude. The table 479 * contains all the 256 values in the interest of speed. We do 480 * this even if the audio codec is not available. C'est la lazy. 481 */ 482 up->fd_audio = fd_audio; 483 up->gain = 127; 484 up->comp[0] = up->comp[OFFSET] = 0.; 485 up->comp[1] = 1; up->comp[OFFSET + 1] = -1.; 486 up->comp[2] = 3; up->comp[OFFSET + 2] = -3.; 487 step = 2.; 488 for (i = 3; i < OFFSET; i++) { 489 up->comp[i] = up->comp[i - 1] + step; 490 up->comp[OFFSET + i] = -up->comp[i]; 491 if (i % 16 == 0) 492 step *= 2.; 493 } 494 DTOLFP(1. / SECOND, &up->tick); 495 #endif /* HAVE_AUDIO */ 496 strcpy(up->ident, "X"); 497 #ifdef ICOM 498 temp = 0; 499 #ifdef DEBUG 500 if (debug > 1) 501 temp = P_TRACE; 502 #endif 503 if (peer->ttlmax > 0) { 504 if (peer->ttlmax & 0x80) 505 up->fd_icom = icom_init("/dev/icom", B1200, 506 temp); 507 else 508 up->fd_icom = icom_init("/dev/icom", B9600, 509 temp); 510 } 511 if (up->fd_icom > 0) { 512 if (icom_freq(up->fd_icom, peer->ttlmax & 0x7f, 513 qsy[up->chan]) < 0) { 514 NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT) 515 msyslog(LOG_ERR, 516 "ICOM bus error; autotune disabled"); 517 up->errflg = CEVNT_FAULT; 518 close(up->fd_icom); 519 up->fd_icom = 0; 520 } else { 521 sprintf(up->ident, "%.1f", qsy[up->chan]); 522 sprintf(tbuf, "chu: QSY to %s MHz", up->ident); 523 record_clock_stats(&peer->srcadr, tbuf); 524 #ifdef DEBUG 525 if (debug) 526 printf("%s\n", tbuf); 527 #endif 528 } 529 } 530 #endif /* ICOM */ 531 return (1); 532 } 533 534 535 /* 536 * chu_shutdown - shut down the clock 537 */ 538 static void 539 chu_shutdown( 540 int unit, /* instance number (not used) */ 541 struct peer *peer /* peer structure pointer */ 542 ) 543 { 544 struct chuunit *up; 545 struct refclockproc *pp; 546 547 pp = peer->procptr; 548 up = (struct chuunit *)pp->unitptr; 549 if (up == NULL) 550 return; 551 io_closeclock(&pp->io); 552 if (up->fd_icom > 0) 553 close(up->fd_icom); 554 free(up); 555 } 556 557 /* 558 * chu_receive - receive data from the audio or serial device 559 */ 560 static void 561 chu_receive( 562 struct recvbuf *rbufp /* receive buffer structure pointer */ 563 ) 564 { 565 #ifdef HAVE_AUDIO 566 struct chuunit *up; 567 struct refclockproc *pp; 568 struct peer *peer; 569 570 peer = (struct peer *)rbufp->recv_srcclock; 571 pp = peer->procptr; 572 up = (struct chuunit *)pp->unitptr; 573 574 /* 575 * If the audio codec is warmed up, the buffer contains codec 576 * samples which need to be demodulated and decoded into CHU 577 * characters using the software UART. Otherwise, the buffer 578 * contains CHU characters from the serial port, so the software 579 * UART is bypassed. In this case the CPU will probably run a 580 * few degrees cooler. 581 */ 582 if (up->fd_audio > 0) 583 chu_audio_receive(rbufp); 584 else 585 chu_serial_receive(rbufp); 586 #else 587 chu_serial_receive(rbufp); 588 #endif /* HAVE_AUDIO */ 589 } 590 591 #ifdef HAVE_AUDIO 592 593 /* 594 * chu_audio_receive - receive data from the audio device 595 */ 596 static void 597 chu_audio_receive( 598 struct recvbuf *rbufp /* receive buffer structure pointer */ 599 ) 600 { 601 struct chuunit *up; 602 struct refclockproc *pp; 603 struct peer *peer; 604 605 double sample; /* codec sample */ 606 u_char *dpt; /* buffer pointer */ 607 l_fp ltemp; /* l_fp temp */ 608 int isneg; /* parity flag */ 609 double dtemp; 610 int i, j; 611 612 peer = (struct peer *)rbufp->recv_srcclock; 613 pp = peer->procptr; 614 up = (struct chuunit *)pp->unitptr; 615 616 /* 617 * Main loop - read until there ain't no more. Note codec 618 * samples are bit-inverted. 619 */ 620 up->timestamp = rbufp->recv_time; 621 up->bufcnt = rbufp->recv_length; 622 DTOLFP(up->bufcnt * 1. / SECOND, <emp); 623 L_SUB(&up->timestamp, <emp); 624 dpt = (u_char *)&rbufp->recv_space; 625 for (up->bufptr = 0; up->bufptr < up->bufcnt; up->bufptr++) { 626 sample = up->comp[~*dpt & 0xff]; 627 628 /* 629 * Clip noise spikes greater than MAXSIG. If no clips, 630 * increase the gain a tad; if the clips are too high, 631 * decrease a tad. 632 */ 633 if (sample > MAXSIG) { 634 sample = MAXSIG; 635 up->clipcnt++; 636 } else if (sample < -MAXSIG) { 637 sample = -MAXSIG; 638 up->clipcnt++; 639 } 640 up->seccnt = (up->seccnt + 1) % SECOND; 641 if (up->seccnt == 0) { 642 if (pp->sloppyclockflag & CLK_FLAG2) 643 up->port = 2; 644 else 645 up->port = 1; 646 chu_gain(peer); 647 } 648 chu_rf(peer, sample); 649 650 /* 651 * During development, it is handy to have an audio 652 * monitor that can be switched to various signals. This 653 * code converts the linear signal left in up->monitor 654 * to codec format. If we can get the grass out of this 655 * thing and improve modem performance, this expensive 656 * code will be permanently nixed. 657 */ 658 isneg = 0; 659 dtemp = up->monitor; 660 if (sample < 0) { 661 isneg = 1; 662 dtemp-= dtemp; 663 } 664 i = 0; 665 j = OFFSET >> 1; 666 while (j != 0) { 667 if (dtemp > up->comp[i]) 668 i += j; 669 else if (dtemp < up->comp[i]) 670 i -= j; 671 else 672 break; 673 j >>= 1; 674 } 675 if (isneg) 676 *dpt = ~(i + OFFSET); 677 else 678 *dpt = ~i; 679 dpt++; 680 L_ADD(&up->timestamp, &up->tick); 681 } 682 683 /* 684 * Squawk to the monitor speaker if enabled. 685 */ 686 if (pp->sloppyclockflag & CLK_FLAG3) 687 if (write(pp->io.fd, (u_char *)&rbufp->recv_space, 688 (u_int)up->bufcnt) < 0) 689 perror("chu:"); 690 } 691 692 693 /* 694 * chu_rf - filter and demodulate the FSK signal 695 * 696 * This routine implements a 300-baud Bell 103 modem with mark 2225 Hz 697 * and space 2025 Hz. It uses a bandpass filter followed by a soft 698 * limiter, FM discriminator and lowpass filter. A maximum likelihood 699 * decoder samples the baseband signal at eight times the baud rate and 700 * detects the start bit of each character. 701 * 702 * The filters are built for speed, which explains the rather clumsy 703 * code. Hopefully, the compiler will efficiently implement the move- 704 * and-muiltiply-and-add operations. 705 */ 706 static void 707 chu_rf( 708 struct peer *peer, /* peer structure pointer */ 709 double sample /* analog sample */ 710 ) 711 { 712 struct refclockproc *pp; 713 struct chuunit *up; 714 struct surv *sp; 715 716 /* 717 * Local variables 718 */ 719 double signal; /* bandpass signal */ 720 double limit; /* limiter signal */ 721 double disc; /* discriminator signal */ 722 double lpf; /* lowpass signal */ 723 double span; /* UART signal span */ 724 double dist; /* UART signal distance */ 725 int i, j; 726 727 pp = peer->procptr; 728 up = (struct chuunit *)pp->unitptr; 729 730 /* 731 * Bandpass filter. 4th-order elliptic, 500-Hz bandpass centered 732 * at 2125 Hz. Passband ripple 0.3 dB, stopband ripple 50 dB. 733 */ 734 signal = (up->bpf[8] = up->bpf[7]) * 5.844676e-01; 735 signal += (up->bpf[7] = up->bpf[6]) * 4.884860e-01; 736 signal += (up->bpf[6] = up->bpf[5]) * 2.704384e+00; 737 signal += (up->bpf[5] = up->bpf[4]) * 1.645032e+00; 738 signal += (up->bpf[4] = up->bpf[3]) * 4.644557e+00; 739 signal += (up->bpf[3] = up->bpf[2]) * 1.879165e+00; 740 signal += (up->bpf[2] = up->bpf[1]) * 3.522634e+00; 741 signal += (up->bpf[1] = up->bpf[0]) * 7.315738e-01; 742 up->bpf[0] = sample - signal; 743 signal = up->bpf[0] * 6.176213e-03 744 + up->bpf[1] * 3.156599e-03 745 + up->bpf[2] * 7.567487e-03 746 + up->bpf[3] * 4.344580e-03 747 + up->bpf[4] * 1.190128e-02 748 + up->bpf[5] * 4.344580e-03 749 + up->bpf[6] * 7.567487e-03 750 + up->bpf[7] * 3.156599e-03 751 + up->bpf[8] * 6.176213e-03; 752 753 up->monitor = signal / 4.; /* note monitor after filter */ 754 755 /* 756 * Soft limiter/discriminator. The 11-sample discriminator lag 757 * interval corresponds to three cycles of 2125 Hz, which 758 * requires the sample frequency to be 2125 * 11 / 3 = 7791.7 759 * Hz. The discriminator output varies +-0.5 interval for input 760 * frequency 2025-2225 Hz. However, we don't get to sample at 761 * this frequency, so the discriminator output is biased. Life 762 * at 8000 Hz sucks. 763 */ 764 limit = signal; 765 if (limit > LIMIT) 766 limit = LIMIT; 767 else if (limit < -LIMIT) 768 limit = -LIMIT; 769 disc = up->disc[up->discptr] * -limit; 770 up->disc[up->discptr] = limit; 771 up->discptr = (up->discptr + 1 ) % LAG; 772 if (disc >= 0) 773 disc = SQRT(disc); 774 else 775 disc = -SQRT(-disc); 776 777 /* 778 * Lowpass filter. Raised cosine, Ts = 1 / 300, beta = 0.1. 779 */ 780 lpf = (up->lpf[26] = up->lpf[25]) * 2.538771e-02; 781 lpf += (up->lpf[25] = up->lpf[24]) * 1.084671e-01; 782 lpf += (up->lpf[24] = up->lpf[23]) * 2.003159e-01; 783 lpf += (up->lpf[23] = up->lpf[22]) * 2.985303e-01; 784 lpf += (up->lpf[22] = up->lpf[21]) * 4.003697e-01; 785 lpf += (up->lpf[21] = up->lpf[20]) * 5.028552e-01; 786 lpf += (up->lpf[20] = up->lpf[19]) * 6.028795e-01; 787 lpf += (up->lpf[19] = up->lpf[18]) * 6.973249e-01; 788 lpf += (up->lpf[18] = up->lpf[17]) * 7.831828e-01; 789 lpf += (up->lpf[17] = up->lpf[16]) * 8.576717e-01; 790 lpf += (up->lpf[16] = up->lpf[15]) * 9.183463e-01; 791 lpf += (up->lpf[15] = up->lpf[14]) * 9.631951e-01; 792 lpf += (up->lpf[14] = up->lpf[13]) * 9.907208e-01; 793 lpf += (up->lpf[13] = up->lpf[12]) * 1.000000e+00; 794 lpf += (up->lpf[12] = up->lpf[11]) * 9.907208e-01; 795 lpf += (up->lpf[11] = up->lpf[10]) * 9.631951e-01; 796 lpf += (up->lpf[10] = up->lpf[9]) * 9.183463e-01; 797 lpf += (up->lpf[9] = up->lpf[8]) * 8.576717e-01; 798 lpf += (up->lpf[8] = up->lpf[7]) * 7.831828e-01; 799 lpf += (up->lpf[7] = up->lpf[6]) * 6.973249e-01; 800 lpf += (up->lpf[6] = up->lpf[5]) * 6.028795e-01; 801 lpf += (up->lpf[5] = up->lpf[4]) * 5.028552e-01; 802 lpf += (up->lpf[4] = up->lpf[3]) * 4.003697e-01; 803 lpf += (up->lpf[3] = up->lpf[2]) * 2.985303e-01; 804 lpf += (up->lpf[2] = up->lpf[1]) * 2.003159e-01; 805 lpf += (up->lpf[1] = up->lpf[0]) * 1.084671e-01; 806 lpf += up->lpf[0] = disc * 2.538771e-02; 807 808 /* 809 * Maximum likelihood decoder. The UART updates each of the 810 * eight survivors and determines the span, slice level and 811 * tentative decoded character. Valid 11-bit characters are 812 * framed so that bit 1 and bit 11 (stop bits) are mark and bit 813 * 2 (start bit) is space. When a valid character is found, the 814 * survivor with maximum distance determines the final decoded 815 * character. 816 */ 817 up->baud += 1. / SECOND; 818 if (up->baud > 1. / (BAUD * 8.)) { 819 up->baud -= 1. / (BAUD * 8.); 820 sp = &up->surv[up->decptr]; 821 span = sp->es_max - sp->es_min; 822 up->maxsignal += (span - up->maxsignal) / 80.; 823 if (up->dbrk > 0) { 824 up->dbrk--; 825 } else if ((sp->uart & 0x403) == 0x401 && span > 1000.) 826 { 827 dist = 0; 828 j = 0; 829 for (i = 0; i < 8; i++) { 830 if (up->surv[i].dist > dist) { 831 dist = up->surv[i].dist; 832 j = i; 833 } 834 } 835 chu_decode(peer, (up->surv[j].uart >> 2) & 836 0xff); 837 up->dbrk = 80; 838 } 839 up->decptr = (up->decptr + 1) % 8; 840 chu_uart(sp, -lpf * AGAIN); 841 } 842 } 843 844 845 /* 846 * chu_uart - maximum likelihood UART 847 * 848 * This routine updates a shift register holding the last 11 envelope 849 * samples. It then computes the slice level and span over these samples 850 * and determines the tentative data bits and distance. The calling 851 * program selects over the last eight survivors the one with maximum 852 * distance to determine the decoded character. 853 */ 854 static void 855 chu_uart( 856 struct surv *sp, /* survivor structure pointer */ 857 double sample /* baseband signal */ 858 ) 859 { 860 double es_max, es_min; /* max/min envelope */ 861 double slice; /* slice level */ 862 double dist; /* distance */ 863 double dtemp; 864 int i; 865 866 /* 867 * Save the sample and shift right. At the same time, measure 868 * the maximum and minimum over all eleven samples. 869 */ 870 es_max = -1e6; 871 es_min = 1e6; 872 sp->shift[0] = sample; 873 for (i = 11; i > 0; i--) { 874 sp->shift[i] = sp->shift[i - 1]; 875 if (sp->shift[i] > es_max) 876 es_max = sp->shift[i]; 877 if (sp->shift[i] < es_min) 878 es_min = sp->shift[i]; 879 } 880 881 /* 882 * Determine the slice level midway beteen the maximum and 883 * minimum and the span as the maximum less the minimum. Compute 884 * the distance on the assumption the first and last bits must 885 * be mark, the second space and the rest either mark or space. 886 */ 887 slice = (es_max + es_min) / 2.; 888 dist = 0; 889 sp->uart = 0; 890 for (i = 1; i < 12; i++) { 891 sp->uart <<= 1; 892 dtemp = sp->shift[i]; 893 if (dtemp > slice) 894 sp->uart |= 0x1; 895 if (i == 1 || i == 11) { 896 dist += dtemp - es_min; 897 } else if (i == 10) { 898 dist += es_max - dtemp; 899 } else { 900 if (dtemp > slice) 901 dist += dtemp - es_min; 902 else 903 dist += es_max - dtemp; 904 } 905 } 906 sp->es_max = es_max; 907 sp->es_min = es_min; 908 sp->dist = dist / (11 * (es_max - es_min)); 909 } 910 #endif /* HAVE_AUDIO */ 911 912 913 /* 914 * chu_serial_receive - receive data from the serial device 915 */ 916 static void 917 chu_serial_receive( 918 struct recvbuf *rbufp /* receive buffer structure pointer */ 919 ) 920 { 921 struct chuunit *up; 922 struct refclockproc *pp; 923 struct peer *peer; 924 925 u_char *dpt; /* receive buffer pointer */ 926 927 peer = (struct peer *)rbufp->recv_srcclock; 928 pp = peer->procptr; 929 up = (struct chuunit *)pp->unitptr; 930 931 /* 932 * Initialize pointers and read the timecode and timestamp. 933 */ 934 up->timestamp = rbufp->recv_time; 935 dpt = (u_char *)&rbufp->recv_space; 936 chu_decode(peer, *dpt); 937 } 938 939 940 /* 941 * chu_decode - decode the character data 942 */ 943 static void 944 chu_decode( 945 struct peer *peer, /* peer structure pointer */ 946 int hexhex /* data character */ 947 ) 948 { 949 struct refclockproc *pp; 950 struct chuunit *up; 951 952 l_fp tstmp; /* timestamp temp */ 953 double dtemp; 954 955 pp = peer->procptr; 956 up = (struct chuunit *)pp->unitptr; 957 958 /* 959 * If the interval since the last character is greater than the 960 * longest burst, process the last burst and start a new one. If 961 * the interval is less than this but greater than two 962 * characters, consider this a noise burst and reject it. 963 */ 964 tstmp = up->timestamp; 965 if (L_ISZERO(&up->laststamp)) 966 up->laststamp = up->timestamp; 967 L_SUB(&tstmp, &up->laststamp); 968 up->laststamp = up->timestamp; 969 LFPTOD(&tstmp, dtemp); 970 if (dtemp > BURST * CHAR) { 971 chu_burst(peer); 972 up->ndx = 0; 973 } else if (dtemp > 2.5 * CHAR) { 974 up->ndx = 0; 975 } 976 977 /* 978 * Append the character to the current burst and append the 979 * timestamp to the timestamp list. 980 */ 981 if (up->ndx < BURST) { 982 up->cbuf[up->ndx] = hexhex & 0xff; 983 up->cstamp[up->ndx] = up->timestamp; 984 up->ndx++; 985 986 } 987 } 988 989 990 /* 991 * chu_burst - search for valid burst format 992 */ 993 static void 994 chu_burst( 995 struct peer *peer 996 ) 997 { 998 struct chuunit *up; 999 struct refclockproc *pp; 1000 1001 int i; 1002 1003 pp = peer->procptr; 1004 up = (struct chuunit *)pp->unitptr; 1005 1006 /* 1007 * Correlate a block of five characters with the next block of 1008 * five characters. The burst distance is defined as the number 1009 * of bits that match in the two blocks for format A and that 1010 * match the inverse for format B. 1011 */ 1012 if (up->ndx < MINCHAR) { 1013 up->status |= RUNT; 1014 return; 1015 } 1016 up->burdist = 0; 1017 for (i = 0; i < 5 && i < up->ndx - 5; i++) 1018 up->burdist += chu_dist(up->cbuf[i], up->cbuf[i + 5]); 1019 1020 /* 1021 * If the burst distance is at least MINDIST, this must be a 1022 * format A burst; if the value is not greater than -MINDIST, it 1023 * must be a format B burst. If the B burst is perfect, we 1024 * believe it; otherwise, it is a noise burst and of no use to 1025 * anybody. 1026 */ 1027 if (up->burdist >= MINDIST) { 1028 chu_a(peer, up->ndx); 1029 } else if (up->burdist <= -MINDIST) { 1030 chu_b(peer, up->ndx); 1031 } else { 1032 up->status |= NOISE; 1033 return; 1034 } 1035 1036 /* 1037 * If this is a valid burst, wait a guard time of ten seconds to 1038 * allow for more bursts, then arm the poll update routine to 1039 * process the minute. Don't do this if this is called from the 1040 * timer interrupt routine. 1041 */ 1042 if (peer->outdate != current_time) 1043 peer->nextdate = current_time + 10; 1044 } 1045 1046 1047 /* 1048 * chu_b - decode format B burst 1049 */ 1050 static void 1051 chu_b( 1052 struct peer *peer, 1053 int nchar 1054 ) 1055 { 1056 struct refclockproc *pp; 1057 struct chuunit *up; 1058 1059 u_char code[11]; /* decoded timecode */ 1060 char tbuf[80]; /* trace buffer */ 1061 l_fp offset; /* timestamp offset */ 1062 int i; 1063 1064 pp = peer->procptr; 1065 up = (struct chuunit *)pp->unitptr; 1066 1067 /* 1068 * In a format B burst, a character is considered valid only if 1069 * the first occurrence matches the last occurrence. The burst 1070 * is considered valid only if all characters are valid; that 1071 * is, only if the distance is 40. 1072 */ 1073 sprintf(tbuf, "chuB %04x %2d %2d ", up->status, nchar, 1074 -up->burdist); 1075 for (i = 0; i < nchar; i++) 1076 sprintf(&tbuf[strlen(tbuf)], "%02x", 1077 up->cbuf[i]); 1078 if (pp->sloppyclockflag & CLK_FLAG4) 1079 record_clock_stats(&peer->srcadr, tbuf); 1080 #ifdef DEBUG 1081 if (debug) 1082 printf("%s\n", tbuf); 1083 #endif 1084 if (up->burdist > -40) { 1085 up->status |= BFRAME; 1086 return; 1087 } 1088 up->status |= INYEAR; 1089 1090 /* 1091 * Convert the burst data to internal format. If this succeeds, 1092 * save the timestamps for later. 1093 */ 1094 for (i = 0; i < 5; i++) { 1095 code[2 * i] = hexchar[up->cbuf[i] & 0xf]; 1096 code[2 * i + 1] = hexchar[(up->cbuf[i] >> 1097 4) & 0xf]; 1098 } 1099 if (sscanf((char *)code, "%1x%1d%4d%2d%2x", &up->leap, &up->dut, 1100 &pp->year, &up->tai, &up->dst) != 5) { 1101 up->status |= BFORMAT; 1102 return; 1103 } 1104 if (up->leap & 0x8) 1105 up->dut = -up->dut; 1106 offset.l_ui = 31; 1107 offset.l_f = 0; 1108 for (i = 0; i < nchar && i < 10; i++) { 1109 up->tstamp[up->ntstamp] = up->cstamp[i]; 1110 L_SUB(&up->tstamp[up->ntstamp], &offset); 1111 L_ADD(&offset, &up->charstamp); 1112 if (up->ntstamp < MAXSTAGE) 1113 up->ntstamp++; 1114 } 1115 } 1116 1117 1118 /* 1119 * chu_a - decode format A burst 1120 */ 1121 static void 1122 chu_a( 1123 struct peer *peer, 1124 int nchar 1125 ) 1126 { 1127 struct refclockproc *pp; 1128 struct chuunit *up; 1129 1130 char tbuf[80]; /* trace buffer */ 1131 l_fp offset; /* timestamp offset */ 1132 int val; /* distance */ 1133 int temp; 1134 int i, j, k; 1135 1136 pp = peer->procptr; 1137 up = (struct chuunit *)pp->unitptr; 1138 1139 /* 1140 * Determine correct burst phase. There are three cases 1141 * corresponding to in-phase, one character early or one 1142 * character late. These cases are distinguished by the position 1143 * of the framing digits x6 at positions 0 and 5 and x3 at 1144 * positions 4 and 9. The correct phase is when the distance 1145 * relative to the framing digits is maximum. The burst is valid 1146 * only if the maximum distance is at least MINSYNC. 1147 */ 1148 up->syndist = k = 0; 1149 val = -16; 1150 for (i = -1; i < 2; i++) { 1151 temp = up->cbuf[i + 4] & 0xf; 1152 if (i >= 0) 1153 temp |= (up->cbuf[i] & 0xf) << 4; 1154 val = chu_dist(temp, 0x63); 1155 temp = (up->cbuf[i + 5] & 0xf) << 4; 1156 if (i + 9 < nchar) 1157 temp |= up->cbuf[i + 9] & 0xf; 1158 val += chu_dist(temp, 0x63); 1159 if (val > up->syndist) { 1160 up->syndist = val; 1161 k = i; 1162 } 1163 } 1164 temp = (up->cbuf[k + 4] >> 4) & 0xf; 1165 if (temp > 9 || k + 9 >= nchar || temp != ((up->cbuf[k + 9] >> 1166 4) & 0xf)) 1167 temp = 0; 1168 #ifdef HAVE_AUDIO 1169 if (up->fd_audio) 1170 sprintf(tbuf, "chuA %04x %4.0f %2d %2d %2d %2d %1d ", 1171 up->status, up->maxsignal, nchar, up->burdist, k, 1172 up->syndist, temp); 1173 else 1174 sprintf(tbuf, "chuA %04x %2d %2d %2d %2d %1d ", 1175 up->status, nchar, up->burdist, k, up->syndist, 1176 temp); 1177 1178 #else 1179 sprintf(tbuf, "chuA %04x %2d %2d %2d %2d %1d ", up->status, 1180 nchar, up->burdist, k, up->syndist, temp); 1181 #endif /* HAVE_AUDIO */ 1182 for (i = 0; i < nchar; i++) 1183 sprintf(&tbuf[strlen(tbuf)], "%02x", 1184 up->cbuf[i]); 1185 if (pp->sloppyclockflag & CLK_FLAG4) 1186 record_clock_stats(&peer->srcadr, tbuf); 1187 #ifdef DEBUG 1188 if (debug) 1189 printf("%s\n", tbuf); 1190 #endif 1191 if (up->syndist < MINSYNC) { 1192 up->status |= AFRAME; 1193 return; 1194 } 1195 1196 /* 1197 * A valid burst requires the first seconds number to match the 1198 * last seconds number. If so, the burst timestamps are 1199 * corrected to the current minute and saved for later 1200 * processing. In addition, the seconds decode is advanced from 1201 * the previous burst to the current one. 1202 */ 1203 if (temp != 0) { 1204 offset.l_ui = 30 + temp; 1205 offset.l_f = 0; 1206 i = 0; 1207 if (k < 0) 1208 offset = up->charstamp; 1209 else if (k > 0) 1210 i = 1; 1211 for (; i < nchar && i < k + 10; i++) { 1212 up->tstamp[up->ntstamp] = up->cstamp[i]; 1213 L_SUB(&up->tstamp[up->ntstamp], &offset); 1214 L_ADD(&offset, &up->charstamp); 1215 if (up->ntstamp < MAXSTAGE) 1216 up->ntstamp++; 1217 } 1218 while (temp > up->prevsec) { 1219 for (j = 15; j > 0; j--) { 1220 up->decode[9][j] = up->decode[9][j - 1]; 1221 up->decode[19][j] = 1222 up->decode[19][j - 1]; 1223 } 1224 up->decode[9][j] = up->decode[19][j] = 0; 1225 up->prevsec++; 1226 } 1227 } 1228 i = -(2 * k); 1229 for (j = 0; j < nchar; j++) { 1230 if (i < 0 || i > 19) { 1231 i += 2; 1232 continue; 1233 } 1234 up->decode[i][up->cbuf[j] & 0xf]++; 1235 i++; 1236 up->decode[i][(up->cbuf[j] >> 4) & 0xf]++; 1237 i++; 1238 } 1239 up->burstcnt++; 1240 } 1241 1242 1243 /* 1244 * chu_poll - called by the transmit procedure 1245 */ 1246 static void 1247 chu_poll( 1248 int unit, 1249 struct peer *peer /* peer structure pointer */ 1250 ) 1251 { 1252 struct refclockproc *pp; 1253 struct chuunit *up; 1254 char synchar, qual, leapchar; 1255 int minset; 1256 int temp; 1257 #ifdef ICOM 1258 char tbuf[80]; /* trace buffer */ 1259 #endif /* ICOM */ 1260 pp = peer->procptr; 1261 up = (struct chuunit *)pp->unitptr; 1262 if (pp->coderecv == pp->codeproc) 1263 up->errflg = CEVNT_TIMEOUT; 1264 else 1265 pp->polls++; 1266 minset = ((current_time - peer->update) + 30) / 60; 1267 if (up->status & INSYNC) { 1268 if (minset > PANIC) 1269 up->status = 0; 1270 else 1271 peer->reach |= 1; 1272 } 1273 1274 /* 1275 * Process the last burst, if still in the burst buffer. 1276 * Don't mess with anything if nothing has been heard. 1277 */ 1278 chu_burst(peer); 1279 #ifdef ICOM 1280 if (up->burstcnt > 2) { 1281 up->dwell = 0; 1282 } else if (up->dwell < DWELL) { 1283 up->dwell++; 1284 } else if (up->fd_icom > 0) { 1285 up->dwell = 0; 1286 up->chan = (up->chan + 1) % NCHAN; 1287 icom_freq(up->fd_icom, peer->ttlmax & 0x7f, qsy[up->chan]); 1288 sprintf(up->ident, "%.3f", qsy[up->chan]); 1289 sprintf(tbuf, "chu: QSY to %s MHz", up->ident); 1290 record_clock_stats(&peer->srcadr, tbuf); 1291 #ifdef DEBUG 1292 if (debug) 1293 printf("%s\n", tbuf); 1294 #endif 1295 } 1296 #endif /* ICOM */ 1297 if (up->burstcnt == 0) 1298 return; 1299 temp = chu_major(peer); 1300 if (up->status & INYEAR) 1301 up->status |= INSYNC; 1302 qual = 0; 1303 if (up->status & (BFRAME | AFRAME)) 1304 qual |= SYNERR; 1305 if (up->status & (BFORMAT | AFORMAT)) 1306 qual |= FMTERR; 1307 if (up->status & DECODE) 1308 qual |= DECERR; 1309 if (up->status & STAMP) 1310 qual |= TSPERR; 1311 synchar = leapchar = ' '; 1312 if (!(up->status & INSYNC)) { 1313 pp->leap = LEAP_NOTINSYNC; 1314 synchar = '?'; 1315 } else if (up->leap & 0x2) { 1316 pp->leap = LEAP_ADDSECOND; 1317 leapchar = 'L'; 1318 } else if (up->leap & 0x4) { 1319 pp->leap = LEAP_DELSECOND; 1320 leapchar = 'l'; 1321 } else { 1322 pp->leap = LEAP_NOWARNING; 1323 } 1324 #ifdef HAVE_AUDIO 1325 if (up->fd_audio) 1326 sprintf(pp->a_lastcode, 1327 "%c%1X %4d %3d %02d:%02d:%02d.000 %c%x %+d %d %d %s %d %d %d %d", 1328 synchar, qual, pp->year, pp->day, pp->hour, 1329 pp->minute, pp->second, leapchar, up->dst, up->dut, 1330 minset, up->gain, up->ident, up->tai, up->burstcnt, 1331 up->mindist, up->ntstamp); 1332 else 1333 sprintf(pp->a_lastcode, 1334 "%c%1X %4d %3d %02d:%02d:%02d.000 %c%x %+d %d %s %d %d %d %d", 1335 synchar, qual, pp->year, pp->day, pp->hour, 1336 pp->minute, pp->second, leapchar, up->dst, up->dut, 1337 minset, up->ident, up->tai, up->burstcnt, 1338 up->mindist, up->ntstamp); 1339 #else 1340 sprintf(pp->a_lastcode, 1341 "%c%1X %4d %3d %02d:%02d:%02d.000 %c%x %+d %d %s %d %d %d %d", 1342 synchar, qual, pp->year, pp->day, pp->hour, pp->minute, 1343 pp->second, leapchar, up->dst, up->dut, minset, 1344 up->ident, up->tai, up->burstcnt, up->mindist, up->ntstamp); 1345 #endif /* HAVE_AUDIO */ 1346 pp->lencode = strlen(pp->a_lastcode); 1347 1348 /* 1349 * If timestamps have been stuffed, the timecode is ipso fatso 1350 * correct and can be selected to discipline the clock. 1351 */ 1352 if (temp > 0) { 1353 record_clock_stats(&peer->srcadr, pp->a_lastcode); 1354 refclock_receive(peer); 1355 } else if (pp->sloppyclockflag & CLK_FLAG4) { 1356 record_clock_stats(&peer->srcadr, pp->a_lastcode); 1357 } 1358 #ifdef DEBUG 1359 if (debug) 1360 printf("chu: timecode %d %s\n", pp->lencode, 1361 pp->a_lastcode); 1362 #endif 1363 chu_clear(peer); 1364 if (up->errflg) 1365 refclock_report(peer, up->errflg); 1366 up->errflg = 0; 1367 } 1368 1369 1370 /* 1371 * chu_major - majority decoder 1372 */ 1373 static int 1374 chu_major( 1375 struct peer *peer /* peer structure pointer */ 1376 ) 1377 { 1378 struct refclockproc *pp; 1379 struct chuunit *up; 1380 1381 u_char code[11]; /* decoded timecode */ 1382 l_fp toffset, offset; /* l_fp temps */ 1383 int val1, val2; /* maximum distance */ 1384 int synchar; /* stray cat */ 1385 double dtemp; 1386 int temp; 1387 int i, j, k; 1388 1389 pp = peer->procptr; 1390 up = (struct chuunit *)pp->unitptr; 1391 1392 /* 1393 * Majority decoder. Each burst encodes two replications at each 1394 * digit position in the timecode. Each row of the decoding 1395 * matrix encodes the number of occurences of each digit found 1396 * at the corresponding position. The maximum over all 1397 * occurences at each position is the distance for this position 1398 * and the corresponding digit is the maximumn likelihood 1399 * candidate. If the distance is zero, assume a miss '_'; if the 1400 * distance is not more than half the total number of 1401 * occurences, assume a soft error '-'; if two different digits 1402 * with the same distance are found, assume a hard error '='. 1403 * These will later cause a format error when the timecode is 1404 * interpreted. The decoding distance is defined as the minimum 1405 * distance over the first nine digits. The tenth digit varies 1406 * over the seconds, so we don't count it. 1407 */ 1408 up->mindist = 16; 1409 for (i = 0; i < 9; i++) { 1410 val1 = val2 = 0; 1411 k = 0; 1412 for (j = 0; j < 16; j++) { 1413 temp = up->decode[i][j] + up->decode[i + 10][j]; 1414 if (temp > val1) { 1415 val2 = val1; 1416 val1 = temp; 1417 k = j; 1418 } 1419 } 1420 if (val1 == 0) 1421 code[i] = HEX_MISS; 1422 else if (val1 == val2) 1423 code[i] = HEX_HARD; 1424 else if (val1 <= up->burstcnt) 1425 code[i] = HEX_SOFT; 1426 else 1427 code[i] = k; 1428 if (val1 < up->mindist) 1429 up->mindist = val1; 1430 code[i] = hexchar[code[i]]; 1431 } 1432 code[i] = 0; 1433 1434 /* 1435 * A valid timecode requires at least three bursts and a 1436 * decoding distance greater than half the total number of 1437 * occurences. A valid timecode also requires at least 20 valid 1438 * timestamps. 1439 */ 1440 if (up->burstcnt < 3 || up->mindist <= up->burstcnt) 1441 up->status |= DECODE; 1442 if (up->ntstamp < MINSTAMP) 1443 up->status |= STAMP; 1444 1445 /* 1446 * Compute the timecode timestamp from the days, hours and 1447 * minutes of the timecode. Use clocktime() for the aggregate 1448 * minutes and the minute offset computed from the burst 1449 * seconds. Note that this code relies on the filesystem time 1450 * for the years and does not use the years of the timecode. 1451 */ 1452 if (sscanf((char *)code, "%1x%3d%2d%2d", &synchar, &pp->day, 1453 &pp->hour, &pp->minute) != 4) { 1454 up->status |= AFORMAT; 1455 return (0); 1456 } 1457 if (up->status & (DECODE | STAMP)) { 1458 up->errflg = CEVNT_BADREPLY; 1459 return (0); 1460 } 1461 L_CLR(&offset); 1462 if (!clocktime(pp->day, pp->hour, pp->minute, 0, GMT, 1463 up->tstamp[0].l_ui, &pp->yearstart, &offset.l_ui)) { 1464 up->errflg = CEVNT_BADTIME; 1465 return (0); 1466 } 1467 pp->lastref = offset; 1468 for (i = 0; i < up->ntstamp; i++) { 1469 toffset = offset; 1470 L_SUB(&toffset, &up->tstamp[i]); 1471 LFPTOD(&toffset, dtemp); 1472 SAMPLE(dtemp + FUDGE + pp->fudgetime1); 1473 } 1474 return (i); 1475 } 1476 1477 1478 /* 1479 * chu_clear - clear decoding matrix 1480 */ 1481 static void 1482 chu_clear( 1483 struct peer *peer /* peer structure pointer */ 1484 ) 1485 { 1486 struct refclockproc *pp; 1487 struct chuunit *up; 1488 int i, j; 1489 1490 pp = peer->procptr; 1491 up = (struct chuunit *)pp->unitptr; 1492 1493 /* 1494 * Clear stuff for the minute. 1495 */ 1496 up->ndx = up->prevsec = 0; 1497 up->burstcnt = up->mindist = up->ntstamp = 0; 1498 up->status &= INSYNC | INYEAR; 1499 up->burstcnt = 0; 1500 for (i = 0; i < 20; i++) { 1501 for (j = 0; j < 16; j++) 1502 up->decode[i][j] = 0; 1503 } 1504 } 1505 1506 1507 /* 1508 * chu_dist - determine the distance of two octet arguments 1509 */ 1510 static int 1511 chu_dist( 1512 int x, /* an octet of bits */ 1513 int y /* another octet of bits */ 1514 ) 1515 { 1516 int val; /* bit count */ 1517 int temp; 1518 int i; 1519 1520 /* 1521 * The distance is determined as the weight of the exclusive OR 1522 * of the two arguments. The weight is determined by the number 1523 * of one bits in the result. Each one bit increases the weight, 1524 * while each zero bit decreases it. 1525 */ 1526 temp = x ^ y; 1527 val = 0; 1528 for (i = 0; i < 8; i++) { 1529 if ((temp & 0x1) == 0) 1530 val++; 1531 else 1532 val--; 1533 temp >>= 1; 1534 } 1535 return (val); 1536 } 1537 1538 1539 #ifdef HAVE_AUDIO 1540 /* 1541 * chu_gain - adjust codec gain 1542 * 1543 * This routine is called once each second. If the signal envelope 1544 * amplitude is too low, the codec gain is bumped up by four units; if 1545 * too high, it is bumped down. The decoder is relatively insensitive to 1546 * amplitude, so this crudity works just fine. The input port is set and 1547 * the error flag is cleared, mostly to be ornery. 1548 */ 1549 static void 1550 chu_gain( 1551 struct peer *peer /* peer structure pointer */ 1552 ) 1553 { 1554 struct refclockproc *pp; 1555 struct chuunit *up; 1556 1557 pp = peer->procptr; 1558 up = (struct chuunit *)pp->unitptr; 1559 1560 /* 1561 * Apparently, the codec uses only the high order bits of the 1562 * gain control field. Thus, it may take awhile for changes to 1563 * wiggle the hardware bits. 1564 */ 1565 if (up->clipcnt == 0) { 1566 up->gain += 4; 1567 if (up->gain > 255) 1568 up->gain = 255; 1569 } else if (up->clipcnt > SECOND / 100) { 1570 up->gain -= 4; 1571 if (up->gain < 0) 1572 up->gain = 0; 1573 } 1574 audio_gain(up->gain, up->port); 1575 up->clipcnt = 0; 1576 } 1577 #endif /* HAVE_AUDIO */ 1578 1579 1580 #else 1581 int refclock_chu_bs; 1582 #endif /* REFCLOCK */ 1583