1 /* 2 * refclock_chu - clock driver for Canadian radio CHU receivers 3 */ 4 5 #ifdef HAVE_CONFIG_H 6 #include <config.h> 7 #endif 8 9 #if defined(REFCLOCK) && defined(CLOCK_CHU) 10 11 /* #define AUDIO_CHUa */ 12 13 #include <stdio.h> 14 #include <ctype.h> 15 #include <sys/time.h> 16 #include <time.h> 17 #include <math.h> 18 19 #ifdef AUDIO_CHU 20 #ifdef HAVE_SYS_AUDIOIO_H 21 #include <sys/audioio.h> 22 #endif /* HAVE_SYS_AUDIOIO_H */ 23 #ifdef HAVE_SUN_AUDIOIO_H 24 #include <sun/audioio.h> 25 #endif /* HAVE_SUN_AUDIOIO_H */ 26 #endif /* AUDIO_CHU */ 27 28 #include "ntpd.h" 29 #include "ntp_io.h" 30 #include "ntp_refclock.h" 31 #include "ntp_calendar.h" 32 #include "ntp_stdlib.h" 33 34 /* 35 * Clock driver for Canadian radio CHU receivers 36 * 37 * This driver synchronizes the computer time using data encoded in 38 * radio transmissions from Canadian time/frequency station CHU in 39 * Ottawa, Ontario. Transmissions are made continuously on 3330 kHz, 40 * 7335 kHz and 14670 kHz in upper sideband, compatible AM mode. An 41 * ordinary shortwave receiver can be tuned manually to one of these 42 * frequencies or, in the case of ICOM receivers, the receiver can be 43 * tuned automatically using the minimuf and icom programs as 44 * propagation conditions change throughout the day and night. 45 * 46 * The driver can be compiled to use a Bell 103 compatible modem or 47 * modem chip to receive the radio signal and demodulate the data. 48 * Alternatively, the driver can be compiled to use the audio codec of 49 * the Sun workstation or another with compatible audio drivers. In the 50 * latter case, the driver implements the modem using DSP routines, so 51 * the radio can be connected directly to either the microphone on line 52 * input port. In either case, the driver decodes the data using a 53 * maximum likelihood technique which exploits the considerable degree 54 * of redundancy available to maximize accuracy and minimize errors. 55 * 56 * The CHU time broadcast includes an audio signal compatible with the 57 * Bell 103 modem standard (mark = 2225 Hz, space = 2025 Hz). It consist 58 * of nine, ten-character bursts transmitted at 300 bps and beginning 59 * each second from second 31 to second 39 of the minute. Each character 60 * consists of eight data bits plus one start bit and two stop bits to 61 * encode two hex digits. The burst data consist of five characters (ten 62 * hex digits) followed by a repeat of these characters. In format A, 63 * the characters are repeated in the same polarity; in format B, the 64 * characters are repeated in the opposite polarity. 65 * 66 * Format A bursts are sent at seconds 32 through 39 of the minute in 67 * hex digits 68 * 69 * 6dddhhmmss6dddhhmmss 70 * 71 * The first ten digits encode a frame marker (6) followed by the day 72 * (ddd), hour (hh in UTC), minute (mm) and the second (ss). Since 73 * format A bursts are sent during the third decade of seconds the tens 74 * digit of ss is always 3. The driver uses this to determine correct 75 * burst synchronization. These digits are then repeated with the same 76 * polarity. 77 * 78 * Format B bursts are sent at second 31 of the minute in hex digits 79 * 80 * xdyyyyttaaxdyyyyttaa 81 * 82 * The first ten digits encode a code (x described below) followed by 83 * the DUT1 (d in deciseconds), Gregorian year (yyyy), difference TAI - 84 * UTC (tt) and daylight time indicator (aa) peculiar to Canada. These 85 * digits are then repeated with inverted polarity. 86 * 87 * The x is coded 88 * 89 * 1 Sign of DUT (0 = +) 90 * 2 Leap second warning. One second will be added. 91 * 4 Leap second warning. One second will be subtracted. 92 * 8 Even parity bit for this nibble. 93 * 94 * By design, the last stop bit of the last character in the burst 95 * coincides with 0.5 second. Since characters have 11 bits and are 96 * transmitted at 300 bps, the last stop bit of the first character 97 * coincides with 0.5 - 10 * 11/300 = 0.133 second. Depending on the 98 * UART, character interrupts can vary somewhere between the beginning 99 * of bit 9 and end of bit 11. These eccentricities can be corrected 100 * along with the radio propagation delay using fudge time 1. 101 * 102 * Debugging aids 103 * 104 * The timecode format used for debugging and data recording includes 105 * data helpful in diagnosing problems with the radio signal and serial 106 * connections. With debugging enabled (-d -d -d on the ntpd command 107 * line), the driver produces one line for each burst in two formats 108 * corresponding to format A and B. Following is format A: 109 * 110 * n b f s m code 111 * 112 * where n is the number of characters in the burst (0-11), b the burst 113 * distance (0-40), f the field alignment (-1, 0, 1), s the 114 * synchronization distance (0-16), m the burst number (2-9) and code 115 * the burst characters as received. Note that the hex digits in each 116 * character are reversed, so the burst 117 * 118 * 10 38 0 16 9 06851292930685129293 119 * 120 * is interpreted as containing 11 characters with burst distance 38, 121 * field alignment 0, synchronization distance 16 and burst number 9. 122 * The nibble-swapped timecode shows day 58, hour 21, minute 29 and 123 * second 39. 124 * 125 * When the audio driver is compiled, format A is preceded by 126 * the current gain (0-255) and relative signal level (0-9999). The 127 * receiver folume control should be set so that the gain is somewhere 128 * near the middle of the range 0-255, which results in a signal level 129 * near 1000. 130 * 131 * Following is format B: 132 * 133 * n b s code 134 * 135 * where n is the number of characters in the burst (0-11), b the burst 136 * distance (0-40), s the synchronization distance (0-40) and code the 137 * burst characters as received. Note that the hex digits in each 138 * character are reversed and the last ten digits inverted, so the burst 139 * 140 * 11 40 1091891300ef6e76ecff 141 * 142 * is interpreted as containing 11 characters with burst distance 40. 143 * The nibble-swapped timecode shows DUT1 +0.1 second, year 1998 and TAI 144 * - UTC 31 seconds. 145 * 146 * In addition to the above, the reference timecode is updated and 147 * written to the clockstats file and debug score after the last burst 148 * received in the minute. The format is 149 * 150 * qq yyyy ddd hh:mm:ss nn dd tt 151 * 152 * where qq are the error flags, as described below, yyyy is the year, 153 * ddd the day, hh:mm:ss the time of day, nn the number of format A 154 * bursts received during the previous minute, dd the decoding distance 155 * and tt the number of timestamps. The error flags are cleared after 156 * every update. 157 * 158 * Fudge factors 159 * 160 * For accuracies better than the low millisceconds, fudge time1 can be 161 * set to the radio propagation delay from CHU to the receiver. This can 162 * be done conviently using the minimuf program. When the modem driver 163 * is compiled, fudge flag3 enables the ppsclock line discipline. Fudge 164 * flag4 causes the dubugging output described above to be recorded in 165 * the clockstats file. 166 * 167 * When the audio driver is compiled, fudge flag2 selects the audio 168 * input port, where 0 is the mike port (default) and 1 is the line-in 169 * port. It does not seem useful to select the compact disc player port. 170 * Fudge flag3 enables audio monitoring of the input signal. For this 171 * purpose, the speaker volume must be set before the driver is started. 172 */ 173 174 /* 175 * Interface definitions 176 */ 177 #define SPEED232 B300 /* uart speed (300 baud) */ 178 #define PRECISION (-10) /* precision assumed (about 1 ms) */ 179 #define REFID "CHU" /* reference ID */ 180 #ifdef AUDIO_CHU 181 #define DESCRIPTION "CHU Modem Receiver" /* WRU */ 182 183 /* 184 * Audio demodulator definitions 185 */ 186 #define AUDIO_BUFSIZ 160 /* codec buffer size (Solaris only) */ 187 #define SAMPLE 8000 /* nominal sample rate (Hz) */ 188 #define BAUD 300 /* modulation rate (bps) */ 189 #define OFFSET 128 /* companded sample offset */ 190 #define SIZE 256 /* decompanding table size */ 191 #define MAXSIG 6000. /* maximum signal level */ 192 #define DRPOUT 100. /* dropout signal level */ 193 #define LIMIT 1000. /* soft limiter threshold */ 194 #define AGAIN 6. /* baseband gain */ 195 #define LAG 10 /* discriminator lag */ 196 #else 197 #define DEVICE "/dev/chu%d" /* device name and unit */ 198 #define SPEED232 B300 /* UART speed (300 baud) */ 199 #define DESCRIPTION "CHU Audio Receiver" /* WRU */ 200 #endif /* AUDIO_CHU */ 201 202 /* 203 * Decoder definitions 204 */ 205 #define CHAR (11. / 300.) /* character time (s) */ 206 #define FUDGE .185 /* offset to first stop bit (s) */ 207 #define BURST 11 /* max characters per burst */ 208 #define MINCHAR 9 /* min characters per burst */ 209 #define MINDIST 28 /* min burst distance (of 40) */ 210 #define MINSYNC 8 /* min sync distance (of 16) */ 211 #define MINDEC .5 /* decoder majority rule (of 1.) */ 212 #define MINSTAMP 20 /* min timestamps (of 60) */ 213 214 /* 215 * Hex extension codes (>= 16) 216 */ 217 #define HEX_MISS 16 /* miss */ 218 #define HEX_SOFT 17 /* soft error */ 219 #define HEX_HARD 18 /* hard error */ 220 221 /* 222 * Error flags (up->errflg) 223 */ 224 #define CHU_ERR_RUNT 0x001 /* runt burst */ 225 #define CHU_ERR_NOISE 0x002 /* noise burst */ 226 #define CHU_ERR_BFRAME 0x004 /* invalid format B frame sync */ 227 #define CHU_ERR_BFORMAT 0x008 /* invalid format B data */ 228 #define CHU_ERR_AFRAME 0x010 /* invalid format A frame sync */ 229 #define CHU_ERR_DECODE 0x020 /* invalid data decode */ 230 #define CHU_ERR_STAMP 0x040 /* too few timestamps */ 231 #define CHU_ERR_AFORMAT 0x080 /* invalid format A data */ 232 #ifdef AUDIO_CHU 233 #define CHU_ERR_ERROR 0x100 /* codec error (overrun) */ 234 #endif /* AUDIO_CHU */ 235 236 #ifdef AUDIO_CHU 237 struct surv { 238 double shift[12]; /* mark register */ 239 double max, min; /* max/min envelope signals */ 240 double dist; /* sample distance */ 241 int uart; /* decoded character */ 242 }; 243 #endif /* AUDIO_CHU */ 244 245 /* 246 * CHU unit control structure 247 */ 248 struct chuunit { 249 u_char decode[20][16]; /* maximum likelihood decoding matrix */ 250 l_fp cstamp[BURST]; /* character timestamps */ 251 l_fp tstamp[MAXSTAGE]; /* timestamp samples */ 252 l_fp timestamp; /* current buffer timestamp */ 253 l_fp laststamp; /* last buffer timestamp */ 254 l_fp charstamp; /* character time as a l_fp */ 255 int errflg; /* error flags */ 256 int bufptr; /* buffer index pointer */ 257 int pollcnt; /* poll message counter */ 258 259 /* 260 * Character burst variables 261 */ 262 int cbuf[BURST]; /* character buffer */ 263 int ntstamp; /* number of timestamp samples */ 264 int ndx; /* buffer start index */ 265 int prevsec; /* previous burst second */ 266 int burdist; /* burst distance */ 267 int syndist; /* sync distance */ 268 int burstcnt; /* format A bursts this minute */ 269 270 #ifdef AUDIO_CHU 271 /* 272 * Audio codec variables 273 */ 274 double comp[SIZE]; /* decompanding table */ 275 int port; /* codec port */ 276 int gain; /* codec gain */ 277 int bufcnt; /* samples in buffer */ 278 int clipcnt; /* sample clip count */ 279 int seccnt; /* second interval counter */ 280 281 /* 282 * Modem variables 283 */ 284 l_fp tick; /* audio sample increment */ 285 double bpf[9]; /* IIR bandpass filter */ 286 double disc[LAG]; /* discriminator shift register */ 287 double lpf[27]; /* FIR lowpass filter */ 288 double monitor; /* audio monitor */ 289 double maxsignal; /* signal level */ 290 int discptr; /* discriminator pointer */ 291 292 /* 293 * Maximum likelihood UART variables 294 */ 295 double baud; /* baud interval */ 296 struct surv surv[8]; /* UART survivor structures */ 297 int decptr; /* decode pointer */ 298 int dbrk; /* holdoff counter */ 299 #endif /* AUDIO_CHU */ 300 }; 301 302 /* 303 * Function prototypes 304 */ 305 static int chu_start P((int, struct peer *)); 306 static void chu_shutdown P((int, struct peer *)); 307 static void chu_receive P((struct recvbuf *)); 308 static void chu_poll P((int, struct peer *)); 309 310 /* 311 * More function prototypes 312 */ 313 static void chu_decode P((struct peer *, int)); 314 static void chu_burst P((struct peer *)); 315 static void chu_clear P((struct peer *)); 316 static void chu_update P((struct peer *, int)); 317 static void chu_year P((struct peer *, int)); 318 static int chu_dist P((int, int)); 319 #ifdef AUDIO_CHU 320 static void chu_uart P((struct surv *, double)); 321 static void chu_rf P((struct peer *, double)); 322 static void chu_gain P((struct peer *)); 323 static int chu_audio P((void)); 324 static void chu_debug P((void)); 325 #endif /* AUDIO_CHU */ 326 327 /* 328 * Global variables 329 */ 330 static char hexchar[] = "0123456789abcdef_-="; 331 #ifdef AUDIO_CHU 332 #ifdef HAVE_SYS_AUDIOIO_H 333 struct audio_device device; /* audio device ident */ 334 #endif /* HAVE_SYS_AUDIOIO_H */ 335 static struct audio_info info; /* audio device info */ 336 static int chu_ctl_fd; /* audio control file descriptor */ 337 #endif /* AUDIO_CHU */ 338 339 /* 340 * Transfer vector 341 */ 342 struct refclock refclock_chu = { 343 chu_start, /* start up driver */ 344 chu_shutdown, /* shut down driver */ 345 chu_poll, /* transmit poll message */ 346 noentry, /* not used (old chu_control) */ 347 noentry, /* initialize driver (not used) */ 348 noentry, /* not used (old chu_buginfo) */ 349 NOFLAGS /* not used */ 350 }; 351 352 353 /* 354 * chu_start - open the devices and initialize data for processing 355 */ 356 static int 357 chu_start( 358 int unit, /* instance number (not used) */ 359 struct peer *peer /* peer structure pointer */ 360 ) 361 { 362 struct chuunit *up; 363 struct refclockproc *pp; 364 365 /* 366 * Local variables 367 */ 368 int fd; /* file descriptor */ 369 #ifdef AUDIO_CHU 370 int i; /* index */ 371 double step; /* codec adjustment */ 372 373 /* 374 * Open audio device 375 */ 376 fd = open("/dev/audio", O_RDWR | O_NONBLOCK, 0777); 377 if (fd == -1) { 378 perror("chu: audio"); 379 return (0); 380 } 381 #else 382 char device[20]; /* device name */ 383 384 /* 385 * Open serial port. Use RAW line discipline (required). 386 */ 387 (void)sprintf(device, DEVICE, unit); 388 if (!(fd = refclock_open(device, SPEED232, LDISC_RAW))) { 389 return (0); 390 } 391 #endif /* AUDIO_CHU */ 392 393 /* 394 * Allocate and initialize unit structure 395 */ 396 if (!(up = (struct chuunit *) 397 emalloc(sizeof(struct chuunit)))) { 398 (void) close(fd); 399 return (0); 400 } 401 memset((char *)up, 0, sizeof(struct chuunit)); 402 pp = peer->procptr; 403 pp->unitptr = (caddr_t)up; 404 pp->io.clock_recv = chu_receive; 405 pp->io.srcclock = (caddr_t)peer; 406 pp->io.datalen = 0; 407 pp->io.fd = fd; 408 if (!io_addclock(&pp->io)) { 409 (void)close(fd); 410 free(up); 411 return (0); 412 } 413 414 /* 415 * Initialize miscellaneous variables 416 */ 417 peer->precision = PRECISION; 418 pp->clockdesc = DESCRIPTION; 419 memcpy((char *)&pp->refid, REFID, 4); 420 DTOLFP(CHAR, &up->charstamp); 421 up->pollcnt = 2; 422 #ifdef AUDIO_CHU 423 up->gain = (AUDIO_MAX_GAIN - AUDIO_MIN_GAIN) / 2; 424 if (chu_audio() < 0) { 425 io_closeclock(&pp->io); 426 free(up); 427 return (0); 428 } 429 430 /* 431 * The companded samples are encoded sign-magnitude. The table 432 * contains all the 256 values in the interest of speed. 433 */ 434 up->comp[0] = up->comp[OFFSET] = 0.; 435 up->comp[1] = 1; up->comp[OFFSET + 1] = -1.; 436 up->comp[2] = 3; up->comp[OFFSET + 2] = -3.; 437 step = 2.; 438 for (i = 3; i < OFFSET; i++) { 439 up->comp[i] = up->comp[i - 1] + step; 440 up->comp[OFFSET + i] = -up->comp[i]; 441 if (i % 16 == 0) 442 step *= 2.; 443 } 444 DTOLFP(1. / SAMPLE, &up->tick); 445 #endif /* AUDIO_CHU */ 446 return (1); 447 } 448 449 450 /* 451 * chu_shutdown - shut down the clock 452 */ 453 static void 454 chu_shutdown( 455 int unit, /* instance number (not used) */ 456 struct peer *peer /* peer structure pointer */ 457 ) 458 { 459 struct chuunit *up; 460 struct refclockproc *pp; 461 462 pp = peer->procptr; 463 up = (struct chuunit *)pp->unitptr; 464 io_closeclock(&pp->io); 465 free(up); 466 } 467 468 #ifdef AUDIO_CHU 469 470 /* 471 * chu_receive - receive data from the audio device 472 */ 473 static void 474 chu_receive( 475 struct recvbuf *rbufp /* receive buffer structure pointer */ 476 ) 477 { 478 struct chuunit *up; 479 struct refclockproc *pp; 480 struct peer *peer; 481 482 /* 483 * Local variables 484 */ 485 double sample; /* codec sample */ 486 u_char *dpt; /* buffer pointer */ 487 l_fp ltemp; /* l_fp temp */ 488 double dtemp; /* double temp */ 489 int isneg; /* parity flag */ 490 int i, j; /* index temps */ 491 492 peer = (struct peer *)rbufp->recv_srcclock; 493 pp = peer->procptr; 494 up = (struct chuunit *)pp->unitptr; 495 496 /* 497 * Main loop - read until there ain't no more. Note codec 498 * samples are bit-inverted. 499 */ 500 up->timestamp = rbufp->recv_time; 501 up->bufcnt = rbufp->recv_length; 502 DTOLFP(up->bufcnt * 1. / SAMPLE, <emp); 503 L_SUB(&up->timestamp, <emp); 504 dpt = (u_char *)&rbufp->recv_space; 505 for (up->bufptr = 0; up->bufptr < up->bufcnt; up->bufptr++) { 506 sample = up->comp[~*dpt & 0xff]; 507 508 /* 509 * Clip noise spikes greater than MAXSIG. If no clips, 510 * increase the gain a tad; if the clips are too high, 511 * decrease a tad. 512 */ 513 if (sample > MAXSIG) { 514 sample = MAXSIG; 515 up->clipcnt++; 516 } else if (sample < -MAXSIG) { 517 sample = -MAXSIG; 518 up->clipcnt++; 519 } 520 up->seccnt = (up->seccnt + 1) % SAMPLE; 521 if (up->seccnt == 0) { 522 if (pp->sloppyclockflag & CLK_FLAG2) 523 up->port = AUDIO_LINE_IN; 524 else 525 up->port = AUDIO_MICROPHONE; 526 chu_gain(peer); 527 up->clipcnt = 0; 528 } 529 chu_rf(peer, sample); 530 531 /* 532 * During development, it is handy to have an audio 533 * monitor that can be switched to various signals. This 534 * code converts the linear signal left in up->monitor 535 * to codec format. If we can get the grass out of this 536 * thing and improve modem performance, this expensive 537 * code will be permanently nixed. 538 */ 539 isneg = 0; 540 dtemp = up->monitor; 541 if (sample < 0) { 542 isneg = 1; 543 dtemp-= dtemp; 544 } 545 i = 0; 546 j = OFFSET >> 1; 547 while (j != 0) { 548 if (dtemp > up->comp[i]) 549 i += j; 550 else if (dtemp < up->comp[i]) 551 i -= j; 552 else 553 break; 554 j >>= 1; 555 } 556 if (isneg) 557 *dpt = ~(i + OFFSET); 558 else 559 *dpt = ~i; 560 dpt++; 561 L_ADD(&up->timestamp, &up->tick); 562 } 563 564 /* 565 * Squawk to the monitor speaker if enabled. 566 */ 567 if (pp->sloppyclockflag & CLK_FLAG3) 568 if (write(pp->io.fd, (u_char *)&rbufp->recv_space, 569 (u_int)up->bufcnt) < 0) 570 perror("chu:"); 571 } 572 573 574 /* 575 * chu_rf - filter and demodulate the FSK signal 576 * 577 * This routine implements a 300-baud Bell 103 modem with mark 2225 Hz 578 * and space 2025 Hz. It uses a bandpass filter followed by a soft 579 * limiter, FM discriminator and lowpass filter. A maximum likelihood 580 * decoder samples the baseband signal at eight times the baud rate and 581 * detects the start bit of each character. 582 * 583 * The filters are built for speed, which explains the rather clumsy 584 * code. Hopefully, the compiler will efficiently implement the move- 585 * and-muiltiply-and-add operations. 586 */ 587 void 588 chu_rf( 589 struct peer *peer, /* peer structure pointer */ 590 double sample /* analog sample */ 591 ) 592 { 593 struct refclockproc *pp; 594 struct chuunit *up; 595 struct surv *sp; 596 597 /* 598 * Local variables 599 */ 600 double signal; /* bandpass signal */ 601 double limit; /* limiter signal */ 602 double disc; /* discriminator signal */ 603 double lpf; /* lowpass signal */ 604 double span; /* UART signal span */ 605 double dist; /* UART signal distance */ 606 int i, j; /* index temps */ 607 608 pp = peer->procptr; 609 up = (struct chuunit *)pp->unitptr; 610 /* 611 * Bandpass filter. 4th-order elliptic, 500-Hz bandpass centered 612 * at 2125 Hz. Passband ripple 0.3 dB, stopband ripple 50 dB. 613 */ 614 signal = (up->bpf[8] = up->bpf[7]) * 5.844676e-01; 615 signal += (up->bpf[7] = up->bpf[6]) * 4.884860e-01; 616 signal += (up->bpf[6] = up->bpf[5]) * 2.704384e+00; 617 signal += (up->bpf[5] = up->bpf[4]) * 1.645032e+00; 618 signal += (up->bpf[4] = up->bpf[3]) * 4.644557e+00; 619 signal += (up->bpf[3] = up->bpf[2]) * 1.879165e+00; 620 signal += (up->bpf[2] = up->bpf[1]) * 3.522634e+00; 621 signal += (up->bpf[1] = up->bpf[0]) * 7.315738e-01; 622 up->bpf[0] = sample - signal; 623 signal = up->bpf[0] * 6.176213e-03 624 + up->bpf[1] * 3.156599e-03 625 + up->bpf[2] * 7.567487e-03 626 + up->bpf[3] * 4.344580e-03 627 + up->bpf[4] * 1.190128e-02 628 + up->bpf[5] * 4.344580e-03 629 + up->bpf[6] * 7.567487e-03 630 + up->bpf[7] * 3.156599e-03 631 + up->bpf[8] * 6.176213e-03; 632 633 up->monitor = signal / 4.; /* note monitor after filter */ 634 635 /* 636 * Soft limiter/discriminator. The 11-sample discriminator lag 637 * interval corresponds to three cycles of 2125 Hz, which 638 * requires the sample frequency to be 2125 * 11 / 3 = 7791.7 639 * Hz. The discriminator output varies +-0.5 interval for input 640 * frequency 2025-2225 Hz. However, we don't get to sample at 641 * this frequency, so the discriminator output is biased. Life 642 * at 8000 Hz sucks. 643 */ 644 limit = signal; 645 if (limit > LIMIT) 646 limit = LIMIT; 647 else if (limit < -LIMIT) 648 limit = -LIMIT; 649 disc = up->disc[up->discptr] * -limit; 650 up->disc[up->discptr] = limit; 651 up->discptr = (up->discptr + 1 ) % LAG; 652 if (disc >= 0) 653 disc = sqrt(disc); 654 else 655 disc = -sqrt(-disc); 656 657 /* 658 * Lowpass filter. Raised cosine, Ts = 1 / 300, beta = 0.1. 659 */ 660 lpf = (up->lpf[26] = up->lpf[25]) * 2.538771e-02; 661 lpf += (up->lpf[25] = up->lpf[24]) * 1.084671e-01; 662 lpf += (up->lpf[24] = up->lpf[23]) * 2.003159e-01; 663 lpf += (up->lpf[23] = up->lpf[22]) * 2.985303e-01; 664 lpf += (up->lpf[22] = up->lpf[21]) * 4.003697e-01; 665 lpf += (up->lpf[21] = up->lpf[20]) * 5.028552e-01; 666 lpf += (up->lpf[20] = up->lpf[19]) * 6.028795e-01; 667 lpf += (up->lpf[19] = up->lpf[18]) * 6.973249e-01; 668 lpf += (up->lpf[18] = up->lpf[17]) * 7.831828e-01; 669 lpf += (up->lpf[17] = up->lpf[16]) * 8.576717e-01; 670 lpf += (up->lpf[16] = up->lpf[15]) * 9.183463e-01; 671 lpf += (up->lpf[15] = up->lpf[14]) * 9.631951e-01; 672 lpf += (up->lpf[14] = up->lpf[13]) * 9.907208e-01; 673 lpf += (up->lpf[13] = up->lpf[12]) * 1.000000e+00; 674 lpf += (up->lpf[12] = up->lpf[11]) * 9.907208e-01; 675 lpf += (up->lpf[11] = up->lpf[10]) * 9.631951e-01; 676 lpf += (up->lpf[10] = up->lpf[9]) * 9.183463e-01; 677 lpf += (up->lpf[9] = up->lpf[8]) * 8.576717e-01; 678 lpf += (up->lpf[8] = up->lpf[7]) * 7.831828e-01; 679 lpf += (up->lpf[7] = up->lpf[6]) * 6.973249e-01; 680 lpf += (up->lpf[6] = up->lpf[5]) * 6.028795e-01; 681 lpf += (up->lpf[5] = up->lpf[4]) * 5.028552e-01; 682 lpf += (up->lpf[4] = up->lpf[3]) * 4.003697e-01; 683 lpf += (up->lpf[3] = up->lpf[2]) * 2.985303e-01; 684 lpf += (up->lpf[2] = up->lpf[1]) * 2.003159e-01; 685 lpf += (up->lpf[1] = up->lpf[0]) * 1.084671e-01; 686 lpf += up->lpf[0] = disc * 2.538771e-02; 687 /* 688 printf("%8.3f %8.3f\n", disc, lpf); 689 return; 690 */ 691 /* 692 * Maximum likelihood decoder. The UART updates each of the 693 * eight survivors and determines the span, slice level and 694 * tentative decoded character. Valid 11-bit characters are 695 * framed so that bit 1 and bit 11 (stop bits) are mark and bit 696 * 2 (start bit) is space. When a valid character is found, the 697 * survivor with maximum distance determines the final decoded 698 * character. 699 */ 700 up->baud += 1. / SAMPLE; 701 if (up->baud > 1. / (BAUD * 8.)) { 702 up->baud -= 1. / (BAUD * 8.); 703 sp = &up->surv[up->decptr]; 704 span = sp->max - sp->min; 705 up->maxsignal += (span - up->maxsignal) / 80.; 706 if (up->dbrk > 0) { 707 up->dbrk--; 708 } else if ((sp->uart & 0x403) == 0x401 && span > 1000.) 709 { 710 dist = 0; 711 j = 0; 712 for (i = 0; i < 8; i++) { 713 if (up->surv[i].dist > dist) { 714 dist = up->surv[i].dist; 715 j = i; 716 } 717 } 718 chu_decode(peer, (up->surv[j].uart >> 2) & 719 0xff); 720 up->dbrk = 80; 721 } 722 up->decptr = (up->decptr + 1) % 8; 723 chu_uart(sp, -lpf * AGAIN); 724 } 725 } 726 727 728 /* 729 * chu_uart - maximum likelihood UART 730 * 731 * This routine updates a shift register holding the last 11 envelope 732 * samples. It then computes the slice level and span over these samples 733 * and determines the tentative data bits and distance. The calling 734 * program selects over the last eight survivors the one with maximum 735 * distance to determine the decoded character. 736 */ 737 void 738 chu_uart( 739 struct surv *sp, /* survivor structure pointer */ 740 double sample /* baseband signal */ 741 ) 742 { 743 /* 744 * Local variables 745 */ 746 double max, min; /* max/min envelope */ 747 double slice; /* slice level */ 748 double dist; /* distance */ 749 double dtemp; /* double temp */ 750 int i; /* index temp */ 751 752 /* 753 * Save the sample and shift right. At the same time, measure 754 * the maximum and minimum over all eleven samples. 755 */ 756 max = -1e6; 757 min = 1e6; 758 sp->shift[0] = sample; 759 for (i = 11; i > 0; i--) { 760 sp->shift[i] = sp->shift[i - 1]; 761 if (sp->shift[i] > max) 762 max = sp->shift[i]; 763 if (sp->shift[i] < min) 764 min = sp->shift[i]; 765 } 766 767 /* 768 * Determine the slice level midway beteen the maximum and 769 * minimum and the span as the maximum less the minimum. Compute 770 * the distance on the assumption the first and last bits must 771 * be mark, the second space and the rest either mark or space. 772 */ 773 slice = (max + min) / 2.; 774 dist = 0; 775 sp->uart = 0; 776 for (i = 1; i < 12; i++) { 777 sp->uart <<= 1; 778 dtemp = sp->shift[i]; 779 if (dtemp > slice) 780 sp->uart |= 0x1; 781 if (i == 1 || i == 11) { 782 dist += dtemp - min; 783 } else if (i == 10) { 784 dist += max - dtemp; 785 } else { 786 if (dtemp > slice) 787 dist += dtemp - min; 788 else 789 dist += max - dtemp; 790 } 791 } 792 sp->max = max; 793 sp->min = min; 794 sp->dist = dist / (11 * (max - min)); 795 } 796 797 798 #else /* AUDIO_CHU */ 799 /* 800 * chu_receive - receive data from the serial interface 801 */ 802 static void 803 chu_receive( 804 struct recvbuf *rbufp /* receive buffer structure pointer */ 805 ) 806 { 807 struct chuunit *up; 808 struct refclockproc *pp; 809 struct peer *peer; 810 811 u_char *dpt; /* receive buffer pointer */ 812 813 peer = (struct peer *)rbufp->recv_srcclock; 814 pp = peer->procptr; 815 up = (struct chuunit *)pp->unitptr; 816 817 /* 818 * Initialize pointers and read the timecode and timestamp. 819 */ 820 up->timestamp = rbufp->recv_time; 821 dpt = (u_char *)&rbufp->recv_space; 822 chu_decode(peer, *dpt); 823 } 824 #endif /* AUDIO_CHU */ 825 826 827 /* 828 * chu_decode - decode the data 829 */ 830 static void 831 chu_decode( 832 struct peer *peer, /* peer structure pointer */ 833 int hexhex /* data character */ 834 ) 835 { 836 struct refclockproc *pp; 837 struct chuunit *up; 838 839 /* 840 * Local variables 841 */ 842 l_fp tstmp; /* timestamp temp */ 843 double dtemp; /* double temp */ 844 845 pp = peer->procptr; 846 up = (struct chuunit *)pp->unitptr; 847 848 /* 849 * If the interval since the last character is greater than the 850 * longest burst, process the last burst and start a new one. If 851 * the interval is less than this but greater than two 852 * characters, consider this a noise burst and reject it. 853 */ 854 tstmp = up->timestamp; 855 if (L_ISZERO(&up->laststamp)) 856 up->laststamp = up->timestamp; 857 L_SUB(&tstmp, &up->laststamp); 858 up->laststamp = up->timestamp; 859 LFPTOD(&tstmp, dtemp); 860 if (dtemp > BURST * CHAR) { 861 chu_burst(peer); 862 up->ndx = 0; 863 } else if (dtemp > 2.5 * CHAR) { 864 up->ndx = 0; 865 } 866 867 /* 868 * Append the character to the current burst and append the 869 * timestamp to the timestamp list. 870 */ 871 if (up->ndx < BURST) { 872 up->cbuf[up->ndx] = hexhex & 0xff; 873 up->cstamp[up->ndx] = up->timestamp; 874 up->ndx++; 875 876 } 877 } 878 879 880 /* 881 * chu_burst - search for valid burst format 882 */ 883 static void 884 chu_burst( 885 struct peer *peer 886 ) 887 { 888 struct chuunit *up; 889 struct refclockproc *pp; 890 891 /* 892 * Local variables 893 */ 894 int i; /* index temp */ 895 896 pp = peer->procptr; 897 up = (struct chuunit *)pp->unitptr; 898 899 /* 900 * Correlate a block of five characters with the next block of 901 * five characters. The burst distance is defined as the number 902 * of bits that match in the two blocks for format A and that 903 * match the inverse for format B. 904 */ 905 if (up->ndx < MINCHAR) { 906 up->errflg |= CHU_ERR_RUNT; 907 return; 908 } 909 up->burdist = 0; 910 for (i = 0; i < 5 && i < up->ndx - 5; i++) 911 up->burdist += chu_dist(up->cbuf[i], up->cbuf[i + 5]); 912 913 /* 914 * If the burst distance is at least MINDIST, this must be a 915 * format A burst; if the value is not greater than -MINDIST, it 916 * must be a format B burst; otherwise, it is a noise burst and 917 * of no use to anybody. 918 */ 919 if (up->burdist >= MINDIST) { 920 chu_update(peer, up->ndx); 921 } else if (up->burdist <= -MINDIST) { 922 chu_year(peer, up->ndx); 923 } else { 924 up->errflg |= CHU_ERR_NOISE; 925 return; 926 } 927 928 /* 929 * If this is a valid burst, wait a guard time of ten seconds to 930 * allow for more bursts, then arm the poll update routine to 931 * process the minute. Don't do this if this is called from the 932 * timer interrupt routine. 933 */ 934 if (peer->outdate == current_time) 935 up->pollcnt = 2; 936 else 937 peer->nextdate = current_time + 10; 938 } 939 940 941 /* 942 * chu_year - decode format B burst 943 */ 944 static void 945 chu_year( 946 struct peer *peer, 947 int nchar 948 ) 949 { 950 struct refclockproc *pp; 951 struct chuunit *up; 952 953 /* 954 * Local variables 955 */ 956 u_char code[11]; /* decoded timecode */ 957 l_fp offset; /* timestamp offset */ 958 int leap; /* leap/dut code */ 959 int dut; /* UTC1 correction */ 960 int tai; /* TAI - UTC correction */ 961 int dst; /* Canadian DST code */ 962 int i; /* index temp */ 963 964 pp = peer->procptr; 965 up = (struct chuunit *)pp->unitptr; 966 967 /* 968 * In a format B burst, a character is considered valid only if 969 * the first occurrence matches the last occurrence. The burst 970 * is considered valid only if all characters are valid; that 971 * is, only if the distance is 40. 972 */ 973 sprintf(pp->a_lastcode, "%2d %2d ", nchar, -up->burdist); 974 for (i = 0; i < nchar; i++) 975 sprintf(&pp->a_lastcode[strlen(pp->a_lastcode)], "%02x", 976 up->cbuf[i]); 977 pp->lencode = strlen(pp->a_lastcode); 978 if (pp->sloppyclockflag & CLK_FLAG4) 979 record_clock_stats(&peer->srcadr, pp->a_lastcode); 980 #ifdef DEBUG 981 if (debug > 2) 982 printf("chu: %s\n", pp->a_lastcode); 983 #endif 984 if (-up->burdist < 40) { 985 up->errflg |= CHU_ERR_BFRAME; 986 return; 987 } 988 989 /* 990 * Convert the burst data to internal format. If this succeeds, 991 * save the timestamps for later. The leap, dut, tai and dst are 992 * presently unused. 993 */ 994 for (i = 0; i < 5; i++) { 995 code[2 * i] = hexchar[up->cbuf[i] & 0xf]; 996 code[2 * i + 1] = hexchar[(up->cbuf[i] >> 997 4) & 0xf]; 998 } 999 if (sscanf((char *)code, "%1x%1d%4d%2d%2x", &leap, &dut, 1000 &pp->year, &tai, &dst) != 5) { 1001 up->errflg |= CHU_ERR_BFORMAT; 1002 return; 1003 } 1004 offset.l_ui = 31; 1005 offset.l_f = 0; 1006 for (i = 0; i < nchar && i < 10; i++) { 1007 up->tstamp[up->ntstamp] = up->cstamp[i]; 1008 L_SUB(&up->tstamp[up->ntstamp], &offset); 1009 L_ADD(&offset, &up->charstamp); 1010 if (up->ntstamp < MAXSTAGE) 1011 up->ntstamp++; 1012 } 1013 } 1014 1015 1016 /* 1017 * chu_update - decode format A burst 1018 */ 1019 static void 1020 chu_update( 1021 struct peer *peer, 1022 int nchar 1023 ) 1024 { 1025 struct refclockproc *pp; 1026 struct chuunit *up; 1027 1028 /* 1029 * Local variables 1030 */ 1031 l_fp offset; /* timestamp offset */ 1032 int val; /* distance */ 1033 int temp; /* common temp */ 1034 int i, j, k; /* index temps */ 1035 1036 pp = peer->procptr; 1037 up = (struct chuunit *)pp->unitptr; 1038 1039 /* 1040 * Determine correct burst phase. There are three cases 1041 * corresponding to in-phase, one character early or one 1042 * character late. These cases are distinguished by the position 1043 * of the framing digits x6 at positions 0 and 5 and x3 at 1044 * positions 4 and 9. The correct phase is when the distance 1045 * relative to the framing digits is maximum. The burst is valid 1046 * only if the maximum distance is at least MINSYNC. 1047 */ 1048 up->syndist = k = 0; 1049 val = -16; 1050 for (i = -1; i < 2; i++) { 1051 temp = up->cbuf[i + 4] & 0xf; 1052 if (i >= 0) 1053 temp |= (up->cbuf[i] & 0xf) << 4; 1054 val = chu_dist(temp, 0x63); 1055 temp = (up->cbuf[i + 5] & 0xf) << 4; 1056 if (i + 9 < nchar) 1057 temp |= up->cbuf[i + 9] & 0xf; 1058 val += chu_dist(temp, 0x63); 1059 if (val > up->syndist) { 1060 up->syndist = val; 1061 k = i; 1062 } 1063 } 1064 1065 temp = (up->cbuf[k + 4] >> 4) & 0xf; 1066 if (temp > 9 || k + 9 >= nchar || temp != ((up->cbuf[k + 9] >> 1067 4) & 0xf)) 1068 temp = 0; 1069 #ifdef AUDIO_CHU 1070 sprintf(pp->a_lastcode, "%3d %4.0f %2d %2d %2d %2d %1d ", 1071 up->gain, up->maxsignal, nchar, up->burdist, k, up->syndist, 1072 temp); 1073 #else 1074 sprintf(pp->a_lastcode, "%2d %2d %2d %2d %1d ", nchar, 1075 up->burdist, k, up->syndist, temp); 1076 #endif /* AUDIO_CHU */ 1077 for (i = 0; i < nchar; i++) 1078 sprintf(&pp->a_lastcode[strlen(pp->a_lastcode)], "%02x", 1079 up->cbuf[i]); 1080 pp->lencode = strlen(pp->a_lastcode); 1081 if (pp->sloppyclockflag & CLK_FLAG4) 1082 record_clock_stats(&peer->srcadr, pp->a_lastcode); 1083 #ifdef DEBUG 1084 if (debug > 2) 1085 printf("chu: %s\n", pp->a_lastcode); 1086 #endif 1087 if (up->syndist < MINSYNC) { 1088 up->errflg |= CHU_ERR_AFRAME; 1089 return; 1090 } 1091 1092 /* 1093 * A valid burst requires the first seconds number to match the 1094 * last seconds number. If so, the burst timestamps are 1095 * corrected to the current minute and saved for later 1096 * processing. In addition, the seconds decode is advanced from 1097 * the previous burst to the current one. 1098 */ 1099 if (temp != 0) { 1100 offset.l_ui = 30 + temp; 1101 offset.l_f = 0; 1102 i = 0; 1103 if (k < 0) 1104 offset = up->charstamp; 1105 else if (k > 0) 1106 i = 1; 1107 for (; i < nchar && i < k + 10; i++) { 1108 up->tstamp[up->ntstamp] = up->cstamp[i]; 1109 L_SUB(&up->tstamp[up->ntstamp], &offset); 1110 L_ADD(&offset, &up->charstamp); 1111 if (up->ntstamp < MAXSTAGE) 1112 up->ntstamp++; 1113 } 1114 while (temp > up->prevsec) { 1115 for (j = 15; j > 0; j--) { 1116 up->decode[9][j] = up->decode[9][j - 1]; 1117 up->decode[19][j] = 1118 up->decode[19][j - 1]; 1119 } 1120 up->decode[9][j] = up->decode[19][j] = 0; 1121 up->prevsec++; 1122 } 1123 } 1124 i = -(2 * k); 1125 for (j = 0; j < nchar; j++) { 1126 if (i < 0 || i > 19) { 1127 i += 2; 1128 continue; 1129 } 1130 up->decode[i++][up->cbuf[j] & 0xf]++; 1131 up->decode[i++][(up->cbuf[j] >> 4) & 0xf]++; 1132 } 1133 up->burstcnt++; 1134 } 1135 1136 1137 /* 1138 * chu_poll - called by the transmit procedure 1139 */ 1140 static void 1141 chu_poll( 1142 int unit, 1143 struct peer *peer 1144 ) 1145 { 1146 struct refclockproc *pp; 1147 struct chuunit *up; 1148 1149 /* 1150 * Local variables 1151 */ 1152 u_char code[11]; /* decoded timecode */ 1153 l_fp toffset, offset; /* l_fp temps */ 1154 int mindist; /* minimum distance */ 1155 int val1, val2; /* maximum distance */ 1156 int synchar; /* should be a 6 in traffic */ 1157 double dtemp; /* double temp */ 1158 int temp; /* common temp */ 1159 int i, j, k; /* index temps */ 1160 1161 pp = peer->procptr; 1162 up = (struct chuunit *)pp->unitptr; 1163 1164 /* 1165 * Process the last burst, if still in the burst buffer. 1166 * Don't mess with anything if nothing has been heard. 1167 */ 1168 chu_burst(peer); 1169 if (up->pollcnt == 0) 1170 refclock_report(peer, CEVNT_TIMEOUT); 1171 else 1172 up->pollcnt--; 1173 if (up->burstcnt == 0) { 1174 chu_clear(peer); 1175 return; 1176 } 1177 1178 /* 1179 * Majority decoder. Select the character with the most 1180 * occurrences for each burst position. The distance for the 1181 * character is this number of occurrences. If no occurrences 1182 * are found, assume a miss '_'; if only a single occurrence is 1183 * found, assume a soft error '-'; if two different characters 1184 * with the same distance are found, assume a hard error '='. 1185 * The decoding distance is defined as the minimum of the 1186 * character distances. 1187 */ 1188 mindist = 16; 1189 for (i = 0; i < 10; i++) { 1190 val1 = val2 = 0; 1191 k = 0; 1192 for (j = 0; j < 16; j++) { 1193 temp = up->decode[i][j] + up->decode[i + 10][j]; 1194 if (temp > val1) { 1195 val2 = val1; 1196 val1 = temp; 1197 k = j; 1198 } 1199 } 1200 if (val1 > 0 && val1 == val2) 1201 code[i] = HEX_HARD; 1202 else if (val1 < 2) 1203 code[i] = HEX_SOFT; 1204 else 1205 code[i] = k; 1206 if (val1 < mindist) 1207 mindist = val1; 1208 code[i] = hexchar[code[i]]; 1209 } 1210 code[i] = 0; 1211 if (mindist < up->burstcnt * 2 * MINDEC) 1212 up->errflg |= CHU_ERR_DECODE; 1213 if (up->ntstamp < MINSTAMP) 1214 up->errflg |= CHU_ERR_STAMP; 1215 1216 /* 1217 * Compute the timecode timestamp from the days, hours and 1218 * minutes of the timecode. Use clocktime() for the aggregate 1219 * minutes and the minute offset computed from the burst 1220 * seconds. Note that this code relies on the filesystem time 1221 * for the years and does not use the years of the timecode. 1222 */ 1223 if (sscanf((char *)code, "%1x%3d%2d%2d", &synchar, &pp->day, &pp->hour, 1224 &pp->minute) != 4) 1225 up->errflg |= CHU_ERR_AFORMAT; 1226 sprintf(pp->a_lastcode, 1227 "%02x %4d %3d %02d:%02d:%02d %2d %2d %2d", 1228 up->errflg, pp->year, pp->day, pp->hour, pp->minute, 1229 pp->second, up->burstcnt, mindist, up->ntstamp); 1230 pp->lencode = strlen(pp->a_lastcode); 1231 record_clock_stats(&peer->srcadr, pp->a_lastcode); 1232 #ifdef DEBUG 1233 if (debug > 2) 1234 printf("chu: %s\n", pp->a_lastcode); 1235 #endif 1236 if (up->errflg & (CHU_ERR_DECODE | CHU_ERR_STAMP | 1237 CHU_ERR_AFORMAT)) { 1238 refclock_report(peer, CEVNT_BADREPLY); 1239 chu_clear(peer); 1240 return; 1241 } 1242 L_CLR(&offset); 1243 if (!clocktime(pp->day, pp->hour, pp->minute, 0, GMT, 1244 up->tstamp[0].l_ui, &pp->yearstart, &offset.l_ui)) { 1245 refclock_report(peer, CEVNT_BADTIME); 1246 chu_clear(peer); 1247 return; 1248 } 1249 pp->polls++; 1250 pp->leap = LEAP_NOWARNING; 1251 pp->lastref = offset; 1252 pp->variance = 0; 1253 for (i = 0; i < up->ntstamp; i++) { 1254 toffset = offset; 1255 L_SUB(&toffset, &up->tstamp[i]); 1256 LFPTOD(&toffset, dtemp); 1257 SAMPLE(dtemp + FUDGE + pp->fudgetime1); 1258 } 1259 if (i > 0) 1260 refclock_receive(peer); 1261 chu_clear(peer); 1262 } 1263 1264 1265 /* 1266 * chu_clear - clear decoding matrix 1267 */ 1268 static void 1269 chu_clear( 1270 struct peer *peer 1271 ) 1272 { 1273 struct refclockproc *pp; 1274 struct chuunit *up; 1275 1276 /* 1277 * Local variables 1278 */ 1279 int i, j; /* index temps */ 1280 1281 pp = peer->procptr; 1282 up = (struct chuunit *)pp->unitptr; 1283 1284 /* 1285 * Clear stuff for following minute. 1286 */ 1287 up->ndx = up->ntstamp = up->prevsec = 0; 1288 up->errflg = 0; 1289 up->burstcnt = 0; 1290 for (i = 0; i < 20; i++) { 1291 for (j = 0; j < 16; j++) 1292 up->decode[i][j] = 0; 1293 } 1294 } 1295 1296 1297 /* 1298 * chu_dist - determine the distance of two octet arguments 1299 */ 1300 static int 1301 chu_dist( 1302 int x, /* an octet of bits */ 1303 int y /* another octet of bits */ 1304 ) 1305 { 1306 /* 1307 * Local variables 1308 */ 1309 int val; /* bit count */ 1310 int temp; /* misc temporary */ 1311 int i; /* index temporary */ 1312 1313 /* 1314 * The distance is determined as the weight of the exclusive OR 1315 * of the two arguments. The weight is determined by the number 1316 * of one bits in the result. Each one bit increases the weight, 1317 * while each zero bit decreases it. 1318 */ 1319 temp = x ^ y; 1320 val = 0; 1321 for (i = 0; i < 8; i++) { 1322 if ((temp & 0x1) == 0) 1323 val++; 1324 else 1325 val--; 1326 temp >>= 1; 1327 } 1328 return (val); 1329 } 1330 1331 1332 #ifdef AUDIO_CHU 1333 /* 1334 * chu_gain - adjust codec gain 1335 * 1336 * This routine is called once each second. If the signal envelope 1337 * amplitude is too low, the codec gain is bumped up by four units; if 1338 * too high, it is bumped down. The decoder is relatively insensitive to 1339 * amplitude, so this crudity works just fine. The input port is set and 1340 * the error flag is cleared, mostly to be ornery. 1341 */ 1342 static void 1343 chu_gain( 1344 struct peer *peer /* peer structure pointer */ 1345 ) 1346 { 1347 struct refclockproc *pp; 1348 struct chuunit *up; 1349 1350 pp = peer->procptr; 1351 up = (struct chuunit *)pp->unitptr; 1352 1353 /* 1354 * Apparently, the codec uses only the high order bits of the 1355 * gain control field. Thus, it may take awhile for changes to 1356 * wiggle the hardware bits. Set the new bits in the structure 1357 * and call AUDIO_SETINFO. Upon return, the old bits are in the 1358 * structure. 1359 */ 1360 if (up->clipcnt == 0) { 1361 up->gain += 4; 1362 if (up->gain > AUDIO_MAX_GAIN) 1363 up->gain = AUDIO_MAX_GAIN; 1364 } else if (up->clipcnt > SAMPLE / 100) { 1365 up->gain -= 4; 1366 if (up->gain < AUDIO_MIN_GAIN) 1367 up->gain = AUDIO_MIN_GAIN; 1368 } 1369 AUDIO_INITINFO(&info); 1370 info.record.port = up->port; 1371 info.record.gain = up->gain; 1372 info.record.error = 0; 1373 ioctl(chu_ctl_fd, (int)AUDIO_SETINFO, &info); 1374 if (info.record.error) 1375 up->errflg |= CHU_ERR_ERROR; 1376 } 1377 1378 1379 /* 1380 * chu_audio - initialize audio device 1381 * 1382 * This code works with SunOS 4.1.3 and Solaris 2.6; however, it is 1383 * believed generic and applicable to other systems with a minor twid 1384 * or two. All it does is open the device, set the buffer size (Solaris 1385 * only), preset the gain and set the input port. It assumes that the 1386 * codec sample rate (8000 Hz), precision (8 bits), number of channels 1387 * (1) and encoding (ITU-T G.711 mu-law companded) have been set by 1388 * default. 1389 */ 1390 static int 1391 chu_audio( 1392 ) 1393 { 1394 /* 1395 * Open audio control device 1396 */ 1397 if ((chu_ctl_fd = open("/dev/audioctl", O_RDWR)) < 0) { 1398 perror("audioctl"); 1399 return(-1); 1400 } 1401 #ifdef HAVE_SYS_AUDIOIO_H 1402 /* 1403 * Set audio device parameters. 1404 */ 1405 AUDIO_INITINFO(&info); 1406 info.record.buffer_size = AUDIO_BUFSIZ; 1407 if (ioctl(chu_ctl_fd, (int)AUDIO_SETINFO, &info) < 0) { 1408 perror("AUDIO_SETINFO"); 1409 close(chu_ctl_fd); 1410 return(-1); 1411 } 1412 #endif /* HAVE_SYS_AUDIOIO_H */ 1413 #ifdef DEBUG 1414 chu_debug(); 1415 #endif /* DEBUG */ 1416 return(0); 1417 } 1418 1419 1420 #ifdef DEBUG 1421 /* 1422 * chu_debug - display audio parameters 1423 * 1424 * This code doesn't really do anything, except satisfy curiousity and 1425 * verify the ioctl's work. 1426 */ 1427 static void 1428 chu_debug( 1429 ) 1430 { 1431 if (debug == 0) 1432 return; 1433 #ifdef HAVE_SYS_AUDIOIO_H 1434 ioctl(chu_ctl_fd, (int)AUDIO_GETDEV, &device); 1435 printf("chu: name %s, version %s, config %s\n", 1436 device.name, device.version, device.config); 1437 #endif /* HAVE_SYS_AUDIOIO_H */ 1438 ioctl(chu_ctl_fd, (int)AUDIO_GETINFO, &info); 1439 printf( 1440 "chu: samples %d, channels %d, precision %d, encoding %d\n", 1441 info.record.sample_rate, info.record.channels, 1442 info.record.precision, info.record.encoding); 1443 #ifdef HAVE_SYS_AUDIOIO_H 1444 printf("chu: gain %d, port %d, buffer %d\n", 1445 info.record.gain, info.record.port, 1446 info.record.buffer_size); 1447 #else /* HAVE_SYS_AUDIOIO_H */ 1448 printf("chu: gain %d, port %d\n", 1449 info.record.gain, info.record.port); 1450 #endif /* HAVE_SYS_AUDIOIO_H */ 1451 printf( 1452 "chu: samples %d, eof %d, pause %d, error %d, waiting %d, balance %d\n", 1453 info.record.samples, info.record.eof, 1454 info.record.pause, info.record.error, 1455 info.record.waiting, info.record.balance); 1456 printf("chu: monitor %d, muted %d\n", 1457 info.monitor_gain, info.output_muted); 1458 } 1459 #endif /* DEBUG */ 1460 #endif /* AUDIO_CHU */ 1461 1462 #else 1463 int refclock_chu_bs; 1464 #endif /* REFCLOCK */ 1465