xref: /freebsd/contrib/ntp/ntpd/refclock_chu.c (revision 5129159789cc9d7bc514e4546b88e3427695002d)
1 /*
2  * refclock_chu - clock driver for Canadian radio CHU receivers
3  */
4 
5 #ifdef HAVE_CONFIG_H
6 #include <config.h>
7 #endif
8 
9 #if defined(REFCLOCK) && defined(CLOCK_CHU)
10 
11 /* #define AUDIO_CHUa */
12 
13 #include <stdio.h>
14 #include <ctype.h>
15 #include <sys/time.h>
16 #include <time.h>
17 #include <math.h>
18 
19 #ifdef AUDIO_CHU
20 #ifdef HAVE_SYS_AUDIOIO_H
21 #include <sys/audioio.h>
22 #endif /* HAVE_SYS_AUDIOIO_H */
23 #ifdef HAVE_SUN_AUDIOIO_H
24 #include <sun/audioio.h>
25 #endif /* HAVE_SUN_AUDIOIO_H */
26 #endif /* AUDIO_CHU */
27 
28 #include "ntpd.h"
29 #include "ntp_io.h"
30 #include "ntp_refclock.h"
31 #include "ntp_calendar.h"
32 #include "ntp_stdlib.h"
33 
34 /*
35  * Clock driver for Canadian radio CHU receivers
36  *
37  * This driver synchronizes the computer time using data encoded in
38  * radio transmissions from Canadian time/frequency station CHU in
39  * Ottawa, Ontario. Transmissions are made continuously on 3330 kHz,
40  * 7335 kHz and 14670 kHz in upper sideband, compatible AM mode. An
41  * ordinary shortwave receiver can be tuned manually to one of these
42  * frequencies or, in the case of ICOM receivers, the receiver can be
43  * tuned automatically using the minimuf and icom programs as
44  * propagation conditions change throughout the day and night.
45  *
46  * The driver can be compiled to use a Bell 103 compatible modem or
47  * modem chip to receive the radio signal and demodulate the data.
48  * Alternatively, the driver can be compiled to use the audio codec of
49  * the Sun workstation or another with compatible audio drivers. In the
50  * latter case, the driver implements the modem using DSP routines, so
51  * the radio can be connected directly to either the microphone on line
52  * input port. In either case, the driver decodes the data using a
53  * maximum likelihood technique which exploits the considerable degree
54  * of redundancy available to maximize accuracy and minimize errors.
55  *
56  * The CHU time broadcast includes an audio signal compatible with the
57  * Bell 103 modem standard (mark = 2225 Hz, space = 2025 Hz). It consist
58  * of nine, ten-character bursts transmitted at 300 bps and beginning
59  * each second from second 31 to second 39 of the minute. Each character
60  * consists of eight data bits plus one start bit and two stop bits to
61  * encode two hex digits. The burst data consist of five characters (ten
62  * hex digits) followed by a repeat of these characters. In format A,
63  * the characters are repeated in the same polarity; in format B, the
64  * characters are repeated in the opposite polarity.
65  *
66  * Format A bursts are sent at seconds 32 through 39 of the minute in
67  * hex digits
68  *
69  *	6dddhhmmss6dddhhmmss
70  *
71  * The first ten digits encode a frame marker (6) followed by the day
72  * (ddd), hour (hh in UTC), minute (mm) and the second (ss). Since
73  * format A bursts are sent during the third decade of seconds the tens
74  * digit of ss is always 3. The driver uses this to determine correct
75  * burst synchronization. These digits are then repeated with the same
76  * polarity.
77  *
78  * Format B bursts are sent at second 31 of the minute in hex digits
79  *
80  *	xdyyyyttaaxdyyyyttaa
81  *
82  * The first ten digits encode a code (x described below) followed by
83  * the DUT1 (d in deciseconds), Gregorian year (yyyy), difference TAI -
84  * UTC (tt) and daylight time indicator (aa) peculiar to Canada. These
85  * digits are then repeated with inverted polarity.
86  *
87  * The x is coded
88  *
89  * 1 Sign of DUT (0 = +)
90  * 2 Leap second warning. One second will be added.
91  * 4 Leap second warning. One second will be subtracted.
92  * 8 Even parity bit for this nibble.
93  *
94  * By design, the last stop bit of the last character in the burst
95  * coincides with 0.5 second. Since characters have 11 bits and are
96  * transmitted at 300 bps, the last stop bit of the first character
97  * coincides with 0.5 - 10 * 11/300 = 0.133 second. Depending on the
98  * UART, character interrupts can vary somewhere between the beginning
99  * of bit 9 and end of bit 11. These eccentricities can be corrected
100  * along with the radio propagation delay using fudge time 1.
101  *
102  * Debugging aids
103  *
104  * The timecode format used for debugging and data recording includes
105  * data helpful in diagnosing problems with the radio signal and serial
106  * connections. With debugging enabled (-d -d -d on the ntpd command
107  * line), the driver produces one line for each burst in two formats
108  * corresponding to format A and B. Following is format A:
109  *
110  *	n b f s m code
111  *
112  * where n is the number of characters in the burst (0-11), b the burst
113  * distance (0-40), f the field alignment (-1, 0, 1), s the
114  * synchronization distance (0-16), m the burst number (2-9) and code
115  * the burst characters as received. Note that the hex digits in each
116  * character are reversed, so the burst
117  *
118  *	10 38 0 16 9 06851292930685129293
119  *
120  * is interpreted as containing 11 characters with burst distance 38,
121  * field alignment 0, synchronization distance 16 and burst number 9.
122  * The nibble-swapped timecode shows day 58, hour 21, minute 29 and
123  * second 39.
124  *
125  * When the audio driver is compiled, format A is preceded by
126  * the current gain (0-255) and relative signal level (0-9999). The
127  * receiver folume control should be set so that the gain is somewhere
128  * near the middle of the range 0-255, which results in a signal level
129  * near 1000.
130  *
131  * Following is format B:
132  *
133  *	n b s code
134  *
135  * where n is the number of characters in the burst (0-11), b the burst
136  * distance (0-40), s the synchronization distance (0-40) and code the
137  * burst characters as received. Note that the hex digits in each
138  * character are reversed and the last ten digits inverted, so the burst
139  *
140  *	11 40 1091891300ef6e76ecff
141  *
142  * is interpreted as containing 11 characters with burst distance 40.
143  * The nibble-swapped timecode shows DUT1 +0.1 second, year 1998 and TAI
144  * - UTC 31 seconds.
145  *
146  * In addition to the above, the reference timecode is updated and
147  * written to the clockstats file and debug score after the last burst
148  * received in the minute. The format is
149  *
150  *	qq yyyy ddd hh:mm:ss nn dd tt
151  *
152  * where qq are the error flags, as described below, yyyy is the year,
153  * ddd the day, hh:mm:ss the time of day, nn the number of format A
154  * bursts received during the previous minute, dd the decoding distance
155  * and tt the number of timestamps. The error flags are cleared after
156  * every update.
157  *
158  * Fudge factors
159  *
160  * For accuracies better than the low millisceconds, fudge time1 can be
161  * set to the radio propagation delay from CHU to the receiver. This can
162  * be done conviently using the minimuf program. When the modem driver
163  * is compiled, fudge flag3 enables the ppsclock line discipline. Fudge
164  * flag4 causes the dubugging output described above to be recorded in
165  * the clockstats file.
166  *
167  * When the audio driver is compiled, fudge flag2 selects the audio
168  * input port, where 0 is the mike port (default) and 1 is the line-in
169  * port. It does not seem useful to select the compact disc player port.
170  * Fudge flag3 enables audio monitoring of the input signal. For this
171  * purpose, the speaker volume must be set before the driver is started.
172  */
173 
174 /*
175  * Interface definitions
176  */
177 #define	SPEED232	B300	/* uart speed (300 baud) */
178 #define	PRECISION	(-10)	/* precision assumed (about 1 ms) */
179 #define	REFID		"CHU"	/* reference ID */
180 #ifdef AUDIO_CHU
181 #define	DESCRIPTION	"CHU Modem Receiver" /* WRU */
182 
183 /*
184  * Audio demodulator definitions
185  */
186 #define AUDIO_BUFSIZ	160	/* codec buffer size (Solaris only) */
187 #define SAMPLE		8000	/* nominal sample rate (Hz) */
188 #define BAUD		300	/* modulation rate (bps) */
189 #define OFFSET		128	/* companded sample offset */
190 #define SIZE		256	/* decompanding table size */
191 #define	MAXSIG		6000.	/* maximum signal level */
192 #define DRPOUT		100.	/* dropout signal level */
193 #define LIMIT		1000.	/* soft limiter threshold */
194 #define AGAIN		6.	/* baseband gain */
195 #define LAG		10	/* discriminator lag */
196 #else
197 #define	DEVICE		"/dev/chu%d" /* device name and unit */
198 #define	SPEED232	B300	/* UART speed (300 baud) */
199 #define	DESCRIPTION	"CHU Audio Receiver" /* WRU */
200 #endif /* AUDIO_CHU */
201 
202 /*
203  * Decoder definitions
204  */
205 #define CHAR		(11. / 300.) /* character time (s) */
206 #define	FUDGE		.185	/* offset to first stop bit (s) */
207 #define BURST		11	/* max characters per burst */
208 #define MINCHAR		9	/* min characters per burst */
209 #define MINDIST		28	/* min burst distance (of 40)  */
210 #define MINSYNC		8	/* min sync distance (of 16) */
211 #define MINDEC		.5	/* decoder majority rule (of 1.) */
212 #define MINSTAMP	20	/* min timestamps (of 60) */
213 
214 /*
215  * Hex extension codes (>= 16)
216  */
217 #define HEX_MISS	16	/* miss */
218 #define HEX_SOFT	17	/* soft error */
219 #define HEX_HARD	18	/* hard error */
220 
221 /*
222  * Error flags (up->errflg)
223  */
224 #define CHU_ERR_RUNT	0x001	/* runt burst */
225 #define CHU_ERR_NOISE	0x002	/* noise burst */
226 #define CHU_ERR_BFRAME	0x004	/* invalid format B frame sync */
227 #define CHU_ERR_BFORMAT	0x008	/* invalid format B data */
228 #define CHU_ERR_AFRAME	0x010	/* invalid format A frame sync */
229 #define CHU_ERR_DECODE	0x020	/* invalid data decode */
230 #define CHU_ERR_STAMP	0x040	/* too few timestamps */
231 #define CHU_ERR_AFORMAT	0x080	/* invalid format A data */
232 #ifdef AUDIO_CHU
233 #define CHU_ERR_ERROR	0x100	/* codec error (overrun) */
234 #endif /* AUDIO_CHU */
235 
236 #ifdef AUDIO_CHU
237 struct surv {
238 	double	shift[12];	/* mark register */
239 	double	max, min;	/* max/min envelope signals */
240 	double	dist;		/* sample distance */
241 	int	uart;		/* decoded character */
242 };
243 #endif /* AUDIO_CHU */
244 
245 /*
246  * CHU unit control structure
247  */
248 struct chuunit {
249 	u_char	decode[20][16];	/* maximum likelihood decoding matrix */
250 	l_fp	cstamp[BURST];	/* character timestamps */
251 	l_fp	tstamp[MAXSTAGE]; /* timestamp samples */
252 	l_fp	timestamp;	/* current buffer timestamp */
253 	l_fp	laststamp;	/* last buffer timestamp */
254 	l_fp	charstamp;	/* character time as a l_fp */
255 	int	errflg;		/* error flags */
256 	int	bufptr;		/* buffer index pointer */
257 	int	pollcnt;	/* poll message counter */
258 
259 	/*
260 	 * Character burst variables
261 	 */
262 	int	cbuf[BURST];	/* character buffer */
263 	int	ntstamp;	/* number of timestamp samples */
264 	int	ndx;		/* buffer start index */
265 	int	prevsec;	/* previous burst second */
266 	int	burdist;	/* burst distance */
267 	int	syndist;	/* sync distance */
268 	int	burstcnt;	/* format A bursts this minute */
269 
270 #ifdef AUDIO_CHU
271 	/*
272 	 * Audio codec variables
273 	 */
274 	double	comp[SIZE];	/* decompanding table */
275 	int	port;		/* codec port */
276 	int	gain;		/* codec gain */
277 	int	bufcnt;		/* samples in buffer */
278 	int	clipcnt;	/* sample clip count */
279 	int	seccnt;		/* second interval counter */
280 
281 	/*
282 	 * Modem variables
283 	 */
284 	l_fp	tick;		/* audio sample increment */
285 	double	bpf[9];		/* IIR bandpass filter */
286 	double	disc[LAG];	/* discriminator shift register */
287 	double	lpf[27];	/* FIR lowpass filter */
288 	double	monitor;	/* audio monitor */
289 	double	maxsignal;	/* signal level */
290 	int	discptr;	/* discriminator pointer */
291 
292 	/*
293 	 * Maximum likelihood UART variables
294 	 */
295 	double	baud;		/* baud interval */
296 	struct surv surv[8];	/* UART survivor structures */
297 	int	decptr;		/* decode pointer */
298 	int	dbrk;		/* holdoff counter */
299 #endif /* AUDIO_CHU */
300 };
301 
302 /*
303  * Function prototypes
304  */
305 static	int	chu_start	P((int, struct peer *));
306 static	void	chu_shutdown	P((int, struct peer *));
307 static	void	chu_receive	P((struct recvbuf *));
308 static	void	chu_poll	P((int, struct peer *));
309 
310 /*
311  * More function prototypes
312  */
313 static	void	chu_decode	P((struct peer *, int));
314 static	void	chu_burst	P((struct peer *));
315 static	void	chu_clear	P((struct peer *));
316 static	void	chu_update	P((struct peer *, int));
317 static	void	chu_year	P((struct peer *, int));
318 static	int	chu_dist	P((int, int));
319 #ifdef AUDIO_CHU
320 static	void	chu_uart	P((struct surv *, double));
321 static	void	chu_rf		P((struct peer *, double));
322 static	void	chu_gain	P((struct peer *));
323 static	int	chu_audio	P((void));
324 static	void	chu_debug	P((void));
325 #endif /* AUDIO_CHU */
326 
327 /*
328  * Global variables
329  */
330 static char hexchar[] = "0123456789abcdef_-=";
331 #ifdef AUDIO_CHU
332 #ifdef HAVE_SYS_AUDIOIO_H
333 struct	audio_device device;	/* audio device ident */
334 #endif /* HAVE_SYS_AUDIOIO_H */
335 static struct audio_info info;	/* audio device info */
336 static int	chu_ctl_fd;	/* audio control file descriptor */
337 #endif /* AUDIO_CHU */
338 
339 /*
340  * Transfer vector
341  */
342 struct	refclock refclock_chu = {
343 	chu_start,		/* start up driver */
344 	chu_shutdown,		/* shut down driver */
345 	chu_poll,		/* transmit poll message */
346 	noentry,		/* not used (old chu_control) */
347 	noentry,		/* initialize driver (not used) */
348 	noentry,		/* not used (old chu_buginfo) */
349 	NOFLAGS			/* not used */
350 };
351 
352 
353 /*
354  * chu_start - open the devices and initialize data for processing
355  */
356 static int
357 chu_start(
358 	int	unit,		/* instance number (not used) */
359 	struct peer *peer	/* peer structure pointer */
360 	)
361 {
362 	struct chuunit *up;
363 	struct refclockproc *pp;
364 
365 	/*
366 	 * Local variables
367 	 */
368 	int	fd;		/* file descriptor */
369 #ifdef AUDIO_CHU
370 	int	i;		/* index */
371 	double	step;		/* codec adjustment */
372 
373 	/*
374 	 * Open audio device
375 	 */
376 	fd = open("/dev/audio", O_RDWR | O_NONBLOCK, 0777);
377 	if (fd == -1) {
378 		perror("chu: audio");
379 		return (0);
380 	}
381 #else
382 	char device[20];	/* device name */
383 
384 	/*
385 	 * Open serial port. Use RAW line discipline (required).
386 	 */
387 	(void)sprintf(device, DEVICE, unit);
388 	if (!(fd = refclock_open(device, SPEED232, LDISC_RAW))) {
389 		return (0);
390 	}
391 #endif /* AUDIO_CHU */
392 
393 	/*
394 	 * Allocate and initialize unit structure
395 	 */
396 	if (!(up = (struct chuunit *)
397 	      emalloc(sizeof(struct chuunit)))) {
398 		(void) close(fd);
399 		return (0);
400 	}
401 	memset((char *)up, 0, sizeof(struct chuunit));
402 	pp = peer->procptr;
403 	pp->unitptr = (caddr_t)up;
404 	pp->io.clock_recv = chu_receive;
405 	pp->io.srcclock = (caddr_t)peer;
406 	pp->io.datalen = 0;
407 	pp->io.fd = fd;
408 	if (!io_addclock(&pp->io)) {
409 		(void)close(fd);
410 		free(up);
411 		return (0);
412 	}
413 
414 	/*
415 	 * Initialize miscellaneous variables
416 	 */
417 	peer->precision = PRECISION;
418 	pp->clockdesc = DESCRIPTION;
419 	memcpy((char *)&pp->refid, REFID, 4);
420 	DTOLFP(CHAR, &up->charstamp);
421 	up->pollcnt = 2;
422 #ifdef AUDIO_CHU
423 	up->gain = (AUDIO_MAX_GAIN - AUDIO_MIN_GAIN) / 2;
424 	if (chu_audio() < 0) {
425 		io_closeclock(&pp->io);
426 		free(up);
427 		return (0);
428 	}
429 
430 	/*
431 	 * The companded samples are encoded sign-magnitude. The table
432 	 * contains all the 256 values in the interest of speed.
433 	 */
434 	up->comp[0] = up->comp[OFFSET] = 0.;
435 	up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
436 	up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
437 	step = 2.;
438 	for (i = 3; i < OFFSET; i++) {
439 		up->comp[i] = up->comp[i - 1] + step;
440 		up->comp[OFFSET + i] = -up->comp[i];
441                 if (i % 16 == 0)
442                 	step *= 2.;
443 	}
444 	DTOLFP(1. / SAMPLE, &up->tick);
445 #endif /* AUDIO_CHU */
446 	return (1);
447 }
448 
449 
450 /*
451  * chu_shutdown - shut down the clock
452  */
453 static void
454 chu_shutdown(
455 	int	unit,		/* instance number (not used) */
456 	struct peer *peer	/* peer structure pointer */
457 	)
458 {
459 	struct chuunit *up;
460 	struct refclockproc *pp;
461 
462 	pp = peer->procptr;
463 	up = (struct chuunit *)pp->unitptr;
464 	io_closeclock(&pp->io);
465 	free(up);
466 }
467 
468 #ifdef AUDIO_CHU
469 
470 /*
471  * chu_receive - receive data from the audio device
472  */
473 static void
474 chu_receive(
475 	struct recvbuf *rbufp	/* receive buffer structure pointer */
476 	)
477 {
478 	struct chuunit *up;
479 	struct refclockproc *pp;
480 	struct peer *peer;
481 
482 	/*
483 	 * Local variables
484 	 */
485 	double	sample;		/* codec sample */
486 	u_char	*dpt;		/* buffer pointer */
487 	l_fp	ltemp;		/* l_fp temp */
488 	double	dtemp;		/* double temp */
489 	int	isneg;		/* parity flag */
490 	int	i, j;		/* index temps */
491 
492 	peer = (struct peer *)rbufp->recv_srcclock;
493 	pp = peer->procptr;
494 	up = (struct chuunit *)pp->unitptr;
495 
496 	/*
497 	 * Main loop - read until there ain't no more. Note codec
498 	 * samples are bit-inverted.
499 	 */
500 	up->timestamp = rbufp->recv_time;
501 	up->bufcnt = rbufp->recv_length;
502 	DTOLFP(up->bufcnt * 1. / SAMPLE, &ltemp);
503 	L_SUB(&up->timestamp, &ltemp);
504 	dpt = (u_char *)&rbufp->recv_space;
505 	for (up->bufptr = 0; up->bufptr < up->bufcnt; up->bufptr++) {
506 		sample = up->comp[~*dpt & 0xff];
507 
508 		/*
509 		 * Clip noise spikes greater than MAXSIG. If no clips,
510 		 * increase the gain a tad; if the clips are too high,
511 		 * decrease a tad.
512 		 */
513 		if (sample > MAXSIG) {
514 			sample = MAXSIG;
515 			up->clipcnt++;
516 		} else if (sample < -MAXSIG) {
517 			sample = -MAXSIG;
518 			up->clipcnt++;
519 		}
520 		up->seccnt = (up->seccnt + 1) % SAMPLE;
521 		if (up->seccnt == 0) {
522 			if (pp->sloppyclockflag & CLK_FLAG2)
523 				up->port = AUDIO_LINE_IN;
524 			else
525 				up->port = AUDIO_MICROPHONE;
526 			chu_gain(peer);
527 			up->clipcnt = 0;
528 		}
529 		chu_rf(peer, sample);
530 
531 		/*
532 		 * During development, it is handy to have an audio
533 		 * monitor that can be switched to various signals. This
534 		 * code converts the linear signal left in up->monitor
535 		 * to codec format. If we can get the grass out of this
536 		 * thing and improve modem performance, this expensive
537 		 * code will be permanently nixed.
538 		 */
539 		isneg = 0;
540 		dtemp = up->monitor;
541 		if (sample < 0) {
542 			isneg = 1;
543 			dtemp-= dtemp;
544 		}
545 		i = 0;
546 		j = OFFSET >> 1;
547 		while (j != 0) {
548 			if (dtemp > up->comp[i])
549 				i += j;
550 			else if (dtemp < up->comp[i])
551 				i -= j;
552 			else
553 				break;
554 			j >>= 1;
555 		}
556 		if (isneg)
557 			*dpt = ~(i + OFFSET);
558 		else
559 			*dpt = ~i;
560 		dpt++;
561 		L_ADD(&up->timestamp, &up->tick);
562 	}
563 
564 	/*
565 	 * Squawk to the monitor speaker if enabled.
566 	 */
567 	if (pp->sloppyclockflag & CLK_FLAG3)
568 		if (write(pp->io.fd, (u_char *)&rbufp->recv_space,
569 		    (u_int)up->bufcnt) < 0)
570 			perror("chu:");
571 }
572 
573 
574 /*
575  * chu_rf - filter and demodulate the FSK signal
576  *
577  * This routine implements a 300-baud Bell 103 modem with mark 2225 Hz
578  * and space 2025 Hz. It uses a bandpass filter followed by a soft
579  * limiter, FM discriminator and lowpass filter. A maximum likelihood
580  * decoder samples the baseband signal at eight times the baud rate and
581  * detects the start bit of each character.
582  *
583  * The filters are built for speed, which explains the rather clumsy
584  * code. Hopefully, the compiler will efficiently implement the move-
585  * and-muiltiply-and-add operations.
586  */
587 void
588 chu_rf(
589 	struct peer *peer,	/* peer structure pointer */
590 	double	sample		/* analog sample */
591 	)
592 {
593 	struct refclockproc *pp;
594 	struct chuunit *up;
595 	struct surv *sp;
596 
597 	/*
598 	 * Local variables
599 	 */
600 	double	signal;		/* bandpass signal */
601 	double	limit;		/* limiter signal */
602 	double	disc;		/* discriminator signal */
603 	double	lpf;		/* lowpass signal */
604 	double	span;		/* UART signal span */
605 	double	dist;		/* UART signal distance */
606 	int	i, j;		/* index temps */
607 
608 	pp = peer->procptr;
609 	up = (struct chuunit *)pp->unitptr;
610 	/*
611 	 * Bandpass filter. 4th-order elliptic, 500-Hz bandpass centered
612 	 * at 2125 Hz. Passband ripple 0.3 dB, stopband ripple 50 dB.
613 	 */
614 	signal = (up->bpf[8] = up->bpf[7]) * 5.844676e-01;
615 	signal += (up->bpf[7] = up->bpf[6]) * 4.884860e-01;
616 	signal += (up->bpf[6] = up->bpf[5]) * 2.704384e+00;
617 	signal += (up->bpf[5] = up->bpf[4]) * 1.645032e+00;
618 	signal += (up->bpf[4] = up->bpf[3]) * 4.644557e+00;
619 	signal += (up->bpf[3] = up->bpf[2]) * 1.879165e+00;
620 	signal += (up->bpf[2] = up->bpf[1]) * 3.522634e+00;
621 	signal += (up->bpf[1] = up->bpf[0]) * 7.315738e-01;
622 	up->bpf[0] = sample - signal;
623 	signal = up->bpf[0] * 6.176213e-03
624 	    + up->bpf[1] * 3.156599e-03
625 	    + up->bpf[2] * 7.567487e-03
626 	    + up->bpf[3] * 4.344580e-03
627 	    + up->bpf[4] * 1.190128e-02
628 	    + up->bpf[5] * 4.344580e-03
629 	    + up->bpf[6] * 7.567487e-03
630 	    + up->bpf[7] * 3.156599e-03
631 	    + up->bpf[8] * 6.176213e-03;
632 
633 	up->monitor = signal / 4.;	/* note monitor after filter */
634 
635 	/*
636 	 * Soft limiter/discriminator. The 11-sample discriminator lag
637 	 * interval corresponds to three cycles of 2125 Hz, which
638 	 * requires the sample frequency to be 2125 * 11 / 3 = 7791.7
639 	 * Hz. The discriminator output varies +-0.5 interval for input
640 	 * frequency 2025-2225 Hz. However, we don't get to sample at
641 	 * this frequency, so the discriminator output is biased. Life
642 	 * at 8000 Hz sucks.
643 	 */
644 	limit = signal;
645 	if (limit > LIMIT)
646 		limit = LIMIT;
647 	else if (limit < -LIMIT)
648 		limit = -LIMIT;
649 	disc = up->disc[up->discptr] * -limit;
650 	up->disc[up->discptr] = limit;
651 	up->discptr = (up->discptr + 1 ) % LAG;
652 	if (disc >= 0)
653 		disc = sqrt(disc);
654 	else
655 		disc = -sqrt(-disc);
656 
657 	/*
658 	 * Lowpass filter. Raised cosine, Ts = 1 / 300, beta = 0.1.
659 	 */
660 	lpf = (up->lpf[26] = up->lpf[25]) * 2.538771e-02;
661 	lpf += (up->lpf[25] = up->lpf[24]) * 1.084671e-01;
662 	lpf += (up->lpf[24] = up->lpf[23]) * 2.003159e-01;
663 	lpf += (up->lpf[23] = up->lpf[22]) * 2.985303e-01;
664 	lpf += (up->lpf[22] = up->lpf[21]) * 4.003697e-01;
665 	lpf += (up->lpf[21] = up->lpf[20]) * 5.028552e-01;
666 	lpf += (up->lpf[20] = up->lpf[19]) * 6.028795e-01;
667 	lpf += (up->lpf[19] = up->lpf[18]) * 6.973249e-01;
668 	lpf += (up->lpf[18] = up->lpf[17]) * 7.831828e-01;
669 	lpf += (up->lpf[17] = up->lpf[16]) * 8.576717e-01;
670 	lpf += (up->lpf[16] = up->lpf[15]) * 9.183463e-01;
671 	lpf += (up->lpf[15] = up->lpf[14]) * 9.631951e-01;
672 	lpf += (up->lpf[14] = up->lpf[13]) * 9.907208e-01;
673 	lpf += (up->lpf[13] = up->lpf[12]) * 1.000000e+00;
674 	lpf += (up->lpf[12] = up->lpf[11]) * 9.907208e-01;
675 	lpf += (up->lpf[11] = up->lpf[10]) * 9.631951e-01;
676 	lpf += (up->lpf[10] = up->lpf[9]) * 9.183463e-01;
677 	lpf += (up->lpf[9] = up->lpf[8]) * 8.576717e-01;
678 	lpf += (up->lpf[8] = up->lpf[7]) * 7.831828e-01;
679 	lpf += (up->lpf[7] = up->lpf[6]) * 6.973249e-01;
680 	lpf += (up->lpf[6] = up->lpf[5]) * 6.028795e-01;
681 	lpf += (up->lpf[5] = up->lpf[4]) * 5.028552e-01;
682 	lpf += (up->lpf[4] = up->lpf[3]) * 4.003697e-01;
683 	lpf += (up->lpf[3] = up->lpf[2]) * 2.985303e-01;
684 	lpf += (up->lpf[2] = up->lpf[1]) * 2.003159e-01;
685 	lpf += (up->lpf[1] = up->lpf[0]) * 1.084671e-01;
686 	lpf += up->lpf[0] = disc * 2.538771e-02;
687 /*
688 printf("%8.3f %8.3f\n", disc, lpf);
689 return;
690 */
691 	/*
692 	 * Maximum likelihood decoder. The UART updates each of the
693 	 * eight survivors and determines the span, slice level and
694 	 * tentative decoded character. Valid 11-bit characters are
695 	 * framed so that bit 1 and bit 11 (stop bits) are mark and bit
696 	 * 2 (start bit) is space. When a valid character is found, the
697 	 * survivor with maximum distance determines the final decoded
698 	 * character.
699 	 */
700 	up->baud += 1. / SAMPLE;
701 	if (up->baud > 1. / (BAUD * 8.)) {
702 		up->baud -= 1. / (BAUD * 8.);
703 		sp = &up->surv[up->decptr];
704 		span = sp->max - sp->min;
705 		up->maxsignal += (span - up->maxsignal) / 80.;
706 		if (up->dbrk > 0) {
707 			up->dbrk--;
708 		} else if ((sp->uart & 0x403) == 0x401 && span > 1000.)
709 		    {
710 			dist = 0;
711 			j = 0;
712 			for (i = 0; i < 8; i++) {
713 				if (up->surv[i].dist > dist) {
714 					dist = up->surv[i].dist;
715 					j = i;
716 				}
717 			}
718 			chu_decode(peer, (up->surv[j].uart >> 2) &
719 			    0xff);
720 			up->dbrk = 80;
721 		}
722 		up->decptr = (up->decptr + 1) % 8;
723 		chu_uart(sp, -lpf * AGAIN);
724 	}
725 }
726 
727 
728 /*
729  * chu_uart - maximum likelihood UART
730  *
731  * This routine updates a shift register holding the last 11 envelope
732  * samples. It then computes the slice level and span over these samples
733  * and determines the tentative data bits and distance. The calling
734  * program selects over the last eight survivors the one with maximum
735  * distance to determine the decoded character.
736  */
737 void
738 chu_uart(
739 	struct surv *sp,	/* survivor structure pointer */
740 	double	sample		/* baseband signal */
741 	)
742 {
743 	/*
744 	 * Local variables
745 	 */
746 	double	max, min;	/* max/min envelope */
747 	double	slice;		/* slice level */
748 	double	dist;		/* distance */
749 	double	dtemp;		/* double temp */
750 	int	i;		/* index temp */
751 
752 	/*
753 	 * Save the sample and shift right. At the same time, measure
754 	 * the maximum and minimum over all eleven samples.
755 	 */
756 	max = -1e6;
757 	min = 1e6;
758 	sp->shift[0] = sample;
759 	for (i = 11; i > 0; i--) {
760 		sp->shift[i] = sp->shift[i - 1];
761 		if (sp->shift[i] > max)
762 			max = sp->shift[i];
763 		if (sp->shift[i] < min)
764 			min = sp->shift[i];
765 	}
766 
767 	/*
768 	 * Determine the slice level midway beteen the maximum and
769 	 * minimum and the span as the maximum less the minimum. Compute
770 	 * the distance on the assumption the first and last bits must
771 	 * be mark, the second space and the rest either mark or space.
772 	 */
773 	slice = (max + min) / 2.;
774 	dist = 0;
775 	sp->uart = 0;
776 	for (i = 1; i < 12; i++) {
777 		sp->uart <<= 1;
778 		dtemp = sp->shift[i];
779 		if (dtemp > slice)
780 			sp->uart |= 0x1;
781 		if (i == 1 || i == 11) {
782 			dist += dtemp - min;
783 		} else if (i == 10) {
784 			dist += max - dtemp;
785 		} else {
786 			if (dtemp > slice)
787 				dist += dtemp - min;
788 			else
789 				dist += max - dtemp;
790 		}
791 	}
792 	sp->max = max;
793 	sp->min = min;
794 	sp->dist = dist / (11 * (max - min));
795 }
796 
797 
798 #else /* AUDIO_CHU */
799 /*
800  * chu_receive - receive data from the serial interface
801  */
802 static void
803 chu_receive(
804 	struct recvbuf *rbufp	/* receive buffer structure pointer */
805 	)
806 {
807 	struct chuunit *up;
808 	struct refclockproc *pp;
809 	struct peer *peer;
810 
811 	u_char	*dpt;		/* receive buffer pointer */
812 
813 	peer = (struct peer *)rbufp->recv_srcclock;
814 	pp = peer->procptr;
815 	up = (struct chuunit *)pp->unitptr;
816 
817 	/*
818 	 * Initialize pointers and read the timecode and timestamp.
819 	 */
820 	up->timestamp = rbufp->recv_time;
821 	dpt = (u_char *)&rbufp->recv_space;
822 	chu_decode(peer, *dpt);
823 }
824 #endif /* AUDIO_CHU */
825 
826 
827 /*
828  * chu_decode - decode the data
829  */
830 static void
831 chu_decode(
832 	struct peer *peer,	/* peer structure pointer */
833 	int	hexhex		/* data character */
834 	)
835 {
836 	struct refclockproc *pp;
837 	struct chuunit *up;
838 
839 	/*
840 	 * Local variables
841 	 */
842 	l_fp	tstmp;		/* timestamp temp */
843 	double	dtemp;		/* double temp */
844 
845 	pp = peer->procptr;
846 	up = (struct chuunit *)pp->unitptr;
847 
848 	/*
849 	 * If the interval since the last character is greater than the
850 	 * longest burst, process the last burst and start a new one. If
851 	 * the interval is less than this but greater than two
852 	 * characters, consider this a noise burst and reject it.
853 	 */
854 	tstmp = up->timestamp;
855 	if (L_ISZERO(&up->laststamp))
856 		up->laststamp = up->timestamp;
857 	L_SUB(&tstmp, &up->laststamp);
858 	up->laststamp = up->timestamp;
859 	LFPTOD(&tstmp, dtemp);
860 	if (dtemp > BURST * CHAR) {
861 		chu_burst(peer);
862 		up->ndx = 0;
863 	} else if (dtemp > 2.5 * CHAR) {
864 		up->ndx = 0;
865 	}
866 
867 	/*
868 	 * Append the character to the current burst and append the
869 	 * timestamp to the timestamp list.
870 	 */
871 	if (up->ndx < BURST) {
872 		up->cbuf[up->ndx] = hexhex & 0xff;
873 		up->cstamp[up->ndx] = up->timestamp;
874 		up->ndx++;
875 
876 	}
877 }
878 
879 
880 /*
881  * chu_burst - search for valid burst format
882  */
883 static void
884 chu_burst(
885 	struct peer *peer
886 	)
887 {
888 	struct chuunit *up;
889 	struct refclockproc *pp;
890 
891 	/*
892 	 * Local variables
893 	 */
894 	int	i;		/* index temp */
895 
896 	pp = peer->procptr;
897 	up = (struct chuunit *)pp->unitptr;
898 
899 	/*
900 	 * Correlate a block of five characters with the next block of
901 	 * five characters. The burst distance is defined as the number
902 	 * of bits that match in the two blocks for format A and that
903 	 * match the inverse for format B.
904 	 */
905 	if (up->ndx < MINCHAR) {
906 		up->errflg |= CHU_ERR_RUNT;
907 		return;
908 	}
909 	up->burdist = 0;
910 	for (i = 0; i < 5 && i < up->ndx - 5; i++)
911 		up->burdist += chu_dist(up->cbuf[i], up->cbuf[i + 5]);
912 
913 	/*
914 	 * If the burst distance is at least MINDIST, this must be a
915 	 * format A burst; if the value is not greater than -MINDIST, it
916 	 * must be a format B burst; otherwise, it is a noise burst and
917 	 * of no use to anybody.
918 	 */
919 	if (up->burdist >= MINDIST) {
920 		chu_update(peer, up->ndx);
921 	} else if (up->burdist <= -MINDIST) {
922 		chu_year(peer, up->ndx);
923 	} else {
924 		up->errflg |= CHU_ERR_NOISE;
925 		return;
926 	}
927 
928 	/*
929 	 * If this is a valid burst, wait a guard time of ten seconds to
930 	 * allow for more bursts, then arm the poll update routine to
931 	 * process the minute. Don't do this if this is called from the
932 	 * timer interrupt routine.
933 	 */
934 	if (peer->outdate == current_time)
935 		up->pollcnt = 2;
936 	else
937 		peer->nextdate = current_time + 10;
938 }
939 
940 
941 /*
942  * chu_year - decode format B burst
943  */
944 static void
945 chu_year(
946 	struct peer *peer,
947 	int	nchar
948 	)
949 {
950 	struct	refclockproc *pp;
951 	struct	chuunit *up;
952 
953 	/*
954 	 * Local variables
955 	 */
956 	u_char	code[11];	/* decoded timecode */
957 	l_fp	offset;		/* timestamp offset */
958 	int	leap;		/* leap/dut code */
959 	int	dut;		/* UTC1 correction */
960 	int	tai;		/* TAI - UTC correction */
961 	int	dst;		/* Canadian DST code */
962 	int	i;		/* index temp */
963 
964 	pp = peer->procptr;
965 	up = (struct chuunit *)pp->unitptr;
966 
967 	/*
968 	 * In a format B burst, a character is considered valid only if
969 	 * the first occurrence matches the last occurrence. The burst
970 	 * is considered valid only if all characters are valid; that
971 	 * is, only if the distance is 40.
972 	 */
973 	sprintf(pp->a_lastcode, "%2d %2d ", nchar, -up->burdist);
974 	for (i = 0; i < nchar; i++)
975 		sprintf(&pp->a_lastcode[strlen(pp->a_lastcode)], "%02x",
976 		    up->cbuf[i]);
977 	pp->lencode = strlen(pp->a_lastcode);
978 	if (pp->sloppyclockflag & CLK_FLAG4)
979 		record_clock_stats(&peer->srcadr, pp->a_lastcode);
980 #ifdef DEBUG
981 	if (debug > 2)
982 		printf("chu: %s\n", pp->a_lastcode);
983 #endif
984 	if (-up->burdist < 40) {
985 		up->errflg |= CHU_ERR_BFRAME;
986 		return;
987 	}
988 
989 	/*
990 	 * Convert the burst data to internal format. If this succeeds,
991 	 * save the timestamps for later. The leap, dut, tai and dst are
992 	 * presently unused.
993 	 */
994 	for (i = 0; i < 5; i++) {
995 		code[2 * i] = hexchar[up->cbuf[i] & 0xf];
996 		code[2 * i + 1] = hexchar[(up->cbuf[i] >>
997 		    4) & 0xf];
998 	}
999 	if (sscanf((char *)code, "%1x%1d%4d%2d%2x", &leap, &dut,
1000 	    &pp->year, &tai, &dst) != 5) {
1001 		up->errflg |= CHU_ERR_BFORMAT;
1002 		return;
1003 	}
1004 	offset.l_ui = 31;
1005 	offset.l_f = 0;
1006 	for (i = 0; i < nchar && i < 10; i++) {
1007 		up->tstamp[up->ntstamp] = up->cstamp[i];
1008 		L_SUB(&up->tstamp[up->ntstamp], &offset);
1009 		L_ADD(&offset, &up->charstamp);
1010 		if (up->ntstamp < MAXSTAGE)
1011 			up->ntstamp++;
1012 	}
1013 }
1014 
1015 
1016 /*
1017  * chu_update - decode format A burst
1018  */
1019 static void
1020 chu_update(
1021 	struct peer *peer,
1022 	int nchar
1023 	)
1024 {
1025 	struct refclockproc *pp;
1026 	struct chuunit *up;
1027 
1028 	/*
1029 	 * Local variables
1030 	 */
1031 	l_fp	offset;		/* timestamp offset */
1032 	int	val;		/* distance */
1033 	int	temp;		/* common temp */
1034 	int	i, j, k;	/* index temps */
1035 
1036 	pp = peer->procptr;
1037 	up = (struct chuunit *)pp->unitptr;
1038 
1039 	/*
1040 	 * Determine correct burst phase. There are three cases
1041 	 * corresponding to in-phase, one character early or one
1042 	 * character late. These cases are distinguished by the position
1043 	 * of the framing digits x6 at positions 0 and 5 and x3 at
1044 	 * positions 4 and 9. The correct phase is when the distance
1045 	 * relative to the framing digits is maximum. The burst is valid
1046 	 * only if the maximum distance is at least MINSYNC.
1047 	 */
1048 	up->syndist = k = 0;
1049 	val = -16;
1050 	for (i = -1; i < 2; i++) {
1051 		temp = up->cbuf[i + 4] & 0xf;
1052 		if (i >= 0)
1053 			temp |= (up->cbuf[i] & 0xf) << 4;
1054 		val = chu_dist(temp, 0x63);
1055 		temp = (up->cbuf[i + 5] & 0xf) << 4;
1056 		if (i + 9 < nchar)
1057 			temp |= up->cbuf[i + 9] & 0xf;
1058 		val += chu_dist(temp, 0x63);
1059 		if (val > up->syndist) {
1060 			up->syndist = val;
1061 			k = i;
1062 		}
1063 	}
1064 
1065 	temp = (up->cbuf[k + 4] >> 4) & 0xf;
1066 	if (temp > 9 || k + 9 >= nchar || temp != ((up->cbuf[k + 9] >>
1067 	    4) & 0xf))
1068 		temp = 0;
1069 #ifdef AUDIO_CHU
1070 	sprintf(pp->a_lastcode, "%3d %4.0f %2d %2d %2d %2d %1d ",
1071 	    up->gain, up->maxsignal, nchar, up->burdist, k, up->syndist,
1072 	    temp);
1073 #else
1074 	sprintf(pp->a_lastcode, "%2d %2d %2d %2d %1d ", nchar,
1075 	    up->burdist, k, up->syndist, temp);
1076 #endif /* AUDIO_CHU */
1077 	for (i = 0; i < nchar; i++)
1078 		sprintf(&pp->a_lastcode[strlen(pp->a_lastcode)], "%02x",
1079 		    up->cbuf[i]);
1080 	pp->lencode = strlen(pp->a_lastcode);
1081 	if (pp->sloppyclockflag & CLK_FLAG4)
1082 		record_clock_stats(&peer->srcadr, pp->a_lastcode);
1083 #ifdef DEBUG
1084 	if (debug > 2)
1085 		printf("chu: %s\n", pp->a_lastcode);
1086 #endif
1087 	if (up->syndist < MINSYNC) {
1088 		up->errflg |= CHU_ERR_AFRAME;
1089 		return;
1090 	}
1091 
1092 	/*
1093 	 * A valid burst requires the first seconds number to match the
1094 	 * last seconds number. If so, the burst timestamps are
1095 	 * corrected to the current minute and saved for later
1096 	 * processing. In addition, the seconds decode is advanced from
1097 	 * the previous burst to the current one.
1098 	 */
1099 	if (temp != 0) {
1100 		offset.l_ui = 30 + temp;
1101 		offset.l_f = 0;
1102 		i = 0;
1103 		if (k < 0)
1104 			offset = up->charstamp;
1105 		else if (k > 0)
1106 			i = 1;
1107 		for (; i < nchar && i < k + 10; i++) {
1108 			up->tstamp[up->ntstamp] = up->cstamp[i];
1109 			L_SUB(&up->tstamp[up->ntstamp], &offset);
1110 			L_ADD(&offset, &up->charstamp);
1111 			if (up->ntstamp < MAXSTAGE)
1112 				up->ntstamp++;
1113 		}
1114 		while (temp > up->prevsec) {
1115 			for (j = 15; j > 0; j--) {
1116 				up->decode[9][j] = up->decode[9][j - 1];
1117 				up->decode[19][j] =
1118 				    up->decode[19][j - 1];
1119 			}
1120 			up->decode[9][j] = up->decode[19][j] = 0;
1121 			up->prevsec++;
1122 		}
1123 	}
1124 	i = -(2 * k);
1125 	for (j = 0; j < nchar; j++) {
1126 		if (i < 0 || i > 19) {
1127 			i += 2;
1128 			continue;
1129 		}
1130 		up->decode[i++][up->cbuf[j] & 0xf]++;
1131 		up->decode[i++][(up->cbuf[j] >> 4) & 0xf]++;
1132 	}
1133 	up->burstcnt++;
1134 }
1135 
1136 
1137 /*
1138  * chu_poll - called by the transmit procedure
1139  */
1140 static void
1141 chu_poll(
1142 	int unit,
1143 	struct peer *peer
1144 	)
1145 {
1146 	struct refclockproc *pp;
1147 	struct chuunit *up;
1148 
1149 	/*
1150 	 * Local variables
1151 	 */
1152 	u_char	code[11];	/* decoded timecode */
1153 	l_fp	toffset, offset; /* l_fp temps */
1154 	int	mindist;	/* minimum distance */
1155 	int	val1, val2;	/* maximum distance */
1156 	int	synchar;	/* should be a 6 in traffic */
1157 	double	dtemp;		/* double temp */
1158 	int	temp;		/* common temp */
1159 	int	i, j, k;	/* index temps */
1160 
1161 	pp = peer->procptr;
1162 	up = (struct chuunit *)pp->unitptr;
1163 
1164 	/*
1165 	 * Process the last burst, if still in the burst buffer.
1166 	 * Don't mess with anything if nothing has been heard.
1167 	 */
1168 	chu_burst(peer);
1169 	if (up->pollcnt == 0)
1170 		refclock_report(peer, CEVNT_TIMEOUT);
1171 	else
1172 		up->pollcnt--;
1173 	if (up->burstcnt == 0) {
1174 		chu_clear(peer);
1175 		return;
1176 	}
1177 
1178 	/*
1179 	 * Majority decoder. Select the character with the most
1180 	 * occurrences for each burst position. The distance for the
1181 	 * character is this number of occurrences. If no occurrences
1182 	 * are found, assume a miss '_'; if only a single occurrence is
1183 	 * found, assume a soft error '-'; if two different characters
1184 	 * with the same distance are found, assume a hard error '='.
1185 	 * The decoding distance is defined as the minimum of the
1186 	 * character distances.
1187 	 */
1188 	mindist = 16;
1189 	for (i = 0; i < 10; i++) {
1190 		val1 = val2 = 0;
1191 		k = 0;
1192 		for (j = 0; j < 16; j++) {
1193 			temp = up->decode[i][j] + up->decode[i + 10][j];
1194 			if (temp > val1) {
1195 				val2 = val1;
1196 				val1 = temp;
1197 				k = j;
1198 			}
1199 		}
1200 		if (val1 > 0 && val1 == val2)
1201 			code[i] = HEX_HARD;
1202 		else if (val1 < 2)
1203 			code[i] = HEX_SOFT;
1204 		else
1205 			code[i] = k;
1206 		if (val1 < mindist)
1207 			mindist = val1;
1208 		code[i] = hexchar[code[i]];
1209 	}
1210 	code[i] = 0;
1211 	if (mindist < up->burstcnt * 2 * MINDEC)
1212 		up->errflg |= CHU_ERR_DECODE;
1213 	if (up->ntstamp < MINSTAMP)
1214 		up->errflg |= CHU_ERR_STAMP;
1215 
1216 	/*
1217 	 * Compute the timecode timestamp from the days, hours and
1218 	 * minutes of the timecode. Use clocktime() for the aggregate
1219 	 * minutes and the minute offset computed from the burst
1220 	 * seconds. Note that this code relies on the filesystem time
1221 	 * for the years and does not use the years of the timecode.
1222 	 */
1223 	if (sscanf((char *)code, "%1x%3d%2d%2d", &synchar, &pp->day, &pp->hour,
1224 	    &pp->minute) != 4)
1225 		up->errflg |= CHU_ERR_AFORMAT;
1226 	sprintf(pp->a_lastcode,
1227 	    "%02x %4d %3d %02d:%02d:%02d %2d %2d %2d",
1228 	    up->errflg, pp->year, pp->day, pp->hour, pp->minute,
1229 	    pp->second, up->burstcnt, mindist, up->ntstamp);
1230 	pp->lencode = strlen(pp->a_lastcode);
1231 	record_clock_stats(&peer->srcadr, pp->a_lastcode);
1232 #ifdef DEBUG
1233 	if (debug > 2)
1234 		printf("chu: %s\n", pp->a_lastcode);
1235 #endif
1236 	if (up->errflg & (CHU_ERR_DECODE | CHU_ERR_STAMP |
1237 	    CHU_ERR_AFORMAT)) {
1238 		refclock_report(peer, CEVNT_BADREPLY);
1239 		chu_clear(peer);
1240 		return;
1241 	}
1242 	L_CLR(&offset);
1243 	if (!clocktime(pp->day, pp->hour, pp->minute, 0, GMT,
1244 	    up->tstamp[0].l_ui, &pp->yearstart, &offset.l_ui)) {
1245 		refclock_report(peer, CEVNT_BADTIME);
1246 		chu_clear(peer);
1247 		return;
1248 	}
1249 	pp->polls++;
1250 	pp->leap = LEAP_NOWARNING;
1251 	pp->lastref = offset;
1252 	pp->variance = 0;
1253 	for (i = 0; i < up->ntstamp; i++) {
1254 		toffset = offset;
1255 		L_SUB(&toffset, &up->tstamp[i]);
1256 		LFPTOD(&toffset, dtemp);
1257 		SAMPLE(dtemp + FUDGE + pp->fudgetime1);
1258 	}
1259 	if (i > 0)
1260 		refclock_receive(peer);
1261 	chu_clear(peer);
1262 }
1263 
1264 
1265 /*
1266  * chu_clear - clear decoding matrix
1267  */
1268 static void
1269 chu_clear(
1270 	struct peer *peer
1271 	)
1272 {
1273 	struct refclockproc *pp;
1274 	struct chuunit *up;
1275 
1276 	/*
1277 	 * Local variables
1278 	 */
1279 	int	i, j;		/* index temps */
1280 
1281 	pp = peer->procptr;
1282 	up = (struct chuunit *)pp->unitptr;
1283 
1284 	/*
1285 	 * Clear stuff for following minute.
1286 	 */
1287 	up->ndx = up->ntstamp = up->prevsec = 0;
1288 	up->errflg = 0;
1289 	up->burstcnt = 0;
1290 	for (i = 0; i < 20; i++) {
1291 		for (j = 0; j < 16; j++)
1292 			up->decode[i][j] = 0;
1293 	}
1294 }
1295 
1296 
1297 /*
1298  * chu_dist - determine the distance of two octet arguments
1299  */
1300 static int
1301 chu_dist(
1302 	int	x,		/* an octet of bits */
1303 	int	y		/* another octet of bits */
1304 	)
1305 {
1306 	/*
1307 	 * Local variables
1308 	 */
1309 	int	val;		/* bit count */
1310 	int	temp;		/* misc temporary */
1311 	int	i;		/* index temporary */
1312 
1313 	/*
1314 	 * The distance is determined as the weight of the exclusive OR
1315 	 * of the two arguments. The weight is determined by the number
1316 	 * of one bits in the result. Each one bit increases the weight,
1317 	 * while each zero bit decreases it.
1318 	 */
1319 	temp = x ^ y;
1320 	val = 0;
1321 	for (i = 0; i < 8; i++) {
1322 		if ((temp & 0x1) == 0)
1323 			val++;
1324 		else
1325 			val--;
1326 		temp >>= 1;
1327 	}
1328 	return (val);
1329 }
1330 
1331 
1332 #ifdef AUDIO_CHU
1333 /*
1334  * chu_gain - adjust codec gain
1335  *
1336  * This routine is called once each second. If the signal envelope
1337  * amplitude is too low, the codec gain is bumped up by four units; if
1338  * too high, it is bumped down. The decoder is relatively insensitive to
1339  * amplitude, so this crudity works just fine. The input port is set and
1340  * the error flag is cleared, mostly to be ornery.
1341  */
1342 static void
1343 chu_gain(
1344 	struct peer *peer	/* peer structure pointer */
1345 	)
1346 {
1347 	struct refclockproc *pp;
1348 	struct chuunit *up;
1349 
1350 	pp = peer->procptr;
1351 	up = (struct chuunit *)pp->unitptr;
1352 
1353 	/*
1354 	 * Apparently, the codec uses only the high order bits of the
1355 	 * gain control field. Thus, it may take awhile for changes to
1356 	 * wiggle the hardware bits. Set the new bits in the structure
1357 	 * and call AUDIO_SETINFO. Upon return, the old bits are in the
1358 	 * structure.
1359 	 */
1360 	if (up->clipcnt == 0) {
1361 		up->gain += 4;
1362 		if (up->gain > AUDIO_MAX_GAIN)
1363 			up->gain = AUDIO_MAX_GAIN;
1364 	} else if (up->clipcnt > SAMPLE / 100) {
1365 		up->gain -= 4;
1366 		if (up->gain < AUDIO_MIN_GAIN)
1367 			up->gain = AUDIO_MIN_GAIN;
1368 	}
1369 	AUDIO_INITINFO(&info);
1370 	info.record.port = up->port;
1371 	info.record.gain = up->gain;
1372 	info.record.error = 0;
1373 	ioctl(chu_ctl_fd, (int)AUDIO_SETINFO, &info);
1374 	if (info.record.error)
1375 		up->errflg |= CHU_ERR_ERROR;
1376 }
1377 
1378 
1379 /*
1380  * chu_audio - initialize audio device
1381  *
1382  * This code works with SunOS 4.1.3 and Solaris 2.6; however, it is
1383  * believed generic and applicable to other systems with a minor twid
1384  * or two. All it does is open the device, set the buffer size (Solaris
1385  * only), preset the gain and set the input port. It assumes that the
1386  * codec sample rate (8000 Hz), precision (8 bits), number of channels
1387  * (1) and encoding (ITU-T G.711 mu-law companded) have been set by
1388  * default.
1389  */
1390 static int
1391 chu_audio(
1392 	)
1393 {
1394 	/*
1395 	 * Open audio control device
1396 	 */
1397 	if ((chu_ctl_fd = open("/dev/audioctl", O_RDWR)) < 0) {
1398 		perror("audioctl");
1399 		return(-1);
1400 	}
1401 #ifdef HAVE_SYS_AUDIOIO_H
1402 	/*
1403 	 * Set audio device parameters.
1404 	 */
1405 	AUDIO_INITINFO(&info);
1406 	info.record.buffer_size = AUDIO_BUFSIZ;
1407 	if (ioctl(chu_ctl_fd, (int)AUDIO_SETINFO, &info) < 0) {
1408 		perror("AUDIO_SETINFO");
1409 		close(chu_ctl_fd);
1410 		return(-1);
1411 	}
1412 #endif /* HAVE_SYS_AUDIOIO_H */
1413 #ifdef DEBUG
1414 	chu_debug();
1415 #endif /* DEBUG */
1416 	return(0);
1417 }
1418 
1419 
1420 #ifdef DEBUG
1421 /*
1422  * chu_debug - display audio parameters
1423  *
1424  * This code doesn't really do anything, except satisfy curiousity and
1425  * verify the ioctl's work.
1426  */
1427 static void
1428 chu_debug(
1429 	)
1430 {
1431 	if (debug == 0)
1432 		return;
1433 #ifdef HAVE_SYS_AUDIOIO_H
1434 	ioctl(chu_ctl_fd, (int)AUDIO_GETDEV, &device);
1435 	printf("chu: name %s, version %s, config %s\n",
1436 	    device.name, device.version, device.config);
1437 #endif /* HAVE_SYS_AUDIOIO_H */
1438 	ioctl(chu_ctl_fd, (int)AUDIO_GETINFO, &info);
1439 	printf(
1440 	    "chu: samples %d, channels %d, precision %d, encoding %d\n",
1441 	    info.record.sample_rate, info.record.channels,
1442 	    info.record.precision, info.record.encoding);
1443 #ifdef HAVE_SYS_AUDIOIO_H
1444 	printf("chu: gain %d, port %d, buffer %d\n",
1445 	    info.record.gain, info.record.port,
1446 	    info.record.buffer_size);
1447 #else /* HAVE_SYS_AUDIOIO_H */
1448 	printf("chu: gain %d, port %d\n",
1449 	    info.record.gain, info.record.port);
1450 #endif /* HAVE_SYS_AUDIOIO_H */
1451 	printf(
1452 	    "chu: samples %d, eof %d, pause %d, error %d, waiting %d, balance %d\n",
1453 	    info.record.samples, info.record.eof,
1454 	    info.record.pause, info.record.error,
1455 	    info.record.waiting, info.record.balance);
1456 	printf("chu: monitor %d, muted %d\n",
1457 	    info.monitor_gain, info.output_muted);
1458 }
1459 #endif /* DEBUG */
1460 #endif /* AUDIO_CHU */
1461 
1462 #else
1463 int refclock_chu_bs;
1464 #endif /* REFCLOCK */
1465