1 /* 2 * refclock_arc - clock driver for ARCRON MSF/DCF/WWVB receivers 3 */ 4 5 #ifdef HAVE_CONFIG_H 6 #include <config.h> 7 #endif 8 9 #if defined(REFCLOCK) && defined(CLOCK_ARCRON_MSF) 10 11 static const char arc_version[] = { "V1.3 2003/02/21" }; 12 13 /* define PRE_NTP420 for compatibility to previous versions of NTP (at least 14 to 4.1.0 */ 15 #undef PRE_NTP420 16 17 #ifndef ARCRON_NOT_KEEN 18 #define ARCRON_KEEN 1 /* Be keen, and trusting of the clock, if defined. */ 19 #endif 20 21 #ifndef ARCRON_NOT_MULTIPLE_SAMPLES 22 #define ARCRON_MULTIPLE_SAMPLES 1 /* Use all timestamp bytes as samples. */ 23 #endif 24 25 #ifndef ARCRON_NOT_LEAPSECOND_KEEN 26 #ifndef ARCRON_LEAPSECOND_KEEN 27 #undef ARCRON_LEAPSECOND_KEEN /* Respond quickly to leap seconds: doesn't work yet. */ 28 #endif 29 #endif 30 31 /* 32 Code by Derek Mulcahy, <derek@toybox.demon.co.uk>, 1997. 33 Modifications by Damon Hart-Davis, <d@hd.org>, 1997. 34 Modifications by Paul Alfille, <palfille@partners.org>, 2003. 35 Modifications by Christopher Price, <cprice@cs-home.com>, 2003. 36 Modifications by Nigel Roles <nigel@9fs.org>, 2003. 37 38 39 THIS CODE IS SUPPLIED AS IS, WITH NO WARRANTY OF ANY KIND. USE AT 40 YOUR OWN RISK. 41 42 Orginally developed and used with ntp3-5.85 by Derek Mulcahy. 43 44 Built against ntp3-5.90 on Solaris 2.5 using gcc 2.7.2. 45 46 This code may be freely copied and used and incorporated in other 47 systems providing the disclaimer and notice of authorship are 48 reproduced. 49 50 ------------------------------------------------------------------------------- 51 52 Nigel's notes: 53 54 1) Called tcgetattr() before modifying, so that fields correctly initialised 55 for all operating systems 56 57 2) Altered parsing of timestamp line so that it copes with fields which are 58 not always ASCII digits (e.g. status field when battery low) 59 60 ------------------------------------------------------------------------------- 61 62 Christopher's notes: 63 64 MAJOR CHANGES SINCE V1.2 65 ======================== 66 1) Applied patch by Andrey Bray <abuse@madhouse.demon.co.uk> 67 2001-02-17 comp.protocols.time.ntp 68 69 2) Added WWVB support via clock mode command, localtime/UTC time configured 70 via flag1=(0=UTC, 1=localtime) 71 72 3) Added ignore resync request via flag2=(0=resync, 1=ignore resync) 73 74 4) Added simplified conversion from localtime to UTC with dst/bst translation 75 76 5) Added average signal quality poll 77 78 6) Fixed a badformat error when no code is available due to stripping 79 \n & \r's 80 81 7) Fixed a badformat error when clearing lencode & memset a_lastcode in poll 82 routine 83 84 8) Lots of code cleanup, including standardized DEBUG macros and removal 85 of unused code 86 87 ------------------------------------------------------------------------------- 88 89 Author's original note: 90 91 I enclose my ntp driver for the Galleon Systems Arc MSF receiver. 92 93 It works (after a fashion) on both Solaris-1 and Solaris-2. 94 95 I am currently using ntp3-5.85. I have been running the code for 96 about 7 months without any problems. Even coped with the change to BST! 97 98 I had to do some funky things to read from the clock because it uses the 99 power from the receive lines to drive the transmit lines. This makes the 100 code look a bit stupid but it works. I also had to put in some delays to 101 allow for the turnaround time from receive to transmit. These delays 102 are between characters when requesting a time stamp so that shouldn't affect 103 the results too drastically. 104 105 ... 106 107 The bottom line is that it works but could easily be improved. You are 108 free to do what you will with the code. I haven't been able to determine 109 how good the clock is. I think that this requires a known good clock 110 to compare it against. 111 112 ------------------------------------------------------------------------------- 113 114 Damon's notes for adjustments: 115 116 MAJOR CHANGES SINCE V1.0 117 ======================== 118 1) Removal of pollcnt variable that made the clock go permanently 119 off-line once two time polls failed to gain responses. 120 121 2) Avoiding (at least on Solaris-2) terminal becoming the controlling 122 terminal of the process when we do a low-level open(). 123 124 3) Additional logic (conditional on ARCRON_LEAPSECOND_KEEN being 125 defined) to try to resync quickly after a potential leap-second 126 insertion or deletion. 127 128 4) Code significantly slimmer at run-time than V1.0. 129 130 131 GENERAL 132 ======= 133 134 1) The C preprocessor symbol to have the clock built has been changed 135 from ARC to ARCRON_MSF to CLOCK_ARCRON_MSF to minimise the 136 possiblity of clashes with other symbols in the future. 137 138 2) PRECISION should be -4/-5 (63ms/31ms) for the following reasons: 139 140 a) The ARC documentation claims the internal clock is (only) 141 accurate to about 20ms relative to Rugby (plus there must be 142 noticable drift and delay in the ms range due to transmission 143 delays and changing atmospheric effects). This clock is not 144 designed for ms accuracy as NTP has spoilt us all to expect. 145 146 b) The clock oscillator looks like a simple uncompensated quartz 147 crystal of the sort used in digital watches (ie 32768Hz) which 148 can have large temperature coefficients and drifts; it is not 149 clear if this oscillator is properly disciplined to the MSF 150 transmission, but as the default is to resync only once per 151 *day*, we can imagine that it is not, and is free-running. We 152 can minimise drift by resyncing more often (at the cost of 153 reduced battery life), but drift/wander may still be 154 significant. 155 156 c) Note that the bit time of 3.3ms adds to the potential error in 157 the the clock timestamp, since the bit clock of the serial link 158 may effectively be free-running with respect to the host clock 159 and the MSF clock. Actually, the error is probably 1/16th of 160 the above, since the input data is probably sampled at at least 161 16x the bit rate. 162 163 By keeping the clock marked as not very precise, it will have a 164 fairly large dispersion, and thus will tend to be used as a 165 `backup' time source and sanity checker, which this clock is 166 probably ideal for. For an isolated network without other time 167 sources, this clock can probably be expected to provide *much* 168 better than 1s accuracy, which will be fine. 169 170 By default, PRECISION is set to -4, but experience, especially at a 171 particular geographic location with a particular clock, may allow 172 this to be altered to -5. (Note that skews of +/- 10ms are to be 173 expected from the clock from time-to-time.) This improvement of 174 reported precision can be instigated by setting flag3 to 1, though 175 the PRECISION will revert to the normal value while the clock 176 signal quality is unknown whatever the flag3 setting. 177 178 IN ANY CASE, BE SURE TO SET AN APPROPRIATE FUDGE FACTOR TO REMOVE 179 ANY RESIDUAL SKEW, eg: 180 181 server 127.127.27.0 # ARCRON MSF radio clock unit 0. 182 # Fudge timestamps by about 20ms. 183 fudge 127.127.27.0 time1 0.020 184 185 You will need to observe your system's behaviour, assuming you have 186 some other NTP source to compare it with, to work out what the 187 fudge factor should be. For my Sun SS1 running SunOS 4.1.3_U1 with 188 my MSF clock with my distance from the MSF transmitter, +20ms 189 seemed about right, after some observation. 190 191 3) REFID has been made "MSFa" to reflect the MSF time source and the 192 ARCRON receiver. 193 194 4) DEFAULT_RESYNC_TIME is the time in seconds (by default) before 195 forcing a resync since the last attempt. This is picked to give a 196 little less than an hour between resyncs and to try to avoid 197 clashing with any regular event at a regular time-past-the-hour 198 which might cause systematic errors. 199 200 The INITIAL_RESYNC_DELAY is to avoid bothering the clock and 201 running down its batteries unnecesarily if ntpd is going to crash 202 or be killed or reconfigured quickly. If ARCRON_KEEN is defined 203 then this period is long enough for (with normal polling rates) 204 enough time samples to have been taken to allow ntpd to sync to 205 the clock before the interruption for the clock to resync to MSF. 206 This avoids ntpd syncing to another peer first and then 207 almost immediately hopping to the MSF clock. 208 209 The RETRY_RESYNC_TIME is used before rescheduling a resync after a 210 resync failed to reveal a statisfatory signal quality (too low or 211 unknown). 212 213 5) The clock seems quite jittery, so I have increased the 214 median-filter size from the typical (previous) value of 3. I 215 discard up to half the results in the filter. It looks like maybe 216 1 sample in 10 or so (maybe less) is a spike, so allow the median 217 filter to discard at least 10% of its entries or 1 entry, whichever 218 is greater. 219 220 6) Sleeping *before* each character sent to the unit to allow required 221 inter-character time but without introducting jitter and delay in 222 handling the response if possible. 223 224 7) If the flag ARCRON_KEEN is defined, take time samples whenever 225 possible, even while resyncing, etc. We rely, in this case, on the 226 clock always giving us a reasonable time or else telling us in the 227 status byte at the end of the timestamp that it failed to sync to 228 MSF---thus we should never end up syncing to completely the wrong 229 time. 230 231 8) If the flag ARCRON_OWN_FILTER is defined, use own versions of 232 refclock median-filter routines to get round small bug in 3-5.90 233 code which does not return the median offset. XXX Removed this 234 bit due NTP Version 4 upgrade - dlm. 235 236 9) We would appear to have a year-2000 problem with this clock since 237 it returns only the two least-significant digits of the year. But 238 ntpd ignores the year and uses the local-system year instead, so 239 this is in fact not a problem. Nevertheless, we attempt to do a 240 sensible thing with the dates, wrapping them into a 100-year 241 window. 242 243 10)Logs stats information that can be used by Derek's Tcl/Tk utility 244 to show the status of the clock. 245 246 11)The clock documentation insists that the number of bits per 247 character to be sent to the clock, and sent by it, is 11, including 248 one start bit and two stop bits. The data format is either 7+even 249 or 8+none. 250 251 252 TO-DO LIST 253 ========== 254 255 * Eliminate use of scanf(), and maybe sprintf(). 256 257 * Allow user setting of resync interval to trade battery life for 258 accuracy; maybe could be done via fudge factor or unit number. 259 260 * Possibly note the time since the last resync of the MSF clock to 261 MSF as the age of the last reference timestamp, ie trust the 262 clock's oscillator not very much... 263 264 * Add very slow auto-adjustment up to a value of +/- time2 to correct 265 for long-term errors in the clock value (time2 defaults to 0 so the 266 correction would be disabled by default). 267 268 * Consider trying to use the tty_clk/ppsclock support. 269 270 * Possibly use average or maximum signal quality reported during 271 resync, rather than just the last one, which may be atypical. 272 273 */ 274 275 276 /* Notes for HKW Elektronik GmBH Radio clock driver */ 277 /* Author Lyndon David, Sentinet Ltd, Feb 1997 */ 278 /* These notes seem also to apply usefully to the ARCRON clock. */ 279 280 /* The HKW clock module is a radio receiver tuned into the Rugby */ 281 /* MSF time signal tranmitted on 60 kHz. The clock module connects */ 282 /* to the computer via a serial line and transmits the time encoded */ 283 /* in 15 bytes at 300 baud 7 bits two stop bits even parity */ 284 285 /* Clock communications, from the datasheet */ 286 /* All characters sent to the clock are echoed back to the controlling */ 287 /* device. */ 288 /* Transmit time/date information */ 289 /* syntax ASCII o<cr> */ 290 /* Character o may be replaced if neccesary by a character whose code */ 291 /* contains the lowest four bits f(hex) eg */ 292 /* syntax binary: xxxx1111 00001101 */ 293 294 /* DHD note: 295 You have to wait for character echo + 10ms before sending next character. 296 */ 297 298 /* The clock replies to this command with a sequence of 15 characters */ 299 /* which contain the complete time and a final <cr> making 16 characters */ 300 /* in total. */ 301 /* The RC computer clock will not reply immediately to this command because */ 302 /* the start bit edge of the first reply character marks the beginning of */ 303 /* the second. So the RC Computer Clock will reply to this command at the */ 304 /* start of the next second */ 305 /* The characters have the following meaning */ 306 /* 1. hours tens */ 307 /* 2. hours units */ 308 /* 3. minutes tens */ 309 /* 4. minutes units */ 310 /* 5. seconds tens */ 311 /* 6. seconds units */ 312 /* 7. day of week 1-monday 7-sunday */ 313 /* 8. day of month tens */ 314 /* 9. day of month units */ 315 /* 10. month tens */ 316 /* 11. month units */ 317 /* 12. year tens */ 318 /* 13. year units */ 319 /* 14. BST/UTC status */ 320 /* bit 7 parity */ 321 /* bit 6 always 0 */ 322 /* bit 5 always 1 */ 323 /* bit 4 always 1 */ 324 /* bit 3 always 0 */ 325 /* bit 2 =1 if UTC is in effect, complementary to the BST bit */ 326 /* bit 1 =1 if BST is in effect, according to the BST bit */ 327 /* bit 0 BST/UTC change impending bit=1 in case of change impending */ 328 /* 15. status */ 329 /* bit 7 parity */ 330 /* bit 6 always 0 */ 331 /* bit 5 always 1 */ 332 /* bit 4 always 1 */ 333 /* bit 3 =1 if low battery is detected */ 334 /* bit 2 =1 if the very last reception attempt failed and a valid */ 335 /* time information already exists (bit0=1) */ 336 /* =0 if the last reception attempt was successful */ 337 /* bit 1 =1 if at least one reception since 2:30 am was successful */ 338 /* =0 if no reception attempt since 2:30 am was successful */ 339 /* bit 0 =1 if the RC Computer Clock contains valid time information */ 340 /* This bit is zero after reset and one after the first */ 341 /* successful reception attempt */ 342 343 /* DHD note: 344 Also note g<cr> command which confirms that a resync is in progress, and 345 if so what signal quality (0--5) is available. 346 Also note h<cr> command which starts a resync to MSF signal. 347 */ 348 349 350 #include "ntpd.h" 351 #include "ntp_io.h" 352 #include "ntp_refclock.h" 353 #include "ntp_calendar.h" 354 #include "ntp_stdlib.h" 355 356 #include <stdio.h> 357 #include <ctype.h> 358 359 #if defined(HAVE_BSD_TTYS) 360 #include <sgtty.h> 361 #endif /* HAVE_BSD_TTYS */ 362 363 #if defined(HAVE_SYSV_TTYS) 364 #include <termio.h> 365 #endif /* HAVE_SYSV_TTYS */ 366 367 #if defined(HAVE_TERMIOS) 368 #include <termios.h> 369 #endif 370 371 /* 372 * This driver supports the ARCRON MSF/DCF/WWVB Radio Controlled Clock 373 */ 374 375 /* 376 * Interface definitions 377 */ 378 #define DEVICE "/dev/arc%d" /* Device name and unit. */ 379 #define SPEED B300 /* UART speed (300 baud) */ 380 #define PRECISION (-4) /* Precision (~63 ms). */ 381 #define HIGHPRECISION (-5) /* If things are going well... */ 382 #define REFID "MSFa" /* Reference ID. */ 383 #define REFID_MSF "MSF" /* Reference ID. */ 384 #define REFID_DCF77 "DCF" /* Reference ID. */ 385 #define REFID_WWVB "WWVB" /* Reference ID. */ 386 #define DESCRIPTION "ARCRON MSF/DCF/WWVB Receiver" 387 388 #ifdef PRE_NTP420 389 #define MODE ttlmax 390 #else 391 #define MODE ttl 392 #endif 393 394 #define LENARC 16 /* Format `o' timecode length. */ 395 396 #define BITSPERCHAR 11 /* Bits per character. */ 397 #define BITTIME 0x0DA740E /* Time for 1 bit at 300bps. */ 398 #define CHARTIME10 0x8888888 /* Time for 10-bit char at 300bps. */ 399 #define CHARTIME11 0x962FC96 /* Time for 11-bit char at 300bps. */ 400 #define CHARTIME /* Time for char at 300bps. */ \ 401 ( (BITSPERCHAR == 11) ? CHARTIME11 : ( (BITSPERCHAR == 10) ? CHARTIME10 : \ 402 (BITSPERCHAR * BITTIME) ) ) 403 404 /* Allow for UART to accept char half-way through final stop bit. */ 405 #define INITIALOFFSET (u_int32)(-BITTIME/2) 406 407 /* 408 charoffsets[x] is the time after the start of the second that byte 409 x (with the first byte being byte 1) is received by the UART, 410 assuming that the initial edge of the start bit of the first byte 411 is on-time. The values are represented as the fractional part of 412 an l_fp. 413 414 We store enough values to have the offset of each byte including 415 the trailing \r, on the assumption that the bytes follow one 416 another without gaps. 417 */ 418 static const u_int32 charoffsets[LENARC+1] = { 419 #if BITSPERCHAR == 11 /* Usual case. */ 420 /* Offsets computed as accurately as possible... */ 421 0, 422 INITIALOFFSET + 0x0962fc96, /* 1 chars, 11 bits */ 423 INITIALOFFSET + 0x12c5f92c, /* 2 chars, 22 bits */ 424 INITIALOFFSET + 0x1c28f5c3, /* 3 chars, 33 bits */ 425 INITIALOFFSET + 0x258bf259, /* 4 chars, 44 bits */ 426 INITIALOFFSET + 0x2eeeeeef, /* 5 chars, 55 bits */ 427 INITIALOFFSET + 0x3851eb85, /* 6 chars, 66 bits */ 428 INITIALOFFSET + 0x41b4e81b, /* 7 chars, 77 bits */ 429 INITIALOFFSET + 0x4b17e4b1, /* 8 chars, 88 bits */ 430 INITIALOFFSET + 0x547ae148, /* 9 chars, 99 bits */ 431 INITIALOFFSET + 0x5dddddde, /* 10 chars, 110 bits */ 432 INITIALOFFSET + 0x6740da74, /* 11 chars, 121 bits */ 433 INITIALOFFSET + 0x70a3d70a, /* 12 chars, 132 bits */ 434 INITIALOFFSET + 0x7a06d3a0, /* 13 chars, 143 bits */ 435 INITIALOFFSET + 0x8369d037, /* 14 chars, 154 bits */ 436 INITIALOFFSET + 0x8ccccccd, /* 15 chars, 165 bits */ 437 INITIALOFFSET + 0x962fc963 /* 16 chars, 176 bits */ 438 #else 439 /* Offsets computed with a small rounding error... */ 440 0, 441 INITIALOFFSET + 1 * CHARTIME, 442 INITIALOFFSET + 2 * CHARTIME, 443 INITIALOFFSET + 3 * CHARTIME, 444 INITIALOFFSET + 4 * CHARTIME, 445 INITIALOFFSET + 5 * CHARTIME, 446 INITIALOFFSET + 6 * CHARTIME, 447 INITIALOFFSET + 7 * CHARTIME, 448 INITIALOFFSET + 8 * CHARTIME, 449 INITIALOFFSET + 9 * CHARTIME, 450 INITIALOFFSET + 10 * CHARTIME, 451 INITIALOFFSET + 11 * CHARTIME, 452 INITIALOFFSET + 12 * CHARTIME, 453 INITIALOFFSET + 13 * CHARTIME, 454 INITIALOFFSET + 14 * CHARTIME, 455 INITIALOFFSET + 15 * CHARTIME, 456 INITIALOFFSET + 16 * CHARTIME 457 #endif 458 }; 459 460 #define DEFAULT_RESYNC_TIME (57*60) /* Gap between resync attempts (s). */ 461 #define RETRY_RESYNC_TIME (27*60) /* Gap to emergency resync attempt. */ 462 #ifdef ARCRON_KEEN 463 #define INITIAL_RESYNC_DELAY 500 /* Delay before first resync. */ 464 #else 465 #define INITIAL_RESYNC_DELAY 50 /* Delay before first resync. */ 466 #endif 467 468 static const int moff[12] = 469 { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; 470 /* Flags for a raw open() of the clock serial device. */ 471 #ifdef O_NOCTTY /* Good, we can avoid tty becoming controlling tty. */ 472 #define OPEN_FLAGS (O_RDWR | O_NOCTTY) 473 #else /* Oh well, it may not matter... */ 474 #define OPEN_FLAGS (O_RDWR) 475 #endif 476 477 478 /* Length of queue of command bytes to be sent. */ 479 #define CMDQUEUELEN 4 /* Enough for two cmds + each \r. */ 480 /* Queue tick time; interval in seconds between chars taken off queue. */ 481 /* Must be >= 2 to allow o\r response to come back uninterrupted. */ 482 #define QUEUETICK 2 /* Allow o\r reply to finish. */ 483 484 /* 485 * ARC unit control structure 486 */ 487 struct arcunit { 488 l_fp lastrec; /* Time tag for the receive time (system). */ 489 int status; /* Clock status. */ 490 491 int quality; /* Quality of reception 0--5 for unit. */ 492 /* We may also use the values -1 or 6 internally. */ 493 u_long quality_stamp; /* Next time to reset quality average. */ 494 495 u_long next_resync; /* Next resync time (s) compared to current_time. */ 496 int resyncing; /* Resync in progress if true. */ 497 498 /* In the outgoing queue, cmdqueue[0] is next to be sent. */ 499 char cmdqueue[CMDQUEUELEN+1]; /* Queue of outgoing commands + \0. */ 500 501 u_long saved_flags; /* Saved fudge flags. */ 502 }; 503 504 #ifdef ARCRON_LEAPSECOND_KEEN 505 /* The flag `possible_leap' is set non-zero when any MSF unit 506 thinks a leap-second may have happened. 507 508 Set whenever we receive a valid time sample in the first hour of 509 the first day of the first/seventh months. 510 511 Outside the special hour this value is unconditionally set 512 to zero by the receive routine. 513 514 On finding itself in this timeslot, as long as the value is 515 non-negative, the receive routine sets it to a positive value to 516 indicate a resync to MSF should be performed. 517 518 In the poll routine, if this value is positive and we are not 519 already resyncing (eg from a sync that started just before 520 midnight), start resyncing and set this value negative to 521 indicate that a leap-triggered resync has been started. Having 522 set this negative prevents the receive routine setting it 523 positive and thus prevents multiple resyncs during the witching 524 hour. 525 */ 526 static int possible_leap = 0; /* No resync required by default. */ 527 #endif 528 529 #if 0 530 static void dummy_event_handler P((struct peer *)); 531 static void arc_event_handler P((struct peer *)); 532 #endif /* 0 */ 533 534 #define QUALITY_UNKNOWN -1 /* Indicates unknown clock quality. */ 535 #define MIN_CLOCK_QUALITY 0 /* Min quality clock will return. */ 536 #define MIN_CLOCK_QUALITY_OK 3 /* Min quality for OK reception. */ 537 #define MAX_CLOCK_QUALITY 5 /* Max quality clock will return. */ 538 539 /* 540 * Function prototypes 541 */ 542 static int arc_start P((int, struct peer *)); 543 static void arc_shutdown P((int, struct peer *)); 544 static void arc_receive P((struct recvbuf *)); 545 static void arc_poll P((int, struct peer *)); 546 547 /* 548 * Transfer vector 549 */ 550 struct refclock refclock_arc = { 551 arc_start, /* start up driver */ 552 arc_shutdown, /* shut down driver */ 553 arc_poll, /* transmit poll message */ 554 noentry, /* not used (old arc_control) */ 555 noentry, /* initialize driver (not used) */ 556 noentry, /* not used (old arc_buginfo) */ 557 NOFLAGS /* not used */ 558 }; 559 560 /* Queue us up for the next tick. */ 561 #define ENQUEUE(up) \ 562 do { \ 563 peer->nextaction = current_time + QUEUETICK; \ 564 } while(0) 565 566 /* Placeholder event handler---does nothing safely---soaks up loose tick. */ 567 static void 568 dummy_event_handler( 569 struct peer *peer 570 ) 571 { 572 #ifdef DEBUG 573 if(debug) { printf("arc: dummy_event_handler() called.\n"); } 574 #endif 575 } 576 577 /* 578 Normal event handler. 579 580 Take first character off queue and send to clock if not a null. 581 582 Shift characters down and put a null on the end. 583 584 We assume that there is no parallelism so no race condition, but even 585 if there is nothing bad will happen except that we might send some bad 586 data to the clock once in a while. 587 */ 588 static void 589 arc_event_handler( 590 struct peer *peer 591 ) 592 { 593 struct refclockproc *pp = peer->procptr; 594 register struct arcunit *up = (struct arcunit *)pp->unitptr; 595 int i; 596 char c; 597 #ifdef DEBUG 598 if(debug > 2) { printf("arc: arc_event_handler() called.\n"); } 599 #endif 600 601 c = up->cmdqueue[0]; /* Next char to be sent. */ 602 /* Shift down characters, shifting trailing \0 in at end. */ 603 for(i = 0; i < CMDQUEUELEN; ++i) 604 { up->cmdqueue[i] = up->cmdqueue[i+1]; } 605 606 /* Don't send '\0' characters. */ 607 if(c != '\0') { 608 if(write(pp->io.fd, &c, 1) != 1) { 609 msyslog(LOG_NOTICE, "ARCRON: write to fd %d failed", pp->io.fd); 610 } 611 #ifdef DEBUG 612 else if(debug) { printf("arc: sent `%2.2x', fd %d.\n", c, pp->io.fd); } 613 #endif 614 } 615 616 ENQUEUE(up); 617 } 618 619 /* 620 * arc_start - open the devices and initialize data for processing 621 */ 622 static int 623 arc_start( 624 int unit, 625 struct peer *peer 626 ) 627 { 628 register struct arcunit *up; 629 struct refclockproc *pp; 630 int fd; 631 char device[20]; 632 #ifdef HAVE_TERMIOS 633 struct termios arg; 634 #endif 635 636 msyslog(LOG_NOTICE, "ARCRON: %s: opening unit %d", arc_version, unit); 637 #ifdef DEBUG 638 if(debug) { 639 printf("arc: %s: attempt to open unit %d.\n", arc_version, unit); 640 } 641 #endif 642 643 /* Prevent a ridiculous device number causing overflow of device[]. */ 644 if((unit < 0) || (unit > 255)) { return(0); } 645 646 /* 647 * Open serial port. Use CLK line discipline, if available. 648 */ 649 (void)sprintf(device, DEVICE, unit); 650 if (!(fd = refclock_open(device, SPEED, LDISC_CLK))) 651 return(0); 652 #ifdef DEBUG 653 if(debug) { printf("arc: unit %d using open().\n", unit); } 654 #endif 655 fd = open(device, OPEN_FLAGS); 656 if(fd < 0) { 657 #ifdef DEBUG 658 if(debug) { printf("arc: failed [open()] to open %s.\n", device); } 659 #endif 660 return(0); 661 } 662 663 fcntl(fd, F_SETFL, 0); /* clear the descriptor flags */ 664 #ifdef DEBUG 665 if(debug) 666 { printf("arc: opened RS232 port with file descriptor %d.\n", fd); } 667 #endif 668 669 #ifdef HAVE_TERMIOS 670 671 tcgetattr(fd, &arg); 672 673 arg.c_iflag = IGNBRK | ISTRIP; 674 arg.c_oflag = 0; 675 arg.c_cflag = B300 | CS8 | CREAD | CLOCAL | CSTOPB; 676 arg.c_lflag = 0; 677 arg.c_cc[VMIN] = 1; 678 arg.c_cc[VTIME] = 0; 679 680 tcsetattr(fd, TCSANOW, &arg); 681 682 #else 683 684 msyslog(LOG_ERR, "ARCRON: termios not supported in this driver"); 685 (void)close(fd); 686 687 return 0; 688 689 #endif 690 691 up = (struct arcunit *) emalloc(sizeof(struct arcunit)); 692 if(!up) { (void) close(fd); return(0); } 693 /* Set structure to all zeros... */ 694 memset((char *)up, 0, sizeof(struct arcunit)); 695 pp = peer->procptr; 696 pp->io.clock_recv = arc_receive; 697 pp->io.srcclock = (caddr_t)peer; 698 pp->io.datalen = 0; 699 pp->io.fd = fd; 700 if(!io_addclock(&pp->io)) { (void) close(fd); free(up); return(0); } 701 pp->unitptr = (caddr_t)up; 702 703 /* 704 * Initialize miscellaneous variables 705 */ 706 peer->precision = PRECISION; 707 peer->stratum = 2; /* Default to stratum 2 not 0. */ 708 pp->clockdesc = DESCRIPTION; 709 if (peer->MODE > 3) { 710 msyslog(LOG_NOTICE, "ARCRON: Invalid mode %d", peer->MODE); 711 return 0; 712 } 713 #ifdef DEBUG 714 if(debug) { printf("arc: mode = %d.\n", peer->MODE); } 715 #endif 716 switch (peer->MODE) { 717 case 1: 718 memcpy((char *)&pp->refid, REFID_MSF, 4); 719 break; 720 case 2: 721 memcpy((char *)&pp->refid, REFID_DCF77, 4); 722 break; 723 case 3: 724 memcpy((char *)&pp->refid, REFID_WWVB, 4); 725 break; 726 default: 727 memcpy((char *)&pp->refid, REFID, 4); 728 break; 729 } 730 /* Spread out resyncs so that they should remain separated. */ 731 up->next_resync = current_time + INITIAL_RESYNC_DELAY + (67*unit)%1009; 732 733 #if 0 /* Not needed because of zeroing of arcunit structure... */ 734 up->resyncing = 0; /* Not resyncing yet. */ 735 up->saved_flags = 0; /* Default is all flags off. */ 736 /* Clear send buffer out... */ 737 { 738 int i; 739 for(i = CMDQUEUELEN; i >= 0; --i) { up->cmdqueue[i] = '\0'; } 740 } 741 #endif 742 743 #ifdef ARCRON_KEEN 744 up->quality = QUALITY_UNKNOWN; /* Trust the clock immediately. */ 745 #else 746 up->quality = MIN_CLOCK_QUALITY;/* Don't trust the clock yet. */ 747 #endif 748 749 peer->action = arc_event_handler; 750 751 ENQUEUE(up); 752 753 return(1); 754 } 755 756 757 /* 758 * arc_shutdown - shut down the clock 759 */ 760 static void 761 arc_shutdown( 762 int unit, 763 struct peer *peer 764 ) 765 { 766 register struct arcunit *up; 767 struct refclockproc *pp; 768 769 peer->action = dummy_event_handler; 770 771 pp = peer->procptr; 772 up = (struct arcunit *)pp->unitptr; 773 io_closeclock(&pp->io); 774 free(up); 775 } 776 777 /* 778 Compute space left in output buffer. 779 */ 780 static int 781 space_left( 782 register struct arcunit *up 783 ) 784 { 785 int spaceleft; 786 787 /* Compute space left in buffer after any pending output. */ 788 for(spaceleft = 0; spaceleft < CMDQUEUELEN; ++spaceleft) 789 { if(up->cmdqueue[CMDQUEUELEN - 1 - spaceleft] != '\0') { break; } } 790 return(spaceleft); 791 } 792 793 /* 794 Send command by copying into command buffer as far forward as possible, 795 after any pending output. 796 797 Indicate an error by returning 0 if there is not space for the command. 798 */ 799 static int 800 send_slow( 801 register struct arcunit *up, 802 int fd, 803 const char *s 804 ) 805 { 806 int sl = strlen(s); 807 int spaceleft = space_left(up); 808 809 #ifdef DEBUG 810 if(debug > 1) { printf("arc: spaceleft = %d.\n", spaceleft); } 811 #endif 812 if(spaceleft < sl) { /* Should not normally happen... */ 813 #ifdef DEBUG 814 msyslog(LOG_NOTICE, "ARCRON: send-buffer overrun (%d/%d)", 815 sl, spaceleft); 816 #endif 817 return(0); /* FAILED! */ 818 } 819 820 /* Copy in the command to be sent. */ 821 while(*s && spaceleft > 0) { up->cmdqueue[CMDQUEUELEN - spaceleft--] = *s++; } 822 823 return(1); 824 } 825 826 827 static int 828 get2(char *p, int *val) 829 { 830 if (!isdigit((int)p[0]) || !isdigit((int)p[1])) return 0; 831 *val = (p[0] - '0') * 10 + p[1] - '0'; 832 return 1; 833 } 834 835 static int 836 get1(char *p, int *val) 837 { 838 if (!isdigit((int)p[0])) return 0; 839 *val = p[0] - '0'; 840 return 1; 841 } 842 843 /* Macro indicating action we will take for different quality values. */ 844 #define quality_action(q) \ 845 (((q) == QUALITY_UNKNOWN) ? "UNKNOWN, will use clock anyway" : \ 846 (((q) < MIN_CLOCK_QUALITY_OK) ? "TOO POOR, will not use clock" : \ 847 "OK, will use clock")) 848 849 /* 850 * arc_receive - receive data from the serial interface 851 */ 852 static void 853 arc_receive( 854 struct recvbuf *rbufp 855 ) 856 { 857 register struct arcunit *up; 858 struct refclockproc *pp; 859 struct peer *peer; 860 char c; 861 int i, n, wday, month, flags, status; 862 int arc_last_offset; 863 static int quality_average = 0; 864 static int quality_sum = 0; 865 static int quality_polls = 0; 866 867 /* 868 * Initialize pointers and read the timecode and timestamp 869 */ 870 peer = (struct peer *)rbufp->recv_srcclock; 871 pp = peer->procptr; 872 up = (struct arcunit *)pp->unitptr; 873 874 875 /* 876 If the command buffer is empty, and we are resyncing, insert a 877 g\r quality request into it to poll for signal quality again. 878 */ 879 if((up->resyncing) && (space_left(up) == CMDQUEUELEN)) { 880 #ifdef DEBUG 881 if(debug > 1) { printf("arc: inserting signal-quality poll.\n"); } 882 #endif 883 send_slow(up, pp->io.fd, "g\r"); 884 } 885 886 /* 887 The `arc_last_offset' is the offset in lastcode[] of the last byte 888 received, and which we assume actually received the input 889 timestamp. 890 891 (When we get round to using tty_clk and it is available, we 892 assume that we will receive the whole timecode with the 893 trailing \r, and that that \r will be timestamped. But this 894 assumption also works if receive the characters one-by-one.) 895 */ 896 arc_last_offset = pp->lencode+rbufp->recv_length - 1; 897 898 /* 899 We catch a timestamp iff: 900 901 * The command code is `o' for a timestamp. 902 903 * If ARCRON_MULTIPLE_SAMPLES is undefined then we must have 904 exactly char in the buffer (the command code) so that we 905 only sample the first character of the timecode as our 906 `on-time' character. 907 908 * The first character in the buffer is not the echoed `\r' 909 from the `o` command (so if we are to timestamp an `\r' it 910 must not be first in the receive buffer with lencode==1. 911 (Even if we had other characters following it, we probably 912 would have a premature timestamp on the '\r'.) 913 914 * We have received at least one character (I cannot imagine 915 how it could be otherwise, but anyway...). 916 */ 917 c = rbufp->recv_buffer[0]; 918 if((pp->a_lastcode[0] == 'o') && 919 #ifndef ARCRON_MULTIPLE_SAMPLES 920 (pp->lencode == 1) && 921 #endif 922 ((pp->lencode != 1) || (c != '\r')) && 923 (arc_last_offset >= 1)) { 924 /* Note that the timestamp should be corrected if >1 char rcvd. */ 925 l_fp timestamp; 926 timestamp = rbufp->recv_time; 927 #ifdef DEBUG 928 if(debug) { /* Show \r as `R', other non-printing char as `?'. */ 929 printf("arc: stamp -->%c<-- (%d chars rcvd)\n", 930 ((c == '\r') ? 'R' : (isgraph((int)c) ? c : '?')), 931 rbufp->recv_length); 932 } 933 #endif 934 935 /* 936 Now correct timestamp by offset of last byte received---we 937 subtract from the receive time the delay implied by the 938 extra characters received. 939 940 Reject the input if the resulting code is too long, but 941 allow for the trailing \r, normally not used but a good 942 handle for tty_clk or somesuch kernel timestamper. 943 */ 944 if(arc_last_offset > LENARC) { 945 #ifdef DEBUG 946 if(debug) { 947 printf("arc: input code too long (%d cf %d); rejected.\n", 948 arc_last_offset, LENARC); 949 } 950 #endif 951 pp->lencode = 0; 952 refclock_report(peer, CEVNT_BADREPLY); 953 return; 954 } 955 956 L_SUBUF(×tamp, charoffsets[arc_last_offset]); 957 #ifdef DEBUG 958 if(debug > 1) { 959 printf( 960 "arc: %s%d char(s) rcvd, the last for lastcode[%d]; -%sms offset applied.\n", 961 ((rbufp->recv_length > 1) ? "*** " : ""), 962 rbufp->recv_length, 963 arc_last_offset, 964 mfptoms((unsigned long)0, 965 charoffsets[arc_last_offset], 966 1)); 967 } 968 #endif 969 970 #ifdef ARCRON_MULTIPLE_SAMPLES 971 /* 972 If taking multiple samples, capture the current adjusted 973 sample iff: 974 975 * No timestamp has yet been captured (it is zero), OR 976 977 * This adjusted timestamp is earlier than the one already 978 captured, on the grounds that this one suffered less 979 delay in being delivered to us and is more accurate. 980 981 */ 982 if(L_ISZERO(&(up->lastrec)) || 983 L_ISGEQ(&(up->lastrec), ×tamp)) 984 #endif 985 { 986 #ifdef DEBUG 987 if(debug > 1) { 988 printf("arc: system timestamp captured.\n"); 989 #ifdef ARCRON_MULTIPLE_SAMPLES 990 if(!L_ISZERO(&(up->lastrec))) { 991 l_fp diff; 992 diff = up->lastrec; 993 L_SUB(&diff, ×tamp); 994 printf("arc: adjusted timestamp by -%sms.\n", 995 mfptoms(diff.l_i, diff.l_f, 3)); 996 } 997 #endif 998 } 999 #endif 1000 up->lastrec = timestamp; 1001 } 1002 1003 } 1004 1005 /* Just in case we still have lots of rubbish in the buffer... */ 1006 /* ...and to avoid the same timestamp being reused by mistake, */ 1007 /* eg on receipt of the \r coming in on its own after the */ 1008 /* timecode. */ 1009 if(pp->lencode >= LENARC) { 1010 #ifdef DEBUG 1011 if(debug && (rbufp->recv_buffer[0] != '\r')) 1012 { printf("arc: rubbish in pp->a_lastcode[].\n"); } 1013 #endif 1014 pp->lencode = 0; 1015 return; 1016 } 1017 1018 /* Append input to code buffer, avoiding overflow. */ 1019 for(i = 0; i < rbufp->recv_length; i++) { 1020 if(pp->lencode >= LENARC) { break; } /* Avoid overflow... */ 1021 c = rbufp->recv_buffer[i]; 1022 1023 /* Drop trailing '\r's and drop `h' command echo totally. */ 1024 if(c != '\r' && c != 'h') { pp->a_lastcode[pp->lencode++] = c; } 1025 1026 /* 1027 If we've just put an `o' in the lastcode[0], clear the 1028 timestamp in anticipation of a timecode arriving soon. 1029 1030 We would expect to get to process this before any of the 1031 timecode arrives. 1032 */ 1033 if((c == 'o') && (pp->lencode == 1)) { 1034 L_CLR(&(up->lastrec)); 1035 #ifdef DEBUG 1036 if(debug > 1) { printf("arc: clearing timestamp.\n"); } 1037 #endif 1038 } 1039 } 1040 if (pp->lencode == 0) return; 1041 1042 /* Handle a quality message. */ 1043 if(pp->a_lastcode[0] == 'g') { 1044 int r, q; 1045 1046 if(pp->lencode < 3) { return; } /* Need more data... */ 1047 r = (pp->a_lastcode[1] & 0x7f); /* Strip parity. */ 1048 q = (pp->a_lastcode[2] & 0x7f); /* Strip parity. */ 1049 if(((q & 0x70) != 0x30) || ((q & 0xf) > MAX_CLOCK_QUALITY) || 1050 ((r & 0x70) != 0x30)) { 1051 /* Badly formatted response. */ 1052 #ifdef DEBUG 1053 if(debug) { printf("arc: bad `g' response %2x %2x.\n", r, q); } 1054 #endif 1055 return; 1056 } 1057 if(r == '3') { /* Only use quality value whilst sync in progress. */ 1058 if (up->quality_stamp < current_time) { 1059 struct calendar cal; 1060 l_fp new_stamp; 1061 1062 get_systime (&new_stamp); 1063 caljulian (new_stamp.l_ui, &cal); 1064 up->quality_stamp = 1065 current_time + 60 - cal.second + 5; 1066 quality_sum = 0; 1067 quality_polls = 0; 1068 } 1069 quality_sum += (q & 0xf); 1070 quality_polls++; 1071 quality_average = (quality_sum / quality_polls); 1072 #ifdef DEBUG 1073 if(debug) { printf("arc: signal quality %d (%d).\n", quality_average, (q & 0xf)); } 1074 #endif 1075 } else if( /* (r == '2') && */ up->resyncing) { 1076 up->quality = quality_average; 1077 #ifdef DEBUG 1078 if(debug) 1079 { 1080 printf("arc: sync finished, signal quality %d: %s\n", 1081 up->quality, 1082 quality_action(up->quality)); 1083 } 1084 #endif 1085 msyslog(LOG_NOTICE, 1086 "ARCRON: sync finished, signal quality %d: %s", 1087 up->quality, 1088 quality_action(up->quality)); 1089 up->resyncing = 0; /* Resync is over. */ 1090 quality_average = 0; 1091 quality_sum = 0; 1092 quality_polls = 0; 1093 1094 #ifdef ARCRON_KEEN 1095 /* Clock quality dubious; resync earlier than usual. */ 1096 if((up->quality == QUALITY_UNKNOWN) || 1097 (up->quality < MIN_CLOCK_QUALITY_OK)) 1098 { up->next_resync = current_time + RETRY_RESYNC_TIME; } 1099 #endif 1100 } 1101 pp->lencode = 0; 1102 return; 1103 } 1104 1105 /* Stop now if this is not a timecode message. */ 1106 if(pp->a_lastcode[0] != 'o') { 1107 pp->lencode = 0; 1108 refclock_report(peer, CEVNT_BADREPLY); 1109 return; 1110 } 1111 1112 /* If we don't have enough data, wait for more... */ 1113 if(pp->lencode < LENARC) { return; } 1114 1115 1116 /* WE HAVE NOW COLLECTED ONE TIMESTAMP (phew)... */ 1117 #ifdef DEBUG 1118 if(debug > 1) { printf("arc: NOW HAVE TIMESTAMP...\n"); } 1119 #endif 1120 1121 /* But check that we actually captured a system timestamp on it. */ 1122 if(L_ISZERO(&(up->lastrec))) { 1123 #ifdef DEBUG 1124 if(debug) { printf("arc: FAILED TO GET SYSTEM TIMESTAMP\n"); } 1125 #endif 1126 pp->lencode = 0; 1127 refclock_report(peer, CEVNT_BADREPLY); 1128 return; 1129 } 1130 /* 1131 Append a mark of the clock's received signal quality for the 1132 benefit of Derek Mulcahy's Tcl/Tk utility (we map the `unknown' 1133 quality value to `6' for his s/w) and terminate the string for 1134 sure. This should not go off the buffer end. 1135 */ 1136 pp->a_lastcode[pp->lencode] = ((up->quality == QUALITY_UNKNOWN) ? 1137 '6' : ('0' + up->quality)); 1138 pp->a_lastcode[pp->lencode + 1] = '\0'; /* Terminate for printf(). */ 1139 1140 #ifdef PRE_NTP420 1141 /* We don't use the micro-/milli- second part... */ 1142 pp->usec = 0; 1143 pp->msec = 0; 1144 #else 1145 /* We don't use the nano-second part... */ 1146 pp->nsec = 0; 1147 #endif 1148 /* Validate format and numbers. */ 1149 if (pp->a_lastcode[0] != 'o' 1150 || !get2(pp->a_lastcode + 1, &pp->hour) 1151 || !get2(pp->a_lastcode + 3, &pp->minute) 1152 || !get2(pp->a_lastcode + 5, &pp->second) 1153 || !get1(pp->a_lastcode + 7, &wday) 1154 || !get2(pp->a_lastcode + 8, &pp->day) 1155 || !get2(pp->a_lastcode + 10, &month) 1156 || !get2(pp->a_lastcode + 12, &pp->year)) { 1157 #ifdef DEBUG 1158 /* Would expect to have caught major problems already... */ 1159 if(debug) { printf("arc: badly formatted data.\n"); } 1160 #endif 1161 pp->lencode = 0; 1162 refclock_report(peer, CEVNT_BADREPLY); 1163 return; 1164 } 1165 flags = pp->a_lastcode[14]; 1166 status = pp->a_lastcode[15]; 1167 #ifdef DEBUG 1168 if(debug) { printf("arc: status 0x%.2x flags 0x%.2x\n", flags, status); } 1169 #endif 1170 n = 9; 1171 1172 /* 1173 Validate received values at least enough to prevent internal 1174 array-bounds problems, etc. 1175 */ 1176 if((pp->hour < 0) || (pp->hour > 23) || 1177 (pp->minute < 0) || (pp->minute > 59) || 1178 (pp->second < 0) || (pp->second > 60) /*Allow for leap seconds.*/ || 1179 (wday < 1) || (wday > 7) || 1180 (pp->day < 1) || (pp->day > 31) || 1181 (month < 1) || (month > 12) || 1182 (pp->year < 0) || (pp->year > 99)) { 1183 /* Data out of range. */ 1184 pp->lencode = 0; 1185 refclock_report(peer, CEVNT_BADREPLY); 1186 return; 1187 } 1188 1189 1190 if(peer->MODE == 0) { /* compatiblity to original version */ 1191 int bst = flags; 1192 /* Check that BST/UTC bits are the complement of one another. */ 1193 if(!(bst & 2) == !(bst & 4)) { 1194 pp->lencode = 0; 1195 refclock_report(peer, CEVNT_BADREPLY); 1196 return; 1197 } 1198 } 1199 if(status & 0x8) { msyslog(LOG_NOTICE, "ARCRON: battery low"); } 1200 1201 /* Year-2000 alert! */ 1202 /* Attempt to wrap 2-digit date into sensible window. */ 1203 if(pp->year < YEAR_PIVOT) { pp->year += 100; } /* Y2KFixes */ 1204 pp->year += 1900; /* use full four-digit year */ /* Y2KFixes */ 1205 /* 1206 Attempt to do the right thing by screaming that the code will 1207 soon break when we get to the end of its useful life. What a 1208 hero I am... PLEASE FIX LEAP-YEAR AND WRAP CODE IN 209X! 1209 */ 1210 if(pp->year >= YEAR_PIVOT+2000-2 ) { /* Y2KFixes */ 1211 /*This should get attention B^> */ 1212 msyslog(LOG_NOTICE, 1213 "ARCRON: fix me! EITHER YOUR DATE IS BADLY WRONG or else I will break soon!"); 1214 } 1215 #ifdef DEBUG 1216 if(debug) { 1217 printf("arc: n=%d %02d:%02d:%02d %02d/%02d/%04d %1d %1d\n", 1218 n, 1219 pp->hour, pp->minute, pp->second, 1220 pp->day, month, pp->year, flags, status); 1221 } 1222 #endif 1223 1224 /* 1225 The status value tested for is not strictly supported by the 1226 clock spec since the value of bit 2 (0x4) is claimed to be 1227 undefined for MSF, yet does seem to indicate if the last resync 1228 was successful or not. 1229 */ 1230 pp->leap = LEAP_NOWARNING; 1231 status &= 0x7; 1232 if(status == 0x3) { 1233 if(status != up->status) 1234 { msyslog(LOG_NOTICE, "ARCRON: signal acquired"); } 1235 } else { 1236 if(status != up->status) { 1237 msyslog(LOG_NOTICE, "ARCRON: signal lost"); 1238 pp->leap = LEAP_NOTINSYNC; /* MSF clock is free-running. */ 1239 up->status = status; 1240 pp->lencode = 0; 1241 refclock_report(peer, CEVNT_FAULT); 1242 return; 1243 } 1244 } 1245 up->status = status; 1246 1247 if (peer->MODE == 0) { /* compatiblity to original version */ 1248 int bst = flags; 1249 1250 pp->day += moff[month - 1]; 1251 1252 if(isleap_4(pp->year) && month > 2) { pp->day++; }/* Y2KFixes */ 1253 1254 /* Convert to UTC if required */ 1255 if(bst & 2) { 1256 pp->hour--; 1257 if (pp->hour < 0) { 1258 pp->hour = 23; 1259 pp->day--; 1260 /* If we try to wrap round the year 1261 * (BST on 1st Jan), reject.*/ 1262 if(pp->day < 0) { 1263 pp->lencode = 0; 1264 refclock_report(peer, CEVNT_BADTIME); 1265 return; 1266 } 1267 } 1268 } 1269 } 1270 1271 if(peer->MODE > 0) { 1272 if(pp->sloppyclockflag & CLK_FLAG1) { 1273 struct tm local; 1274 struct tm *gmtp; 1275 time_t unixtime; 1276 1277 /* 1278 * Convert to GMT for sites that distribute localtime. 1279 * This means we have to do Y2K conversion on the 1280 * 2-digit year; otherwise, we get the time wrong. 1281 */ 1282 1283 local.tm_year = pp->year-1900; 1284 local.tm_mon = month-1; 1285 local.tm_mday = pp->day; 1286 local.tm_hour = pp->hour; 1287 local.tm_min = pp->minute; 1288 local.tm_sec = pp->second; 1289 switch (peer->MODE) { 1290 case 1: 1291 local.tm_isdst = (flags & 2); 1292 break; 1293 case 2: 1294 local.tm_isdst = (flags & 2); 1295 break; 1296 case 3: 1297 switch (flags & 3) { 1298 case 0: /* It is unclear exactly when the 1299 Arcron changes from DST->ST and 1300 ST->DST. Testing has shown this 1301 to be irregular. For the time 1302 being, let the OS decide. */ 1303 local.tm_isdst = 0; 1304 #ifdef DEBUG 1305 if (debug) 1306 printf ("arc: DST = 00 (0)\n"); 1307 #endif 1308 break; 1309 case 1: /* dst->st time */ 1310 local.tm_isdst = -1; 1311 #ifdef DEBUG 1312 if (debug) 1313 printf ("arc: DST = 01 (1)\n"); 1314 #endif 1315 break; 1316 case 2: /* st->dst time */ 1317 local.tm_isdst = -1; 1318 #ifdef DEBUG 1319 if (debug) 1320 printf ("arc: DST = 10 (2)\n"); 1321 #endif 1322 break; 1323 case 3: /* dst time */ 1324 local.tm_isdst = 1; 1325 #ifdef DEBUG 1326 if (debug) 1327 printf ("arc: DST = 11 (3)\n"); 1328 #endif 1329 break; 1330 } 1331 break; 1332 default: 1333 msyslog(LOG_NOTICE, "ARCRON: Invalid mode %d", 1334 peer->MODE); 1335 return; 1336 break; 1337 } 1338 unixtime = mktime (&local); 1339 if ((gmtp = gmtime (&unixtime)) == NULL) 1340 { 1341 pp->lencode = 0; 1342 refclock_report (peer, CEVNT_FAULT); 1343 return; 1344 } 1345 pp->year = gmtp->tm_year+1900; 1346 month = gmtp->tm_mon+1; 1347 pp->day = ymd2yd(pp->year,month,gmtp->tm_mday); 1348 /* pp->day = gmtp->tm_yday; */ 1349 pp->hour = gmtp->tm_hour; 1350 pp->minute = gmtp->tm_min; 1351 pp->second = gmtp->tm_sec; 1352 #ifdef DEBUG 1353 if (debug) 1354 { 1355 printf ("arc: time is %04d/%02d/%02d %02d:%02d:%02d UTC\n", 1356 pp->year,month,gmtp->tm_mday,pp->hour,pp->minute, 1357 pp->second); 1358 } 1359 #endif 1360 } else 1361 { 1362 /* 1363 * For more rational sites distributing UTC 1364 */ 1365 pp->day = ymd2yd(pp->year,month,pp->day); 1366 } 1367 } 1368 1369 if (peer->MODE == 0) { /* compatiblity to original version */ 1370 /* If clock signal quality is 1371 * unknown, revert to default PRECISION...*/ 1372 if(up->quality == QUALITY_UNKNOWN) { 1373 peer->precision = PRECISION; 1374 } else { /* ...else improve precision if flag3 is set... */ 1375 peer->precision = ((pp->sloppyclockflag & CLK_FLAG3) ? 1376 HIGHPRECISION : PRECISION); 1377 } 1378 } else { 1379 if ((status == 0x3) && (pp->sloppyclockflag & CLK_FLAG2)) { 1380 peer->precision = ((pp->sloppyclockflag & CLK_FLAG3) ? 1381 HIGHPRECISION : PRECISION); 1382 } else if (up->quality == QUALITY_UNKNOWN) { 1383 peer->precision = PRECISION; 1384 } else { 1385 peer->precision = ((pp->sloppyclockflag & CLK_FLAG3) ? 1386 HIGHPRECISION : PRECISION); 1387 } 1388 } 1389 1390 /* Notice and log any change (eg from initial defaults) for flags. */ 1391 if(up->saved_flags != pp->sloppyclockflag) { 1392 #ifdef DEBUG 1393 msyslog(LOG_NOTICE, "ARCRON: flags enabled: %s%s%s%s", 1394 ((pp->sloppyclockflag & CLK_FLAG1) ? "1" : "."), 1395 ((pp->sloppyclockflag & CLK_FLAG2) ? "2" : "."), 1396 ((pp->sloppyclockflag & CLK_FLAG3) ? "3" : "."), 1397 ((pp->sloppyclockflag & CLK_FLAG4) ? "4" : ".")); 1398 /* Note effects of flags changing... */ 1399 if(debug) { 1400 printf("arc: PRECISION = %d.\n", peer->precision); 1401 } 1402 #endif 1403 up->saved_flags = pp->sloppyclockflag; 1404 } 1405 1406 /* Note time of last believable timestamp. */ 1407 pp->lastrec = up->lastrec; 1408 1409 #ifdef ARCRON_LEAPSECOND_KEEN 1410 /* Find out if a leap-second might just have happened... 1411 (ie is this the first hour of the first day of Jan or Jul?) 1412 */ 1413 if((pp->hour == 0) && 1414 (pp->day == 1) && 1415 ((month == 1) || (month == 7))) { 1416 if(possible_leap >= 0) { 1417 /* A leap may have happened, and no resync has started yet...*/ 1418 possible_leap = 1; 1419 } 1420 } else { 1421 /* Definitely not leap-second territory... */ 1422 possible_leap = 0; 1423 } 1424 #endif 1425 1426 if (!refclock_process(pp)) { 1427 pp->lencode = 0; 1428 refclock_report(peer, CEVNT_BADTIME); 1429 return; 1430 } 1431 record_clock_stats(&peer->srcadr, pp->a_lastcode); 1432 refclock_receive(peer); 1433 } 1434 1435 1436 /* request_time() sends a time request to the clock with given peer. */ 1437 /* This automatically reports a fault if necessary. */ 1438 /* No data should be sent after this until arc_poll() returns. */ 1439 static void request_time P((int, struct peer *)); 1440 static void 1441 request_time( 1442 int unit, 1443 struct peer *peer 1444 ) 1445 { 1446 struct refclockproc *pp = peer->procptr; 1447 register struct arcunit *up = (struct arcunit *)pp->unitptr; 1448 #ifdef DEBUG 1449 if(debug) { printf("arc: unit %d: requesting time.\n", unit); } 1450 #endif 1451 if (!send_slow(up, pp->io.fd, "o\r")) { 1452 #ifdef DEBUG 1453 if (debug) { 1454 printf("arc: unit %d: problem sending", unit); 1455 } 1456 #endif 1457 pp->lencode = 0; 1458 refclock_report(peer, CEVNT_FAULT); 1459 return; 1460 } 1461 pp->polls++; 1462 } 1463 1464 /* 1465 * arc_poll - called by the transmit procedure 1466 */ 1467 static void 1468 arc_poll( 1469 int unit, 1470 struct peer *peer 1471 ) 1472 { 1473 register struct arcunit *up; 1474 struct refclockproc *pp; 1475 int resync_needed; /* Should we start a resync? */ 1476 1477 pp = peer->procptr; 1478 up = (struct arcunit *)pp->unitptr; 1479 #if 0 1480 pp->lencode = 0; 1481 memset(pp->a_lastcode, 0, sizeof(pp->a_lastcode)); 1482 #endif 1483 1484 #if 0 1485 /* Flush input. */ 1486 tcflush(pp->io.fd, TCIFLUSH); 1487 #endif 1488 1489 /* Resync if our next scheduled resync time is here or has passed. */ 1490 resync_needed = ( !(pp->sloppyclockflag & CLK_FLAG2) && 1491 (up->next_resync <= current_time) ); 1492 1493 #ifdef ARCRON_LEAPSECOND_KEEN 1494 /* 1495 Try to catch a potential leap-second insertion or deletion quickly. 1496 1497 In addition to the normal NTP fun of clocks that don't report 1498 leap-seconds spooking their hosts, this clock does not even 1499 sample the radio sugnal the whole time, so may miss a 1500 leap-second insertion or deletion for up to a whole sample 1501 time. 1502 1503 To try to minimise this effect, if in the first few minutes of 1504 the day immediately following a leap-second-insertion point 1505 (ie in the first hour of the first day of the first and sixth 1506 months), and if the last resync was in the previous day, and a 1507 resync is not already in progress, resync the clock 1508 immediately. 1509 1510 */ 1511 if((possible_leap > 0) && /* Must be 00:XX 01/0{1,7}/XXXX. */ 1512 (!up->resyncing)) { /* No resync in progress yet. */ 1513 resync_needed = 1; 1514 possible_leap = -1; /* Prevent multiple resyncs. */ 1515 msyslog(LOG_NOTICE,"ARCRON: unit %d: checking for leap second",unit); 1516 } 1517 #endif 1518 1519 /* Do a resync if required... */ 1520 if(resync_needed) { 1521 /* First, reset quality value to `unknown' so we can detect */ 1522 /* when a quality message has been responded to by this */ 1523 /* being set to some other value. */ 1524 up->quality = QUALITY_UNKNOWN; 1525 1526 /* Note that we are resyncing... */ 1527 up->resyncing = 1; 1528 1529 /* Now actually send the resync command and an immediate poll. */ 1530 #ifdef DEBUG 1531 if(debug) { printf("arc: sending resync command (h\\r).\n"); } 1532 #endif 1533 msyslog(LOG_NOTICE, "ARCRON: unit %d: sending resync command", unit); 1534 send_slow(up, pp->io.fd, "h\r"); 1535 1536 /* Schedule our next resync... */ 1537 up->next_resync = current_time + DEFAULT_RESYNC_TIME; 1538 1539 /* Drop through to request time if appropriate. */ 1540 } 1541 1542 /* If clock quality is too poor to trust, indicate a fault. */ 1543 /* If quality is QUALITY_UNKNOWN and ARCRON_KEEN is defined,*/ 1544 /* we'll cross our fingers and just hope that the thing */ 1545 /* synced so quickly we did not catch it---we'll */ 1546 /* double-check the clock is OK elsewhere. */ 1547 if( 1548 #ifdef ARCRON_KEEN 1549 (up->quality != QUALITY_UNKNOWN) && 1550 #else 1551 (up->quality == QUALITY_UNKNOWN) || 1552 #endif 1553 (up->quality < MIN_CLOCK_QUALITY_OK)) { 1554 #ifdef DEBUG 1555 if(debug) { 1556 printf("arc: clock quality %d too poor.\n", up->quality); 1557 } 1558 #endif 1559 pp->lencode = 0; 1560 refclock_report(peer, CEVNT_FAULT); 1561 return; 1562 } 1563 /* This is the normal case: request a timestamp. */ 1564 request_time(unit, peer); 1565 } 1566 1567 #else 1568 int refclock_arc_bs; 1569 #endif 1570