xref: /freebsd/contrib/ntp/ntpd/refclock_arc.c (revision 1b6c76a2fe091c74f08427e6c870851025a9cf67)
1 /*
2  * refclock_arc - clock driver for ARCRON MSF receivers
3  */
4 
5 #ifdef HAVE_CONFIG_H
6 #include <config.h>
7 #endif
8 
9 #if defined(REFCLOCK) && defined(CLOCK_ARCRON_MSF)
10 static const char arc_version[] = { "V1.1 1997/06/23" };
11 
12 #undef ARCRON_DEBUG /* Define only while in development... */
13 
14 #ifndef ARCRON_NOT_KEEN
15 #define ARCRON_KEEN 1 /* Be keen, and trusting of the clock, if defined. */
16 #endif
17 
18 #ifndef ARCRON_NOT_MULTIPLE_SAMPLES
19 #define ARCRON_MULTIPLE_SAMPLES 1 /* Use all timestamp bytes as samples. */
20 #endif
21 
22 #ifndef ARCRON_NOT_LEAPSECOND_KEEN
23 #ifndef ARCRON_LEAPSECOND_KEEN
24 #undef ARCRON_LEAPSECOND_KEEN /* Respond quickly to leap seconds: doesn't work yet. */
25 #endif
26 #endif
27 
28 /*
29 Code by Derek Mulcahy, <derek@toybox.demon.co.uk>, 1997.
30 Modifications by Damon Hart-Davis, <d@hd.org>, 1997.
31 
32 THIS CODE IS SUPPLIED AS IS, WITH NO WARRANTY OF ANY KIND.  USE AT
33 YOUR OWN RISK.
34 
35 Orginally developed and used with ntp3-5.85 by Derek Mulcahy.
36 
37 Built against ntp3-5.90 on Solaris 2.5 using gcc 2.7.2.
38 
39 This code may be freely copied and used and incorporated in other
40 systems providing the disclaimer and notice of authorship are
41 reproduced.
42 
43 -------------------------------------------------------------------------------
44 
45 Author's original note:
46 
47 I enclose my ntp driver for the Galleon Systems Arc MSF receiver.
48 
49 It works (after a fashion) on both Solaris-1 and Solaris-2.
50 
51 I am currently using ntp3-5.85.  I have been running the code for
52 about 7 months without any problems.  Even coped with the change to BST!
53 
54 I had to do some funky things to read from the clock because it uses the
55 power from the receive lines to drive the transmit lines.  This makes the
56 code look a bit stupid but it works.  I also had to put in some delays to
57 allow for the turnaround time from receive to transmit.  These delays
58 are between characters when requesting a time stamp so that shouldn't affect
59 the results too drastically.
60 
61 ...
62 
63 The bottom line is that it works but could easily be improved.  You are
64 free to do what you will with the code.  I haven't been able to determine
65 how good the clock is.  I think that this requires a known good clock
66 to compare it against.
67 
68 -------------------------------------------------------------------------------
69 
70 Damon's notes for adjustments:
71 
72 MAJOR CHANGES SINCE V1.0
73 ========================
74  1) Removal of pollcnt variable that made the clock go permanently
75     off-line once two time polls failed to gain responses.
76 
77  2) Avoiding (at least on Solaris-2) terminal becoming the controlling
78     terminal of the process when we do a low-level open().
79 
80  3) Additional logic (conditional on ARCRON_LEAPSECOND_KEEN being
81     defined) to try to resync quickly after a potential leap-second
82     insertion or deletion.
83 
84  4) Code significantly slimmer at run-time than V1.0.
85 
86 
87 GENERAL
88 =======
89 
90  1) The C preprocessor symbol to have the clock built has been changed
91     from ARC to ARCRON_MSF to CLOCK_ARCRON_MSF to minimise the
92     possiblity of clashes with other symbols in the future.
93 
94  2) PRECISION should be -4/-5 (63ms/31ms) for the following reasons:
95 
96      a) The ARC documentation claims the internal clock is (only)
97         accurate to about 20ms relative to Rugby (plus there must be
98         noticable drift and delay in the ms range due to transmission
99         delays and changing atmospheric effects).  This clock is not
100         designed for ms accuracy as NTP has spoilt us all to expect.
101 
102      b) The clock oscillator looks like a simple uncompensated quartz
103         crystal of the sort used in digital watches (ie 32768Hz) which
104         can have large temperature coefficients and drifts; it is not
105         clear if this oscillator is properly disciplined to the MSF
106         transmission, but as the default is to resync only once per
107         *day*, we can imagine that it is not, and is free-running.  We
108         can minimise drift by resyncing more often (at the cost of
109         reduced battery life), but drift/wander may still be
110         significant.
111 
112      c) Note that the bit time of 3.3ms adds to the potential error in
113         the the clock timestamp, since the bit clock of the serial link
114         may effectively be free-running with respect to the host clock
115         and the MSF clock.  Actually, the error is probably 1/16th of
116         the above, since the input data is probably sampled at at least
117         16x the bit rate.
118 
119     By keeping the clock marked as not very precise, it will have a
120     fairly large dispersion, and thus will tend to be used as a
121     `backup' time source and sanity checker, which this clock is
122     probably ideal for.  For an isolated network without other time
123     sources, this clock can probably be expected to provide *much*
124     better than 1s accuracy, which will be fine.
125 
126     By default, PRECISION is set to -4, but experience, especially at a
127     particular geographic location with a particular clock, may allow
128     this to be altered to -5.  (Note that skews of +/- 10ms are to be
129     expected from the clock from time-to-time.)  This improvement of
130     reported precision can be instigated by setting flag3 to 1, though
131     the PRECISION will revert to the normal value while the clock
132     signal quality is unknown whatever the flag3 setting.
133 
134     IN ANY CASE, BE SURE TO SET AN APPROPRIATE FUDGE FACTOR TO REMOVE
135     ANY RESIDUAL SKEW, eg:
136 
137         server 127.127.27.0 # ARCRON MSF radio clock unit 0.
138         # Fudge timestamps by about 20ms.
139         fudge 127.127.27.0 time1 0.020
140 
141     You will need to observe your system's behaviour, assuming you have
142     some other NTP source to compare it with, to work out what the
143     fudge factor should be.  For my Sun SS1 running SunOS 4.1.3_U1 with
144     my MSF clock with my distance from the MSF transmitter, +20ms
145     seemed about right, after some observation.
146 
147  3) REFID has been made "MSFa" to reflect the MSF time source and the
148     ARCRON receiver.
149 
150  4) DEFAULT_RESYNC_TIME is the time in seconds (by default) before
151     forcing a resync since the last attempt.  This is picked to give a
152     little less than an hour between resyncs and to try to avoid
153     clashing with any regular event at a regular time-past-the-hour
154     which might cause systematic errors.
155 
156     The INITIAL_RESYNC_DELAY is to avoid bothering the clock and
157     running down its batteries unnecesarily if ntpd is going to crash
158     or be killed or reconfigured quickly.  If ARCRON_KEEN is defined
159     then this period is long enough for (with normal polling rates)
160     enough time samples to have been taken to allow ntpd to sync to
161     the clock before the interruption for the clock to resync to MSF.
162     This avoids ntpd syncing to another peer first and then
163     almost immediately hopping to the MSF clock.
164 
165     The RETRY_RESYNC_TIME is used before rescheduling a resync after a
166     resync failed to reveal a statisfatory signal quality (too low or
167     unknown).
168 
169  5) The clock seems quite jittery, so I have increased the
170     median-filter size from the typical (previous) value of 3.  I
171     discard up to half the results in the filter.  It looks like maybe
172     1 sample in 10 or so (maybe less) is a spike, so allow the median
173     filter to discard at least 10% of its entries or 1 entry, whichever
174     is greater.
175 
176  6) Sleeping *before* each character sent to the unit to allow required
177     inter-character time but without introducting jitter and delay in
178     handling the response if possible.
179 
180  7) If the flag ARCRON_KEEN is defined, take time samples whenever
181     possible, even while resyncing, etc.  We rely, in this case, on the
182     clock always giving us a reasonable time or else telling us in the
183     status byte at the end of the timestamp that it failed to sync to
184     MSF---thus we should never end up syncing to completely the wrong
185     time.
186 
187  8) If the flag ARCRON_OWN_FILTER is defined, use own versions of
188     refclock median-filter routines to get round small bug in 3-5.90
189     code which does not return the median offset. XXX Removed this
190     bit due NTP Version 4 upgrade - dlm.
191 
192  9) We would appear to have a year-2000 problem with this clock since
193     it returns only the two least-significant digits of the year.  But
194     ntpd ignores the year and uses the local-system year instead, so
195     this is in fact not a problem.  Nevertheless, we attempt to do a
196     sensible thing with the dates, wrapping them into a 100-year
197     window.
198 
199  10)Logs stats information that can be used by Derek's Tcl/Tk utility
200     to show the status of the clock.
201 
202  11)The clock documentation insists that the number of bits per
203     character to be sent to the clock, and sent by it, is 11, including
204     one start bit and two stop bits.  The data format is either 7+even
205     or 8+none.
206 
207 
208 TO-DO LIST
209 ==========
210 
211   * Eliminate use of scanf(), and maybe sprintf().
212 
213   * Allow user setting of resync interval to trade battery life for
214     accuracy; maybe could be done via fudge factor or unit number.
215 
216   * Possibly note the time since the last resync of the MSF clock to
217     MSF as the age of the last reference timestamp, ie trust the
218     clock's oscillator not very much...
219 
220   * Add very slow auto-adjustment up to a value of +/- time2 to correct
221     for long-term errors in the clock value (time2 defaults to 0 so the
222     correction would be disabled by default).
223 
224   * Consider trying to use the tty_clk/ppsclock support.
225 
226   * Possibly use average or maximum signal quality reported during
227     resync, rather than just the last one, which may be atypical.
228 
229 */
230 
231 
232 /* Notes for HKW Elektronik GmBH Radio clock driver */
233 /* Author Lyndon David, Sentinet Ltd, Feb 1997      */
234 /* These notes seem also to apply usefully to the ARCRON clock. */
235 
236 /* The HKW clock module is a radio receiver tuned into the Rugby */
237 /* MSF time signal tranmitted on 60 kHz. The clock module connects */
238 /* to the computer via a serial line and transmits the time encoded */
239 /* in 15 bytes at 300 baud 7 bits two stop bits even parity */
240 
241 /* Clock communications, from the datasheet */
242 /* All characters sent to the clock are echoed back to the controlling */
243 /* device. */
244 /* Transmit time/date information */
245 /* syntax ASCII o<cr> */
246 /* Character o may be replaced if neccesary by a character whose code */
247 /* contains the lowest four bits f(hex) eg */
248 /* syntax binary: xxxx1111 00001101 */
249 
250 /* DHD note:
251 You have to wait for character echo + 10ms before sending next character.
252 */
253 
254 /* The clock replies to this command with a sequence of 15 characters */
255 /* which contain the complete time and a final <cr> making 16 characters */
256 /* in total. */
257 /* The RC computer clock will not reply immediately to this command because */
258 /* the start bit edge of the first reply character marks the beginning of */
259 /* the second. So the RC Computer Clock will reply to this command at the */
260 /* start of the next second */
261 /* The characters have the following meaning */
262 /* 1. hours tens   */
263 /* 2. hours units  */
264 /* 3. minutes tens */
265 /* 4. minutes units */
266 /* 5. seconds tens  */
267 /* 6. seconds units */
268 /* 7. day of week 1-monday 7-sunday */
269 /* 8. day of month tens */
270 /* 9. day of month units */
271 /* 10. month tens */
272 /* 11. month units */
273 /* 12. year tens */
274 /* 13. year units */
275 /* 14. BST/UTC status */
276 /*      bit 7   parity */
277 /*      bit 6   always 0 */
278 /*      bit 5   always 1 */
279 /*      bit 4   always 1 */
280 /*      bit 3   always 0 */
281 /*      bit 2   =1 if UTC is in effect, complementary to the BST bit */
282 /*      bit 1   =1 if BST is in effect, according to the BST bit     */
283 /*      bit 0   BST/UTC change impending bit=1 in case of change impending */
284 /* 15. status */
285 /*      bit 7   parity */
286 /*      bit 6   always 0 */
287 /*      bit 5   always 1 */
288 /*      bit 4   always 1 */
289 /*      bit 3   =1 if low battery is detected */
290 /*      bit 2   =1 if the very last reception attempt failed and a valid */
291 /*              time information already exists (bit0=1) */
292 /*              =0 if the last reception attempt was successful */
293 /*      bit 1   =1 if at least one reception since 2:30 am was successful */
294 /*              =0 if no reception attempt since 2:30 am was successful */
295 /*      bit 0   =1 if the RC Computer Clock contains valid time information */
296 /*              This bit is zero after reset and one after the first */
297 /*              successful reception attempt */
298 
299 /* DHD note:
300 Also note g<cr> command which confirms that a resync is in progress, and
301 if so what signal quality (0--5) is available.
302 Also note h<cr> command which starts a resync to MSF signal.
303 */
304 
305 
306 
307 #include <stdio.h>
308 #include <ctype.h>
309 #include <sys/time.h>
310 
311 #if defined(HAVE_BSD_TTYS)
312 #include <sgtty.h>
313 #endif /* HAVE_BSD_TTYS */
314 
315 #if defined(HAVE_SYSV_TTYS)
316 #include <termio.h>
317 #endif /* HAVE_SYSV_TTYS */
318 
319 #if defined(HAVE_TERMIOS)
320 #include <termios.h>
321 #endif
322 
323 #include "ntpd.h"
324 #include "ntp_io.h"
325 #include "ntp_refclock.h"
326 #include "ntp_stdlib.h"
327 
328 /*
329  * This driver supports the ARCRON MSF Radio Controlled Clock
330  */
331 
332 /*
333  * Interface definitions
334  */
335 #define DEVICE          "/dev/arc%d"    /* Device name and unit. */
336 #define SPEED           B300            /* UART speed (300 baud) */
337 #define PRECISION       (-4)            /* Precision  (~63 ms). */
338 #define HIGHPRECISION   (-5)            /* If things are going well... */
339 #define REFID           "MSFa"          /* Reference ID. */
340 #define DESCRIPTION     "ARCRON MSF Receiver"
341 
342 #define NSAMPLESLONG    8               /* Stages of long filter. */
343 
344 #define LENARC          16              /* Format `o' timecode length. */
345 
346 #define BITSPERCHAR     11              /* Bits per character. */
347 #define BITTIME         0x0DA740E       /* Time for 1 bit at 300bps. */
348 #define CHARTIME10      0x8888888       /* Time for 10-bit char at 300bps. */
349 #define CHARTIME11      0x962FC96       /* Time for 11-bit char at 300bps. */
350 #define CHARTIME                        /* Time for char at 300bps. */ \
351 ( (BITSPERCHAR == 11) ? CHARTIME11 : ( (BITSPERCHAR == 10) ? CHARTIME10 : \
352 				       (BITSPERCHAR * BITTIME) ) )
353 
354      /* Allow for UART to accept char half-way through final stop bit. */
355 #define INITIALOFFSET (u_int32)(-BITTIME/2)
356 
357      /*
358     charoffsets[x] is the time after the start of the second that byte
359     x (with the first byte being byte 1) is received by the UART,
360     assuming that the initial edge of the start bit of the first byte
361     is on-time.  The values are represented as the fractional part of
362     an l_fp.
363 
364     We store enough values to have the offset of each byte including
365     the trailing \r, on the assumption that the bytes follow one
366     another without gaps.
367     */
368      static const u_int32 charoffsets[LENARC+1] = {
369 #if BITSPERCHAR == 11 /* Usual case. */
370 	     /* Offsets computed as accurately as possible... */
371 	     0,
372 	     INITIALOFFSET + 0x0962fc96, /*  1 chars,  11 bits */
373 	     INITIALOFFSET + 0x12c5f92c, /*  2 chars,  22 bits */
374 	     INITIALOFFSET + 0x1c28f5c3, /*  3 chars,  33 bits */
375 	     INITIALOFFSET + 0x258bf259, /*  4 chars,  44 bits */
376 	     INITIALOFFSET + 0x2eeeeeef, /*  5 chars,  55 bits */
377 	     INITIALOFFSET + 0x3851eb85, /*  6 chars,  66 bits */
378 	     INITIALOFFSET + 0x41b4e81b, /*  7 chars,  77 bits */
379 	     INITIALOFFSET + 0x4b17e4b1, /*  8 chars,  88 bits */
380 	     INITIALOFFSET + 0x547ae148, /*  9 chars,  99 bits */
381 	     INITIALOFFSET + 0x5dddddde, /* 10 chars, 110 bits */
382 	     INITIALOFFSET + 0x6740da74, /* 11 chars, 121 bits */
383 	     INITIALOFFSET + 0x70a3d70a, /* 12 chars, 132 bits */
384 	     INITIALOFFSET + 0x7a06d3a0, /* 13 chars, 143 bits */
385 	     INITIALOFFSET + 0x8369d037, /* 14 chars, 154 bits */
386 	     INITIALOFFSET + 0x8ccccccd, /* 15 chars, 165 bits */
387 	     INITIALOFFSET + 0x962fc963  /* 16 chars, 176 bits */
388 #else
389 	     /* Offsets computed with a small rounding error... */
390 	     0,
391 	     INITIALOFFSET +  1 * CHARTIME,
392 	     INITIALOFFSET +  2 * CHARTIME,
393 	     INITIALOFFSET +  3 * CHARTIME,
394 	     INITIALOFFSET +  4 * CHARTIME,
395 	     INITIALOFFSET +  5 * CHARTIME,
396 	     INITIALOFFSET +  6 * CHARTIME,
397 	     INITIALOFFSET +  7 * CHARTIME,
398 	     INITIALOFFSET +  8 * CHARTIME,
399 	     INITIALOFFSET +  9 * CHARTIME,
400 	     INITIALOFFSET + 10 * CHARTIME,
401 	     INITIALOFFSET + 11 * CHARTIME,
402 	     INITIALOFFSET + 12 * CHARTIME,
403 	     INITIALOFFSET + 13 * CHARTIME,
404 	     INITIALOFFSET + 14 * CHARTIME,
405 	     INITIALOFFSET + 15 * CHARTIME,
406 	     INITIALOFFSET + 16 * CHARTIME
407 #endif
408      };
409 
410 /* Chose filter length dependent on fudge flag 4. */
411 #define CHOSENSAMPLES(pp) \
412 (((pp)->sloppyclockflag & CLK_FLAG4) ? NSAMPLESLONG : NSAMPLES)
413      /*
414 Chose how many filter samples to keep.  Several factors are in play.
415 
416  1) Discard at least one sample to allow a spike value to be
417     discarded.
418 
419  2) Discard about 1-in-8 to 1-in-30 samples to handle spikes.
420 
421  3) Keep an odd number of samples to avoid median value being biased
422     high or low.
423 */
424 #define NKEEP(pp) ((CHOSENSAMPLES(pp) - 1 - (CHOSENSAMPLES(pp)>>3)) | 1)
425 
426 #define DEFAULT_RESYNC_TIME  (57*60)    /* Gap between resync attempts (s). */
427 #define RETRY_RESYNC_TIME    (27*60)    /* Gap to emergency resync attempt. */
428 #ifdef ARCRON_KEEN
429 #define INITIAL_RESYNC_DELAY 500        /* Delay before first resync. */
430 #else
431 #define INITIAL_RESYNC_DELAY 50         /* Delay before first resync. */
432 #endif
433 
434      static const int moff[12] =
435 { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
436 /* Flags for a raw open() of the clock serial device. */
437 #ifdef O_NOCTTY /* Good, we can avoid tty becoming controlling tty. */
438 #define OPEN_FLAGS (O_RDWR | O_NOCTTY)
439 #else           /* Oh well, it may not matter... */
440 #define OPEN_FLAGS (O_RDWR)
441 #endif
442 
443 
444 /* Length of queue of command bytes to be sent. */
445 #define CMDQUEUELEN 4                   /* Enough for two cmds + each \r. */
446 /* Queue tick time; interval in seconds between chars taken off queue. */
447 /* Must be >= 2 to allow o\r response to come back uninterrupted. */
448 #define QUEUETICK   2                   /* Allow o\r reply to finish. */
449 
450 /*
451  * ARC unit control structure
452  */
453 struct arcunit {
454 	l_fp lastrec;       /* Time tag for the receive time (system). */
455 	int status;         /* Clock status. */
456 
457 	int quality;        /* Quality of reception 0--5 for unit. */
458 	/* We may also use the values -1 or 6 internally. */
459 
460 	u_long next_resync; /* Next resync time (s) compared to current_time. */
461 	int resyncing;      /* Resync in progress if true. */
462 
463 	/* In the outgoing queue, cmdqueue[0] is next to be sent. */
464 	char cmdqueue[CMDQUEUELEN+1]; /* Queue of outgoing commands + \0. */
465 
466 	u_long saved_flags; /* Saved fudge flags. */
467 };
468 #ifdef ARCRON_LEAPSECOND_KEEN
469 /* The flag `possible_leap' is set non-zero when any MSF unit
470        thinks a leap-second may have happened.
471 
472        Set whenever we receive a valid time sample in the first hour of
473        the first day of the first/seventh months.
474 
475        Outside the special hour this value is unconditionally set
476        to zero by the receive routine.
477 
478        On finding itself in this timeslot, as long as the value is
479        non-negative, the receive routine sets it to a positive value to
480        indicate a resync to MSF should be performed.
481 
482        In the poll routine, if this value is positive and we are not
483        already resyncing (eg from a sync that started just before
484        midnight), start resyncing and set this value negative to
485        indicate that a leap-triggered resync has been started.  Having
486        set this negative prevents the receive routine setting it
487        positive and thus prevents multiple resyncs during the witching
488        hour.
489      */
490 static int possible_leap = 0;       /* No resync required by default. */
491 #endif
492 
493 #if 0
494 static void dummy_event_handler P((struct peer *));
495 static void   arc_event_handler P((struct peer *));
496 #endif /* 0 */
497 
498 #define QUALITY_UNKNOWN     -1 /* Indicates unknown clock quality. */
499 #define MIN_CLOCK_QUALITY    0 /* Min quality clock will return. */
500 #define MIN_CLOCK_QUALITY_OK 3 /* Min quality for OK reception. */
501 #define MAX_CLOCK_QUALITY    5 /* Max quality clock will return. */
502 
503 /*
504  * Function prototypes
505  */
506 static  int     arc_start       P((int, struct peer *));
507 static  void    arc_shutdown    P((int, struct peer *));
508 static  void    arc_receive     P((struct recvbuf *));
509 static  void    arc_poll        P((int, struct peer *));
510 
511 /*
512  * Transfer vector
513  */
514 struct  refclock refclock_arc = {
515 	arc_start,              /* start up driver */
516 	arc_shutdown,           /* shut down driver */
517 	arc_poll,               /* transmit poll message */
518 	noentry,                /* not used (old arc_control) */
519 	noentry,                /* initialize driver (not used) */
520 	noentry,                /* not used (old arc_buginfo) */
521 	NOFLAGS                 /* not used */
522 };
523 
524 /* Queue us up for the next tick. */
525 #define ENQUEUE(up) \
526 	do { \
527 	     if((up)->ev.next != 0) { break; } /* WHOOPS! */ \
528 	     peer->nextdate = current_time + QUEUETICK; \
529 	} while(0)
530 
531 #if 0
532 /* Placeholder event handler---does nothing safely---soaks up lose tick. */
533 static void
534 dummy_event_handler(
535 	struct peer *peer
536 	)
537 {
538 #ifdef ARCRON_DEBUG
539 	if(debug) { printf("arc: dummy_event_handler() called.\n"); }
540 #endif
541 }
542 
543 /*
544 Normal event handler.
545 
546 Take first character off queue and send to clock if not a null.
547 
548 Shift characters down and put a null on the end.
549 
550 We assume that there is no parallelism so no race condition, but even
551 if there is nothing bad will happen except that we might send some bad
552 data to the clock once in a while.
553 */
554 static void
555 arc_event_handler(
556 	struct peer *peer
557 	)
558 {
559 	struct refclockproc *pp = peer->procptr;
560 	register struct arcunit *up = (struct arcunit *)pp->unitptr;
561 	int i;
562 	char c;
563 #ifdef ARCRON_DEBUG
564 	if(debug > 2) { printf("arc: arc_event_handler() called.\n"); }
565 #endif
566 
567 	c = up->cmdqueue[0];       /* Next char to be sent. */
568 	/* Shift down characters, shifting trailing \0 in at end. */
569 	for(i = 0; i < CMDQUEUELEN; ++i)
570 	{ up->cmdqueue[i] = up->cmdqueue[i+1]; }
571 
572 	/* Don't send '\0' characters. */
573 	if(c != '\0') {
574 		if(write(pp->io.fd, &c, 1) != 1) {
575 			msyslog(LOG_NOTICE, "ARCRON: write to fd %d failed", pp->io.fd);
576 		}
577 #ifdef ARCRON_DEBUG
578 		else if(debug) { printf("arc: sent `%2.2x', fd %d.\n", c, pp->io.fd); }
579 #endif
580 	}
581 }
582 #endif /* 0 */
583 
584 /*
585  * arc_start - open the devices and initialize data for processing
586  */
587 static int
588 arc_start(
589 	int unit,
590 	struct peer *peer
591 	)
592 {
593 	register struct arcunit *up;
594 	struct refclockproc *pp;
595 	int fd;
596 	char device[20];
597 #ifdef HAVE_TERMIOS
598 	struct termios arg;
599 #endif
600 
601 	msyslog(LOG_NOTICE, "ARCRON: %s: opening unit %d", arc_version, unit);
602 #ifdef ARCRON_DEBUG
603 	if(debug) {
604 		printf("arc: %s: attempt to open unit %d.\n", arc_version, unit);
605 	}
606 #endif
607 
608 	/* Prevent a ridiculous device number causing overflow of device[]. */
609 	if((unit < 0) || (unit > 255)) { return(0); }
610 
611 	/*
612 	 * Open serial port. Use CLK line discipline, if available.
613 	 */
614 	(void)sprintf(device, DEVICE, unit);
615 	if (!(fd = refclock_open(device, SPEED, LDISC_CLK)))
616 		return(0);
617 #ifdef ARCRON_DEBUG
618 	if(debug) { printf("arc: unit %d using open().\n", unit); }
619 #endif
620 	fd = open(device, OPEN_FLAGS);
621 	if(fd < 0) {
622 #ifdef DEBUG
623 		if(debug) { printf("arc: failed [open()] to open %s.\n", device); }
624 #endif
625 		return(0);
626 	}
627 
628 	fcntl(fd, F_SETFL, 0); /* clear the descriptor flags */
629 #ifdef ARCRON_DEBUG
630 	if(debug)
631 	{ printf("Opened RS232 port with file descriptor %d.\n", fd); }
632 #endif
633 
634 #ifdef HAVE_TERMIOS
635 
636 	arg.c_iflag = IGNBRK | ISTRIP;
637 	arg.c_oflag = 0;
638 	arg.c_cflag = B300 | CS8 | CREAD | CLOCAL | CSTOPB;
639 	arg.c_lflag = 0;
640 	arg.c_cc[VMIN] = 1;
641 	arg.c_cc[VTIME] = 0;
642 
643 	tcsetattr(fd, TCSANOW, &arg);
644 
645 #else
646 
647 	msyslog(LOG_ERR, "ARCRON: termios not supported in this driver");
648 	(void)close(fd);
649 
650 	return 0;
651 
652 #endif
653 
654 	up = (struct arcunit *) emalloc(sizeof(struct arcunit));
655 	if(!up) { (void) close(fd); return(0); }
656 	/* Set structure to all zeros... */
657 	memset((char *)up, 0, sizeof(struct arcunit));
658 	pp = peer->procptr;
659 	pp->io.clock_recv = arc_receive;
660 	pp->io.srcclock = (caddr_t)peer;
661 	pp->io.datalen = 0;
662 	pp->io.fd = fd;
663 	if(!io_addclock(&pp->io)) { (void) close(fd); free(up); return(0); }
664 	pp->unitptr = (caddr_t)up;
665 
666 	/*
667 	 * Initialize miscellaneous variables
668 	 */
669 	peer->precision = PRECISION;
670 	peer->stratum = 2;              /* Default to stratum 2 not 0. */
671 	pp->clockdesc = DESCRIPTION;
672 	memcpy((char *)&pp->refid, REFID, 4);
673 	/* Spread out resyncs so that they should remain separated. */
674 	up->next_resync = current_time + INITIAL_RESYNC_DELAY + (67*unit)%1009;
675 
676 #if 0 /* Not needed because of zeroing of arcunit structure... */
677 	up->resyncing = 0;              /* Not resyncing yet. */
678 	up->saved_flags = 0;            /* Default is all flags off. */
679 	/* Clear send buffer out... */
680 	{
681 		int i;
682 		for(i = CMDQUEUELEN; i >= 0; --i) { up->cmdqueue[i] = '\0'; }
683 	}
684 #endif
685 
686 #ifdef ARCRON_KEEN
687 	up->quality = QUALITY_UNKNOWN;  /* Trust the clock immediately. */
688 #else
689 	up->quality = MIN_CLOCK_QUALITY;/* Don't trust the clock yet. */
690 #endif
691 	return(1);
692 }
693 
694 
695 /*
696  * arc_shutdown - shut down the clock
697  */
698 static void
699 arc_shutdown(
700 	int unit,
701 	struct peer *peer
702 	)
703 {
704 	register struct arcunit *up;
705 	struct refclockproc *pp;
706 
707 	pp = peer->procptr;
708 	up = (struct arcunit *)pp->unitptr;
709 	io_closeclock(&pp->io);
710 	free(up);
711 }
712 
713 /*
714 Compute space left in output buffer.
715 */
716 static int
717 space_left(
718 	register struct arcunit *up
719 	)
720 {
721 	int spaceleft;
722 
723 	/* Compute space left in buffer after any pending output. */
724 	for(spaceleft = 0; spaceleft < CMDQUEUELEN; ++spaceleft)
725 	{ if(up->cmdqueue[CMDQUEUELEN - 1 - spaceleft] != '\0') { break; } }
726 	return(spaceleft);
727 }
728 
729 /*
730 Send command by copying into command buffer as far forward as possible,
731 after any pending output.
732 
733 Indicate an error by returning 0 if there is not space for the command.
734 */
735 static int
736 send_slow(
737 	register struct arcunit *up,
738 	int fd,
739 	const char *s
740 	)
741 {
742 	int sl = strlen(s);
743 	int spaceleft = space_left(up);
744 
745 #ifdef ARCRON_DEBUG
746 	if(debug > 1) { printf("arc: spaceleft = %d.\n", spaceleft); }
747 #endif
748 	if(spaceleft < sl) { /* Should not normally happen... */
749 #ifdef ARCRON_DEBUG
750 		msyslog(LOG_NOTICE, "ARCRON: send-buffer overrun (%d/%d)",
751 		       sl, spaceleft);
752 #endif
753 		return(0);                      /* FAILED! */
754 	}
755 
756 	/* Copy in the command to be sent. */
757 	while(*s) { up->cmdqueue[CMDQUEUELEN - spaceleft--] = *s++; }
758 
759 	return(1);
760 }
761 
762 
763 /* Macro indicating action we will take for different quality values. */
764 #define quality_action(q) \
765 (((q) == QUALITY_UNKNOWN) ?         "UNKNOWN, will use clock anyway" : \
766  (((q) < MIN_CLOCK_QUALITY_OK) ? "TOO POOR, will not use clock" : \
767   "OK, will use clock"))
768 
769      /*
770  * arc_receive - receive data from the serial interface
771  */
772      static void
773 arc_receive(
774 	struct recvbuf *rbufp
775 	)
776 {
777 	register struct arcunit *up;
778 	struct refclockproc *pp;
779 	struct peer *peer;
780 	char c;
781 	int i, n, wday, month, bst, status;
782 	int arc_last_offset;
783 
784 	/*
785 	 * Initialize pointers and read the timecode and timestamp
786 	 */
787 	peer = (struct peer *)rbufp->recv_srcclock;
788 	pp = peer->procptr;
789 	up = (struct arcunit *)pp->unitptr;
790 
791 
792 	/*
793 	  If the command buffer is empty, and we are resyncing, insert a
794 	  g\r quality request into it to poll for signal quality again.
795 	*/
796 	if((up->resyncing) && (space_left(up) == CMDQUEUELEN)) {
797 #ifdef DEBUG
798 		if(debug > 1) { printf("arc: inserting signal-quality poll.\n"); }
799 #endif
800 		send_slow(up, pp->io.fd, "g\r");
801 	}
802 
803 	/*
804 	  The `arc_last_offset' is the offset in lastcode[] of the last byte
805 	  received, and which we assume actually received the input
806 	  timestamp.
807 
808 	  (When we get round to using tty_clk and it is available, we
809 	  assume that we will receive the whole timecode with the
810 	  trailing \r, and that that \r will be timestamped.  But this
811 	  assumption also works if receive the characters one-by-one.)
812 	*/
813 	arc_last_offset = pp->lencode+rbufp->recv_length - 1;
814 
815 	/*
816 	  We catch a timestamp iff:
817 
818 	  * The command code is `o' for a timestamp.
819 
820 	  * If ARCRON_MULTIPLE_SAMPLES is undefined then we must have
821 	  exactly char in the buffer (the command code) so that we
822 	  only sample the first character of the timecode as our
823 	  `on-time' character.
824 
825 	  * The first character in the buffer is not the echoed `\r'
826 	  from the `o` command (so if we are to timestamp an `\r' it
827 	  must not be first in the receive buffer with lencode==1.
828 	  (Even if we had other characters following it, we probably
829 	  would have a premature timestamp on the '\r'.)
830 
831 	  * We have received at least one character (I cannot imagine
832 	  how it could be otherwise, but anyway...).
833 	*/
834 	c = rbufp->recv_buffer[0];
835 	if((pp->a_lastcode[0] == 'o') &&
836 #ifndef ARCRON_MULTIPLE_SAMPLES
837 	   (pp->lencode == 1) &&
838 #endif
839 	   ((pp->lencode != 1) || (c != '\r')) &&
840 	   (arc_last_offset >= 1)) {
841 		/* Note that the timestamp should be corrected if >1 char rcvd. */
842 		l_fp timestamp;
843 		timestamp = rbufp->recv_time;
844 #ifdef DEBUG
845 		if(debug) { /* Show \r as `R', other non-printing char as `?'. */
846 			printf("arc: stamp -->%c<-- (%d chars rcvd)\n",
847 			       ((c == '\r') ? 'R' : (isgraph((int)c) ? c : '?')),
848 			       rbufp->recv_length);
849 		}
850 #endif
851 
852 		/*
853 		  Now correct timestamp by offset of last byte received---we
854 		  subtract from the receive time the delay implied by the
855 		  extra characters received.
856 
857 		  Reject the input if the resulting code is too long, but
858 		  allow for the trailing \r, normally not used but a good
859 		  handle for tty_clk or somesuch kernel timestamper.
860 		*/
861 		if(arc_last_offset > LENARC) {
862 #ifdef ARCRON_DEBUG
863 			if(debug) {
864 				printf("arc: input code too long (%d cf %d); rejected.\n",
865 				       arc_last_offset, LENARC);
866 			}
867 #endif
868 			pp->lencode = 0;
869 			refclock_report(peer, CEVNT_BADREPLY);
870 			return;
871 		}
872 
873 		L_SUBUF(&timestamp, charoffsets[arc_last_offset]);
874 #ifdef ARCRON_DEBUG
875 		if(debug > 1) {
876 			printf(
877 				"arc: %s%d char(s) rcvd, the last for lastcode[%d]; -%sms offset applied.\n",
878 				((rbufp->recv_length > 1) ? "*** " : ""),
879 				rbufp->recv_length,
880 				arc_last_offset,
881 				mfptoms((unsigned long)0,
882 					charoffsets[arc_last_offset],
883 					1));
884 		}
885 #endif
886 
887 #ifdef ARCRON_MULTIPLE_SAMPLES
888 		/*
889 		  If taking multiple samples, capture the current adjusted
890 		  sample iff:
891 
892 		  * No timestamp has yet been captured (it is zero), OR
893 
894 		  * This adjusted timestamp is earlier than the one already
895 		  captured, on the grounds that this one suffered less
896 		  delay in being delivered to us and is more accurate.
897 
898 		*/
899 		if(L_ISZERO(&(up->lastrec)) ||
900 		   L_ISGEQ(&(up->lastrec), &timestamp))
901 #endif
902 		{
903 #ifdef ARCRON_DEBUG
904 			if(debug > 1) {
905 				printf("arc: system timestamp captured.\n");
906 #ifdef ARCRON_MULTIPLE_SAMPLES
907 				if(!L_ISZERO(&(up->lastrec))) {
908 					l_fp diff;
909 					diff = up->lastrec;
910 					L_SUB(&diff, &timestamp);
911 					printf("arc: adjusted timestamp by -%sms.\n",
912 					       mfptoms(diff.l_i, diff.l_f, 3));
913 				}
914 #endif
915 			}
916 #endif
917 			up->lastrec = timestamp;
918 		}
919 
920 	}
921 
922 	/* Just in case we still have lots of rubbish in the buffer... */
923 	/* ...and to avoid the same timestamp being reused by mistake, */
924 	/* eg on receipt of the \r coming in on its own after the      */
925 	/* timecode.                                                   */
926 	if(pp->lencode >= LENARC) {
927 #ifdef ARCRON_DEBUG
928 		if(debug && (rbufp->recv_buffer[0] != '\r'))
929 		{ printf("arc: rubbish in pp->a_lastcode[].\n"); }
930 #endif
931 		pp->lencode = 0;
932 		return;
933 	}
934 
935 	/* Append input to code buffer, avoiding overflow. */
936 	for(i = 0; i < rbufp->recv_length; i++) {
937 		if(pp->lencode >= LENARC) { break; } /* Avoid overflow... */
938 		c = rbufp->recv_buffer[i];
939 
940 		/* Drop trailing '\r's and drop `h' command echo totally. */
941 		if(c != '\r' && c != 'h') { pp->a_lastcode[pp->lencode++] = c; }
942 
943 		/*
944 		  If we've just put an `o' in the lastcode[0], clear the
945 		  timestamp in anticipation of a timecode arriving soon.
946 
947 		  We would expect to get to process this before any of the
948 		  timecode arrives.
949 		*/
950 		if((c == 'o') && (pp->lencode == 1)) {
951 			L_CLR(&(up->lastrec));
952 #ifdef ARCRON_DEBUG
953 			if(debug > 1) { printf("arc: clearing timestamp.\n"); }
954 #endif
955 		}
956 	}
957 
958 	/* Handle a quality message. */
959 	if(pp->a_lastcode[0] == 'g') {
960 		int r, q;
961 
962 		if(pp->lencode < 3) { return; } /* Need more data... */
963 		r = (pp->a_lastcode[1] & 0x7f); /* Strip parity. */
964 		q = (pp->a_lastcode[2] & 0x7f); /* Strip parity. */
965 		if(((q & 0x70) != 0x30) || ((q & 0xf) > MAX_CLOCK_QUALITY) ||
966 		   ((r & 0x70) != 0x30)) {
967 			/* Badly formatted response. */
968 #ifdef ARCRON_DEBUG
969 			if(debug) { printf("arc: bad `g' response %2x %2x.\n", r, q); }
970 #endif
971 			return;
972 		}
973 		if(r == '3') { /* Only use quality value whilst sync in progress. */
974 			up->quality = (q & 0xf);
975 #ifdef DEBUG
976 			if(debug) { printf("arc: signal quality %d.\n", up->quality); }
977 #endif
978 		} else if( /* (r == '2') && */ up->resyncing) {
979 #ifdef DEBUG
980 			if(debug)
981 			{
982 				printf("arc: sync finished, signal quality %d: %s\n",
983 				       up->quality,
984 				       quality_action(up->quality));
985 			}
986 #endif
987 			msyslog(LOG_NOTICE,
988 			       "ARCRON: sync finished, signal quality %d: %s",
989 			       up->quality,
990 			       quality_action(up->quality));
991 			up->resyncing = 0; /* Resync is over. */
992 
993 #ifdef ARCRON_KEEN
994 			/* Clock quality dubious; resync earlier than usual. */
995 			if((up->quality == QUALITY_UNKNOWN) ||
996 			   (up->quality < MIN_CLOCK_QUALITY_OK))
997 			{ up->next_resync = current_time + RETRY_RESYNC_TIME; }
998 #endif
999 		}
1000 		pp->lencode = 0;
1001 		return;
1002 	}
1003 
1004 	/* Stop now if this is not a timecode message. */
1005 	if(pp->a_lastcode[0] != 'o') {
1006 		pp->lencode = 0;
1007 		refclock_report(peer, CEVNT_BADREPLY);
1008 		return;
1009 	}
1010 
1011 	/* If we don't have enough data, wait for more... */
1012 	if(pp->lencode < LENARC) { return; }
1013 
1014 
1015 	/* WE HAVE NOW COLLECTED ONE TIMESTAMP (phew)... */
1016 #ifdef ARCRON_DEBUG
1017 	if(debug > 1) { printf("arc: NOW HAVE TIMESTAMP...\n"); }
1018 #endif
1019 
1020 	/* But check that we actually captured a system timestamp on it. */
1021 	if(L_ISZERO(&(up->lastrec))) {
1022 #ifdef ARCRON_DEBUG
1023 		if(debug) { printf("arc: FAILED TO GET SYSTEM TIMESTAMP\n"); }
1024 #endif
1025 		pp->lencode = 0;
1026 		refclock_report(peer, CEVNT_BADREPLY);
1027 		return;
1028 	}
1029 	/*
1030 	  Append a mark of the clock's received signal quality for the
1031 	  benefit of Derek Mulcahy's Tcl/Tk utility (we map the `unknown'
1032 	  quality value to `6' for his s/w) and terminate the string for
1033 	  sure.  This should not go off the buffer end.
1034 	*/
1035 	pp->a_lastcode[pp->lencode] = ((up->quality == QUALITY_UNKNOWN) ?
1036 				       '6' : ('0' + up->quality));
1037 	pp->a_lastcode[pp->lencode + 1] = '\0'; /* Terminate for printf(). */
1038 	record_clock_stats(&peer->srcadr, pp->a_lastcode);
1039 
1040 	/* We don't use the micro-/milli- second part... */
1041 	pp->usec = 0;
1042 	pp->msec = 0;
1043 
1044 	n = sscanf(pp->a_lastcode, "o%2d%2d%2d%1d%2d%2d%2d%1d%1d",
1045 		   &pp->hour, &pp->minute, &pp->second,
1046 		   &wday, &pp->day, &month, &pp->year, &bst, &status);
1047 
1048 	/* Validate format and numbers. */
1049 	if(n != 9) {
1050 #ifdef ARCRON_DEBUG
1051 		/* Would expect to have caught major problems already... */
1052 		if(debug) { printf("arc: badly formatted data.\n"); }
1053 #endif
1054 		refclock_report(peer, CEVNT_BADREPLY);
1055 		return;
1056 	}
1057 	/*
1058 	  Validate received values at least enough to prevent internal
1059 	  array-bounds problems, etc.
1060 	*/
1061 	if((pp->hour < 0) || (pp->hour > 23) ||
1062 	   (pp->minute < 0) || (pp->minute > 59) ||
1063 	   (pp->second < 0) || (pp->second > 60) /*Allow for leap seconds.*/ ||
1064 	   (wday < 1) || (wday > 7) ||
1065 	   (pp->day < 1) || (pp->day > 31) ||
1066 	   (month < 1) || (month > 12) ||
1067 	   (pp->year < 0) || (pp->year > 99)) {
1068 		/* Data out of range. */
1069 		refclock_report(peer, CEVNT_BADREPLY);
1070 		return;
1071 	}
1072 	/* Check that BST/UTC bits are the complement of one another. */
1073 	if(!(bst & 2) == !(bst & 4)) {
1074 		refclock_report(peer, CEVNT_BADREPLY);
1075 		return;
1076 	}
1077 
1078 	if(status & 0x8) { msyslog(LOG_NOTICE, "ARCRON: battery low"); }
1079 
1080 	/* Year-2000 alert! */
1081 	/* Attempt to wrap 2-digit date into sensible window. */
1082 	if(pp->year < YEAR_PIVOT) { pp->year += 100; }		/* Y2KFixes */
1083 	pp->year += 1900;	/* use full four-digit year */	/* Y2KFixes */
1084 	/*
1085 	  Attempt to do the right thing by screaming that the code will
1086 	  soon break when we get to the end of its useful life.  What a
1087 	  hero I am...  PLEASE FIX LEAP-YEAR AND WRAP CODE IN 209X!
1088 	*/
1089 	if(pp->year >= YEAR_PIVOT+2000-2 ) {  			/* Y2KFixes */
1090 		/*This should get attention B^> */
1091 		msyslog(LOG_NOTICE,
1092 		       "ARCRON: fix me!  EITHER YOUR DATE IS BADLY WRONG or else I will break soon!");
1093 	}
1094 #ifdef DEBUG
1095 	if(debug) {
1096 		printf("arc: n=%d %02d:%02d:%02d %02d/%02d/%04d %1d %1d\n",
1097 		       n,
1098 		       pp->hour, pp->minute, pp->second,
1099 		       pp->day, month, pp->year, bst, status);
1100 	}
1101 #endif
1102 
1103 	/*
1104 	  The status value tested for is not strictly supported by the
1105 	  clock spec since the value of bit 2 (0x4) is claimed to be
1106 	  undefined for MSF, yet does seem to indicate if the last resync
1107 	  was successful or not.
1108 	*/
1109 	pp->leap = LEAP_NOWARNING;
1110 	status &= 0x7;
1111 	if(status == 0x3) {
1112 		if(status != up->status)
1113 		{ msyslog(LOG_NOTICE, "ARCRON: signal acquired"); }
1114 	} else {
1115 		if(status != up->status) {
1116 			msyslog(LOG_NOTICE, "ARCRON: signal lost");
1117 			pp->leap = LEAP_NOTINSYNC; /* MSF clock is free-running. */
1118 			up->status = status;
1119 			refclock_report(peer, CEVNT_FAULT);
1120 			return;
1121 		}
1122 	}
1123 	up->status = status;
1124 
1125 	pp->day += moff[month - 1];
1126 
1127 	if(isleap_4(pp->year) && month > 2) { pp->day++; }	/* Y2KFixes */
1128 
1129 	/* Convert to UTC if required */
1130 	if(bst & 2) {
1131 		pp->hour--;
1132 		if (pp->hour < 0) {
1133 			pp->hour = 23;
1134 			pp->day--;
1135 			/* If we try to wrap round the year (BST on 1st Jan), reject.*/
1136 			if(pp->day < 0) {
1137 				refclock_report(peer, CEVNT_BADTIME);
1138 				return;
1139 			}
1140 		}
1141 	}
1142 
1143 	/* If clock signal quality is unknown, revert to default PRECISION...*/
1144 	if(up->quality == QUALITY_UNKNOWN) { peer->precision = PRECISION; }
1145 	/* ...else improve precision if flag3 is set... */
1146 	else {
1147 		peer->precision = ((pp->sloppyclockflag & CLK_FLAG3) ?
1148 				   HIGHPRECISION : PRECISION);
1149 	}
1150 
1151 	/* Notice and log any change (eg from initial defaults) for flags. */
1152 	if(up->saved_flags != pp->sloppyclockflag) {
1153 #ifdef ARCRON_DEBUG
1154 		msyslog(LOG_NOTICE, "ARCRON: flags enabled: %s%s%s%s",
1155 		       ((pp->sloppyclockflag & CLK_FLAG1) ? "1" : "."),
1156 		       ((pp->sloppyclockflag & CLK_FLAG2) ? "2" : "."),
1157 		       ((pp->sloppyclockflag & CLK_FLAG3) ? "3" : "."),
1158 		       ((pp->sloppyclockflag & CLK_FLAG4) ? "4" : "."));
1159 		/* Note effects of flags changing... */
1160 		if(debug) {
1161 			printf("arc: CHOSENSAMPLES(pp) = %d.\n", CHOSENSAMPLES(pp));
1162 			printf("arc: NKEEP(pp) = %d.\n", NKEEP(pp));
1163 			printf("arc: PRECISION = %d.\n", peer->precision);
1164 		}
1165 #endif
1166 		up->saved_flags = pp->sloppyclockflag;
1167 	}
1168 
1169 	/* Note time of last believable timestamp. */
1170 	pp->lastrec = up->lastrec;
1171 
1172 #ifdef ARCRON_LEAPSECOND_KEEN
1173 	/* Find out if a leap-second might just have happened...
1174 	   (ie is this the first hour of the first day of Jan or Jul?)
1175 	*/
1176 	if((pp->hour == 0) &&
1177 	   (pp->day == 1) &&
1178 	   ((month == 1) || (month == 7))) {
1179 		if(possible_leap >= 0) {
1180 			/* A leap may have happened, and no resync has started yet...*/
1181 			possible_leap = 1;
1182 		}
1183 	} else {
1184 		/* Definitely not leap-second territory... */
1185 		possible_leap = 0;
1186 	}
1187 #endif
1188 
1189 	if (!refclock_process(pp)) {
1190 		refclock_report(peer, CEVNT_BADTIME);
1191 		return;
1192 	}
1193 	refclock_receive(peer);
1194 }
1195 
1196 
1197 /* request_time() sends a time request to the clock with given peer. */
1198 /* This automatically reports a fault if necessary. */
1199 /* No data should be sent after this until arc_poll() returns. */
1200 static  void    request_time    P((int, struct peer *));
1201 static void
1202 request_time(
1203 	int unit,
1204 	struct peer *peer
1205 	)
1206 {
1207 	struct refclockproc *pp = peer->procptr;
1208 	register struct arcunit *up = (struct arcunit *)pp->unitptr;
1209 #ifdef DEBUG
1210 	if(debug) { printf("arc: unit %d: requesting time.\n", unit); }
1211 #endif
1212 	if (!send_slow(up, pp->io.fd, "o\r")) {
1213 #ifdef ARCRON_DEBUG
1214 		msyslog(LOG_NOTICE, "ARCRON: unit %d: problem sending", unit);
1215 #endif
1216 		refclock_report(peer, CEVNT_FAULT);
1217 		return;
1218 	}
1219 	pp->polls++;
1220 }
1221 
1222 /*
1223  * arc_poll - called by the transmit procedure
1224  */
1225 static void
1226 arc_poll(
1227 	int unit,
1228 	struct peer *peer
1229 	)
1230 {
1231 	register struct arcunit *up;
1232 	struct refclockproc *pp;
1233 	int resync_needed;              /* Should we start a resync? */
1234 
1235 	pp = peer->procptr;
1236 	up = (struct arcunit *)pp->unitptr;
1237 	pp->lencode = 0;
1238 	memset(pp->a_lastcode, 0, sizeof(pp->a_lastcode));
1239 
1240 #if 0
1241 	/* Flush input. */
1242 	tcflush(pp->io.fd, TCIFLUSH);
1243 #endif
1244 
1245 	/* Resync if our next scheduled resync time is here or has passed. */
1246 	resync_needed = (up->next_resync <= current_time);
1247 
1248 #ifdef ARCRON_LEAPSECOND_KEEN
1249 	/*
1250 	  Try to catch a potential leap-second insertion or deletion quickly.
1251 
1252 	  In addition to the normal NTP fun of clocks that don't report
1253 	  leap-seconds spooking their hosts, this clock does not even
1254 	  sample the radio sugnal the whole time, so may miss a
1255 	  leap-second insertion or deletion for up to a whole sample
1256 	  time.
1257 
1258 	  To try to minimise this effect, if in the first few minutes of
1259 	  the day immediately following a leap-second-insertion point
1260 	  (ie in the first hour of the first day of the first and sixth
1261 	  months), and if the last resync was in the previous day, and a
1262 	  resync is not already in progress, resync the clock
1263 	  immediately.
1264 
1265 	*/
1266 	if((possible_leap > 0) &&       /* Must be 00:XX 01/0{1,7}/XXXX. */
1267 	   (!up->resyncing)) {          /* No resync in progress yet. */
1268 		resync_needed = 1;
1269 		possible_leap = -1;          /* Prevent multiple resyncs. */
1270 		msyslog(LOG_NOTICE,"ARCRON: unit %d: checking for leap second",unit);
1271 	}
1272 #endif
1273 
1274 	/* Do a resync if required... */
1275 	if(resync_needed) {
1276 		/* First, reset quality value to `unknown' so we can detect */
1277 		/* when a quality message has been responded to by this     */
1278 		/* being set to some other value.                           */
1279 		up->quality = QUALITY_UNKNOWN;
1280 
1281 		/* Note that we are resyncing... */
1282 		up->resyncing = 1;
1283 
1284 		/* Now actually send the resync command and an immediate poll. */
1285 #ifdef DEBUG
1286 		if(debug) { printf("arc: sending resync command (h\\r).\n"); }
1287 #endif
1288 		msyslog(LOG_NOTICE, "ARCRON: unit %d: sending resync command", unit);
1289 		send_slow(up, pp->io.fd, "h\r");
1290 
1291 		/* Schedule our next resync... */
1292 		up->next_resync = current_time + DEFAULT_RESYNC_TIME;
1293 
1294 		/* Drop through to request time if appropriate. */
1295 	}
1296 
1297 	/* If clock quality is too poor to trust, indicate a fault. */
1298 	/* If quality is QUALITY_UNKNOWN and ARCRON_KEEN is defined,*/
1299 	/* we'll cross our fingers and just hope that the thing     */
1300 	/* synced so quickly we did not catch it---we'll            */
1301 	/* double-check the clock is OK elsewhere.                  */
1302 	if(
1303 #ifdef ARCRON_KEEN
1304 		(up->quality != QUALITY_UNKNOWN) &&
1305 #else
1306 		(up->quality == QUALITY_UNKNOWN) ||
1307 #endif
1308 		(up->quality < MIN_CLOCK_QUALITY_OK)) {
1309 #ifdef DEBUG
1310 		if(debug) {
1311 			printf("arc: clock quality %d too poor.\n", up->quality);
1312 		}
1313 #endif
1314 		refclock_report(peer, CEVNT_FAULT);
1315 		return;
1316 	}
1317 	/* This is the normal case: request a timestamp. */
1318 	request_time(unit, peer);
1319 }
1320 
1321 #else
1322 int refclock_arc_bs;
1323 #endif
1324