xref: /freebsd/contrib/ntp/ntpd/refclock_arc.c (revision 17d6c636720d00f77e5d098daf4c278f89d84f7b)
1 /*
2  * refclock_arc - clock driver for ARCRON MSF receivers
3  */
4 
5 #ifdef HAVE_CONFIG_H
6 #include <config.h>
7 #endif
8 
9 #if defined(REFCLOCK) && defined(CLOCK_ARCRON_MSF)
10 static const char arc_version[] = { "V1.1 1997/06/23" };
11 
12 #undef ARCRON_DEBUG /* Define only while in development... */
13 
14 #ifndef ARCRON_NOT_KEEN
15 #define ARCRON_KEEN 1 /* Be keen, and trusting of the clock, if defined. */
16 #endif
17 
18 #ifndef ARCRON_NOT_MULTIPLE_SAMPLES
19 #define ARCRON_MULTIPLE_SAMPLES 1 /* Use all timestamp bytes as samples. */
20 #endif
21 
22 #ifndef ARCRON_NOT_LEAPSECOND_KEEN
23 #ifndef ARCRON_LEAPSECOND_KEEN
24 #undef ARCRON_LEAPSECOND_KEEN /* Respond quickly to leap seconds: doesn't work yet. */
25 #endif
26 #endif
27 
28 /*
29 Code by Derek Mulcahy, <derek@toybox.demon.co.uk>, 1997.
30 Modifications by Damon Hart-Davis, <d@hd.org>, 1997.
31 
32 THIS CODE IS SUPPLIED AS IS, WITH NO WARRANTY OF ANY KIND.  USE AT
33 YOUR OWN RISK.
34 
35 Orginally developed and used with ntp3-5.85 by Derek Mulcahy.
36 
37 Built against ntp3-5.90 on Solaris 2.5 using gcc 2.7.2.
38 
39 This code may be freely copied and used and incorporated in other
40 systems providing the disclaimer and notice of authorship are
41 reproduced.
42 
43 -------------------------------------------------------------------------------
44 
45 Author's original note:
46 
47 I enclose my ntp driver for the Galleon Systems Arc MSF receiver.
48 
49 It works (after a fashion) on both Solaris-1 and Solaris-2.
50 
51 I am currently using ntp3-5.85.  I have been running the code for
52 about 7 months without any problems.  Even coped with the change to BST!
53 
54 I had to do some funky things to read from the clock because it uses the
55 power from the receive lines to drive the transmit lines.  This makes the
56 code look a bit stupid but it works.  I also had to put in some delays to
57 allow for the turnaround time from receive to transmit.  These delays
58 are between characters when requesting a time stamp so that shouldn't affect
59 the results too drastically.
60 
61 ...
62 
63 The bottom line is that it works but could easily be improved.  You are
64 free to do what you will with the code.  I haven't been able to determine
65 how good the clock is.  I think that this requires a known good clock
66 to compare it against.
67 
68 -------------------------------------------------------------------------------
69 
70 Damon's notes for adjustments:
71 
72 MAJOR CHANGES SINCE V1.0
73 ========================
74  1) Removal of pollcnt variable that made the clock go permanently
75     off-line once two time polls failed to gain responses.
76 
77  2) Avoiding (at least on Solaris-2) terminal becoming the controlling
78     terminal of the process when we do a low-level open().
79 
80  3) Additional logic (conditional on ARCRON_LEAPSECOND_KEEN being
81     defined) to try to resync quickly after a potential leap-second
82     insertion or deletion.
83 
84  4) Code significantly slimmer at run-time than V1.0.
85 
86 
87 GENERAL
88 =======
89 
90  1) The C preprocessor symbol to have the clock built has been changed
91     from ARC to ARCRON_MSF to CLOCK_ARCRON_MSF to minimise the
92     possiblity of clashes with other symbols in the future.
93 
94  2) PRECISION should be -4/-5 (63ms/31ms) for the following reasons:
95 
96      a) The ARC documentation claims the internal clock is (only)
97         accurate to about 20ms relative to Rugby (plus there must be
98         noticable drift and delay in the ms range due to transmission
99         delays and changing atmospheric effects).  This clock is not
100         designed for ms accuracy as NTP has spoilt us all to expect.
101 
102      b) The clock oscillator looks like a simple uncompensated quartz
103         crystal of the sort used in digital watches (ie 32768Hz) which
104         can have large temperature coefficients and drifts; it is not
105         clear if this oscillator is properly disciplined to the MSF
106         transmission, but as the default is to resync only once per
107         *day*, we can imagine that it is not, and is free-running.  We
108         can minimise drift by resyncing more often (at the cost of
109         reduced battery life), but drift/wander may still be
110         significant.
111 
112      c) Note that the bit time of 3.3ms adds to the potential error in
113         the the clock timestamp, since the bit clock of the serial link
114         may effectively be free-running with respect to the host clock
115         and the MSF clock.  Actually, the error is probably 1/16th of
116         the above, since the input data is probably sampled at at least
117         16x the bit rate.
118 
119     By keeping the clock marked as not very precise, it will have a
120     fairly large dispersion, and thus will tend to be used as a
121     `backup' time source and sanity checker, which this clock is
122     probably ideal for.  For an isolated network without other time
123     sources, this clock can probably be expected to provide *much*
124     better than 1s accuracy, which will be fine.
125 
126     By default, PRECISION is set to -4, but experience, especially at a
127     particular geographic location with a particular clock, may allow
128     this to be altered to -5.  (Note that skews of +/- 10ms are to be
129     expected from the clock from time-to-time.)  This improvement of
130     reported precision can be instigated by setting flag3 to 1, though
131     the PRECISION will revert to the normal value while the clock
132     signal quality is unknown whatever the flag3 setting.
133 
134     IN ANY CASE, BE SURE TO SET AN APPROPRIATE FUDGE FACTOR TO REMOVE
135     ANY RESIDUAL SKEW, eg:
136 
137         server 127.127.27.0 # ARCRON MSF radio clock unit 0.
138         # Fudge timestamps by about 20ms.
139         fudge 127.127.27.0 time1 0.020
140 
141     You will need to observe your system's behaviour, assuming you have
142     some other NTP source to compare it with, to work out what the
143     fudge factor should be.  For my Sun SS1 running SunOS 4.1.3_U1 with
144     my MSF clock with my distance from the MSF transmitter, +20ms
145     seemed about right, after some observation.
146 
147  3) REFID has been made "MSFa" to reflect the MSF time source and the
148     ARCRON receiver.
149 
150  4) DEFAULT_RESYNC_TIME is the time in seconds (by default) before
151     forcing a resync since the last attempt.  This is picked to give a
152     little less than an hour between resyncs and to try to avoid
153     clashing with any regular event at a regular time-past-the-hour
154     which might cause systematic errors.
155 
156     The INITIAL_RESYNC_DELAY is to avoid bothering the clock and
157     running down its batteries unnecesarily if ntpd is going to crash
158     or be killed or reconfigured quickly.  If ARCRON_KEEN is defined
159     then this period is long enough for (with normal polling rates)
160     enough time samples to have been taken to allow ntpd to sync to
161     the clock before the interruption for the clock to resync to MSF.
162     This avoids ntpd syncing to another peer first and then
163     almost immediately hopping to the MSF clock.
164 
165     The RETRY_RESYNC_TIME is used before rescheduling a resync after a
166     resync failed to reveal a statisfatory signal quality (too low or
167     unknown).
168 
169  5) The clock seems quite jittery, so I have increased the
170     median-filter size from the typical (previous) value of 3.  I
171     discard up to half the results in the filter.  It looks like maybe
172     1 sample in 10 or so (maybe less) is a spike, so allow the median
173     filter to discard at least 10% of its entries or 1 entry, whichever
174     is greater.
175 
176  6) Sleeping *before* each character sent to the unit to allow required
177     inter-character time but without introducting jitter and delay in
178     handling the response if possible.
179 
180  7) If the flag ARCRON_KEEN is defined, take time samples whenever
181     possible, even while resyncing, etc.  We rely, in this case, on the
182     clock always giving us a reasonable time or else telling us in the
183     status byte at the end of the timestamp that it failed to sync to
184     MSF---thus we should never end up syncing to completely the wrong
185     time.
186 
187  8) If the flag ARCRON_OWN_FILTER is defined, use own versions of
188     refclock median-filter routines to get round small bug in 3-5.90
189     code which does not return the median offset. XXX Removed this
190     bit due NTP Version 4 upgrade - dlm.
191 
192  9) We would appear to have a year-2000 problem with this clock since
193     it returns only the two least-significant digits of the year.  But
194     ntpd ignores the year and uses the local-system year instead, so
195     this is in fact not a problem.  Nevertheless, we attempt to do a
196     sensible thing with the dates, wrapping them into a 100-year
197     window.
198 
199  10)Logs stats information that can be used by Derek's Tcl/Tk utility
200     to show the status of the clock.
201 
202  11)The clock documentation insists that the number of bits per
203     character to be sent to the clock, and sent by it, is 11, including
204     one start bit and two stop bits.  The data format is either 7+even
205     or 8+none.
206 
207 
208 TO-DO LIST
209 ==========
210 
211   * Eliminate use of scanf(), and maybe sprintf().
212 
213   * Allow user setting of resync interval to trade battery life for
214     accuracy; maybe could be done via fudge factor or unit number.
215 
216   * Possibly note the time since the last resync of the MSF clock to
217     MSF as the age of the last reference timestamp, ie trust the
218     clock's oscillator not very much...
219 
220   * Add very slow auto-adjustment up to a value of +/- time2 to correct
221     for long-term errors in the clock value (time2 defaults to 0 so the
222     correction would be disabled by default).
223 
224   * Consider trying to use the tty_clk/ppsclock support.
225 
226   * Possibly use average or maximum signal quality reported during
227     resync, rather than just the last one, which may be atypical.
228 
229 */
230 
231 
232 /* Notes for HKW Elektronik GmBH Radio clock driver */
233 /* Author Lyndon David, Sentinet Ltd, Feb 1997      */
234 /* These notes seem also to apply usefully to the ARCRON clock. */
235 
236 /* The HKW clock module is a radio receiver tuned into the Rugby */
237 /* MSF time signal tranmitted on 60 kHz. The clock module connects */
238 /* to the computer via a serial line and transmits the time encoded */
239 /* in 15 bytes at 300 baud 7 bits two stop bits even parity */
240 
241 /* Clock communications, from the datasheet */
242 /* All characters sent to the clock are echoed back to the controlling */
243 /* device. */
244 /* Transmit time/date information */
245 /* syntax ASCII o<cr> */
246 /* Character o may be replaced if neccesary by a character whose code */
247 /* contains the lowest four bits f(hex) eg */
248 /* syntax binary: xxxx1111 00001101 */
249 
250 /* DHD note:
251 You have to wait for character echo + 10ms before sending next character.
252 */
253 
254 /* The clock replies to this command with a sequence of 15 characters */
255 /* which contain the complete time and a final <cr> making 16 characters */
256 /* in total. */
257 /* The RC computer clock will not reply immediately to this command because */
258 /* the start bit edge of the first reply character marks the beginning of */
259 /* the second. So the RC Computer Clock will reply to this command at the */
260 /* start of the next second */
261 /* The characters have the following meaning */
262 /* 1. hours tens   */
263 /* 2. hours units  */
264 /* 3. minutes tens */
265 /* 4. minutes units */
266 /* 5. seconds tens  */
267 /* 6. seconds units */
268 /* 7. day of week 1-monday 7-sunday */
269 /* 8. day of month tens */
270 /* 9. day of month units */
271 /* 10. month tens */
272 /* 11. month units */
273 /* 12. year tens */
274 /* 13. year units */
275 /* 14. BST/UTC status */
276 /*      bit 7   parity */
277 /*      bit 6   always 0 */
278 /*      bit 5   always 1 */
279 /*      bit 4   always 1 */
280 /*      bit 3   always 0 */
281 /*      bit 2   =1 if UTC is in effect, complementary to the BST bit */
282 /*      bit 1   =1 if BST is in effect, according to the BST bit     */
283 /*      bit 0   BST/UTC change impending bit=1 in case of change impending */
284 /* 15. status */
285 /*      bit 7   parity */
286 /*      bit 6   always 0 */
287 /*      bit 5   always 1 */
288 /*      bit 4   always 1 */
289 /*      bit 3   =1 if low battery is detected */
290 /*      bit 2   =1 if the very last reception attempt failed and a valid */
291 /*              time information already exists (bit0=1) */
292 /*              =0 if the last reception attempt was successful */
293 /*      bit 1   =1 if at least one reception since 2:30 am was successful */
294 /*              =0 if no reception attempt since 2:30 am was successful */
295 /*      bit 0   =1 if the RC Computer Clock contains valid time information */
296 /*              This bit is zero after reset and one after the first */
297 /*              successful reception attempt */
298 
299 /* DHD note:
300 Also note g<cr> command which confirms that a resync is in progress, and
301 if so what signal quality (0--5) is available.
302 Also note h<cr> command which starts a resync to MSF signal.
303 */
304 
305 
306 #include "ntpd.h"
307 #include "ntp_io.h"
308 #include "ntp_refclock.h"
309 #include "ntp_stdlib.h"
310 
311 #include <stdio.h>
312 #include <ctype.h>
313 
314 #if defined(HAVE_BSD_TTYS)
315 #include <sgtty.h>
316 #endif /* HAVE_BSD_TTYS */
317 
318 #if defined(HAVE_SYSV_TTYS)
319 #include <termio.h>
320 #endif /* HAVE_SYSV_TTYS */
321 
322 #if defined(HAVE_TERMIOS)
323 #include <termios.h>
324 #endif
325 
326 /*
327  * This driver supports the ARCRON MSF Radio Controlled Clock
328  */
329 
330 /*
331  * Interface definitions
332  */
333 #define DEVICE          "/dev/arc%d"    /* Device name and unit. */
334 #define SPEED           B300            /* UART speed (300 baud) */
335 #define PRECISION       (-4)            /* Precision  (~63 ms). */
336 #define HIGHPRECISION   (-5)            /* If things are going well... */
337 #define REFID           "MSFa"          /* Reference ID. */
338 #define DESCRIPTION     "ARCRON MSF Receiver"
339 
340 #define NSAMPLESLONG    8               /* Stages of long filter. */
341 
342 #define LENARC          16              /* Format `o' timecode length. */
343 
344 #define BITSPERCHAR     11              /* Bits per character. */
345 #define BITTIME         0x0DA740E       /* Time for 1 bit at 300bps. */
346 #define CHARTIME10      0x8888888       /* Time for 10-bit char at 300bps. */
347 #define CHARTIME11      0x962FC96       /* Time for 11-bit char at 300bps. */
348 #define CHARTIME                        /* Time for char at 300bps. */ \
349 ( (BITSPERCHAR == 11) ? CHARTIME11 : ( (BITSPERCHAR == 10) ? CHARTIME10 : \
350 				       (BITSPERCHAR * BITTIME) ) )
351 
352      /* Allow for UART to accept char half-way through final stop bit. */
353 #define INITIALOFFSET (u_int32)(-BITTIME/2)
354 
355      /*
356     charoffsets[x] is the time after the start of the second that byte
357     x (with the first byte being byte 1) is received by the UART,
358     assuming that the initial edge of the start bit of the first byte
359     is on-time.  The values are represented as the fractional part of
360     an l_fp.
361 
362     We store enough values to have the offset of each byte including
363     the trailing \r, on the assumption that the bytes follow one
364     another without gaps.
365     */
366      static const u_int32 charoffsets[LENARC+1] = {
367 #if BITSPERCHAR == 11 /* Usual case. */
368 	     /* Offsets computed as accurately as possible... */
369 	     0,
370 	     INITIALOFFSET + 0x0962fc96, /*  1 chars,  11 bits */
371 	     INITIALOFFSET + 0x12c5f92c, /*  2 chars,  22 bits */
372 	     INITIALOFFSET + 0x1c28f5c3, /*  3 chars,  33 bits */
373 	     INITIALOFFSET + 0x258bf259, /*  4 chars,  44 bits */
374 	     INITIALOFFSET + 0x2eeeeeef, /*  5 chars,  55 bits */
375 	     INITIALOFFSET + 0x3851eb85, /*  6 chars,  66 bits */
376 	     INITIALOFFSET + 0x41b4e81b, /*  7 chars,  77 bits */
377 	     INITIALOFFSET + 0x4b17e4b1, /*  8 chars,  88 bits */
378 	     INITIALOFFSET + 0x547ae148, /*  9 chars,  99 bits */
379 	     INITIALOFFSET + 0x5dddddde, /* 10 chars, 110 bits */
380 	     INITIALOFFSET + 0x6740da74, /* 11 chars, 121 bits */
381 	     INITIALOFFSET + 0x70a3d70a, /* 12 chars, 132 bits */
382 	     INITIALOFFSET + 0x7a06d3a0, /* 13 chars, 143 bits */
383 	     INITIALOFFSET + 0x8369d037, /* 14 chars, 154 bits */
384 	     INITIALOFFSET + 0x8ccccccd, /* 15 chars, 165 bits */
385 	     INITIALOFFSET + 0x962fc963  /* 16 chars, 176 bits */
386 #else
387 	     /* Offsets computed with a small rounding error... */
388 	     0,
389 	     INITIALOFFSET +  1 * CHARTIME,
390 	     INITIALOFFSET +  2 * CHARTIME,
391 	     INITIALOFFSET +  3 * CHARTIME,
392 	     INITIALOFFSET +  4 * CHARTIME,
393 	     INITIALOFFSET +  5 * CHARTIME,
394 	     INITIALOFFSET +  6 * CHARTIME,
395 	     INITIALOFFSET +  7 * CHARTIME,
396 	     INITIALOFFSET +  8 * CHARTIME,
397 	     INITIALOFFSET +  9 * CHARTIME,
398 	     INITIALOFFSET + 10 * CHARTIME,
399 	     INITIALOFFSET + 11 * CHARTIME,
400 	     INITIALOFFSET + 12 * CHARTIME,
401 	     INITIALOFFSET + 13 * CHARTIME,
402 	     INITIALOFFSET + 14 * CHARTIME,
403 	     INITIALOFFSET + 15 * CHARTIME,
404 	     INITIALOFFSET + 16 * CHARTIME
405 #endif
406      };
407 
408 /* Chose filter length dependent on fudge flag 4. */
409 #define CHOSENSAMPLES(pp) \
410 (((pp)->sloppyclockflag & CLK_FLAG4) ? NSAMPLESLONG : NSAMPLES)
411      /*
412 Chose how many filter samples to keep.  Several factors are in play.
413 
414  1) Discard at least one sample to allow a spike value to be
415     discarded.
416 
417  2) Discard about 1-in-8 to 1-in-30 samples to handle spikes.
418 
419  3) Keep an odd number of samples to avoid median value being biased
420     high or low.
421 */
422 #define NKEEP(pp) ((CHOSENSAMPLES(pp) - 1 - (CHOSENSAMPLES(pp)>>3)) | 1)
423 
424 #define DEFAULT_RESYNC_TIME  (57*60)    /* Gap between resync attempts (s). */
425 #define RETRY_RESYNC_TIME    (27*60)    /* Gap to emergency resync attempt. */
426 #ifdef ARCRON_KEEN
427 #define INITIAL_RESYNC_DELAY 500        /* Delay before first resync. */
428 #else
429 #define INITIAL_RESYNC_DELAY 50         /* Delay before first resync. */
430 #endif
431 
432      static const int moff[12] =
433 { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
434 /* Flags for a raw open() of the clock serial device. */
435 #ifdef O_NOCTTY /* Good, we can avoid tty becoming controlling tty. */
436 #define OPEN_FLAGS (O_RDWR | O_NOCTTY)
437 #else           /* Oh well, it may not matter... */
438 #define OPEN_FLAGS (O_RDWR)
439 #endif
440 
441 
442 /* Length of queue of command bytes to be sent. */
443 #define CMDQUEUELEN 4                   /* Enough for two cmds + each \r. */
444 /* Queue tick time; interval in seconds between chars taken off queue. */
445 /* Must be >= 2 to allow o\r response to come back uninterrupted. */
446 #define QUEUETICK   2                   /* Allow o\r reply to finish. */
447 
448 /*
449  * ARC unit control structure
450  */
451 struct arcunit {
452 	l_fp lastrec;       /* Time tag for the receive time (system). */
453 	int status;         /* Clock status. */
454 
455 	int quality;        /* Quality of reception 0--5 for unit. */
456 	/* We may also use the values -1 or 6 internally. */
457 
458 	u_long next_resync; /* Next resync time (s) compared to current_time. */
459 	int resyncing;      /* Resync in progress if true. */
460 
461 	/* In the outgoing queue, cmdqueue[0] is next to be sent. */
462 	char cmdqueue[CMDQUEUELEN+1]; /* Queue of outgoing commands + \0. */
463 
464 	u_long saved_flags; /* Saved fudge flags. */
465 };
466 #ifdef ARCRON_LEAPSECOND_KEEN
467 /* The flag `possible_leap' is set non-zero when any MSF unit
468        thinks a leap-second may have happened.
469 
470        Set whenever we receive a valid time sample in the first hour of
471        the first day of the first/seventh months.
472 
473        Outside the special hour this value is unconditionally set
474        to zero by the receive routine.
475 
476        On finding itself in this timeslot, as long as the value is
477        non-negative, the receive routine sets it to a positive value to
478        indicate a resync to MSF should be performed.
479 
480        In the poll routine, if this value is positive and we are not
481        already resyncing (eg from a sync that started just before
482        midnight), start resyncing and set this value negative to
483        indicate that a leap-triggered resync has been started.  Having
484        set this negative prevents the receive routine setting it
485        positive and thus prevents multiple resyncs during the witching
486        hour.
487      */
488 static int possible_leap = 0;       /* No resync required by default. */
489 #endif
490 
491 #if 0
492 static void dummy_event_handler P((struct peer *));
493 static void   arc_event_handler P((struct peer *));
494 #endif /* 0 */
495 
496 #define QUALITY_UNKNOWN     -1 /* Indicates unknown clock quality. */
497 #define MIN_CLOCK_QUALITY    0 /* Min quality clock will return. */
498 #define MIN_CLOCK_QUALITY_OK 3 /* Min quality for OK reception. */
499 #define MAX_CLOCK_QUALITY    5 /* Max quality clock will return. */
500 
501 /*
502  * Function prototypes
503  */
504 static  int     arc_start       P((int, struct peer *));
505 static  void    arc_shutdown    P((int, struct peer *));
506 static  void    arc_receive     P((struct recvbuf *));
507 static  void    arc_poll        P((int, struct peer *));
508 
509 /*
510  * Transfer vector
511  */
512 struct  refclock refclock_arc = {
513 	arc_start,              /* start up driver */
514 	arc_shutdown,           /* shut down driver */
515 	arc_poll,               /* transmit poll message */
516 	noentry,                /* not used (old arc_control) */
517 	noentry,                /* initialize driver (not used) */
518 	noentry,                /* not used (old arc_buginfo) */
519 	NOFLAGS                 /* not used */
520 };
521 
522 /* Queue us up for the next tick. */
523 #define ENQUEUE(up) \
524 	do { \
525 	     if((up)->ev.next != 0) { break; } /* WHOOPS! */ \
526 	     peer->nextdate = current_time + QUEUETICK; \
527 	} while(0)
528 
529 #if 0
530 /* Placeholder event handler---does nothing safely---soaks up lose tick. */
531 static void
532 dummy_event_handler(
533 	struct peer *peer
534 	)
535 {
536 #ifdef ARCRON_DEBUG
537 	if(debug) { printf("arc: dummy_event_handler() called.\n"); }
538 #endif
539 }
540 
541 /*
542 Normal event handler.
543 
544 Take first character off queue and send to clock if not a null.
545 
546 Shift characters down and put a null on the end.
547 
548 We assume that there is no parallelism so no race condition, but even
549 if there is nothing bad will happen except that we might send some bad
550 data to the clock once in a while.
551 */
552 static void
553 arc_event_handler(
554 	struct peer *peer
555 	)
556 {
557 	struct refclockproc *pp = peer->procptr;
558 	register struct arcunit *up = (struct arcunit *)pp->unitptr;
559 	int i;
560 	char c;
561 #ifdef ARCRON_DEBUG
562 	if(debug > 2) { printf("arc: arc_event_handler() called.\n"); }
563 #endif
564 
565 	c = up->cmdqueue[0];       /* Next char to be sent. */
566 	/* Shift down characters, shifting trailing \0 in at end. */
567 	for(i = 0; i < CMDQUEUELEN; ++i)
568 	{ up->cmdqueue[i] = up->cmdqueue[i+1]; }
569 
570 	/* Don't send '\0' characters. */
571 	if(c != '\0') {
572 		if(write(pp->io.fd, &c, 1) != 1) {
573 			msyslog(LOG_NOTICE, "ARCRON: write to fd %d failed", pp->io.fd);
574 		}
575 #ifdef ARCRON_DEBUG
576 		else if(debug) { printf("arc: sent `%2.2x', fd %d.\n", c, pp->io.fd); }
577 #endif
578 	}
579 }
580 #endif /* 0 */
581 
582 /*
583  * arc_start - open the devices and initialize data for processing
584  */
585 static int
586 arc_start(
587 	int unit,
588 	struct peer *peer
589 	)
590 {
591 	register struct arcunit *up;
592 	struct refclockproc *pp;
593 	int fd;
594 	char device[20];
595 #ifdef HAVE_TERMIOS
596 	struct termios arg;
597 #endif
598 
599 	msyslog(LOG_NOTICE, "ARCRON: %s: opening unit %d", arc_version, unit);
600 #ifdef ARCRON_DEBUG
601 	if(debug) {
602 		printf("arc: %s: attempt to open unit %d.\n", arc_version, unit);
603 	}
604 #endif
605 
606 	/* Prevent a ridiculous device number causing overflow of device[]. */
607 	if((unit < 0) || (unit > 255)) { return(0); }
608 
609 	/*
610 	 * Open serial port. Use CLK line discipline, if available.
611 	 */
612 	(void)sprintf(device, DEVICE, unit);
613 	if (!(fd = refclock_open(device, SPEED, LDISC_CLK)))
614 		return(0);
615 #ifdef ARCRON_DEBUG
616 	if(debug) { printf("arc: unit %d using open().\n", unit); }
617 #endif
618 	fd = open(device, OPEN_FLAGS);
619 	if(fd < 0) {
620 #ifdef DEBUG
621 		if(debug) { printf("arc: failed [open()] to open %s.\n", device); }
622 #endif
623 		return(0);
624 	}
625 
626 	fcntl(fd, F_SETFL, 0); /* clear the descriptor flags */
627 #ifdef ARCRON_DEBUG
628 	if(debug)
629 	{ printf("Opened RS232 port with file descriptor %d.\n", fd); }
630 #endif
631 
632 #ifdef HAVE_TERMIOS
633 
634 	arg.c_iflag = IGNBRK | ISTRIP;
635 	arg.c_oflag = 0;
636 	arg.c_cflag = B300 | CS8 | CREAD | CLOCAL | CSTOPB;
637 	arg.c_lflag = 0;
638 	arg.c_cc[VMIN] = 1;
639 	arg.c_cc[VTIME] = 0;
640 
641 	tcsetattr(fd, TCSANOW, &arg);
642 
643 #else
644 
645 	msyslog(LOG_ERR, "ARCRON: termios not supported in this driver");
646 	(void)close(fd);
647 
648 	return 0;
649 
650 #endif
651 
652 	up = (struct arcunit *) emalloc(sizeof(struct arcunit));
653 	if(!up) { (void) close(fd); return(0); }
654 	/* Set structure to all zeros... */
655 	memset((char *)up, 0, sizeof(struct arcunit));
656 	pp = peer->procptr;
657 	pp->io.clock_recv = arc_receive;
658 	pp->io.srcclock = (caddr_t)peer;
659 	pp->io.datalen = 0;
660 	pp->io.fd = fd;
661 	if(!io_addclock(&pp->io)) { (void) close(fd); free(up); return(0); }
662 	pp->unitptr = (caddr_t)up;
663 
664 	/*
665 	 * Initialize miscellaneous variables
666 	 */
667 	peer->precision = PRECISION;
668 	peer->stratum = 2;              /* Default to stratum 2 not 0. */
669 	pp->clockdesc = DESCRIPTION;
670 	memcpy((char *)&pp->refid, REFID, 4);
671 	/* Spread out resyncs so that they should remain separated. */
672 	up->next_resync = current_time + INITIAL_RESYNC_DELAY + (67*unit)%1009;
673 
674 #if 0 /* Not needed because of zeroing of arcunit structure... */
675 	up->resyncing = 0;              /* Not resyncing yet. */
676 	up->saved_flags = 0;            /* Default is all flags off. */
677 	/* Clear send buffer out... */
678 	{
679 		int i;
680 		for(i = CMDQUEUELEN; i >= 0; --i) { up->cmdqueue[i] = '\0'; }
681 	}
682 #endif
683 
684 #ifdef ARCRON_KEEN
685 	up->quality = QUALITY_UNKNOWN;  /* Trust the clock immediately. */
686 #else
687 	up->quality = MIN_CLOCK_QUALITY;/* Don't trust the clock yet. */
688 #endif
689 	return(1);
690 }
691 
692 
693 /*
694  * arc_shutdown - shut down the clock
695  */
696 static void
697 arc_shutdown(
698 	int unit,
699 	struct peer *peer
700 	)
701 {
702 	register struct arcunit *up;
703 	struct refclockproc *pp;
704 
705 	pp = peer->procptr;
706 	up = (struct arcunit *)pp->unitptr;
707 	io_closeclock(&pp->io);
708 	free(up);
709 }
710 
711 /*
712 Compute space left in output buffer.
713 */
714 static int
715 space_left(
716 	register struct arcunit *up
717 	)
718 {
719 	int spaceleft;
720 
721 	/* Compute space left in buffer after any pending output. */
722 	for(spaceleft = 0; spaceleft < CMDQUEUELEN; ++spaceleft)
723 	{ if(up->cmdqueue[CMDQUEUELEN - 1 - spaceleft] != '\0') { break; } }
724 	return(spaceleft);
725 }
726 
727 /*
728 Send command by copying into command buffer as far forward as possible,
729 after any pending output.
730 
731 Indicate an error by returning 0 if there is not space for the command.
732 */
733 static int
734 send_slow(
735 	register struct arcunit *up,
736 	int fd,
737 	const char *s
738 	)
739 {
740 	int sl = strlen(s);
741 	int spaceleft = space_left(up);
742 
743 #ifdef ARCRON_DEBUG
744 	if(debug > 1) { printf("arc: spaceleft = %d.\n", spaceleft); }
745 #endif
746 	if(spaceleft < sl) { /* Should not normally happen... */
747 #ifdef ARCRON_DEBUG
748 		msyslog(LOG_NOTICE, "ARCRON: send-buffer overrun (%d/%d)",
749 		       sl, spaceleft);
750 #endif
751 		return(0);                      /* FAILED! */
752 	}
753 
754 	/* Copy in the command to be sent. */
755 	while(*s) { up->cmdqueue[CMDQUEUELEN - spaceleft--] = *s++; }
756 
757 	return(1);
758 }
759 
760 
761 /* Macro indicating action we will take for different quality values. */
762 #define quality_action(q) \
763 (((q) == QUALITY_UNKNOWN) ?         "UNKNOWN, will use clock anyway" : \
764  (((q) < MIN_CLOCK_QUALITY_OK) ? "TOO POOR, will not use clock" : \
765   "OK, will use clock"))
766 
767      /*
768  * arc_receive - receive data from the serial interface
769  */
770      static void
771 arc_receive(
772 	struct recvbuf *rbufp
773 	)
774 {
775 	register struct arcunit *up;
776 	struct refclockproc *pp;
777 	struct peer *peer;
778 	char c;
779 	int i, n, wday, month, bst, status;
780 	int arc_last_offset;
781 
782 	/*
783 	 * Initialize pointers and read the timecode and timestamp
784 	 */
785 	peer = (struct peer *)rbufp->recv_srcclock;
786 	pp = peer->procptr;
787 	up = (struct arcunit *)pp->unitptr;
788 
789 
790 	/*
791 	  If the command buffer is empty, and we are resyncing, insert a
792 	  g\r quality request into it to poll for signal quality again.
793 	*/
794 	if((up->resyncing) && (space_left(up) == CMDQUEUELEN)) {
795 #ifdef DEBUG
796 		if(debug > 1) { printf("arc: inserting signal-quality poll.\n"); }
797 #endif
798 		send_slow(up, pp->io.fd, "g\r");
799 	}
800 
801 	/*
802 	  The `arc_last_offset' is the offset in lastcode[] of the last byte
803 	  received, and which we assume actually received the input
804 	  timestamp.
805 
806 	  (When we get round to using tty_clk and it is available, we
807 	  assume that we will receive the whole timecode with the
808 	  trailing \r, and that that \r will be timestamped.  But this
809 	  assumption also works if receive the characters one-by-one.)
810 	*/
811 	arc_last_offset = pp->lencode+rbufp->recv_length - 1;
812 
813 	/*
814 	  We catch a timestamp iff:
815 
816 	  * The command code is `o' for a timestamp.
817 
818 	  * If ARCRON_MULTIPLE_SAMPLES is undefined then we must have
819 	  exactly char in the buffer (the command code) so that we
820 	  only sample the first character of the timecode as our
821 	  `on-time' character.
822 
823 	  * The first character in the buffer is not the echoed `\r'
824 	  from the `o` command (so if we are to timestamp an `\r' it
825 	  must not be first in the receive buffer with lencode==1.
826 	  (Even if we had other characters following it, we probably
827 	  would have a premature timestamp on the '\r'.)
828 
829 	  * We have received at least one character (I cannot imagine
830 	  how it could be otherwise, but anyway...).
831 	*/
832 	c = rbufp->recv_buffer[0];
833 	if((pp->a_lastcode[0] == 'o') &&
834 #ifndef ARCRON_MULTIPLE_SAMPLES
835 	   (pp->lencode == 1) &&
836 #endif
837 	   ((pp->lencode != 1) || (c != '\r')) &&
838 	   (arc_last_offset >= 1)) {
839 		/* Note that the timestamp should be corrected if >1 char rcvd. */
840 		l_fp timestamp;
841 		timestamp = rbufp->recv_time;
842 #ifdef DEBUG
843 		if(debug) { /* Show \r as `R', other non-printing char as `?'. */
844 			printf("arc: stamp -->%c<-- (%d chars rcvd)\n",
845 			       ((c == '\r') ? 'R' : (isgraph((int)c) ? c : '?')),
846 			       rbufp->recv_length);
847 		}
848 #endif
849 
850 		/*
851 		  Now correct timestamp by offset of last byte received---we
852 		  subtract from the receive time the delay implied by the
853 		  extra characters received.
854 
855 		  Reject the input if the resulting code is too long, but
856 		  allow for the trailing \r, normally not used but a good
857 		  handle for tty_clk or somesuch kernel timestamper.
858 		*/
859 		if(arc_last_offset > LENARC) {
860 #ifdef ARCRON_DEBUG
861 			if(debug) {
862 				printf("arc: input code too long (%d cf %d); rejected.\n",
863 				       arc_last_offset, LENARC);
864 			}
865 #endif
866 			pp->lencode = 0;
867 			refclock_report(peer, CEVNT_BADREPLY);
868 			return;
869 		}
870 
871 		L_SUBUF(&timestamp, charoffsets[arc_last_offset]);
872 #ifdef ARCRON_DEBUG
873 		if(debug > 1) {
874 			printf(
875 				"arc: %s%d char(s) rcvd, the last for lastcode[%d]; -%sms offset applied.\n",
876 				((rbufp->recv_length > 1) ? "*** " : ""),
877 				rbufp->recv_length,
878 				arc_last_offset,
879 				mfptoms((unsigned long)0,
880 					charoffsets[arc_last_offset],
881 					1));
882 		}
883 #endif
884 
885 #ifdef ARCRON_MULTIPLE_SAMPLES
886 		/*
887 		  If taking multiple samples, capture the current adjusted
888 		  sample iff:
889 
890 		  * No timestamp has yet been captured (it is zero), OR
891 
892 		  * This adjusted timestamp is earlier than the one already
893 		  captured, on the grounds that this one suffered less
894 		  delay in being delivered to us and is more accurate.
895 
896 		*/
897 		if(L_ISZERO(&(up->lastrec)) ||
898 		   L_ISGEQ(&(up->lastrec), &timestamp))
899 #endif
900 		{
901 #ifdef ARCRON_DEBUG
902 			if(debug > 1) {
903 				printf("arc: system timestamp captured.\n");
904 #ifdef ARCRON_MULTIPLE_SAMPLES
905 				if(!L_ISZERO(&(up->lastrec))) {
906 					l_fp diff;
907 					diff = up->lastrec;
908 					L_SUB(&diff, &timestamp);
909 					printf("arc: adjusted timestamp by -%sms.\n",
910 					       mfptoms(diff.l_i, diff.l_f, 3));
911 				}
912 #endif
913 			}
914 #endif
915 			up->lastrec = timestamp;
916 		}
917 
918 	}
919 
920 	/* Just in case we still have lots of rubbish in the buffer... */
921 	/* ...and to avoid the same timestamp being reused by mistake, */
922 	/* eg on receipt of the \r coming in on its own after the      */
923 	/* timecode.                                                   */
924 	if(pp->lencode >= LENARC) {
925 #ifdef ARCRON_DEBUG
926 		if(debug && (rbufp->recv_buffer[0] != '\r'))
927 		{ printf("arc: rubbish in pp->a_lastcode[].\n"); }
928 #endif
929 		pp->lencode = 0;
930 		return;
931 	}
932 
933 	/* Append input to code buffer, avoiding overflow. */
934 	for(i = 0; i < rbufp->recv_length; i++) {
935 		if(pp->lencode >= LENARC) { break; } /* Avoid overflow... */
936 		c = rbufp->recv_buffer[i];
937 
938 		/* Drop trailing '\r's and drop `h' command echo totally. */
939 		if(c != '\r' && c != 'h') { pp->a_lastcode[pp->lencode++] = c; }
940 
941 		/*
942 		  If we've just put an `o' in the lastcode[0], clear the
943 		  timestamp in anticipation of a timecode arriving soon.
944 
945 		  We would expect to get to process this before any of the
946 		  timecode arrives.
947 		*/
948 		if((c == 'o') && (pp->lencode == 1)) {
949 			L_CLR(&(up->lastrec));
950 #ifdef ARCRON_DEBUG
951 			if(debug > 1) { printf("arc: clearing timestamp.\n"); }
952 #endif
953 		}
954 	}
955 
956 	/* Handle a quality message. */
957 	if(pp->a_lastcode[0] == 'g') {
958 		int r, q;
959 
960 		if(pp->lencode < 3) { return; } /* Need more data... */
961 		r = (pp->a_lastcode[1] & 0x7f); /* Strip parity. */
962 		q = (pp->a_lastcode[2] & 0x7f); /* Strip parity. */
963 		if(((q & 0x70) != 0x30) || ((q & 0xf) > MAX_CLOCK_QUALITY) ||
964 		   ((r & 0x70) != 0x30)) {
965 			/* Badly formatted response. */
966 #ifdef ARCRON_DEBUG
967 			if(debug) { printf("arc: bad `g' response %2x %2x.\n", r, q); }
968 #endif
969 			return;
970 		}
971 		if(r == '3') { /* Only use quality value whilst sync in progress. */
972 			up->quality = (q & 0xf);
973 #ifdef DEBUG
974 			if(debug) { printf("arc: signal quality %d.\n", up->quality); }
975 #endif
976 		} else if( /* (r == '2') && */ up->resyncing) {
977 #ifdef DEBUG
978 			if(debug)
979 			{
980 				printf("arc: sync finished, signal quality %d: %s\n",
981 				       up->quality,
982 				       quality_action(up->quality));
983 			}
984 #endif
985 			msyslog(LOG_NOTICE,
986 			       "ARCRON: sync finished, signal quality %d: %s",
987 			       up->quality,
988 			       quality_action(up->quality));
989 			up->resyncing = 0; /* Resync is over. */
990 
991 #ifdef ARCRON_KEEN
992 			/* Clock quality dubious; resync earlier than usual. */
993 			if((up->quality == QUALITY_UNKNOWN) ||
994 			   (up->quality < MIN_CLOCK_QUALITY_OK))
995 			{ up->next_resync = current_time + RETRY_RESYNC_TIME; }
996 #endif
997 		}
998 		pp->lencode = 0;
999 		return;
1000 	}
1001 
1002 	/* Stop now if this is not a timecode message. */
1003 	if(pp->a_lastcode[0] != 'o') {
1004 		pp->lencode = 0;
1005 		refclock_report(peer, CEVNT_BADREPLY);
1006 		return;
1007 	}
1008 
1009 	/* If we don't have enough data, wait for more... */
1010 	if(pp->lencode < LENARC) { return; }
1011 
1012 
1013 	/* WE HAVE NOW COLLECTED ONE TIMESTAMP (phew)... */
1014 #ifdef ARCRON_DEBUG
1015 	if(debug > 1) { printf("arc: NOW HAVE TIMESTAMP...\n"); }
1016 #endif
1017 
1018 	/* But check that we actually captured a system timestamp on it. */
1019 	if(L_ISZERO(&(up->lastrec))) {
1020 #ifdef ARCRON_DEBUG
1021 		if(debug) { printf("arc: FAILED TO GET SYSTEM TIMESTAMP\n"); }
1022 #endif
1023 		pp->lencode = 0;
1024 		refclock_report(peer, CEVNT_BADREPLY);
1025 		return;
1026 	}
1027 	/*
1028 	  Append a mark of the clock's received signal quality for the
1029 	  benefit of Derek Mulcahy's Tcl/Tk utility (we map the `unknown'
1030 	  quality value to `6' for his s/w) and terminate the string for
1031 	  sure.  This should not go off the buffer end.
1032 	*/
1033 	pp->a_lastcode[pp->lencode] = ((up->quality == QUALITY_UNKNOWN) ?
1034 				       '6' : ('0' + up->quality));
1035 	pp->a_lastcode[pp->lencode + 1] = '\0'; /* Terminate for printf(). */
1036 	record_clock_stats(&peer->srcadr, pp->a_lastcode);
1037 
1038 	/* We don't use the micro-/milli- second part... */
1039 	pp->usec = 0;
1040 	pp->msec = 0;
1041 
1042 	n = sscanf(pp->a_lastcode, "o%2d%2d%2d%1d%2d%2d%2d%1d%1d",
1043 		   &pp->hour, &pp->minute, &pp->second,
1044 		   &wday, &pp->day, &month, &pp->year, &bst, &status);
1045 
1046 	/* Validate format and numbers. */
1047 	if(n != 9) {
1048 #ifdef ARCRON_DEBUG
1049 		/* Would expect to have caught major problems already... */
1050 		if(debug) { printf("arc: badly formatted data.\n"); }
1051 #endif
1052 		refclock_report(peer, CEVNT_BADREPLY);
1053 		return;
1054 	}
1055 	/*
1056 	  Validate received values at least enough to prevent internal
1057 	  array-bounds problems, etc.
1058 	*/
1059 	if((pp->hour < 0) || (pp->hour > 23) ||
1060 	   (pp->minute < 0) || (pp->minute > 59) ||
1061 	   (pp->second < 0) || (pp->second > 60) /*Allow for leap seconds.*/ ||
1062 	   (wday < 1) || (wday > 7) ||
1063 	   (pp->day < 1) || (pp->day > 31) ||
1064 	   (month < 1) || (month > 12) ||
1065 	   (pp->year < 0) || (pp->year > 99)) {
1066 		/* Data out of range. */
1067 		refclock_report(peer, CEVNT_BADREPLY);
1068 		return;
1069 	}
1070 	/* Check that BST/UTC bits are the complement of one another. */
1071 	if(!(bst & 2) == !(bst & 4)) {
1072 		refclock_report(peer, CEVNT_BADREPLY);
1073 		return;
1074 	}
1075 
1076 	if(status & 0x8) { msyslog(LOG_NOTICE, "ARCRON: battery low"); }
1077 
1078 	/* Year-2000 alert! */
1079 	/* Attempt to wrap 2-digit date into sensible window. */
1080 	if(pp->year < YEAR_PIVOT) { pp->year += 100; }		/* Y2KFixes */
1081 	pp->year += 1900;	/* use full four-digit year */	/* Y2KFixes */
1082 	/*
1083 	  Attempt to do the right thing by screaming that the code will
1084 	  soon break when we get to the end of its useful life.  What a
1085 	  hero I am...  PLEASE FIX LEAP-YEAR AND WRAP CODE IN 209X!
1086 	*/
1087 	if(pp->year >= YEAR_PIVOT+2000-2 ) {  			/* Y2KFixes */
1088 		/*This should get attention B^> */
1089 		msyslog(LOG_NOTICE,
1090 		       "ARCRON: fix me!  EITHER YOUR DATE IS BADLY WRONG or else I will break soon!");
1091 	}
1092 #ifdef DEBUG
1093 	if(debug) {
1094 		printf("arc: n=%d %02d:%02d:%02d %02d/%02d/%04d %1d %1d\n",
1095 		       n,
1096 		       pp->hour, pp->minute, pp->second,
1097 		       pp->day, month, pp->year, bst, status);
1098 	}
1099 #endif
1100 
1101 	/*
1102 	  The status value tested for is not strictly supported by the
1103 	  clock spec since the value of bit 2 (0x4) is claimed to be
1104 	  undefined for MSF, yet does seem to indicate if the last resync
1105 	  was successful or not.
1106 	*/
1107 	pp->leap = LEAP_NOWARNING;
1108 	status &= 0x7;
1109 	if(status == 0x3) {
1110 		if(status != up->status)
1111 		{ msyslog(LOG_NOTICE, "ARCRON: signal acquired"); }
1112 	} else {
1113 		if(status != up->status) {
1114 			msyslog(LOG_NOTICE, "ARCRON: signal lost");
1115 			pp->leap = LEAP_NOTINSYNC; /* MSF clock is free-running. */
1116 			up->status = status;
1117 			refclock_report(peer, CEVNT_FAULT);
1118 			return;
1119 		}
1120 	}
1121 	up->status = status;
1122 
1123 	pp->day += moff[month - 1];
1124 
1125 	if(isleap_4(pp->year) && month > 2) { pp->day++; }	/* Y2KFixes */
1126 
1127 	/* Convert to UTC if required */
1128 	if(bst & 2) {
1129 		pp->hour--;
1130 		if (pp->hour < 0) {
1131 			pp->hour = 23;
1132 			pp->day--;
1133 			/* If we try to wrap round the year (BST on 1st Jan), reject.*/
1134 			if(pp->day < 0) {
1135 				refclock_report(peer, CEVNT_BADTIME);
1136 				return;
1137 			}
1138 		}
1139 	}
1140 
1141 	/* If clock signal quality is unknown, revert to default PRECISION...*/
1142 	if(up->quality == QUALITY_UNKNOWN) { peer->precision = PRECISION; }
1143 	/* ...else improve precision if flag3 is set... */
1144 	else {
1145 		peer->precision = ((pp->sloppyclockflag & CLK_FLAG3) ?
1146 				   HIGHPRECISION : PRECISION);
1147 	}
1148 
1149 	/* Notice and log any change (eg from initial defaults) for flags. */
1150 	if(up->saved_flags != pp->sloppyclockflag) {
1151 #ifdef ARCRON_DEBUG
1152 		msyslog(LOG_NOTICE, "ARCRON: flags enabled: %s%s%s%s",
1153 		       ((pp->sloppyclockflag & CLK_FLAG1) ? "1" : "."),
1154 		       ((pp->sloppyclockflag & CLK_FLAG2) ? "2" : "."),
1155 		       ((pp->sloppyclockflag & CLK_FLAG3) ? "3" : "."),
1156 		       ((pp->sloppyclockflag & CLK_FLAG4) ? "4" : "."));
1157 		/* Note effects of flags changing... */
1158 		if(debug) {
1159 			printf("arc: CHOSENSAMPLES(pp) = %d.\n", CHOSENSAMPLES(pp));
1160 			printf("arc: NKEEP(pp) = %d.\n", NKEEP(pp));
1161 			printf("arc: PRECISION = %d.\n", peer->precision);
1162 		}
1163 #endif
1164 		up->saved_flags = pp->sloppyclockflag;
1165 	}
1166 
1167 	/* Note time of last believable timestamp. */
1168 	pp->lastrec = up->lastrec;
1169 
1170 #ifdef ARCRON_LEAPSECOND_KEEN
1171 	/* Find out if a leap-second might just have happened...
1172 	   (ie is this the first hour of the first day of Jan or Jul?)
1173 	*/
1174 	if((pp->hour == 0) &&
1175 	   (pp->day == 1) &&
1176 	   ((month == 1) || (month == 7))) {
1177 		if(possible_leap >= 0) {
1178 			/* A leap may have happened, and no resync has started yet...*/
1179 			possible_leap = 1;
1180 		}
1181 	} else {
1182 		/* Definitely not leap-second territory... */
1183 		possible_leap = 0;
1184 	}
1185 #endif
1186 
1187 	if (!refclock_process(pp)) {
1188 		refclock_report(peer, CEVNT_BADTIME);
1189 		return;
1190 	}
1191 	refclock_receive(peer);
1192 }
1193 
1194 
1195 /* request_time() sends a time request to the clock with given peer. */
1196 /* This automatically reports a fault if necessary. */
1197 /* No data should be sent after this until arc_poll() returns. */
1198 static  void    request_time    P((int, struct peer *));
1199 static void
1200 request_time(
1201 	int unit,
1202 	struct peer *peer
1203 	)
1204 {
1205 	struct refclockproc *pp = peer->procptr;
1206 	register struct arcunit *up = (struct arcunit *)pp->unitptr;
1207 #ifdef DEBUG
1208 	if(debug) { printf("arc: unit %d: requesting time.\n", unit); }
1209 #endif
1210 	if (!send_slow(up, pp->io.fd, "o\r")) {
1211 #ifdef ARCRON_DEBUG
1212 		msyslog(LOG_NOTICE, "ARCRON: unit %d: problem sending", unit);
1213 #endif
1214 		refclock_report(peer, CEVNT_FAULT);
1215 		return;
1216 	}
1217 	pp->polls++;
1218 }
1219 
1220 /*
1221  * arc_poll - called by the transmit procedure
1222  */
1223 static void
1224 arc_poll(
1225 	int unit,
1226 	struct peer *peer
1227 	)
1228 {
1229 	register struct arcunit *up;
1230 	struct refclockproc *pp;
1231 	int resync_needed;              /* Should we start a resync? */
1232 
1233 	pp = peer->procptr;
1234 	up = (struct arcunit *)pp->unitptr;
1235 	pp->lencode = 0;
1236 	memset(pp->a_lastcode, 0, sizeof(pp->a_lastcode));
1237 
1238 #if 0
1239 	/* Flush input. */
1240 	tcflush(pp->io.fd, TCIFLUSH);
1241 #endif
1242 
1243 	/* Resync if our next scheduled resync time is here or has passed. */
1244 	resync_needed = (up->next_resync <= current_time);
1245 
1246 #ifdef ARCRON_LEAPSECOND_KEEN
1247 	/*
1248 	  Try to catch a potential leap-second insertion or deletion quickly.
1249 
1250 	  In addition to the normal NTP fun of clocks that don't report
1251 	  leap-seconds spooking their hosts, this clock does not even
1252 	  sample the radio sugnal the whole time, so may miss a
1253 	  leap-second insertion or deletion for up to a whole sample
1254 	  time.
1255 
1256 	  To try to minimise this effect, if in the first few minutes of
1257 	  the day immediately following a leap-second-insertion point
1258 	  (ie in the first hour of the first day of the first and sixth
1259 	  months), and if the last resync was in the previous day, and a
1260 	  resync is not already in progress, resync the clock
1261 	  immediately.
1262 
1263 	*/
1264 	if((possible_leap > 0) &&       /* Must be 00:XX 01/0{1,7}/XXXX. */
1265 	   (!up->resyncing)) {          /* No resync in progress yet. */
1266 		resync_needed = 1;
1267 		possible_leap = -1;          /* Prevent multiple resyncs. */
1268 		msyslog(LOG_NOTICE,"ARCRON: unit %d: checking for leap second",unit);
1269 	}
1270 #endif
1271 
1272 	/* Do a resync if required... */
1273 	if(resync_needed) {
1274 		/* First, reset quality value to `unknown' so we can detect */
1275 		/* when a quality message has been responded to by this     */
1276 		/* being set to some other value.                           */
1277 		up->quality = QUALITY_UNKNOWN;
1278 
1279 		/* Note that we are resyncing... */
1280 		up->resyncing = 1;
1281 
1282 		/* Now actually send the resync command and an immediate poll. */
1283 #ifdef DEBUG
1284 		if(debug) { printf("arc: sending resync command (h\\r).\n"); }
1285 #endif
1286 		msyslog(LOG_NOTICE, "ARCRON: unit %d: sending resync command", unit);
1287 		send_slow(up, pp->io.fd, "h\r");
1288 
1289 		/* Schedule our next resync... */
1290 		up->next_resync = current_time + DEFAULT_RESYNC_TIME;
1291 
1292 		/* Drop through to request time if appropriate. */
1293 	}
1294 
1295 	/* If clock quality is too poor to trust, indicate a fault. */
1296 	/* If quality is QUALITY_UNKNOWN and ARCRON_KEEN is defined,*/
1297 	/* we'll cross our fingers and just hope that the thing     */
1298 	/* synced so quickly we did not catch it---we'll            */
1299 	/* double-check the clock is OK elsewhere.                  */
1300 	if(
1301 #ifdef ARCRON_KEEN
1302 		(up->quality != QUALITY_UNKNOWN) &&
1303 #else
1304 		(up->quality == QUALITY_UNKNOWN) ||
1305 #endif
1306 		(up->quality < MIN_CLOCK_QUALITY_OK)) {
1307 #ifdef DEBUG
1308 		if(debug) {
1309 			printf("arc: clock quality %d too poor.\n", up->quality);
1310 		}
1311 #endif
1312 		refclock_report(peer, CEVNT_FAULT);
1313 		return;
1314 	}
1315 	/* This is the normal case: request a timestamp. */
1316 	request_time(unit, peer);
1317 }
1318 
1319 #else
1320 int refclock_arc_bs;
1321 #endif
1322