1 /* 2 * refclock_arc - clock driver for ARCRON MSF receivers 3 */ 4 5 #ifdef HAVE_CONFIG_H 6 #include <config.h> 7 #endif 8 9 #if defined(REFCLOCK) && defined(CLOCK_ARCRON_MSF) 10 static const char arc_version[] = { "V1.1 1997/06/23" }; 11 12 #undef ARCRON_DEBUG /* Define only while in development... */ 13 14 #ifndef ARCRON_NOT_KEEN 15 #define ARCRON_KEEN 1 /* Be keen, and trusting of the clock, if defined. */ 16 #endif 17 18 #ifndef ARCRON_NOT_MULTIPLE_SAMPLES 19 #define ARCRON_MULTIPLE_SAMPLES 1 /* Use all timestamp bytes as samples. */ 20 #endif 21 22 #ifndef ARCRON_NOT_LEAPSECOND_KEEN 23 #ifndef ARCRON_LEAPSECOND_KEEN 24 #undef ARCRON_LEAPSECOND_KEEN /* Respond quickly to leap seconds: doesn't work yet. */ 25 #endif 26 #endif 27 28 /* 29 Code by Derek Mulcahy, <derek@toybox.demon.co.uk>, 1997. 30 Modifications by Damon Hart-Davis, <d@hd.org>, 1997. 31 32 THIS CODE IS SUPPLIED AS IS, WITH NO WARRANTY OF ANY KIND. USE AT 33 YOUR OWN RISK. 34 35 Orginally developed and used with ntp3-5.85 by Derek Mulcahy. 36 37 Built against ntp3-5.90 on Solaris 2.5 using gcc 2.7.2. 38 39 This code may be freely copied and used and incorporated in other 40 systems providing the disclaimer and notice of authorship are 41 reproduced. 42 43 ------------------------------------------------------------------------------- 44 45 Author's original note: 46 47 I enclose my ntp driver for the Galleon Systems Arc MSF receiver. 48 49 It works (after a fashion) on both Solaris-1 and Solaris-2. 50 51 I am currently using ntp3-5.85. I have been running the code for 52 about 7 months without any problems. Even coped with the change to BST! 53 54 I had to do some funky things to read from the clock because it uses the 55 power from the receive lines to drive the transmit lines. This makes the 56 code look a bit stupid but it works. I also had to put in some delays to 57 allow for the turnaround time from receive to transmit. These delays 58 are between characters when requesting a time stamp so that shouldn't affect 59 the results too drastically. 60 61 ... 62 63 The bottom line is that it works but could easily be improved. You are 64 free to do what you will with the code. I haven't been able to determine 65 how good the clock is. I think that this requires a known good clock 66 to compare it against. 67 68 ------------------------------------------------------------------------------- 69 70 Damon's notes for adjustments: 71 72 MAJOR CHANGES SINCE V1.0 73 ======================== 74 1) Removal of pollcnt variable that made the clock go permanently 75 off-line once two time polls failed to gain responses. 76 77 2) Avoiding (at least on Solaris-2) terminal becoming the controlling 78 terminal of the process when we do a low-level open(). 79 80 3) Additional logic (conditional on ARCRON_LEAPSECOND_KEEN being 81 defined) to try to resync quickly after a potential leap-second 82 insertion or deletion. 83 84 4) Code significantly slimmer at run-time than V1.0. 85 86 87 GENERAL 88 ======= 89 90 1) The C preprocessor symbol to have the clock built has been changed 91 from ARC to ARCRON_MSF to CLOCK_ARCRON_MSF to minimise the 92 possiblity of clashes with other symbols in the future. 93 94 2) PRECISION should be -4/-5 (63ms/31ms) for the following reasons: 95 96 a) The ARC documentation claims the internal clock is (only) 97 accurate to about 20ms relative to Rugby (plus there must be 98 noticable drift and delay in the ms range due to transmission 99 delays and changing atmospheric effects). This clock is not 100 designed for ms accuracy as NTP has spoilt us all to expect. 101 102 b) The clock oscillator looks like a simple uncompensated quartz 103 crystal of the sort used in digital watches (ie 32768Hz) which 104 can have large temperature coefficients and drifts; it is not 105 clear if this oscillator is properly disciplined to the MSF 106 transmission, but as the default is to resync only once per 107 *day*, we can imagine that it is not, and is free-running. We 108 can minimise drift by resyncing more often (at the cost of 109 reduced battery life), but drift/wander may still be 110 significant. 111 112 c) Note that the bit time of 3.3ms adds to the potential error in 113 the the clock timestamp, since the bit clock of the serial link 114 may effectively be free-running with respect to the host clock 115 and the MSF clock. Actually, the error is probably 1/16th of 116 the above, since the input data is probably sampled at at least 117 16x the bit rate. 118 119 By keeping the clock marked as not very precise, it will have a 120 fairly large dispersion, and thus will tend to be used as a 121 `backup' time source and sanity checker, which this clock is 122 probably ideal for. For an isolated network without other time 123 sources, this clock can probably be expected to provide *much* 124 better than 1s accuracy, which will be fine. 125 126 By default, PRECISION is set to -4, but experience, especially at a 127 particular geographic location with a particular clock, may allow 128 this to be altered to -5. (Note that skews of +/- 10ms are to be 129 expected from the clock from time-to-time.) This improvement of 130 reported precision can be instigated by setting flag3 to 1, though 131 the PRECISION will revert to the normal value while the clock 132 signal quality is unknown whatever the flag3 setting. 133 134 IN ANY CASE, BE SURE TO SET AN APPROPRIATE FUDGE FACTOR TO REMOVE 135 ANY RESIDUAL SKEW, eg: 136 137 server 127.127.27.0 # ARCRON MSF radio clock unit 0. 138 # Fudge timestamps by about 20ms. 139 fudge 127.127.27.0 time1 0.020 140 141 You will need to observe your system's behaviour, assuming you have 142 some other NTP source to compare it with, to work out what the 143 fudge factor should be. For my Sun SS1 running SunOS 4.1.3_U1 with 144 my MSF clock with my distance from the MSF transmitter, +20ms 145 seemed about right, after some observation. 146 147 3) REFID has been made "MSFa" to reflect the MSF time source and the 148 ARCRON receiver. 149 150 4) DEFAULT_RESYNC_TIME is the time in seconds (by default) before 151 forcing a resync since the last attempt. This is picked to give a 152 little less than an hour between resyncs and to try to avoid 153 clashing with any regular event at a regular time-past-the-hour 154 which might cause systematic errors. 155 156 The INITIAL_RESYNC_DELAY is to avoid bothering the clock and 157 running down its batteries unnecesarily if ntpd is going to crash 158 or be killed or reconfigured quickly. If ARCRON_KEEN is defined 159 then this period is long enough for (with normal polling rates) 160 enough time samples to have been taken to allow ntpd to sync to 161 the clock before the interruption for the clock to resync to MSF. 162 This avoids ntpd syncing to another peer first and then 163 almost immediately hopping to the MSF clock. 164 165 The RETRY_RESYNC_TIME is used before rescheduling a resync after a 166 resync failed to reveal a statisfatory signal quality (too low or 167 unknown). 168 169 5) The clock seems quite jittery, so I have increased the 170 median-filter size from the typical (previous) value of 3. I 171 discard up to half the results in the filter. It looks like maybe 172 1 sample in 10 or so (maybe less) is a spike, so allow the median 173 filter to discard at least 10% of its entries or 1 entry, whichever 174 is greater. 175 176 6) Sleeping *before* each character sent to the unit to allow required 177 inter-character time but without introducting jitter and delay in 178 handling the response if possible. 179 180 7) If the flag ARCRON_KEEN is defined, take time samples whenever 181 possible, even while resyncing, etc. We rely, in this case, on the 182 clock always giving us a reasonable time or else telling us in the 183 status byte at the end of the timestamp that it failed to sync to 184 MSF---thus we should never end up syncing to completely the wrong 185 time. 186 187 8) If the flag ARCRON_OWN_FILTER is defined, use own versions of 188 refclock median-filter routines to get round small bug in 3-5.90 189 code which does not return the median offset. XXX Removed this 190 bit due NTP Version 4 upgrade - dlm. 191 192 9) We would appear to have a year-2000 problem with this clock since 193 it returns only the two least-significant digits of the year. But 194 ntpd ignores the year and uses the local-system year instead, so 195 this is in fact not a problem. Nevertheless, we attempt to do a 196 sensible thing with the dates, wrapping them into a 100-year 197 window. 198 199 10)Logs stats information that can be used by Derek's Tcl/Tk utility 200 to show the status of the clock. 201 202 11)The clock documentation insists that the number of bits per 203 character to be sent to the clock, and sent by it, is 11, including 204 one start bit and two stop bits. The data format is either 7+even 205 or 8+none. 206 207 208 TO-DO LIST 209 ========== 210 211 * Eliminate use of scanf(), and maybe sprintf(). 212 213 * Allow user setting of resync interval to trade battery life for 214 accuracy; maybe could be done via fudge factor or unit number. 215 216 * Possibly note the time since the last resync of the MSF clock to 217 MSF as the age of the last reference timestamp, ie trust the 218 clock's oscillator not very much... 219 220 * Add very slow auto-adjustment up to a value of +/- time2 to correct 221 for long-term errors in the clock value (time2 defaults to 0 so the 222 correction would be disabled by default). 223 224 * Consider trying to use the tty_clk/ppsclock support. 225 226 * Possibly use average or maximum signal quality reported during 227 resync, rather than just the last one, which may be atypical. 228 229 */ 230 231 232 /* Notes for HKW Elektronik GmBH Radio clock driver */ 233 /* Author Lyndon David, Sentinet Ltd, Feb 1997 */ 234 /* These notes seem also to apply usefully to the ARCRON clock. */ 235 236 /* The HKW clock module is a radio receiver tuned into the Rugby */ 237 /* MSF time signal tranmitted on 60 kHz. The clock module connects */ 238 /* to the computer via a serial line and transmits the time encoded */ 239 /* in 15 bytes at 300 baud 7 bits two stop bits even parity */ 240 241 /* Clock communications, from the datasheet */ 242 /* All characters sent to the clock are echoed back to the controlling */ 243 /* device. */ 244 /* Transmit time/date information */ 245 /* syntax ASCII o<cr> */ 246 /* Character o may be replaced if neccesary by a character whose code */ 247 /* contains the lowest four bits f(hex) eg */ 248 /* syntax binary: xxxx1111 00001101 */ 249 250 /* DHD note: 251 You have to wait for character echo + 10ms before sending next character. 252 */ 253 254 /* The clock replies to this command with a sequence of 15 characters */ 255 /* which contain the complete time and a final <cr> making 16 characters */ 256 /* in total. */ 257 /* The RC computer clock will not reply immediately to this command because */ 258 /* the start bit edge of the first reply character marks the beginning of */ 259 /* the second. So the RC Computer Clock will reply to this command at the */ 260 /* start of the next second */ 261 /* The characters have the following meaning */ 262 /* 1. hours tens */ 263 /* 2. hours units */ 264 /* 3. minutes tens */ 265 /* 4. minutes units */ 266 /* 5. seconds tens */ 267 /* 6. seconds units */ 268 /* 7. day of week 1-monday 7-sunday */ 269 /* 8. day of month tens */ 270 /* 9. day of month units */ 271 /* 10. month tens */ 272 /* 11. month units */ 273 /* 12. year tens */ 274 /* 13. year units */ 275 /* 14. BST/UTC status */ 276 /* bit 7 parity */ 277 /* bit 6 always 0 */ 278 /* bit 5 always 1 */ 279 /* bit 4 always 1 */ 280 /* bit 3 always 0 */ 281 /* bit 2 =1 if UTC is in effect, complementary to the BST bit */ 282 /* bit 1 =1 if BST is in effect, according to the BST bit */ 283 /* bit 0 BST/UTC change impending bit=1 in case of change impending */ 284 /* 15. status */ 285 /* bit 7 parity */ 286 /* bit 6 always 0 */ 287 /* bit 5 always 1 */ 288 /* bit 4 always 1 */ 289 /* bit 3 =1 if low battery is detected */ 290 /* bit 2 =1 if the very last reception attempt failed and a valid */ 291 /* time information already exists (bit0=1) */ 292 /* =0 if the last reception attempt was successful */ 293 /* bit 1 =1 if at least one reception since 2:30 am was successful */ 294 /* =0 if no reception attempt since 2:30 am was successful */ 295 /* bit 0 =1 if the RC Computer Clock contains valid time information */ 296 /* This bit is zero after reset and one after the first */ 297 /* successful reception attempt */ 298 299 /* DHD note: 300 Also note g<cr> command which confirms that a resync is in progress, and 301 if so what signal quality (0--5) is available. 302 Also note h<cr> command which starts a resync to MSF signal. 303 */ 304 305 306 #include "ntpd.h" 307 #include "ntp_io.h" 308 #include "ntp_refclock.h" 309 #include "ntp_stdlib.h" 310 311 #include <stdio.h> 312 #include <ctype.h> 313 314 #if defined(HAVE_BSD_TTYS) 315 #include <sgtty.h> 316 #endif /* HAVE_BSD_TTYS */ 317 318 #if defined(HAVE_SYSV_TTYS) 319 #include <termio.h> 320 #endif /* HAVE_SYSV_TTYS */ 321 322 #if defined(HAVE_TERMIOS) 323 #include <termios.h> 324 #endif 325 326 /* 327 * This driver supports the ARCRON MSF Radio Controlled Clock 328 */ 329 330 /* 331 * Interface definitions 332 */ 333 #define DEVICE "/dev/arc%d" /* Device name and unit. */ 334 #define SPEED B300 /* UART speed (300 baud) */ 335 #define PRECISION (-4) /* Precision (~63 ms). */ 336 #define HIGHPRECISION (-5) /* If things are going well... */ 337 #define REFID "MSFa" /* Reference ID. */ 338 #define DESCRIPTION "ARCRON MSF Receiver" 339 340 #define NSAMPLESLONG 8 /* Stages of long filter. */ 341 342 #define LENARC 16 /* Format `o' timecode length. */ 343 344 #define BITSPERCHAR 11 /* Bits per character. */ 345 #define BITTIME 0x0DA740E /* Time for 1 bit at 300bps. */ 346 #define CHARTIME10 0x8888888 /* Time for 10-bit char at 300bps. */ 347 #define CHARTIME11 0x962FC96 /* Time for 11-bit char at 300bps. */ 348 #define CHARTIME /* Time for char at 300bps. */ \ 349 ( (BITSPERCHAR == 11) ? CHARTIME11 : ( (BITSPERCHAR == 10) ? CHARTIME10 : \ 350 (BITSPERCHAR * BITTIME) ) ) 351 352 /* Allow for UART to accept char half-way through final stop bit. */ 353 #define INITIALOFFSET (u_int32)(-BITTIME/2) 354 355 /* 356 charoffsets[x] is the time after the start of the second that byte 357 x (with the first byte being byte 1) is received by the UART, 358 assuming that the initial edge of the start bit of the first byte 359 is on-time. The values are represented as the fractional part of 360 an l_fp. 361 362 We store enough values to have the offset of each byte including 363 the trailing \r, on the assumption that the bytes follow one 364 another without gaps. 365 */ 366 static const u_int32 charoffsets[LENARC+1] = { 367 #if BITSPERCHAR == 11 /* Usual case. */ 368 /* Offsets computed as accurately as possible... */ 369 0, 370 INITIALOFFSET + 0x0962fc96, /* 1 chars, 11 bits */ 371 INITIALOFFSET + 0x12c5f92c, /* 2 chars, 22 bits */ 372 INITIALOFFSET + 0x1c28f5c3, /* 3 chars, 33 bits */ 373 INITIALOFFSET + 0x258bf259, /* 4 chars, 44 bits */ 374 INITIALOFFSET + 0x2eeeeeef, /* 5 chars, 55 bits */ 375 INITIALOFFSET + 0x3851eb85, /* 6 chars, 66 bits */ 376 INITIALOFFSET + 0x41b4e81b, /* 7 chars, 77 bits */ 377 INITIALOFFSET + 0x4b17e4b1, /* 8 chars, 88 bits */ 378 INITIALOFFSET + 0x547ae148, /* 9 chars, 99 bits */ 379 INITIALOFFSET + 0x5dddddde, /* 10 chars, 110 bits */ 380 INITIALOFFSET + 0x6740da74, /* 11 chars, 121 bits */ 381 INITIALOFFSET + 0x70a3d70a, /* 12 chars, 132 bits */ 382 INITIALOFFSET + 0x7a06d3a0, /* 13 chars, 143 bits */ 383 INITIALOFFSET + 0x8369d037, /* 14 chars, 154 bits */ 384 INITIALOFFSET + 0x8ccccccd, /* 15 chars, 165 bits */ 385 INITIALOFFSET + 0x962fc963 /* 16 chars, 176 bits */ 386 #else 387 /* Offsets computed with a small rounding error... */ 388 0, 389 INITIALOFFSET + 1 * CHARTIME, 390 INITIALOFFSET + 2 * CHARTIME, 391 INITIALOFFSET + 3 * CHARTIME, 392 INITIALOFFSET + 4 * CHARTIME, 393 INITIALOFFSET + 5 * CHARTIME, 394 INITIALOFFSET + 6 * CHARTIME, 395 INITIALOFFSET + 7 * CHARTIME, 396 INITIALOFFSET + 8 * CHARTIME, 397 INITIALOFFSET + 9 * CHARTIME, 398 INITIALOFFSET + 10 * CHARTIME, 399 INITIALOFFSET + 11 * CHARTIME, 400 INITIALOFFSET + 12 * CHARTIME, 401 INITIALOFFSET + 13 * CHARTIME, 402 INITIALOFFSET + 14 * CHARTIME, 403 INITIALOFFSET + 15 * CHARTIME, 404 INITIALOFFSET + 16 * CHARTIME 405 #endif 406 }; 407 408 /* Chose filter length dependent on fudge flag 4. */ 409 #define CHOSENSAMPLES(pp) \ 410 (((pp)->sloppyclockflag & CLK_FLAG4) ? NSAMPLESLONG : NSAMPLES) 411 /* 412 Chose how many filter samples to keep. Several factors are in play. 413 414 1) Discard at least one sample to allow a spike value to be 415 discarded. 416 417 2) Discard about 1-in-8 to 1-in-30 samples to handle spikes. 418 419 3) Keep an odd number of samples to avoid median value being biased 420 high or low. 421 */ 422 #define NKEEP(pp) ((CHOSENSAMPLES(pp) - 1 - (CHOSENSAMPLES(pp)>>3)) | 1) 423 424 #define DEFAULT_RESYNC_TIME (57*60) /* Gap between resync attempts (s). */ 425 #define RETRY_RESYNC_TIME (27*60) /* Gap to emergency resync attempt. */ 426 #ifdef ARCRON_KEEN 427 #define INITIAL_RESYNC_DELAY 500 /* Delay before first resync. */ 428 #else 429 #define INITIAL_RESYNC_DELAY 50 /* Delay before first resync. */ 430 #endif 431 432 static const int moff[12] = 433 { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; 434 /* Flags for a raw open() of the clock serial device. */ 435 #ifdef O_NOCTTY /* Good, we can avoid tty becoming controlling tty. */ 436 #define OPEN_FLAGS (O_RDWR | O_NOCTTY) 437 #else /* Oh well, it may not matter... */ 438 #define OPEN_FLAGS (O_RDWR) 439 #endif 440 441 442 /* Length of queue of command bytes to be sent. */ 443 #define CMDQUEUELEN 4 /* Enough for two cmds + each \r. */ 444 /* Queue tick time; interval in seconds between chars taken off queue. */ 445 /* Must be >= 2 to allow o\r response to come back uninterrupted. */ 446 #define QUEUETICK 2 /* Allow o\r reply to finish. */ 447 448 /* 449 * ARC unit control structure 450 */ 451 struct arcunit { 452 l_fp lastrec; /* Time tag for the receive time (system). */ 453 int status; /* Clock status. */ 454 455 int quality; /* Quality of reception 0--5 for unit. */ 456 /* We may also use the values -1 or 6 internally. */ 457 458 u_long next_resync; /* Next resync time (s) compared to current_time. */ 459 int resyncing; /* Resync in progress if true. */ 460 461 /* In the outgoing queue, cmdqueue[0] is next to be sent. */ 462 char cmdqueue[CMDQUEUELEN+1]; /* Queue of outgoing commands + \0. */ 463 464 u_long saved_flags; /* Saved fudge flags. */ 465 }; 466 #ifdef ARCRON_LEAPSECOND_KEEN 467 /* The flag `possible_leap' is set non-zero when any MSF unit 468 thinks a leap-second may have happened. 469 470 Set whenever we receive a valid time sample in the first hour of 471 the first day of the first/seventh months. 472 473 Outside the special hour this value is unconditionally set 474 to zero by the receive routine. 475 476 On finding itself in this timeslot, as long as the value is 477 non-negative, the receive routine sets it to a positive value to 478 indicate a resync to MSF should be performed. 479 480 In the poll routine, if this value is positive and we are not 481 already resyncing (eg from a sync that started just before 482 midnight), start resyncing and set this value negative to 483 indicate that a leap-triggered resync has been started. Having 484 set this negative prevents the receive routine setting it 485 positive and thus prevents multiple resyncs during the witching 486 hour. 487 */ 488 static int possible_leap = 0; /* No resync required by default. */ 489 #endif 490 491 #if 0 492 static void dummy_event_handler P((struct peer *)); 493 static void arc_event_handler P((struct peer *)); 494 #endif /* 0 */ 495 496 #define QUALITY_UNKNOWN -1 /* Indicates unknown clock quality. */ 497 #define MIN_CLOCK_QUALITY 0 /* Min quality clock will return. */ 498 #define MIN_CLOCK_QUALITY_OK 3 /* Min quality for OK reception. */ 499 #define MAX_CLOCK_QUALITY 5 /* Max quality clock will return. */ 500 501 /* 502 * Function prototypes 503 */ 504 static int arc_start P((int, struct peer *)); 505 static void arc_shutdown P((int, struct peer *)); 506 static void arc_receive P((struct recvbuf *)); 507 static void arc_poll P((int, struct peer *)); 508 509 /* 510 * Transfer vector 511 */ 512 struct refclock refclock_arc = { 513 arc_start, /* start up driver */ 514 arc_shutdown, /* shut down driver */ 515 arc_poll, /* transmit poll message */ 516 noentry, /* not used (old arc_control) */ 517 noentry, /* initialize driver (not used) */ 518 noentry, /* not used (old arc_buginfo) */ 519 NOFLAGS /* not used */ 520 }; 521 522 /* Queue us up for the next tick. */ 523 #define ENQUEUE(up) \ 524 do { \ 525 if((up)->ev.next != 0) { break; } /* WHOOPS! */ \ 526 peer->nextdate = current_time + QUEUETICK; \ 527 } while(0) 528 529 #if 0 530 /* Placeholder event handler---does nothing safely---soaks up lose tick. */ 531 static void 532 dummy_event_handler( 533 struct peer *peer 534 ) 535 { 536 #ifdef ARCRON_DEBUG 537 if(debug) { printf("arc: dummy_event_handler() called.\n"); } 538 #endif 539 } 540 541 /* 542 Normal event handler. 543 544 Take first character off queue and send to clock if not a null. 545 546 Shift characters down and put a null on the end. 547 548 We assume that there is no parallelism so no race condition, but even 549 if there is nothing bad will happen except that we might send some bad 550 data to the clock once in a while. 551 */ 552 static void 553 arc_event_handler( 554 struct peer *peer 555 ) 556 { 557 struct refclockproc *pp = peer->procptr; 558 register struct arcunit *up = (struct arcunit *)pp->unitptr; 559 int i; 560 char c; 561 #ifdef ARCRON_DEBUG 562 if(debug > 2) { printf("arc: arc_event_handler() called.\n"); } 563 #endif 564 565 c = up->cmdqueue[0]; /* Next char to be sent. */ 566 /* Shift down characters, shifting trailing \0 in at end. */ 567 for(i = 0; i < CMDQUEUELEN; ++i) 568 { up->cmdqueue[i] = up->cmdqueue[i+1]; } 569 570 /* Don't send '\0' characters. */ 571 if(c != '\0') { 572 if(write(pp->io.fd, &c, 1) != 1) { 573 msyslog(LOG_NOTICE, "ARCRON: write to fd %d failed", pp->io.fd); 574 } 575 #ifdef ARCRON_DEBUG 576 else if(debug) { printf("arc: sent `%2.2x', fd %d.\n", c, pp->io.fd); } 577 #endif 578 } 579 } 580 #endif /* 0 */ 581 582 /* 583 * arc_start - open the devices and initialize data for processing 584 */ 585 static int 586 arc_start( 587 int unit, 588 struct peer *peer 589 ) 590 { 591 register struct arcunit *up; 592 struct refclockproc *pp; 593 int fd; 594 char device[20]; 595 #ifdef HAVE_TERMIOS 596 struct termios arg; 597 #endif 598 599 msyslog(LOG_NOTICE, "ARCRON: %s: opening unit %d", arc_version, unit); 600 #ifdef ARCRON_DEBUG 601 if(debug) { 602 printf("arc: %s: attempt to open unit %d.\n", arc_version, unit); 603 } 604 #endif 605 606 /* Prevent a ridiculous device number causing overflow of device[]. */ 607 if((unit < 0) || (unit > 255)) { return(0); } 608 609 /* 610 * Open serial port. Use CLK line discipline, if available. 611 */ 612 (void)sprintf(device, DEVICE, unit); 613 if (!(fd = refclock_open(device, SPEED, LDISC_CLK))) 614 return(0); 615 #ifdef ARCRON_DEBUG 616 if(debug) { printf("arc: unit %d using open().\n", unit); } 617 #endif 618 fd = open(device, OPEN_FLAGS); 619 if(fd < 0) { 620 #ifdef DEBUG 621 if(debug) { printf("arc: failed [open()] to open %s.\n", device); } 622 #endif 623 return(0); 624 } 625 626 fcntl(fd, F_SETFL, 0); /* clear the descriptor flags */ 627 #ifdef ARCRON_DEBUG 628 if(debug) 629 { printf("Opened RS232 port with file descriptor %d.\n", fd); } 630 #endif 631 632 #ifdef HAVE_TERMIOS 633 634 arg.c_iflag = IGNBRK | ISTRIP; 635 arg.c_oflag = 0; 636 arg.c_cflag = B300 | CS8 | CREAD | CLOCAL | CSTOPB; 637 arg.c_lflag = 0; 638 arg.c_cc[VMIN] = 1; 639 arg.c_cc[VTIME] = 0; 640 641 tcsetattr(fd, TCSANOW, &arg); 642 643 #else 644 645 msyslog(LOG_ERR, "ARCRON: termios not supported in this driver"); 646 (void)close(fd); 647 648 return 0; 649 650 #endif 651 652 up = (struct arcunit *) emalloc(sizeof(struct arcunit)); 653 if(!up) { (void) close(fd); return(0); } 654 /* Set structure to all zeros... */ 655 memset((char *)up, 0, sizeof(struct arcunit)); 656 pp = peer->procptr; 657 pp->io.clock_recv = arc_receive; 658 pp->io.srcclock = (caddr_t)peer; 659 pp->io.datalen = 0; 660 pp->io.fd = fd; 661 if(!io_addclock(&pp->io)) { (void) close(fd); free(up); return(0); } 662 pp->unitptr = (caddr_t)up; 663 664 /* 665 * Initialize miscellaneous variables 666 */ 667 peer->precision = PRECISION; 668 peer->stratum = 2; /* Default to stratum 2 not 0. */ 669 pp->clockdesc = DESCRIPTION; 670 memcpy((char *)&pp->refid, REFID, 4); 671 /* Spread out resyncs so that they should remain separated. */ 672 up->next_resync = current_time + INITIAL_RESYNC_DELAY + (67*unit)%1009; 673 674 #if 0 /* Not needed because of zeroing of arcunit structure... */ 675 up->resyncing = 0; /* Not resyncing yet. */ 676 up->saved_flags = 0; /* Default is all flags off. */ 677 /* Clear send buffer out... */ 678 { 679 int i; 680 for(i = CMDQUEUELEN; i >= 0; --i) { up->cmdqueue[i] = '\0'; } 681 } 682 #endif 683 684 #ifdef ARCRON_KEEN 685 up->quality = QUALITY_UNKNOWN; /* Trust the clock immediately. */ 686 #else 687 up->quality = MIN_CLOCK_QUALITY;/* Don't trust the clock yet. */ 688 #endif 689 return(1); 690 } 691 692 693 /* 694 * arc_shutdown - shut down the clock 695 */ 696 static void 697 arc_shutdown( 698 int unit, 699 struct peer *peer 700 ) 701 { 702 register struct arcunit *up; 703 struct refclockproc *pp; 704 705 pp = peer->procptr; 706 up = (struct arcunit *)pp->unitptr; 707 io_closeclock(&pp->io); 708 free(up); 709 } 710 711 /* 712 Compute space left in output buffer. 713 */ 714 static int 715 space_left( 716 register struct arcunit *up 717 ) 718 { 719 int spaceleft; 720 721 /* Compute space left in buffer after any pending output. */ 722 for(spaceleft = 0; spaceleft < CMDQUEUELEN; ++spaceleft) 723 { if(up->cmdqueue[CMDQUEUELEN - 1 - spaceleft] != '\0') { break; } } 724 return(spaceleft); 725 } 726 727 /* 728 Send command by copying into command buffer as far forward as possible, 729 after any pending output. 730 731 Indicate an error by returning 0 if there is not space for the command. 732 */ 733 static int 734 send_slow( 735 register struct arcunit *up, 736 int fd, 737 const char *s 738 ) 739 { 740 int sl = strlen(s); 741 int spaceleft = space_left(up); 742 743 #ifdef ARCRON_DEBUG 744 if(debug > 1) { printf("arc: spaceleft = %d.\n", spaceleft); } 745 #endif 746 if(spaceleft < sl) { /* Should not normally happen... */ 747 #ifdef ARCRON_DEBUG 748 msyslog(LOG_NOTICE, "ARCRON: send-buffer overrun (%d/%d)", 749 sl, spaceleft); 750 #endif 751 return(0); /* FAILED! */ 752 } 753 754 /* Copy in the command to be sent. */ 755 while(*s) { up->cmdqueue[CMDQUEUELEN - spaceleft--] = *s++; } 756 757 return(1); 758 } 759 760 761 /* Macro indicating action we will take for different quality values. */ 762 #define quality_action(q) \ 763 (((q) == QUALITY_UNKNOWN) ? "UNKNOWN, will use clock anyway" : \ 764 (((q) < MIN_CLOCK_QUALITY_OK) ? "TOO POOR, will not use clock" : \ 765 "OK, will use clock")) 766 767 /* 768 * arc_receive - receive data from the serial interface 769 */ 770 static void 771 arc_receive( 772 struct recvbuf *rbufp 773 ) 774 { 775 register struct arcunit *up; 776 struct refclockproc *pp; 777 struct peer *peer; 778 char c; 779 int i, n, wday, month, bst, status; 780 int arc_last_offset; 781 782 /* 783 * Initialize pointers and read the timecode and timestamp 784 */ 785 peer = (struct peer *)rbufp->recv_srcclock; 786 pp = peer->procptr; 787 up = (struct arcunit *)pp->unitptr; 788 789 790 /* 791 If the command buffer is empty, and we are resyncing, insert a 792 g\r quality request into it to poll for signal quality again. 793 */ 794 if((up->resyncing) && (space_left(up) == CMDQUEUELEN)) { 795 #ifdef DEBUG 796 if(debug > 1) { printf("arc: inserting signal-quality poll.\n"); } 797 #endif 798 send_slow(up, pp->io.fd, "g\r"); 799 } 800 801 /* 802 The `arc_last_offset' is the offset in lastcode[] of the last byte 803 received, and which we assume actually received the input 804 timestamp. 805 806 (When we get round to using tty_clk and it is available, we 807 assume that we will receive the whole timecode with the 808 trailing \r, and that that \r will be timestamped. But this 809 assumption also works if receive the characters one-by-one.) 810 */ 811 arc_last_offset = pp->lencode+rbufp->recv_length - 1; 812 813 /* 814 We catch a timestamp iff: 815 816 * The command code is `o' for a timestamp. 817 818 * If ARCRON_MULTIPLE_SAMPLES is undefined then we must have 819 exactly char in the buffer (the command code) so that we 820 only sample the first character of the timecode as our 821 `on-time' character. 822 823 * The first character in the buffer is not the echoed `\r' 824 from the `o` command (so if we are to timestamp an `\r' it 825 must not be first in the receive buffer with lencode==1. 826 (Even if we had other characters following it, we probably 827 would have a premature timestamp on the '\r'.) 828 829 * We have received at least one character (I cannot imagine 830 how it could be otherwise, but anyway...). 831 */ 832 c = rbufp->recv_buffer[0]; 833 if((pp->a_lastcode[0] == 'o') && 834 #ifndef ARCRON_MULTIPLE_SAMPLES 835 (pp->lencode == 1) && 836 #endif 837 ((pp->lencode != 1) || (c != '\r')) && 838 (arc_last_offset >= 1)) { 839 /* Note that the timestamp should be corrected if >1 char rcvd. */ 840 l_fp timestamp; 841 timestamp = rbufp->recv_time; 842 #ifdef DEBUG 843 if(debug) { /* Show \r as `R', other non-printing char as `?'. */ 844 printf("arc: stamp -->%c<-- (%d chars rcvd)\n", 845 ((c == '\r') ? 'R' : (isgraph((int)c) ? c : '?')), 846 rbufp->recv_length); 847 } 848 #endif 849 850 /* 851 Now correct timestamp by offset of last byte received---we 852 subtract from the receive time the delay implied by the 853 extra characters received. 854 855 Reject the input if the resulting code is too long, but 856 allow for the trailing \r, normally not used but a good 857 handle for tty_clk or somesuch kernel timestamper. 858 */ 859 if(arc_last_offset > LENARC) { 860 #ifdef ARCRON_DEBUG 861 if(debug) { 862 printf("arc: input code too long (%d cf %d); rejected.\n", 863 arc_last_offset, LENARC); 864 } 865 #endif 866 pp->lencode = 0; 867 refclock_report(peer, CEVNT_BADREPLY); 868 return; 869 } 870 871 L_SUBUF(×tamp, charoffsets[arc_last_offset]); 872 #ifdef ARCRON_DEBUG 873 if(debug > 1) { 874 printf( 875 "arc: %s%d char(s) rcvd, the last for lastcode[%d]; -%sms offset applied.\n", 876 ((rbufp->recv_length > 1) ? "*** " : ""), 877 rbufp->recv_length, 878 arc_last_offset, 879 mfptoms((unsigned long)0, 880 charoffsets[arc_last_offset], 881 1)); 882 } 883 #endif 884 885 #ifdef ARCRON_MULTIPLE_SAMPLES 886 /* 887 If taking multiple samples, capture the current adjusted 888 sample iff: 889 890 * No timestamp has yet been captured (it is zero), OR 891 892 * This adjusted timestamp is earlier than the one already 893 captured, on the grounds that this one suffered less 894 delay in being delivered to us and is more accurate. 895 896 */ 897 if(L_ISZERO(&(up->lastrec)) || 898 L_ISGEQ(&(up->lastrec), ×tamp)) 899 #endif 900 { 901 #ifdef ARCRON_DEBUG 902 if(debug > 1) { 903 printf("arc: system timestamp captured.\n"); 904 #ifdef ARCRON_MULTIPLE_SAMPLES 905 if(!L_ISZERO(&(up->lastrec))) { 906 l_fp diff; 907 diff = up->lastrec; 908 L_SUB(&diff, ×tamp); 909 printf("arc: adjusted timestamp by -%sms.\n", 910 mfptoms(diff.l_i, diff.l_f, 3)); 911 } 912 #endif 913 } 914 #endif 915 up->lastrec = timestamp; 916 } 917 918 } 919 920 /* Just in case we still have lots of rubbish in the buffer... */ 921 /* ...and to avoid the same timestamp being reused by mistake, */ 922 /* eg on receipt of the \r coming in on its own after the */ 923 /* timecode. */ 924 if(pp->lencode >= LENARC) { 925 #ifdef ARCRON_DEBUG 926 if(debug && (rbufp->recv_buffer[0] != '\r')) 927 { printf("arc: rubbish in pp->a_lastcode[].\n"); } 928 #endif 929 pp->lencode = 0; 930 return; 931 } 932 933 /* Append input to code buffer, avoiding overflow. */ 934 for(i = 0; i < rbufp->recv_length; i++) { 935 if(pp->lencode >= LENARC) { break; } /* Avoid overflow... */ 936 c = rbufp->recv_buffer[i]; 937 938 /* Drop trailing '\r's and drop `h' command echo totally. */ 939 if(c != '\r' && c != 'h') { pp->a_lastcode[pp->lencode++] = c; } 940 941 /* 942 If we've just put an `o' in the lastcode[0], clear the 943 timestamp in anticipation of a timecode arriving soon. 944 945 We would expect to get to process this before any of the 946 timecode arrives. 947 */ 948 if((c == 'o') && (pp->lencode == 1)) { 949 L_CLR(&(up->lastrec)); 950 #ifdef ARCRON_DEBUG 951 if(debug > 1) { printf("arc: clearing timestamp.\n"); } 952 #endif 953 } 954 } 955 956 /* Handle a quality message. */ 957 if(pp->a_lastcode[0] == 'g') { 958 int r, q; 959 960 if(pp->lencode < 3) { return; } /* Need more data... */ 961 r = (pp->a_lastcode[1] & 0x7f); /* Strip parity. */ 962 q = (pp->a_lastcode[2] & 0x7f); /* Strip parity. */ 963 if(((q & 0x70) != 0x30) || ((q & 0xf) > MAX_CLOCK_QUALITY) || 964 ((r & 0x70) != 0x30)) { 965 /* Badly formatted response. */ 966 #ifdef ARCRON_DEBUG 967 if(debug) { printf("arc: bad `g' response %2x %2x.\n", r, q); } 968 #endif 969 return; 970 } 971 if(r == '3') { /* Only use quality value whilst sync in progress. */ 972 up->quality = (q & 0xf); 973 #ifdef DEBUG 974 if(debug) { printf("arc: signal quality %d.\n", up->quality); } 975 #endif 976 } else if( /* (r == '2') && */ up->resyncing) { 977 #ifdef DEBUG 978 if(debug) 979 { 980 printf("arc: sync finished, signal quality %d: %s\n", 981 up->quality, 982 quality_action(up->quality)); 983 } 984 #endif 985 msyslog(LOG_NOTICE, 986 "ARCRON: sync finished, signal quality %d: %s", 987 up->quality, 988 quality_action(up->quality)); 989 up->resyncing = 0; /* Resync is over. */ 990 991 #ifdef ARCRON_KEEN 992 /* Clock quality dubious; resync earlier than usual. */ 993 if((up->quality == QUALITY_UNKNOWN) || 994 (up->quality < MIN_CLOCK_QUALITY_OK)) 995 { up->next_resync = current_time + RETRY_RESYNC_TIME; } 996 #endif 997 } 998 pp->lencode = 0; 999 return; 1000 } 1001 1002 /* Stop now if this is not a timecode message. */ 1003 if(pp->a_lastcode[0] != 'o') { 1004 pp->lencode = 0; 1005 refclock_report(peer, CEVNT_BADREPLY); 1006 return; 1007 } 1008 1009 /* If we don't have enough data, wait for more... */ 1010 if(pp->lencode < LENARC) { return; } 1011 1012 1013 /* WE HAVE NOW COLLECTED ONE TIMESTAMP (phew)... */ 1014 #ifdef ARCRON_DEBUG 1015 if(debug > 1) { printf("arc: NOW HAVE TIMESTAMP...\n"); } 1016 #endif 1017 1018 /* But check that we actually captured a system timestamp on it. */ 1019 if(L_ISZERO(&(up->lastrec))) { 1020 #ifdef ARCRON_DEBUG 1021 if(debug) { printf("arc: FAILED TO GET SYSTEM TIMESTAMP\n"); } 1022 #endif 1023 pp->lencode = 0; 1024 refclock_report(peer, CEVNT_BADREPLY); 1025 return; 1026 } 1027 /* 1028 Append a mark of the clock's received signal quality for the 1029 benefit of Derek Mulcahy's Tcl/Tk utility (we map the `unknown' 1030 quality value to `6' for his s/w) and terminate the string for 1031 sure. This should not go off the buffer end. 1032 */ 1033 pp->a_lastcode[pp->lencode] = ((up->quality == QUALITY_UNKNOWN) ? 1034 '6' : ('0' + up->quality)); 1035 pp->a_lastcode[pp->lencode + 1] = '\0'; /* Terminate for printf(). */ 1036 record_clock_stats(&peer->srcadr, pp->a_lastcode); 1037 1038 /* We don't use the micro-/milli- second part... */ 1039 pp->usec = 0; 1040 pp->msec = 0; 1041 1042 n = sscanf(pp->a_lastcode, "o%2d%2d%2d%1d%2d%2d%2d%1d%1d", 1043 &pp->hour, &pp->minute, &pp->second, 1044 &wday, &pp->day, &month, &pp->year, &bst, &status); 1045 1046 /* Validate format and numbers. */ 1047 if(n != 9) { 1048 #ifdef ARCRON_DEBUG 1049 /* Would expect to have caught major problems already... */ 1050 if(debug) { printf("arc: badly formatted data.\n"); } 1051 #endif 1052 refclock_report(peer, CEVNT_BADREPLY); 1053 return; 1054 } 1055 /* 1056 Validate received values at least enough to prevent internal 1057 array-bounds problems, etc. 1058 */ 1059 if((pp->hour < 0) || (pp->hour > 23) || 1060 (pp->minute < 0) || (pp->minute > 59) || 1061 (pp->second < 0) || (pp->second > 60) /*Allow for leap seconds.*/ || 1062 (wday < 1) || (wday > 7) || 1063 (pp->day < 1) || (pp->day > 31) || 1064 (month < 1) || (month > 12) || 1065 (pp->year < 0) || (pp->year > 99)) { 1066 /* Data out of range. */ 1067 refclock_report(peer, CEVNT_BADREPLY); 1068 return; 1069 } 1070 /* Check that BST/UTC bits are the complement of one another. */ 1071 if(!(bst & 2) == !(bst & 4)) { 1072 refclock_report(peer, CEVNT_BADREPLY); 1073 return; 1074 } 1075 1076 if(status & 0x8) { msyslog(LOG_NOTICE, "ARCRON: battery low"); } 1077 1078 /* Year-2000 alert! */ 1079 /* Attempt to wrap 2-digit date into sensible window. */ 1080 if(pp->year < YEAR_PIVOT) { pp->year += 100; } /* Y2KFixes */ 1081 pp->year += 1900; /* use full four-digit year */ /* Y2KFixes */ 1082 /* 1083 Attempt to do the right thing by screaming that the code will 1084 soon break when we get to the end of its useful life. What a 1085 hero I am... PLEASE FIX LEAP-YEAR AND WRAP CODE IN 209X! 1086 */ 1087 if(pp->year >= YEAR_PIVOT+2000-2 ) { /* Y2KFixes */ 1088 /*This should get attention B^> */ 1089 msyslog(LOG_NOTICE, 1090 "ARCRON: fix me! EITHER YOUR DATE IS BADLY WRONG or else I will break soon!"); 1091 } 1092 #ifdef DEBUG 1093 if(debug) { 1094 printf("arc: n=%d %02d:%02d:%02d %02d/%02d/%04d %1d %1d\n", 1095 n, 1096 pp->hour, pp->minute, pp->second, 1097 pp->day, month, pp->year, bst, status); 1098 } 1099 #endif 1100 1101 /* 1102 The status value tested for is not strictly supported by the 1103 clock spec since the value of bit 2 (0x4) is claimed to be 1104 undefined for MSF, yet does seem to indicate if the last resync 1105 was successful or not. 1106 */ 1107 pp->leap = LEAP_NOWARNING; 1108 status &= 0x7; 1109 if(status == 0x3) { 1110 if(status != up->status) 1111 { msyslog(LOG_NOTICE, "ARCRON: signal acquired"); } 1112 } else { 1113 if(status != up->status) { 1114 msyslog(LOG_NOTICE, "ARCRON: signal lost"); 1115 pp->leap = LEAP_NOTINSYNC; /* MSF clock is free-running. */ 1116 up->status = status; 1117 refclock_report(peer, CEVNT_FAULT); 1118 return; 1119 } 1120 } 1121 up->status = status; 1122 1123 pp->day += moff[month - 1]; 1124 1125 if(isleap_4(pp->year) && month > 2) { pp->day++; } /* Y2KFixes */ 1126 1127 /* Convert to UTC if required */ 1128 if(bst & 2) { 1129 pp->hour--; 1130 if (pp->hour < 0) { 1131 pp->hour = 23; 1132 pp->day--; 1133 /* If we try to wrap round the year (BST on 1st Jan), reject.*/ 1134 if(pp->day < 0) { 1135 refclock_report(peer, CEVNT_BADTIME); 1136 return; 1137 } 1138 } 1139 } 1140 1141 /* If clock signal quality is unknown, revert to default PRECISION...*/ 1142 if(up->quality == QUALITY_UNKNOWN) { peer->precision = PRECISION; } 1143 /* ...else improve precision if flag3 is set... */ 1144 else { 1145 peer->precision = ((pp->sloppyclockflag & CLK_FLAG3) ? 1146 HIGHPRECISION : PRECISION); 1147 } 1148 1149 /* Notice and log any change (eg from initial defaults) for flags. */ 1150 if(up->saved_flags != pp->sloppyclockflag) { 1151 #ifdef ARCRON_DEBUG 1152 msyslog(LOG_NOTICE, "ARCRON: flags enabled: %s%s%s%s", 1153 ((pp->sloppyclockflag & CLK_FLAG1) ? "1" : "."), 1154 ((pp->sloppyclockflag & CLK_FLAG2) ? "2" : "."), 1155 ((pp->sloppyclockflag & CLK_FLAG3) ? "3" : "."), 1156 ((pp->sloppyclockflag & CLK_FLAG4) ? "4" : ".")); 1157 /* Note effects of flags changing... */ 1158 if(debug) { 1159 printf("arc: CHOSENSAMPLES(pp) = %d.\n", CHOSENSAMPLES(pp)); 1160 printf("arc: NKEEP(pp) = %d.\n", NKEEP(pp)); 1161 printf("arc: PRECISION = %d.\n", peer->precision); 1162 } 1163 #endif 1164 up->saved_flags = pp->sloppyclockflag; 1165 } 1166 1167 /* Note time of last believable timestamp. */ 1168 pp->lastrec = up->lastrec; 1169 1170 #ifdef ARCRON_LEAPSECOND_KEEN 1171 /* Find out if a leap-second might just have happened... 1172 (ie is this the first hour of the first day of Jan or Jul?) 1173 */ 1174 if((pp->hour == 0) && 1175 (pp->day == 1) && 1176 ((month == 1) || (month == 7))) { 1177 if(possible_leap >= 0) { 1178 /* A leap may have happened, and no resync has started yet...*/ 1179 possible_leap = 1; 1180 } 1181 } else { 1182 /* Definitely not leap-second territory... */ 1183 possible_leap = 0; 1184 } 1185 #endif 1186 1187 if (!refclock_process(pp)) { 1188 refclock_report(peer, CEVNT_BADTIME); 1189 return; 1190 } 1191 refclock_receive(peer); 1192 } 1193 1194 1195 /* request_time() sends a time request to the clock with given peer. */ 1196 /* This automatically reports a fault if necessary. */ 1197 /* No data should be sent after this until arc_poll() returns. */ 1198 static void request_time P((int, struct peer *)); 1199 static void 1200 request_time( 1201 int unit, 1202 struct peer *peer 1203 ) 1204 { 1205 struct refclockproc *pp = peer->procptr; 1206 register struct arcunit *up = (struct arcunit *)pp->unitptr; 1207 #ifdef DEBUG 1208 if(debug) { printf("arc: unit %d: requesting time.\n", unit); } 1209 #endif 1210 if (!send_slow(up, pp->io.fd, "o\r")) { 1211 #ifdef ARCRON_DEBUG 1212 msyslog(LOG_NOTICE, "ARCRON: unit %d: problem sending", unit); 1213 #endif 1214 refclock_report(peer, CEVNT_FAULT); 1215 return; 1216 } 1217 pp->polls++; 1218 } 1219 1220 /* 1221 * arc_poll - called by the transmit procedure 1222 */ 1223 static void 1224 arc_poll( 1225 int unit, 1226 struct peer *peer 1227 ) 1228 { 1229 register struct arcunit *up; 1230 struct refclockproc *pp; 1231 int resync_needed; /* Should we start a resync? */ 1232 1233 pp = peer->procptr; 1234 up = (struct arcunit *)pp->unitptr; 1235 pp->lencode = 0; 1236 memset(pp->a_lastcode, 0, sizeof(pp->a_lastcode)); 1237 1238 #if 0 1239 /* Flush input. */ 1240 tcflush(pp->io.fd, TCIFLUSH); 1241 #endif 1242 1243 /* Resync if our next scheduled resync time is here or has passed. */ 1244 resync_needed = (up->next_resync <= current_time); 1245 1246 #ifdef ARCRON_LEAPSECOND_KEEN 1247 /* 1248 Try to catch a potential leap-second insertion or deletion quickly. 1249 1250 In addition to the normal NTP fun of clocks that don't report 1251 leap-seconds spooking their hosts, this clock does not even 1252 sample the radio sugnal the whole time, so may miss a 1253 leap-second insertion or deletion for up to a whole sample 1254 time. 1255 1256 To try to minimise this effect, if in the first few minutes of 1257 the day immediately following a leap-second-insertion point 1258 (ie in the first hour of the first day of the first and sixth 1259 months), and if the last resync was in the previous day, and a 1260 resync is not already in progress, resync the clock 1261 immediately. 1262 1263 */ 1264 if((possible_leap > 0) && /* Must be 00:XX 01/0{1,7}/XXXX. */ 1265 (!up->resyncing)) { /* No resync in progress yet. */ 1266 resync_needed = 1; 1267 possible_leap = -1; /* Prevent multiple resyncs. */ 1268 msyslog(LOG_NOTICE,"ARCRON: unit %d: checking for leap second",unit); 1269 } 1270 #endif 1271 1272 /* Do a resync if required... */ 1273 if(resync_needed) { 1274 /* First, reset quality value to `unknown' so we can detect */ 1275 /* when a quality message has been responded to by this */ 1276 /* being set to some other value. */ 1277 up->quality = QUALITY_UNKNOWN; 1278 1279 /* Note that we are resyncing... */ 1280 up->resyncing = 1; 1281 1282 /* Now actually send the resync command and an immediate poll. */ 1283 #ifdef DEBUG 1284 if(debug) { printf("arc: sending resync command (h\\r).\n"); } 1285 #endif 1286 msyslog(LOG_NOTICE, "ARCRON: unit %d: sending resync command", unit); 1287 send_slow(up, pp->io.fd, "h\r"); 1288 1289 /* Schedule our next resync... */ 1290 up->next_resync = current_time + DEFAULT_RESYNC_TIME; 1291 1292 /* Drop through to request time if appropriate. */ 1293 } 1294 1295 /* If clock quality is too poor to trust, indicate a fault. */ 1296 /* If quality is QUALITY_UNKNOWN and ARCRON_KEEN is defined,*/ 1297 /* we'll cross our fingers and just hope that the thing */ 1298 /* synced so quickly we did not catch it---we'll */ 1299 /* double-check the clock is OK elsewhere. */ 1300 if( 1301 #ifdef ARCRON_KEEN 1302 (up->quality != QUALITY_UNKNOWN) && 1303 #else 1304 (up->quality == QUALITY_UNKNOWN) || 1305 #endif 1306 (up->quality < MIN_CLOCK_QUALITY_OK)) { 1307 #ifdef DEBUG 1308 if(debug) { 1309 printf("arc: clock quality %d too poor.\n", up->quality); 1310 } 1311 #endif 1312 refclock_report(peer, CEVNT_FAULT); 1313 return; 1314 } 1315 /* This is the normal case: request a timestamp. */ 1316 request_time(unit, peer); 1317 } 1318 1319 #else 1320 int refclock_arc_bs; 1321 #endif 1322