xref: /freebsd/contrib/ntp/ntpd/ntp_timer.c (revision bd66c1b43e33540205dbc1187c2f2a15c58b57ba)
1 /*
2  * ntp_timer.c - event timer support routines
3  */
4 #ifdef HAVE_CONFIG_H
5 # include <config.h>
6 #endif
7 
8 #include "ntp_machine.h"
9 #include "ntpd.h"
10 #include "ntp_stdlib.h"
11 #include "ntp_calendar.h"
12 #include "ntp_leapsec.h"
13 
14 #if defined(HAVE_IO_COMPLETION_PORT)
15 # include "ntp_iocompletionport.h"
16 # include "ntp_timer.h"
17 #endif
18 
19 #include <stdio.h>
20 #include <signal.h>
21 #ifdef HAVE_SYS_SIGNAL_H
22 # include <sys/signal.h>
23 #endif
24 #ifdef HAVE_UNISTD_H
25 # include <unistd.h>
26 #endif
27 
28 #ifdef KERNEL_PLL
29 #include "ntp_syscall.h"
30 #endif /* KERNEL_PLL */
31 
32 #ifdef AUTOKEY
33 #include <openssl/rand.h>
34 #endif	/* AUTOKEY */
35 
36 
37 /* TC_ERR represents the timer_create() error return value. */
38 #ifdef SYS_VXWORKS
39 #define	TC_ERR	ERROR
40 #else
41 #define	TC_ERR	(-1)
42 #endif
43 
44 
45 static void check_leapsec(u_int32, const time_t*, int/*BOOL*/);
46 
47 /*
48  * These routines provide support for the event timer.  The timer is
49  * implemented by a signal routine which sets a flag once every
50  * second, and a timer routine which is called when the mainline code
51  * gets around to seeing the flag.  The timer routine dispatches the
52  * clock adjustment code if its time has come, then searches the timer
53  * queue for expiries which are dispatched to the transmit procedure.
54  * Finally, we call the hourly procedure to do cleanup and print a
55  * message.
56  */
57 
58 /*
59  * Initializing flag.  All async routines watch this and only do their
60  * thing when it is clear.
61  */
62 int initializing;
63 
64 /*
65  * Alarm flag. The mainline code imports this.
66  */
67 volatile int alarm_flag;
68 
69 /*
70  * The counters and timeouts
71  */
72 	u_long endpt_scan_timer;	/* interface update timer */
73 static	u_long adjust_timer;	/* second timer */
74 static	u_long stats_timer;	/* stats timer */
75 static	u_long leapf_timer;	/* Report leapfile problems once/day */
76 static	u_long huffpuff_timer;	/* huff-n'-puff timer */
77 static	u_long worker_idle_timer;/* next check for idle intres */
78 int	endpt_scan_period;	/* init_io() sets def. 301s */
79 u_long	leapsec;		/* seconds to next leap (proximity class) */
80 int	leapdif;		/* TAI difference step at next leap second*/
81 u_long	orphwait; 		/* orphan wait time */
82 #ifdef AUTOKEY
83 static	u_long revoke_timer;	/* keys revoke timer */
84 static	u_long keys_timer;	/* session key timer */
85 u_char	sys_revoke = KEY_REVOKE; /* keys revoke timeout (log2 s) */
86 u_char	sys_automax = NTP_AUTOMAX; /* key list timeout (log2 s) */
87 #endif	/* AUTOKEY */
88 
89 /*
90  * Statistics counter for the interested.
91  */
92 volatile u_long alarm_overflow;
93 
94 u_long current_time;		/* seconds since startup */
95 
96 /*
97  * Stats.  Number of overflows and number of calls to transmit().
98  */
99 u_long timer_timereset;
100 u_long timer_overflows;
101 u_long timer_xmtcalls;
102 
103 #if defined(VMS)
104 static int vmstimer[2]; 	/* time for next timer AST */
105 static int vmsinc[2];		/* timer increment */
106 #endif /* VMS */
107 
108 #ifdef SYS_WINNT
109 HANDLE WaitableTimerHandle;
110 #else
111 static	RETSIGTYPE alarming (int);
112 #endif /* SYS_WINNT */
113 
114 #if !defined(VMS)
115 # if !defined SYS_WINNT || defined(SYS_CYGWIN32)
116 #  ifdef HAVE_TIMER_CREATE
117 static timer_t timer_id;
118 typedef struct itimerspec intervaltimer;
119 #   define	itv_frac	tv_nsec
120 #  else
121 typedef struct itimerval intervaltimer;
122 #   define	itv_frac	tv_usec
123 #  endif
124 intervaltimer itimer;
125 # endif
126 #endif
127 
128 #if !defined(SYS_WINNT) && !defined(VMS)
129 void	set_timer_or_die(const intervaltimer *);
130 #endif
131 
132 
133 #if !defined(SYS_WINNT) && !defined(VMS)
134 void
135 set_timer_or_die(
136 	const intervaltimer *	ptimer
137 	)
138 {
139 	const char *	setfunc;
140 	int		rc;
141 
142 # ifdef HAVE_TIMER_CREATE
143 	setfunc = "timer_settime";
144 	rc = timer_settime(timer_id, 0, &itimer, NULL);
145 # else
146 	setfunc = "setitimer";
147 	rc = setitimer(ITIMER_REAL, &itimer, NULL);
148 # endif
149 	if (-1 == rc) {
150 		msyslog(LOG_ERR, "interval timer %s failed, %m",
151 			setfunc);
152 		exit(1);
153 	}
154 }
155 #endif	/* !SYS_WINNT && !VMS */
156 
157 
158 /*
159  * reinit_timer - reinitialize interval timer after a clock step.
160  */
161 void
162 reinit_timer(void)
163 {
164 #if !defined(SYS_WINNT) && !defined(VMS)
165 	ZERO(itimer);
166 # ifdef HAVE_TIMER_CREATE
167 	timer_gettime(timer_id, &itimer);
168 # else
169 	getitimer(ITIMER_REAL, &itimer);
170 # endif
171 	if (itimer.it_value.tv_sec < 0 ||
172 	    itimer.it_value.tv_sec > (1 << EVENT_TIMEOUT))
173 		itimer.it_value.tv_sec = (1 << EVENT_TIMEOUT);
174 	if (itimer.it_value.itv_frac < 0)
175 		itimer.it_value.itv_frac = 0;
176 	if (0 == itimer.it_value.tv_sec &&
177 	    0 == itimer.it_value.itv_frac)
178 		itimer.it_value.tv_sec = (1 << EVENT_TIMEOUT);
179 	itimer.it_interval.tv_sec = (1 << EVENT_TIMEOUT);
180 	itimer.it_interval.itv_frac = 0;
181 	set_timer_or_die(&itimer);
182 # endif /* VMS */
183 }
184 
185 
186 /*
187  * init_timer - initialize the timer data structures
188  */
189 void
190 init_timer(void)
191 {
192 	/*
193 	 * Initialize...
194 	 */
195 	alarm_flag = FALSE;
196 	alarm_overflow = 0;
197 	adjust_timer = 1;
198 	stats_timer = SECSPERHR;
199 	leapf_timer = SECSPERDAY;
200 	huffpuff_timer = 0;
201 	endpt_scan_timer = 0;
202 	current_time = 0;
203 	timer_overflows = 0;
204 	timer_xmtcalls = 0;
205 	timer_timereset = 0;
206 
207 #ifndef SYS_WINNT
208 	/*
209 	 * Set up the alarm interrupt.	The first comes 2**EVENT_TIMEOUT
210 	 * seconds from now and they continue on every 2**EVENT_TIMEOUT
211 	 * seconds.
212 	 */
213 # ifndef VMS
214 #  ifdef HAVE_TIMER_CREATE
215 	if (TC_ERR == timer_create(CLOCK_REALTIME, NULL, &timer_id)) {
216 		msyslog(LOG_ERR, "timer_create failed, %m");
217 		exit(1);
218 	}
219 #  endif
220 	signal_no_reset(SIGALRM, alarming);
221 	itimer.it_interval.tv_sec =
222 		itimer.it_value.tv_sec = (1 << EVENT_TIMEOUT);
223 	itimer.it_interval.itv_frac = itimer.it_value.itv_frac = 0;
224 	set_timer_or_die(&itimer);
225 # else	/* VMS follows */
226 	vmsinc[0] = 10000000;		/* 1 sec */
227 	vmsinc[1] = 0;
228 	lib$emul(&(1<<EVENT_TIMEOUT), &vmsinc, &0, &vmsinc);
229 
230 	sys$gettim(&vmstimer);	/* that's "now" as abstime */
231 
232 	lib$addx(&vmsinc, &vmstimer, &vmstimer);
233 	sys$setimr(0, &vmstimer, alarming, alarming, 0);
234 # endif	/* VMS */
235 #else	/* SYS_WINNT follows */
236 	/*
237 	 * Set up timer interrupts for every 2**EVENT_TIMEOUT seconds
238 	 * Under Windows/NT,
239 	 */
240 
241 	WaitableTimerHandle = CreateWaitableTimer(NULL, FALSE, NULL);
242 	if (WaitableTimerHandle == NULL) {
243 		msyslog(LOG_ERR, "CreateWaitableTimer failed: %m");
244 		exit(1);
245 	}
246 	else {
247 		DWORD		Period;
248 		LARGE_INTEGER	DueTime;
249 		BOOL		rc;
250 
251 		Period = (1 << EVENT_TIMEOUT) * 1000;
252 		DueTime.QuadPart = Period * 10000ll;
253 		rc = SetWaitableTimer(WaitableTimerHandle, &DueTime,
254 				      Period, NULL, NULL, FALSE);
255 		if (!rc) {
256 			msyslog(LOG_ERR, "SetWaitableTimer failed: %m");
257 			exit(1);
258 		}
259 	}
260 
261 #endif	/* SYS_WINNT */
262 }
263 
264 
265 /*
266  * intres_timeout_req(s) is invoked in the parent to schedule an idle
267  * timeout to fire in s seconds, if not reset earlier by a call to
268  * intres_timeout_req(0), which clears any pending timeout.  When the
269  * timeout expires, worker_idle_timer_fired() is invoked (again, in the
270  * parent).
271  *
272  * sntp and ntpd each provide implementations adapted to their timers.
273  */
274 void
275 intres_timeout_req(
276 	u_int	seconds		/* 0 cancels */
277 	)
278 {
279 #if defined(HAVE_DROPROOT) && defined(NEED_EARLY_FORK)
280 	if (droproot) {
281 		worker_idle_timer = 0;
282 		return;
283 	}
284 #endif
285 	if (0 == seconds) {
286 		worker_idle_timer = 0;
287 		return;
288 	}
289 	worker_idle_timer = current_time + seconds;
290 }
291 
292 
293 /*
294  * timer - event timer
295  */
296 void
297 timer(void)
298 {
299 	struct peer* p;
300 	struct peer* next_peer;
301 	l_fp		now;
302 	time_t		tnow;
303 
304 	/*
305 	 * The basic timerevent is one second.  This is used to adjust the
306 	 * system clock in time and frequency, implement the kiss-o'-death
307 	 * function and the association polling function.
308 	 */
309 	current_time++;
310 	if (adjust_timer <= current_time) {
311 		adjust_timer += 1;
312 		adj_host_clock();
313 #ifdef REFCLOCK
314 		for (p = peer_list; p != NULL; p = next_peer) {
315 			next_peer = p->p_link;
316 			if (FLAG_REFCLOCK & p->flags)
317 				refclock_timer(p);
318 		}
319 #endif /* REFCLOCK */
320 	}
321 
322 	/*
323 	 * Now dispatch any peers whose event timer has expired. Be
324 	 * careful here, since the peer structure might go away as the
325 	 * result of the call.
326 	 */
327 	for (p = peer_list; p != NULL; p = next_peer) {
328 		next_peer = p->p_link;
329 
330 		/*
331 		 * Restrain the non-burst packet rate not more
332 		 * than one packet every 16 seconds. This is
333 		 * usually tripped using iburst and minpoll of
334 		 * 128 s or less.
335 		 */
336 		if (p->throttle > 0) {
337 			p->throttle--;
338 		}
339 		if (p->nextdate <= current_time) {
340 #ifdef REFCLOCK
341 			if (FLAG_REFCLOCK & p->flags) {
342 				refclock_transmit(p);
343 			} else
344 #endif	/* REFCLOCK */
345 			{
346 				transmit(p);
347 			}
348 		}
349 	}
350 
351 	/*
352 	 * Orphan mode is active when enabled and when no servers less
353 	 * than the orphan stratum are available. A server with no other
354 	 * synchronization source is an orphan. It shows offset zero and
355 	 * reference ID the loopback address.
356 	 *
357 	 * [bug 3644] If the orphan stratum is >= STRATUM_UNSPEC, we
358 	 * have to do it a bit different. 'clock_select()' simply
359 	 * tiptoed home, but since we're unsync'd and have no peer, we
360 	 * should eventually declare we're out of sync. Otherwise we
361 	 * would persistently claim we're good, and we're everything but
362 	 * that...
363 	 *
364 	 * XXX: do we want to log an event about this?
365 	 */
366 	if (sys_peer == NULL && current_time > orphwait) {
367 		if (sys_orphan < STRATUM_UNSPEC) {
368 			if (sys_leap == LEAP_NOTINSYNC) {
369 				set_sys_leap(LEAP_NOWARNING);
370 #ifdef AUTOKEY
371 				if (crypto_flags)
372 					crypto_update();
373 #endif	/* AUTOKEY */
374 			}
375 			sys_stratum = (u_char)sys_orphan;
376 		}
377 		else {
378 			if (sys_leap != LEAP_NOTINSYNC) {
379 				set_sys_leap(LEAP_NOTINSYNC);
380 				msyslog(LOG_WARNING, "%s",
381 					"no peer for too long, server running free now");
382 			}
383 			sys_stratum = STRATUM_UNSPEC;
384 		}
385 		if (sys_stratum > 1)
386 			sys_refid = htonl(LOOPBACKADR);
387 		else
388 			memcpy(&sys_refid, "ORPH", 4);
389 		sys_offset = 0;
390 		sys_rootdelay = 0;
391 		sys_rootdisp = 0;
392 	}
393 
394 	get_systime(&now);
395 	time(&tnow);
396 
397 	/*
398 	 * Leapseconds. Get time and defer to worker if either something
399 	 * is imminent or every 8th second.
400 	 */
401 	if (leapsec > LSPROX_NOWARN || 0 == (current_time & 7))
402 		check_leapsec( now.l_ui
403 			     , &tnow
404 			     , (sys_leap == LEAP_NOTINSYNC));
405 	if (sys_leap != LEAP_NOTINSYNC) {
406 		if (leapsec >= LSPROX_ANNOUNCE && leapdif) {
407 			if (leapdif > 0) {
408 				set_sys_leap(LEAP_ADDSECOND);
409 			} else {
410 				set_sys_leap(LEAP_DELSECOND);
411 			}
412 		} else {
413 			set_sys_leap(LEAP_NOWARNING);
414 		}
415 	}
416 
417 	/*
418 	 * Update huff-n'-puff filter.
419 	 */
420 	if (huffpuff_timer <= current_time) {
421 		huffpuff_timer += HUFFPUFF;
422 		huffpuff();
423 	}
424 
425 #ifdef AUTOKEY
426 	/*
427 	 * Garbage collect expired keys.
428 	 */
429 	if (keys_timer <= current_time) {
430 		keys_timer += (1UL << sys_automax);
431 		auth_agekeys();
432 	}
433 
434 	/*
435 	 * Generate new private value. This causes all associations
436 	 * to regenerate cookies.
437 	 */
438 	if (revoke_timer && revoke_timer <= current_time) {
439 		revoke_timer += (1UL << sys_revoke);
440 		RAND_bytes((u_char *)&sys_private, sizeof(sys_private));
441 	}
442 #endif	/* AUTOKEY */
443 
444 	/*
445 	 * Network interface rescan timer
446 	 */
447 	if (endpt_scan_timer && endpt_scan_timer <= current_time) {
448 		if (no_periodic_scan) {
449 			endpt_scan_timer = 0;
450 			DPRINTF(2, ("timer: network interface rescan disabled\n"));
451 		} else {
452 			endpt_scan_timer =   current_time
453 					   + endpt_scan_period;
454 			DPRINTF(2, ("timer: network interface rescan in %d seconds\n", endpt_scan_period));
455 		}
456 		interface_update(NULL, NULL);
457 	}
458 
459 	if (worker_idle_timer && worker_idle_timer <= current_time) {
460 		worker_idle_timer_fired();
461 	}
462 	/*
463 	 * Finally, write hourly stats and do the hourly
464 	 * and daily leapfile checks.
465 	 */
466 	if (stats_timer <= current_time) {
467 		stats_timer += SECSPERHR;
468 		write_stats();
469 		if (leapf_timer <= current_time) {
470 			leapf_timer += SECSPERDAY;
471 			check_leap_file(TRUE, now.l_ui, &tnow);
472 		} else {
473 			check_leap_file(FALSE, now.l_ui, &tnow);
474 		}
475 	}
476 }
477 
478 
479 #ifndef SYS_WINNT
480 /*
481  * alarming - tell the world we've been alarmed
482  */
483 static RETSIGTYPE
484 alarming(
485 	int sig
486 	)
487 {
488 # ifdef DEBUG
489 	const char *msg = "alarming: initializing TRUE\n";
490 # endif
491 
492 	if (!initializing) {
493 		if (alarm_flag) {
494 			alarm_overflow++;
495 # ifdef DEBUG
496 			msg = "alarming: overflow\n";
497 # endif
498 		} else {
499 # ifndef VMS
500 			alarm_flag++;
501 # else
502 			/* VMS AST routine, increment is no good */
503 			alarm_flag = 1;
504 # endif
505 # ifdef DEBUG
506 			msg = "alarming: normal\n";
507 # endif
508 		}
509 	}
510 # ifdef VMS
511 	lib$addx(&vmsinc, &vmstimer, &vmstimer);
512 	sys$setimr(0, &vmstimer, alarming, alarming, 0);
513 # endif
514 # ifdef DEBUG
515 	if (debug >= 4)
516 		(void)(-1 == write(1, msg, strlen(msg)));
517 # endif
518 }
519 #endif /* SYS_WINNT */
520 
521 
522 /*
523  * timer_clr_stats - clear timer module stat counters
524  */
525 void
526 timer_clr_stats(void)
527 {
528 	timer_overflows = 0;
529 	timer_xmtcalls = 0;
530 	timer_timereset = current_time;
531 }
532 
533 
534 static void
535 check_leap_sec_in_progress(
536 	const leap_result_t *lsdata
537 	)
538 {
539 	int prv_leap_sec_in_progress = leap_sec_in_progress;
540 
541 	leap_sec_in_progress = lsdata->tai_diff && (lsdata->ddist < 3);
542 
543 	/* if changed we have to update the leap bits sent to clients */
544 	if (leap_sec_in_progress != prv_leap_sec_in_progress) {
545 		set_sys_leap(sys_leap);
546 	}
547 }
548 
549 
550 static void
551 check_leapsec(
552 	u_int32		now,
553 	const time_t *	tpiv,
554 	int/*BOOL*/	reset
555 	)
556 {
557 	static const char leapmsg_p_step[] =
558 	    "Positive leap second, stepped backward.";
559 	static const char leapmsg_p_slew[] =
560 	    "Positive leap second, no step correction. "
561 	    "System clock will be inaccurate for a long time.";
562 
563 	static const char leapmsg_n_step[] =
564 	    "Negative leap second, stepped forward.";
565 	static const char leapmsg_n_slew[] =
566 	    "Negative leap second, no step correction. "
567 	    "System clock will be inaccurate for a long time.";
568 
569 	leap_result_t	lsdata;
570 	u_int32		lsprox;
571 #ifdef AUTOKEY
572 	int/*BOOL*/	update_autokey = FALSE;
573 #endif
574 
575 #ifndef SYS_WINNT  /* WinNT port has its own leap second handling */
576 # ifdef KERNEL_PLL
577 	leapsec_electric(pll_control && kern_enable);
578 # else
579 	leapsec_electric(0);
580 # endif
581 #endif	/* !SYS_WINNT */
582 
583 #ifdef LEAP_SMEAR
584 	leap_smear.enabled = leap_smear_intv != 0;
585 #endif
586 	if (reset) {
587 		lsprox = LSPROX_NOWARN;
588 		leapsec_reset_frame();
589 		ZERO(lsdata);
590 	} else {
591 		int fired;
592 
593 		fired = leapsec_query(&lsdata, now, tpiv);
594 
595 		DPRINTF(3, ("*** leapsec_query: fired %i, now %u (0x%08X),"
596 			    " tai_diff %i, ddist %u\n",
597 			    fired, now, now, lsdata.tai_diff, lsdata.ddist));
598 
599 #ifdef LEAP_SMEAR
600 		leap_smear.in_progress = FALSE;
601 		leap_smear.doffset = 0.0;
602 
603 		if (leap_smear.enabled) {
604 			if (lsdata.tai_diff) {
605 				if (0 == leap_smear.interval) {
606 					leap_smear.interval = leap_smear_intv;
607 					leap_smear.intv_end = lsdata.ttime.Q_s;
608 					leap_smear.intv_start = leap_smear.intv_end - leap_smear.interval;
609 					DPRINTF(1, ("*** leapsec_query: setting leap_smear interval %li, begin %.0f, end %.0f\n",
610 					leap_smear.interval, leap_smear.intv_start, leap_smear.intv_end));
611 				}
612 			} else {
613 				if (leap_smear.interval) {
614 					DPRINTF(1, ("*** leapsec_query: clearing leap_smear interval\n"));
615 					leap_smear.interval = 0;
616 				}
617 			}
618 
619 			if (leap_smear.interval) {
620 				double dtemp = now;
621 
622 				if (dtemp >= leap_smear.intv_start && dtemp <= leap_smear.intv_end) {
623 					double leap_smear_time = dtemp - leap_smear.intv_start;
624 #if 0
625 					/*  linear interpolation */
626 					leap_smear.doffset = -(leap_smear_time * lsdata.tai_diff / leap_smear.interval);
627 #else
628 					/* Google approach : lie(t) = (1.0 - cos(pi * t / w)) / 2.0 */
629 					leap_smear.doffset = -((double) lsdata.tai_diff - cos( M_PI * leap_smear_time / leap_smear.interval)) / 2.0;
630 #endif
631 					/*
632 					 * TODO see if we're inside an inserted leap second, so we need to compute
633 					 * leap_smear.doffset = 1.0 - leap_smear.doffset
634 					 */
635 					leap_smear.in_progress = TRUE;
636 					DPRINTF(1, ("*** leapsec_query: [%.0f:%.0f] (%li), now %u (%.0f), smear offset %.6f ms\n",
637 					leap_smear.intv_start, leap_smear.intv_end, leap_smear.interval,
638 					now, leap_smear_time, leap_smear.doffset));
639 
640 				}
641 			}
642 		} else {
643 			leap_smear.interval = 0;
644 		}
645 		/*
646 		 * Update the current leap smear offset, eventually 0.0 if outside smear interval.
647 		 */
648 		DTOLFP(leap_smear.doffset, &leap_smear.offset);
649 #endif	/* LEAP_SMEAR */
650 
651 		if (fired) {
652 			/* Full hit. Eventually step the clock, but always
653 			 * announce the leap event has happened.
654 			 */
655 			const char *leapmsg = NULL;
656 			double      lswarp  = lsdata.warped;
657 			if (lswarp < 0.0) {
658 				if (clock_max_back > 0.0 &&
659 				    clock_max_back < -lswarp) {
660 					step_systime(lswarp);
661 					leapmsg = leapmsg_p_step;
662 				} else {
663 					leapmsg = leapmsg_p_slew;
664 				}
665 			} else 	if (lswarp > 0.0) {
666 				if (clock_max_fwd > 0.0 &&
667 				    clock_max_fwd < lswarp) {
668 					step_systime(lswarp);
669 					leapmsg = leapmsg_n_step;
670 				} else {
671 					leapmsg = leapmsg_n_slew;
672 				}
673 			}
674 			if (leapmsg) {
675 				msyslog(LOG_NOTICE, "%s", leapmsg);
676 			}
677 			report_event(EVNT_LEAP, NULL, NULL);
678 #ifdef AUTOKEY
679 			update_autokey = TRUE;
680 #endif
681 			lsprox  = LSPROX_NOWARN;
682 			leapsec = LSPROX_NOWARN;
683 			sys_tai = lsdata.tai_offs;
684 		} else {
685 #ifdef AUTOKEY
686 			update_autokey = (sys_tai != (u_int)lsdata.tai_offs);
687 #endif
688 			lsprox  = lsdata.proximity;
689 			sys_tai = lsdata.tai_offs;
690 		}
691 	}
692 
693 	/* We guard against panic alarming during the red alert phase.
694 	 * Strange and evil things might happen if we go from stone cold
695 	 * to piping hot in one step. If things are already that wobbly,
696 	 * we let the normal clock correction take over, even if a jump
697 	 * is involved.
698 	 * Also make sure the alarming events are edge-triggered, that is,
699 	 * created only when the threshold is crossed.
700 	 */
701 	if (   (leapsec > 0 || lsprox < LSPROX_ALERT)
702 	    && leapsec < lsprox) {
703 		if (  leapsec < LSPROX_SCHEDULE
704 		   && lsprox >= LSPROX_SCHEDULE) {
705 			if (lsdata.dynamic)
706 				report_event(PEVNT_ARMED, sys_peer, NULL);
707 			else
708 				report_event(EVNT_ARMED, NULL, NULL);
709 		}
710 		leapsec = lsprox;
711 	}
712 	if (leapsec > lsprox) {
713 		if (   leapsec >= LSPROX_SCHEDULE
714 		    && lsprox   < LSPROX_SCHEDULE) {
715 			report_event(EVNT_DISARMED, NULL, NULL);
716 		}
717 		leapsec = lsprox;
718 	}
719 
720 	if (leapsec >= LSPROX_SCHEDULE) {
721 		leapdif = lsdata.tai_diff;
722 	} else {
723 		leapdif = 0;
724 	}
725 	check_leap_sec_in_progress(&lsdata);
726 
727 #ifdef AUTOKEY
728 	if (update_autokey) {
729 		crypto_update_taichange();
730 	}
731 #endif
732 }
733