1 /* 2 * ntp_proto.c - NTP version 4 protocol machinery 3 * 4 * ATTENTION: Get approval from Dave Mills on all changes to this file! 5 * 6 */ 7 #ifdef HAVE_CONFIG_H 8 #include <config.h> 9 #endif 10 11 #include "ntpd.h" 12 #include "ntp_stdlib.h" 13 #include "ntp_unixtime.h" 14 #include "ntp_control.h" 15 #include "ntp_string.h" 16 #include "ntp_leapsec.h" 17 #include "refidsmear.h" 18 #include "lib_strbuf.h" 19 20 #include <stdio.h> 21 #ifdef HAVE_LIBSCF_H 22 #include <libscf.h> 23 #endif 24 #ifdef HAVE_UNISTD_H 25 #include <unistd.h> 26 #endif 27 28 /* [Bug 3031] define automatic broadcastdelay cutoff preset */ 29 #ifndef BDELAY_DEFAULT 30 # define BDELAY_DEFAULT (-0.050) 31 #endif 32 33 /* 34 * This macro defines the authentication state. If x is 1 authentication 35 * is required; othewise it is optional. 36 */ 37 #define AUTH(x, y) ((x) ? (y) == AUTH_OK \ 38 : (y) == AUTH_OK || (y) == AUTH_NONE) 39 40 #define AUTH_NONE 0 /* authentication not required */ 41 #define AUTH_OK 1 /* authentication OK */ 42 #define AUTH_ERROR 2 /* authentication error */ 43 #define AUTH_CRYPTO 3 /* crypto_NAK */ 44 45 /* 46 * Set up Kiss Code values 47 */ 48 49 enum kiss_codes { 50 NOKISS, /* No Kiss Code */ 51 RATEKISS, /* Rate limit Kiss Code */ 52 DENYKISS, /* Deny Kiss */ 53 RSTRKISS, /* Restricted Kiss */ 54 XKISS, /* Experimental Kiss */ 55 UNKNOWNKISS /* Unknown Kiss Code */ 56 }; 57 58 enum nak_error_codes { 59 NONAK, /* No NAK seen */ 60 INVALIDNAK, /* NAK cannot be used */ 61 VALIDNAK /* NAK is valid */ 62 }; 63 64 /* 65 * traffic shaping parameters 66 */ 67 #define NTP_IBURST 6 /* packets in iburst */ 68 #define RESP_DELAY 1 /* refclock burst delay (s) */ 69 70 /* 71 * pool soliciting restriction duration (s) 72 */ 73 #define POOL_SOLICIT_WINDOW 8 74 75 /* 76 * peer_select groups statistics for a peer used by clock_select() and 77 * clock_cluster(). 78 */ 79 typedef struct peer_select_tag { 80 struct peer * peer; 81 double synch; /* sync distance */ 82 double error; /* jitter */ 83 double seljit; /* selection jitter */ 84 } peer_select; 85 86 /* 87 * System variables are declared here. Unless specified otherwise, all 88 * times are in seconds. 89 */ 90 u_char sys_leap; /* system leap indicator, use set_sys_leap() to change this */ 91 u_char xmt_leap; /* leap indicator sent in client requests, set up by set_sys_leap() */ 92 u_char sys_stratum; /* system stratum */ 93 s_char sys_precision; /* local clock precision (log2 s) */ 94 double sys_rootdelay; /* roundtrip delay to primary source */ 95 double sys_rootdisp; /* dispersion to primary source */ 96 u_int32 sys_refid; /* reference id (network byte order) */ 97 l_fp sys_reftime; /* last update time */ 98 struct peer *sys_peer; /* current peer */ 99 100 #ifdef LEAP_SMEAR 101 struct leap_smear_info leap_smear; 102 #endif 103 int leap_sec_in_progress; 104 105 /* 106 * Rate controls. Leaky buckets are used to throttle the packet 107 * transmission rates in order to protect busy servers such as at NIST 108 * and USNO. There is a counter for each association and another for KoD 109 * packets. The association counter decrements each second, but not 110 * below zero. Each time a packet is sent the counter is incremented by 111 * a configurable value representing the average interval between 112 * packets. A packet is delayed as long as the counter is greater than 113 * zero. Note this does not affect the time value computations. 114 */ 115 /* 116 * Nonspecified system state variables 117 */ 118 int sys_bclient; /* broadcast client enable */ 119 double sys_bdelay; /* broadcast client default delay */ 120 int sys_authenticate; /* requre authentication for config */ 121 l_fp sys_authdelay; /* authentication delay */ 122 double sys_offset; /* current local clock offset */ 123 double sys_mindisp = MINDISPERSE; /* minimum distance (s) */ 124 double sys_maxdist = MAXDISTANCE; /* selection threshold */ 125 double sys_jitter; /* system jitter */ 126 u_long sys_epoch; /* last clock update time */ 127 static double sys_clockhop; /* clockhop threshold */ 128 static int leap_vote_ins; /* leap consensus for insert */ 129 static int leap_vote_del; /* leap consensus for delete */ 130 keyid_t sys_private; /* private value for session seed */ 131 int sys_manycastserver; /* respond to manycast client pkts */ 132 int ntp_mode7; /* respond to ntpdc (mode7) */ 133 int peer_ntpdate; /* active peers in ntpdate mode */ 134 int sys_survivors; /* truest of the truechimers */ 135 char *sys_ident = NULL; /* identity scheme */ 136 137 /* 138 * TOS and multicast mapping stuff 139 */ 140 int sys_floor = 0; /* cluster stratum floor */ 141 u_char sys_bcpollbstep = 0; /* Broadcast Poll backstep gate */ 142 int sys_ceiling = STRATUM_UNSPEC - 1; /* cluster stratum ceiling */ 143 int sys_minsane = 1; /* minimum candidates */ 144 int sys_minclock = NTP_MINCLOCK; /* minimum candidates */ 145 int sys_maxclock = NTP_MAXCLOCK; /* maximum candidates */ 146 int sys_cohort = 0; /* cohort switch */ 147 int sys_orphan = STRATUM_UNSPEC + 1; /* orphan stratum */ 148 int sys_orphwait = NTP_ORPHWAIT; /* orphan wait */ 149 int sys_beacon = BEACON; /* manycast beacon interval */ 150 u_int sys_ttlmax; /* max ttl mapping vector index */ 151 u_char sys_ttl[MAX_TTL]; /* ttl mapping vector */ 152 153 /* 154 * Statistics counters - first the good, then the bad 155 */ 156 u_long sys_stattime; /* elapsed time */ 157 u_long sys_received; /* packets received */ 158 u_long sys_processed; /* packets for this host */ 159 u_long sys_newversion; /* current version */ 160 u_long sys_oldversion; /* old version */ 161 u_long sys_restricted; /* access denied */ 162 u_long sys_badlength; /* bad length or format */ 163 u_long sys_badauth; /* bad authentication */ 164 u_long sys_declined; /* declined */ 165 u_long sys_limitrejected; /* rate exceeded */ 166 u_long sys_kodsent; /* KoD sent */ 167 168 /* 169 * Mechanism knobs: how soon do we peer_clear() or unpeer()? 170 * 171 * The default way is "on-receipt". If this was a packet from a 172 * well-behaved source, on-receipt will offer the fastest recovery. 173 * If this was from a DoS attack, the default way makes it easier 174 * for a bad-guy to DoS us. So look and see what bites you harder 175 * and choose according to your environment. 176 */ 177 int peer_clear_digest_early = 1; /* bad digest (TEST5) and Autokey */ 178 int unpeer_crypto_early = 1; /* bad crypto (TEST9) */ 179 int unpeer_crypto_nak_early = 1; /* crypto_NAK (TEST5) */ 180 int unpeer_digest_early = 1; /* bad digest (TEST5) */ 181 182 int dynamic_interleave = DYNAMIC_INTERLEAVE; /* Bug 2978 mitigation */ 183 184 int kiss_code_check(u_char hisleap, u_char hisstratum, u_char hismode, u_int32 refid); 185 enum nak_error_codes valid_NAK(struct peer *peer, struct recvbuf *rbufp, u_char hismode); 186 static double root_distance (struct peer *); 187 static void clock_combine (peer_select *, int, int); 188 static void peer_xmit (struct peer *); 189 static void fast_xmit (struct recvbuf *, int, keyid_t, int); 190 static void pool_xmit (struct peer *); 191 static void clock_update (struct peer *); 192 static void measure_precision(void); 193 static double measure_tick_fuzz(void); 194 static int local_refid (struct peer *); 195 static int peer_unfit (struct peer *); 196 #ifdef AUTOKEY 197 static int group_test (char *, char *); 198 #endif /* AUTOKEY */ 199 #ifdef WORKER 200 void pool_name_resolved (int, int, void *, const char *, 201 const char *, const struct addrinfo *, 202 const struct addrinfo *); 203 #endif /* WORKER */ 204 205 const char * amtoa (int am); 206 207 208 void 209 set_sys_leap( 210 u_char new_sys_leap 211 ) 212 { 213 sys_leap = new_sys_leap; 214 xmt_leap = sys_leap; 215 216 /* 217 * Under certain conditions we send faked leap bits to clients, so 218 * eventually change xmt_leap below, but never change LEAP_NOTINSYNC. 219 */ 220 if (xmt_leap != LEAP_NOTINSYNC) { 221 if (leap_sec_in_progress) { 222 /* always send "not sync" */ 223 xmt_leap = LEAP_NOTINSYNC; 224 } 225 #ifdef LEAP_SMEAR 226 else { 227 /* 228 * If leap smear is enabled in general we must 229 * never send a leap second warning to clients, 230 * so make sure we only send "in sync". 231 */ 232 if (leap_smear.enabled) 233 xmt_leap = LEAP_NOWARNING; 234 } 235 #endif /* LEAP_SMEAR */ 236 } 237 } 238 239 240 /* 241 * Kiss Code check 242 */ 243 int 244 kiss_code_check( 245 u_char hisleap, 246 u_char hisstratum, 247 u_char hismode, 248 u_int32 refid 249 ) 250 { 251 252 if ( hismode == MODE_SERVER 253 && hisleap == LEAP_NOTINSYNC 254 && hisstratum == STRATUM_UNSPEC) { 255 if(memcmp(&refid,"RATE", 4) == 0) { 256 return (RATEKISS); 257 } else if(memcmp(&refid,"DENY", 4) == 0) { 258 return (DENYKISS); 259 } else if(memcmp(&refid,"RSTR", 4) == 0) { 260 return (RSTRKISS); 261 } else if(memcmp(&refid,"X", 1) == 0) { 262 return (XKISS); 263 } else { 264 return (UNKNOWNKISS); 265 } 266 } else { 267 return (NOKISS); 268 } 269 } 270 271 272 /* 273 * Check that NAK is valid 274 */ 275 enum nak_error_codes 276 valid_NAK( 277 struct peer *peer, 278 struct recvbuf *rbufp, 279 u_char hismode 280 ) 281 { 282 int base_packet_length = MIN_V4_PKT_LEN; 283 int remainder_size; 284 struct pkt * rpkt; 285 int keyid; 286 l_fp p_org; /* origin timestamp */ 287 const l_fp * myorg; /* selected peer origin */ 288 289 /* 290 * Check to see if there is something beyond the basic packet 291 */ 292 if (rbufp->recv_length == base_packet_length) { 293 return NONAK; 294 } 295 296 remainder_size = rbufp->recv_length - base_packet_length; 297 /* 298 * Is this a potential NAK? 299 */ 300 if (remainder_size != 4) { 301 return NONAK; 302 } 303 304 /* 305 * Only server responses can contain NAK's 306 */ 307 308 if (hismode != MODE_SERVER && 309 hismode != MODE_ACTIVE && 310 hismode != MODE_PASSIVE 311 ) { 312 return INVALIDNAK; 313 } 314 315 /* 316 * Make sure that the extra field in the packet is all zeros 317 */ 318 rpkt = &rbufp->recv_pkt; 319 keyid = ntohl(((u_int32 *)rpkt)[base_packet_length / 4]); 320 if (keyid != 0) { 321 return INVALIDNAK; 322 } 323 324 /* 325 * Only valid if peer uses a key 326 */ 327 if (!peer || !peer->keyid || !(peer->flags & FLAG_SKEY)) { 328 return INVALIDNAK; 329 } 330 331 /* 332 * The ORIGIN must match, or this cannot be a valid NAK, either. 333 */ 334 NTOHL_FP(&rpkt->org, &p_org); 335 if (peer->flip > 0) 336 myorg = &peer->borg; 337 else 338 myorg = &peer->aorg; 339 340 if (L_ISZERO(&p_org) || 341 L_ISZERO( myorg) || 342 !L_ISEQU(&p_org, myorg)) { 343 return INVALIDNAK; 344 } 345 346 /* If we ever passed all that checks, we should be safe. Well, 347 * as safe as we can ever be with an unauthenticated crypto-nak. 348 */ 349 return VALIDNAK; 350 } 351 352 353 /* 354 * transmit - transmit procedure called by poll timeout 355 */ 356 void 357 transmit( 358 struct peer *peer /* peer structure pointer */ 359 ) 360 { 361 u_char hpoll; 362 363 /* 364 * The polling state machine. There are two kinds of machines, 365 * those that never expect a reply (broadcast and manycast 366 * server modes) and those that do (all other modes). The dance 367 * is intricate... 368 */ 369 hpoll = peer->hpoll; 370 371 /* 372 * In broadcast mode the poll interval is never changed from 373 * minpoll. 374 */ 375 if (peer->cast_flags & (MDF_BCAST | MDF_MCAST)) { 376 peer->outdate = current_time; 377 if (sys_leap != LEAP_NOTINSYNC) 378 peer_xmit(peer); 379 poll_update(peer, hpoll); 380 return; 381 } 382 383 /* 384 * In manycast mode we start with unity ttl. The ttl is 385 * increased by one for each poll until either sys_maxclock 386 * servers have been found or the maximum ttl is reached. When 387 * sys_maxclock servers are found we stop polling until one or 388 * more servers have timed out or until less than sys_minclock 389 * associations turn up. In this case additional better servers 390 * are dragged in and preempt the existing ones. Once every 391 * sys_beacon seconds we are to transmit unconditionally, but 392 * this code is not quite right -- peer->unreach counts polls 393 * and is being compared with sys_beacon, so the beacons happen 394 * every sys_beacon polls. 395 */ 396 if (peer->cast_flags & MDF_ACAST) { 397 peer->outdate = current_time; 398 if (peer->unreach > sys_beacon) { 399 peer->unreach = 0; 400 peer->ttl = 0; 401 peer_xmit(peer); 402 } else if ( sys_survivors < sys_minclock 403 || peer_associations < sys_maxclock) { 404 if (peer->ttl < sys_ttlmax) 405 peer->ttl++; 406 peer_xmit(peer); 407 } 408 peer->unreach++; 409 poll_update(peer, hpoll); 410 return; 411 } 412 413 /* 414 * Pool associations transmit unicast solicitations when there 415 * are less than a hard limit of 2 * sys_maxclock associations, 416 * and either less than sys_minclock survivors or less than 417 * sys_maxclock associations. The hard limit prevents unbounded 418 * growth in associations if the system clock or network quality 419 * result in survivor count dipping below sys_minclock often. 420 * This was observed testing with pool, where sys_maxclock == 12 421 * resulted in 60 associations without the hard limit. A 422 * similar hard limit on manycastclient ephemeral associations 423 * may be appropriate. 424 */ 425 if (peer->cast_flags & MDF_POOL) { 426 peer->outdate = current_time; 427 if ( (peer_associations <= 2 * sys_maxclock) 428 && ( peer_associations < sys_maxclock 429 || sys_survivors < sys_minclock)) 430 pool_xmit(peer); 431 poll_update(peer, hpoll); 432 return; 433 } 434 435 /* 436 * In unicast modes the dance is much more intricate. It is 437 * designed to back off whenever possible to minimize network 438 * traffic. 439 */ 440 if (peer->burst == 0) { 441 u_char oreach; 442 443 /* 444 * Update the reachability status. If not heard for 445 * three consecutive polls, stuff infinity in the clock 446 * filter. 447 */ 448 oreach = peer->reach; 449 peer->outdate = current_time; 450 peer->unreach++; 451 peer->reach <<= 1; 452 if (!peer->reach) { 453 454 /* 455 * Here the peer is unreachable. If it was 456 * previously reachable raise a trap. Send a 457 * burst if enabled. 458 */ 459 clock_filter(peer, 0., 0., MAXDISPERSE); 460 if (oreach) { 461 peer_unfit(peer); 462 report_event(PEVNT_UNREACH, peer, NULL); 463 } 464 if ( (peer->flags & FLAG_IBURST) 465 && peer->retry == 0) 466 peer->retry = NTP_RETRY; 467 } else { 468 469 /* 470 * Here the peer is reachable. Send a burst if 471 * enabled and the peer is fit. Reset unreach 472 * for persistent and ephemeral associations. 473 * Unreach is also reset for survivors in 474 * clock_select(). 475 */ 476 hpoll = sys_poll; 477 if (!(peer->flags & FLAG_PREEMPT)) 478 peer->unreach = 0; 479 if ( (peer->flags & FLAG_BURST) 480 && peer->retry == 0 481 && !peer_unfit(peer)) 482 peer->retry = NTP_RETRY; 483 } 484 485 /* 486 * Watch for timeout. If ephemeral, toss the rascal; 487 * otherwise, bump the poll interval. Note the 488 * poll_update() routine will clamp it to maxpoll. 489 * If preemptible and we have more peers than maxclock, 490 * and this peer has the minimum score of preemptibles, 491 * demobilize. 492 */ 493 if (peer->unreach >= NTP_UNREACH) { 494 hpoll++; 495 /* ephemeral: no FLAG_CONFIG nor FLAG_PREEMPT */ 496 if (!(peer->flags & (FLAG_CONFIG | FLAG_PREEMPT))) { 497 report_event(PEVNT_RESTART, peer, "timeout"); 498 peer_clear(peer, "TIME"); 499 unpeer(peer); 500 return; 501 } 502 if ( (peer->flags & FLAG_PREEMPT) 503 && (peer_associations > sys_maxclock) 504 && score_all(peer)) { 505 report_event(PEVNT_RESTART, peer, "timeout"); 506 peer_clear(peer, "TIME"); 507 unpeer(peer); 508 return; 509 } 510 } 511 } else { 512 peer->burst--; 513 if (peer->burst == 0) { 514 515 /* 516 * If ntpdate mode and the clock has not been 517 * set and all peers have completed the burst, 518 * we declare a successful failure. 519 */ 520 if (mode_ntpdate) { 521 peer_ntpdate--; 522 if (peer_ntpdate == 0) { 523 msyslog(LOG_NOTICE, 524 "ntpd: no servers found"); 525 if (!msyslog_term) 526 printf( 527 "ntpd: no servers found\n"); 528 exit (0); 529 } 530 } 531 } 532 } 533 if (peer->retry > 0) 534 peer->retry--; 535 536 /* 537 * Do not transmit if in broadcast client mode. 538 */ 539 if (peer->hmode != MODE_BCLIENT) 540 peer_xmit(peer); 541 poll_update(peer, hpoll); 542 543 return; 544 } 545 546 547 const char * 548 amtoa( 549 int am 550 ) 551 { 552 char *bp; 553 554 switch(am) { 555 case AM_ERR: return "AM_ERR"; 556 case AM_NOMATCH: return "AM_NOMATCH"; 557 case AM_PROCPKT: return "AM_PROCPKT"; 558 case AM_BCST: return "AM_BCST"; 559 case AM_FXMIT: return "AM_FXMIT"; 560 case AM_MANYCAST: return "AM_MANYCAST"; 561 case AM_NEWPASS: return "AM_NEWPASS"; 562 case AM_NEWBCL: return "AM_NEWBCL"; 563 case AM_POSSBCL: return "AM_POSSBCL"; 564 default: 565 LIB_GETBUF(bp); 566 snprintf(bp, LIB_BUFLENGTH, "AM_#%d", am); 567 return bp; 568 } 569 } 570 571 572 /* 573 * receive - receive procedure called for each packet received 574 */ 575 void 576 receive( 577 struct recvbuf *rbufp 578 ) 579 { 580 register struct peer *peer; /* peer structure pointer */ 581 register struct pkt *pkt; /* receive packet pointer */ 582 u_char hisversion; /* packet version */ 583 u_char hisleap; /* packet leap indicator */ 584 u_char hismode; /* packet mode */ 585 u_char hisstratum; /* packet stratum */ 586 u_short restrict_mask; /* restrict bits */ 587 const char *hm_str; /* hismode string */ 588 const char *am_str; /* association match string */ 589 int kissCode = NOKISS; /* Kiss Code */ 590 int has_mac; /* length of MAC field */ 591 int authlen; /* offset of MAC field */ 592 int is_authentic = AUTH_NONE; /* cryptosum ok */ 593 int crypto_nak_test; /* result of crypto-NAK check */ 594 int retcode = AM_NOMATCH; /* match code */ 595 keyid_t skeyid = 0; /* key IDs */ 596 u_int32 opcode = 0; /* extension field opcode */ 597 sockaddr_u *dstadr_sin; /* active runway */ 598 struct peer *peer2; /* aux peer structure pointer */ 599 endpt *match_ep; /* newpeer() local address */ 600 l_fp p_org; /* origin timestamp */ 601 l_fp p_rec; /* receive timestamp */ 602 l_fp p_xmt; /* transmit timestamp */ 603 #ifdef AUTOKEY 604 char hostname[NTP_MAXSTRLEN + 1]; 605 char *groupname = NULL; 606 struct autokey *ap; /* autokey structure pointer */ 607 int rval; /* cookie snatcher */ 608 keyid_t pkeyid = 0, tkeyid = 0; /* key IDs */ 609 #endif /* AUTOKEY */ 610 #ifdef HAVE_NTP_SIGND 611 static unsigned char zero_key[16]; 612 #endif /* HAVE_NTP_SIGND */ 613 614 /* 615 * Monitor the packet and get restrictions. Note that the packet 616 * length for control and private mode packets must be checked 617 * by the service routines. Some restrictions have to be handled 618 * later in order to generate a kiss-o'-death packet. 619 */ 620 /* 621 * Bogus port check is before anything, since it probably 622 * reveals a clogging attack. 623 */ 624 sys_received++; 625 if (0 == SRCPORT(&rbufp->recv_srcadr)) { 626 sys_badlength++; 627 return; /* bogus port */ 628 } 629 restrict_mask = restrictions(&rbufp->recv_srcadr); 630 pkt = &rbufp->recv_pkt; 631 DPRINTF(2, ("receive: at %ld %s<-%s flags %x restrict %03x org %#010x.%08x xmt %#010x.%08x\n", 632 current_time, stoa(&rbufp->dstadr->sin), 633 stoa(&rbufp->recv_srcadr), rbufp->dstadr->flags, 634 restrict_mask, ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 635 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 636 hisversion = PKT_VERSION(pkt->li_vn_mode); 637 hisleap = PKT_LEAP(pkt->li_vn_mode); 638 hismode = (int)PKT_MODE(pkt->li_vn_mode); 639 hisstratum = PKT_TO_STRATUM(pkt->stratum); 640 INSIST(0 != hisstratum); 641 642 if (restrict_mask & RES_IGNORE) { 643 sys_restricted++; 644 return; /* ignore everything */ 645 } 646 if (hismode == MODE_PRIVATE) { 647 if (!ntp_mode7 || (restrict_mask & RES_NOQUERY)) { 648 sys_restricted++; 649 return; /* no query private */ 650 } 651 process_private(rbufp, ((restrict_mask & 652 RES_NOMODIFY) == 0)); 653 return; 654 } 655 if (hismode == MODE_CONTROL) { 656 if (restrict_mask & RES_NOQUERY) { 657 sys_restricted++; 658 return; /* no query control */ 659 } 660 process_control(rbufp, restrict_mask); 661 return; 662 } 663 if (restrict_mask & RES_DONTSERVE) { 664 sys_restricted++; 665 return; /* no time serve */ 666 } 667 668 /* 669 * This is for testing. If restricted drop ten percent of 670 * surviving packets. 671 */ 672 if (restrict_mask & RES_FLAKE) { 673 if ((double)ntp_random() / 0x7fffffff < .1) { 674 sys_restricted++; 675 return; /* no flakeway */ 676 } 677 } 678 679 /* 680 * Version check must be after the query packets, since they 681 * intentionally use an early version. 682 */ 683 if (hisversion == NTP_VERSION) { 684 sys_newversion++; /* new version */ 685 } else if ( !(restrict_mask & RES_VERSION) 686 && hisversion >= NTP_OLDVERSION) { 687 sys_oldversion++; /* previous version */ 688 } else { 689 sys_badlength++; 690 return; /* old version */ 691 } 692 693 /* 694 * Figure out his mode and validate the packet. This has some 695 * legacy raunch that probably should be removed. In very early 696 * NTP versions mode 0 was equivalent to what later versions 697 * would interpret as client mode. 698 */ 699 if (hismode == MODE_UNSPEC) { 700 if (hisversion == NTP_OLDVERSION) { 701 hismode = MODE_CLIENT; 702 } else { 703 sys_badlength++; 704 return; /* invalid mode */ 705 } 706 } 707 708 /* 709 * Parse the extension field if present. We figure out whether 710 * an extension field is present by measuring the MAC size. If 711 * the number of words following the packet header is 0, no MAC 712 * is present and the packet is not authenticated. If 1, the 713 * packet is a crypto-NAK; if 3, the packet is authenticated 714 * with DES; if 5, the packet is authenticated with MD5; if 6, 715 * the packet is authenticated with SHA. If 2 or * 4, the packet 716 * is a runt and discarded forthwith. If greater than 6, an 717 * extension field is present, so we subtract the length of the 718 * field and go around again. 719 */ 720 721 authlen = LEN_PKT_NOMAC; 722 has_mac = rbufp->recv_length - authlen; 723 while (has_mac > 0) { 724 u_int32 len; 725 #ifdef AUTOKEY 726 u_int32 hostlen; 727 struct exten *ep; 728 #endif /*AUTOKEY */ 729 730 if (has_mac % 4 != 0 || has_mac < (int)MIN_MAC_LEN) { 731 sys_badlength++; 732 return; /* bad length */ 733 } 734 if (has_mac <= (int)MAX_MAC_LEN) { 735 skeyid = ntohl(((u_int32 *)pkt)[authlen / 4]); 736 break; 737 738 } else { 739 opcode = ntohl(((u_int32 *)pkt)[authlen / 4]); 740 len = opcode & 0xffff; 741 if ( len % 4 != 0 742 || len < 4 743 || (int)len + authlen > rbufp->recv_length) { 744 sys_badlength++; 745 return; /* bad length */ 746 } 747 #ifdef AUTOKEY 748 /* 749 * Extract calling group name for later. If 750 * sys_groupname is non-NULL, there must be 751 * a group name provided to elicit a response. 752 */ 753 if ( (opcode & 0x3fff0000) == CRYPTO_ASSOC 754 && sys_groupname != NULL) { 755 ep = (struct exten *)&((u_int32 *)pkt)[authlen / 4]; 756 hostlen = ntohl(ep->vallen); 757 if ( hostlen >= sizeof(hostname) 758 || hostlen > len - 759 offsetof(struct exten, pkt)) { 760 sys_badlength++; 761 return; /* bad length */ 762 } 763 memcpy(hostname, &ep->pkt, hostlen); 764 hostname[hostlen] = '\0'; 765 groupname = strchr(hostname, '@'); 766 if (groupname == NULL) { 767 sys_declined++; 768 return; 769 } 770 groupname++; 771 } 772 #endif /* AUTOKEY */ 773 authlen += len; 774 has_mac -= len; 775 } 776 } 777 778 /* 779 * If has_mac is < 0 we had a malformed packet. 780 */ 781 if (has_mac < 0) { 782 sys_badlength++; 783 return; /* bad length */ 784 } 785 786 /* 787 * If authentication required, a MAC must be present. 788 */ 789 if (restrict_mask & RES_DONTTRUST && has_mac == 0) { 790 sys_restricted++; 791 return; /* access denied */ 792 } 793 794 /* 795 * Update the MRU list and finger the cloggers. It can be a 796 * little expensive, so turn it off for production use. 797 * RES_LIMITED and RES_KOD will be cleared in the returned 798 * restrict_mask unless one or both actions are warranted. 799 */ 800 restrict_mask = ntp_monitor(rbufp, restrict_mask); 801 if (restrict_mask & RES_LIMITED) { 802 sys_limitrejected++; 803 if ( !(restrict_mask & RES_KOD) 804 || MODE_BROADCAST == hismode 805 || MODE_SERVER == hismode) { 806 if (MODE_SERVER == hismode) 807 DPRINTF(1, ("Possibly self-induced rate limiting of MODE_SERVER from %s\n", 808 stoa(&rbufp->recv_srcadr))); 809 return; /* rate exceeded */ 810 } 811 if (hismode == MODE_CLIENT) 812 fast_xmit(rbufp, MODE_SERVER, skeyid, 813 restrict_mask); 814 else 815 fast_xmit(rbufp, MODE_ACTIVE, skeyid, 816 restrict_mask); 817 return; /* rate exceeded */ 818 } 819 restrict_mask &= ~RES_KOD; 820 821 /* 822 * We have tossed out as many buggy packets as possible early in 823 * the game to reduce the exposure to a clogging attack. Now we 824 * have to burn some cycles to find the association and 825 * authenticate the packet if required. Note that we burn only 826 * digest cycles, again to reduce exposure. There may be no 827 * matching association and that's okay. 828 * 829 * More on the autokey mambo. Normally the local interface is 830 * found when the association was mobilized with respect to a 831 * designated remote address. We assume packets arriving from 832 * the remote address arrive via this interface and the local 833 * address used to construct the autokey is the unicast address 834 * of the interface. However, if the sender is a broadcaster, 835 * the interface broadcast address is used instead. 836 * Notwithstanding this technobabble, if the sender is a 837 * multicaster, the broadcast address is null, so we use the 838 * unicast address anyway. Don't ask. 839 */ 840 peer = findpeer(rbufp, hismode, &retcode); 841 dstadr_sin = &rbufp->dstadr->sin; 842 NTOHL_FP(&pkt->org, &p_org); 843 NTOHL_FP(&pkt->rec, &p_rec); 844 NTOHL_FP(&pkt->xmt, &p_xmt); 845 hm_str = modetoa(hismode); 846 am_str = amtoa(retcode); 847 848 /* 849 * Authentication is conditioned by three switches: 850 * 851 * NOPEER (RES_NOPEER) do not mobilize an association unless 852 * authenticated 853 * NOTRUST (RES_DONTTRUST) do not allow access unless 854 * authenticated (implies NOPEER) 855 * enable (sys_authenticate) master NOPEER switch, by default 856 * on 857 * 858 * The NOPEER and NOTRUST can be specified on a per-client basis 859 * using the restrict command. The enable switch if on implies 860 * NOPEER for all clients. There are four outcomes: 861 * 862 * NONE The packet has no MAC. 863 * OK the packet has a MAC and authentication succeeds 864 * ERROR the packet has a MAC and authentication fails 865 * CRYPTO crypto-NAK. The MAC has four octets only. 866 * 867 * Note: The AUTH(x, y) macro is used to filter outcomes. If x 868 * is zero, acceptable outcomes of y are NONE and OK. If x is 869 * one, the only acceptable outcome of y is OK. 870 */ 871 crypto_nak_test = valid_NAK(peer, rbufp, hismode); 872 873 /* 874 * Drop any invalid crypto-NAKs 875 */ 876 if (crypto_nak_test == INVALIDNAK) { 877 report_event(PEVNT_AUTH, peer, "Invalid_NAK"); 878 if (0 != peer) { 879 peer->badNAK++; 880 } 881 msyslog(LOG_ERR, "Invalid-NAK error at %ld %s<-%s", 882 current_time, stoa(dstadr_sin), stoa(&rbufp->recv_srcadr)); 883 return; 884 } 885 886 if (has_mac == 0) { 887 restrict_mask &= ~RES_MSSNTP; 888 is_authentic = AUTH_NONE; /* not required */ 889 DPRINTF(2, ("receive: at %ld %s<-%s mode %d/%s:%s len %d org %#010x.%08x xmt %#010x.%08x NOMAC\n", 890 current_time, stoa(dstadr_sin), 891 stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str, 892 authlen, 893 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 894 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 895 } else if (crypto_nak_test == VALIDNAK) { 896 restrict_mask &= ~RES_MSSNTP; 897 is_authentic = AUTH_CRYPTO; /* crypto-NAK */ 898 DPRINTF(2, ("receive: at %ld %s<-%s mode %d/%s:%s keyid %08x len %d auth %d org %#010x.%08x xmt %#010x.%08x MAC4\n", 899 current_time, stoa(dstadr_sin), 900 stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str, 901 skeyid, authlen + has_mac, is_authentic, 902 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 903 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 904 905 #ifdef HAVE_NTP_SIGND 906 /* 907 * If the signature is 20 bytes long, the last 16 of 908 * which are zero, then this is a Microsoft client 909 * wanting AD-style authentication of the server's 910 * reply. 911 * 912 * This is described in Microsoft's WSPP docs, in MS-SNTP: 913 * http://msdn.microsoft.com/en-us/library/cc212930.aspx 914 */ 915 } else if ( has_mac == MAX_MD5_LEN 916 && (restrict_mask & RES_MSSNTP) 917 && (retcode == AM_FXMIT || retcode == AM_NEWPASS) 918 && (memcmp(zero_key, (char *)pkt + authlen + 4, 919 MAX_MD5_LEN - 4) == 0)) { 920 is_authentic = AUTH_NONE; 921 #endif /* HAVE_NTP_SIGND */ 922 923 } else { 924 restrict_mask &= ~RES_MSSNTP; 925 #ifdef AUTOKEY 926 /* 927 * For autokey modes, generate the session key 928 * and install in the key cache. Use the socket 929 * broadcast or unicast address as appropriate. 930 */ 931 if (crypto_flags && skeyid > NTP_MAXKEY) { 932 933 /* 934 * More on the autokey dance (AKD). A cookie is 935 * constructed from public and private values. 936 * For broadcast packets, the cookie is public 937 * (zero). For packets that match no 938 * association, the cookie is hashed from the 939 * addresses and private value. For server 940 * packets, the cookie was previously obtained 941 * from the server. For symmetric modes, the 942 * cookie was previously constructed using an 943 * agreement protocol; however, should PKI be 944 * unavailable, we construct a fake agreement as 945 * the EXOR of the peer and host cookies. 946 * 947 * hismode ephemeral persistent 948 * ======================================= 949 * active 0 cookie# 950 * passive 0% cookie# 951 * client sys cookie 0% 952 * server 0% sys cookie 953 * broadcast 0 0 954 * 955 * # if unsync, 0 956 * % can't happen 957 */ 958 if (has_mac < (int)MAX_MD5_LEN) { 959 sys_badauth++; 960 return; 961 } 962 if (hismode == MODE_BROADCAST) { 963 964 /* 965 * For broadcaster, use the interface 966 * broadcast address when available; 967 * otherwise, use the unicast address 968 * found when the association was 969 * mobilized. However, if this is from 970 * the wildcard interface, game over. 971 */ 972 if ( crypto_flags 973 && rbufp->dstadr == 974 ANY_INTERFACE_CHOOSE(&rbufp->recv_srcadr)) { 975 sys_restricted++; 976 return; /* no wildcard */ 977 } 978 pkeyid = 0; 979 if (!SOCK_UNSPEC(&rbufp->dstadr->bcast)) 980 dstadr_sin = 981 &rbufp->dstadr->bcast; 982 } else if (peer == NULL) { 983 pkeyid = session_key( 984 &rbufp->recv_srcadr, dstadr_sin, 0, 985 sys_private, 0); 986 } else { 987 pkeyid = peer->pcookie; 988 } 989 990 /* 991 * The session key includes both the public 992 * values and cookie. In case of an extension 993 * field, the cookie used for authentication 994 * purposes is zero. Note the hash is saved for 995 * use later in the autokey mambo. 996 */ 997 if (authlen > (int)LEN_PKT_NOMAC && pkeyid != 0) { 998 session_key(&rbufp->recv_srcadr, 999 dstadr_sin, skeyid, 0, 2); 1000 tkeyid = session_key( 1001 &rbufp->recv_srcadr, dstadr_sin, 1002 skeyid, pkeyid, 0); 1003 } else { 1004 tkeyid = session_key( 1005 &rbufp->recv_srcadr, dstadr_sin, 1006 skeyid, pkeyid, 2); 1007 } 1008 1009 } 1010 #endif /* AUTOKEY */ 1011 1012 /* 1013 * Compute the cryptosum. Note a clogging attack may 1014 * succeed in bloating the key cache. If an autokey, 1015 * purge it immediately, since we won't be needing it 1016 * again. If the packet is authentic, it can mobilize an 1017 * association. Note that there is no key zero. 1018 */ 1019 if (!authdecrypt(skeyid, (u_int32 *)pkt, authlen, 1020 has_mac)) 1021 is_authentic = AUTH_ERROR; 1022 else 1023 is_authentic = AUTH_OK; 1024 #ifdef AUTOKEY 1025 if (crypto_flags && skeyid > NTP_MAXKEY) 1026 authtrust(skeyid, 0); 1027 #endif /* AUTOKEY */ 1028 DPRINTF(2, ("receive: at %ld %s<-%s mode %d/%s:%s keyid %08x len %d auth %d org %#010x.%08x xmt %#010x.%08x\n", 1029 current_time, stoa(dstadr_sin), 1030 stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str, 1031 skeyid, authlen + has_mac, is_authentic, 1032 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 1033 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 1034 } 1035 1036 /* 1037 * The association matching rules are implemented by a set of 1038 * routines and an association table. A packet matching an 1039 * association is processed by the peer process for that 1040 * association. If there are no errors, an ephemeral association 1041 * is mobilized: a broadcast packet mobilizes a broadcast client 1042 * aassociation; a manycast server packet mobilizes a manycast 1043 * client association; a symmetric active packet mobilizes a 1044 * symmetric passive association. 1045 */ 1046 switch (retcode) { 1047 1048 /* 1049 * This is a client mode packet not matching any association. If 1050 * an ordinary client, simply toss a server mode packet back 1051 * over the fence. If a manycast client, we have to work a 1052 * little harder. 1053 */ 1054 case AM_FXMIT: 1055 1056 /* 1057 * If authentication OK, send a server reply; otherwise, 1058 * send a crypto-NAK. 1059 */ 1060 if (!(rbufp->dstadr->flags & INT_MCASTOPEN)) { 1061 if (AUTH(restrict_mask & RES_DONTTRUST, 1062 is_authentic)) { 1063 fast_xmit(rbufp, MODE_SERVER, skeyid, 1064 restrict_mask); 1065 } else if (is_authentic == AUTH_ERROR) { 1066 fast_xmit(rbufp, MODE_SERVER, 0, 1067 restrict_mask); 1068 sys_badauth++; 1069 } else { 1070 sys_restricted++; 1071 } 1072 return; /* hooray */ 1073 } 1074 1075 /* 1076 * This must be manycast. Do not respond if not 1077 * configured as a manycast server. 1078 */ 1079 if (!sys_manycastserver) { 1080 sys_restricted++; 1081 return; /* not enabled */ 1082 } 1083 1084 #ifdef AUTOKEY 1085 /* 1086 * Do not respond if not the same group. 1087 */ 1088 if (group_test(groupname, NULL)) { 1089 sys_declined++; 1090 return; 1091 } 1092 #endif /* AUTOKEY */ 1093 1094 /* 1095 * Do not respond if we are not synchronized or our 1096 * stratum is greater than the manycaster or the 1097 * manycaster has already synchronized to us. 1098 */ 1099 if ( sys_leap == LEAP_NOTINSYNC 1100 || sys_stratum >= hisstratum 1101 || (!sys_cohort && sys_stratum == hisstratum + 1) 1102 || rbufp->dstadr->addr_refid == pkt->refid) { 1103 sys_declined++; 1104 return; /* no help */ 1105 } 1106 1107 /* 1108 * Respond only if authentication succeeds. Don't do a 1109 * crypto-NAK, as that would not be useful. 1110 */ 1111 if (AUTH(restrict_mask & RES_DONTTRUST, is_authentic)) 1112 fast_xmit(rbufp, MODE_SERVER, skeyid, 1113 restrict_mask); 1114 return; /* hooray */ 1115 1116 /* 1117 * This is a server mode packet returned in response to a client 1118 * mode packet sent to a multicast group address (for 1119 * manycastclient) or to a unicast address (for pool). The 1120 * origin timestamp is a good nonce to reliably associate the 1121 * reply with what was sent. If there is no match, that's 1122 * curious and could be an intruder attempting to clog, so we 1123 * just ignore it. 1124 * 1125 * If the packet is authentic and the manycastclient or pool 1126 * association is found, we mobilize a client association and 1127 * copy pertinent variables from the manycastclient or pool 1128 * association to the new client association. If not, just 1129 * ignore the packet. 1130 * 1131 * There is an implosion hazard at the manycast client, since 1132 * the manycast servers send the server packet immediately. If 1133 * the guy is already here, don't fire up a duplicate. 1134 */ 1135 case AM_MANYCAST: 1136 1137 #ifdef AUTOKEY 1138 /* 1139 * Do not respond if not the same group. 1140 */ 1141 if (group_test(groupname, NULL)) { 1142 sys_declined++; 1143 return; 1144 } 1145 #endif /* AUTOKEY */ 1146 if ((peer2 = findmanycastpeer(rbufp)) == NULL) { 1147 sys_restricted++; 1148 return; /* not enabled */ 1149 } 1150 if (!AUTH( (!(peer2->cast_flags & MDF_POOL) 1151 && sys_authenticate) 1152 || (restrict_mask & (RES_NOPEER | 1153 RES_DONTTRUST)), is_authentic)) { 1154 sys_restricted++; 1155 return; /* access denied */ 1156 } 1157 1158 /* 1159 * Do not respond if unsynchronized or stratum is below 1160 * the floor or at or above the ceiling. 1161 */ 1162 if ( hisleap == LEAP_NOTINSYNC 1163 || hisstratum < sys_floor 1164 || hisstratum >= sys_ceiling) { 1165 sys_declined++; 1166 return; /* no help */ 1167 } 1168 peer = newpeer(&rbufp->recv_srcadr, NULL, rbufp->dstadr, 1169 MODE_CLIENT, hisversion, peer2->minpoll, 1170 peer2->maxpoll, FLAG_PREEMPT | 1171 (FLAG_IBURST & peer2->flags), MDF_UCAST | 1172 MDF_UCLNT, 0, skeyid, sys_ident); 1173 if (NULL == peer) { 1174 sys_declined++; 1175 return; /* ignore duplicate */ 1176 } 1177 1178 /* 1179 * After each ephemeral pool association is spun, 1180 * accelerate the next poll for the pool solicitor so 1181 * the pool will fill promptly. 1182 */ 1183 if (peer2->cast_flags & MDF_POOL) 1184 peer2->nextdate = current_time + 1; 1185 1186 /* 1187 * Further processing of the solicitation response would 1188 * simply detect its origin timestamp as bogus for the 1189 * brand-new association (it matches the prototype 1190 * association) and tinker with peer->nextdate delaying 1191 * first sync. 1192 */ 1193 return; /* solicitation response handled */ 1194 1195 /* 1196 * This is the first packet received from a broadcast server. If 1197 * the packet is authentic and we are enabled as broadcast 1198 * client, mobilize a broadcast client association. We don't 1199 * kiss any frogs here. 1200 */ 1201 case AM_NEWBCL: 1202 1203 #ifdef AUTOKEY 1204 /* 1205 * Do not respond if not the same group. 1206 */ 1207 if (group_test(groupname, sys_ident)) { 1208 sys_declined++; 1209 return; 1210 } 1211 #endif /* AUTOKEY */ 1212 if (sys_bclient == 0) { 1213 sys_restricted++; 1214 return; /* not enabled */ 1215 } 1216 if (!AUTH(sys_authenticate | (restrict_mask & 1217 (RES_NOPEER | RES_DONTTRUST)), is_authentic)) { 1218 sys_restricted++; 1219 return; /* access denied */ 1220 } 1221 1222 /* 1223 * Do not respond if unsynchronized or stratum is below 1224 * the floor or at or above the ceiling. 1225 */ 1226 if ( hisleap == LEAP_NOTINSYNC 1227 || hisstratum < sys_floor 1228 || hisstratum >= sys_ceiling) { 1229 sys_declined++; 1230 return; /* no help */ 1231 } 1232 1233 #ifdef AUTOKEY 1234 /* 1235 * Do not respond if Autokey and the opcode is not a 1236 * CRYPTO_ASSOC response with association ID. 1237 */ 1238 if ( crypto_flags && skeyid > NTP_MAXKEY 1239 && (opcode & 0xffff0000) != (CRYPTO_ASSOC | CRYPTO_RESP)) { 1240 sys_declined++; 1241 return; /* protocol error */ 1242 } 1243 #endif /* AUTOKEY */ 1244 1245 /* 1246 * Broadcasts received via a multicast address may 1247 * arrive after a unicast volley has begun 1248 * with the same remote address. newpeer() will not 1249 * find duplicate associations on other local endpoints 1250 * if a non-NULL endpoint is supplied. multicastclient 1251 * ephemeral associations are unique across all local 1252 * endpoints. 1253 */ 1254 if (!(INT_MCASTOPEN & rbufp->dstadr->flags)) 1255 match_ep = rbufp->dstadr; 1256 else 1257 match_ep = NULL; 1258 1259 /* 1260 * Determine whether to execute the initial volley. 1261 */ 1262 if (sys_bdelay > 0.0) { 1263 #ifdef AUTOKEY 1264 /* 1265 * If a two-way exchange is not possible, 1266 * neither is Autokey. 1267 */ 1268 if (crypto_flags && skeyid > NTP_MAXKEY) { 1269 sys_restricted++; 1270 return; /* no autokey */ 1271 } 1272 #endif /* AUTOKEY */ 1273 1274 /* 1275 * Do not execute the volley. Start out in 1276 * broadcast client mode. 1277 */ 1278 peer = newpeer(&rbufp->recv_srcadr, NULL, 1279 match_ep, MODE_BCLIENT, hisversion, 1280 pkt->ppoll, pkt->ppoll, FLAG_PREEMPT, 1281 MDF_BCLNT, 0, skeyid, sys_ident); 1282 if (NULL == peer) { 1283 sys_restricted++; 1284 return; /* ignore duplicate */ 1285 1286 } else { 1287 peer->delay = sys_bdelay; 1288 peer->bxmt = p_xmt; 1289 } 1290 break; 1291 } 1292 1293 /* 1294 * Execute the initial volley in order to calibrate the 1295 * propagation delay and run the Autokey protocol. 1296 * 1297 * Note that the minpoll is taken from the broadcast 1298 * packet, normally 6 (64 s) and that the poll interval 1299 * is fixed at this value. 1300 */ 1301 peer = newpeer(&rbufp->recv_srcadr, NULL, match_ep, 1302 MODE_CLIENT, hisversion, pkt->ppoll, pkt->ppoll, 1303 FLAG_BC_VOL | FLAG_IBURST | FLAG_PREEMPT, MDF_BCLNT, 1304 0, skeyid, sys_ident); 1305 if (NULL == peer) { 1306 sys_restricted++; 1307 return; /* ignore duplicate */ 1308 } 1309 peer->bxmt = p_xmt; 1310 #ifdef AUTOKEY 1311 if (skeyid > NTP_MAXKEY) 1312 crypto_recv(peer, rbufp); 1313 #endif /* AUTOKEY */ 1314 1315 return; /* hooray */ 1316 1317 /* 1318 * This is the first packet received from a symmetric active 1319 * peer. If the packet is authentic and the first he sent, 1320 * mobilize a passive association. If not, kiss the frog. 1321 */ 1322 case AM_NEWPASS: 1323 1324 #ifdef AUTOKEY 1325 /* 1326 * Do not respond if not the same group. 1327 */ 1328 if (group_test(groupname, sys_ident)) { 1329 sys_declined++; 1330 return; 1331 } 1332 #endif /* AUTOKEY */ 1333 if (!AUTH(sys_authenticate | (restrict_mask & 1334 (RES_NOPEER | RES_DONTTRUST)), is_authentic)) { 1335 1336 /* 1337 * If authenticated but cannot mobilize an 1338 * association, send a symmetric passive 1339 * response without mobilizing an association. 1340 * This is for drat broken Windows clients. See 1341 * Microsoft KB 875424 for preferred workaround. 1342 */ 1343 if (AUTH(restrict_mask & RES_DONTTRUST, 1344 is_authentic)) { 1345 fast_xmit(rbufp, MODE_PASSIVE, skeyid, 1346 restrict_mask); 1347 return; /* hooray */ 1348 } 1349 if (is_authentic == AUTH_ERROR) { 1350 fast_xmit(rbufp, MODE_ACTIVE, 0, 1351 restrict_mask); 1352 sys_restricted++; 1353 return; 1354 } 1355 /* [Bug 2941] 1356 * If we got here, the packet isn't part of an 1357 * existing association, it isn't correctly 1358 * authenticated, and it didn't meet either of 1359 * the previous two special cases so we should 1360 * just drop it on the floor. For example, 1361 * crypto-NAKs (is_authentic == AUTH_CRYPTO) 1362 * will make it this far. This is just 1363 * debug-printed and not logged to avoid log 1364 * flooding. 1365 */ 1366 DPRINTF(2, ("receive: at %ld refusing to mobilize passive association" 1367 " with unknown peer %s mode %d/%s:%s keyid %08x len %d auth %d\n", 1368 current_time, stoa(&rbufp->recv_srcadr), 1369 hismode, hm_str, am_str, skeyid, 1370 (authlen + has_mac), is_authentic)); 1371 sys_declined++; 1372 return; 1373 } 1374 1375 /* 1376 * Do not respond if synchronized and if stratum is 1377 * below the floor or at or above the ceiling. Note, 1378 * this allows an unsynchronized peer to synchronize to 1379 * us. It would be very strange if he did and then was 1380 * nipped, but that could only happen if we were 1381 * operating at the top end of the range. It also means 1382 * we will spin an ephemeral association in response to 1383 * MODE_ACTIVE KoDs, which will time out eventually. 1384 */ 1385 if ( hisleap != LEAP_NOTINSYNC 1386 && (hisstratum < sys_floor || hisstratum >= sys_ceiling)) { 1387 sys_declined++; 1388 return; /* no help */ 1389 } 1390 1391 /* 1392 * The message is correctly authenticated and allowed. 1393 * Mobilize a symmetric passive association. 1394 */ 1395 if ((peer = newpeer(&rbufp->recv_srcadr, NULL, 1396 rbufp->dstadr, MODE_PASSIVE, hisversion, pkt->ppoll, 1397 NTP_MAXDPOLL, 0, MDF_UCAST, 0, skeyid, 1398 sys_ident)) == NULL) { 1399 sys_declined++; 1400 return; /* ignore duplicate */ 1401 } 1402 break; 1403 1404 1405 /* 1406 * Process regular packet. Nothing special. 1407 */ 1408 case AM_PROCPKT: 1409 1410 #ifdef AUTOKEY 1411 /* 1412 * Do not respond if not the same group. 1413 */ 1414 if (group_test(groupname, peer->ident)) { 1415 sys_declined++; 1416 return; 1417 } 1418 #endif /* AUTOKEY */ 1419 1420 if (MODE_BROADCAST == hismode) { 1421 int bail = 0; 1422 l_fp tdiff; 1423 u_long deadband; 1424 1425 DPRINTF(2, ("receive: PROCPKT/BROADCAST: prev pkt %ld seconds ago, ppoll: %d, %d secs\n", 1426 (current_time - peer->timelastrec), 1427 peer->ppoll, (1 << peer->ppoll) 1428 )); 1429 /* Things we can check: 1430 * 1431 * Did the poll interval change? 1432 * Is the poll interval in the packet in-range? 1433 * Did this packet arrive too soon? 1434 * Is the timestamp in this packet monotonic 1435 * with respect to the previous packet? 1436 */ 1437 1438 /* This is noteworthy, not error-worthy */ 1439 if (pkt->ppoll != peer->ppoll) { 1440 msyslog(LOG_INFO, "receive: broadcast poll from %s changed from %ud to %ud", 1441 stoa(&rbufp->recv_srcadr), 1442 peer->ppoll, pkt->ppoll); 1443 } 1444 1445 /* This is error-worthy */ 1446 if (pkt->ppoll < peer->minpoll || 1447 pkt->ppoll > peer->maxpoll ) { 1448 msyslog(LOG_INFO, "receive: broadcast poll of %ud from %s is out-of-range (%d to %d)!", 1449 pkt->ppoll, stoa(&rbufp->recv_srcadr), 1450 peer->minpoll, peer->maxpoll); 1451 ++bail; 1452 } 1453 1454 /* too early? worth an error, too! 1455 * 1456 * [Bug 3113] Ensure that at least one poll 1457 * interval has elapsed since the last **clean** 1458 * packet was received. We limit the check to 1459 * **clean** packets to prevent replayed packets 1460 * and incorrectly authenticated packets, which 1461 * we'll discard, from being used to create a 1462 * denial of service condition. 1463 */ 1464 deadband = (1u << pkt->ppoll); 1465 if (FLAG_BC_VOL & peer->flags) 1466 deadband -= 3; /* allow greater fuzz after volley */ 1467 if ((current_time - peer->timereceived) < deadband) { 1468 msyslog(LOG_INFO, "receive: broadcast packet from %s arrived after %lu, not %lu seconds!", 1469 stoa(&rbufp->recv_srcadr), 1470 (current_time - peer->timereceived), 1471 deadband); 1472 ++bail; 1473 } 1474 1475 /* Alert if time from the server is non-monotonic. 1476 * 1477 * [Bug 3114] is about Broadcast mode replay DoS. 1478 * 1479 * Broadcast mode *assumes* a trusted network. 1480 * Even so, it's nice to be robust in the face 1481 * of attacks. 1482 * 1483 * If we get an authenticated broadcast packet 1484 * with an "earlier" timestamp, it means one of 1485 * two things: 1486 * 1487 * - the broadcast server had a backward step. 1488 * 1489 * - somebody is trying a replay attack. 1490 * 1491 * deadband: By default, we assume the broadcast 1492 * network is trustable, so we take our accepted 1493 * broadcast packets as we receive them. But 1494 * some folks might want to take additional poll 1495 * delays before believing a backward step. 1496 */ 1497 if (sys_bcpollbstep) { 1498 /* pkt->ppoll or peer->ppoll ? */ 1499 deadband = (1u << pkt->ppoll) 1500 * sys_bcpollbstep + 2; 1501 } else { 1502 deadband = 0; 1503 } 1504 1505 if (L_ISZERO(&peer->bxmt)) { 1506 tdiff.l_ui = tdiff.l_uf = 0; 1507 } else { 1508 tdiff = p_xmt; 1509 L_SUB(&tdiff, &peer->bxmt); 1510 } 1511 if (tdiff.l_i < 0 && 1512 (current_time - peer->timereceived) < deadband) 1513 { 1514 msyslog(LOG_INFO, "receive: broadcast packet from %s contains non-monotonic timestamp: %#010x.%08x -> %#010x.%08x", 1515 stoa(&rbufp->recv_srcadr), 1516 peer->bxmt.l_ui, peer->bxmt.l_uf, 1517 p_xmt.l_ui, p_xmt.l_uf 1518 ); 1519 ++bail; 1520 } 1521 1522 if (bail) { 1523 peer->timelastrec = current_time; 1524 sys_declined++; 1525 return; 1526 } 1527 } 1528 1529 break; 1530 1531 /* 1532 * A passive packet matches a passive association. This is 1533 * usually the result of reconfiguring a client on the fly. As 1534 * this association might be legitimate and this packet an 1535 * attempt to deny service, just ignore it. 1536 */ 1537 case AM_ERR: 1538 sys_declined++; 1539 return; 1540 1541 /* 1542 * For everything else there is the bit bucket. 1543 */ 1544 default: 1545 sys_declined++; 1546 return; 1547 } 1548 1549 #ifdef AUTOKEY 1550 /* 1551 * If the association is configured for Autokey, the packet must 1552 * have a public key ID; if not, the packet must have a 1553 * symmetric key ID. 1554 */ 1555 if ( is_authentic != AUTH_CRYPTO 1556 && ( ((peer->flags & FLAG_SKEY) && skeyid <= NTP_MAXKEY) 1557 || (!(peer->flags & FLAG_SKEY) && skeyid > NTP_MAXKEY))) { 1558 sys_badauth++; 1559 return; 1560 } 1561 #endif /* AUTOKEY */ 1562 1563 peer->received++; 1564 peer->flash &= ~PKT_TEST_MASK; 1565 if (peer->flags & FLAG_XBOGUS) { 1566 peer->flags &= ~FLAG_XBOGUS; 1567 peer->flash |= TEST3; 1568 } 1569 1570 /* 1571 * Next comes a rigorous schedule of timestamp checking. If the 1572 * transmit timestamp is zero, the server has not initialized in 1573 * interleaved modes or is horribly broken. 1574 * 1575 * A KoD packet we pay attention to cannot have a 0 transmit 1576 * timestamp. 1577 */ 1578 if (L_ISZERO(&p_xmt)) { 1579 peer->flash |= TEST3; /* unsynch */ 1580 if (STRATUM_UNSPEC == hisstratum) { /* KoD packet */ 1581 peer->bogusorg++; /* for TEST2 or TEST3 */ 1582 msyslog(LOG_INFO, 1583 "receive: Unexpected zero transmit timestamp in KoD from %s", 1584 ntoa(&peer->srcadr)); 1585 return; 1586 } 1587 1588 /* 1589 * If the transmit timestamp duplicates our previous one, the 1590 * packet is a replay. This prevents the bad guys from replaying 1591 * the most recent packet, authenticated or not. 1592 */ 1593 } else if (L_ISEQU(&peer->xmt, &p_xmt)) { 1594 peer->flash |= TEST1; /* duplicate */ 1595 peer->oldpkt++; 1596 return; 1597 1598 /* 1599 * If this is a broadcast mode packet, make sure hisstratum 1600 * is appropriate. Don't do anything else here - we wait to 1601 * see if this is an interleave broadcast packet until after 1602 * we've validated the MAC that SHOULD be provided. 1603 * 1604 * hisstratum should never be 0. 1605 * If hisstratum is 15, then we'll advertise as UNSPEC but 1606 * at least we'll be able to sync with the broadcast server. 1607 */ 1608 } else if (hismode == MODE_BROADCAST) { 1609 if ( 0 == hisstratum 1610 || STRATUM_UNSPEC <= hisstratum) { 1611 /* Is this a ++sys_declined or ??? */ 1612 msyslog(LOG_INFO, 1613 "receive: Unexpected stratum (%d) in broadcast from %s", 1614 hisstratum, ntoa(&peer->srcadr)); 1615 return; 1616 } 1617 1618 /* 1619 * Basic KoD validation checking: 1620 * 1621 * KoD packets are a mixed-blessing. Forged KoD packets 1622 * are DoS attacks. There are rare situations where we might 1623 * get a valid KoD response, though. Since KoD packets are 1624 * a special case that complicate the checks we do next, we 1625 * handle the basic KoD checks here. 1626 * 1627 * Note that we expect the incoming KoD packet to have its 1628 * (nonzero) org, rec, and xmt timestamps set to the xmt timestamp 1629 * that we have previously sent out. Watch interleave mode. 1630 */ 1631 } else if (STRATUM_UNSPEC == hisstratum) { 1632 DEBUG_INSIST(!L_ISZERO(&p_xmt)); 1633 if ( L_ISZERO(&p_org) /* We checked p_xmt above */ 1634 || L_ISZERO(&p_rec)) { 1635 peer->bogusorg++; 1636 msyslog(LOG_INFO, 1637 "receive: KoD packet from %s has a zero org or rec timestamp. Ignoring.", 1638 ntoa(&peer->srcadr)); 1639 return; 1640 } 1641 1642 if ( !L_ISEQU(&p_xmt, &p_org) 1643 || !L_ISEQU(&p_xmt, &p_rec)) { 1644 peer->bogusorg++; 1645 msyslog(LOG_INFO, 1646 "receive: KoD packet from %s has inconsistent xmt/org/rec timestamps. Ignoring.", 1647 ntoa(&peer->srcadr)); 1648 return; 1649 } 1650 1651 /* Be conservative */ 1652 if (peer->flip == 0 && !L_ISEQU(&p_org, &peer->aorg)) { 1653 peer->bogusorg++; 1654 msyslog(LOG_INFO, 1655 "receive: flip 0 KoD origin timestamp %#010x.%08x from %s does not match %#010x.%08x - ignoring.", 1656 p_org.l_ui, p_org.l_uf, 1657 ntoa(&peer->srcadr), 1658 peer->aorg.l_ui, peer->aorg.l_uf); 1659 return; 1660 } else if (peer->flip == 1 && !L_ISEQU(&p_org, &peer->borg)) { 1661 peer->bogusorg++; 1662 msyslog(LOG_INFO, 1663 "receive: flip 1 KoD origin timestamp %#010x.%08x from %s does not match interleave %#010x.%08x - ignoring.", 1664 p_org.l_ui, p_org.l_uf, 1665 ntoa(&peer->srcadr), 1666 peer->borg.l_ui, peer->borg.l_uf); 1667 return; 1668 } 1669 1670 /* 1671 * Basic mode checks: 1672 * 1673 * If there is no origin timestamp, it's either an initial packet 1674 * or we've already received a response to our query. Of course, 1675 * should 'aorg' be all-zero because this really was the original 1676 * transmit timestamp, we'll ignore this reply. There is a window 1677 * of one nanosecond once every 136 years' time where this is 1678 * possible. We currently ignore this situation. 1679 * 1680 * Otherwise, check for bogus packet in basic mode. 1681 * If it is bogus, switch to interleaved mode and resynchronize, 1682 * but only after confirming the packet is not bogus in 1683 * symmetric interleaved mode. 1684 * 1685 * This could also mean somebody is forging packets claiming to 1686 * be from us, attempting to cause our server to KoD us. 1687 */ 1688 } else if (peer->flip == 0) { 1689 INSIST(0 != hisstratum); 1690 INSIST(STRATUM_UNSPEC != hisstratum); 1691 1692 if (0) { 1693 } else if (L_ISZERO(&p_org)) { 1694 const char *action; 1695 1696 #ifdef BUG3361 1697 msyslog(LOG_INFO, 1698 "receive: BUG 3361: Clearing peer->aorg "); 1699 L_CLR(&peer->aorg); 1700 #endif 1701 /**/ 1702 switch (hismode) { 1703 /* We allow 0org for: */ 1704 case UCHAR_MAX: 1705 action = "Allow"; 1706 break; 1707 /* We disallow 0org for: */ 1708 case MODE_UNSPEC: 1709 case MODE_ACTIVE: 1710 case MODE_PASSIVE: 1711 case MODE_CLIENT: 1712 case MODE_SERVER: 1713 case MODE_BROADCAST: 1714 action = "Drop"; 1715 peer->bogusorg++; 1716 peer->flash |= TEST2; /* bogus */ 1717 break; 1718 default: 1719 action = ""; /* for cranky compilers / MSVC */ 1720 INSIST(!"receive(): impossible hismode"); 1721 break; 1722 } 1723 /**/ 1724 msyslog(LOG_INFO, 1725 "receive: %s 0 origin timestamp from %s@%s xmt %#010x.%08x", 1726 action, hm_str, ntoa(&peer->srcadr), 1727 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)); 1728 } else if (!L_ISEQU(&p_org, &peer->aorg)) { 1729 /* are there cases here where we should bail? */ 1730 /* Should we set TEST2 if we decide to try xleave? */ 1731 peer->bogusorg++; 1732 peer->flash |= TEST2; /* bogus */ 1733 msyslog(LOG_INFO, 1734 "receive: Unexpected origin timestamp %#010x.%08x does not match aorg %#010x.%08x from %s@%s xmt %#010x.%08x", 1735 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 1736 peer->aorg.l_ui, peer->aorg.l_uf, 1737 hm_str, ntoa(&peer->srcadr), 1738 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)); 1739 if ( !L_ISZERO(&peer->dst) 1740 && L_ISEQU(&p_org, &peer->dst)) { 1741 /* Might be the start of an interleave */ 1742 if (dynamic_interleave) { 1743 peer->flip = 1; 1744 report_event(PEVNT_XLEAVE, peer, NULL); 1745 } else { 1746 msyslog(LOG_INFO, 1747 "receive: Dynamic interleave from %s@%s denied", 1748 hm_str, ntoa(&peer->srcadr)); 1749 } 1750 } 1751 } else { 1752 L_CLR(&peer->aorg); 1753 } 1754 1755 /* 1756 * Check for valid nonzero timestamp fields. 1757 */ 1758 } else if ( L_ISZERO(&p_org) 1759 || L_ISZERO(&p_rec) 1760 || L_ISZERO(&peer->dst)) { 1761 peer->flash |= TEST3; /* unsynch */ 1762 1763 /* 1764 * Check for bogus packet in interleaved symmetric mode. This 1765 * can happen if a packet is lost, duplicated or crossed. If 1766 * found, flip and resynchronize. 1767 */ 1768 } else if ( !L_ISZERO(&peer->dst) 1769 && !L_ISEQU(&p_org, &peer->dst)) { 1770 peer->bogusorg++; 1771 peer->flags |= FLAG_XBOGUS; 1772 peer->flash |= TEST2; /* bogus */ 1773 return; /* Bogus packet, we are done */ 1774 } 1775 1776 /**/ 1777 1778 /* 1779 * If this is a crypto_NAK, the server cannot authenticate a 1780 * client packet. The server might have just changed keys. Clear 1781 * the association and restart the protocol. 1782 */ 1783 if (crypto_nak_test == VALIDNAK) { 1784 report_event(PEVNT_AUTH, peer, "crypto_NAK"); 1785 peer->flash |= TEST5; /* bad auth */ 1786 peer->badauth++; 1787 if (peer->flags & FLAG_PREEMPT) { 1788 if (unpeer_crypto_nak_early) { 1789 unpeer(peer); 1790 } 1791 return; 1792 } 1793 #ifdef AUTOKEY 1794 if (peer->crypto) { 1795 peer_clear(peer, "AUTH"); 1796 } 1797 #endif /* AUTOKEY */ 1798 return; 1799 1800 /* 1801 * If the digest fails or it's missing for authenticated 1802 * associations, the client cannot authenticate a server 1803 * reply to a client packet previously sent. The loopback check 1804 * is designed to avoid a bait-and-switch attack, which was 1805 * possible in past versions. If symmetric modes, return a 1806 * crypto-NAK. The peer should restart the protocol. 1807 */ 1808 } else if (!AUTH(peer->keyid || has_mac || 1809 (restrict_mask & RES_DONTTRUST), is_authentic)) { 1810 1811 if (peer->flash & PKT_TEST_MASK) { 1812 msyslog(LOG_INFO, 1813 "receive: Bad auth in packet with bad timestamps from %s denied - spoof?", 1814 ntoa(&peer->srcadr)); 1815 return; 1816 } 1817 1818 report_event(PEVNT_AUTH, peer, "digest"); 1819 peer->flash |= TEST5; /* bad auth */ 1820 peer->badauth++; 1821 if ( has_mac 1822 && ( hismode == MODE_ACTIVE 1823 || hismode == MODE_PASSIVE)) 1824 fast_xmit(rbufp, MODE_ACTIVE, 0, restrict_mask); 1825 if (peer->flags & FLAG_PREEMPT) { 1826 if (unpeer_digest_early) { 1827 unpeer(peer); 1828 } 1829 } 1830 #ifdef AUTOKEY 1831 else if (peer_clear_digest_early && peer->crypto) { 1832 peer_clear(peer, "AUTH"); 1833 } 1834 #endif /* AUTOKEY */ 1835 return; 1836 } 1837 1838 /* 1839 * For broadcast packets: 1840 * 1841 * HMS: This next line never made much sense to me, even 1842 * when it was up higher: 1843 * If an initial volley, bail out now and let the 1844 * client do its stuff. 1845 * 1846 * If the packet has not failed authentication, then 1847 * - if the origin timestamp is nonzero this is an 1848 * interleaved broadcast, so restart the protocol. 1849 * - else, this is not an interleaved broadcast packet. 1850 */ 1851 if (hismode == MODE_BROADCAST) { 1852 if ( is_authentic == AUTH_OK 1853 || is_authentic == AUTH_NONE) { 1854 if (!L_ISZERO(&p_org)) { 1855 if (!(peer->flags & FLAG_XB)) { 1856 msyslog(LOG_INFO, 1857 "receive: Broadcast server at %s is in interleave mode", 1858 ntoa(&peer->srcadr)); 1859 peer->flags |= FLAG_XB; 1860 peer->aorg = p_xmt; 1861 peer->borg = rbufp->recv_time; 1862 report_event(PEVNT_XLEAVE, peer, NULL); 1863 return; 1864 } 1865 } else if (peer->flags & FLAG_XB) { 1866 msyslog(LOG_INFO, 1867 "receive: Broadcast server at %s is no longer in interleave mode", 1868 ntoa(&peer->srcadr)); 1869 peer->flags &= ~FLAG_XB; 1870 } 1871 } else { 1872 msyslog(LOG_INFO, 1873 "receive: Bad broadcast auth (%d) from %s", 1874 is_authentic, ntoa(&peer->srcadr)); 1875 } 1876 1877 /* 1878 * Now that we know the packet is correctly authenticated, 1879 * update peer->bxmt. 1880 */ 1881 peer->bxmt = p_xmt; 1882 } 1883 1884 1885 /* 1886 ** Update the state variables. 1887 */ 1888 if (peer->flip == 0) { 1889 if (hismode != MODE_BROADCAST) 1890 peer->rec = p_xmt; 1891 peer->dst = rbufp->recv_time; 1892 } 1893 peer->xmt = p_xmt; 1894 1895 /* 1896 * Set the peer ppoll to the maximum of the packet ppoll and the 1897 * peer minpoll. If a kiss-o'-death, set the peer minpoll to 1898 * this maximum and advance the headway to give the sender some 1899 * headroom. Very intricate. 1900 */ 1901 1902 /* 1903 * Check for any kiss codes. Note this is only used when a server 1904 * responds to a packet request 1905 */ 1906 1907 kissCode = kiss_code_check(hisleap, hisstratum, hismode, pkt->refid); 1908 1909 /* 1910 * Check to see if this is a RATE Kiss Code 1911 * Currently this kiss code will accept whatever poll 1912 * rate that the server sends 1913 */ 1914 peer->ppoll = max(peer->minpoll, pkt->ppoll); 1915 if (kissCode == RATEKISS) { 1916 peer->selbroken++; /* Increment the KoD count */ 1917 report_event(PEVNT_RATE, peer, NULL); 1918 if (pkt->ppoll > peer->minpoll) 1919 peer->minpoll = peer->ppoll; 1920 peer->burst = peer->retry = 0; 1921 peer->throttle = (NTP_SHIFT + 1) * (1 << peer->minpoll); 1922 poll_update(peer, pkt->ppoll); 1923 return; /* kiss-o'-death */ 1924 } 1925 if (kissCode != NOKISS) { 1926 peer->selbroken++; /* Increment the KoD count */ 1927 return; /* Drop any other kiss code packets */ 1928 } 1929 1930 1931 /* 1932 * XXX 1933 */ 1934 1935 1936 /* 1937 * If: 1938 * - this is a *cast (uni-, broad-, or m-) server packet 1939 * - and it's symmetric-key authenticated 1940 * then see if the sender's IP is trusted for this keyid. 1941 * If it is, great - nothing special to do here. 1942 * Otherwise, we should report and bail. 1943 * 1944 * Autokey-authenticated packets are accepted. 1945 */ 1946 1947 switch (hismode) { 1948 case MODE_SERVER: /* server mode */ 1949 case MODE_BROADCAST: /* broadcast mode */ 1950 case MODE_ACTIVE: /* symmetric active mode */ 1951 case MODE_PASSIVE: /* symmetric passive mode */ 1952 if ( is_authentic == AUTH_OK 1953 && skeyid 1954 && skeyid <= NTP_MAXKEY 1955 && !authistrustedip(skeyid, &peer->srcadr)) { 1956 report_event(PEVNT_AUTH, peer, "authIP"); 1957 peer->badauth++; 1958 return; 1959 } 1960 break; 1961 1962 case MODE_CLIENT: /* client mode */ 1963 #if 0 /* At this point, MODE_CONTROL is overloaded by MODE_BCLIENT */ 1964 case MODE_CONTROL: /* control mode */ 1965 #endif 1966 case MODE_PRIVATE: /* private mode */ 1967 case MODE_BCLIENT: /* broadcast client mode */ 1968 break; 1969 1970 case MODE_UNSPEC: /* unspecified (old version) */ 1971 default: 1972 msyslog(LOG_INFO, 1973 "receive: Unexpected mode (%d) in packet from %s", 1974 hismode, ntoa(&peer->srcadr)); 1975 break; 1976 } 1977 1978 1979 /* 1980 * That was hard and I am sweaty, but the packet is squeaky 1981 * clean. Get on with real work. 1982 */ 1983 peer->timereceived = current_time; 1984 peer->timelastrec = current_time; 1985 if (is_authentic == AUTH_OK) 1986 peer->flags |= FLAG_AUTHENTIC; 1987 else 1988 peer->flags &= ~FLAG_AUTHENTIC; 1989 1990 #ifdef AUTOKEY 1991 /* 1992 * More autokey dance. The rules of the cha-cha are as follows: 1993 * 1994 * 1. If there is no key or the key is not auto, do nothing. 1995 * 1996 * 2. If this packet is in response to the one just previously 1997 * sent or from a broadcast server, do the extension fields. 1998 * Otherwise, assume bogosity and bail out. 1999 * 2000 * 3. If an extension field contains a verified signature, it is 2001 * self-authenticated and we sit the dance. 2002 * 2003 * 4. If this is a server reply, check only to see that the 2004 * transmitted key ID matches the received key ID. 2005 * 2006 * 5. Check to see that one or more hashes of the current key ID 2007 * matches the previous key ID or ultimate original key ID 2008 * obtained from the broadcaster or symmetric peer. If no 2009 * match, sit the dance and call for new autokey values. 2010 * 2011 * In case of crypto error, fire the orchestra, stop dancing and 2012 * restart the protocol. 2013 */ 2014 if (peer->flags & FLAG_SKEY) { 2015 /* 2016 * Decrement remaining autokey hashes. This isn't 2017 * perfect if a packet is lost, but results in no harm. 2018 */ 2019 ap = (struct autokey *)peer->recval.ptr; 2020 if (ap != NULL) { 2021 if (ap->seq > 0) 2022 ap->seq--; 2023 } 2024 peer->flash |= TEST8; 2025 rval = crypto_recv(peer, rbufp); 2026 if (rval == XEVNT_OK) { 2027 peer->unreach = 0; 2028 } else { 2029 if (rval == XEVNT_ERR) { 2030 report_event(PEVNT_RESTART, peer, 2031 "crypto error"); 2032 peer_clear(peer, "CRYP"); 2033 peer->flash |= TEST9; /* bad crypt */ 2034 if (peer->flags & FLAG_PREEMPT) { 2035 if (unpeer_crypto_early) { 2036 unpeer(peer); 2037 } 2038 } 2039 } 2040 return; 2041 } 2042 2043 /* 2044 * If server mode, verify the receive key ID matches 2045 * the transmit key ID. 2046 */ 2047 if (hismode == MODE_SERVER) { 2048 if (skeyid == peer->keyid) 2049 peer->flash &= ~TEST8; 2050 2051 /* 2052 * If an extension field is present, verify only that it 2053 * has been correctly signed. We don't need a sequence 2054 * check here, but the sequence continues. 2055 */ 2056 } else if (!(peer->flash & TEST8)) { 2057 peer->pkeyid = skeyid; 2058 2059 /* 2060 * Now the fun part. Here, skeyid is the current ID in 2061 * the packet, pkeyid is the ID in the last packet and 2062 * tkeyid is the hash of skeyid. If the autokey values 2063 * have not been received, this is an automatic error. 2064 * If so, check that the tkeyid matches pkeyid. If not, 2065 * hash tkeyid and try again. If the number of hashes 2066 * exceeds the number remaining in the sequence, declare 2067 * a successful failure and refresh the autokey values. 2068 */ 2069 } else if (ap != NULL) { 2070 int i; 2071 2072 for (i = 0; ; i++) { 2073 if ( tkeyid == peer->pkeyid 2074 || tkeyid == ap->key) { 2075 peer->flash &= ~TEST8; 2076 peer->pkeyid = skeyid; 2077 ap->seq -= i; 2078 break; 2079 } 2080 if (i > ap->seq) { 2081 peer->crypto &= 2082 ~CRYPTO_FLAG_AUTO; 2083 break; 2084 } 2085 tkeyid = session_key( 2086 &rbufp->recv_srcadr, dstadr_sin, 2087 tkeyid, pkeyid, 0); 2088 } 2089 if (peer->flash & TEST8) 2090 report_event(PEVNT_AUTH, peer, "keylist"); 2091 } 2092 if (!(peer->crypto & CRYPTO_FLAG_PROV)) /* test 9 */ 2093 peer->flash |= TEST8; /* bad autokey */ 2094 2095 /* 2096 * The maximum lifetime of the protocol is about one 2097 * week before restarting the Autokey protocol to 2098 * refresh certificates and leapseconds values. 2099 */ 2100 if (current_time > peer->refresh) { 2101 report_event(PEVNT_RESTART, peer, 2102 "crypto refresh"); 2103 peer_clear(peer, "TIME"); 2104 return; 2105 } 2106 } 2107 #endif /* AUTOKEY */ 2108 2109 /* 2110 * The dance is complete and the flash bits have been lit. Toss 2111 * the packet over the fence for processing, which may light up 2112 * more flashers. 2113 */ 2114 process_packet(peer, pkt, rbufp->recv_length); 2115 2116 /* 2117 * In interleaved mode update the state variables. Also adjust the 2118 * transmit phase to avoid crossover. 2119 */ 2120 if (peer->flip != 0) { 2121 peer->rec = p_rec; 2122 peer->dst = rbufp->recv_time; 2123 if (peer->nextdate - current_time < (1U << min(peer->ppoll, 2124 peer->hpoll)) / 2) 2125 peer->nextdate++; 2126 else 2127 peer->nextdate--; 2128 } 2129 } 2130 2131 2132 /* 2133 * process_packet - Packet Procedure, a la Section 3.4.4 of RFC-1305 2134 * Or almost, at least. If we're in here we have a reasonable 2135 * expectation that we will be having a long term 2136 * relationship with this host. 2137 */ 2138 void 2139 process_packet( 2140 register struct peer *peer, 2141 register struct pkt *pkt, 2142 u_int len 2143 ) 2144 { 2145 double t34, t21; 2146 double p_offset, p_del, p_disp; 2147 l_fp p_rec, p_xmt, p_org, p_reftime, ci; 2148 u_char pmode, pleap, pversion, pstratum; 2149 char statstr[NTP_MAXSTRLEN]; 2150 #ifdef ASSYM 2151 int itemp; 2152 double etemp, ftemp, td; 2153 #endif /* ASSYM */ 2154 2155 #if 0 2156 sys_processed++; 2157 peer->processed++; 2158 #endif 2159 p_del = FPTOD(NTOHS_FP(pkt->rootdelay)); 2160 p_offset = 0; 2161 p_disp = FPTOD(NTOHS_FP(pkt->rootdisp)); 2162 NTOHL_FP(&pkt->reftime, &p_reftime); 2163 NTOHL_FP(&pkt->org, &p_org); 2164 NTOHL_FP(&pkt->rec, &p_rec); 2165 NTOHL_FP(&pkt->xmt, &p_xmt); 2166 pmode = PKT_MODE(pkt->li_vn_mode); 2167 pleap = PKT_LEAP(pkt->li_vn_mode); 2168 pversion = PKT_VERSION(pkt->li_vn_mode); 2169 pstratum = PKT_TO_STRATUM(pkt->stratum); 2170 2171 /**/ 2172 2173 /**/ 2174 2175 /* 2176 * Verify the server is synchronized; that is, the leap bits, 2177 * stratum and root distance are valid. 2178 */ 2179 if ( pleap == LEAP_NOTINSYNC /* test 6 */ 2180 || pstratum < sys_floor || pstratum >= sys_ceiling) 2181 peer->flash |= TEST6; /* bad synch or strat */ 2182 if (p_del / 2 + p_disp >= MAXDISPERSE) /* test 7 */ 2183 peer->flash |= TEST7; /* bad header */ 2184 2185 /* 2186 * If any tests fail at this point, the packet is discarded. 2187 * Note that some flashers may have already been set in the 2188 * receive() routine. 2189 */ 2190 if (peer->flash & PKT_TEST_MASK) { 2191 peer->seldisptoolarge++; 2192 DPRINTF(1, ("packet: flash header %04x\n", 2193 peer->flash)); 2194 return; 2195 } 2196 2197 /**/ 2198 2199 #if 1 2200 sys_processed++; 2201 peer->processed++; 2202 #endif 2203 2204 /* 2205 * Capture the header values in the client/peer association.. 2206 */ 2207 record_raw_stats(&peer->srcadr, peer->dstadr ? 2208 &peer->dstadr->sin : NULL, 2209 &p_org, &p_rec, &p_xmt, &peer->dst, 2210 pleap, pversion, pmode, pstratum, pkt->ppoll, pkt->precision, 2211 p_del, p_disp, pkt->refid); 2212 peer->leap = pleap; 2213 peer->stratum = min(pstratum, STRATUM_UNSPEC); 2214 peer->pmode = pmode; 2215 peer->precision = pkt->precision; 2216 peer->rootdelay = p_del; 2217 peer->rootdisp = p_disp; 2218 peer->refid = pkt->refid; /* network byte order */ 2219 peer->reftime = p_reftime; 2220 2221 /* 2222 * First, if either burst mode is armed, enable the burst. 2223 * Compute the headway for the next packet and delay if 2224 * necessary to avoid exceeding the threshold. 2225 */ 2226 if (peer->retry > 0) { 2227 peer->retry = 0; 2228 if (peer->reach) 2229 peer->burst = min(1 << (peer->hpoll - 2230 peer->minpoll), NTP_SHIFT) - 1; 2231 else 2232 peer->burst = NTP_IBURST - 1; 2233 if (peer->burst > 0) 2234 peer->nextdate = current_time; 2235 } 2236 poll_update(peer, peer->hpoll); 2237 2238 /**/ 2239 2240 /* 2241 * If the peer was previously unreachable, raise a trap. In any 2242 * case, mark it reachable. 2243 */ 2244 if (!peer->reach) { 2245 report_event(PEVNT_REACH, peer, NULL); 2246 peer->timereachable = current_time; 2247 } 2248 peer->reach |= 1; 2249 2250 /* 2251 * For a client/server association, calculate the clock offset, 2252 * roundtrip delay and dispersion. The equations are reordered 2253 * from the spec for more efficient use of temporaries. For a 2254 * broadcast association, offset the last measurement by the 2255 * computed delay during the client/server volley. Note the 2256 * computation of dispersion includes the system precision plus 2257 * that due to the frequency error since the origin time. 2258 * 2259 * It is very important to respect the hazards of overflow. The 2260 * only permitted operation on raw timestamps is subtraction, 2261 * where the result is a signed quantity spanning from 68 years 2262 * in the past to 68 years in the future. To avoid loss of 2263 * precision, these calculations are done using 64-bit integer 2264 * arithmetic. However, the offset and delay calculations are 2265 * sums and differences of these first-order differences, which 2266 * if done using 64-bit integer arithmetic, would be valid over 2267 * only half that span. Since the typical first-order 2268 * differences are usually very small, they are converted to 64- 2269 * bit doubles and all remaining calculations done in floating- 2270 * double arithmetic. This preserves the accuracy while 2271 * retaining the 68-year span. 2272 * 2273 * There are three interleaving schemes, basic, interleaved 2274 * symmetric and interleaved broadcast. The timestamps are 2275 * idioscyncratically different. See the onwire briefing/white 2276 * paper at www.eecis.udel.edu/~mills for details. 2277 * 2278 * Interleaved symmetric mode 2279 * t1 = peer->aorg/borg, t2 = peer->rec, t3 = p_xmt, 2280 * t4 = peer->dst 2281 */ 2282 if (peer->flip != 0) { 2283 ci = p_xmt; /* t3 - t4 */ 2284 L_SUB(&ci, &peer->dst); 2285 LFPTOD(&ci, t34); 2286 ci = p_rec; /* t2 - t1 */ 2287 if (peer->flip > 0) 2288 L_SUB(&ci, &peer->borg); 2289 else 2290 L_SUB(&ci, &peer->aorg); 2291 LFPTOD(&ci, t21); 2292 p_del = t21 - t34; 2293 p_offset = (t21 + t34) / 2.; 2294 if (p_del < 0 || p_del > 1.) { 2295 snprintf(statstr, sizeof(statstr), 2296 "t21 %.6f t34 %.6f", t21, t34); 2297 report_event(PEVNT_XERR, peer, statstr); 2298 return; 2299 } 2300 2301 /* 2302 * Broadcast modes 2303 */ 2304 } else if (peer->pmode == MODE_BROADCAST) { 2305 2306 /* 2307 * Interleaved broadcast mode. Use interleaved timestamps. 2308 * t1 = peer->borg, t2 = p_org, t3 = p_org, t4 = aorg 2309 */ 2310 if (peer->flags & FLAG_XB) { 2311 ci = p_org; /* delay */ 2312 L_SUB(&ci, &peer->aorg); 2313 LFPTOD(&ci, t34); 2314 ci = p_org; /* t2 - t1 */ 2315 L_SUB(&ci, &peer->borg); 2316 LFPTOD(&ci, t21); 2317 peer->aorg = p_xmt; 2318 peer->borg = peer->dst; 2319 if (t34 < 0 || t34 > 1.) { 2320 /* drop all if in the initial volley */ 2321 if (FLAG_BC_VOL & peer->flags) 2322 goto bcc_init_volley_fail; 2323 snprintf(statstr, sizeof(statstr), 2324 "offset %.6f delay %.6f", t21, t34); 2325 report_event(PEVNT_XERR, peer, statstr); 2326 return; 2327 } 2328 p_offset = t21; 2329 peer->xleave = t34; 2330 2331 /* 2332 * Basic broadcast - use direct timestamps. 2333 * t3 = p_xmt, t4 = peer->dst 2334 */ 2335 } else { 2336 ci = p_xmt; /* t3 - t4 */ 2337 L_SUB(&ci, &peer->dst); 2338 LFPTOD(&ci, t34); 2339 p_offset = t34; 2340 } 2341 2342 /* 2343 * When calibration is complete and the clock is 2344 * synchronized, the bias is calculated as the difference 2345 * between the unicast timestamp and the broadcast 2346 * timestamp. This works for both basic and interleaved 2347 * modes. 2348 * [Bug 3031] Don't keep this peer when the delay 2349 * calculation gives reason to suspect clock steps. 2350 * This is assumed for delays > 50ms. 2351 */ 2352 if (FLAG_BC_VOL & peer->flags) { 2353 peer->flags &= ~FLAG_BC_VOL; 2354 peer->delay = fabs(peer->offset - p_offset) * 2; 2355 DPRINTF(2, ("broadcast volley: initial delay=%.6f\n", 2356 peer->delay)); 2357 if (peer->delay > fabs(sys_bdelay)) { 2358 bcc_init_volley_fail: 2359 DPRINTF(2, ("%s", "broadcast volley: initial delay exceeds limit\n")); 2360 unpeer(peer); 2361 return; 2362 } 2363 } 2364 peer->nextdate = current_time + (1u << peer->ppoll) - 2u; 2365 p_del = peer->delay; 2366 p_offset += p_del / 2; 2367 2368 2369 /* 2370 * Basic mode, otherwise known as the old fashioned way. 2371 * 2372 * t1 = p_org, t2 = p_rec, t3 = p_xmt, t4 = peer->dst 2373 */ 2374 } else { 2375 ci = p_xmt; /* t3 - t4 */ 2376 L_SUB(&ci, &peer->dst); 2377 LFPTOD(&ci, t34); 2378 ci = p_rec; /* t2 - t1 */ 2379 L_SUB(&ci, &p_org); 2380 LFPTOD(&ci, t21); 2381 p_del = fabs(t21 - t34); 2382 p_offset = (t21 + t34) / 2.; 2383 } 2384 p_del = max(p_del, LOGTOD(sys_precision)); 2385 p_disp = LOGTOD(sys_precision) + LOGTOD(peer->precision) + 2386 clock_phi * p_del; 2387 2388 #if ASSYM 2389 /* 2390 * This code calculates the outbound and inbound data rates by 2391 * measuring the differences between timestamps at different 2392 * packet lengths. This is helpful in cases of large asymmetric 2393 * delays commonly experienced on deep space communication 2394 * links. 2395 */ 2396 if (peer->t21_last > 0 && peer->t34_bytes > 0) { 2397 itemp = peer->t21_bytes - peer->t21_last; 2398 if (itemp > 25) { 2399 etemp = t21 - peer->t21; 2400 if (fabs(etemp) > 1e-6) { 2401 ftemp = itemp / etemp; 2402 if (ftemp > 1000.) 2403 peer->r21 = ftemp; 2404 } 2405 } 2406 itemp = len - peer->t34_bytes; 2407 if (itemp > 25) { 2408 etemp = -t34 - peer->t34; 2409 if (fabs(etemp) > 1e-6) { 2410 ftemp = itemp / etemp; 2411 if (ftemp > 1000.) 2412 peer->r34 = ftemp; 2413 } 2414 } 2415 } 2416 2417 /* 2418 * The following section compensates for different data rates on 2419 * the outbound (d21) and inbound (t34) directions. To do this, 2420 * it finds t such that r21 * t - r34 * (d - t) = 0, where d is 2421 * the roundtrip delay. Then it calculates the correction as a 2422 * fraction of d. 2423 */ 2424 peer->t21 = t21; 2425 peer->t21_last = peer->t21_bytes; 2426 peer->t34 = -t34; 2427 peer->t34_bytes = len; 2428 DPRINTF(2, ("packet: t21 %.9lf %d t34 %.9lf %d\n", peer->t21, 2429 peer->t21_bytes, peer->t34, peer->t34_bytes)); 2430 if (peer->r21 > 0 && peer->r34 > 0 && p_del > 0) { 2431 if (peer->pmode != MODE_BROADCAST) 2432 td = (peer->r34 / (peer->r21 + peer->r34) - 2433 .5) * p_del; 2434 else 2435 td = 0; 2436 2437 /* 2438 * Unfortunately, in many cases the errors are 2439 * unacceptable, so for the present the rates are not 2440 * used. In future, we might find conditions where the 2441 * calculations are useful, so this should be considered 2442 * a work in progress. 2443 */ 2444 t21 -= td; 2445 t34 -= td; 2446 DPRINTF(2, ("packet: del %.6lf r21 %.1lf r34 %.1lf %.6lf\n", 2447 p_del, peer->r21 / 1e3, peer->r34 / 1e3, 2448 td)); 2449 } 2450 #endif /* ASSYM */ 2451 2452 /* 2453 * That was awesome. Now hand off to the clock filter. 2454 */ 2455 clock_filter(peer, p_offset + peer->bias, p_del, p_disp); 2456 2457 /* 2458 * If we are in broadcast calibrate mode, return to broadcast 2459 * client mode when the client is fit and the autokey dance is 2460 * complete. 2461 */ 2462 if ( (FLAG_BC_VOL & peer->flags) 2463 && MODE_CLIENT == peer->hmode 2464 && !(TEST11 & peer_unfit(peer))) { /* distance exceeded */ 2465 #ifdef AUTOKEY 2466 if (peer->flags & FLAG_SKEY) { 2467 if (!(~peer->crypto & CRYPTO_FLAG_ALL)) 2468 peer->hmode = MODE_BCLIENT; 2469 } else { 2470 peer->hmode = MODE_BCLIENT; 2471 } 2472 #else /* !AUTOKEY follows */ 2473 peer->hmode = MODE_BCLIENT; 2474 #endif /* !AUTOKEY */ 2475 } 2476 } 2477 2478 2479 /* 2480 * clock_update - Called at system process update intervals. 2481 */ 2482 static void 2483 clock_update( 2484 struct peer *peer /* peer structure pointer */ 2485 ) 2486 { 2487 double dtemp; 2488 l_fp now; 2489 #ifdef HAVE_LIBSCF_H 2490 char *fmri; 2491 #endif /* HAVE_LIBSCF_H */ 2492 2493 /* 2494 * Update the system state variables. We do this very carefully, 2495 * as the poll interval might need to be clamped differently. 2496 */ 2497 sys_peer = peer; 2498 sys_epoch = peer->epoch; 2499 if (sys_poll < peer->minpoll) 2500 sys_poll = peer->minpoll; 2501 if (sys_poll > peer->maxpoll) 2502 sys_poll = peer->maxpoll; 2503 poll_update(peer, sys_poll); 2504 sys_stratum = min(peer->stratum + 1, STRATUM_UNSPEC); 2505 if ( peer->stratum == STRATUM_REFCLOCK 2506 || peer->stratum == STRATUM_UNSPEC) 2507 sys_refid = peer->refid; 2508 else 2509 sys_refid = addr2refid(&peer->srcadr); 2510 /* 2511 * Root Dispersion (E) is defined (in RFC 5905) as: 2512 * 2513 * E = p.epsilon_r + p.epsilon + p.psi + PHI*(s.t - p.t) + |THETA| 2514 * 2515 * where: 2516 * p.epsilon_r is the PollProc's root dispersion 2517 * p.epsilon is the PollProc's dispersion 2518 * p.psi is the PollProc's jitter 2519 * THETA is the combined offset 2520 * 2521 * NB: Think Hard about where these numbers come from and 2522 * what they mean. When did peer->update happen? Has anything 2523 * interesting happened since then? What values are the most 2524 * defensible? Why? 2525 * 2526 * DLM thinks this equation is probably the best of all worse choices. 2527 */ 2528 dtemp = peer->rootdisp 2529 + peer->disp 2530 + sys_jitter 2531 + clock_phi * (current_time - peer->update) 2532 + fabs(sys_offset); 2533 2534 if (dtemp > sys_mindisp) 2535 sys_rootdisp = dtemp; 2536 else 2537 sys_rootdisp = sys_mindisp; 2538 sys_rootdelay = peer->delay + peer->rootdelay; 2539 sys_reftime = peer->dst; 2540 2541 DPRINTF(1, ("clock_update: at %lu sample %lu associd %d\n", 2542 current_time, peer->epoch, peer->associd)); 2543 2544 /* 2545 * Comes now the moment of truth. Crank the clock discipline and 2546 * see what comes out. 2547 */ 2548 switch (local_clock(peer, sys_offset)) { 2549 2550 /* 2551 * Clock exceeds panic threshold. Life as we know it ends. 2552 */ 2553 case -1: 2554 #ifdef HAVE_LIBSCF_H 2555 /* 2556 * For Solaris enter the maintenance mode. 2557 */ 2558 if ((fmri = getenv("SMF_FMRI")) != NULL) { 2559 if (smf_maintain_instance(fmri, 0) < 0) { 2560 printf("smf_maintain_instance: %s\n", 2561 scf_strerror(scf_error())); 2562 exit(1); 2563 } 2564 /* 2565 * Sleep until SMF kills us. 2566 */ 2567 for (;;) 2568 pause(); 2569 } 2570 #endif /* HAVE_LIBSCF_H */ 2571 exit (-1); 2572 /* not reached */ 2573 2574 /* 2575 * Clock was stepped. Flush all time values of all peers. 2576 */ 2577 case 2: 2578 clear_all(); 2579 set_sys_leap(LEAP_NOTINSYNC); 2580 sys_stratum = STRATUM_UNSPEC; 2581 memcpy(&sys_refid, "STEP", 4); 2582 sys_rootdelay = 0; 2583 sys_rootdisp = 0; 2584 L_CLR(&sys_reftime); 2585 sys_jitter = LOGTOD(sys_precision); 2586 leapsec_reset_frame(); 2587 break; 2588 2589 /* 2590 * Clock was slewed. Handle the leapsecond stuff. 2591 */ 2592 case 1: 2593 2594 /* 2595 * If this is the first time the clock is set, reset the 2596 * leap bits. If crypto, the timer will goose the setup 2597 * process. 2598 */ 2599 if (sys_leap == LEAP_NOTINSYNC) { 2600 set_sys_leap(LEAP_NOWARNING); 2601 #ifdef AUTOKEY 2602 if (crypto_flags) 2603 crypto_update(); 2604 #endif /* AUTOKEY */ 2605 /* 2606 * If our parent process is waiting for the 2607 * first clock sync, send them home satisfied. 2608 */ 2609 #ifdef HAVE_WORKING_FORK 2610 if (waitsync_fd_to_close != -1) { 2611 close(waitsync_fd_to_close); 2612 waitsync_fd_to_close = -1; 2613 DPRINTF(1, ("notified parent --wait-sync is done\n")); 2614 } 2615 #endif /* HAVE_WORKING_FORK */ 2616 2617 } 2618 2619 /* 2620 * If there is no leap second pending and the number of 2621 * survivor leap bits is greater than half the number of 2622 * survivors, try to schedule a leap for the end of the 2623 * current month. (This only works if no leap second for 2624 * that range is in the table, so doing this more than 2625 * once is mostly harmless.) 2626 */ 2627 if (leapsec == LSPROX_NOWARN) { 2628 if ( leap_vote_ins > leap_vote_del 2629 && leap_vote_ins > sys_survivors / 2) { 2630 get_systime(&now); 2631 leapsec_add_dyn(TRUE, now.l_ui, NULL); 2632 } 2633 if ( leap_vote_del > leap_vote_ins 2634 && leap_vote_del > sys_survivors / 2) { 2635 get_systime(&now); 2636 leapsec_add_dyn(FALSE, now.l_ui, NULL); 2637 } 2638 } 2639 break; 2640 2641 /* 2642 * Popcorn spike or step threshold exceeded. Pretend it never 2643 * happened. 2644 */ 2645 default: 2646 break; 2647 } 2648 } 2649 2650 2651 /* 2652 * poll_update - update peer poll interval 2653 */ 2654 void 2655 poll_update( 2656 struct peer *peer, /* peer structure pointer */ 2657 u_char mpoll 2658 ) 2659 { 2660 u_long next, utemp; 2661 u_char hpoll; 2662 2663 /* 2664 * This routine figures out when the next poll should be sent. 2665 * That turns out to be wickedly complicated. One problem is 2666 * that sometimes the time for the next poll is in the past when 2667 * the poll interval is reduced. We watch out for races here 2668 * between the receive process and the poll process. 2669 * 2670 * Clamp the poll interval between minpoll and maxpoll. 2671 */ 2672 hpoll = max(min(peer->maxpoll, mpoll), peer->minpoll); 2673 2674 #ifdef AUTOKEY 2675 /* 2676 * If during the crypto protocol the poll interval has changed, 2677 * the lifetimes in the key list are probably bogus. Purge the 2678 * the key list and regenerate it later. 2679 */ 2680 if ((peer->flags & FLAG_SKEY) && hpoll != peer->hpoll) 2681 key_expire(peer); 2682 #endif /* AUTOKEY */ 2683 peer->hpoll = hpoll; 2684 2685 /* 2686 * There are three variables important for poll scheduling, the 2687 * current time (current_time), next scheduled time (nextdate) 2688 * and the earliest time (utemp). The earliest time is 2 s 2689 * seconds, but could be more due to rate management. When 2690 * sending in a burst, use the earliest time. When not in a 2691 * burst but with a reply pending, send at the earliest time 2692 * unless the next scheduled time has not advanced. This can 2693 * only happen if multiple replies are pending in the same 2694 * response interval. Otherwise, send at the later of the next 2695 * scheduled time and the earliest time. 2696 * 2697 * Now we figure out if there is an override. If a burst is in 2698 * progress and we get called from the receive process, just 2699 * slink away. If called from the poll process, delay 1 s for a 2700 * reference clock, otherwise 2 s. 2701 */ 2702 utemp = current_time + max(peer->throttle - (NTP_SHIFT - 1) * 2703 (1 << peer->minpoll), ntp_minpkt); 2704 if (peer->burst > 0) { 2705 if (peer->nextdate > current_time) 2706 return; 2707 #ifdef REFCLOCK 2708 else if (peer->flags & FLAG_REFCLOCK) 2709 peer->nextdate = current_time + RESP_DELAY; 2710 #endif /* REFCLOCK */ 2711 else 2712 peer->nextdate = utemp; 2713 2714 #ifdef AUTOKEY 2715 /* 2716 * If a burst is not in progress and a crypto response message 2717 * is pending, delay 2 s, but only if this is a new interval. 2718 */ 2719 } else if (peer->cmmd != NULL) { 2720 if (peer->nextdate > current_time) { 2721 if (peer->nextdate + ntp_minpkt != utemp) 2722 peer->nextdate = utemp; 2723 } else { 2724 peer->nextdate = utemp; 2725 } 2726 #endif /* AUTOKEY */ 2727 2728 /* 2729 * The ordinary case. If a retry, use minpoll; if unreachable, 2730 * use host poll; otherwise, use the minimum of host and peer 2731 * polls; In other words, oversampling is okay but 2732 * understampling is evil. Use the maximum of this value and the 2733 * headway. If the average headway is greater than the headway 2734 * threshold, increase the headway by the minimum interval. 2735 */ 2736 } else { 2737 if (peer->retry > 0) 2738 hpoll = peer->minpoll; 2739 else if (!(peer->reach)) 2740 hpoll = peer->hpoll; 2741 else 2742 hpoll = min(peer->ppoll, peer->hpoll); 2743 #ifdef REFCLOCK 2744 if (peer->flags & FLAG_REFCLOCK) 2745 next = 1 << hpoll; 2746 else 2747 #endif /* REFCLOCK */ 2748 next = ((0x1000UL | (ntp_random() & 0x0ff)) << 2749 hpoll) >> 12; 2750 next += peer->outdate; 2751 if (next > utemp) 2752 peer->nextdate = next; 2753 else 2754 peer->nextdate = utemp; 2755 if (peer->throttle > (1 << peer->minpoll)) 2756 peer->nextdate += ntp_minpkt; 2757 } 2758 DPRINTF(2, ("poll_update: at %lu %s poll %d burst %d retry %d head %d early %lu next %lu\n", 2759 current_time, ntoa(&peer->srcadr), peer->hpoll, 2760 peer->burst, peer->retry, peer->throttle, 2761 utemp - current_time, peer->nextdate - 2762 current_time)); 2763 } 2764 2765 2766 /* 2767 * peer_clear - clear peer filter registers. See Section 3.4.8 of the 2768 * spec. 2769 */ 2770 void 2771 peer_clear( 2772 struct peer *peer, /* peer structure */ 2773 const char *ident /* tally lights */ 2774 ) 2775 { 2776 u_char u; 2777 l_fp bxmt = peer->bxmt; /* bcast clients retain this! */ 2778 2779 #ifdef AUTOKEY 2780 /* 2781 * If cryptographic credentials have been acquired, toss them to 2782 * Valhalla. Note that autokeys are ephemeral, in that they are 2783 * tossed immediately upon use. Therefore, the keylist can be 2784 * purged anytime without needing to preserve random keys. Note 2785 * that, if the peer is purged, the cryptographic variables are 2786 * purged, too. This makes it much harder to sneak in some 2787 * unauthenticated data in the clock filter. 2788 */ 2789 key_expire(peer); 2790 if (peer->iffval != NULL) 2791 BN_free(peer->iffval); 2792 value_free(&peer->cookval); 2793 value_free(&peer->recval); 2794 value_free(&peer->encrypt); 2795 value_free(&peer->sndval); 2796 if (peer->cmmd != NULL) 2797 free(peer->cmmd); 2798 if (peer->subject != NULL) 2799 free(peer->subject); 2800 if (peer->issuer != NULL) 2801 free(peer->issuer); 2802 #endif /* AUTOKEY */ 2803 2804 /* 2805 * Clear all values, including the optional crypto values above. 2806 */ 2807 memset(CLEAR_TO_ZERO(peer), 0, LEN_CLEAR_TO_ZERO(peer)); 2808 peer->ppoll = peer->maxpoll; 2809 peer->hpoll = peer->minpoll; 2810 peer->disp = MAXDISPERSE; 2811 peer->flash = peer_unfit(peer); 2812 peer->jitter = LOGTOD(sys_precision); 2813 2814 /* Don't throw away our broadcast replay protection */ 2815 if (peer->hmode == MODE_BCLIENT) 2816 peer->bxmt = bxmt; 2817 2818 /* 2819 * If interleave mode, initialize the alternate origin switch. 2820 */ 2821 if (peer->flags & FLAG_XLEAVE) 2822 peer->flip = 1; 2823 for (u = 0; u < NTP_SHIFT; u++) { 2824 peer->filter_order[u] = u; 2825 peer->filter_disp[u] = MAXDISPERSE; 2826 } 2827 #ifdef REFCLOCK 2828 if (!(peer->flags & FLAG_REFCLOCK)) { 2829 #endif 2830 peer->leap = LEAP_NOTINSYNC; 2831 peer->stratum = STRATUM_UNSPEC; 2832 memcpy(&peer->refid, ident, 4); 2833 #ifdef REFCLOCK 2834 } 2835 #endif 2836 2837 /* 2838 * During initialization use the association count to spread out 2839 * the polls at one-second intervals. Passive associations' 2840 * first poll is delayed by the "discard minimum" to avoid rate 2841 * limiting. Other post-startup new or cleared associations 2842 * randomize the first poll over the minimum poll interval to 2843 * avoid implosion. 2844 */ 2845 peer->nextdate = peer->update = peer->outdate = current_time; 2846 if (initializing) { 2847 peer->nextdate += peer_associations; 2848 } else if (MODE_PASSIVE == peer->hmode) { 2849 peer->nextdate += ntp_minpkt; 2850 } else { 2851 peer->nextdate += ntp_random() % peer->minpoll; 2852 } 2853 #ifdef AUTOKEY 2854 peer->refresh = current_time + (1 << NTP_REFRESH); 2855 #endif /* AUTOKEY */ 2856 DPRINTF(1, ("peer_clear: at %ld next %ld associd %d refid %s\n", 2857 current_time, peer->nextdate, peer->associd, 2858 ident)); 2859 } 2860 2861 2862 /* 2863 * clock_filter - add incoming clock sample to filter register and run 2864 * the filter procedure to find the best sample. 2865 */ 2866 void 2867 clock_filter( 2868 struct peer *peer, /* peer structure pointer */ 2869 double sample_offset, /* clock offset */ 2870 double sample_delay, /* roundtrip delay */ 2871 double sample_disp /* dispersion */ 2872 ) 2873 { 2874 double dst[NTP_SHIFT]; /* distance vector */ 2875 int ord[NTP_SHIFT]; /* index vector */ 2876 int i, j, k, m; 2877 double dtemp, etemp; 2878 char tbuf[80]; 2879 2880 /* 2881 * A sample consists of the offset, delay, dispersion and epoch 2882 * of arrival. The offset and delay are determined by the on- 2883 * wire protocol. The dispersion grows from the last outbound 2884 * packet to the arrival of this one increased by the sum of the 2885 * peer precision and the system precision as required by the 2886 * error budget. First, shift the new arrival into the shift 2887 * register discarding the oldest one. 2888 */ 2889 j = peer->filter_nextpt; 2890 peer->filter_offset[j] = sample_offset; 2891 peer->filter_delay[j] = sample_delay; 2892 peer->filter_disp[j] = sample_disp; 2893 peer->filter_epoch[j] = current_time; 2894 j = (j + 1) % NTP_SHIFT; 2895 peer->filter_nextpt = j; 2896 2897 /* 2898 * Update dispersions since the last update and at the same 2899 * time initialize the distance and index lists. Since samples 2900 * become increasingly uncorrelated beyond the Allan intercept, 2901 * only under exceptional cases will an older sample be used. 2902 * Therefore, the distance list uses a compound metric. If the 2903 * dispersion is greater than the maximum dispersion, clamp the 2904 * distance at that value. If the time since the last update is 2905 * less than the Allan intercept use the delay; otherwise, use 2906 * the sum of the delay and dispersion. 2907 */ 2908 dtemp = clock_phi * (current_time - peer->update); 2909 peer->update = current_time; 2910 for (i = NTP_SHIFT - 1; i >= 0; i--) { 2911 if (i != 0) 2912 peer->filter_disp[j] += dtemp; 2913 if (peer->filter_disp[j] >= MAXDISPERSE) { 2914 peer->filter_disp[j] = MAXDISPERSE; 2915 dst[i] = MAXDISPERSE; 2916 } else if (peer->update - peer->filter_epoch[j] > 2917 (u_long)ULOGTOD(allan_xpt)) { 2918 dst[i] = peer->filter_delay[j] + 2919 peer->filter_disp[j]; 2920 } else { 2921 dst[i] = peer->filter_delay[j]; 2922 } 2923 ord[i] = j; 2924 j = (j + 1) % NTP_SHIFT; 2925 } 2926 2927 /* 2928 * If the clock has stabilized, sort the samples by distance. 2929 */ 2930 if (freq_cnt == 0) { 2931 for (i = 1; i < NTP_SHIFT; i++) { 2932 for (j = 0; j < i; j++) { 2933 if (dst[j] > dst[i]) { 2934 k = ord[j]; 2935 ord[j] = ord[i]; 2936 ord[i] = k; 2937 etemp = dst[j]; 2938 dst[j] = dst[i]; 2939 dst[i] = etemp; 2940 } 2941 } 2942 } 2943 } 2944 2945 /* 2946 * Copy the index list to the association structure so ntpq 2947 * can see it later. Prune the distance list to leave only 2948 * samples less than the maximum dispersion, which disfavors 2949 * uncorrelated samples older than the Allan intercept. To 2950 * further improve the jitter estimate, of the remainder leave 2951 * only samples less than the maximum distance, but keep at 2952 * least two samples for jitter calculation. 2953 */ 2954 m = 0; 2955 for (i = 0; i < NTP_SHIFT; i++) { 2956 peer->filter_order[i] = (u_char) ord[i]; 2957 if ( dst[i] >= MAXDISPERSE 2958 || (m >= 2 && dst[i] >= sys_maxdist)) 2959 continue; 2960 m++; 2961 } 2962 2963 /* 2964 * Compute the dispersion and jitter. The dispersion is weighted 2965 * exponentially by NTP_FWEIGHT (0.5) so it is normalized close 2966 * to 1.0. The jitter is the RMS differences relative to the 2967 * lowest delay sample. 2968 */ 2969 peer->disp = peer->jitter = 0; 2970 k = ord[0]; 2971 for (i = NTP_SHIFT - 1; i >= 0; i--) { 2972 j = ord[i]; 2973 peer->disp = NTP_FWEIGHT * (peer->disp + 2974 peer->filter_disp[j]); 2975 if (i < m) 2976 peer->jitter += DIFF(peer->filter_offset[j], 2977 peer->filter_offset[k]); 2978 } 2979 2980 /* 2981 * If no acceptable samples remain in the shift register, 2982 * quietly tiptoe home leaving only the dispersion. Otherwise, 2983 * save the offset, delay and jitter. Note the jitter must not 2984 * be less than the precision. 2985 */ 2986 if (m == 0) { 2987 clock_select(); 2988 return; 2989 } 2990 etemp = fabs(peer->offset - peer->filter_offset[k]); 2991 peer->offset = peer->filter_offset[k]; 2992 peer->delay = peer->filter_delay[k]; 2993 if (m > 1) 2994 peer->jitter /= m - 1; 2995 peer->jitter = max(SQRT(peer->jitter), LOGTOD(sys_precision)); 2996 2997 /* 2998 * If the the new sample and the current sample are both valid 2999 * and the difference between their offsets exceeds CLOCK_SGATE 3000 * (3) times the jitter and the interval between them is less 3001 * than twice the host poll interval, consider the new sample 3002 * a popcorn spike and ignore it. 3003 */ 3004 if ( peer->disp < sys_maxdist 3005 && peer->filter_disp[k] < sys_maxdist 3006 && etemp > CLOCK_SGATE * peer->jitter 3007 && peer->filter_epoch[k] - peer->epoch 3008 < 2. * ULOGTOD(peer->hpoll)) { 3009 snprintf(tbuf, sizeof(tbuf), "%.6f s", etemp); 3010 report_event(PEVNT_POPCORN, peer, tbuf); 3011 return; 3012 } 3013 3014 /* 3015 * A new minimum sample is useful only if it is later than the 3016 * last one used. In this design the maximum lifetime of any 3017 * sample is not greater than eight times the poll interval, so 3018 * the maximum interval between minimum samples is eight 3019 * packets. 3020 */ 3021 if (peer->filter_epoch[k] <= peer->epoch) { 3022 DPRINTF(2, ("clock_filter: old sample %lu\n", current_time - 3023 peer->filter_epoch[k])); 3024 return; 3025 } 3026 peer->epoch = peer->filter_epoch[k]; 3027 3028 /* 3029 * The mitigated sample statistics are saved for later 3030 * processing. If not synchronized or not in a burst, tickle the 3031 * clock select algorithm. 3032 */ 3033 record_peer_stats(&peer->srcadr, ctlpeerstatus(peer), 3034 peer->offset, peer->delay, peer->disp, peer->jitter); 3035 DPRINTF(1, ("clock_filter: n %d off %.6f del %.6f dsp %.6f jit %.6f\n", 3036 m, peer->offset, peer->delay, peer->disp, 3037 peer->jitter)); 3038 if (peer->burst == 0 || sys_leap == LEAP_NOTINSYNC) 3039 clock_select(); 3040 } 3041 3042 3043 /* 3044 * clock_select - find the pick-of-the-litter clock 3045 * 3046 * LOCKCLOCK: (1) If the local clock is the prefer peer, it will always 3047 * be enabled, even if declared falseticker, (2) only the prefer peer 3048 * can be selected as the system peer, (3) if the external source is 3049 * down, the system leap bits are set to 11 and the stratum set to 3050 * infinity. 3051 */ 3052 void 3053 clock_select(void) 3054 { 3055 struct peer *peer; 3056 int i, j, k, n; 3057 int nlist, nl2; 3058 int allow; 3059 int speer; 3060 double d, e, f, g; 3061 double high, low; 3062 double speermet; 3063 double orphmet = 2.0 * U_INT32_MAX; /* 2x is greater than */ 3064 struct endpoint endp; 3065 struct peer *osys_peer; 3066 struct peer *sys_prefer = NULL; /* prefer peer */ 3067 struct peer *typesystem = NULL; 3068 struct peer *typeorphan = NULL; 3069 #ifdef REFCLOCK 3070 struct peer *typeacts = NULL; 3071 struct peer *typelocal = NULL; 3072 struct peer *typepps = NULL; 3073 #endif /* REFCLOCK */ 3074 static struct endpoint *endpoint = NULL; 3075 static int *indx = NULL; 3076 static peer_select *peers = NULL; 3077 static u_int endpoint_size = 0; 3078 static u_int peers_size = 0; 3079 static u_int indx_size = 0; 3080 size_t octets; 3081 3082 /* 3083 * Initialize and create endpoint, index and peer lists big 3084 * enough to handle all associations. 3085 */ 3086 osys_peer = sys_peer; 3087 sys_survivors = 0; 3088 #ifdef LOCKCLOCK 3089 set_sys_leap(LEAP_NOTINSYNC); 3090 sys_stratum = STRATUM_UNSPEC; 3091 memcpy(&sys_refid, "DOWN", 4); 3092 #endif /* LOCKCLOCK */ 3093 3094 /* 3095 * Allocate dynamic space depending on the number of 3096 * associations. 3097 */ 3098 nlist = 1; 3099 for (peer = peer_list; peer != NULL; peer = peer->p_link) 3100 nlist++; 3101 endpoint_size = ALIGNED_SIZE(nlist * 2 * sizeof(*endpoint)); 3102 peers_size = ALIGNED_SIZE(nlist * sizeof(*peers)); 3103 indx_size = ALIGNED_SIZE(nlist * 2 * sizeof(*indx)); 3104 octets = endpoint_size + peers_size + indx_size; 3105 endpoint = erealloc(endpoint, octets); 3106 peers = INC_ALIGNED_PTR(endpoint, endpoint_size); 3107 indx = INC_ALIGNED_PTR(peers, peers_size); 3108 3109 /* 3110 * Initially, we populate the island with all the rifraff peers 3111 * that happen to be lying around. Those with seriously 3112 * defective clocks are immediately booted off the island. Then, 3113 * the falsetickers are culled and put to sea. The truechimers 3114 * remaining are subject to repeated rounds where the most 3115 * unpopular at each round is kicked off. When the population 3116 * has dwindled to sys_minclock, the survivors split a million 3117 * bucks and collectively crank the chimes. 3118 */ 3119 nlist = nl2 = 0; /* none yet */ 3120 for (peer = peer_list; peer != NULL; peer = peer->p_link) { 3121 peer->new_status = CTL_PST_SEL_REJECT; 3122 3123 /* 3124 * Leave the island immediately if the peer is 3125 * unfit to synchronize. 3126 */ 3127 if (peer_unfit(peer)) { 3128 continue; 3129 } 3130 3131 /* 3132 * If this peer is an orphan parent, elect the 3133 * one with the lowest metric defined as the 3134 * IPv4 address or the first 64 bits of the 3135 * hashed IPv6 address. To ensure convergence 3136 * on the same selected orphan, consider as 3137 * well that this system may have the lowest 3138 * metric and be the orphan parent. If this 3139 * system wins, sys_peer will be NULL to trigger 3140 * orphan mode in timer(). 3141 */ 3142 if (peer->stratum == sys_orphan) { 3143 u_int32 localmet; 3144 u_int32 peermet; 3145 3146 if (peer->dstadr != NULL) 3147 localmet = ntohl(peer->dstadr->addr_refid); 3148 else 3149 localmet = U_INT32_MAX; 3150 peermet = ntohl(addr2refid(&peer->srcadr)); 3151 if (peermet < localmet && peermet < orphmet) { 3152 typeorphan = peer; 3153 orphmet = peermet; 3154 } 3155 continue; 3156 } 3157 3158 /* 3159 * If this peer could have the orphan parent 3160 * as a synchronization ancestor, exclude it 3161 * from selection to avoid forming a 3162 * synchronization loop within the orphan mesh, 3163 * triggering stratum climb to infinity 3164 * instability. Peers at stratum higher than 3165 * the orphan stratum could have the orphan 3166 * parent in ancestry so are excluded. 3167 * See http://bugs.ntp.org/2050 3168 */ 3169 if (peer->stratum > sys_orphan) { 3170 continue; 3171 } 3172 #ifdef REFCLOCK 3173 /* 3174 * The following are special cases. We deal 3175 * with them later. 3176 */ 3177 if (!(peer->flags & FLAG_PREFER)) { 3178 switch (peer->refclktype) { 3179 case REFCLK_LOCALCLOCK: 3180 if ( current_time > orphwait 3181 && typelocal == NULL) 3182 typelocal = peer; 3183 continue; 3184 3185 case REFCLK_ACTS: 3186 if ( current_time > orphwait 3187 && typeacts == NULL) 3188 typeacts = peer; 3189 continue; 3190 } 3191 } 3192 #endif /* REFCLOCK */ 3193 3194 /* 3195 * If we get this far, the peer can stay on the 3196 * island, but does not yet have the immunity 3197 * idol. 3198 */ 3199 peer->new_status = CTL_PST_SEL_SANE; 3200 f = root_distance(peer); 3201 peers[nlist].peer = peer; 3202 peers[nlist].error = peer->jitter; 3203 peers[nlist].synch = f; 3204 nlist++; 3205 3206 /* 3207 * Insert each interval endpoint on the unsorted 3208 * endpoint[] list. 3209 */ 3210 e = peer->offset; 3211 endpoint[nl2].type = -1; /* lower end */ 3212 endpoint[nl2].val = e - f; 3213 nl2++; 3214 endpoint[nl2].type = 1; /* upper end */ 3215 endpoint[nl2].val = e + f; 3216 nl2++; 3217 } 3218 /* 3219 * Construct sorted indx[] of endpoint[] indexes ordered by 3220 * offset. 3221 */ 3222 for (i = 0; i < nl2; i++) 3223 indx[i] = i; 3224 for (i = 0; i < nl2; i++) { 3225 endp = endpoint[indx[i]]; 3226 e = endp.val; 3227 k = i; 3228 for (j = i + 1; j < nl2; j++) { 3229 endp = endpoint[indx[j]]; 3230 if (endp.val < e) { 3231 e = endp.val; 3232 k = j; 3233 } 3234 } 3235 if (k != i) { 3236 j = indx[k]; 3237 indx[k] = indx[i]; 3238 indx[i] = j; 3239 } 3240 } 3241 for (i = 0; i < nl2; i++) 3242 DPRINTF(3, ("select: endpoint %2d %.6f\n", 3243 endpoint[indx[i]].type, endpoint[indx[i]].val)); 3244 3245 /* 3246 * This is the actual algorithm that cleaves the truechimers 3247 * from the falsetickers. The original algorithm was described 3248 * in Keith Marzullo's dissertation, but has been modified for 3249 * better accuracy. 3250 * 3251 * Briefly put, we first assume there are no falsetickers, then 3252 * scan the candidate list first from the low end upwards and 3253 * then from the high end downwards. The scans stop when the 3254 * number of intersections equals the number of candidates less 3255 * the number of falsetickers. If this doesn't happen for a 3256 * given number of falsetickers, we bump the number of 3257 * falsetickers and try again. If the number of falsetickers 3258 * becomes equal to or greater than half the number of 3259 * candidates, the Albanians have won the Byzantine wars and 3260 * correct synchronization is not possible. 3261 * 3262 * Here, nlist is the number of candidates and allow is the 3263 * number of falsetickers. Upon exit, the truechimers are the 3264 * survivors with offsets not less than low and not greater than 3265 * high. There may be none of them. 3266 */ 3267 low = 1e9; 3268 high = -1e9; 3269 for (allow = 0; 2 * allow < nlist; allow++) { 3270 3271 /* 3272 * Bound the interval (low, high) as the smallest 3273 * interval containing points from the most sources. 3274 */ 3275 n = 0; 3276 for (i = 0; i < nl2; i++) { 3277 low = endpoint[indx[i]].val; 3278 n -= endpoint[indx[i]].type; 3279 if (n >= nlist - allow) 3280 break; 3281 } 3282 n = 0; 3283 for (j = nl2 - 1; j >= 0; j--) { 3284 high = endpoint[indx[j]].val; 3285 n += endpoint[indx[j]].type; 3286 if (n >= nlist - allow) 3287 break; 3288 } 3289 3290 /* 3291 * If an interval containing truechimers is found, stop. 3292 * If not, increase the number of falsetickers and go 3293 * around again. 3294 */ 3295 if (high > low) 3296 break; 3297 } 3298 3299 /* 3300 * Clustering algorithm. Whittle candidate list of falsetickers, 3301 * who leave the island immediately. The TRUE peer is always a 3302 * truechimer. We must leave at least one peer to collect the 3303 * million bucks. 3304 * 3305 * We assert the correct time is contained in the interval, but 3306 * the best offset estimate for the interval might not be 3307 * contained in the interval. For this purpose, a truechimer is 3308 * defined as the midpoint of an interval that overlaps the 3309 * intersection interval. 3310 */ 3311 j = 0; 3312 for (i = 0; i < nlist; i++) { 3313 double h; 3314 3315 peer = peers[i].peer; 3316 h = peers[i].synch; 3317 if (( high <= low 3318 || peer->offset + h < low 3319 || peer->offset - h > high 3320 ) && !(peer->flags & FLAG_TRUE)) 3321 continue; 3322 3323 #ifdef REFCLOCK 3324 /* 3325 * Eligible PPS peers must survive the intersection 3326 * algorithm. Use the first one found, but don't 3327 * include any of them in the cluster population. 3328 */ 3329 if (peer->flags & FLAG_PPS) { 3330 if (typepps == NULL) 3331 typepps = peer; 3332 if (!(peer->flags & FLAG_TSTAMP_PPS)) 3333 continue; 3334 } 3335 #endif /* REFCLOCK */ 3336 3337 if (j != i) 3338 peers[j] = peers[i]; 3339 j++; 3340 } 3341 nlist = j; 3342 3343 /* 3344 * If no survivors remain at this point, check if the modem 3345 * driver, local driver or orphan parent in that order. If so, 3346 * nominate the first one found as the only survivor. 3347 * Otherwise, give up and leave the island to the rats. 3348 */ 3349 if (nlist == 0) { 3350 peers[0].error = 0; 3351 peers[0].synch = sys_mindisp; 3352 #ifdef REFCLOCK 3353 if (typeacts != NULL) { 3354 peers[0].peer = typeacts; 3355 nlist = 1; 3356 } else if (typelocal != NULL) { 3357 peers[0].peer = typelocal; 3358 nlist = 1; 3359 } else 3360 #endif /* REFCLOCK */ 3361 if (typeorphan != NULL) { 3362 peers[0].peer = typeorphan; 3363 nlist = 1; 3364 } 3365 } 3366 3367 /* 3368 * Mark the candidates at this point as truechimers. 3369 */ 3370 for (i = 0; i < nlist; i++) { 3371 peers[i].peer->new_status = CTL_PST_SEL_SELCAND; 3372 DPRINTF(2, ("select: survivor %s %f\n", 3373 stoa(&peers[i].peer->srcadr), peers[i].synch)); 3374 } 3375 3376 /* 3377 * Now, vote outliers off the island by select jitter weighted 3378 * by root distance. Continue voting as long as there are more 3379 * than sys_minclock survivors and the select jitter of the peer 3380 * with the worst metric is greater than the minimum peer 3381 * jitter. Stop if we are about to discard a TRUE or PREFER 3382 * peer, who of course have the immunity idol. 3383 */ 3384 while (1) { 3385 d = 1e9; 3386 e = -1e9; 3387 g = 0; 3388 k = 0; 3389 for (i = 0; i < nlist; i++) { 3390 if (peers[i].error < d) 3391 d = peers[i].error; 3392 peers[i].seljit = 0; 3393 if (nlist > 1) { 3394 f = 0; 3395 for (j = 0; j < nlist; j++) 3396 f += DIFF(peers[j].peer->offset, 3397 peers[i].peer->offset); 3398 peers[i].seljit = SQRT(f / (nlist - 1)); 3399 } 3400 if (peers[i].seljit * peers[i].synch > e) { 3401 g = peers[i].seljit; 3402 e = peers[i].seljit * peers[i].synch; 3403 k = i; 3404 } 3405 } 3406 g = max(g, LOGTOD(sys_precision)); 3407 if ( nlist <= max(1, sys_minclock) 3408 || g <= d 3409 || ((FLAG_TRUE | FLAG_PREFER) & peers[k].peer->flags)) 3410 break; 3411 3412 DPRINTF(3, ("select: drop %s seljit %.6f jit %.6f\n", 3413 ntoa(&peers[k].peer->srcadr), g, d)); 3414 if (nlist > sys_maxclock) 3415 peers[k].peer->new_status = CTL_PST_SEL_EXCESS; 3416 for (j = k + 1; j < nlist; j++) 3417 peers[j - 1] = peers[j]; 3418 nlist--; 3419 } 3420 3421 /* 3422 * What remains is a list usually not greater than sys_minclock 3423 * peers. Note that unsynchronized peers cannot survive this 3424 * far. Count and mark these survivors. 3425 * 3426 * While at it, count the number of leap warning bits found. 3427 * This will be used later to vote the system leap warning bit. 3428 * If a leap warning bit is found on a reference clock, the vote 3429 * is always won. 3430 * 3431 * Choose the system peer using a hybrid metric composed of the 3432 * selection jitter scaled by the root distance augmented by 3433 * stratum scaled by sys_mindisp (.001 by default). The goal of 3434 * the small stratum factor is to avoid clockhop between a 3435 * reference clock and a network peer which has a refclock and 3436 * is using an older ntpd, which does not floor sys_rootdisp at 3437 * sys_mindisp. 3438 * 3439 * In contrast, ntpd 4.2.6 and earlier used stratum primarily 3440 * in selecting the system peer, using a weight of 1 second of 3441 * additional root distance per stratum. This heavy bias is no 3442 * longer appropriate, as the scaled root distance provides a 3443 * more rational metric carrying the cumulative error budget. 3444 */ 3445 e = 1e9; 3446 speer = 0; 3447 leap_vote_ins = 0; 3448 leap_vote_del = 0; 3449 for (i = 0; i < nlist; i++) { 3450 peer = peers[i].peer; 3451 peer->unreach = 0; 3452 peer->new_status = CTL_PST_SEL_SYNCCAND; 3453 sys_survivors++; 3454 if (peer->leap == LEAP_ADDSECOND) { 3455 if (peer->flags & FLAG_REFCLOCK) 3456 leap_vote_ins = nlist; 3457 else if (leap_vote_ins < nlist) 3458 leap_vote_ins++; 3459 } 3460 if (peer->leap == LEAP_DELSECOND) { 3461 if (peer->flags & FLAG_REFCLOCK) 3462 leap_vote_del = nlist; 3463 else if (leap_vote_del < nlist) 3464 leap_vote_del++; 3465 } 3466 if (peer->flags & FLAG_PREFER) 3467 sys_prefer = peer; 3468 speermet = peers[i].seljit * peers[i].synch + 3469 peer->stratum * sys_mindisp; 3470 if (speermet < e) { 3471 e = speermet; 3472 speer = i; 3473 } 3474 } 3475 3476 /* 3477 * Unless there are at least sys_misane survivors, leave the 3478 * building dark. Otherwise, do a clockhop dance. Ordinarily, 3479 * use the selected survivor speer. However, if the current 3480 * system peer is not speer, stay with the current system peer 3481 * as long as it doesn't get too old or too ugly. 3482 */ 3483 if (nlist > 0 && nlist >= sys_minsane) { 3484 double x; 3485 3486 typesystem = peers[speer].peer; 3487 if (osys_peer == NULL || osys_peer == typesystem) { 3488 sys_clockhop = 0; 3489 } else if ((x = fabs(typesystem->offset - 3490 osys_peer->offset)) < sys_mindisp) { 3491 if (sys_clockhop == 0) 3492 sys_clockhop = sys_mindisp; 3493 else 3494 sys_clockhop *= .5; 3495 DPRINTF(1, ("select: clockhop %d %.6f %.6f\n", 3496 j, x, sys_clockhop)); 3497 if (fabs(x) < sys_clockhop) 3498 typesystem = osys_peer; 3499 else 3500 sys_clockhop = 0; 3501 } else { 3502 sys_clockhop = 0; 3503 } 3504 } 3505 3506 /* 3507 * Mitigation rules of the game. We have the pick of the 3508 * litter in typesystem if any survivors are left. If 3509 * there is a prefer peer, use its offset and jitter. 3510 * Otherwise, use the combined offset and jitter of all kitters. 3511 */ 3512 if (typesystem != NULL) { 3513 if (sys_prefer == NULL) { 3514 typesystem->new_status = CTL_PST_SEL_SYSPEER; 3515 clock_combine(peers, sys_survivors, speer); 3516 } else { 3517 typesystem = sys_prefer; 3518 sys_clockhop = 0; 3519 typesystem->new_status = CTL_PST_SEL_SYSPEER; 3520 sys_offset = typesystem->offset; 3521 sys_jitter = typesystem->jitter; 3522 } 3523 DPRINTF(1, ("select: combine offset %.9f jitter %.9f\n", 3524 sys_offset, sys_jitter)); 3525 } 3526 #ifdef REFCLOCK 3527 /* 3528 * If a PPS driver is lit and the combined offset is less than 3529 * 0.4 s, select the driver as the PPS peer and use its offset 3530 * and jitter. However, if this is the atom driver, use it only 3531 * if there is a prefer peer or there are no survivors and none 3532 * are required. 3533 */ 3534 if ( typepps != NULL 3535 && fabs(sys_offset) < 0.4 3536 && ( typepps->refclktype != REFCLK_ATOM_PPS 3537 || ( typepps->refclktype == REFCLK_ATOM_PPS 3538 && ( sys_prefer != NULL 3539 || (typesystem == NULL && sys_minsane == 0))))) { 3540 typesystem = typepps; 3541 sys_clockhop = 0; 3542 typesystem->new_status = CTL_PST_SEL_PPS; 3543 sys_offset = typesystem->offset; 3544 sys_jitter = typesystem->jitter; 3545 DPRINTF(1, ("select: pps offset %.9f jitter %.9f\n", 3546 sys_offset, sys_jitter)); 3547 } 3548 #endif /* REFCLOCK */ 3549 3550 /* 3551 * If there are no survivors at this point, there is no 3552 * system peer. If so and this is an old update, keep the 3553 * current statistics, but do not update the clock. 3554 */ 3555 if (typesystem == NULL) { 3556 if (osys_peer != NULL) { 3557 if (sys_orphwait > 0) 3558 orphwait = current_time + sys_orphwait; 3559 report_event(EVNT_NOPEER, NULL, NULL); 3560 } 3561 sys_peer = NULL; 3562 for (peer = peer_list; peer != NULL; peer = peer->p_link) 3563 peer->status = peer->new_status; 3564 return; 3565 } 3566 3567 /* 3568 * Do not use old data, as this may mess up the clock discipline 3569 * stability. 3570 */ 3571 if (typesystem->epoch <= sys_epoch) 3572 return; 3573 3574 /* 3575 * We have found the alpha male. Wind the clock. 3576 */ 3577 if (osys_peer != typesystem) 3578 report_event(PEVNT_NEWPEER, typesystem, NULL); 3579 for (peer = peer_list; peer != NULL; peer = peer->p_link) 3580 peer->status = peer->new_status; 3581 clock_update(typesystem); 3582 } 3583 3584 3585 static void 3586 clock_combine( 3587 peer_select * peers, /* survivor list */ 3588 int npeers, /* number of survivors */ 3589 int syspeer /* index of sys.peer */ 3590 ) 3591 { 3592 int i; 3593 double x, y, z, w; 3594 3595 y = z = w = 0; 3596 for (i = 0; i < npeers; i++) { 3597 x = 1. / peers[i].synch; 3598 y += x; 3599 z += x * peers[i].peer->offset; 3600 w += x * DIFF(peers[i].peer->offset, 3601 peers[syspeer].peer->offset); 3602 } 3603 sys_offset = z / y; 3604 sys_jitter = SQRT(w / y + SQUARE(peers[syspeer].seljit)); 3605 } 3606 3607 3608 /* 3609 * root_distance - compute synchronization distance from peer to root 3610 */ 3611 static double 3612 root_distance( 3613 struct peer *peer /* peer structure pointer */ 3614 ) 3615 { 3616 double dtemp; 3617 3618 /* 3619 * Root Distance (LAMBDA) is defined as: 3620 * (delta + DELTA)/2 + epsilon + EPSILON + D 3621 * 3622 * where: 3623 * delta is the round-trip delay 3624 * DELTA is the root delay 3625 * epsilon is the peer dispersion 3626 * + (15 usec each second) 3627 * EPSILON is the root dispersion 3628 * D is sys_jitter 3629 * 3630 * NB: Think hard about why we are using these values, and what 3631 * the alternatives are, and the various pros/cons. 3632 * 3633 * DLM thinks these are probably the best choices from any of the 3634 * other worse choices. 3635 */ 3636 dtemp = (peer->delay + peer->rootdelay) / 2 3637 + peer->disp 3638 + clock_phi * (current_time - peer->update) 3639 + peer->rootdisp 3640 + peer->jitter; 3641 /* 3642 * Careful squeak here. The value returned must be greater than 3643 * the minimum root dispersion in order to avoid clockhop with 3644 * highly precise reference clocks. Note that the root distance 3645 * cannot exceed the sys_maxdist, as this is the cutoff by the 3646 * selection algorithm. 3647 */ 3648 if (dtemp < sys_mindisp) 3649 dtemp = sys_mindisp; 3650 return (dtemp); 3651 } 3652 3653 3654 /* 3655 * peer_xmit - send packet for persistent association. 3656 */ 3657 static void 3658 peer_xmit( 3659 struct peer *peer /* peer structure pointer */ 3660 ) 3661 { 3662 struct pkt xpkt; /* transmit packet */ 3663 size_t sendlen, authlen; 3664 keyid_t xkeyid = 0; /* transmit key ID */ 3665 l_fp xmt_tx, xmt_ty; 3666 3667 if (!peer->dstadr) /* drop peers without interface */ 3668 return; 3669 3670 xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, peer->version, 3671 peer->hmode); 3672 xpkt.stratum = STRATUM_TO_PKT(sys_stratum); 3673 xpkt.ppoll = peer->hpoll; 3674 xpkt.precision = sys_precision; 3675 xpkt.refid = sys_refid; 3676 xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay)); 3677 xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp)); 3678 HTONL_FP(&sys_reftime, &xpkt.reftime); 3679 HTONL_FP(&peer->rec, &xpkt.org); 3680 HTONL_FP(&peer->dst, &xpkt.rec); 3681 3682 /* 3683 * If the received packet contains a MAC, the transmitted packet 3684 * is authenticated and contains a MAC. If not, the transmitted 3685 * packet is not authenticated. 3686 * 3687 * It is most important when autokey is in use that the local 3688 * interface IP address be known before the first packet is 3689 * sent. Otherwise, it is not possible to compute a correct MAC 3690 * the recipient will accept. Thus, the I/O semantics have to do 3691 * a little more work. In particular, the wildcard interface 3692 * might not be usable. 3693 */ 3694 sendlen = LEN_PKT_NOMAC; 3695 if ( 3696 #ifdef AUTOKEY 3697 !(peer->flags & FLAG_SKEY) && 3698 #endif /* !AUTOKEY */ 3699 peer->keyid == 0) { 3700 3701 /* 3702 * Transmit a-priori timestamps 3703 */ 3704 get_systime(&xmt_tx); 3705 if (peer->flip == 0) { /* basic mode */ 3706 peer->aorg = xmt_tx; 3707 HTONL_FP(&xmt_tx, &xpkt.xmt); 3708 } else { /* interleaved modes */ 3709 if (peer->hmode == MODE_BROADCAST) { /* bcst */ 3710 HTONL_FP(&xmt_tx, &xpkt.xmt); 3711 if (peer->flip > 0) 3712 HTONL_FP(&peer->borg, 3713 &xpkt.org); 3714 else 3715 HTONL_FP(&peer->aorg, 3716 &xpkt.org); 3717 } else { /* symmetric */ 3718 if (peer->flip > 0) 3719 HTONL_FP(&peer->borg, 3720 &xpkt.xmt); 3721 else 3722 HTONL_FP(&peer->aorg, 3723 &xpkt.xmt); 3724 } 3725 } 3726 peer->t21_bytes = sendlen; 3727 sendpkt(&peer->srcadr, peer->dstadr, 3728 sys_ttl[(peer->ttl >= sys_ttlmax) ? sys_ttlmax : peer->ttl], 3729 &xpkt, sendlen); 3730 peer->sent++; 3731 peer->throttle += (1 << peer->minpoll) - 2; 3732 3733 /* 3734 * Capture a-posteriori timestamps 3735 */ 3736 get_systime(&xmt_ty); 3737 if (peer->flip != 0) { /* interleaved modes */ 3738 if (peer->flip > 0) 3739 peer->aorg = xmt_ty; 3740 else 3741 peer->borg = xmt_ty; 3742 peer->flip = -peer->flip; 3743 } 3744 L_SUB(&xmt_ty, &xmt_tx); 3745 LFPTOD(&xmt_ty, peer->xleave); 3746 DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d len %zu xmt %#010x.%08x\n", 3747 current_time, 3748 peer->dstadr ? stoa(&peer->dstadr->sin) : "-", 3749 stoa(&peer->srcadr), peer->hmode, sendlen, 3750 xmt_tx.l_ui, xmt_tx.l_uf)); 3751 return; 3752 } 3753 3754 /* 3755 * Authentication is enabled, so the transmitted packet must be 3756 * authenticated. If autokey is enabled, fuss with the various 3757 * modes; otherwise, symmetric key cryptography is used. 3758 */ 3759 #ifdef AUTOKEY 3760 if (peer->flags & FLAG_SKEY) { 3761 struct exten *exten; /* extension field */ 3762 3763 /* 3764 * The Public Key Dance (PKD): Cryptographic credentials 3765 * are contained in extension fields, each including a 3766 * 4-octet length/code word followed by a 4-octet 3767 * association ID and optional additional data. Optional 3768 * data includes a 4-octet data length field followed by 3769 * the data itself. Request messages are sent from a 3770 * configured association; response messages can be sent 3771 * from a configured association or can take the fast 3772 * path without ever matching an association. Response 3773 * messages have the same code as the request, but have 3774 * a response bit and possibly an error bit set. In this 3775 * implementation, a message may contain no more than 3776 * one command and one or more responses. 3777 * 3778 * Cryptographic session keys include both a public and 3779 * a private componet. Request and response messages 3780 * using extension fields are always sent with the 3781 * private component set to zero. Packets without 3782 * extension fields indlude the private component when 3783 * the session key is generated. 3784 */ 3785 while (1) { 3786 3787 /* 3788 * Allocate and initialize a keylist if not 3789 * already done. Then, use the list in inverse 3790 * order, discarding keys once used. Keep the 3791 * latest key around until the next one, so 3792 * clients can use client/server packets to 3793 * compute propagation delay. 3794 * 3795 * Note that once a key is used from the list, 3796 * it is retained in the key cache until the 3797 * next key is used. This is to allow a client 3798 * to retrieve the encrypted session key 3799 * identifier to verify authenticity. 3800 * 3801 * If for some reason a key is no longer in the 3802 * key cache, a birthday has happened or the key 3803 * has expired, so the pseudo-random sequence is 3804 * broken. In that case, purge the keylist and 3805 * regenerate it. 3806 */ 3807 if (peer->keynumber == 0) 3808 make_keylist(peer, peer->dstadr); 3809 else 3810 peer->keynumber--; 3811 xkeyid = peer->keylist[peer->keynumber]; 3812 if (authistrusted(xkeyid)) 3813 break; 3814 else 3815 key_expire(peer); 3816 } 3817 peer->keyid = xkeyid; 3818 exten = NULL; 3819 switch (peer->hmode) { 3820 3821 /* 3822 * In broadcast server mode the autokey values are 3823 * required by the broadcast clients. Push them when a 3824 * new keylist is generated; otherwise, push the 3825 * association message so the client can request them at 3826 * other times. 3827 */ 3828 case MODE_BROADCAST: 3829 if (peer->flags & FLAG_ASSOC) 3830 exten = crypto_args(peer, CRYPTO_AUTO | 3831 CRYPTO_RESP, peer->associd, NULL); 3832 else 3833 exten = crypto_args(peer, CRYPTO_ASSOC | 3834 CRYPTO_RESP, peer->associd, NULL); 3835 break; 3836 3837 /* 3838 * In symmetric modes the parameter, certificate, 3839 * identity, cookie and autokey exchanges are 3840 * required. The leapsecond exchange is optional. But, a 3841 * peer will not believe the other peer until the other 3842 * peer has synchronized, so the certificate exchange 3843 * might loop until then. If a peer finds a broken 3844 * autokey sequence, it uses the autokey exchange to 3845 * retrieve the autokey values. In any case, if a new 3846 * keylist is generated, the autokey values are pushed. 3847 */ 3848 case MODE_ACTIVE: 3849 case MODE_PASSIVE: 3850 3851 /* 3852 * Parameter, certificate and identity. 3853 */ 3854 if (!peer->crypto) 3855 exten = crypto_args(peer, CRYPTO_ASSOC, 3856 peer->associd, hostval.ptr); 3857 else if (!(peer->crypto & CRYPTO_FLAG_CERT)) 3858 exten = crypto_args(peer, CRYPTO_CERT, 3859 peer->associd, peer->issuer); 3860 else if (!(peer->crypto & CRYPTO_FLAG_VRFY)) 3861 exten = crypto_args(peer, 3862 crypto_ident(peer), peer->associd, 3863 NULL); 3864 3865 /* 3866 * Cookie and autokey. We request the cookie 3867 * only when the this peer and the other peer 3868 * are synchronized. But, this peer needs the 3869 * autokey values when the cookie is zero. Any 3870 * time we regenerate the key list, we offer the 3871 * autokey values without being asked. If for 3872 * some reason either peer finds a broken 3873 * autokey sequence, the autokey exchange is 3874 * used to retrieve the autokey values. 3875 */ 3876 else if ( sys_leap != LEAP_NOTINSYNC 3877 && peer->leap != LEAP_NOTINSYNC 3878 && !(peer->crypto & CRYPTO_FLAG_COOK)) 3879 exten = crypto_args(peer, CRYPTO_COOK, 3880 peer->associd, NULL); 3881 else if (!(peer->crypto & CRYPTO_FLAG_AUTO)) 3882 exten = crypto_args(peer, CRYPTO_AUTO, 3883 peer->associd, NULL); 3884 else if ( peer->flags & FLAG_ASSOC 3885 && peer->crypto & CRYPTO_FLAG_SIGN) 3886 exten = crypto_args(peer, CRYPTO_AUTO | 3887 CRYPTO_RESP, peer->assoc, NULL); 3888 3889 /* 3890 * Wait for clock sync, then sign the 3891 * certificate and retrieve the leapsecond 3892 * values. 3893 */ 3894 else if (sys_leap == LEAP_NOTINSYNC) 3895 break; 3896 3897 else if (!(peer->crypto & CRYPTO_FLAG_SIGN)) 3898 exten = crypto_args(peer, CRYPTO_SIGN, 3899 peer->associd, hostval.ptr); 3900 else if (!(peer->crypto & CRYPTO_FLAG_LEAP)) 3901 exten = crypto_args(peer, CRYPTO_LEAP, 3902 peer->associd, NULL); 3903 break; 3904 3905 /* 3906 * In client mode the parameter, certificate, identity, 3907 * cookie and sign exchanges are required. The 3908 * leapsecond exchange is optional. If broadcast client 3909 * mode the same exchanges are required, except that the 3910 * autokey exchange is substitutes for the cookie 3911 * exchange, since the cookie is always zero. If the 3912 * broadcast client finds a broken autokey sequence, it 3913 * uses the autokey exchange to retrieve the autokey 3914 * values. 3915 */ 3916 case MODE_CLIENT: 3917 3918 /* 3919 * Parameter, certificate and identity. 3920 */ 3921 if (!peer->crypto) 3922 exten = crypto_args(peer, CRYPTO_ASSOC, 3923 peer->associd, hostval.ptr); 3924 else if (!(peer->crypto & CRYPTO_FLAG_CERT)) 3925 exten = crypto_args(peer, CRYPTO_CERT, 3926 peer->associd, peer->issuer); 3927 else if (!(peer->crypto & CRYPTO_FLAG_VRFY)) 3928 exten = crypto_args(peer, 3929 crypto_ident(peer), peer->associd, 3930 NULL); 3931 3932 /* 3933 * Cookie and autokey. These are requests, but 3934 * we use the peer association ID with autokey 3935 * rather than our own. 3936 */ 3937 else if (!(peer->crypto & CRYPTO_FLAG_COOK)) 3938 exten = crypto_args(peer, CRYPTO_COOK, 3939 peer->associd, NULL); 3940 else if (!(peer->crypto & CRYPTO_FLAG_AUTO)) 3941 exten = crypto_args(peer, CRYPTO_AUTO, 3942 peer->assoc, NULL); 3943 3944 /* 3945 * Wait for clock sync, then sign the 3946 * certificate and retrieve the leapsecond 3947 * values. 3948 */ 3949 else if (sys_leap == LEAP_NOTINSYNC) 3950 break; 3951 3952 else if (!(peer->crypto & CRYPTO_FLAG_SIGN)) 3953 exten = crypto_args(peer, CRYPTO_SIGN, 3954 peer->associd, hostval.ptr); 3955 else if (!(peer->crypto & CRYPTO_FLAG_LEAP)) 3956 exten = crypto_args(peer, CRYPTO_LEAP, 3957 peer->associd, NULL); 3958 break; 3959 } 3960 3961 /* 3962 * Add a queued extension field if present. This is 3963 * always a request message, so the reply ID is already 3964 * in the message. If an error occurs, the error bit is 3965 * lit in the response. 3966 */ 3967 if (peer->cmmd != NULL) { 3968 u_int32 temp32; 3969 3970 temp32 = CRYPTO_RESP; 3971 peer->cmmd->opcode |= htonl(temp32); 3972 sendlen += crypto_xmit(peer, &xpkt, NULL, 3973 sendlen, peer->cmmd, 0); 3974 free(peer->cmmd); 3975 peer->cmmd = NULL; 3976 } 3977 3978 /* 3979 * Add an extension field created above. All but the 3980 * autokey response message are request messages. 3981 */ 3982 if (exten != NULL) { 3983 if (exten->opcode != 0) 3984 sendlen += crypto_xmit(peer, &xpkt, 3985 NULL, sendlen, exten, 0); 3986 free(exten); 3987 } 3988 3989 /* 3990 * Calculate the next session key. Since extension 3991 * fields are present, the cookie value is zero. 3992 */ 3993 if (sendlen > (int)LEN_PKT_NOMAC) { 3994 session_key(&peer->dstadr->sin, &peer->srcadr, 3995 xkeyid, 0, 2); 3996 } 3997 } 3998 #endif /* AUTOKEY */ 3999 4000 /* 4001 * Transmit a-priori timestamps 4002 */ 4003 get_systime(&xmt_tx); 4004 if (peer->flip == 0) { /* basic mode */ 4005 peer->aorg = xmt_tx; 4006 HTONL_FP(&xmt_tx, &xpkt.xmt); 4007 } else { /* interleaved modes */ 4008 if (peer->hmode == MODE_BROADCAST) { /* bcst */ 4009 HTONL_FP(&xmt_tx, &xpkt.xmt); 4010 if (peer->flip > 0) 4011 HTONL_FP(&peer->borg, &xpkt.org); 4012 else 4013 HTONL_FP(&peer->aorg, &xpkt.org); 4014 } else { /* symmetric */ 4015 if (peer->flip > 0) 4016 HTONL_FP(&peer->borg, &xpkt.xmt); 4017 else 4018 HTONL_FP(&peer->aorg, &xpkt.xmt); 4019 } 4020 } 4021 xkeyid = peer->keyid; 4022 authlen = authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen); 4023 if (authlen == 0) { 4024 report_event(PEVNT_AUTH, peer, "no key"); 4025 peer->flash |= TEST5; /* auth error */ 4026 peer->badauth++; 4027 return; 4028 } 4029 sendlen += authlen; 4030 #ifdef AUTOKEY 4031 if (xkeyid > NTP_MAXKEY) 4032 authtrust(xkeyid, 0); 4033 #endif /* AUTOKEY */ 4034 if (sendlen > sizeof(xpkt)) { 4035 msyslog(LOG_ERR, "peer_xmit: buffer overflow %zu", sendlen); 4036 exit (-1); 4037 } 4038 peer->t21_bytes = sendlen; 4039 sendpkt(&peer->srcadr, peer->dstadr, 4040 sys_ttl[(peer->ttl >= sys_ttlmax) ? sys_ttlmax : peer->ttl], 4041 &xpkt, sendlen); 4042 peer->sent++; 4043 peer->throttle += (1 << peer->minpoll) - 2; 4044 4045 /* 4046 * Capture a-posteriori timestamps 4047 */ 4048 get_systime(&xmt_ty); 4049 if (peer->flip != 0) { /* interleaved modes */ 4050 if (peer->flip > 0) 4051 peer->aorg = xmt_ty; 4052 else 4053 peer->borg = xmt_ty; 4054 peer->flip = -peer->flip; 4055 } 4056 L_SUB(&xmt_ty, &xmt_tx); 4057 LFPTOD(&xmt_ty, peer->xleave); 4058 #ifdef AUTOKEY 4059 DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d keyid %08x len %zu index %d\n", 4060 current_time, latoa(peer->dstadr), 4061 ntoa(&peer->srcadr), peer->hmode, xkeyid, sendlen, 4062 peer->keynumber)); 4063 #else /* !AUTOKEY follows */ 4064 DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d keyid %08x len %zu\n", 4065 current_time, peer->dstadr ? 4066 ntoa(&peer->dstadr->sin) : "-", 4067 ntoa(&peer->srcadr), peer->hmode, xkeyid, sendlen)); 4068 #endif /* !AUTOKEY */ 4069 4070 return; 4071 } 4072 4073 4074 #ifdef LEAP_SMEAR 4075 4076 static void 4077 leap_smear_add_offs( 4078 l_fp *t, 4079 l_fp *t_recv 4080 ) 4081 { 4082 4083 L_ADD(t, &leap_smear.offset); 4084 4085 /* 4086 ** XXX: Should the smear be added to the root dispersion? 4087 */ 4088 4089 return; 4090 } 4091 4092 #endif /* LEAP_SMEAR */ 4093 4094 4095 /* 4096 * fast_xmit - Send packet for nonpersistent association. Note that 4097 * neither the source or destination can be a broadcast address. 4098 */ 4099 static void 4100 fast_xmit( 4101 struct recvbuf *rbufp, /* receive packet pointer */ 4102 int xmode, /* receive mode */ 4103 keyid_t xkeyid, /* transmit key ID */ 4104 int flags /* restrict mask */ 4105 ) 4106 { 4107 struct pkt xpkt; /* transmit packet structure */ 4108 struct pkt *rpkt; /* receive packet structure */ 4109 l_fp xmt_tx, xmt_ty; 4110 size_t sendlen; 4111 #ifdef AUTOKEY 4112 u_int32 temp32; 4113 #endif 4114 4115 /* 4116 * Initialize transmit packet header fields from the receive 4117 * buffer provided. We leave the fields intact as received, but 4118 * set the peer poll at the maximum of the receive peer poll and 4119 * the system minimum poll (ntp_minpoll). This is for KoD rate 4120 * control and not strictly specification compliant, but doesn't 4121 * break anything. 4122 * 4123 * If the gazinta was from a multicast address, the gazoutta 4124 * must go out another way. 4125 */ 4126 rpkt = &rbufp->recv_pkt; 4127 if (rbufp->dstadr->flags & INT_MCASTOPEN) 4128 rbufp->dstadr = findinterface(&rbufp->recv_srcadr); 4129 4130 /* 4131 * If this is a kiss-o'-death (KoD) packet, show leap 4132 * unsynchronized, stratum zero, reference ID the four-character 4133 * kiss code and system root delay. Note we don't reveal the 4134 * local time, so these packets can't be used for 4135 * synchronization. 4136 */ 4137 if (flags & RES_KOD) { 4138 sys_kodsent++; 4139 xpkt.li_vn_mode = PKT_LI_VN_MODE(LEAP_NOTINSYNC, 4140 PKT_VERSION(rpkt->li_vn_mode), xmode); 4141 xpkt.stratum = STRATUM_PKT_UNSPEC; 4142 xpkt.ppoll = max(rpkt->ppoll, ntp_minpoll); 4143 xpkt.precision = rpkt->precision; 4144 memcpy(&xpkt.refid, "RATE", 4); 4145 xpkt.rootdelay = rpkt->rootdelay; 4146 xpkt.rootdisp = rpkt->rootdisp; 4147 xpkt.reftime = rpkt->reftime; 4148 xpkt.org = rpkt->xmt; 4149 xpkt.rec = rpkt->xmt; 4150 xpkt.xmt = rpkt->xmt; 4151 4152 /* 4153 * This is a normal packet. Use the system variables. 4154 */ 4155 } else { 4156 #ifdef LEAP_SMEAR 4157 /* 4158 * Make copies of the variables which can be affected by smearing. 4159 */ 4160 l_fp this_ref_time; 4161 l_fp this_recv_time; 4162 #endif 4163 4164 /* 4165 * If we are inside the leap smear interval we add the current smear offset to 4166 * the packet receive time, to the packet transmit time, and eventually to the 4167 * reftime to make sure the reftime isn't later than the transmit/receive times. 4168 */ 4169 xpkt.li_vn_mode = PKT_LI_VN_MODE(xmt_leap, 4170 PKT_VERSION(rpkt->li_vn_mode), xmode); 4171 4172 xpkt.stratum = STRATUM_TO_PKT(sys_stratum); 4173 xpkt.ppoll = max(rpkt->ppoll, ntp_minpoll); 4174 xpkt.precision = sys_precision; 4175 xpkt.refid = sys_refid; 4176 xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay)); 4177 xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp)); 4178 4179 #ifdef LEAP_SMEAR 4180 this_ref_time = sys_reftime; 4181 if (leap_smear.in_progress) { 4182 leap_smear_add_offs(&this_ref_time, NULL); 4183 xpkt.refid = convertLFPToRefID(leap_smear.offset); 4184 DPRINTF(2, ("fast_xmit: leap_smear.in_progress: refid %8x, smear %s\n", 4185 ntohl(xpkt.refid), 4186 lfptoa(&leap_smear.offset, 8) 4187 )); 4188 } 4189 HTONL_FP(&this_ref_time, &xpkt.reftime); 4190 #else 4191 HTONL_FP(&sys_reftime, &xpkt.reftime); 4192 #endif 4193 4194 xpkt.org = rpkt->xmt; 4195 4196 #ifdef LEAP_SMEAR 4197 this_recv_time = rbufp->recv_time; 4198 if (leap_smear.in_progress) 4199 leap_smear_add_offs(&this_recv_time, NULL); 4200 HTONL_FP(&this_recv_time, &xpkt.rec); 4201 #else 4202 HTONL_FP(&rbufp->recv_time, &xpkt.rec); 4203 #endif 4204 4205 get_systime(&xmt_tx); 4206 #ifdef LEAP_SMEAR 4207 if (leap_smear.in_progress) 4208 leap_smear_add_offs(&xmt_tx, &this_recv_time); 4209 #endif 4210 HTONL_FP(&xmt_tx, &xpkt.xmt); 4211 } 4212 4213 #ifdef HAVE_NTP_SIGND 4214 if (flags & RES_MSSNTP) { 4215 send_via_ntp_signd(rbufp, xmode, xkeyid, flags, &xpkt); 4216 return; 4217 } 4218 #endif /* HAVE_NTP_SIGND */ 4219 4220 /* 4221 * If the received packet contains a MAC, the transmitted packet 4222 * is authenticated and contains a MAC. If not, the transmitted 4223 * packet is not authenticated. 4224 */ 4225 sendlen = LEN_PKT_NOMAC; 4226 if (rbufp->recv_length == sendlen) { 4227 sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, 0, &xpkt, 4228 sendlen); 4229 DPRINTF(1, ("fast_xmit: at %ld %s->%s mode %d len %lu\n", 4230 current_time, stoa(&rbufp->dstadr->sin), 4231 stoa(&rbufp->recv_srcadr), xmode, 4232 (u_long)sendlen)); 4233 return; 4234 } 4235 4236 /* 4237 * The received packet contains a MAC, so the transmitted packet 4238 * must be authenticated. For symmetric key cryptography, use 4239 * the predefined and trusted symmetric keys to generate the 4240 * cryptosum. For autokey cryptography, use the server private 4241 * value to generate the cookie, which is unique for every 4242 * source-destination-key ID combination. 4243 */ 4244 #ifdef AUTOKEY 4245 if (xkeyid > NTP_MAXKEY) { 4246 keyid_t cookie; 4247 4248 /* 4249 * The only way to get here is a reply to a legitimate 4250 * client request message, so the mode must be 4251 * MODE_SERVER. If an extension field is present, there 4252 * can be only one and that must be a command. Do what 4253 * needs, but with private value of zero so the poor 4254 * jerk can decode it. If no extension field is present, 4255 * use the cookie to generate the session key. 4256 */ 4257 cookie = session_key(&rbufp->recv_srcadr, 4258 &rbufp->dstadr->sin, 0, sys_private, 0); 4259 if ((size_t)rbufp->recv_length > sendlen + MAX_MAC_LEN) { 4260 session_key(&rbufp->dstadr->sin, 4261 &rbufp->recv_srcadr, xkeyid, 0, 2); 4262 temp32 = CRYPTO_RESP; 4263 rpkt->exten[0] |= htonl(temp32); 4264 sendlen += crypto_xmit(NULL, &xpkt, rbufp, 4265 sendlen, (struct exten *)rpkt->exten, 4266 cookie); 4267 } else { 4268 session_key(&rbufp->dstadr->sin, 4269 &rbufp->recv_srcadr, xkeyid, cookie, 2); 4270 } 4271 } 4272 #endif /* AUTOKEY */ 4273 get_systime(&xmt_tx); 4274 sendlen += authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen); 4275 #ifdef AUTOKEY 4276 if (xkeyid > NTP_MAXKEY) 4277 authtrust(xkeyid, 0); 4278 #endif /* AUTOKEY */ 4279 sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, 0, &xpkt, sendlen); 4280 get_systime(&xmt_ty); 4281 L_SUB(&xmt_ty, &xmt_tx); 4282 sys_authdelay = xmt_ty; 4283 DPRINTF(1, ("fast_xmit: at %ld %s->%s mode %d keyid %08x len %lu\n", 4284 current_time, ntoa(&rbufp->dstadr->sin), 4285 ntoa(&rbufp->recv_srcadr), xmode, xkeyid, 4286 (u_long)sendlen)); 4287 } 4288 4289 4290 /* 4291 * pool_xmit - resolve hostname or send unicast solicitation for pool. 4292 */ 4293 static void 4294 pool_xmit( 4295 struct peer *pool /* pool solicitor association */ 4296 ) 4297 { 4298 #ifdef WORKER 4299 struct pkt xpkt; /* transmit packet structure */ 4300 struct addrinfo hints; 4301 int rc; 4302 struct interface * lcladr; 4303 sockaddr_u * rmtadr; 4304 int restrict_mask; 4305 struct peer * p; 4306 l_fp xmt_tx; 4307 4308 if (NULL == pool->ai) { 4309 if (pool->addrs != NULL) { 4310 /* free() is used with copy_addrinfo_list() */ 4311 free(pool->addrs); 4312 pool->addrs = NULL; 4313 } 4314 ZERO(hints); 4315 hints.ai_family = AF(&pool->srcadr); 4316 hints.ai_socktype = SOCK_DGRAM; 4317 hints.ai_protocol = IPPROTO_UDP; 4318 /* ignore getaddrinfo_sometime() errors, we will retry */ 4319 rc = getaddrinfo_sometime( 4320 pool->hostname, 4321 "ntp", 4322 &hints, 4323 0, /* no retry */ 4324 &pool_name_resolved, 4325 (void *)(intptr_t)pool->associd); 4326 if (!rc) 4327 DPRINTF(1, ("pool DNS lookup %s started\n", 4328 pool->hostname)); 4329 else 4330 msyslog(LOG_ERR, 4331 "unable to start pool DNS %s: %m", 4332 pool->hostname); 4333 return; 4334 } 4335 4336 do { 4337 /* copy_addrinfo_list ai_addr points to a sockaddr_u */ 4338 rmtadr = (sockaddr_u *)(void *)pool->ai->ai_addr; 4339 pool->ai = pool->ai->ai_next; 4340 p = findexistingpeer(rmtadr, NULL, NULL, MODE_CLIENT, 0); 4341 } while (p != NULL && pool->ai != NULL); 4342 if (p != NULL) 4343 return; /* out of addresses, re-query DNS next poll */ 4344 restrict_mask = restrictions(rmtadr); 4345 if (RES_FLAGS & restrict_mask) 4346 restrict_source(rmtadr, 0, 4347 current_time + POOL_SOLICIT_WINDOW + 1); 4348 lcladr = findinterface(rmtadr); 4349 memset(&xpkt, 0, sizeof(xpkt)); 4350 xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, pool->version, 4351 MODE_CLIENT); 4352 xpkt.stratum = STRATUM_TO_PKT(sys_stratum); 4353 xpkt.ppoll = pool->hpoll; 4354 xpkt.precision = sys_precision; 4355 xpkt.refid = sys_refid; 4356 xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay)); 4357 xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp)); 4358 HTONL_FP(&sys_reftime, &xpkt.reftime); 4359 get_systime(&xmt_tx); 4360 pool->aorg = xmt_tx; 4361 HTONL_FP(&xmt_tx, &xpkt.xmt); 4362 sendpkt(rmtadr, lcladr, 4363 sys_ttl[(pool->ttl >= sys_ttlmax) ? sys_ttlmax : pool->ttl], 4364 &xpkt, LEN_PKT_NOMAC); 4365 pool->sent++; 4366 pool->throttle += (1 << pool->minpoll) - 2; 4367 DPRINTF(1, ("pool_xmit: at %ld %s->%s pool\n", 4368 current_time, latoa(lcladr), stoa(rmtadr))); 4369 msyslog(LOG_INFO, "Soliciting pool server %s", stoa(rmtadr)); 4370 #endif /* WORKER */ 4371 } 4372 4373 4374 #ifdef AUTOKEY 4375 /* 4376 * group_test - test if this is the same group 4377 * 4378 * host assoc return action 4379 * none none 0 mobilize * 4380 * none group 0 mobilize * 4381 * group none 0 mobilize * 4382 * group group 1 mobilize 4383 * group different 1 ignore 4384 * * ignore if notrust 4385 */ 4386 int 4387 group_test( 4388 char *grp, 4389 char *ident 4390 ) 4391 { 4392 if (grp == NULL) 4393 return (0); 4394 4395 if (strcmp(grp, sys_groupname) == 0) 4396 return (0); 4397 4398 if (ident == NULL) 4399 return (1); 4400 4401 if (strcmp(grp, ident) == 0) 4402 return (0); 4403 4404 return (1); 4405 } 4406 #endif /* AUTOKEY */ 4407 4408 4409 #ifdef WORKER 4410 void 4411 pool_name_resolved( 4412 int rescode, 4413 int gai_errno, 4414 void * context, 4415 const char * name, 4416 const char * service, 4417 const struct addrinfo * hints, 4418 const struct addrinfo * res 4419 ) 4420 { 4421 struct peer * pool; /* pool solicitor association */ 4422 associd_t assoc; 4423 4424 if (rescode) { 4425 msyslog(LOG_ERR, 4426 "error resolving pool %s: %s (%d)", 4427 name, gai_strerror(rescode), rescode); 4428 return; 4429 } 4430 4431 assoc = (associd_t)(intptr_t)context; 4432 pool = findpeerbyassoc(assoc); 4433 if (NULL == pool) { 4434 msyslog(LOG_ERR, 4435 "Could not find assoc %u for pool DNS %s", 4436 assoc, name); 4437 return; 4438 } 4439 DPRINTF(1, ("pool DNS %s completed\n", name)); 4440 pool->addrs = copy_addrinfo_list(res); 4441 pool->ai = pool->addrs; 4442 pool_xmit(pool); 4443 4444 } 4445 #endif /* WORKER */ 4446 4447 4448 #ifdef AUTOKEY 4449 /* 4450 * key_expire - purge the key list 4451 */ 4452 void 4453 key_expire( 4454 struct peer *peer /* peer structure pointer */ 4455 ) 4456 { 4457 int i; 4458 4459 if (peer->keylist != NULL) { 4460 for (i = 0; i <= peer->keynumber; i++) 4461 authtrust(peer->keylist[i], 0); 4462 free(peer->keylist); 4463 peer->keylist = NULL; 4464 } 4465 value_free(&peer->sndval); 4466 peer->keynumber = 0; 4467 peer->flags &= ~FLAG_ASSOC; 4468 DPRINTF(1, ("key_expire: at %lu associd %d\n", current_time, 4469 peer->associd)); 4470 } 4471 #endif /* AUTOKEY */ 4472 4473 4474 /* 4475 * local_refid(peer) - check peer refid to avoid selecting peers 4476 * currently synced to this ntpd. 4477 */ 4478 static int 4479 local_refid( 4480 struct peer * p 4481 ) 4482 { 4483 endpt * unicast_ep; 4484 4485 if (p->dstadr != NULL && !(INT_MCASTIF & p->dstadr->flags)) 4486 unicast_ep = p->dstadr; 4487 else 4488 unicast_ep = findinterface(&p->srcadr); 4489 4490 if (unicast_ep != NULL && p->refid == unicast_ep->addr_refid) 4491 return TRUE; 4492 else 4493 return FALSE; 4494 } 4495 4496 4497 /* 4498 * Determine if the peer is unfit for synchronization 4499 * 4500 * A peer is unfit for synchronization if 4501 * > TEST10 bad leap or stratum below floor or at or above ceiling 4502 * > TEST11 root distance exceeded for remote peer 4503 * > TEST12 a direct or indirect synchronization loop would form 4504 * > TEST13 unreachable or noselect 4505 */ 4506 int /* FALSE if fit, TRUE if unfit */ 4507 peer_unfit( 4508 struct peer *peer /* peer structure pointer */ 4509 ) 4510 { 4511 int rval = 0; 4512 4513 /* 4514 * A stratum error occurs if (1) the server has never been 4515 * synchronized, (2) the server stratum is below the floor or 4516 * greater than or equal to the ceiling. 4517 */ 4518 if ( peer->leap == LEAP_NOTINSYNC 4519 || peer->stratum < sys_floor 4520 || peer->stratum >= sys_ceiling) { 4521 rval |= TEST10; /* bad synch or stratum */ 4522 } 4523 4524 /* 4525 * A distance error for a remote peer occurs if the root 4526 * distance is greater than or equal to the distance threshold 4527 * plus the increment due to one host poll interval. 4528 */ 4529 if ( !(peer->flags & FLAG_REFCLOCK) 4530 && root_distance(peer) >= sys_maxdist 4531 + clock_phi * ULOGTOD(peer->hpoll)) { 4532 rval |= TEST11; /* distance exceeded */ 4533 } 4534 4535 /* 4536 * A loop error occurs if the remote peer is synchronized to the 4537 * local peer or if the remote peer is synchronized to the same 4538 * server as the local peer but only if the remote peer is 4539 * neither a reference clock nor an orphan. 4540 */ 4541 if (peer->stratum > 1 && local_refid(peer)) { 4542 rval |= TEST12; /* synchronization loop */ 4543 } 4544 4545 /* 4546 * An unreachable error occurs if the server is unreachable or 4547 * the noselect bit is set. 4548 */ 4549 if (!peer->reach || (peer->flags & FLAG_NOSELECT)) { 4550 rval |= TEST13; /* unreachable */ 4551 } 4552 4553 peer->flash &= ~PEER_TEST_MASK; 4554 peer->flash |= rval; 4555 return (rval); 4556 } 4557 4558 4559 /* 4560 * Find the precision of this particular machine 4561 */ 4562 #define MINSTEP 20e-9 /* minimum clock increment (s) */ 4563 #define MAXSTEP 1 /* maximum clock increment (s) */ 4564 #define MINCHANGES 12 /* minimum number of step samples */ 4565 #define MAXLOOPS ((int)(1. / MINSTEP)) /* avoid infinite loop */ 4566 4567 /* 4568 * This routine measures the system precision defined as the minimum of 4569 * a sequence of differences between successive readings of the system 4570 * clock. However, if a difference is less than MINSTEP, the clock has 4571 * been read more than once during a clock tick and the difference is 4572 * ignored. We set MINSTEP greater than zero in case something happens 4573 * like a cache miss, and to tolerate underlying system clocks which 4574 * ensure each reading is strictly greater than prior readings while 4575 * using an underlying stepping (not interpolated) clock. 4576 * 4577 * sys_tick and sys_precision represent the time to read the clock for 4578 * systems with high-precision clocks, and the tick interval or step 4579 * size for lower-precision stepping clocks. 4580 * 4581 * This routine also measures the time to read the clock on stepping 4582 * system clocks by counting the number of readings between changes of 4583 * the underlying clock. With either type of clock, the minimum time 4584 * to read the clock is saved as sys_fuzz, and used to ensure the 4585 * get_systime() readings always increase and are fuzzed below sys_fuzz. 4586 */ 4587 void 4588 measure_precision(void) 4589 { 4590 /* 4591 * With sys_fuzz set to zero, get_systime() fuzzing of low bits 4592 * is effectively disabled. trunc_os_clock is FALSE to disable 4593 * get_ostime() simulation of a low-precision system clock. 4594 */ 4595 set_sys_fuzz(0.); 4596 trunc_os_clock = FALSE; 4597 measured_tick = measure_tick_fuzz(); 4598 set_sys_tick_precision(measured_tick); 4599 msyslog(LOG_INFO, "proto: precision = %.3f usec (%d)", 4600 sys_tick * 1e6, sys_precision); 4601 if (sys_fuzz < sys_tick) { 4602 msyslog(LOG_NOTICE, "proto: fuzz beneath %.3f usec", 4603 sys_fuzz * 1e6); 4604 } 4605 } 4606 4607 4608 /* 4609 * measure_tick_fuzz() 4610 * 4611 * measures the minimum time to read the clock (stored in sys_fuzz) 4612 * and returns the tick, the larger of the minimum increment observed 4613 * between successive clock readings and the time to read the clock. 4614 */ 4615 double 4616 measure_tick_fuzz(void) 4617 { 4618 l_fp minstep; /* MINSTEP as l_fp */ 4619 l_fp val; /* current seconds fraction */ 4620 l_fp last; /* last seconds fraction */ 4621 l_fp ldiff; /* val - last */ 4622 double tick; /* computed tick value */ 4623 double diff; 4624 long repeats; 4625 long max_repeats; 4626 int changes; 4627 int i; /* log2 precision */ 4628 4629 tick = MAXSTEP; 4630 max_repeats = 0; 4631 repeats = 0; 4632 changes = 0; 4633 DTOLFP(MINSTEP, &minstep); 4634 get_systime(&last); 4635 for (i = 0; i < MAXLOOPS && changes < MINCHANGES; i++) { 4636 get_systime(&val); 4637 ldiff = val; 4638 L_SUB(&ldiff, &last); 4639 last = val; 4640 if (L_ISGT(&ldiff, &minstep)) { 4641 max_repeats = max(repeats, max_repeats); 4642 repeats = 0; 4643 changes++; 4644 LFPTOD(&ldiff, diff); 4645 tick = min(diff, tick); 4646 } else { 4647 repeats++; 4648 } 4649 } 4650 if (changes < MINCHANGES) { 4651 msyslog(LOG_ERR, "Fatal error: precision could not be measured (MINSTEP too large?)"); 4652 exit(1); 4653 } 4654 4655 if (0 == max_repeats) { 4656 set_sys_fuzz(tick); 4657 } else { 4658 set_sys_fuzz(tick / max_repeats); 4659 } 4660 4661 return tick; 4662 } 4663 4664 4665 void 4666 set_sys_tick_precision( 4667 double tick 4668 ) 4669 { 4670 int i; 4671 4672 if (tick > 1.) { 4673 msyslog(LOG_ERR, 4674 "unsupported tick %.3f > 1s ignored", tick); 4675 return; 4676 } 4677 if (tick < measured_tick) { 4678 msyslog(LOG_ERR, 4679 "proto: tick %.3f less than measured tick %.3f, ignored", 4680 tick, measured_tick); 4681 return; 4682 } else if (tick > measured_tick) { 4683 trunc_os_clock = TRUE; 4684 msyslog(LOG_NOTICE, 4685 "proto: truncating system clock to multiples of %.9f", 4686 tick); 4687 } 4688 sys_tick = tick; 4689 4690 /* 4691 * Find the nearest power of two. 4692 */ 4693 for (i = 0; tick <= 1; i--) 4694 tick *= 2; 4695 if (tick - 1 > 1 - tick / 2) 4696 i++; 4697 4698 sys_precision = (s_char)i; 4699 } 4700 4701 4702 /* 4703 * init_proto - initialize the protocol module's data 4704 */ 4705 void 4706 init_proto(void) 4707 { 4708 l_fp dummy; 4709 int i; 4710 4711 /* 4712 * Fill in the sys_* stuff. Default is don't listen to 4713 * broadcasting, require authentication. 4714 */ 4715 set_sys_leap(LEAP_NOTINSYNC); 4716 sys_stratum = STRATUM_UNSPEC; 4717 memcpy(&sys_refid, "INIT", 4); 4718 sys_peer = NULL; 4719 sys_rootdelay = 0; 4720 sys_rootdisp = 0; 4721 L_CLR(&sys_reftime); 4722 sys_jitter = 0; 4723 measure_precision(); 4724 get_systime(&dummy); 4725 sys_survivors = 0; 4726 sys_manycastserver = 0; 4727 sys_bclient = 0; 4728 sys_bdelay = BDELAY_DEFAULT; /*[Bug 3031] delay cutoff */ 4729 sys_authenticate = 1; 4730 sys_stattime = current_time; 4731 orphwait = current_time + sys_orphwait; 4732 proto_clr_stats(); 4733 for (i = 0; i < MAX_TTL; ++i) 4734 sys_ttl[i] = (u_char)((i * 256) / MAX_TTL); 4735 sys_ttlmax = (MAX_TTL - 1); 4736 hardpps_enable = 0; 4737 stats_control = 1; 4738 } 4739 4740 4741 /* 4742 * proto_config - configure the protocol module 4743 */ 4744 void 4745 proto_config( 4746 int item, 4747 u_long value, 4748 double dvalue, 4749 sockaddr_u *svalue 4750 ) 4751 { 4752 /* 4753 * Figure out what he wants to change, then do it 4754 */ 4755 DPRINTF(2, ("proto_config: code %d value %lu dvalue %lf\n", 4756 item, value, dvalue)); 4757 4758 switch (item) { 4759 4760 /* 4761 * enable and disable commands - arguments are Boolean. 4762 */ 4763 case PROTO_AUTHENTICATE: /* authentication (auth) */ 4764 sys_authenticate = value; 4765 break; 4766 4767 case PROTO_BROADCLIENT: /* broadcast client (bclient) */ 4768 sys_bclient = (int)value; 4769 if (sys_bclient == 0) 4770 io_unsetbclient(); 4771 else 4772 io_setbclient(); 4773 break; 4774 4775 #ifdef REFCLOCK 4776 case PROTO_CAL: /* refclock calibrate (calibrate) */ 4777 cal_enable = value; 4778 break; 4779 #endif /* REFCLOCK */ 4780 4781 case PROTO_KERNEL: /* kernel discipline (kernel) */ 4782 select_loop(value); 4783 break; 4784 4785 case PROTO_MONITOR: /* monitoring (monitor) */ 4786 if (value) 4787 mon_start(MON_ON); 4788 else { 4789 mon_stop(MON_ON); 4790 if (mon_enabled) 4791 msyslog(LOG_WARNING, 4792 "restrict: 'monitor' cannot be disabled while 'limited' is enabled"); 4793 } 4794 break; 4795 4796 case PROTO_NTP: /* NTP discipline (ntp) */ 4797 ntp_enable = value; 4798 break; 4799 4800 case PROTO_MODE7: /* mode7 management (ntpdc) */ 4801 ntp_mode7 = value; 4802 break; 4803 4804 case PROTO_PPS: /* PPS discipline (pps) */ 4805 hardpps_enable = value; 4806 break; 4807 4808 case PROTO_FILEGEN: /* statistics (stats) */ 4809 stats_control = value; 4810 break; 4811 4812 /* 4813 * tos command - arguments are double, sometimes cast to int 4814 */ 4815 4816 case PROTO_BCPOLLBSTEP: /* Broadcast Poll Backstep gate (bcpollbstep) */ 4817 sys_bcpollbstep = (u_char)dvalue; 4818 break; 4819 4820 case PROTO_BEACON: /* manycast beacon (beacon) */ 4821 sys_beacon = (int)dvalue; 4822 break; 4823 4824 case PROTO_BROADDELAY: /* default broadcast delay (bdelay) */ 4825 sys_bdelay = (dvalue ? dvalue : BDELAY_DEFAULT); 4826 break; 4827 4828 case PROTO_CEILING: /* stratum ceiling (ceiling) */ 4829 sys_ceiling = (int)dvalue; 4830 break; 4831 4832 case PROTO_COHORT: /* cohort switch (cohort) */ 4833 sys_cohort = (int)dvalue; 4834 break; 4835 4836 case PROTO_FLOOR: /* stratum floor (floor) */ 4837 sys_floor = (int)dvalue; 4838 break; 4839 4840 case PROTO_MAXCLOCK: /* maximum candidates (maxclock) */ 4841 sys_maxclock = (int)dvalue; 4842 break; 4843 4844 case PROTO_MAXDIST: /* select threshold (maxdist) */ 4845 sys_maxdist = dvalue; 4846 break; 4847 4848 case PROTO_CALLDELAY: /* modem call delay (mdelay) */ 4849 break; /* NOT USED */ 4850 4851 case PROTO_MINCLOCK: /* minimum candidates (minclock) */ 4852 sys_minclock = (int)dvalue; 4853 break; 4854 4855 case PROTO_MINDISP: /* minimum distance (mindist) */ 4856 sys_mindisp = dvalue; 4857 break; 4858 4859 case PROTO_MINSANE: /* minimum survivors (minsane) */ 4860 sys_minsane = (int)dvalue; 4861 break; 4862 4863 case PROTO_ORPHAN: /* orphan stratum (orphan) */ 4864 sys_orphan = (int)dvalue; 4865 break; 4866 4867 case PROTO_ORPHWAIT: /* orphan wait (orphwait) */ 4868 orphwait -= sys_orphwait; 4869 sys_orphwait = (int)dvalue; 4870 orphwait += sys_orphwait; 4871 break; 4872 4873 /* 4874 * Miscellaneous commands 4875 */ 4876 case PROTO_MULTICAST_ADD: /* add group address */ 4877 if (svalue != NULL) 4878 io_multicast_add(svalue); 4879 sys_bclient = 1; 4880 break; 4881 4882 case PROTO_MULTICAST_DEL: /* delete group address */ 4883 if (svalue != NULL) 4884 io_multicast_del(svalue); 4885 break; 4886 4887 /* 4888 * Peer_clear Early policy choices 4889 */ 4890 4891 case PROTO_PCEDIGEST: /* Digest */ 4892 peer_clear_digest_early = value; 4893 break; 4894 4895 /* 4896 * Unpeer Early policy choices 4897 */ 4898 4899 case PROTO_UECRYPTO: /* Crypto */ 4900 unpeer_crypto_early = value; 4901 break; 4902 4903 case PROTO_UECRYPTONAK: /* Crypto_NAK */ 4904 unpeer_crypto_nak_early = value; 4905 break; 4906 4907 case PROTO_UEDIGEST: /* Digest */ 4908 unpeer_digest_early = value; 4909 break; 4910 4911 default: 4912 msyslog(LOG_NOTICE, 4913 "proto: unsupported option %d", item); 4914 } 4915 } 4916 4917 4918 /* 4919 * proto_clr_stats - clear protocol stat counters 4920 */ 4921 void 4922 proto_clr_stats(void) 4923 { 4924 sys_stattime = current_time; 4925 sys_received = 0; 4926 sys_processed = 0; 4927 sys_newversion = 0; 4928 sys_oldversion = 0; 4929 sys_declined = 0; 4930 sys_restricted = 0; 4931 sys_badlength = 0; 4932 sys_badauth = 0; 4933 sys_limitrejected = 0; 4934 sys_kodsent = 0; 4935 } 4936