1 /* 2 * ntp_proto.c - NTP version 4 protocol machinery 3 * 4 * ATTENTION: Get approval from Harlan on all changes to this file! 5 * (Harlan will be discussing these changes with Dave Mills.) 6 * 7 */ 8 #ifdef HAVE_CONFIG_H 9 #include <config.h> 10 #endif 11 12 #include "ntpd.h" 13 #include "ntp_stdlib.h" 14 #include "ntp_unixtime.h" 15 #include "ntp_control.h" 16 #include "ntp_string.h" 17 #include "ntp_leapsec.h" 18 #include "refidsmear.h" 19 #include "lib_strbuf.h" 20 21 #include <stdio.h> 22 #ifdef HAVE_LIBSCF_H 23 #include <libscf.h> 24 #endif 25 #ifdef HAVE_UNISTD_H 26 #include <unistd.h> 27 #endif 28 29 /* [Bug 3031] define automatic broadcastdelay cutoff preset */ 30 #ifndef BDELAY_DEFAULT 31 # define BDELAY_DEFAULT (-0.050) 32 #endif 33 34 /* 35 * This macro defines the authentication state. If x is 1 authentication 36 * is required; otherwise it is optional. 37 */ 38 #define AUTH(x, y) ((x) ? (y) == AUTH_OK \ 39 : (y) == AUTH_OK || (y) == AUTH_NONE) 40 41 typedef enum 42 auth_state { 43 AUTH_UNKNOWN = -1, /* Unknown */ 44 AUTH_NONE, /* authentication not required */ 45 AUTH_OK, /* authentication OK */ 46 AUTH_ERROR, /* authentication error */ 47 AUTH_CRYPTO /* crypto_NAK */ 48 } auth_code; 49 50 /* 51 * Set up Kiss Code values 52 */ 53 54 typedef enum 55 kiss_codes { 56 NOKISS, /* No Kiss Code */ 57 RATEKISS, /* Rate limit Kiss Code */ 58 DENYKISS, /* Deny Kiss */ 59 RSTRKISS, /* Restricted Kiss */ 60 XKISS /* Experimental Kiss */ 61 } kiss_code; 62 63 typedef enum 64 nak_error_codes { 65 NONAK, /* No NAK seen */ 66 INVALIDNAK, /* NAK cannot be used */ 67 VALIDNAK /* NAK is valid */ 68 } nak_code; 69 70 /* 71 * traffic shaping parameters 72 */ 73 #define NTP_IBURST 6 /* packets in iburst */ 74 #define RESP_DELAY 1 /* refclock burst delay (s) */ 75 76 /* 77 * pool soliciting restriction duration (s) 78 */ 79 #define POOL_SOLICIT_WINDOW 8 80 81 /* 82 * peer_select groups statistics for a peer used by clock_select() and 83 * clock_cluster(). 84 */ 85 typedef struct peer_select_tag { 86 struct peer * peer; 87 double synch; /* sync distance */ 88 double error; /* jitter */ 89 double seljit; /* selection jitter */ 90 } peer_select; 91 92 /* 93 * System variables are declared here. Unless specified otherwise, all 94 * times are in seconds. 95 */ 96 u_char sys_leap; /* system leap indicator, use set_sys_leap() to change this */ 97 u_char xmt_leap; /* leap indicator sent in client requests, set up by set_sys_leap() */ 98 u_char sys_stratum; /* system stratum */ 99 s_char sys_precision; /* local clock precision (log2 s) */ 100 double sys_rootdelay; /* roundtrip delay to primary source */ 101 double sys_rootdisp; /* dispersion to primary source */ 102 u_int32 sys_refid; /* reference id (network byte order) */ 103 l_fp sys_reftime; /* last update time */ 104 struct peer *sys_peer; /* current peer */ 105 106 #ifdef LEAP_SMEAR 107 struct leap_smear_info leap_smear; 108 #endif 109 int leap_sec_in_progress; 110 111 /* 112 * Rate controls. Leaky buckets are used to throttle the packet 113 * transmission rates in order to protect busy servers such as at NIST 114 * and USNO. There is a counter for each association and another for KoD 115 * packets. The association counter decrements each second, but not 116 * below zero. Each time a packet is sent the counter is incremented by 117 * a configurable value representing the average interval between 118 * packets. A packet is delayed as long as the counter is greater than 119 * zero. Note this does not affect the time value computations. 120 */ 121 /* 122 * Nonspecified system state variables 123 */ 124 int sys_bclient; /* broadcast client enable */ 125 double sys_bdelay; /* broadcast client default delay */ 126 int sys_authenticate; /* requre authentication for config */ 127 l_fp sys_authdelay; /* authentication delay */ 128 double sys_offset; /* current local clock offset */ 129 double sys_mindisp = MINDISPERSE; /* minimum distance (s) */ 130 double sys_maxdist = MAXDISTANCE; /* selection threshold */ 131 double sys_jitter; /* system jitter */ 132 u_long sys_epoch; /* last clock update time */ 133 static double sys_clockhop; /* clockhop threshold */ 134 static int leap_vote_ins; /* leap consensus for insert */ 135 static int leap_vote_del; /* leap consensus for delete */ 136 keyid_t sys_private; /* private value for session seed */ 137 int sys_manycastserver; /* respond to manycast client pkts */ 138 int ntp_mode7; /* respond to ntpdc (mode7) */ 139 int peer_ntpdate; /* active peers in ntpdate mode */ 140 int sys_survivors; /* truest of the truechimers */ 141 char *sys_ident = NULL; /* identity scheme */ 142 143 /* 144 * TOS and multicast mapping stuff 145 */ 146 int sys_floor = 0; /* cluster stratum floor */ 147 u_char sys_bcpollbstep = 0; /* Broadcast Poll backstep gate */ 148 int sys_ceiling = STRATUM_UNSPEC - 1; /* cluster stratum ceiling */ 149 int sys_minsane = 1; /* minimum candidates */ 150 int sys_minclock = NTP_MINCLOCK; /* minimum candidates */ 151 int sys_maxclock = NTP_MAXCLOCK; /* maximum candidates */ 152 int sys_cohort = 0; /* cohort switch */ 153 int sys_orphan = STRATUM_UNSPEC + 1; /* orphan stratum */ 154 int sys_orphwait = NTP_ORPHWAIT; /* orphan wait */ 155 int sys_beacon = BEACON; /* manycast beacon interval */ 156 u_int sys_ttlmax; /* max ttl mapping vector index */ 157 u_char sys_ttl[MAX_TTL]; /* ttl mapping vector */ 158 159 /* 160 * Statistics counters - first the good, then the bad 161 */ 162 u_long sys_stattime; /* elapsed time */ 163 u_long sys_received; /* packets received */ 164 u_long sys_processed; /* packets for this host */ 165 u_long sys_newversion; /* current version */ 166 u_long sys_oldversion; /* old version */ 167 u_long sys_restricted; /* access denied */ 168 u_long sys_badlength; /* bad length or format */ 169 u_long sys_badauth; /* bad authentication */ 170 u_long sys_declined; /* declined */ 171 u_long sys_limitrejected; /* rate exceeded */ 172 u_long sys_kodsent; /* KoD sent */ 173 174 /* 175 * Mechanism knobs: how soon do we peer_clear() or unpeer()? 176 * 177 * The default way is "on-receipt". If this was a packet from a 178 * well-behaved source, on-receipt will offer the fastest recovery. 179 * If this was from a DoS attack, the default way makes it easier 180 * for a bad-guy to DoS us. So look and see what bites you harder 181 * and choose according to your environment. 182 */ 183 int peer_clear_digest_early = 1; /* bad digest (TEST5) and Autokey */ 184 int unpeer_crypto_early = 1; /* bad crypto (TEST9) */ 185 int unpeer_crypto_nak_early = 1; /* crypto_NAK (TEST5) */ 186 int unpeer_digest_early = 1; /* bad digest (TEST5) */ 187 188 int dynamic_interleave = DYNAMIC_INTERLEAVE; /* Bug 2978 mitigation */ 189 190 int kiss_code_check(u_char hisleap, u_char hisstratum, u_char hismode, u_int32 refid); 191 nak_code valid_NAK (struct peer *peer, struct recvbuf *rbufp, u_char hismode); 192 static double root_distance (struct peer *); 193 static void clock_combine (peer_select *, int, int); 194 static void peer_xmit (struct peer *); 195 static void fast_xmit (struct recvbuf *, int, keyid_t, int); 196 static void pool_xmit (struct peer *); 197 static void clock_update (struct peer *); 198 static void measure_precision(void); 199 static double measure_tick_fuzz(void); 200 static int local_refid (struct peer *); 201 static int peer_unfit (struct peer *); 202 #ifdef AUTOKEY 203 static int group_test (char *, char *); 204 #endif /* AUTOKEY */ 205 #ifdef WORKER 206 void pool_name_resolved (int, int, void *, const char *, 207 const char *, const struct addrinfo *, 208 const struct addrinfo *); 209 #endif /* WORKER */ 210 211 const char * amtoa (int am); 212 213 214 void 215 set_sys_leap( 216 u_char new_sys_leap 217 ) 218 { 219 sys_leap = new_sys_leap; 220 xmt_leap = sys_leap; 221 222 /* 223 * Under certain conditions we send faked leap bits to clients, so 224 * eventually change xmt_leap below, but never change LEAP_NOTINSYNC. 225 */ 226 if (xmt_leap != LEAP_NOTINSYNC) { 227 if (leap_sec_in_progress) { 228 /* always send "not sync" */ 229 xmt_leap = LEAP_NOTINSYNC; 230 } 231 #ifdef LEAP_SMEAR 232 else { 233 /* 234 * If leap smear is enabled in general we must 235 * never send a leap second warning to clients, 236 * so make sure we only send "in sync". 237 */ 238 if (leap_smear.enabled) 239 xmt_leap = LEAP_NOWARNING; 240 } 241 #endif /* LEAP_SMEAR */ 242 } 243 } 244 245 246 /* 247 * Kiss Code check 248 */ 249 int 250 kiss_code_check( 251 u_char hisleap, 252 u_char hisstratum, 253 u_char hismode, 254 u_int32 refid 255 ) 256 { 257 258 if ( hismode == MODE_SERVER 259 && hisleap == LEAP_NOTINSYNC 260 && hisstratum == STRATUM_UNSPEC) { 261 if(memcmp(&refid,"RATE", 4) == 0) { 262 return (RATEKISS); 263 } else if(memcmp(&refid,"DENY", 4) == 0) { 264 return (DENYKISS); 265 } else if(memcmp(&refid,"RSTR", 4) == 0) { 266 return (RSTRKISS); 267 } else if(memcmp(&refid,"X", 1) == 0) { 268 return (XKISS); 269 } 270 } 271 return (NOKISS); 272 } 273 274 275 /* 276 * Check that NAK is valid 277 */ 278 nak_code 279 valid_NAK( 280 struct peer *peer, 281 struct recvbuf *rbufp, 282 u_char hismode 283 ) 284 { 285 int base_packet_length = MIN_V4_PKT_LEN; 286 int remainder_size; 287 struct pkt * rpkt; 288 int keyid; 289 l_fp p_org; /* origin timestamp */ 290 const l_fp * myorg; /* selected peer origin */ 291 292 /* 293 * Check to see if there is something beyond the basic packet 294 */ 295 if (rbufp->recv_length == base_packet_length) { 296 return NONAK; 297 } 298 299 remainder_size = rbufp->recv_length - base_packet_length; 300 /* 301 * Is this a potential NAK? 302 */ 303 if (remainder_size != 4) { 304 return NONAK; 305 } 306 307 /* 308 * Only server responses can contain NAK's 309 */ 310 311 if (hismode != MODE_SERVER && 312 hismode != MODE_ACTIVE && 313 hismode != MODE_PASSIVE 314 ) { 315 return INVALIDNAK; 316 } 317 318 /* 319 * Make sure that the extra field in the packet is all zeros 320 */ 321 rpkt = &rbufp->recv_pkt; 322 keyid = ntohl(((u_int32 *)rpkt)[base_packet_length / 4]); 323 if (keyid != 0) { 324 return INVALIDNAK; 325 } 326 327 /* 328 * During the first few packets of the autokey dance there will 329 * not (yet) be a keyid, but in this case FLAG_SKEY is set. 330 * So the NAK is invalid if either there's no peer, or 331 * if the keyid is 0 and FLAG_SKEY is not set. 332 */ 333 if (!peer || (!peer->keyid && !(peer->flags & FLAG_SKEY))) { 334 return INVALIDNAK; 335 } 336 337 /* 338 * The ORIGIN must match, or this cannot be a valid NAK, either. 339 */ 340 NTOHL_FP(&rpkt->org, &p_org); 341 if (peer->flip > 0) 342 myorg = &peer->borg; 343 else 344 myorg = &peer->aorg; 345 346 if (L_ISZERO(&p_org) || 347 L_ISZERO( myorg) || 348 !L_ISEQU(&p_org, myorg)) { 349 return INVALIDNAK; 350 } 351 352 /* If we ever passed all that checks, we should be safe. Well, 353 * as safe as we can ever be with an unauthenticated crypto-nak. 354 */ 355 return VALIDNAK; 356 } 357 358 359 /* 360 * transmit - transmit procedure called by poll timeout 361 */ 362 void 363 transmit( 364 struct peer *peer /* peer structure pointer */ 365 ) 366 { 367 u_char hpoll; 368 369 /* 370 * The polling state machine. There are two kinds of machines, 371 * those that never expect a reply (broadcast and manycast 372 * server modes) and those that do (all other modes). The dance 373 * is intricate... 374 */ 375 hpoll = peer->hpoll; 376 377 /* 378 * If we haven't received anything (even if unsync) since last 379 * send, reset ppoll. 380 */ 381 if (peer->outdate > peer->timelastrec && !peer->reach) 382 peer->ppoll = peer->maxpoll; 383 384 /* 385 * In broadcast mode the poll interval is never changed from 386 * minpoll. 387 */ 388 if (peer->cast_flags & (MDF_BCAST | MDF_MCAST)) { 389 peer->outdate = current_time; 390 poll_update(peer, hpoll); 391 if (sys_leap != LEAP_NOTINSYNC) 392 peer_xmit(peer); 393 return; 394 } 395 396 /* 397 * In manycast mode we start with unity ttl. The ttl is 398 * increased by one for each poll until either sys_maxclock 399 * servers have been found or the maximum ttl is reached. When 400 * sys_maxclock servers are found we stop polling until one or 401 * more servers have timed out or until less than sys_minclock 402 * associations turn up. In this case additional better servers 403 * are dragged in and preempt the existing ones. Once every 404 * sys_beacon seconds we are to transmit unconditionally, but 405 * this code is not quite right -- peer->unreach counts polls 406 * and is being compared with sys_beacon, so the beacons happen 407 * every sys_beacon polls. 408 */ 409 if (peer->cast_flags & MDF_ACAST) { 410 peer->outdate = current_time; 411 poll_update(peer, hpoll); 412 if (peer->unreach > sys_beacon) { 413 peer->unreach = 0; 414 peer->ttl = 0; 415 peer_xmit(peer); 416 } else if ( sys_survivors < sys_minclock 417 || peer_associations < sys_maxclock) { 418 if (peer->ttl < sys_ttlmax) 419 peer->ttl++; 420 peer_xmit(peer); 421 } 422 peer->unreach++; 423 return; 424 } 425 426 /* 427 * Pool associations transmit unicast solicitations when there 428 * are less than a hard limit of 2 * sys_maxclock associations, 429 * and either less than sys_minclock survivors or less than 430 * sys_maxclock associations. The hard limit prevents unbounded 431 * growth in associations if the system clock or network quality 432 * result in survivor count dipping below sys_minclock often. 433 * This was observed testing with pool, where sys_maxclock == 12 434 * resulted in 60 associations without the hard limit. A 435 * similar hard limit on manycastclient ephemeral associations 436 * may be appropriate. 437 */ 438 if (peer->cast_flags & MDF_POOL) { 439 peer->outdate = current_time; 440 poll_update(peer, hpoll); 441 if ( (peer_associations <= 2 * sys_maxclock) 442 && ( peer_associations < sys_maxclock 443 || sys_survivors < sys_minclock)) 444 pool_xmit(peer); 445 return; 446 } 447 448 /* 449 * In unicast modes the dance is much more intricate. It is 450 * designed to back off whenever possible to minimize network 451 * traffic. 452 */ 453 if (peer->burst == 0) { 454 u_char oreach; 455 456 /* 457 * Update the reachability status. If not heard for 458 * three consecutive polls, stuff infinity in the clock 459 * filter. 460 */ 461 oreach = peer->reach; 462 peer->outdate = current_time; 463 peer->unreach++; 464 peer->reach <<= 1; 465 if (!peer->reach) { 466 467 /* 468 * Here the peer is unreachable. If it was 469 * previously reachable raise a trap. Send a 470 * burst if enabled. 471 */ 472 clock_filter(peer, 0., 0., MAXDISPERSE); 473 if (oreach) { 474 peer_unfit(peer); 475 report_event(PEVNT_UNREACH, peer, NULL); 476 } 477 if ( (peer->flags & FLAG_IBURST) 478 && peer->retry == 0) 479 peer->retry = NTP_RETRY; 480 } else { 481 482 /* 483 * Here the peer is reachable. Send a burst if 484 * enabled and the peer is fit. Reset unreach 485 * for persistent and ephemeral associations. 486 * Unreach is also reset for survivors in 487 * clock_select(). 488 */ 489 hpoll = sys_poll; 490 if (!(peer->flags & FLAG_PREEMPT)) 491 peer->unreach = 0; 492 if ( (peer->flags & FLAG_BURST) 493 && peer->retry == 0 494 && !peer_unfit(peer)) 495 peer->retry = NTP_RETRY; 496 } 497 498 /* 499 * Watch for timeout. If ephemeral, toss the rascal; 500 * otherwise, bump the poll interval. Note the 501 * poll_update() routine will clamp it to maxpoll. 502 * If preemptible and we have more peers than maxclock, 503 * and this peer has the minimum score of preemptibles, 504 * demobilize. 505 */ 506 if (peer->unreach >= NTP_UNREACH) { 507 hpoll++; 508 /* ephemeral: no FLAG_CONFIG nor FLAG_PREEMPT */ 509 if (!(peer->flags & (FLAG_CONFIG | FLAG_PREEMPT))) { 510 report_event(PEVNT_RESTART, peer, "timeout"); 511 peer_clear(peer, "TIME"); 512 unpeer(peer); 513 return; 514 } 515 if ( (peer->flags & FLAG_PREEMPT) 516 && (peer_associations > sys_maxclock) 517 && score_all(peer)) { 518 report_event(PEVNT_RESTART, peer, "timeout"); 519 peer_clear(peer, "TIME"); 520 unpeer(peer); 521 return; 522 } 523 } 524 } else { 525 peer->burst--; 526 if (peer->burst == 0) { 527 528 /* 529 * If ntpdate mode and the clock has not been 530 * set and all peers have completed the burst, 531 * we declare a successful failure. 532 */ 533 if (mode_ntpdate) { 534 peer_ntpdate--; 535 if (peer_ntpdate == 0) { 536 msyslog(LOG_NOTICE, 537 "ntpd: no servers found"); 538 if (!msyslog_term) 539 printf( 540 "ntpd: no servers found\n"); 541 exit (0); 542 } 543 } 544 } 545 } 546 if (peer->retry > 0) 547 peer->retry--; 548 549 /* 550 * Do not transmit if in broadcast client mode. 551 */ 552 poll_update(peer, hpoll); 553 if (peer->hmode != MODE_BCLIENT) 554 peer_xmit(peer); 555 556 return; 557 } 558 559 560 const char * 561 amtoa( 562 int am 563 ) 564 { 565 char *bp; 566 567 switch(am) { 568 case AM_ERR: return "AM_ERR"; 569 case AM_NOMATCH: return "AM_NOMATCH"; 570 case AM_PROCPKT: return "AM_PROCPKT"; 571 case AM_BCST: return "AM_BCST"; 572 case AM_FXMIT: return "AM_FXMIT"; 573 case AM_MANYCAST: return "AM_MANYCAST"; 574 case AM_NEWPASS: return "AM_NEWPASS"; 575 case AM_NEWBCL: return "AM_NEWBCL"; 576 case AM_POSSBCL: return "AM_POSSBCL"; 577 default: 578 LIB_GETBUF(bp); 579 snprintf(bp, LIB_BUFLENGTH, "AM_#%d", am); 580 return bp; 581 } 582 } 583 584 585 /* 586 * receive - receive procedure called for each packet received 587 */ 588 void 589 receive( 590 struct recvbuf *rbufp 591 ) 592 { 593 register struct peer *peer; /* peer structure pointer */ 594 register struct pkt *pkt; /* receive packet pointer */ 595 u_char hisversion; /* packet version */ 596 u_char hisleap; /* packet leap indicator */ 597 u_char hismode; /* packet mode */ 598 u_char hisstratum; /* packet stratum */ 599 r4addr r4a; /* address restrictions */ 600 u_short restrict_mask; /* restrict bits */ 601 const char *hm_str; /* hismode string */ 602 const char *am_str; /* association match string */ 603 int kissCode = NOKISS; /* Kiss Code */ 604 int has_mac; /* length of MAC field */ 605 int authlen; /* offset of MAC field */ 606 auth_code is_authentic = AUTH_UNKNOWN; /* Was AUTH_NONE */ 607 nak_code crypto_nak_test; /* result of crypto-NAK check */ 608 int retcode = AM_NOMATCH; /* match code */ 609 keyid_t skeyid = 0; /* key IDs */ 610 u_int32 opcode = 0; /* extension field opcode */ 611 sockaddr_u *dstadr_sin; /* active runway */ 612 struct peer *peer2; /* aux peer structure pointer */ 613 endpt *match_ep; /* newpeer() local address */ 614 l_fp p_org; /* origin timestamp */ 615 l_fp p_rec; /* receive timestamp */ 616 l_fp p_xmt; /* transmit timestamp */ 617 #ifdef AUTOKEY 618 char hostname[NTP_MAXSTRLEN + 1]; 619 char *groupname = NULL; 620 struct autokey *ap; /* autokey structure pointer */ 621 int rval; /* cookie snatcher */ 622 keyid_t pkeyid = 0, tkeyid = 0; /* key IDs */ 623 #endif /* AUTOKEY */ 624 #ifdef HAVE_NTP_SIGND 625 static unsigned char zero_key[16]; 626 #endif /* HAVE_NTP_SIGND */ 627 628 /* 629 * Note that there are many places we do not call record_raw_stats(). 630 * 631 * We only want to call it *after* we've sent a response, or perhaps 632 * when we've decided to drop a packet. 633 */ 634 635 /* 636 * Monitor the packet and get restrictions. Note that the packet 637 * length for control and private mode packets must be checked 638 * by the service routines. Some restrictions have to be handled 639 * later in order to generate a kiss-o'-death packet. 640 */ 641 /* 642 * Bogus port check is before anything, since it probably 643 * reveals a clogging attack. 644 */ 645 sys_received++; 646 if (0 == SRCPORT(&rbufp->recv_srcadr)) { 647 sys_badlength++; 648 return; /* bogus port */ 649 } 650 restrictions(&rbufp->recv_srcadr, &r4a); 651 restrict_mask = r4a.rflags; 652 653 pkt = &rbufp->recv_pkt; 654 hisversion = PKT_VERSION(pkt->li_vn_mode); 655 hisleap = PKT_LEAP(pkt->li_vn_mode); 656 hismode = (int)PKT_MODE(pkt->li_vn_mode); 657 hisstratum = PKT_TO_STRATUM(pkt->stratum); 658 DPRINTF(1, ("receive: at %ld %s<-%s ippeerlimit %d mode %d iflags %s restrict %s org %#010x.%08x xmt %#010x.%08x\n", 659 current_time, stoa(&rbufp->dstadr->sin), 660 stoa(&rbufp->recv_srcadr), r4a.ippeerlimit, hismode, 661 build_iflags(rbufp->dstadr->flags), 662 build_rflags(restrict_mask), 663 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 664 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 665 666 /* See basic mode and broadcast checks, below */ 667 INSIST(0 != hisstratum); 668 669 if (restrict_mask & RES_IGNORE) { 670 DPRINTF(2, ("receive: drop: RES_IGNORE\n")); 671 sys_restricted++; 672 return; /* ignore everything */ 673 } 674 if (hismode == MODE_PRIVATE) { 675 if (!ntp_mode7 || (restrict_mask & RES_NOQUERY)) { 676 DPRINTF(2, ("receive: drop: RES_NOQUERY\n")); 677 sys_restricted++; 678 return; /* no query private */ 679 } 680 process_private(rbufp, ((restrict_mask & 681 RES_NOMODIFY) == 0)); 682 return; 683 } 684 if (hismode == MODE_CONTROL) { 685 if (restrict_mask & RES_NOQUERY) { 686 DPRINTF(2, ("receive: drop: RES_NOQUERY\n")); 687 sys_restricted++; 688 return; /* no query control */ 689 } 690 process_control(rbufp, restrict_mask); 691 return; 692 } 693 if (restrict_mask & RES_DONTSERVE) { 694 DPRINTF(2, ("receive: drop: RES_DONTSERVE\n")); 695 sys_restricted++; 696 return; /* no time serve */ 697 } 698 699 /* 700 * This is for testing. If restricted drop ten percent of 701 * surviving packets. 702 */ 703 if (restrict_mask & RES_FLAKE) { 704 if ((double)ntp_random() / 0x7fffffff < .1) { 705 DPRINTF(2, ("receive: drop: RES_FLAKE\n")); 706 sys_restricted++; 707 return; /* no flakeway */ 708 } 709 } 710 711 /* 712 ** Format Layer Checks 713 ** 714 ** Validate the packet format. The packet size, packet header, 715 ** and any extension field lengths are checked. We identify 716 ** the beginning of the MAC, to identify the upper limit of 717 ** of the hash computation. 718 ** 719 ** In case of a format layer check violation, the packet is 720 ** discarded with no further processing. 721 */ 722 723 /* 724 * Version check must be after the query packets, since they 725 * intentionally use an early version. 726 */ 727 if (hisversion == NTP_VERSION) { 728 sys_newversion++; /* new version */ 729 } else if ( !(restrict_mask & RES_VERSION) 730 && hisversion >= NTP_OLDVERSION) { 731 sys_oldversion++; /* previous version */ 732 } else { 733 DPRINTF(2, ("receive: drop: RES_VERSION\n")); 734 sys_badlength++; 735 return; /* old version */ 736 } 737 738 /* 739 * Figure out his mode and validate the packet. This has some 740 * legacy raunch that probably should be removed. In very early 741 * NTP versions mode 0 was equivalent to what later versions 742 * would interpret as client mode. 743 */ 744 if (hismode == MODE_UNSPEC) { 745 if (hisversion == NTP_OLDVERSION) { 746 hismode = MODE_CLIENT; 747 } else { 748 DPRINTF(2, ("receive: drop: MODE_UNSPEC\n")); 749 sys_badlength++; 750 return; /* invalid mode */ 751 } 752 } 753 754 /* 755 * Parse the extension field if present. We figure out whether 756 * an extension field is present by measuring the MAC size. If 757 * the number of words following the packet header is 0, no MAC 758 * is present and the packet is not authenticated. If 1, the 759 * packet is a crypto-NAK; if 3, the packet is authenticated 760 * with DES; if 5, the packet is authenticated with MD5; if 6, 761 * the packet is authenticated with SHA. If 2 or * 4, the packet 762 * is a runt and discarded forthwith. If greater than 6, an 763 * extension field is present, so we subtract the length of the 764 * field and go around again. 765 * 766 * Note the above description is lame. We should/could also check 767 * the two bytes that make up the EF type and subtype, and then 768 * check the two bytes that tell us the EF length. A legacy MAC 769 * has a 4 byte keyID, and for conforming symmetric keys its value 770 * must be <= 64k, meaning the top two bytes will always be zero. 771 * Since the EF Type of 0 is reserved/unused, there's no way a 772 * conforming legacy MAC could ever be misinterpreted as an EF. 773 * 774 * There is more, but this isn't the place to document it. 775 */ 776 777 authlen = LEN_PKT_NOMAC; 778 has_mac = rbufp->recv_length - authlen; 779 while (has_mac > 0) { 780 u_int32 len; 781 #ifdef AUTOKEY 782 u_int32 hostlen; 783 struct exten *ep; 784 #endif /*AUTOKEY */ 785 786 if (has_mac % 4 != 0 || has_mac < (int)MIN_MAC_LEN) { 787 DPRINTF(2, ("receive: drop: bad post-packet length\n")); 788 sys_badlength++; 789 return; /* bad length */ 790 } 791 /* 792 * This next test is clearly wrong - it needlessly 793 * prohibits short EFs (which don't yet exist) 794 */ 795 if (has_mac <= (int)MAX_MAC_LEN) { 796 skeyid = ntohl(((u_int32 *)pkt)[authlen / 4]); 797 break; 798 799 } else { 800 opcode = ntohl(((u_int32 *)pkt)[authlen / 4]); 801 len = opcode & 0xffff; 802 if ( len % 4 != 0 803 || len < 4 804 || (int)len + authlen > rbufp->recv_length) { 805 DPRINTF(2, ("receive: drop: bad EF length\n")); 806 sys_badlength++; 807 return; /* bad length */ 808 } 809 #ifdef AUTOKEY 810 /* 811 * Extract calling group name for later. If 812 * sys_groupname is non-NULL, there must be 813 * a group name provided to elicit a response. 814 */ 815 if ( (opcode & 0x3fff0000) == CRYPTO_ASSOC 816 && sys_groupname != NULL) { 817 ep = (struct exten *)&((u_int32 *)pkt)[authlen / 4]; 818 hostlen = ntohl(ep->vallen); 819 if ( hostlen >= sizeof(hostname) 820 || hostlen > len - 821 offsetof(struct exten, pkt)) { 822 DPRINTF(2, ("receive: drop: bad autokey hostname length\n")); 823 sys_badlength++; 824 return; /* bad length */ 825 } 826 memcpy(hostname, &ep->pkt, hostlen); 827 hostname[hostlen] = '\0'; 828 groupname = strchr(hostname, '@'); 829 if (groupname == NULL) { 830 DPRINTF(2, ("receive: drop: empty autokey groupname\n")); 831 sys_declined++; 832 return; 833 } 834 groupname++; 835 } 836 #endif /* AUTOKEY */ 837 authlen += len; 838 has_mac -= len; 839 } 840 } 841 842 /* 843 * If has_mac is < 0 we had a malformed packet. 844 */ 845 if (has_mac < 0) { 846 DPRINTF(2, ("receive: drop: post-packet under-read\n")); 847 sys_badlength++; 848 return; /* bad length */ 849 } 850 851 /* 852 ** Packet Data Verification Layer 853 ** 854 ** This layer verifies the packet data content. If 855 ** authentication is required, a MAC must be present. 856 ** If a MAC is present, it must validate. 857 ** Crypto-NAK? Look - a shiny thing! 858 ** 859 ** If authentication fails, we're done. 860 */ 861 862 /* 863 * If authentication is explicitly required, a MAC must be present. 864 */ 865 if (restrict_mask & RES_DONTTRUST && has_mac == 0) { 866 DPRINTF(2, ("receive: drop: RES_DONTTRUST\n")); 867 sys_restricted++; 868 return; /* access denied */ 869 } 870 871 /* 872 * Update the MRU list and finger the cloggers. It can be a 873 * little expensive, so turn it off for production use. 874 * RES_LIMITED and RES_KOD will be cleared in the returned 875 * restrict_mask unless one or both actions are warranted. 876 */ 877 restrict_mask = ntp_monitor(rbufp, restrict_mask); 878 if (restrict_mask & RES_LIMITED) { 879 sys_limitrejected++; 880 if ( !(restrict_mask & RES_KOD) 881 || MODE_BROADCAST == hismode 882 || MODE_SERVER == hismode) { 883 if (MODE_SERVER == hismode) { 884 DPRINTF(1, ("Possibly self-induced rate limiting of MODE_SERVER from %s\n", 885 stoa(&rbufp->recv_srcadr))); 886 } else { 887 DPRINTF(2, ("receive: drop: RES_KOD\n")); 888 } 889 return; /* rate exceeded */ 890 } 891 if (hismode == MODE_CLIENT) 892 fast_xmit(rbufp, MODE_SERVER, skeyid, 893 restrict_mask); 894 else 895 fast_xmit(rbufp, MODE_ACTIVE, skeyid, 896 restrict_mask); 897 return; /* rate exceeded */ 898 } 899 restrict_mask &= ~RES_KOD; 900 901 /* 902 * We have tossed out as many buggy packets as possible early in 903 * the game to reduce the exposure to a clogging attack. Now we 904 * have to burn some cycles to find the association and 905 * authenticate the packet if required. Note that we burn only 906 * digest cycles, again to reduce exposure. There may be no 907 * matching association and that's okay. 908 * 909 * More on the autokey mambo. Normally the local interface is 910 * found when the association was mobilized with respect to a 911 * designated remote address. We assume packets arriving from 912 * the remote address arrive via this interface and the local 913 * address used to construct the autokey is the unicast address 914 * of the interface. However, if the sender is a broadcaster, 915 * the interface broadcast address is used instead. 916 * Notwithstanding this technobabble, if the sender is a 917 * multicaster, the broadcast address is null, so we use the 918 * unicast address anyway. Don't ask. 919 */ 920 921 peer = findpeer(rbufp, hismode, &retcode); 922 dstadr_sin = &rbufp->dstadr->sin; 923 NTOHL_FP(&pkt->org, &p_org); 924 NTOHL_FP(&pkt->rec, &p_rec); 925 NTOHL_FP(&pkt->xmt, &p_xmt); 926 hm_str = modetoa(hismode); 927 am_str = amtoa(retcode); 928 929 /* 930 * Authentication is conditioned by three switches: 931 * 932 * NOPEER (RES_NOPEER) do not mobilize an association unless 933 * authenticated 934 * NOTRUST (RES_DONTTRUST) do not allow access unless 935 * authenticated (implies NOPEER) 936 * enable (sys_authenticate) master NOPEER switch, by default 937 * on 938 * 939 * The NOPEER and NOTRUST can be specified on a per-client basis 940 * using the restrict command. The enable switch if on implies 941 * NOPEER for all clients. There are four outcomes: 942 * 943 * NONE The packet has no MAC. 944 * OK the packet has a MAC and authentication succeeds 945 * ERROR the packet has a MAC and authentication fails 946 * CRYPTO crypto-NAK. The MAC has four octets only. 947 * 948 * Note: The AUTH(x, y) macro is used to filter outcomes. If x 949 * is zero, acceptable outcomes of y are NONE and OK. If x is 950 * one, the only acceptable outcome of y is OK. 951 */ 952 crypto_nak_test = valid_NAK(peer, rbufp, hismode); 953 954 /* 955 * Drop any invalid crypto-NAKs 956 */ 957 if (crypto_nak_test == INVALIDNAK) { 958 report_event(PEVNT_AUTH, peer, "Invalid_NAK"); 959 if (0 != peer) { 960 peer->badNAK++; 961 } 962 msyslog(LOG_ERR, "Invalid-NAK error at %ld %s<-%s", 963 current_time, stoa(dstadr_sin), stoa(&rbufp->recv_srcadr)); 964 return; 965 } 966 967 if (has_mac == 0) { 968 restrict_mask &= ~RES_MSSNTP; 969 is_authentic = AUTH_NONE; /* not required */ 970 DPRINTF(1, ("receive: at %ld %s<-%s mode %d/%s:%s len %d org %#010x.%08x xmt %#010x.%08x NOMAC\n", 971 current_time, stoa(dstadr_sin), 972 stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str, 973 authlen, 974 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 975 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 976 } else if (crypto_nak_test == VALIDNAK) { 977 restrict_mask &= ~RES_MSSNTP; 978 is_authentic = AUTH_CRYPTO; /* crypto-NAK */ 979 DPRINTF(1, ("receive: at %ld %s<-%s mode %d/%s:%s keyid %08x len %d auth %d org %#010x.%08x xmt %#010x.%08x CRYPTONAK\n", 980 current_time, stoa(dstadr_sin), 981 stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str, 982 skeyid, authlen + has_mac, is_authentic, 983 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 984 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 985 986 #ifdef HAVE_NTP_SIGND 987 /* 988 * If the signature is 20 bytes long, the last 16 of 989 * which are zero, then this is a Microsoft client 990 * wanting AD-style authentication of the server's 991 * reply. 992 * 993 * This is described in Microsoft's WSPP docs, in MS-SNTP: 994 * http://msdn.microsoft.com/en-us/library/cc212930.aspx 995 */ 996 } else if ( has_mac == MAX_MD5_LEN 997 && (restrict_mask & RES_MSSNTP) 998 && (retcode == AM_FXMIT || retcode == AM_NEWPASS) 999 && (memcmp(zero_key, (char *)pkt + authlen + 4, 1000 MAX_MD5_LEN - 4) == 0)) { 1001 is_authentic = AUTH_NONE; 1002 DPRINTF(1, ("receive: at %ld %s<-%s mode %d/%s:%s len %d org %#010x.%08x xmt %#010x.%08x SIGND\n", 1003 current_time, stoa(dstadr_sin), 1004 stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str, 1005 authlen, 1006 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 1007 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 1008 #endif /* HAVE_NTP_SIGND */ 1009 1010 } else { 1011 /* 1012 * has_mac is not 0 1013 * Not a VALID_NAK 1014 * Not an MS-SNTP SIGND packet 1015 * 1016 * So there is a MAC here. 1017 */ 1018 1019 restrict_mask &= ~RES_MSSNTP; 1020 #ifdef AUTOKEY 1021 /* 1022 * For autokey modes, generate the session key 1023 * and install in the key cache. Use the socket 1024 * broadcast or unicast address as appropriate. 1025 */ 1026 if (crypto_flags && skeyid > NTP_MAXKEY) { 1027 1028 /* 1029 * More on the autokey dance (AKD). A cookie is 1030 * constructed from public and private values. 1031 * For broadcast packets, the cookie is public 1032 * (zero). For packets that match no 1033 * association, the cookie is hashed from the 1034 * addresses and private value. For server 1035 * packets, the cookie was previously obtained 1036 * from the server. For symmetric modes, the 1037 * cookie was previously constructed using an 1038 * agreement protocol; however, should PKI be 1039 * unavailable, we construct a fake agreement as 1040 * the EXOR of the peer and host cookies. 1041 * 1042 * hismode ephemeral persistent 1043 * ======================================= 1044 * active 0 cookie# 1045 * passive 0% cookie# 1046 * client sys cookie 0% 1047 * server 0% sys cookie 1048 * broadcast 0 0 1049 * 1050 * # if unsync, 0 1051 * % can't happen 1052 */ 1053 if (has_mac < (int)MAX_MD5_LEN) { 1054 DPRINTF(2, ("receive: drop: MD5 digest too short\n")); 1055 sys_badauth++; 1056 return; 1057 } 1058 if (hismode == MODE_BROADCAST) { 1059 1060 /* 1061 * For broadcaster, use the interface 1062 * broadcast address when available; 1063 * otherwise, use the unicast address 1064 * found when the association was 1065 * mobilized. However, if this is from 1066 * the wildcard interface, game over. 1067 */ 1068 if ( crypto_flags 1069 && rbufp->dstadr == 1070 ANY_INTERFACE_CHOOSE(&rbufp->recv_srcadr)) { 1071 DPRINTF(2, ("receive: drop: BCAST from wildcard\n")); 1072 sys_restricted++; 1073 return; /* no wildcard */ 1074 } 1075 pkeyid = 0; 1076 if (!SOCK_UNSPEC(&rbufp->dstadr->bcast)) 1077 dstadr_sin = 1078 &rbufp->dstadr->bcast; 1079 } else if (peer == NULL) { 1080 pkeyid = session_key( 1081 &rbufp->recv_srcadr, dstadr_sin, 0, 1082 sys_private, 0); 1083 } else { 1084 pkeyid = peer->pcookie; 1085 } 1086 1087 /* 1088 * The session key includes both the public 1089 * values and cookie. In case of an extension 1090 * field, the cookie used for authentication 1091 * purposes is zero. Note the hash is saved for 1092 * use later in the autokey mambo. 1093 */ 1094 if (authlen > (int)LEN_PKT_NOMAC && pkeyid != 0) { 1095 session_key(&rbufp->recv_srcadr, 1096 dstadr_sin, skeyid, 0, 2); 1097 tkeyid = session_key( 1098 &rbufp->recv_srcadr, dstadr_sin, 1099 skeyid, pkeyid, 0); 1100 } else { 1101 tkeyid = session_key( 1102 &rbufp->recv_srcadr, dstadr_sin, 1103 skeyid, pkeyid, 2); 1104 } 1105 1106 } 1107 #endif /* AUTOKEY */ 1108 1109 /* 1110 * Compute the cryptosum. Note a clogging attack may 1111 * succeed in bloating the key cache. If an autokey, 1112 * purge it immediately, since we won't be needing it 1113 * again. If the packet is authentic, it can mobilize an 1114 * association. Note that there is no key zero. 1115 */ 1116 if (!authdecrypt(skeyid, (u_int32 *)pkt, authlen, 1117 has_mac)) 1118 is_authentic = AUTH_ERROR; 1119 else 1120 is_authentic = AUTH_OK; 1121 #ifdef AUTOKEY 1122 if (crypto_flags && skeyid > NTP_MAXKEY) 1123 authtrust(skeyid, 0); 1124 #endif /* AUTOKEY */ 1125 DPRINTF(1, ("receive: at %ld %s<-%s mode %d/%s:%s keyid %08x len %d auth %d org %#010x.%08x xmt %#010x.%08x MAC\n", 1126 current_time, stoa(dstadr_sin), 1127 stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str, 1128 skeyid, authlen + has_mac, is_authentic, 1129 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 1130 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 1131 } 1132 1133 1134 /* 1135 * Bug 3454: 1136 * 1137 * Now come at this from a different perspective: 1138 * - If we expect a MAC and it's not there, we drop it. 1139 * - If we expect one keyID and get another, we drop it. 1140 * - If we have a MAC ahd it hasn't been validated yet, try. 1141 * - if the provided MAC doesn't validate, we drop it. 1142 * 1143 * There might be more to this. 1144 */ 1145 if (0 != peer && 0 != peer->keyid) { 1146 /* Should we msyslog() any of these? */ 1147 1148 /* 1149 * This should catch: 1150 * - no keyID where one is expected, 1151 * - different keyID than what we expect. 1152 */ 1153 if (peer->keyid != skeyid) { 1154 DPRINTF(2, ("receive: drop: Wanted keyID %d, got %d from %s\n", 1155 peer->keyid, skeyid, 1156 stoa(&rbufp->recv_srcadr))); 1157 sys_restricted++; 1158 return; /* drop: access denied */ 1159 } 1160 1161 /* 1162 * if has_mac != 0 ... 1163 * - If it has not yet been validated, do so. 1164 * (under what circumstances might that happen?) 1165 * - if missing or bad MAC, log and drop. 1166 */ 1167 if (0 != has_mac) { 1168 if (is_authentic == AUTH_UNKNOWN) { 1169 /* How can this happen? */ 1170 DPRINTF(2, ("receive: 3454 check: AUTH_UNKNOWN from %s\n", 1171 stoa(&rbufp->recv_srcadr))); 1172 if (!authdecrypt(skeyid, (u_int32 *)pkt, authlen, 1173 has_mac)) { 1174 /* MAC invalid or not found */ 1175 is_authentic = AUTH_ERROR; 1176 } else { 1177 is_authentic = AUTH_OK; 1178 } 1179 } 1180 if (is_authentic != AUTH_OK) { 1181 DPRINTF(2, ("receive: drop: missing or bad MAC from %s\n", 1182 stoa(&rbufp->recv_srcadr))); 1183 sys_restricted++; 1184 return; /* drop: access denied */ 1185 } 1186 } 1187 } 1188 /**/ 1189 1190 /* 1191 ** On-Wire Protocol Layer 1192 ** 1193 ** Verify protocol operations consistent with the on-wire protocol. 1194 ** The protocol discards bogus and duplicate packets as well as 1195 ** minimizes disruptions doe to protocol restarts and dropped 1196 ** packets. The operations are controlled by two timestamps: 1197 ** the transmit timestamp saved in the client state variables, 1198 ** and the origin timestamp in the server packet header. The 1199 ** comparison of these two timestamps is called the loopback test. 1200 ** The transmit timestamp functions as a nonce to verify that the 1201 ** response corresponds to the original request. The transmit 1202 ** timestamp also serves to discard replays of the most recent 1203 ** packet. Upon failure of either test, the packet is discarded 1204 ** with no further action. 1205 */ 1206 1207 /* 1208 * The association matching rules are implemented by a set of 1209 * routines and an association table. A packet matching an 1210 * association is processed by the peer process for that 1211 * association. If there are no errors, an ephemeral association 1212 * is mobilized: a broadcast packet mobilizes a broadcast client 1213 * aassociation; a manycast server packet mobilizes a manycast 1214 * client association; a symmetric active packet mobilizes a 1215 * symmetric passive association. 1216 */ 1217 DPRINTF(1, ("receive: MATCH_ASSOC dispatch: mode %d/%s:%s \n", 1218 hismode, hm_str, am_str)); 1219 switch (retcode) { 1220 1221 /* 1222 * This is a client mode packet not matching any association. If 1223 * an ordinary client, simply toss a server mode packet back 1224 * over the fence. If a manycast client, we have to work a 1225 * little harder. 1226 * 1227 * There are cases here where we do not call record_raw_stats(). 1228 */ 1229 case AM_FXMIT: 1230 1231 /* 1232 * If authentication OK, send a server reply; otherwise, 1233 * send a crypto-NAK. 1234 */ 1235 if (!(rbufp->dstadr->flags & INT_MCASTOPEN)) { 1236 /* HMS: would be nice to log FAST_XMIT|BADAUTH|RESTRICTED */ 1237 record_raw_stats(&rbufp->recv_srcadr, 1238 &rbufp->dstadr->sin, 1239 &p_org, &p_rec, &p_xmt, &rbufp->recv_time, 1240 PKT_LEAP(pkt->li_vn_mode), 1241 PKT_VERSION(pkt->li_vn_mode), 1242 PKT_MODE(pkt->li_vn_mode), 1243 PKT_TO_STRATUM(pkt->stratum), 1244 pkt->ppoll, 1245 pkt->precision, 1246 FPTOD(NTOHS_FP(pkt->rootdelay)), 1247 FPTOD(NTOHS_FP(pkt->rootdisp)), 1248 pkt->refid, 1249 rbufp->recv_length - MIN_V4_PKT_LEN, (u_char *)&pkt->exten); 1250 1251 if (AUTH(restrict_mask & RES_DONTTRUST, 1252 is_authentic)) { 1253 fast_xmit(rbufp, MODE_SERVER, skeyid, 1254 restrict_mask); 1255 } else if (is_authentic == AUTH_ERROR) { 1256 fast_xmit(rbufp, MODE_SERVER, 0, 1257 restrict_mask); 1258 sys_badauth++; 1259 } else { 1260 DPRINTF(2, ("receive: AM_FXMIT drop: !mcast restricted\n")); 1261 sys_restricted++; 1262 } 1263 1264 return; /* hooray */ 1265 } 1266 1267 /* 1268 * This must be manycast. Do not respond if not 1269 * configured as a manycast server. 1270 */ 1271 if (!sys_manycastserver) { 1272 DPRINTF(2, ("receive: AM_FXMIT drop: Not manycastserver\n")); 1273 sys_restricted++; 1274 return; /* not enabled */ 1275 } 1276 1277 #ifdef AUTOKEY 1278 /* 1279 * Do not respond if not the same group. 1280 */ 1281 if (group_test(groupname, NULL)) { 1282 DPRINTF(2, ("receive: AM_FXMIT drop: empty groupname\n")); 1283 sys_declined++; 1284 return; 1285 } 1286 #endif /* AUTOKEY */ 1287 1288 /* 1289 * Do not respond if we are not synchronized or our 1290 * stratum is greater than the manycaster or the 1291 * manycaster has already synchronized to us. 1292 */ 1293 if ( sys_leap == LEAP_NOTINSYNC 1294 || sys_stratum >= hisstratum 1295 || (!sys_cohort && sys_stratum == hisstratum + 1) 1296 || rbufp->dstadr->addr_refid == pkt->refid) { 1297 DPRINTF(2, ("receive: AM_FXMIT drop: LEAP_NOTINSYNC || stratum || loop\n")); 1298 sys_declined++; 1299 return; /* no help */ 1300 } 1301 1302 /* 1303 * Respond only if authentication succeeds. Don't do a 1304 * crypto-NAK, as that would not be useful. 1305 */ 1306 if (AUTH(restrict_mask & RES_DONTTRUST, is_authentic)) { 1307 record_raw_stats(&rbufp->recv_srcadr, 1308 &rbufp->dstadr->sin, 1309 &p_org, &p_rec, &p_xmt, &rbufp->recv_time, 1310 PKT_LEAP(pkt->li_vn_mode), 1311 PKT_VERSION(pkt->li_vn_mode), 1312 PKT_MODE(pkt->li_vn_mode), 1313 PKT_TO_STRATUM(pkt->stratum), 1314 pkt->ppoll, 1315 pkt->precision, 1316 FPTOD(NTOHS_FP(pkt->rootdelay)), 1317 FPTOD(NTOHS_FP(pkt->rootdisp)), 1318 pkt->refid, 1319 rbufp->recv_length - MIN_V4_PKT_LEN, (u_char *)&pkt->exten); 1320 1321 fast_xmit(rbufp, MODE_SERVER, skeyid, 1322 restrict_mask); 1323 } 1324 return; /* hooray */ 1325 1326 /* 1327 * This is a server mode packet returned in response to a client 1328 * mode packet sent to a multicast group address (for 1329 * manycastclient) or to a unicast address (for pool). The 1330 * origin timestamp is a good nonce to reliably associate the 1331 * reply with what was sent. If there is no match, that's 1332 * curious and could be an intruder attempting to clog, so we 1333 * just ignore it. 1334 * 1335 * If the packet is authentic and the manycastclient or pool 1336 * association is found, we mobilize a client association and 1337 * copy pertinent variables from the manycastclient or pool 1338 * association to the new client association. If not, just 1339 * ignore the packet. 1340 * 1341 * There is an implosion hazard at the manycast client, since 1342 * the manycast servers send the server packet immediately. If 1343 * the guy is already here, don't fire up a duplicate. 1344 * 1345 * There are cases here where we do not call record_raw_stats(). 1346 */ 1347 case AM_MANYCAST: 1348 1349 #ifdef AUTOKEY 1350 /* 1351 * Do not respond if not the same group. 1352 */ 1353 if (group_test(groupname, NULL)) { 1354 DPRINTF(2, ("receive: AM_MANYCAST drop: empty groupname\n")); 1355 sys_declined++; 1356 return; 1357 } 1358 #endif /* AUTOKEY */ 1359 if ((peer2 = findmanycastpeer(rbufp)) == NULL) { 1360 DPRINTF(2, ("receive: AM_MANYCAST drop: No manycast peer\n")); 1361 sys_restricted++; 1362 return; /* not enabled */ 1363 } 1364 if (!AUTH( (!(peer2->cast_flags & MDF_POOL) 1365 && sys_authenticate) 1366 || (restrict_mask & (RES_NOPEER | 1367 RES_DONTTRUST)), is_authentic) 1368 /* MC: RES_NOEPEER? */ 1369 ) { 1370 DPRINTF(2, ("receive: AM_MANYCAST drop: bad auth || (NOPEER|DONTTRUST)\n")); 1371 sys_restricted++; 1372 return; /* access denied */ 1373 } 1374 1375 /* 1376 * Do not respond if unsynchronized or stratum is below 1377 * the floor or at or above the ceiling. 1378 */ 1379 if ( hisleap == LEAP_NOTINSYNC 1380 || hisstratum < sys_floor 1381 || hisstratum >= sys_ceiling) { 1382 DPRINTF(2, ("receive: AM_MANYCAST drop: unsync/stratum\n")); 1383 sys_declined++; 1384 return; /* no help */ 1385 } 1386 peer = newpeer(&rbufp->recv_srcadr, NULL, rbufp->dstadr, 1387 r4a.ippeerlimit, MODE_CLIENT, hisversion, 1388 peer2->minpoll, peer2->maxpoll, 1389 FLAG_PREEMPT | (FLAG_IBURST & peer2->flags), 1390 MDF_UCAST | MDF_UCLNT, 0, skeyid, sys_ident); 1391 if (NULL == peer) { 1392 DPRINTF(2, ("receive: AM_MANYCAST drop: duplicate\n")); 1393 sys_declined++; 1394 return; /* ignore duplicate */ 1395 } 1396 1397 /* 1398 * After each ephemeral pool association is spun, 1399 * accelerate the next poll for the pool solicitor so 1400 * the pool will fill promptly. 1401 */ 1402 if (peer2->cast_flags & MDF_POOL) 1403 peer2->nextdate = current_time + 1; 1404 1405 /* 1406 * Further processing of the solicitation response would 1407 * simply detect its origin timestamp as bogus for the 1408 * brand-new association (it matches the prototype 1409 * association) and tinker with peer->nextdate delaying 1410 * first sync. 1411 */ 1412 return; /* solicitation response handled */ 1413 1414 /* 1415 * This is the first packet received from a broadcast server. If 1416 * the packet is authentic and we are enabled as broadcast 1417 * client, mobilize a broadcast client association. We don't 1418 * kiss any frogs here. 1419 * 1420 * There are cases here where we do not call record_raw_stats(). 1421 */ 1422 case AM_NEWBCL: 1423 1424 #ifdef AUTOKEY 1425 /* 1426 * Do not respond if not the same group. 1427 */ 1428 if (group_test(groupname, sys_ident)) { 1429 DPRINTF(2, ("receive: AM_NEWBCL drop: groupname mismatch\n")); 1430 sys_declined++; 1431 return; 1432 } 1433 #endif /* AUTOKEY */ 1434 if (sys_bclient == 0) { 1435 DPRINTF(2, ("receive: AM_NEWBCL drop: not a bclient\n")); 1436 sys_restricted++; 1437 return; /* not enabled */ 1438 } 1439 if (!AUTH(sys_authenticate | (restrict_mask & 1440 (RES_NOPEER | RES_DONTTRUST)), is_authentic) 1441 /* NEWBCL: RES_NOEPEER? */ 1442 ) { 1443 DPRINTF(2, ("receive: AM_NEWBCL drop: AUTH failed\n")); 1444 sys_restricted++; 1445 return; /* access denied */ 1446 } 1447 1448 /* 1449 * Do not respond if unsynchronized or stratum is below 1450 * the floor or at or above the ceiling. 1451 */ 1452 if ( hisleap == LEAP_NOTINSYNC 1453 || hisstratum < sys_floor 1454 || hisstratum >= sys_ceiling) { 1455 DPRINTF(2, ("receive: AM_NEWBCL drop: Unsync or bad stratum\n")); 1456 sys_declined++; 1457 return; /* no help */ 1458 } 1459 1460 #ifdef AUTOKEY 1461 /* 1462 * Do not respond if Autokey and the opcode is not a 1463 * CRYPTO_ASSOC response with association ID. 1464 */ 1465 if ( crypto_flags && skeyid > NTP_MAXKEY 1466 && (opcode & 0xffff0000) != (CRYPTO_ASSOC | CRYPTO_RESP)) { 1467 DPRINTF(2, ("receive: AM_NEWBCL drop: Autokey but not CRYPTO_ASSOC\n")); 1468 sys_declined++; 1469 return; /* protocol error */ 1470 } 1471 #endif /* AUTOKEY */ 1472 1473 /* 1474 * Broadcasts received via a multicast address may 1475 * arrive after a unicast volley has begun 1476 * with the same remote address. newpeer() will not 1477 * find duplicate associations on other local endpoints 1478 * if a non-NULL endpoint is supplied. multicastclient 1479 * ephemeral associations are unique across all local 1480 * endpoints. 1481 */ 1482 if (!(INT_MCASTOPEN & rbufp->dstadr->flags)) 1483 match_ep = rbufp->dstadr; 1484 else 1485 match_ep = NULL; 1486 1487 /* 1488 * Determine whether to execute the initial volley. 1489 */ 1490 if (sys_bdelay > 0.0) { 1491 #ifdef AUTOKEY 1492 /* 1493 * If a two-way exchange is not possible, 1494 * neither is Autokey. 1495 */ 1496 if (crypto_flags && skeyid > NTP_MAXKEY) { 1497 sys_restricted++; 1498 DPRINTF(2, ("receive: AM_NEWBCL drop: Autokey but not 2-way\n")); 1499 return; /* no autokey */ 1500 } 1501 #endif /* AUTOKEY */ 1502 1503 /* 1504 * Do not execute the volley. Start out in 1505 * broadcast client mode. 1506 */ 1507 peer = newpeer(&rbufp->recv_srcadr, NULL, match_ep, 1508 r4a.ippeerlimit, MODE_BCLIENT, hisversion, 1509 pkt->ppoll, pkt->ppoll, 1510 FLAG_PREEMPT, MDF_BCLNT, 0, skeyid, sys_ident); 1511 if (NULL == peer) { 1512 DPRINTF(2, ("receive: AM_NEWBCL drop: duplicate\n")); 1513 sys_restricted++; 1514 return; /* ignore duplicate */ 1515 1516 } else { 1517 peer->delay = sys_bdelay; 1518 peer->bxmt = p_xmt; 1519 } 1520 break; 1521 } 1522 1523 /* 1524 * Execute the initial volley in order to calibrate the 1525 * propagation delay and run the Autokey protocol. 1526 * 1527 * Note that the minpoll is taken from the broadcast 1528 * packet, normally 6 (64 s) and that the poll interval 1529 * is fixed at this value. 1530 */ 1531 peer = newpeer(&rbufp->recv_srcadr, NULL, match_ep, 1532 r4a.ippeerlimit, MODE_CLIENT, hisversion, 1533 pkt->ppoll, pkt->ppoll, 1534 FLAG_BC_VOL | FLAG_IBURST | FLAG_PREEMPT, MDF_BCLNT, 1535 0, skeyid, sys_ident); 1536 if (NULL == peer) { 1537 DPRINTF(2, ("receive: AM_NEWBCL drop: empty newpeer() failed\n")); 1538 sys_restricted++; 1539 return; /* ignore duplicate */ 1540 } 1541 peer->bxmt = p_xmt; 1542 #ifdef AUTOKEY 1543 if (skeyid > NTP_MAXKEY) 1544 crypto_recv(peer, rbufp); 1545 #endif /* AUTOKEY */ 1546 1547 return; /* hooray */ 1548 1549 /* 1550 * This is the first packet received from a potential ephemeral 1551 * symmetric active peer. First, deal with broken Windows clients. 1552 * Then, if NOEPEER is enabled, drop it. If the packet meets our 1553 * authenticty requirements and is the first he sent, mobilize 1554 * a passive association. 1555 * Otherwise, kiss the frog. 1556 * 1557 * There are cases here where we do not call record_raw_stats(). 1558 */ 1559 case AM_NEWPASS: 1560 1561 DEBUG_REQUIRE(MODE_ACTIVE == hismode); 1562 1563 #ifdef AUTOKEY 1564 /* 1565 * Do not respond if not the same group. 1566 */ 1567 if (group_test(groupname, sys_ident)) { 1568 DPRINTF(2, ("receive: AM_NEWPASS drop: Autokey group mismatch\n")); 1569 sys_declined++; 1570 return; 1571 } 1572 #endif /* AUTOKEY */ 1573 if (!AUTH(sys_authenticate | (restrict_mask & 1574 (RES_NOPEER | RES_DONTTRUST)), is_authentic) 1575 ) { 1576 /* 1577 * If authenticated but cannot mobilize an 1578 * association, send a symmetric passive 1579 * response without mobilizing an association. 1580 * This is for drat broken Windows clients. See 1581 * Microsoft KB 875424 for preferred workaround. 1582 */ 1583 if (AUTH(restrict_mask & RES_DONTTRUST, 1584 is_authentic)) { 1585 fast_xmit(rbufp, MODE_PASSIVE, skeyid, 1586 restrict_mask); 1587 return; /* hooray */ 1588 } 1589 /* HMS: Why is this next set of lines a feature? */ 1590 if (is_authentic == AUTH_ERROR) { 1591 fast_xmit(rbufp, MODE_PASSIVE, 0, 1592 restrict_mask); 1593 sys_restricted++; 1594 return; 1595 } 1596 1597 if (restrict_mask & RES_NOEPEER) { 1598 DPRINTF(2, ("receive: AM_NEWPASS drop: NOEPEER\n")); 1599 sys_declined++; 1600 return; 1601 } 1602 1603 /* [Bug 2941] 1604 * If we got here, the packet isn't part of an 1605 * existing association, either isn't correctly 1606 * authenticated or it is but we are refusing 1607 * ephemeral peer requests, and it didn't meet 1608 * either of the previous two special cases so we 1609 * should just drop it on the floor. For example, 1610 * crypto-NAKs (is_authentic == AUTH_CRYPTO) 1611 * will make it this far. This is just 1612 * debug-printed and not logged to avoid log 1613 * flooding. 1614 */ 1615 DPRINTF(2, ("receive: at %ld refusing to mobilize passive association" 1616 " with unknown peer %s mode %d/%s:%s keyid %08x len %d auth %d\n", 1617 current_time, stoa(&rbufp->recv_srcadr), 1618 hismode, hm_str, am_str, skeyid, 1619 (authlen + has_mac), is_authentic)); 1620 sys_declined++; 1621 return; 1622 } 1623 1624 if (restrict_mask & RES_NOEPEER) { 1625 DPRINTF(2, ("receive: AM_NEWPASS drop: NOEPEER\n")); 1626 sys_declined++; 1627 return; 1628 } 1629 1630 /* 1631 * Do not respond if synchronized and if stratum is 1632 * below the floor or at or above the ceiling. Note, 1633 * this allows an unsynchronized peer to synchronize to 1634 * us. It would be very strange if he did and then was 1635 * nipped, but that could only happen if we were 1636 * operating at the top end of the range. It also means 1637 * we will spin an ephemeral association in response to 1638 * MODE_ACTIVE KoDs, which will time out eventually. 1639 */ 1640 if ( hisleap != LEAP_NOTINSYNC 1641 && (hisstratum < sys_floor || hisstratum >= sys_ceiling)) { 1642 DPRINTF(2, ("receive: AM_NEWPASS drop: Autokey group mismatch\n")); 1643 sys_declined++; 1644 return; /* no help */ 1645 } 1646 1647 /* 1648 * The message is correctly authenticated and allowed. 1649 * Mobilize a symmetric passive association, if we won't 1650 * exceed the ippeerlimit. 1651 */ 1652 if ((peer = newpeer(&rbufp->recv_srcadr, NULL, rbufp->dstadr, 1653 r4a.ippeerlimit, MODE_PASSIVE, hisversion, 1654 pkt->ppoll, NTP_MAXDPOLL, 0, MDF_UCAST, 0, 1655 skeyid, sys_ident)) == NULL) { 1656 DPRINTF(2, ("receive: AM_NEWPASS drop: newpeer() failed\n")); 1657 sys_declined++; 1658 return; /* ignore duplicate */ 1659 } 1660 break; 1661 1662 1663 /* 1664 * Process regular packet. Nothing special. 1665 * 1666 * There are cases here where we do not call record_raw_stats(). 1667 */ 1668 case AM_PROCPKT: 1669 1670 #ifdef AUTOKEY 1671 /* 1672 * Do not respond if not the same group. 1673 */ 1674 if (group_test(groupname, peer->ident)) { 1675 DPRINTF(2, ("receive: AM_PROCPKT drop: Autokey group mismatch\n")); 1676 sys_declined++; 1677 return; 1678 } 1679 #endif /* AUTOKEY */ 1680 1681 if (MODE_BROADCAST == hismode) { 1682 int bail = 0; 1683 l_fp tdiff; 1684 u_long deadband; 1685 1686 DPRINTF(2, ("receive: PROCPKT/BROADCAST: prev pkt %ld seconds ago, ppoll: %d, %d secs\n", 1687 (current_time - peer->timelastrec), 1688 peer->ppoll, (1 << peer->ppoll) 1689 )); 1690 /* Things we can check: 1691 * 1692 * Did the poll interval change? 1693 * Is the poll interval in the packet in-range? 1694 * Did this packet arrive too soon? 1695 * Is the timestamp in this packet monotonic 1696 * with respect to the previous packet? 1697 */ 1698 1699 /* This is noteworthy, not error-worthy */ 1700 if (pkt->ppoll != peer->ppoll) { 1701 msyslog(LOG_INFO, "receive: broadcast poll from %s changed from %u to %u", 1702 stoa(&rbufp->recv_srcadr), 1703 peer->ppoll, pkt->ppoll); 1704 } 1705 1706 /* This is error-worthy */ 1707 if ( pkt->ppoll < peer->minpoll 1708 || pkt->ppoll > peer->maxpoll) { 1709 msyslog(LOG_INFO, "receive: broadcast poll of %u from %s is out-of-range (%d to %d)!", 1710 pkt->ppoll, stoa(&rbufp->recv_srcadr), 1711 peer->minpoll, peer->maxpoll); 1712 ++bail; 1713 } 1714 1715 /* too early? worth an error, too! 1716 * 1717 * [Bug 3113] Ensure that at least one poll 1718 * interval has elapsed since the last **clean** 1719 * packet was received. We limit the check to 1720 * **clean** packets to prevent replayed packets 1721 * and incorrectly authenticated packets, which 1722 * we'll discard, from being used to create a 1723 * denial of service condition. 1724 */ 1725 deadband = (1u << pkt->ppoll); 1726 if (FLAG_BC_VOL & peer->flags) 1727 deadband -= 3; /* allow greater fuzz after volley */ 1728 if ((current_time - peer->timereceived) < deadband) { 1729 msyslog(LOG_INFO, "receive: broadcast packet from %s arrived after %lu, not %lu seconds!", 1730 stoa(&rbufp->recv_srcadr), 1731 (current_time - peer->timereceived), 1732 deadband); 1733 ++bail; 1734 } 1735 1736 /* Alert if time from the server is non-monotonic. 1737 * 1738 * [Bug 3114] is about Broadcast mode replay DoS. 1739 * 1740 * Broadcast mode *assumes* a trusted network. 1741 * Even so, it's nice to be robust in the face 1742 * of attacks. 1743 * 1744 * If we get an authenticated broadcast packet 1745 * with an "earlier" timestamp, it means one of 1746 * two things: 1747 * 1748 * - the broadcast server had a backward step. 1749 * 1750 * - somebody is trying a replay attack. 1751 * 1752 * deadband: By default, we assume the broadcast 1753 * network is trustable, so we take our accepted 1754 * broadcast packets as we receive them. But 1755 * some folks might want to take additional poll 1756 * delays before believing a backward step. 1757 */ 1758 if (sys_bcpollbstep) { 1759 /* pkt->ppoll or peer->ppoll ? */ 1760 deadband = (1u << pkt->ppoll) 1761 * sys_bcpollbstep + 2; 1762 } else { 1763 deadband = 0; 1764 } 1765 1766 if (L_ISZERO(&peer->bxmt)) { 1767 tdiff.l_ui = tdiff.l_uf = 0; 1768 } else { 1769 tdiff = p_xmt; 1770 L_SUB(&tdiff, &peer->bxmt); 1771 } 1772 if ( tdiff.l_i < 0 1773 && (current_time - peer->timereceived) < deadband) 1774 { 1775 msyslog(LOG_INFO, "receive: broadcast packet from %s contains non-monotonic timestamp: %#010x.%08x -> %#010x.%08x", 1776 stoa(&rbufp->recv_srcadr), 1777 peer->bxmt.l_ui, peer->bxmt.l_uf, 1778 p_xmt.l_ui, p_xmt.l_uf 1779 ); 1780 ++bail; 1781 } 1782 1783 if (bail) { 1784 DPRINTF(2, ("receive: AM_PROCPKT drop: bail\n")); 1785 peer->timelastrec = current_time; 1786 sys_declined++; 1787 return; 1788 } 1789 } 1790 1791 break; 1792 1793 /* 1794 * A passive packet matches a passive association. This is 1795 * usually the result of reconfiguring a client on the fly. As 1796 * this association might be legitimate and this packet an 1797 * attempt to deny service, just ignore it. 1798 */ 1799 case AM_ERR: 1800 DPRINTF(2, ("receive: AM_ERR drop.\n")); 1801 sys_declined++; 1802 return; 1803 1804 /* 1805 * For everything else there is the bit bucket. 1806 */ 1807 default: 1808 DPRINTF(2, ("receive: default drop.\n")); 1809 sys_declined++; 1810 return; 1811 } 1812 1813 #ifdef AUTOKEY 1814 /* 1815 * If the association is configured for Autokey, the packet must 1816 * have a public key ID; if not, the packet must have a 1817 * symmetric key ID. 1818 */ 1819 if ( is_authentic != AUTH_CRYPTO 1820 && ( ((peer->flags & FLAG_SKEY) && skeyid <= NTP_MAXKEY) 1821 || (!(peer->flags & FLAG_SKEY) && skeyid > NTP_MAXKEY))) { 1822 DPRINTF(2, ("receive: drop: Autokey but wrong/bad auth\n")); 1823 sys_badauth++; 1824 return; 1825 } 1826 #endif /* AUTOKEY */ 1827 1828 peer->received++; 1829 peer->flash &= ~PKT_TEST_MASK; 1830 if (peer->flags & FLAG_XBOGUS) { 1831 peer->flags &= ~FLAG_XBOGUS; 1832 peer->flash |= TEST3; 1833 } 1834 1835 /* 1836 * Next comes a rigorous schedule of timestamp checking. If the 1837 * transmit timestamp is zero, the server has not initialized in 1838 * interleaved modes or is horribly broken. 1839 * 1840 * A KoD packet we pay attention to cannot have a 0 transmit 1841 * timestamp. 1842 */ 1843 1844 kissCode = kiss_code_check(hisleap, hisstratum, hismode, pkt->refid); 1845 1846 if (L_ISZERO(&p_xmt)) { 1847 peer->flash |= TEST3; /* unsynch */ 1848 if (kissCode != NOKISS) { /* KoD packet */ 1849 peer->bogusorg++; /* for TEST2 or TEST3 */ 1850 msyslog(LOG_INFO, 1851 "receive: Unexpected zero transmit timestamp in KoD from %s", 1852 ntoa(&peer->srcadr)); 1853 return; 1854 } 1855 1856 /* 1857 * If the transmit timestamp duplicates our previous one, the 1858 * packet is a replay. This prevents the bad guys from replaying 1859 * the most recent packet, authenticated or not. 1860 */ 1861 } else if (L_ISEQU(&peer->xmt, &p_xmt)) { 1862 DPRINTF(2, ("receive: drop: Duplicate xmit\n")); 1863 peer->flash |= TEST1; /* duplicate */ 1864 peer->oldpkt++; 1865 return; 1866 1867 /* 1868 * If this is a broadcast mode packet, make sure hisstratum 1869 * is appropriate. Don't do anything else here - we wait to 1870 * see if this is an interleave broadcast packet until after 1871 * we've validated the MAC that SHOULD be provided. 1872 * 1873 * hisstratum cannot be 0 - see assertion above. 1874 * If hisstratum is 15, then we'll advertise as UNSPEC but 1875 * at least we'll be able to sync with the broadcast server. 1876 */ 1877 } else if (hismode == MODE_BROADCAST) { 1878 /* 0 is unexpected too, and impossible */ 1879 if (STRATUM_UNSPEC <= hisstratum) { 1880 /* Is this a ++sys_declined or ??? */ 1881 msyslog(LOG_INFO, 1882 "receive: Unexpected stratum (%d) in broadcast from %s", 1883 hisstratum, ntoa(&peer->srcadr)); 1884 return; 1885 } 1886 1887 /* 1888 * Basic KoD validation checking: 1889 * 1890 * KoD packets are a mixed-blessing. Forged KoD packets 1891 * are DoS attacks. There are rare situations where we might 1892 * get a valid KoD response, though. Since KoD packets are 1893 * a special case that complicate the checks we do next, we 1894 * handle the basic KoD checks here. 1895 * 1896 * Note that we expect the incoming KoD packet to have its 1897 * (nonzero) org, rec, and xmt timestamps set to the xmt timestamp 1898 * that we have previously sent out. Watch interleave mode. 1899 */ 1900 } else if (kissCode != NOKISS) { 1901 DEBUG_INSIST(!L_ISZERO(&p_xmt)); 1902 if ( L_ISZERO(&p_org) /* We checked p_xmt above */ 1903 || L_ISZERO(&p_rec)) { 1904 peer->bogusorg++; 1905 msyslog(LOG_INFO, 1906 "receive: KoD packet from %s has a zero org or rec timestamp. Ignoring.", 1907 ntoa(&peer->srcadr)); 1908 return; 1909 } 1910 1911 if ( !L_ISEQU(&p_xmt, &p_org) 1912 || !L_ISEQU(&p_xmt, &p_rec)) { 1913 peer->bogusorg++; 1914 msyslog(LOG_INFO, 1915 "receive: KoD packet from %s has inconsistent xmt/org/rec timestamps. Ignoring.", 1916 ntoa(&peer->srcadr)); 1917 return; 1918 } 1919 1920 /* Be conservative */ 1921 if (peer->flip == 0 && !L_ISEQU(&p_org, &peer->aorg)) { 1922 peer->bogusorg++; 1923 msyslog(LOG_INFO, 1924 "receive: flip 0 KoD origin timestamp %#010x.%08x from %s does not match %#010x.%08x - ignoring.", 1925 p_org.l_ui, p_org.l_uf, 1926 ntoa(&peer->srcadr), 1927 peer->aorg.l_ui, peer->aorg.l_uf); 1928 return; 1929 } else if (peer->flip == 1 && !L_ISEQU(&p_org, &peer->borg)) { 1930 peer->bogusorg++; 1931 msyslog(LOG_INFO, 1932 "receive: flip 1 KoD origin timestamp %#010x.%08x from %s does not match interleave %#010x.%08x - ignoring.", 1933 p_org.l_ui, p_org.l_uf, 1934 ntoa(&peer->srcadr), 1935 peer->borg.l_ui, peer->borg.l_uf); 1936 return; 1937 } 1938 1939 /* 1940 * Basic mode checks: 1941 * 1942 * If there is no origin timestamp, it's either an initial packet 1943 * or we've already received a response to our query. Of course, 1944 * should 'aorg' be all-zero because this really was the original 1945 * transmit timestamp, we'll ignore this reply. There is a window 1946 * of one nanosecond once every 136 years' time where this is 1947 * possible. We currently ignore this situation, as a completely 1948 * zero timestamp is (quietly?) disallowed. 1949 * 1950 * Otherwise, check for bogus packet in basic mode. 1951 * If it is bogus, switch to interleaved mode and resynchronize, 1952 * but only after confirming the packet is not bogus in 1953 * symmetric interleaved mode. 1954 * 1955 * This could also mean somebody is forging packets claiming to 1956 * be from us, attempting to cause our server to KoD us. 1957 * 1958 * We have earlier asserted that hisstratum cannot be 0. 1959 * If hisstratum is STRATUM_UNSPEC, it means he's not sync'd. 1960 */ 1961 } else if (peer->flip == 0) { 1962 if (0) { 1963 } else if (L_ISZERO(&p_org)) { 1964 const char *action; 1965 1966 #ifdef BUG3361 1967 msyslog(LOG_INFO, 1968 "receive: BUG 3361: Clearing peer->aorg "); 1969 L_CLR(&peer->aorg); 1970 #endif 1971 /**/ 1972 switch (hismode) { 1973 /* We allow 0org for: */ 1974 case UCHAR_MAX: 1975 action = "Allow"; 1976 break; 1977 /* We disallow 0org for: */ 1978 case MODE_UNSPEC: 1979 case MODE_ACTIVE: 1980 case MODE_PASSIVE: 1981 case MODE_CLIENT: 1982 case MODE_SERVER: 1983 case MODE_BROADCAST: 1984 action = "Drop"; 1985 peer->bogusorg++; 1986 peer->flash |= TEST2; /* bogus */ 1987 break; 1988 default: 1989 action = ""; /* for cranky compilers / MSVC */ 1990 INSIST(!"receive(): impossible hismode"); 1991 break; 1992 } 1993 /**/ 1994 msyslog(LOG_INFO, 1995 "receive: %s 0 origin timestamp from %s@%s xmt %#010x.%08x", 1996 action, hm_str, ntoa(&peer->srcadr), 1997 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)); 1998 } else if (!L_ISEQU(&p_org, &peer->aorg)) { 1999 /* are there cases here where we should bail? */ 2000 /* Should we set TEST2 if we decide to try xleave? */ 2001 peer->bogusorg++; 2002 peer->flash |= TEST2; /* bogus */ 2003 msyslog(LOG_INFO, 2004 "receive: Unexpected origin timestamp %#010x.%08x does not match aorg %#010x.%08x from %s@%s xmt %#010x.%08x", 2005 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 2006 peer->aorg.l_ui, peer->aorg.l_uf, 2007 hm_str, ntoa(&peer->srcadr), 2008 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)); 2009 if ( !L_ISZERO(&peer->dst) 2010 && L_ISEQU(&p_org, &peer->dst)) { 2011 /* Might be the start of an interleave */ 2012 if (dynamic_interleave) { 2013 peer->flip = 1; 2014 report_event(PEVNT_XLEAVE, peer, NULL); 2015 } else { 2016 msyslog(LOG_INFO, 2017 "receive: Dynamic interleave from %s@%s denied", 2018 hm_str, ntoa(&peer->srcadr)); 2019 } 2020 } 2021 } else { 2022 L_CLR(&peer->aorg); 2023 } 2024 2025 /* 2026 * Check for valid nonzero timestamp fields. 2027 */ 2028 } else if ( L_ISZERO(&p_org) 2029 || L_ISZERO(&p_rec) 2030 || L_ISZERO(&peer->dst)) { 2031 peer->flash |= TEST3; /* unsynch */ 2032 2033 /* 2034 * Check for bogus packet in interleaved symmetric mode. This 2035 * can happen if a packet is lost, duplicated or crossed. If 2036 * found, flip and resynchronize. 2037 */ 2038 } else if ( !L_ISZERO(&peer->dst) 2039 && !L_ISEQU(&p_org, &peer->dst)) { 2040 DPRINTF(2, ("receive: drop: Bogus packet in interleaved symmetric mode\n")); 2041 peer->bogusorg++; 2042 peer->flags |= FLAG_XBOGUS; 2043 peer->flash |= TEST2; /* bogus */ 2044 #ifdef BUG3453 2045 return; /* Bogus packet, we are done */ 2046 #endif 2047 } 2048 2049 /**/ 2050 2051 /* 2052 * If this is a crypto_NAK, the server cannot authenticate a 2053 * client packet. The server might have just changed keys. Clear 2054 * the association and restart the protocol. 2055 */ 2056 if (crypto_nak_test == VALIDNAK) { 2057 report_event(PEVNT_AUTH, peer, "crypto_NAK"); 2058 peer->flash |= TEST5; /* bad auth */ 2059 peer->badauth++; 2060 if (peer->flags & FLAG_PREEMPT) { 2061 if (unpeer_crypto_nak_early) { 2062 unpeer(peer); 2063 } 2064 DPRINTF(2, ("receive: drop: PREEMPT crypto_NAK\n")); 2065 return; 2066 } 2067 #ifdef AUTOKEY 2068 if (peer->crypto) { 2069 peer_clear(peer, "AUTH"); 2070 } 2071 #endif /* AUTOKEY */ 2072 DPRINTF(2, ("receive: drop: crypto_NAK\n")); 2073 return; 2074 2075 /* 2076 * If the digest fails or it's missing for authenticated 2077 * associations, the client cannot authenticate a server 2078 * reply to a client packet previously sent. The loopback check 2079 * is designed to avoid a bait-and-switch attack, which was 2080 * possible in past versions. If symmetric modes, return a 2081 * crypto-NAK. The peer should restart the protocol. 2082 */ 2083 } else if (!AUTH(peer->keyid || has_mac || 2084 (restrict_mask & RES_DONTTRUST), is_authentic)) { 2085 2086 if (peer->flash & PKT_TEST_MASK) { 2087 msyslog(LOG_INFO, 2088 "receive: Bad auth in packet with bad timestamps from %s denied - spoof?", 2089 ntoa(&peer->srcadr)); 2090 return; 2091 } 2092 2093 report_event(PEVNT_AUTH, peer, "digest"); 2094 peer->flash |= TEST5; /* bad auth */ 2095 peer->badauth++; 2096 if ( has_mac 2097 && ( hismode == MODE_ACTIVE 2098 || hismode == MODE_PASSIVE)) 2099 fast_xmit(rbufp, MODE_ACTIVE, 0, restrict_mask); 2100 if (peer->flags & FLAG_PREEMPT) { 2101 if (unpeer_digest_early) { 2102 unpeer(peer); 2103 } 2104 } 2105 #ifdef AUTOKEY 2106 else if (peer_clear_digest_early && peer->crypto) { 2107 peer_clear(peer, "AUTH"); 2108 } 2109 #endif /* AUTOKEY */ 2110 DPRINTF(2, ("receive: drop: Bad or missing AUTH\n")); 2111 return; 2112 } 2113 2114 /* 2115 * For broadcast packets: 2116 * 2117 * HMS: This next line never made much sense to me, even 2118 * when it was up higher: 2119 * If an initial volley, bail out now and let the 2120 * client do its stuff. 2121 * 2122 * If the packet has not failed authentication, then 2123 * - if the origin timestamp is nonzero this is an 2124 * interleaved broadcast, so restart the protocol. 2125 * - else, this is not an interleaved broadcast packet. 2126 */ 2127 if (hismode == MODE_BROADCAST) { 2128 if ( is_authentic == AUTH_OK 2129 || is_authentic == AUTH_NONE) { 2130 if (!L_ISZERO(&p_org)) { 2131 if (!(peer->flags & FLAG_XB)) { 2132 msyslog(LOG_INFO, 2133 "receive: Broadcast server at %s is in interleave mode", 2134 ntoa(&peer->srcadr)); 2135 peer->flags |= FLAG_XB; 2136 peer->aorg = p_xmt; 2137 peer->borg = rbufp->recv_time; 2138 report_event(PEVNT_XLEAVE, peer, NULL); 2139 return; 2140 } 2141 } else if (peer->flags & FLAG_XB) { 2142 msyslog(LOG_INFO, 2143 "receive: Broadcast server at %s is no longer in interleave mode", 2144 ntoa(&peer->srcadr)); 2145 peer->flags &= ~FLAG_XB; 2146 } 2147 } else { 2148 msyslog(LOG_INFO, 2149 "receive: Bad broadcast auth (%d) from %s", 2150 is_authentic, ntoa(&peer->srcadr)); 2151 } 2152 2153 /* 2154 * Now that we know the packet is correctly authenticated, 2155 * update peer->bxmt. 2156 */ 2157 peer->bxmt = p_xmt; 2158 } 2159 2160 2161 /* 2162 ** Update the state variables. 2163 */ 2164 if (peer->flip == 0) { 2165 if (hismode != MODE_BROADCAST) 2166 peer->rec = p_xmt; 2167 peer->dst = rbufp->recv_time; 2168 } 2169 peer->xmt = p_xmt; 2170 2171 /* 2172 * Set the peer ppoll to the maximum of the packet ppoll and the 2173 * peer minpoll. If a kiss-o'-death, set the peer minpoll to 2174 * this maximum and advance the headway to give the sender some 2175 * headroom. Very intricate. 2176 */ 2177 2178 /* 2179 * Check for any kiss codes. Note this is only used when a server 2180 * responds to a packet request. 2181 */ 2182 2183 /* 2184 * Check to see if this is a RATE Kiss Code 2185 * Currently this kiss code will accept whatever poll 2186 * rate that the server sends 2187 */ 2188 peer->ppoll = max(peer->minpoll, pkt->ppoll); 2189 if (kissCode == RATEKISS) { 2190 peer->selbroken++; /* Increment the KoD count */ 2191 report_event(PEVNT_RATE, peer, NULL); 2192 if (pkt->ppoll > peer->minpoll) 2193 peer->minpoll = peer->ppoll; 2194 peer->burst = peer->retry = 0; 2195 peer->throttle = (NTP_SHIFT + 1) * (1 << peer->minpoll); 2196 poll_update(peer, pkt->ppoll); 2197 return; /* kiss-o'-death */ 2198 } 2199 if (kissCode != NOKISS) { 2200 peer->selbroken++; /* Increment the KoD count */ 2201 return; /* Drop any other kiss code packets */ 2202 } 2203 2204 2205 /* 2206 * XXX 2207 */ 2208 2209 2210 /* 2211 * If: 2212 * - this is a *cast (uni-, broad-, or m-) server packet 2213 * - and it's symmetric-key authenticated 2214 * then see if the sender's IP is trusted for this keyid. 2215 * If it is, great - nothing special to do here. 2216 * Otherwise, we should report and bail. 2217 * 2218 * Autokey-authenticated packets are accepted. 2219 */ 2220 2221 switch (hismode) { 2222 case MODE_SERVER: /* server mode */ 2223 case MODE_BROADCAST: /* broadcast mode */ 2224 case MODE_ACTIVE: /* symmetric active mode */ 2225 case MODE_PASSIVE: /* symmetric passive mode */ 2226 if ( is_authentic == AUTH_OK 2227 && skeyid 2228 && skeyid <= NTP_MAXKEY 2229 && !authistrustedip(skeyid, &peer->srcadr)) { 2230 report_event(PEVNT_AUTH, peer, "authIP"); 2231 peer->badauth++; 2232 return; 2233 } 2234 break; 2235 2236 case MODE_CLIENT: /* client mode */ 2237 #if 0 /* At this point, MODE_CONTROL is overloaded by MODE_BCLIENT */ 2238 case MODE_CONTROL: /* control mode */ 2239 #endif 2240 case MODE_PRIVATE: /* private mode */ 2241 case MODE_BCLIENT: /* broadcast client mode */ 2242 break; 2243 2244 case MODE_UNSPEC: /* unspecified (old version) */ 2245 default: 2246 msyslog(LOG_INFO, 2247 "receive: Unexpected mode (%d) in packet from %s", 2248 hismode, ntoa(&peer->srcadr)); 2249 break; 2250 } 2251 2252 2253 /* 2254 * That was hard and I am sweaty, but the packet is squeaky 2255 * clean. Get on with real work. 2256 */ 2257 peer->timereceived = current_time; 2258 peer->timelastrec = current_time; 2259 if (is_authentic == AUTH_OK) 2260 peer->flags |= FLAG_AUTHENTIC; 2261 else 2262 peer->flags &= ~FLAG_AUTHENTIC; 2263 2264 #ifdef AUTOKEY 2265 /* 2266 * More autokey dance. The rules of the cha-cha are as follows: 2267 * 2268 * 1. If there is no key or the key is not auto, do nothing. 2269 * 2270 * 2. If this packet is in response to the one just previously 2271 * sent or from a broadcast server, do the extension fields. 2272 * Otherwise, assume bogosity and bail out. 2273 * 2274 * 3. If an extension field contains a verified signature, it is 2275 * self-authenticated and we sit the dance. 2276 * 2277 * 4. If this is a server reply, check only to see that the 2278 * transmitted key ID matches the received key ID. 2279 * 2280 * 5. Check to see that one or more hashes of the current key ID 2281 * matches the previous key ID or ultimate original key ID 2282 * obtained from the broadcaster or symmetric peer. If no 2283 * match, sit the dance and call for new autokey values. 2284 * 2285 * In case of crypto error, fire the orchestra, stop dancing and 2286 * restart the protocol. 2287 */ 2288 if (peer->flags & FLAG_SKEY) { 2289 /* 2290 * Decrement remaining autokey hashes. This isn't 2291 * perfect if a packet is lost, but results in no harm. 2292 */ 2293 ap = (struct autokey *)peer->recval.ptr; 2294 if (ap != NULL) { 2295 if (ap->seq > 0) 2296 ap->seq--; 2297 } 2298 peer->flash |= TEST8; 2299 rval = crypto_recv(peer, rbufp); 2300 if (rval == XEVNT_OK) { 2301 peer->unreach = 0; 2302 } else { 2303 if (rval == XEVNT_ERR) { 2304 report_event(PEVNT_RESTART, peer, 2305 "crypto error"); 2306 peer_clear(peer, "CRYP"); 2307 peer->flash |= TEST9; /* bad crypt */ 2308 if (peer->flags & FLAG_PREEMPT) { 2309 if (unpeer_crypto_early) { 2310 unpeer(peer); 2311 } 2312 } 2313 } 2314 return; 2315 } 2316 2317 /* 2318 * If server mode, verify the receive key ID matches 2319 * the transmit key ID. 2320 */ 2321 if (hismode == MODE_SERVER) { 2322 if (skeyid == peer->keyid) 2323 peer->flash &= ~TEST8; 2324 2325 /* 2326 * If an extension field is present, verify only that it 2327 * has been correctly signed. We don't need a sequence 2328 * check here, but the sequence continues. 2329 */ 2330 } else if (!(peer->flash & TEST8)) { 2331 peer->pkeyid = skeyid; 2332 2333 /* 2334 * Now the fun part. Here, skeyid is the current ID in 2335 * the packet, pkeyid is the ID in the last packet and 2336 * tkeyid is the hash of skeyid. If the autokey values 2337 * have not been received, this is an automatic error. 2338 * If so, check that the tkeyid matches pkeyid. If not, 2339 * hash tkeyid and try again. If the number of hashes 2340 * exceeds the number remaining in the sequence, declare 2341 * a successful failure and refresh the autokey values. 2342 */ 2343 } else if (ap != NULL) { 2344 int i; 2345 2346 for (i = 0; ; i++) { 2347 if ( tkeyid == peer->pkeyid 2348 || tkeyid == ap->key) { 2349 peer->flash &= ~TEST8; 2350 peer->pkeyid = skeyid; 2351 ap->seq -= i; 2352 break; 2353 } 2354 if (i > ap->seq) { 2355 peer->crypto &= 2356 ~CRYPTO_FLAG_AUTO; 2357 break; 2358 } 2359 tkeyid = session_key( 2360 &rbufp->recv_srcadr, dstadr_sin, 2361 tkeyid, pkeyid, 0); 2362 } 2363 if (peer->flash & TEST8) 2364 report_event(PEVNT_AUTH, peer, "keylist"); 2365 } 2366 if (!(peer->crypto & CRYPTO_FLAG_PROV)) /* test 9 */ 2367 peer->flash |= TEST8; /* bad autokey */ 2368 2369 /* 2370 * The maximum lifetime of the protocol is about one 2371 * week before restarting the Autokey protocol to 2372 * refresh certificates and leapseconds values. 2373 */ 2374 if (current_time > peer->refresh) { 2375 report_event(PEVNT_RESTART, peer, 2376 "crypto refresh"); 2377 peer_clear(peer, "TIME"); 2378 return; 2379 } 2380 } 2381 #endif /* AUTOKEY */ 2382 2383 /* 2384 * The dance is complete and the flash bits have been lit. Toss 2385 * the packet over the fence for processing, which may light up 2386 * more flashers. 2387 */ 2388 process_packet(peer, pkt, rbufp->recv_length); 2389 2390 /* 2391 * In interleaved mode update the state variables. Also adjust the 2392 * transmit phase to avoid crossover. 2393 */ 2394 if (peer->flip != 0) { 2395 peer->rec = p_rec; 2396 peer->dst = rbufp->recv_time; 2397 if (peer->nextdate - current_time < (1U << min(peer->ppoll, 2398 peer->hpoll)) / 2) 2399 peer->nextdate++; 2400 else 2401 peer->nextdate--; 2402 } 2403 } 2404 2405 2406 /* 2407 * process_packet - Packet Procedure, a la Section 3.4.4 of RFC-1305 2408 * Or almost, at least. If we're in here we have a reasonable 2409 * expectation that we will be having a long term 2410 * relationship with this host. 2411 */ 2412 void 2413 process_packet( 2414 register struct peer *peer, 2415 register struct pkt *pkt, 2416 u_int len 2417 ) 2418 { 2419 double t34, t21; 2420 double p_offset, p_del, p_disp; 2421 l_fp p_rec, p_xmt, p_org, p_reftime, ci; 2422 u_char pmode, pleap, pversion, pstratum; 2423 char statstr[NTP_MAXSTRLEN]; 2424 #ifdef ASSYM 2425 int itemp; 2426 double etemp, ftemp, td; 2427 #endif /* ASSYM */ 2428 2429 #if 0 2430 sys_processed++; 2431 peer->processed++; 2432 #endif 2433 p_del = FPTOD(NTOHS_FP(pkt->rootdelay)); 2434 p_offset = 0; 2435 p_disp = FPTOD(NTOHS_FP(pkt->rootdisp)); 2436 NTOHL_FP(&pkt->reftime, &p_reftime); 2437 NTOHL_FP(&pkt->org, &p_org); 2438 NTOHL_FP(&pkt->rec, &p_rec); 2439 NTOHL_FP(&pkt->xmt, &p_xmt); 2440 pmode = PKT_MODE(pkt->li_vn_mode); 2441 pleap = PKT_LEAP(pkt->li_vn_mode); 2442 pversion = PKT_VERSION(pkt->li_vn_mode); 2443 pstratum = PKT_TO_STRATUM(pkt->stratum); 2444 2445 /**/ 2446 2447 /**/ 2448 2449 /* 2450 * Verify the server is synchronized; that is, the leap bits, 2451 * stratum and root distance are valid. 2452 */ 2453 if ( pleap == LEAP_NOTINSYNC /* test 6 */ 2454 || pstratum < sys_floor || pstratum >= sys_ceiling) 2455 peer->flash |= TEST6; /* bad synch or strat */ 2456 if (p_del / 2 + p_disp >= MAXDISPERSE) /* test 7 */ 2457 peer->flash |= TEST7; /* bad header */ 2458 2459 /* 2460 * If any tests fail at this point, the packet is discarded. 2461 * Note that some flashers may have already been set in the 2462 * receive() routine. 2463 */ 2464 if (peer->flash & PKT_TEST_MASK) { 2465 peer->seldisptoolarge++; 2466 DPRINTF(1, ("packet: flash header %04x\n", 2467 peer->flash)); 2468 poll_update(peer, peer->hpoll); /* ppoll updated? */ 2469 return; 2470 } 2471 2472 /**/ 2473 2474 #if 1 2475 sys_processed++; 2476 peer->processed++; 2477 #endif 2478 2479 /* 2480 * Capture the header values in the client/peer association.. 2481 */ 2482 record_raw_stats(&peer->srcadr, 2483 peer->dstadr ? &peer->dstadr->sin : NULL, 2484 &p_org, &p_rec, &p_xmt, &peer->dst, 2485 pleap, pversion, pmode, pstratum, pkt->ppoll, pkt->precision, 2486 p_del, p_disp, pkt->refid, 2487 len - MIN_V4_PKT_LEN, (u_char *)&pkt->exten); 2488 peer->leap = pleap; 2489 peer->stratum = min(pstratum, STRATUM_UNSPEC); 2490 peer->pmode = pmode; 2491 peer->precision = pkt->precision; 2492 peer->rootdelay = p_del; 2493 peer->rootdisp = p_disp; 2494 peer->refid = pkt->refid; /* network byte order */ 2495 peer->reftime = p_reftime; 2496 2497 /* 2498 * First, if either burst mode is armed, enable the burst. 2499 * Compute the headway for the next packet and delay if 2500 * necessary to avoid exceeding the threshold. 2501 */ 2502 if (peer->retry > 0) { 2503 peer->retry = 0; 2504 if (peer->reach) 2505 peer->burst = min(1 << (peer->hpoll - 2506 peer->minpoll), NTP_SHIFT) - 1; 2507 else 2508 peer->burst = NTP_IBURST - 1; 2509 if (peer->burst > 0) 2510 peer->nextdate = current_time; 2511 } 2512 poll_update(peer, peer->hpoll); 2513 2514 /**/ 2515 2516 /* 2517 * If the peer was previously unreachable, raise a trap. In any 2518 * case, mark it reachable. 2519 */ 2520 if (!peer->reach) { 2521 report_event(PEVNT_REACH, peer, NULL); 2522 peer->timereachable = current_time; 2523 } 2524 peer->reach |= 1; 2525 2526 /* 2527 * For a client/server association, calculate the clock offset, 2528 * roundtrip delay and dispersion. The equations are reordered 2529 * from the spec for more efficient use of temporaries. For a 2530 * broadcast association, offset the last measurement by the 2531 * computed delay during the client/server volley. Note the 2532 * computation of dispersion includes the system precision plus 2533 * that due to the frequency error since the origin time. 2534 * 2535 * It is very important to respect the hazards of overflow. The 2536 * only permitted operation on raw timestamps is subtraction, 2537 * where the result is a signed quantity spanning from 68 years 2538 * in the past to 68 years in the future. To avoid loss of 2539 * precision, these calculations are done using 64-bit integer 2540 * arithmetic. However, the offset and delay calculations are 2541 * sums and differences of these first-order differences, which 2542 * if done using 64-bit integer arithmetic, would be valid over 2543 * only half that span. Since the typical first-order 2544 * differences are usually very small, they are converted to 64- 2545 * bit doubles and all remaining calculations done in floating- 2546 * double arithmetic. This preserves the accuracy while 2547 * retaining the 68-year span. 2548 * 2549 * There are three interleaving schemes, basic, interleaved 2550 * symmetric and interleaved broadcast. The timestamps are 2551 * idioscyncratically different. See the onwire briefing/white 2552 * paper at www.eecis.udel.edu/~mills for details. 2553 * 2554 * Interleaved symmetric mode 2555 * t1 = peer->aorg/borg, t2 = peer->rec, t3 = p_xmt, 2556 * t4 = peer->dst 2557 */ 2558 if (peer->flip != 0) { 2559 ci = p_xmt; /* t3 - t4 */ 2560 L_SUB(&ci, &peer->dst); 2561 LFPTOD(&ci, t34); 2562 ci = p_rec; /* t2 - t1 */ 2563 if (peer->flip > 0) 2564 L_SUB(&ci, &peer->borg); 2565 else 2566 L_SUB(&ci, &peer->aorg); 2567 LFPTOD(&ci, t21); 2568 p_del = t21 - t34; 2569 p_offset = (t21 + t34) / 2.; 2570 if (p_del < 0 || p_del > 1.) { 2571 snprintf(statstr, sizeof(statstr), 2572 "t21 %.6f t34 %.6f", t21, t34); 2573 report_event(PEVNT_XERR, peer, statstr); 2574 return; 2575 } 2576 2577 /* 2578 * Broadcast modes 2579 */ 2580 } else if (peer->pmode == MODE_BROADCAST) { 2581 2582 /* 2583 * Interleaved broadcast mode. Use interleaved timestamps. 2584 * t1 = peer->borg, t2 = p_org, t3 = p_org, t4 = aorg 2585 */ 2586 if (peer->flags & FLAG_XB) { 2587 ci = p_org; /* delay */ 2588 L_SUB(&ci, &peer->aorg); 2589 LFPTOD(&ci, t34); 2590 ci = p_org; /* t2 - t1 */ 2591 L_SUB(&ci, &peer->borg); 2592 LFPTOD(&ci, t21); 2593 peer->aorg = p_xmt; 2594 peer->borg = peer->dst; 2595 if (t34 < 0 || t34 > 1.) { 2596 /* drop all if in the initial volley */ 2597 if (FLAG_BC_VOL & peer->flags) 2598 goto bcc_init_volley_fail; 2599 snprintf(statstr, sizeof(statstr), 2600 "offset %.6f delay %.6f", t21, t34); 2601 report_event(PEVNT_XERR, peer, statstr); 2602 return; 2603 } 2604 p_offset = t21; 2605 peer->xleave = t34; 2606 2607 /* 2608 * Basic broadcast - use direct timestamps. 2609 * t3 = p_xmt, t4 = peer->dst 2610 */ 2611 } else { 2612 ci = p_xmt; /* t3 - t4 */ 2613 L_SUB(&ci, &peer->dst); 2614 LFPTOD(&ci, t34); 2615 p_offset = t34; 2616 } 2617 2618 /* 2619 * When calibration is complete and the clock is 2620 * synchronized, the bias is calculated as the difference 2621 * between the unicast timestamp and the broadcast 2622 * timestamp. This works for both basic and interleaved 2623 * modes. 2624 * [Bug 3031] Don't keep this peer when the delay 2625 * calculation gives reason to suspect clock steps. 2626 * This is assumed for delays > 50ms. 2627 */ 2628 if (FLAG_BC_VOL & peer->flags) { 2629 peer->flags &= ~FLAG_BC_VOL; 2630 peer->delay = fabs(peer->offset - p_offset) * 2; 2631 DPRINTF(2, ("broadcast volley: initial delay=%.6f\n", 2632 peer->delay)); 2633 if (peer->delay > fabs(sys_bdelay)) { 2634 bcc_init_volley_fail: 2635 DPRINTF(2, ("%s", "broadcast volley: initial delay exceeds limit\n")); 2636 unpeer(peer); 2637 return; 2638 } 2639 } 2640 peer->nextdate = current_time + (1u << peer->ppoll) - 2u; 2641 p_del = peer->delay; 2642 p_offset += p_del / 2; 2643 2644 2645 /* 2646 * Basic mode, otherwise known as the old fashioned way. 2647 * 2648 * t1 = p_org, t2 = p_rec, t3 = p_xmt, t4 = peer->dst 2649 */ 2650 } else { 2651 ci = p_xmt; /* t3 - t4 */ 2652 L_SUB(&ci, &peer->dst); 2653 LFPTOD(&ci, t34); 2654 ci = p_rec; /* t2 - t1 */ 2655 L_SUB(&ci, &p_org); 2656 LFPTOD(&ci, t21); 2657 p_del = fabs(t21 - t34); 2658 p_offset = (t21 + t34) / 2.; 2659 } 2660 p_del = max(p_del, LOGTOD(sys_precision)); 2661 p_disp = LOGTOD(sys_precision) + LOGTOD(peer->precision) + 2662 clock_phi * p_del; 2663 2664 #if ASSYM 2665 /* 2666 * This code calculates the outbound and inbound data rates by 2667 * measuring the differences between timestamps at different 2668 * packet lengths. This is helpful in cases of large asymmetric 2669 * delays commonly experienced on deep space communication 2670 * links. 2671 */ 2672 if (peer->t21_last > 0 && peer->t34_bytes > 0) { 2673 itemp = peer->t21_bytes - peer->t21_last; 2674 if (itemp > 25) { 2675 etemp = t21 - peer->t21; 2676 if (fabs(etemp) > 1e-6) { 2677 ftemp = itemp / etemp; 2678 if (ftemp > 1000.) 2679 peer->r21 = ftemp; 2680 } 2681 } 2682 itemp = len - peer->t34_bytes; 2683 if (itemp > 25) { 2684 etemp = -t34 - peer->t34; 2685 if (fabs(etemp) > 1e-6) { 2686 ftemp = itemp / etemp; 2687 if (ftemp > 1000.) 2688 peer->r34 = ftemp; 2689 } 2690 } 2691 } 2692 2693 /* 2694 * The following section compensates for different data rates on 2695 * the outbound (d21) and inbound (t34) directions. To do this, 2696 * it finds t such that r21 * t - r34 * (d - t) = 0, where d is 2697 * the roundtrip delay. Then it calculates the correction as a 2698 * fraction of d. 2699 */ 2700 peer->t21 = t21; 2701 peer->t21_last = peer->t21_bytes; 2702 peer->t34 = -t34; 2703 peer->t34_bytes = len; 2704 DPRINTF(2, ("packet: t21 %.9lf %d t34 %.9lf %d\n", peer->t21, 2705 peer->t21_bytes, peer->t34, peer->t34_bytes)); 2706 if (peer->r21 > 0 && peer->r34 > 0 && p_del > 0) { 2707 if (peer->pmode != MODE_BROADCAST) 2708 td = (peer->r34 / (peer->r21 + peer->r34) - 2709 .5) * p_del; 2710 else 2711 td = 0; 2712 2713 /* 2714 * Unfortunately, in many cases the errors are 2715 * unacceptable, so for the present the rates are not 2716 * used. In future, we might find conditions where the 2717 * calculations are useful, so this should be considered 2718 * a work in progress. 2719 */ 2720 t21 -= td; 2721 t34 -= td; 2722 DPRINTF(2, ("packet: del %.6lf r21 %.1lf r34 %.1lf %.6lf\n", 2723 p_del, peer->r21 / 1e3, peer->r34 / 1e3, 2724 td)); 2725 } 2726 #endif /* ASSYM */ 2727 2728 /* 2729 * That was awesome. Now hand off to the clock filter. 2730 */ 2731 clock_filter(peer, p_offset + peer->bias, p_del, p_disp); 2732 2733 /* 2734 * If we are in broadcast calibrate mode, return to broadcast 2735 * client mode when the client is fit and the autokey dance is 2736 * complete. 2737 */ 2738 if ( (FLAG_BC_VOL & peer->flags) 2739 && MODE_CLIENT == peer->hmode 2740 && !(TEST11 & peer_unfit(peer))) { /* distance exceeded */ 2741 #ifdef AUTOKEY 2742 if (peer->flags & FLAG_SKEY) { 2743 if (!(~peer->crypto & CRYPTO_FLAG_ALL)) 2744 peer->hmode = MODE_BCLIENT; 2745 } else { 2746 peer->hmode = MODE_BCLIENT; 2747 } 2748 #else /* !AUTOKEY follows */ 2749 peer->hmode = MODE_BCLIENT; 2750 #endif /* !AUTOKEY */ 2751 } 2752 } 2753 2754 2755 /* 2756 * clock_update - Called at system process update intervals. 2757 */ 2758 static void 2759 clock_update( 2760 struct peer *peer /* peer structure pointer */ 2761 ) 2762 { 2763 double dtemp; 2764 l_fp now; 2765 #ifdef HAVE_LIBSCF_H 2766 char *fmri; 2767 #endif /* HAVE_LIBSCF_H */ 2768 2769 /* 2770 * Update the system state variables. We do this very carefully, 2771 * as the poll interval might need to be clamped differently. 2772 */ 2773 sys_peer = peer; 2774 sys_epoch = peer->epoch; 2775 if (sys_poll < peer->minpoll) 2776 sys_poll = peer->minpoll; 2777 if (sys_poll > peer->maxpoll) 2778 sys_poll = peer->maxpoll; 2779 poll_update(peer, sys_poll); 2780 sys_stratum = min(peer->stratum + 1, STRATUM_UNSPEC); 2781 if ( peer->stratum == STRATUM_REFCLOCK 2782 || peer->stratum == STRATUM_UNSPEC) 2783 sys_refid = peer->refid; 2784 else 2785 sys_refid = addr2refid(&peer->srcadr); 2786 /* 2787 * Root Dispersion (E) is defined (in RFC 5905) as: 2788 * 2789 * E = p.epsilon_r + p.epsilon + p.psi + PHI*(s.t - p.t) + |THETA| 2790 * 2791 * where: 2792 * p.epsilon_r is the PollProc's root dispersion 2793 * p.epsilon is the PollProc's dispersion 2794 * p.psi is the PollProc's jitter 2795 * THETA is the combined offset 2796 * 2797 * NB: Think Hard about where these numbers come from and 2798 * what they mean. When did peer->update happen? Has anything 2799 * interesting happened since then? What values are the most 2800 * defensible? Why? 2801 * 2802 * DLM thinks this equation is probably the best of all worse choices. 2803 */ 2804 dtemp = peer->rootdisp 2805 + peer->disp 2806 + sys_jitter 2807 + clock_phi * (current_time - peer->update) 2808 + fabs(sys_offset); 2809 2810 if (dtemp > sys_mindisp) 2811 sys_rootdisp = dtemp; 2812 else 2813 sys_rootdisp = sys_mindisp; 2814 sys_rootdelay = peer->delay + peer->rootdelay; 2815 sys_reftime = peer->dst; 2816 2817 DPRINTF(1, ("clock_update: at %lu sample %lu associd %d\n", 2818 current_time, peer->epoch, peer->associd)); 2819 2820 /* 2821 * Comes now the moment of truth. Crank the clock discipline and 2822 * see what comes out. 2823 */ 2824 switch (local_clock(peer, sys_offset)) { 2825 2826 /* 2827 * Clock exceeds panic threshold. Life as we know it ends. 2828 */ 2829 case -1: 2830 #ifdef HAVE_LIBSCF_H 2831 /* 2832 * For Solaris enter the maintenance mode. 2833 */ 2834 if ((fmri = getenv("SMF_FMRI")) != NULL) { 2835 if (smf_maintain_instance(fmri, 0) < 0) { 2836 printf("smf_maintain_instance: %s\n", 2837 scf_strerror(scf_error())); 2838 exit(1); 2839 } 2840 /* 2841 * Sleep until SMF kills us. 2842 */ 2843 for (;;) 2844 pause(); 2845 } 2846 #endif /* HAVE_LIBSCF_H */ 2847 exit (-1); 2848 /* not reached */ 2849 2850 /* 2851 * Clock was stepped. Flush all time values of all peers. 2852 */ 2853 case 2: 2854 clear_all(); 2855 set_sys_leap(LEAP_NOTINSYNC); 2856 sys_stratum = STRATUM_UNSPEC; 2857 memcpy(&sys_refid, "STEP", 4); 2858 sys_rootdelay = 0; 2859 sys_rootdisp = 0; 2860 L_CLR(&sys_reftime); 2861 sys_jitter = LOGTOD(sys_precision); 2862 leapsec_reset_frame(); 2863 break; 2864 2865 /* 2866 * Clock was slewed. Handle the leapsecond stuff. 2867 */ 2868 case 1: 2869 2870 /* 2871 * If this is the first time the clock is set, reset the 2872 * leap bits. If crypto, the timer will goose the setup 2873 * process. 2874 */ 2875 if (sys_leap == LEAP_NOTINSYNC) { 2876 set_sys_leap(LEAP_NOWARNING); 2877 #ifdef AUTOKEY 2878 if (crypto_flags) 2879 crypto_update(); 2880 #endif /* AUTOKEY */ 2881 /* 2882 * If our parent process is waiting for the 2883 * first clock sync, send them home satisfied. 2884 */ 2885 #ifdef HAVE_WORKING_FORK 2886 if (waitsync_fd_to_close != -1) { 2887 close(waitsync_fd_to_close); 2888 waitsync_fd_to_close = -1; 2889 DPRINTF(1, ("notified parent --wait-sync is done\n")); 2890 } 2891 #endif /* HAVE_WORKING_FORK */ 2892 2893 } 2894 2895 /* 2896 * If there is no leap second pending and the number of 2897 * survivor leap bits is greater than half the number of 2898 * survivors, try to schedule a leap for the end of the 2899 * current month. (This only works if no leap second for 2900 * that range is in the table, so doing this more than 2901 * once is mostly harmless.) 2902 */ 2903 if (leapsec == LSPROX_NOWARN) { 2904 if ( leap_vote_ins > leap_vote_del 2905 && leap_vote_ins > sys_survivors / 2) { 2906 get_systime(&now); 2907 leapsec_add_dyn(TRUE, now.l_ui, NULL); 2908 } 2909 if ( leap_vote_del > leap_vote_ins 2910 && leap_vote_del > sys_survivors / 2) { 2911 get_systime(&now); 2912 leapsec_add_dyn(FALSE, now.l_ui, NULL); 2913 } 2914 } 2915 break; 2916 2917 /* 2918 * Popcorn spike or step threshold exceeded. Pretend it never 2919 * happened. 2920 */ 2921 default: 2922 break; 2923 } 2924 } 2925 2926 2927 /* 2928 * poll_update - update peer poll interval 2929 */ 2930 void 2931 poll_update( 2932 struct peer *peer, /* peer structure pointer */ 2933 u_char mpoll 2934 ) 2935 { 2936 u_long next, utemp; 2937 u_char hpoll; 2938 2939 /* 2940 * This routine figures out when the next poll should be sent. 2941 * That turns out to be wickedly complicated. One problem is 2942 * that sometimes the time for the next poll is in the past when 2943 * the poll interval is reduced. We watch out for races here 2944 * between the receive process and the poll process. 2945 * 2946 * Clamp the poll interval between minpoll and maxpoll. 2947 */ 2948 hpoll = max(min(peer->maxpoll, mpoll), peer->minpoll); 2949 2950 #ifdef AUTOKEY 2951 /* 2952 * If during the crypto protocol the poll interval has changed, 2953 * the lifetimes in the key list are probably bogus. Purge the 2954 * the key list and regenerate it later. 2955 */ 2956 if ((peer->flags & FLAG_SKEY) && hpoll != peer->hpoll) 2957 key_expire(peer); 2958 #endif /* AUTOKEY */ 2959 peer->hpoll = hpoll; 2960 2961 /* 2962 * There are three variables important for poll scheduling, the 2963 * current time (current_time), next scheduled time (nextdate) 2964 * and the earliest time (utemp). The earliest time is 2 s 2965 * seconds, but could be more due to rate management. When 2966 * sending in a burst, use the earliest time. When not in a 2967 * burst but with a reply pending, send at the earliest time 2968 * unless the next scheduled time has not advanced. This can 2969 * only happen if multiple replies are pending in the same 2970 * response interval. Otherwise, send at the later of the next 2971 * scheduled time and the earliest time. 2972 * 2973 * Now we figure out if there is an override. If a burst is in 2974 * progress and we get called from the receive process, just 2975 * slink away. If called from the poll process, delay 1 s for a 2976 * reference clock, otherwise 2 s. 2977 */ 2978 utemp = current_time + max(peer->throttle - (NTP_SHIFT - 1) * 2979 (1 << peer->minpoll), ntp_minpkt); 2980 if (peer->burst > 0) { 2981 if (peer->nextdate > current_time) 2982 return; 2983 #ifdef REFCLOCK 2984 else if (peer->flags & FLAG_REFCLOCK) 2985 peer->nextdate = current_time + RESP_DELAY; 2986 #endif /* REFCLOCK */ 2987 else 2988 peer->nextdate = utemp; 2989 2990 #ifdef AUTOKEY 2991 /* 2992 * If a burst is not in progress and a crypto response message 2993 * is pending, delay 2 s, but only if this is a new interval. 2994 */ 2995 } else if (peer->cmmd != NULL) { 2996 if (peer->nextdate > current_time) { 2997 if (peer->nextdate + ntp_minpkt != utemp) 2998 peer->nextdate = utemp; 2999 } else { 3000 peer->nextdate = utemp; 3001 } 3002 #endif /* AUTOKEY */ 3003 3004 /* 3005 * The ordinary case. If a retry, use minpoll; if unreachable, 3006 * use host poll; otherwise, use the minimum of host and peer 3007 * polls; In other words, oversampling is okay but 3008 * understampling is evil. Use the maximum of this value and the 3009 * headway. If the average headway is greater than the headway 3010 * threshold, increase the headway by the minimum interval. 3011 */ 3012 } else { 3013 if (peer->retry > 0) 3014 hpoll = peer->minpoll; 3015 else 3016 hpoll = min(peer->ppoll, peer->hpoll); 3017 #ifdef REFCLOCK 3018 if (peer->flags & FLAG_REFCLOCK) 3019 next = 1 << hpoll; 3020 else 3021 #endif /* REFCLOCK */ 3022 next = ((0x1000UL | (ntp_random() & 0x0ff)) << 3023 hpoll) >> 12; 3024 next += peer->outdate; 3025 if (next > utemp) 3026 peer->nextdate = next; 3027 else 3028 peer->nextdate = utemp; 3029 if (peer->throttle > (1 << peer->minpoll)) 3030 peer->nextdate += ntp_minpkt; 3031 } 3032 DPRINTF(2, ("poll_update: at %lu %s poll %d burst %d retry %d head %d early %lu next %lu\n", 3033 current_time, ntoa(&peer->srcadr), peer->hpoll, 3034 peer->burst, peer->retry, peer->throttle, 3035 utemp - current_time, peer->nextdate - 3036 current_time)); 3037 } 3038 3039 3040 /* 3041 * peer_clear - clear peer filter registers. See Section 3.4.8 of the 3042 * spec. 3043 */ 3044 void 3045 peer_clear( 3046 struct peer *peer, /* peer structure */ 3047 const char *ident /* tally lights */ 3048 ) 3049 { 3050 u_char u; 3051 l_fp bxmt = peer->bxmt; /* bcast clients retain this! */ 3052 3053 #ifdef AUTOKEY 3054 /* 3055 * If cryptographic credentials have been acquired, toss them to 3056 * Valhalla. Note that autokeys are ephemeral, in that they are 3057 * tossed immediately upon use. Therefore, the keylist can be 3058 * purged anytime without needing to preserve random keys. Note 3059 * that, if the peer is purged, the cryptographic variables are 3060 * purged, too. This makes it much harder to sneak in some 3061 * unauthenticated data in the clock filter. 3062 */ 3063 key_expire(peer); 3064 if (peer->iffval != NULL) 3065 BN_free(peer->iffval); 3066 value_free(&peer->cookval); 3067 value_free(&peer->recval); 3068 value_free(&peer->encrypt); 3069 value_free(&peer->sndval); 3070 if (peer->cmmd != NULL) 3071 free(peer->cmmd); 3072 if (peer->subject != NULL) 3073 free(peer->subject); 3074 if (peer->issuer != NULL) 3075 free(peer->issuer); 3076 #endif /* AUTOKEY */ 3077 3078 /* 3079 * Clear all values, including the optional crypto values above. 3080 */ 3081 memset(CLEAR_TO_ZERO(peer), 0, LEN_CLEAR_TO_ZERO(peer)); 3082 peer->ppoll = peer->maxpoll; 3083 peer->hpoll = peer->minpoll; 3084 peer->disp = MAXDISPERSE; 3085 peer->flash = peer_unfit(peer); 3086 peer->jitter = LOGTOD(sys_precision); 3087 3088 /* Don't throw away our broadcast replay protection */ 3089 if (peer->hmode == MODE_BCLIENT) 3090 peer->bxmt = bxmt; 3091 3092 /* 3093 * If interleave mode, initialize the alternate origin switch. 3094 */ 3095 if (peer->flags & FLAG_XLEAVE) 3096 peer->flip = 1; 3097 for (u = 0; u < NTP_SHIFT; u++) { 3098 peer->filter_order[u] = u; 3099 peer->filter_disp[u] = MAXDISPERSE; 3100 } 3101 #ifdef REFCLOCK 3102 if (!(peer->flags & FLAG_REFCLOCK)) { 3103 #endif 3104 peer->leap = LEAP_NOTINSYNC; 3105 peer->stratum = STRATUM_UNSPEC; 3106 memcpy(&peer->refid, ident, 4); 3107 #ifdef REFCLOCK 3108 } else { 3109 /* Clear refclock sample filter */ 3110 peer->procptr->codeproc = 0; 3111 peer->procptr->coderecv = 0; 3112 } 3113 #endif 3114 3115 /* 3116 * During initialization use the association count to spread out 3117 * the polls at one-second intervals. Passive associations' 3118 * first poll is delayed by the "discard minimum" to avoid rate 3119 * limiting. Other post-startup new or cleared associations 3120 * randomize the first poll over the minimum poll interval to 3121 * avoid implosion. 3122 */ 3123 peer->nextdate = peer->update = peer->outdate = current_time; 3124 if (initializing) { 3125 peer->nextdate += peer_associations; 3126 } else if (MODE_PASSIVE == peer->hmode) { 3127 peer->nextdate += ntp_minpkt; 3128 } else { 3129 peer->nextdate += ntp_random() % peer->minpoll; 3130 } 3131 #ifdef AUTOKEY 3132 peer->refresh = current_time + (1 << NTP_REFRESH); 3133 #endif /* AUTOKEY */ 3134 DPRINTF(1, ("peer_clear: at %ld next %ld associd %d refid %s\n", 3135 current_time, peer->nextdate, peer->associd, 3136 ident)); 3137 } 3138 3139 3140 /* 3141 * clock_filter - add incoming clock sample to filter register and run 3142 * the filter procedure to find the best sample. 3143 */ 3144 void 3145 clock_filter( 3146 struct peer *peer, /* peer structure pointer */ 3147 double sample_offset, /* clock offset */ 3148 double sample_delay, /* roundtrip delay */ 3149 double sample_disp /* dispersion */ 3150 ) 3151 { 3152 double dst[NTP_SHIFT]; /* distance vector */ 3153 int ord[NTP_SHIFT]; /* index vector */ 3154 int i, j, k, m; 3155 double dtemp, etemp; 3156 char tbuf[80]; 3157 3158 /* 3159 * A sample consists of the offset, delay, dispersion and epoch 3160 * of arrival. The offset and delay are determined by the on- 3161 * wire protocol. The dispersion grows from the last outbound 3162 * packet to the arrival of this one increased by the sum of the 3163 * peer precision and the system precision as required by the 3164 * error budget. First, shift the new arrival into the shift 3165 * register discarding the oldest one. 3166 */ 3167 j = peer->filter_nextpt; 3168 peer->filter_offset[j] = sample_offset; 3169 peer->filter_delay[j] = sample_delay; 3170 peer->filter_disp[j] = sample_disp; 3171 peer->filter_epoch[j] = current_time; 3172 j = (j + 1) % NTP_SHIFT; 3173 peer->filter_nextpt = j; 3174 3175 /* 3176 * Update dispersions since the last update and at the same 3177 * time initialize the distance and index lists. Since samples 3178 * become increasingly uncorrelated beyond the Allan intercept, 3179 * only under exceptional cases will an older sample be used. 3180 * Therefore, the distance list uses a compound metric. If the 3181 * dispersion is greater than the maximum dispersion, clamp the 3182 * distance at that value. If the time since the last update is 3183 * less than the Allan intercept use the delay; otherwise, use 3184 * the sum of the delay and dispersion. 3185 */ 3186 dtemp = clock_phi * (current_time - peer->update); 3187 peer->update = current_time; 3188 for (i = NTP_SHIFT - 1; i >= 0; i--) { 3189 if (i != 0) 3190 peer->filter_disp[j] += dtemp; 3191 if (peer->filter_disp[j] >= MAXDISPERSE) { 3192 peer->filter_disp[j] = MAXDISPERSE; 3193 dst[i] = MAXDISPERSE; 3194 } else if (peer->update - peer->filter_epoch[j] > 3195 (u_long)ULOGTOD(allan_xpt)) { 3196 dst[i] = peer->filter_delay[j] + 3197 peer->filter_disp[j]; 3198 } else { 3199 dst[i] = peer->filter_delay[j]; 3200 } 3201 ord[i] = j; 3202 j = (j + 1) % NTP_SHIFT; 3203 } 3204 3205 /* 3206 * If the clock has stabilized, sort the samples by distance. 3207 */ 3208 if (freq_cnt == 0) { 3209 for (i = 1; i < NTP_SHIFT; i++) { 3210 for (j = 0; j < i; j++) { 3211 if (dst[j] > dst[i]) { 3212 k = ord[j]; 3213 ord[j] = ord[i]; 3214 ord[i] = k; 3215 etemp = dst[j]; 3216 dst[j] = dst[i]; 3217 dst[i] = etemp; 3218 } 3219 } 3220 } 3221 } 3222 3223 /* 3224 * Copy the index list to the association structure so ntpq 3225 * can see it later. Prune the distance list to leave only 3226 * samples less than the maximum dispersion, which disfavors 3227 * uncorrelated samples older than the Allan intercept. To 3228 * further improve the jitter estimate, of the remainder leave 3229 * only samples less than the maximum distance, but keep at 3230 * least two samples for jitter calculation. 3231 */ 3232 m = 0; 3233 for (i = 0; i < NTP_SHIFT; i++) { 3234 peer->filter_order[i] = (u_char) ord[i]; 3235 if ( dst[i] >= MAXDISPERSE 3236 || (m >= 2 && dst[i] >= sys_maxdist)) 3237 continue; 3238 m++; 3239 } 3240 3241 /* 3242 * Compute the dispersion and jitter. The dispersion is weighted 3243 * exponentially by NTP_FWEIGHT (0.5) so it is normalized close 3244 * to 1.0. The jitter is the RMS differences relative to the 3245 * lowest delay sample. 3246 */ 3247 peer->disp = peer->jitter = 0; 3248 k = ord[0]; 3249 for (i = NTP_SHIFT - 1; i >= 0; i--) { 3250 j = ord[i]; 3251 peer->disp = NTP_FWEIGHT * (peer->disp + 3252 peer->filter_disp[j]); 3253 if (i < m) 3254 peer->jitter += DIFF(peer->filter_offset[j], 3255 peer->filter_offset[k]); 3256 } 3257 3258 /* 3259 * If no acceptable samples remain in the shift register, 3260 * quietly tiptoe home leaving only the dispersion. Otherwise, 3261 * save the offset, delay and jitter. Note the jitter must not 3262 * be less than the precision. 3263 */ 3264 if (m == 0) { 3265 clock_select(); 3266 return; 3267 } 3268 etemp = fabs(peer->offset - peer->filter_offset[k]); 3269 peer->offset = peer->filter_offset[k]; 3270 peer->delay = peer->filter_delay[k]; 3271 if (m > 1) 3272 peer->jitter /= m - 1; 3273 peer->jitter = max(SQRT(peer->jitter), LOGTOD(sys_precision)); 3274 3275 /* 3276 * If the the new sample and the current sample are both valid 3277 * and the difference between their offsets exceeds CLOCK_SGATE 3278 * (3) times the jitter and the interval between them is less 3279 * than twice the host poll interval, consider the new sample 3280 * a popcorn spike and ignore it. 3281 */ 3282 if ( peer->disp < sys_maxdist 3283 && peer->filter_disp[k] < sys_maxdist 3284 && etemp > CLOCK_SGATE * peer->jitter 3285 && peer->filter_epoch[k] - peer->epoch 3286 < 2. * ULOGTOD(peer->hpoll)) { 3287 snprintf(tbuf, sizeof(tbuf), "%.6f s", etemp); 3288 report_event(PEVNT_POPCORN, peer, tbuf); 3289 return; 3290 } 3291 3292 /* 3293 * A new minimum sample is useful only if it is later than the 3294 * last one used. In this design the maximum lifetime of any 3295 * sample is not greater than eight times the poll interval, so 3296 * the maximum interval between minimum samples is eight 3297 * packets. 3298 */ 3299 if (peer->filter_epoch[k] <= peer->epoch) { 3300 DPRINTF(2, ("clock_filter: old sample %lu\n", current_time - 3301 peer->filter_epoch[k])); 3302 return; 3303 } 3304 peer->epoch = peer->filter_epoch[k]; 3305 3306 /* 3307 * The mitigated sample statistics are saved for later 3308 * processing. If not synchronized or not in a burst, tickle the 3309 * clock select algorithm. 3310 */ 3311 record_peer_stats(&peer->srcadr, ctlpeerstatus(peer), 3312 peer->offset, peer->delay, peer->disp, peer->jitter); 3313 DPRINTF(1, ("clock_filter: n %d off %.6f del %.6f dsp %.6f jit %.6f\n", 3314 m, peer->offset, peer->delay, peer->disp, 3315 peer->jitter)); 3316 if (peer->burst == 0 || sys_leap == LEAP_NOTINSYNC) 3317 clock_select(); 3318 } 3319 3320 3321 /* 3322 * clock_select - find the pick-of-the-litter clock 3323 * 3324 * LOCKCLOCK: (1) If the local clock is the prefer peer, it will always 3325 * be enabled, even if declared falseticker, (2) only the prefer peer 3326 * can be selected as the system peer, (3) if the external source is 3327 * down, the system leap bits are set to 11 and the stratum set to 3328 * infinity. 3329 */ 3330 void 3331 clock_select(void) 3332 { 3333 struct peer *peer; 3334 int i, j, k, n; 3335 int nlist, nl2; 3336 int allow; 3337 int speer; 3338 double d, e, f, g; 3339 double high, low; 3340 double speermet; 3341 double orphmet = 2.0 * U_INT32_MAX; /* 2x is greater than */ 3342 struct endpoint endp; 3343 struct peer *osys_peer; 3344 struct peer *sys_prefer = NULL; /* prefer peer */ 3345 struct peer *typesystem = NULL; 3346 struct peer *typeorphan = NULL; 3347 #ifdef REFCLOCK 3348 struct peer *typeacts = NULL; 3349 struct peer *typelocal = NULL; 3350 struct peer *typepps = NULL; 3351 #endif /* REFCLOCK */ 3352 static struct endpoint *endpoint = NULL; 3353 static int *indx = NULL; 3354 static peer_select *peers = NULL; 3355 static u_int endpoint_size = 0; 3356 static u_int peers_size = 0; 3357 static u_int indx_size = 0; 3358 size_t octets; 3359 3360 /* 3361 * Initialize and create endpoint, index and peer lists big 3362 * enough to handle all associations. 3363 */ 3364 osys_peer = sys_peer; 3365 sys_survivors = 0; 3366 #ifdef LOCKCLOCK 3367 set_sys_leap(LEAP_NOTINSYNC); 3368 sys_stratum = STRATUM_UNSPEC; 3369 memcpy(&sys_refid, "DOWN", 4); 3370 #endif /* LOCKCLOCK */ 3371 3372 /* 3373 * Allocate dynamic space depending on the number of 3374 * associations. 3375 */ 3376 nlist = 1; 3377 for (peer = peer_list; peer != NULL; peer = peer->p_link) 3378 nlist++; 3379 endpoint_size = ALIGNED_SIZE(nlist * 2 * sizeof(*endpoint)); 3380 peers_size = ALIGNED_SIZE(nlist * sizeof(*peers)); 3381 indx_size = ALIGNED_SIZE(nlist * 2 * sizeof(*indx)); 3382 octets = endpoint_size + peers_size + indx_size; 3383 endpoint = erealloc(endpoint, octets); 3384 peers = INC_ALIGNED_PTR(endpoint, endpoint_size); 3385 indx = INC_ALIGNED_PTR(peers, peers_size); 3386 3387 /* 3388 * Initially, we populate the island with all the rifraff peers 3389 * that happen to be lying around. Those with seriously 3390 * defective clocks are immediately booted off the island. Then, 3391 * the falsetickers are culled and put to sea. The truechimers 3392 * remaining are subject to repeated rounds where the most 3393 * unpopular at each round is kicked off. When the population 3394 * has dwindled to sys_minclock, the survivors split a million 3395 * bucks and collectively crank the chimes. 3396 */ 3397 nlist = nl2 = 0; /* none yet */ 3398 for (peer = peer_list; peer != NULL; peer = peer->p_link) { 3399 peer->new_status = CTL_PST_SEL_REJECT; 3400 3401 /* 3402 * Leave the island immediately if the peer is 3403 * unfit to synchronize. 3404 */ 3405 if (peer_unfit(peer)) { 3406 continue; 3407 } 3408 3409 /* 3410 * If this peer is an orphan parent, elect the 3411 * one with the lowest metric defined as the 3412 * IPv4 address or the first 64 bits of the 3413 * hashed IPv6 address. To ensure convergence 3414 * on the same selected orphan, consider as 3415 * well that this system may have the lowest 3416 * metric and be the orphan parent. If this 3417 * system wins, sys_peer will be NULL to trigger 3418 * orphan mode in timer(). 3419 */ 3420 if (peer->stratum == sys_orphan) { 3421 u_int32 localmet; 3422 u_int32 peermet; 3423 3424 if (peer->dstadr != NULL) 3425 localmet = ntohl(peer->dstadr->addr_refid); 3426 else 3427 localmet = U_INT32_MAX; 3428 peermet = ntohl(addr2refid(&peer->srcadr)); 3429 if (peermet < localmet && peermet < orphmet) { 3430 typeorphan = peer; 3431 orphmet = peermet; 3432 } 3433 continue; 3434 } 3435 3436 /* 3437 * If this peer could have the orphan parent 3438 * as a synchronization ancestor, exclude it 3439 * from selection to avoid forming a 3440 * synchronization loop within the orphan mesh, 3441 * triggering stratum climb to infinity 3442 * instability. Peers at stratum higher than 3443 * the orphan stratum could have the orphan 3444 * parent in ancestry so are excluded. 3445 * See http://bugs.ntp.org/2050 3446 */ 3447 if (peer->stratum > sys_orphan) { 3448 continue; 3449 } 3450 #ifdef REFCLOCK 3451 /* 3452 * The following are special cases. We deal 3453 * with them later. 3454 */ 3455 if (!(peer->flags & FLAG_PREFER)) { 3456 switch (peer->refclktype) { 3457 case REFCLK_LOCALCLOCK: 3458 if ( current_time > orphwait 3459 && typelocal == NULL) 3460 typelocal = peer; 3461 continue; 3462 3463 case REFCLK_ACTS: 3464 if ( current_time > orphwait 3465 && typeacts == NULL) 3466 typeacts = peer; 3467 continue; 3468 } 3469 } 3470 #endif /* REFCLOCK */ 3471 3472 /* 3473 * If we get this far, the peer can stay on the 3474 * island, but does not yet have the immunity 3475 * idol. 3476 */ 3477 peer->new_status = CTL_PST_SEL_SANE; 3478 f = root_distance(peer); 3479 peers[nlist].peer = peer; 3480 peers[nlist].error = peer->jitter; 3481 peers[nlist].synch = f; 3482 nlist++; 3483 3484 /* 3485 * Insert each interval endpoint on the unsorted 3486 * endpoint[] list. 3487 */ 3488 e = peer->offset; 3489 endpoint[nl2].type = -1; /* lower end */ 3490 endpoint[nl2].val = e - f; 3491 nl2++; 3492 endpoint[nl2].type = 1; /* upper end */ 3493 endpoint[nl2].val = e + f; 3494 nl2++; 3495 } 3496 /* 3497 * Construct sorted indx[] of endpoint[] indexes ordered by 3498 * offset. 3499 */ 3500 for (i = 0; i < nl2; i++) 3501 indx[i] = i; 3502 for (i = 0; i < nl2; i++) { 3503 endp = endpoint[indx[i]]; 3504 e = endp.val; 3505 k = i; 3506 for (j = i + 1; j < nl2; j++) { 3507 endp = endpoint[indx[j]]; 3508 if (endp.val < e) { 3509 e = endp.val; 3510 k = j; 3511 } 3512 } 3513 if (k != i) { 3514 j = indx[k]; 3515 indx[k] = indx[i]; 3516 indx[i] = j; 3517 } 3518 } 3519 for (i = 0; i < nl2; i++) 3520 DPRINTF(3, ("select: endpoint %2d %.6f\n", 3521 endpoint[indx[i]].type, endpoint[indx[i]].val)); 3522 3523 /* 3524 * This is the actual algorithm that cleaves the truechimers 3525 * from the falsetickers. The original algorithm was described 3526 * in Keith Marzullo's dissertation, but has been modified for 3527 * better accuracy. 3528 * 3529 * Briefly put, we first assume there are no falsetickers, then 3530 * scan the candidate list first from the low end upwards and 3531 * then from the high end downwards. The scans stop when the 3532 * number of intersections equals the number of candidates less 3533 * the number of falsetickers. If this doesn't happen for a 3534 * given number of falsetickers, we bump the number of 3535 * falsetickers and try again. If the number of falsetickers 3536 * becomes equal to or greater than half the number of 3537 * candidates, the Albanians have won the Byzantine wars and 3538 * correct synchronization is not possible. 3539 * 3540 * Here, nlist is the number of candidates and allow is the 3541 * number of falsetickers. Upon exit, the truechimers are the 3542 * survivors with offsets not less than low and not greater than 3543 * high. There may be none of them. 3544 */ 3545 low = 1e9; 3546 high = -1e9; 3547 for (allow = 0; 2 * allow < nlist; allow++) { 3548 3549 /* 3550 * Bound the interval (low, high) as the smallest 3551 * interval containing points from the most sources. 3552 */ 3553 n = 0; 3554 for (i = 0; i < nl2; i++) { 3555 low = endpoint[indx[i]].val; 3556 n -= endpoint[indx[i]].type; 3557 if (n >= nlist - allow) 3558 break; 3559 } 3560 n = 0; 3561 for (j = nl2 - 1; j >= 0; j--) { 3562 high = endpoint[indx[j]].val; 3563 n += endpoint[indx[j]].type; 3564 if (n >= nlist - allow) 3565 break; 3566 } 3567 3568 /* 3569 * If an interval containing truechimers is found, stop. 3570 * If not, increase the number of falsetickers and go 3571 * around again. 3572 */ 3573 if (high > low) 3574 break; 3575 } 3576 3577 /* 3578 * Clustering algorithm. Whittle candidate list of falsetickers, 3579 * who leave the island immediately. The TRUE peer is always a 3580 * truechimer. We must leave at least one peer to collect the 3581 * million bucks. 3582 * 3583 * We assert the correct time is contained in the interval, but 3584 * the best offset estimate for the interval might not be 3585 * contained in the interval. For this purpose, a truechimer is 3586 * defined as the midpoint of an interval that overlaps the 3587 * intersection interval. 3588 */ 3589 j = 0; 3590 for (i = 0; i < nlist; i++) { 3591 double h; 3592 3593 peer = peers[i].peer; 3594 h = peers[i].synch; 3595 if (( high <= low 3596 || peer->offset + h < low 3597 || peer->offset - h > high 3598 ) && !(peer->flags & FLAG_TRUE)) 3599 continue; 3600 3601 #ifdef REFCLOCK 3602 /* 3603 * Eligible PPS peers must survive the intersection 3604 * algorithm. Use the first one found, but don't 3605 * include any of them in the cluster population. 3606 */ 3607 if (peer->flags & FLAG_PPS) { 3608 if (typepps == NULL) 3609 typepps = peer; 3610 if (!(peer->flags & FLAG_TSTAMP_PPS)) 3611 continue; 3612 } 3613 #endif /* REFCLOCK */ 3614 3615 if (j != i) 3616 peers[j] = peers[i]; 3617 j++; 3618 } 3619 nlist = j; 3620 3621 /* 3622 * If no survivors remain at this point, check if the modem 3623 * driver, local driver or orphan parent in that order. If so, 3624 * nominate the first one found as the only survivor. 3625 * Otherwise, give up and leave the island to the rats. 3626 */ 3627 if (nlist == 0) { 3628 peers[0].error = 0; 3629 peers[0].synch = sys_mindisp; 3630 #ifdef REFCLOCK 3631 if (typeacts != NULL) { 3632 peers[0].peer = typeacts; 3633 nlist = 1; 3634 } else if (typelocal != NULL) { 3635 peers[0].peer = typelocal; 3636 nlist = 1; 3637 } else 3638 #endif /* REFCLOCK */ 3639 if (typeorphan != NULL) { 3640 peers[0].peer = typeorphan; 3641 nlist = 1; 3642 } 3643 } 3644 3645 /* 3646 * Mark the candidates at this point as truechimers. 3647 */ 3648 for (i = 0; i < nlist; i++) { 3649 peers[i].peer->new_status = CTL_PST_SEL_SELCAND; 3650 DPRINTF(2, ("select: survivor %s %f\n", 3651 stoa(&peers[i].peer->srcadr), peers[i].synch)); 3652 } 3653 3654 /* 3655 * Now, vote outliers off the island by select jitter weighted 3656 * by root distance. Continue voting as long as there are more 3657 * than sys_minclock survivors and the select jitter of the peer 3658 * with the worst metric is greater than the minimum peer 3659 * jitter. Stop if we are about to discard a TRUE or PREFER 3660 * peer, who of course have the immunity idol. 3661 */ 3662 while (1) { 3663 d = 1e9; 3664 e = -1e9; 3665 g = 0; 3666 k = 0; 3667 for (i = 0; i < nlist; i++) { 3668 if (peers[i].error < d) 3669 d = peers[i].error; 3670 peers[i].seljit = 0; 3671 if (nlist > 1) { 3672 f = 0; 3673 for (j = 0; j < nlist; j++) 3674 f += DIFF(peers[j].peer->offset, 3675 peers[i].peer->offset); 3676 peers[i].seljit = SQRT(f / (nlist - 1)); 3677 } 3678 if (peers[i].seljit * peers[i].synch > e) { 3679 g = peers[i].seljit; 3680 e = peers[i].seljit * peers[i].synch; 3681 k = i; 3682 } 3683 } 3684 g = max(g, LOGTOD(sys_precision)); 3685 if ( nlist <= max(1, sys_minclock) 3686 || g <= d 3687 || ((FLAG_TRUE | FLAG_PREFER) & peers[k].peer->flags)) 3688 break; 3689 3690 DPRINTF(3, ("select: drop %s seljit %.6f jit %.6f\n", 3691 ntoa(&peers[k].peer->srcadr), g, d)); 3692 if (nlist > sys_maxclock) 3693 peers[k].peer->new_status = CTL_PST_SEL_EXCESS; 3694 for (j = k + 1; j < nlist; j++) 3695 peers[j - 1] = peers[j]; 3696 nlist--; 3697 } 3698 3699 /* 3700 * What remains is a list usually not greater than sys_minclock 3701 * peers. Note that unsynchronized peers cannot survive this 3702 * far. Count and mark these survivors. 3703 * 3704 * While at it, count the number of leap warning bits found. 3705 * This will be used later to vote the system leap warning bit. 3706 * If a leap warning bit is found on a reference clock, the vote 3707 * is always won. 3708 * 3709 * Choose the system peer using a hybrid metric composed of the 3710 * selection jitter scaled by the root distance augmented by 3711 * stratum scaled by sys_mindisp (.001 by default). The goal of 3712 * the small stratum factor is to avoid clockhop between a 3713 * reference clock and a network peer which has a refclock and 3714 * is using an older ntpd, which does not floor sys_rootdisp at 3715 * sys_mindisp. 3716 * 3717 * In contrast, ntpd 4.2.6 and earlier used stratum primarily 3718 * in selecting the system peer, using a weight of 1 second of 3719 * additional root distance per stratum. This heavy bias is no 3720 * longer appropriate, as the scaled root distance provides a 3721 * more rational metric carrying the cumulative error budget. 3722 */ 3723 e = 1e9; 3724 speer = 0; 3725 leap_vote_ins = 0; 3726 leap_vote_del = 0; 3727 for (i = 0; i < nlist; i++) { 3728 peer = peers[i].peer; 3729 peer->unreach = 0; 3730 peer->new_status = CTL_PST_SEL_SYNCCAND; 3731 sys_survivors++; 3732 if (peer->leap == LEAP_ADDSECOND) { 3733 if (peer->flags & FLAG_REFCLOCK) 3734 leap_vote_ins = nlist; 3735 else if (leap_vote_ins < nlist) 3736 leap_vote_ins++; 3737 } 3738 if (peer->leap == LEAP_DELSECOND) { 3739 if (peer->flags & FLAG_REFCLOCK) 3740 leap_vote_del = nlist; 3741 else if (leap_vote_del < nlist) 3742 leap_vote_del++; 3743 } 3744 if (peer->flags & FLAG_PREFER) 3745 sys_prefer = peer; 3746 speermet = peers[i].seljit * peers[i].synch + 3747 peer->stratum * sys_mindisp; 3748 if (speermet < e) { 3749 e = speermet; 3750 speer = i; 3751 } 3752 } 3753 3754 /* 3755 * Unless there are at least sys_misane survivors, leave the 3756 * building dark. Otherwise, do a clockhop dance. Ordinarily, 3757 * use the selected survivor speer. However, if the current 3758 * system peer is not speer, stay with the current system peer 3759 * as long as it doesn't get too old or too ugly. 3760 */ 3761 if (nlist > 0 && nlist >= sys_minsane) { 3762 double x; 3763 3764 typesystem = peers[speer].peer; 3765 if (osys_peer == NULL || osys_peer == typesystem) { 3766 sys_clockhop = 0; 3767 } else if ((x = fabs(typesystem->offset - 3768 osys_peer->offset)) < sys_mindisp) { 3769 if (sys_clockhop == 0) 3770 sys_clockhop = sys_mindisp; 3771 else 3772 sys_clockhop *= .5; 3773 DPRINTF(1, ("select: clockhop %d %.6f %.6f\n", 3774 j, x, sys_clockhop)); 3775 if (fabs(x) < sys_clockhop) 3776 typesystem = osys_peer; 3777 else 3778 sys_clockhop = 0; 3779 } else { 3780 sys_clockhop = 0; 3781 } 3782 } 3783 3784 /* 3785 * Mitigation rules of the game. We have the pick of the 3786 * litter in typesystem if any survivors are left. If 3787 * there is a prefer peer, use its offset and jitter. 3788 * Otherwise, use the combined offset and jitter of all kitters. 3789 */ 3790 if (typesystem != NULL) { 3791 if (sys_prefer == NULL) { 3792 typesystem->new_status = CTL_PST_SEL_SYSPEER; 3793 clock_combine(peers, sys_survivors, speer); 3794 } else { 3795 typesystem = sys_prefer; 3796 sys_clockhop = 0; 3797 typesystem->new_status = CTL_PST_SEL_SYSPEER; 3798 sys_offset = typesystem->offset; 3799 sys_jitter = typesystem->jitter; 3800 } 3801 DPRINTF(1, ("select: combine offset %.9f jitter %.9f\n", 3802 sys_offset, sys_jitter)); 3803 } 3804 #ifdef REFCLOCK 3805 /* 3806 * If a PPS driver is lit and the combined offset is less than 3807 * 0.4 s, select the driver as the PPS peer and use its offset 3808 * and jitter. However, if this is the atom driver, use it only 3809 * if there is a prefer peer or there are no survivors and none 3810 * are required. 3811 */ 3812 if ( typepps != NULL 3813 && fabs(sys_offset) < 0.4 3814 && ( typepps->refclktype != REFCLK_ATOM_PPS 3815 || ( typepps->refclktype == REFCLK_ATOM_PPS 3816 && ( sys_prefer != NULL 3817 || (typesystem == NULL && sys_minsane == 0))))) { 3818 typesystem = typepps; 3819 sys_clockhop = 0; 3820 typesystem->new_status = CTL_PST_SEL_PPS; 3821 sys_offset = typesystem->offset; 3822 sys_jitter = typesystem->jitter; 3823 DPRINTF(1, ("select: pps offset %.9f jitter %.9f\n", 3824 sys_offset, sys_jitter)); 3825 } 3826 #endif /* REFCLOCK */ 3827 3828 /* 3829 * If there are no survivors at this point, there is no 3830 * system peer. If so and this is an old update, keep the 3831 * current statistics, but do not update the clock. 3832 */ 3833 if (typesystem == NULL) { 3834 if (osys_peer != NULL) { 3835 if (sys_orphwait > 0) 3836 orphwait = current_time + sys_orphwait; 3837 report_event(EVNT_NOPEER, NULL, NULL); 3838 } 3839 sys_peer = NULL; 3840 for (peer = peer_list; peer != NULL; peer = peer->p_link) 3841 peer->status = peer->new_status; 3842 return; 3843 } 3844 3845 /* 3846 * Do not use old data, as this may mess up the clock discipline 3847 * stability. 3848 */ 3849 if (typesystem->epoch <= sys_epoch) 3850 return; 3851 3852 /* 3853 * We have found the alpha male. Wind the clock. 3854 */ 3855 if (osys_peer != typesystem) 3856 report_event(PEVNT_NEWPEER, typesystem, NULL); 3857 for (peer = peer_list; peer != NULL; peer = peer->p_link) 3858 peer->status = peer->new_status; 3859 clock_update(typesystem); 3860 } 3861 3862 3863 static void 3864 clock_combine( 3865 peer_select * peers, /* survivor list */ 3866 int npeers, /* number of survivors */ 3867 int syspeer /* index of sys.peer */ 3868 ) 3869 { 3870 int i; 3871 double x, y, z, w; 3872 3873 y = z = w = 0; 3874 for (i = 0; i < npeers; i++) { 3875 x = 1. / peers[i].synch; 3876 y += x; 3877 z += x * peers[i].peer->offset; 3878 w += x * DIFF(peers[i].peer->offset, 3879 peers[syspeer].peer->offset); 3880 } 3881 sys_offset = z / y; 3882 sys_jitter = SQRT(w / y + SQUARE(peers[syspeer].seljit)); 3883 } 3884 3885 3886 /* 3887 * root_distance - compute synchronization distance from peer to root 3888 */ 3889 static double 3890 root_distance( 3891 struct peer *peer /* peer structure pointer */ 3892 ) 3893 { 3894 double dtemp; 3895 3896 /* 3897 * Root Distance (LAMBDA) is defined as: 3898 * (delta + DELTA)/2 + epsilon + EPSILON + D 3899 * 3900 * where: 3901 * delta is the round-trip delay 3902 * DELTA is the root delay 3903 * epsilon is the peer dispersion 3904 * + (15 usec each second) 3905 * EPSILON is the root dispersion 3906 * D is sys_jitter 3907 * 3908 * NB: Think hard about why we are using these values, and what 3909 * the alternatives are, and the various pros/cons. 3910 * 3911 * DLM thinks these are probably the best choices from any of the 3912 * other worse choices. 3913 */ 3914 dtemp = (peer->delay + peer->rootdelay) / 2 3915 + peer->disp 3916 + clock_phi * (current_time - peer->update) 3917 + peer->rootdisp 3918 + peer->jitter; 3919 /* 3920 * Careful squeak here. The value returned must be greater than 3921 * the minimum root dispersion in order to avoid clockhop with 3922 * highly precise reference clocks. Note that the root distance 3923 * cannot exceed the sys_maxdist, as this is the cutoff by the 3924 * selection algorithm. 3925 */ 3926 if (dtemp < sys_mindisp) 3927 dtemp = sys_mindisp; 3928 return (dtemp); 3929 } 3930 3931 3932 /* 3933 * peer_xmit - send packet for persistent association. 3934 */ 3935 static void 3936 peer_xmit( 3937 struct peer *peer /* peer structure pointer */ 3938 ) 3939 { 3940 struct pkt xpkt; /* transmit packet */ 3941 size_t sendlen, authlen; 3942 keyid_t xkeyid = 0; /* transmit key ID */ 3943 l_fp xmt_tx, xmt_ty; 3944 3945 if (!peer->dstadr) /* drop peers without interface */ 3946 return; 3947 3948 xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, peer->version, 3949 peer->hmode); 3950 xpkt.stratum = STRATUM_TO_PKT(sys_stratum); 3951 xpkt.ppoll = peer->hpoll; 3952 xpkt.precision = sys_precision; 3953 xpkt.refid = sys_refid; 3954 xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay)); 3955 xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp)); 3956 HTONL_FP(&sys_reftime, &xpkt.reftime); 3957 HTONL_FP(&peer->rec, &xpkt.org); 3958 HTONL_FP(&peer->dst, &xpkt.rec); 3959 3960 /* 3961 * If the received packet contains a MAC, the transmitted packet 3962 * is authenticated and contains a MAC. If not, the transmitted 3963 * packet is not authenticated. 3964 * 3965 * It is most important when autokey is in use that the local 3966 * interface IP address be known before the first packet is 3967 * sent. Otherwise, it is not possible to compute a correct MAC 3968 * the recipient will accept. Thus, the I/O semantics have to do 3969 * a little more work. In particular, the wildcard interface 3970 * might not be usable. 3971 */ 3972 sendlen = LEN_PKT_NOMAC; 3973 if ( 3974 #ifdef AUTOKEY 3975 !(peer->flags & FLAG_SKEY) && 3976 #endif /* !AUTOKEY */ 3977 peer->keyid == 0) { 3978 3979 /* 3980 * Transmit a-priori timestamps 3981 */ 3982 get_systime(&xmt_tx); 3983 if (peer->flip == 0) { /* basic mode */ 3984 peer->aorg = xmt_tx; 3985 HTONL_FP(&xmt_tx, &xpkt.xmt); 3986 } else { /* interleaved modes */ 3987 if (peer->hmode == MODE_BROADCAST) { /* bcst */ 3988 HTONL_FP(&xmt_tx, &xpkt.xmt); 3989 if (peer->flip > 0) 3990 HTONL_FP(&peer->borg, 3991 &xpkt.org); 3992 else 3993 HTONL_FP(&peer->aorg, 3994 &xpkt.org); 3995 } else { /* symmetric */ 3996 if (peer->flip > 0) 3997 HTONL_FP(&peer->borg, 3998 &xpkt.xmt); 3999 else 4000 HTONL_FP(&peer->aorg, 4001 &xpkt.xmt); 4002 } 4003 } 4004 peer->t21_bytes = sendlen; 4005 sendpkt(&peer->srcadr, peer->dstadr, 4006 sys_ttl[(peer->ttl >= sys_ttlmax) ? sys_ttlmax : peer->ttl], 4007 &xpkt, sendlen); 4008 peer->sent++; 4009 peer->throttle += (1 << peer->minpoll) - 2; 4010 4011 /* 4012 * Capture a-posteriori timestamps 4013 */ 4014 get_systime(&xmt_ty); 4015 if (peer->flip != 0) { /* interleaved modes */ 4016 if (peer->flip > 0) 4017 peer->aorg = xmt_ty; 4018 else 4019 peer->borg = xmt_ty; 4020 peer->flip = -peer->flip; 4021 } 4022 L_SUB(&xmt_ty, &xmt_tx); 4023 LFPTOD(&xmt_ty, peer->xleave); 4024 DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d len %zu xmt %#010x.%08x\n", 4025 current_time, 4026 peer->dstadr ? stoa(&peer->dstadr->sin) : "-", 4027 stoa(&peer->srcadr), peer->hmode, sendlen, 4028 xmt_tx.l_ui, xmt_tx.l_uf)); 4029 return; 4030 } 4031 4032 /* 4033 * Authentication is enabled, so the transmitted packet must be 4034 * authenticated. If autokey is enabled, fuss with the various 4035 * modes; otherwise, symmetric key cryptography is used. 4036 */ 4037 #ifdef AUTOKEY 4038 if (peer->flags & FLAG_SKEY) { 4039 struct exten *exten; /* extension field */ 4040 4041 /* 4042 * The Public Key Dance (PKD): Cryptographic credentials 4043 * are contained in extension fields, each including a 4044 * 4-octet length/code word followed by a 4-octet 4045 * association ID and optional additional data. Optional 4046 * data includes a 4-octet data length field followed by 4047 * the data itself. Request messages are sent from a 4048 * configured association; response messages can be sent 4049 * from a configured association or can take the fast 4050 * path without ever matching an association. Response 4051 * messages have the same code as the request, but have 4052 * a response bit and possibly an error bit set. In this 4053 * implementation, a message may contain no more than 4054 * one command and one or more responses. 4055 * 4056 * Cryptographic session keys include both a public and 4057 * a private componet. Request and response messages 4058 * using extension fields are always sent with the 4059 * private component set to zero. Packets without 4060 * extension fields indlude the private component when 4061 * the session key is generated. 4062 */ 4063 while (1) { 4064 4065 /* 4066 * Allocate and initialize a keylist if not 4067 * already done. Then, use the list in inverse 4068 * order, discarding keys once used. Keep the 4069 * latest key around until the next one, so 4070 * clients can use client/server packets to 4071 * compute propagation delay. 4072 * 4073 * Note that once a key is used from the list, 4074 * it is retained in the key cache until the 4075 * next key is used. This is to allow a client 4076 * to retrieve the encrypted session key 4077 * identifier to verify authenticity. 4078 * 4079 * If for some reason a key is no longer in the 4080 * key cache, a birthday has happened or the key 4081 * has expired, so the pseudo-random sequence is 4082 * broken. In that case, purge the keylist and 4083 * regenerate it. 4084 */ 4085 if (peer->keynumber == 0) 4086 make_keylist(peer, peer->dstadr); 4087 else 4088 peer->keynumber--; 4089 xkeyid = peer->keylist[peer->keynumber]; 4090 if (authistrusted(xkeyid)) 4091 break; 4092 else 4093 key_expire(peer); 4094 } 4095 peer->keyid = xkeyid; 4096 exten = NULL; 4097 switch (peer->hmode) { 4098 4099 /* 4100 * In broadcast server mode the autokey values are 4101 * required by the broadcast clients. Push them when a 4102 * new keylist is generated; otherwise, push the 4103 * association message so the client can request them at 4104 * other times. 4105 */ 4106 case MODE_BROADCAST: 4107 if (peer->flags & FLAG_ASSOC) 4108 exten = crypto_args(peer, CRYPTO_AUTO | 4109 CRYPTO_RESP, peer->associd, NULL); 4110 else 4111 exten = crypto_args(peer, CRYPTO_ASSOC | 4112 CRYPTO_RESP, peer->associd, NULL); 4113 break; 4114 4115 /* 4116 * In symmetric modes the parameter, certificate, 4117 * identity, cookie and autokey exchanges are 4118 * required. The leapsecond exchange is optional. But, a 4119 * peer will not believe the other peer until the other 4120 * peer has synchronized, so the certificate exchange 4121 * might loop until then. If a peer finds a broken 4122 * autokey sequence, it uses the autokey exchange to 4123 * retrieve the autokey values. In any case, if a new 4124 * keylist is generated, the autokey values are pushed. 4125 */ 4126 case MODE_ACTIVE: 4127 case MODE_PASSIVE: 4128 4129 /* 4130 * Parameter, certificate and identity. 4131 */ 4132 if (!peer->crypto) 4133 exten = crypto_args(peer, CRYPTO_ASSOC, 4134 peer->associd, hostval.ptr); 4135 else if (!(peer->crypto & CRYPTO_FLAG_CERT)) 4136 exten = crypto_args(peer, CRYPTO_CERT, 4137 peer->associd, peer->issuer); 4138 else if (!(peer->crypto & CRYPTO_FLAG_VRFY)) 4139 exten = crypto_args(peer, 4140 crypto_ident(peer), peer->associd, 4141 NULL); 4142 4143 /* 4144 * Cookie and autokey. We request the cookie 4145 * only when the this peer and the other peer 4146 * are synchronized. But, this peer needs the 4147 * autokey values when the cookie is zero. Any 4148 * time we regenerate the key list, we offer the 4149 * autokey values without being asked. If for 4150 * some reason either peer finds a broken 4151 * autokey sequence, the autokey exchange is 4152 * used to retrieve the autokey values. 4153 */ 4154 else if ( sys_leap != LEAP_NOTINSYNC 4155 && peer->leap != LEAP_NOTINSYNC 4156 && !(peer->crypto & CRYPTO_FLAG_COOK)) 4157 exten = crypto_args(peer, CRYPTO_COOK, 4158 peer->associd, NULL); 4159 else if (!(peer->crypto & CRYPTO_FLAG_AUTO)) 4160 exten = crypto_args(peer, CRYPTO_AUTO, 4161 peer->associd, NULL); 4162 else if ( peer->flags & FLAG_ASSOC 4163 && peer->crypto & CRYPTO_FLAG_SIGN) 4164 exten = crypto_args(peer, CRYPTO_AUTO | 4165 CRYPTO_RESP, peer->assoc, NULL); 4166 4167 /* 4168 * Wait for clock sync, then sign the 4169 * certificate and retrieve the leapsecond 4170 * values. 4171 */ 4172 else if (sys_leap == LEAP_NOTINSYNC) 4173 break; 4174 4175 else if (!(peer->crypto & CRYPTO_FLAG_SIGN)) 4176 exten = crypto_args(peer, CRYPTO_SIGN, 4177 peer->associd, hostval.ptr); 4178 else if (!(peer->crypto & CRYPTO_FLAG_LEAP)) 4179 exten = crypto_args(peer, CRYPTO_LEAP, 4180 peer->associd, NULL); 4181 break; 4182 4183 /* 4184 * In client mode the parameter, certificate, identity, 4185 * cookie and sign exchanges are required. The 4186 * leapsecond exchange is optional. If broadcast client 4187 * mode the same exchanges are required, except that the 4188 * autokey exchange is substitutes for the cookie 4189 * exchange, since the cookie is always zero. If the 4190 * broadcast client finds a broken autokey sequence, it 4191 * uses the autokey exchange to retrieve the autokey 4192 * values. 4193 */ 4194 case MODE_CLIENT: 4195 4196 /* 4197 * Parameter, certificate and identity. 4198 */ 4199 if (!peer->crypto) 4200 exten = crypto_args(peer, CRYPTO_ASSOC, 4201 peer->associd, hostval.ptr); 4202 else if (!(peer->crypto & CRYPTO_FLAG_CERT)) 4203 exten = crypto_args(peer, CRYPTO_CERT, 4204 peer->associd, peer->issuer); 4205 else if (!(peer->crypto & CRYPTO_FLAG_VRFY)) 4206 exten = crypto_args(peer, 4207 crypto_ident(peer), peer->associd, 4208 NULL); 4209 4210 /* 4211 * Cookie and autokey. These are requests, but 4212 * we use the peer association ID with autokey 4213 * rather than our own. 4214 */ 4215 else if (!(peer->crypto & CRYPTO_FLAG_COOK)) 4216 exten = crypto_args(peer, CRYPTO_COOK, 4217 peer->associd, NULL); 4218 else if (!(peer->crypto & CRYPTO_FLAG_AUTO)) 4219 exten = crypto_args(peer, CRYPTO_AUTO, 4220 peer->assoc, NULL); 4221 4222 /* 4223 * Wait for clock sync, then sign the 4224 * certificate and retrieve the leapsecond 4225 * values. 4226 */ 4227 else if (sys_leap == LEAP_NOTINSYNC) 4228 break; 4229 4230 else if (!(peer->crypto & CRYPTO_FLAG_SIGN)) 4231 exten = crypto_args(peer, CRYPTO_SIGN, 4232 peer->associd, hostval.ptr); 4233 else if (!(peer->crypto & CRYPTO_FLAG_LEAP)) 4234 exten = crypto_args(peer, CRYPTO_LEAP, 4235 peer->associd, NULL); 4236 break; 4237 } 4238 4239 /* 4240 * Add a queued extension field if present. This is 4241 * always a request message, so the reply ID is already 4242 * in the message. If an error occurs, the error bit is 4243 * lit in the response. 4244 */ 4245 if (peer->cmmd != NULL) { 4246 u_int32 temp32; 4247 4248 temp32 = CRYPTO_RESP; 4249 peer->cmmd->opcode |= htonl(temp32); 4250 sendlen += crypto_xmit(peer, &xpkt, NULL, 4251 sendlen, peer->cmmd, 0); 4252 free(peer->cmmd); 4253 peer->cmmd = NULL; 4254 } 4255 4256 /* 4257 * Add an extension field created above. All but the 4258 * autokey response message are request messages. 4259 */ 4260 if (exten != NULL) { 4261 if (exten->opcode != 0) 4262 sendlen += crypto_xmit(peer, &xpkt, 4263 NULL, sendlen, exten, 0); 4264 free(exten); 4265 } 4266 4267 /* 4268 * Calculate the next session key. Since extension 4269 * fields are present, the cookie value is zero. 4270 */ 4271 if (sendlen > (int)LEN_PKT_NOMAC) { 4272 session_key(&peer->dstadr->sin, &peer->srcadr, 4273 xkeyid, 0, 2); 4274 } 4275 } 4276 #endif /* AUTOKEY */ 4277 4278 /* 4279 * Transmit a-priori timestamps 4280 */ 4281 get_systime(&xmt_tx); 4282 if (peer->flip == 0) { /* basic mode */ 4283 peer->aorg = xmt_tx; 4284 HTONL_FP(&xmt_tx, &xpkt.xmt); 4285 } else { /* interleaved modes */ 4286 if (peer->hmode == MODE_BROADCAST) { /* bcst */ 4287 HTONL_FP(&xmt_tx, &xpkt.xmt); 4288 if (peer->flip > 0) 4289 HTONL_FP(&peer->borg, &xpkt.org); 4290 else 4291 HTONL_FP(&peer->aorg, &xpkt.org); 4292 } else { /* symmetric */ 4293 if (peer->flip > 0) 4294 HTONL_FP(&peer->borg, &xpkt.xmt); 4295 else 4296 HTONL_FP(&peer->aorg, &xpkt.xmt); 4297 } 4298 } 4299 xkeyid = peer->keyid; 4300 authlen = authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen); 4301 if (authlen == 0) { 4302 report_event(PEVNT_AUTH, peer, "no key"); 4303 peer->flash |= TEST5; /* auth error */ 4304 peer->badauth++; 4305 return; 4306 } 4307 sendlen += authlen; 4308 #ifdef AUTOKEY 4309 if (xkeyid > NTP_MAXKEY) 4310 authtrust(xkeyid, 0); 4311 #endif /* AUTOKEY */ 4312 if (sendlen > sizeof(xpkt)) { 4313 msyslog(LOG_ERR, "peer_xmit: buffer overflow %zu", sendlen); 4314 exit (-1); 4315 } 4316 peer->t21_bytes = sendlen; 4317 sendpkt(&peer->srcadr, peer->dstadr, 4318 sys_ttl[(peer->ttl >= sys_ttlmax) ? sys_ttlmax : peer->ttl], 4319 &xpkt, sendlen); 4320 peer->sent++; 4321 peer->throttle += (1 << peer->minpoll) - 2; 4322 4323 /* 4324 * Capture a-posteriori timestamps 4325 */ 4326 get_systime(&xmt_ty); 4327 if (peer->flip != 0) { /* interleaved modes */ 4328 if (peer->flip > 0) 4329 peer->aorg = xmt_ty; 4330 else 4331 peer->borg = xmt_ty; 4332 peer->flip = -peer->flip; 4333 } 4334 L_SUB(&xmt_ty, &xmt_tx); 4335 LFPTOD(&xmt_ty, peer->xleave); 4336 #ifdef AUTOKEY 4337 DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d keyid %08x len %zu index %d\n", 4338 current_time, latoa(peer->dstadr), 4339 ntoa(&peer->srcadr), peer->hmode, xkeyid, sendlen, 4340 peer->keynumber)); 4341 #else /* !AUTOKEY follows */ 4342 DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d keyid %08x len %zu\n", 4343 current_time, peer->dstadr ? 4344 ntoa(&peer->dstadr->sin) : "-", 4345 ntoa(&peer->srcadr), peer->hmode, xkeyid, sendlen)); 4346 #endif /* !AUTOKEY */ 4347 4348 return; 4349 } 4350 4351 4352 #ifdef LEAP_SMEAR 4353 4354 static void 4355 leap_smear_add_offs( 4356 l_fp *t, 4357 l_fp *t_recv 4358 ) 4359 { 4360 4361 L_ADD(t, &leap_smear.offset); 4362 4363 /* 4364 ** XXX: Should the smear be added to the root dispersion? 4365 */ 4366 4367 return; 4368 } 4369 4370 #endif /* LEAP_SMEAR */ 4371 4372 4373 /* 4374 * fast_xmit - Send packet for nonpersistent association. Note that 4375 * neither the source or destination can be a broadcast address. 4376 */ 4377 static void 4378 fast_xmit( 4379 struct recvbuf *rbufp, /* receive packet pointer */ 4380 int xmode, /* receive mode */ 4381 keyid_t xkeyid, /* transmit key ID */ 4382 int flags /* restrict mask */ 4383 ) 4384 { 4385 struct pkt xpkt; /* transmit packet structure */ 4386 struct pkt *rpkt; /* receive packet structure */ 4387 l_fp xmt_tx, xmt_ty; 4388 size_t sendlen; 4389 #ifdef AUTOKEY 4390 u_int32 temp32; 4391 #endif 4392 4393 /* 4394 * Initialize transmit packet header fields from the receive 4395 * buffer provided. We leave the fields intact as received, but 4396 * set the peer poll at the maximum of the receive peer poll and 4397 * the system minimum poll (ntp_minpoll). This is for KoD rate 4398 * control and not strictly specification compliant, but doesn't 4399 * break anything. 4400 * 4401 * If the gazinta was from a multicast address, the gazoutta 4402 * must go out another way. 4403 */ 4404 rpkt = &rbufp->recv_pkt; 4405 if (rbufp->dstadr->flags & INT_MCASTOPEN) 4406 rbufp->dstadr = findinterface(&rbufp->recv_srcadr); 4407 4408 /* 4409 * If this is a kiss-o'-death (KoD) packet, show leap 4410 * unsynchronized, stratum zero, reference ID the four-character 4411 * kiss code and system root delay. Note we don't reveal the 4412 * local time, so these packets can't be used for 4413 * synchronization. 4414 */ 4415 if (flags & RES_KOD) { 4416 sys_kodsent++; 4417 xpkt.li_vn_mode = PKT_LI_VN_MODE(LEAP_NOTINSYNC, 4418 PKT_VERSION(rpkt->li_vn_mode), xmode); 4419 xpkt.stratum = STRATUM_PKT_UNSPEC; 4420 xpkt.ppoll = max(rpkt->ppoll, ntp_minpoll); 4421 xpkt.precision = rpkt->precision; 4422 memcpy(&xpkt.refid, "RATE", 4); 4423 xpkt.rootdelay = rpkt->rootdelay; 4424 xpkt.rootdisp = rpkt->rootdisp; 4425 xpkt.reftime = rpkt->reftime; 4426 xpkt.org = rpkt->xmt; 4427 xpkt.rec = rpkt->xmt; 4428 xpkt.xmt = rpkt->xmt; 4429 4430 /* 4431 * This is a normal packet. Use the system variables. 4432 */ 4433 } else { 4434 #ifdef LEAP_SMEAR 4435 /* 4436 * Make copies of the variables which can be affected by smearing. 4437 */ 4438 l_fp this_ref_time; 4439 l_fp this_recv_time; 4440 #endif 4441 4442 /* 4443 * If we are inside the leap smear interval we add the current smear offset to 4444 * the packet receive time, to the packet transmit time, and eventually to the 4445 * reftime to make sure the reftime isn't later than the transmit/receive times. 4446 */ 4447 xpkt.li_vn_mode = PKT_LI_VN_MODE(xmt_leap, 4448 PKT_VERSION(rpkt->li_vn_mode), xmode); 4449 4450 xpkt.stratum = STRATUM_TO_PKT(sys_stratum); 4451 xpkt.ppoll = max(rpkt->ppoll, ntp_minpoll); 4452 xpkt.precision = sys_precision; 4453 xpkt.refid = sys_refid; 4454 xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay)); 4455 xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp)); 4456 4457 #ifdef LEAP_SMEAR 4458 this_ref_time = sys_reftime; 4459 if (leap_smear.in_progress) { 4460 leap_smear_add_offs(&this_ref_time, NULL); 4461 xpkt.refid = convertLFPToRefID(leap_smear.offset); 4462 DPRINTF(2, ("fast_xmit: leap_smear.in_progress: refid %8x, smear %s\n", 4463 ntohl(xpkt.refid), 4464 lfptoa(&leap_smear.offset, 8) 4465 )); 4466 } 4467 HTONL_FP(&this_ref_time, &xpkt.reftime); 4468 #else 4469 HTONL_FP(&sys_reftime, &xpkt.reftime); 4470 #endif 4471 4472 xpkt.org = rpkt->xmt; 4473 4474 #ifdef LEAP_SMEAR 4475 this_recv_time = rbufp->recv_time; 4476 if (leap_smear.in_progress) 4477 leap_smear_add_offs(&this_recv_time, NULL); 4478 HTONL_FP(&this_recv_time, &xpkt.rec); 4479 #else 4480 HTONL_FP(&rbufp->recv_time, &xpkt.rec); 4481 #endif 4482 4483 get_systime(&xmt_tx); 4484 #ifdef LEAP_SMEAR 4485 if (leap_smear.in_progress) 4486 leap_smear_add_offs(&xmt_tx, &this_recv_time); 4487 #endif 4488 HTONL_FP(&xmt_tx, &xpkt.xmt); 4489 } 4490 4491 #ifdef HAVE_NTP_SIGND 4492 if (flags & RES_MSSNTP) { 4493 send_via_ntp_signd(rbufp, xmode, xkeyid, flags, &xpkt); 4494 return; 4495 } 4496 #endif /* HAVE_NTP_SIGND */ 4497 4498 /* 4499 * If the received packet contains a MAC, the transmitted packet 4500 * is authenticated and contains a MAC. If not, the transmitted 4501 * packet is not authenticated. 4502 */ 4503 sendlen = LEN_PKT_NOMAC; 4504 if (rbufp->recv_length == sendlen) { 4505 sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, 0, &xpkt, 4506 sendlen); 4507 DPRINTF(1, ("fast_xmit: at %ld %s->%s mode %d len %lu\n", 4508 current_time, stoa(&rbufp->dstadr->sin), 4509 stoa(&rbufp->recv_srcadr), xmode, 4510 (u_long)sendlen)); 4511 return; 4512 } 4513 4514 /* 4515 * The received packet contains a MAC, so the transmitted packet 4516 * must be authenticated. For symmetric key cryptography, use 4517 * the predefined and trusted symmetric keys to generate the 4518 * cryptosum. For autokey cryptography, use the server private 4519 * value to generate the cookie, which is unique for every 4520 * source-destination-key ID combination. 4521 */ 4522 #ifdef AUTOKEY 4523 if (xkeyid > NTP_MAXKEY) { 4524 keyid_t cookie; 4525 4526 /* 4527 * The only way to get here is a reply to a legitimate 4528 * client request message, so the mode must be 4529 * MODE_SERVER. If an extension field is present, there 4530 * can be only one and that must be a command. Do what 4531 * needs, but with private value of zero so the poor 4532 * jerk can decode it. If no extension field is present, 4533 * use the cookie to generate the session key. 4534 */ 4535 cookie = session_key(&rbufp->recv_srcadr, 4536 &rbufp->dstadr->sin, 0, sys_private, 0); 4537 if ((size_t)rbufp->recv_length > sendlen + MAX_MAC_LEN) { 4538 session_key(&rbufp->dstadr->sin, 4539 &rbufp->recv_srcadr, xkeyid, 0, 2); 4540 temp32 = CRYPTO_RESP; 4541 rpkt->exten[0] |= htonl(temp32); 4542 sendlen += crypto_xmit(NULL, &xpkt, rbufp, 4543 sendlen, (struct exten *)rpkt->exten, 4544 cookie); 4545 } else { 4546 session_key(&rbufp->dstadr->sin, 4547 &rbufp->recv_srcadr, xkeyid, cookie, 2); 4548 } 4549 } 4550 #endif /* AUTOKEY */ 4551 get_systime(&xmt_tx); 4552 sendlen += authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen); 4553 #ifdef AUTOKEY 4554 if (xkeyid > NTP_MAXKEY) 4555 authtrust(xkeyid, 0); 4556 #endif /* AUTOKEY */ 4557 sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, 0, &xpkt, sendlen); 4558 get_systime(&xmt_ty); 4559 L_SUB(&xmt_ty, &xmt_tx); 4560 sys_authdelay = xmt_ty; 4561 DPRINTF(1, ("fast_xmit: at %ld %s->%s mode %d keyid %08x len %lu\n", 4562 current_time, ntoa(&rbufp->dstadr->sin), 4563 ntoa(&rbufp->recv_srcadr), xmode, xkeyid, 4564 (u_long)sendlen)); 4565 } 4566 4567 4568 /* 4569 * pool_xmit - resolve hostname or send unicast solicitation for pool. 4570 */ 4571 static void 4572 pool_xmit( 4573 struct peer *pool /* pool solicitor association */ 4574 ) 4575 { 4576 #ifdef WORKER 4577 struct pkt xpkt; /* transmit packet structure */ 4578 struct addrinfo hints; 4579 int rc; 4580 struct interface * lcladr; 4581 sockaddr_u * rmtadr; 4582 r4addr r4a; 4583 int restrict_mask; 4584 struct peer * p; 4585 l_fp xmt_tx; 4586 4587 if (NULL == pool->ai) { 4588 if (pool->addrs != NULL) { 4589 /* free() is used with copy_addrinfo_list() */ 4590 free(pool->addrs); 4591 pool->addrs = NULL; 4592 } 4593 ZERO(hints); 4594 hints.ai_family = AF(&pool->srcadr); 4595 hints.ai_socktype = SOCK_DGRAM; 4596 hints.ai_protocol = IPPROTO_UDP; 4597 /* ignore getaddrinfo_sometime() errors, we will retry */ 4598 rc = getaddrinfo_sometime( 4599 pool->hostname, 4600 "ntp", 4601 &hints, 4602 0, /* no retry */ 4603 &pool_name_resolved, 4604 (void *)(intptr_t)pool->associd); 4605 if (!rc) 4606 DPRINTF(1, ("pool DNS lookup %s started\n", 4607 pool->hostname)); 4608 else 4609 msyslog(LOG_ERR, 4610 "unable to start pool DNS %s: %m", 4611 pool->hostname); 4612 return; 4613 } 4614 4615 do { 4616 /* copy_addrinfo_list ai_addr points to a sockaddr_u */ 4617 rmtadr = (sockaddr_u *)(void *)pool->ai->ai_addr; 4618 pool->ai = pool->ai->ai_next; 4619 p = findexistingpeer(rmtadr, NULL, NULL, MODE_CLIENT, 0, NULL); 4620 } while (p != NULL && pool->ai != NULL); 4621 if (p != NULL) 4622 return; /* out of addresses, re-query DNS next poll */ 4623 restrictions(rmtadr, &r4a); 4624 restrict_mask = r4a.rflags; 4625 if (RES_FLAGS & restrict_mask) 4626 restrict_source(rmtadr, 0, 4627 current_time + POOL_SOLICIT_WINDOW + 1); 4628 lcladr = findinterface(rmtadr); 4629 memset(&xpkt, 0, sizeof(xpkt)); 4630 xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, pool->version, 4631 MODE_CLIENT); 4632 xpkt.stratum = STRATUM_TO_PKT(sys_stratum); 4633 xpkt.ppoll = pool->hpoll; 4634 xpkt.precision = sys_precision; 4635 xpkt.refid = sys_refid; 4636 xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay)); 4637 xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp)); 4638 HTONL_FP(&sys_reftime, &xpkt.reftime); 4639 get_systime(&xmt_tx); 4640 pool->aorg = xmt_tx; 4641 HTONL_FP(&xmt_tx, &xpkt.xmt); 4642 sendpkt(rmtadr, lcladr, 4643 sys_ttl[(pool->ttl >= sys_ttlmax) ? sys_ttlmax : pool->ttl], 4644 &xpkt, LEN_PKT_NOMAC); 4645 pool->sent++; 4646 pool->throttle += (1 << pool->minpoll) - 2; 4647 DPRINTF(1, ("pool_xmit: at %ld %s->%s pool\n", 4648 current_time, latoa(lcladr), stoa(rmtadr))); 4649 msyslog(LOG_INFO, "Soliciting pool server %s", stoa(rmtadr)); 4650 #endif /* WORKER */ 4651 } 4652 4653 4654 #ifdef AUTOKEY 4655 /* 4656 * group_test - test if this is the same group 4657 * 4658 * host assoc return action 4659 * none none 0 mobilize * 4660 * none group 0 mobilize * 4661 * group none 0 mobilize * 4662 * group group 1 mobilize 4663 * group different 1 ignore 4664 * * ignore if notrust 4665 */ 4666 int 4667 group_test( 4668 char *grp, 4669 char *ident 4670 ) 4671 { 4672 if (grp == NULL) 4673 return (0); 4674 4675 if (strcmp(grp, sys_groupname) == 0) 4676 return (0); 4677 4678 if (ident == NULL) 4679 return (1); 4680 4681 if (strcmp(grp, ident) == 0) 4682 return (0); 4683 4684 return (1); 4685 } 4686 #endif /* AUTOKEY */ 4687 4688 4689 #ifdef WORKER 4690 void 4691 pool_name_resolved( 4692 int rescode, 4693 int gai_errno, 4694 void * context, 4695 const char * name, 4696 const char * service, 4697 const struct addrinfo * hints, 4698 const struct addrinfo * res 4699 ) 4700 { 4701 struct peer * pool; /* pool solicitor association */ 4702 associd_t assoc; 4703 4704 if (rescode) { 4705 msyslog(LOG_ERR, 4706 "error resolving pool %s: %s (%d)", 4707 name, gai_strerror(rescode), rescode); 4708 return; 4709 } 4710 4711 assoc = (associd_t)(intptr_t)context; 4712 pool = findpeerbyassoc(assoc); 4713 if (NULL == pool) { 4714 msyslog(LOG_ERR, 4715 "Could not find assoc %u for pool DNS %s", 4716 assoc, name); 4717 return; 4718 } 4719 DPRINTF(1, ("pool DNS %s completed\n", name)); 4720 pool->addrs = copy_addrinfo_list(res); 4721 pool->ai = pool->addrs; 4722 pool_xmit(pool); 4723 4724 } 4725 #endif /* WORKER */ 4726 4727 4728 #ifdef AUTOKEY 4729 /* 4730 * key_expire - purge the key list 4731 */ 4732 void 4733 key_expire( 4734 struct peer *peer /* peer structure pointer */ 4735 ) 4736 { 4737 int i; 4738 4739 if (peer->keylist != NULL) { 4740 for (i = 0; i <= peer->keynumber; i++) 4741 authtrust(peer->keylist[i], 0); 4742 free(peer->keylist); 4743 peer->keylist = NULL; 4744 } 4745 value_free(&peer->sndval); 4746 peer->keynumber = 0; 4747 peer->flags &= ~FLAG_ASSOC; 4748 DPRINTF(1, ("key_expire: at %lu associd %d\n", current_time, 4749 peer->associd)); 4750 } 4751 #endif /* AUTOKEY */ 4752 4753 4754 /* 4755 * local_refid(peer) - check peer refid to avoid selecting peers 4756 * currently synced to this ntpd. 4757 */ 4758 static int 4759 local_refid( 4760 struct peer * p 4761 ) 4762 { 4763 endpt * unicast_ep; 4764 4765 if (p->dstadr != NULL && !(INT_MCASTIF & p->dstadr->flags)) 4766 unicast_ep = p->dstadr; 4767 else 4768 unicast_ep = findinterface(&p->srcadr); 4769 4770 if (unicast_ep != NULL && p->refid == unicast_ep->addr_refid) 4771 return TRUE; 4772 else 4773 return FALSE; 4774 } 4775 4776 4777 /* 4778 * Determine if the peer is unfit for synchronization 4779 * 4780 * A peer is unfit for synchronization if 4781 * > TEST10 bad leap or stratum below floor or at or above ceiling 4782 * > TEST11 root distance exceeded for remote peer 4783 * > TEST12 a direct or indirect synchronization loop would form 4784 * > TEST13 unreachable or noselect 4785 */ 4786 int /* FALSE if fit, TRUE if unfit */ 4787 peer_unfit( 4788 struct peer *peer /* peer structure pointer */ 4789 ) 4790 { 4791 int rval = 0; 4792 4793 /* 4794 * A stratum error occurs if (1) the server has never been 4795 * synchronized, (2) the server stratum is below the floor or 4796 * greater than or equal to the ceiling. 4797 */ 4798 if ( peer->leap == LEAP_NOTINSYNC 4799 || peer->stratum < sys_floor 4800 || peer->stratum >= sys_ceiling) { 4801 rval |= TEST10; /* bad synch or stratum */ 4802 } 4803 4804 /* 4805 * A distance error for a remote peer occurs if the root 4806 * distance is greater than or equal to the distance threshold 4807 * plus the increment due to one host poll interval. 4808 */ 4809 if ( !(peer->flags & FLAG_REFCLOCK) 4810 && root_distance(peer) >= sys_maxdist 4811 + clock_phi * ULOGTOD(peer->hpoll)) { 4812 rval |= TEST11; /* distance exceeded */ 4813 } 4814 4815 /* 4816 * A loop error occurs if the remote peer is synchronized to the 4817 * local peer or if the remote peer is synchronized to the same 4818 * server as the local peer but only if the remote peer is 4819 * neither a reference clock nor an orphan. 4820 */ 4821 if (peer->stratum > 1 && local_refid(peer)) { 4822 rval |= TEST12; /* synchronization loop */ 4823 } 4824 4825 /* 4826 * An unreachable error occurs if the server is unreachable or 4827 * the noselect bit is set. 4828 */ 4829 if (!peer->reach || (peer->flags & FLAG_NOSELECT)) { 4830 rval |= TEST13; /* unreachable */ 4831 } 4832 4833 peer->flash &= ~PEER_TEST_MASK; 4834 peer->flash |= rval; 4835 return (rval); 4836 } 4837 4838 4839 /* 4840 * Find the precision of this particular machine 4841 */ 4842 #define MINSTEP 20e-9 /* minimum clock increment (s) */ 4843 #define MAXSTEP 1 /* maximum clock increment (s) */ 4844 #define MINCHANGES 12 /* minimum number of step samples */ 4845 #define MAXLOOPS ((int)(1. / MINSTEP)) /* avoid infinite loop */ 4846 4847 /* 4848 * This routine measures the system precision defined as the minimum of 4849 * a sequence of differences between successive readings of the system 4850 * clock. However, if a difference is less than MINSTEP, the clock has 4851 * been read more than once during a clock tick and the difference is 4852 * ignored. We set MINSTEP greater than zero in case something happens 4853 * like a cache miss, and to tolerate underlying system clocks which 4854 * ensure each reading is strictly greater than prior readings while 4855 * using an underlying stepping (not interpolated) clock. 4856 * 4857 * sys_tick and sys_precision represent the time to read the clock for 4858 * systems with high-precision clocks, and the tick interval or step 4859 * size for lower-precision stepping clocks. 4860 * 4861 * This routine also measures the time to read the clock on stepping 4862 * system clocks by counting the number of readings between changes of 4863 * the underlying clock. With either type of clock, the minimum time 4864 * to read the clock is saved as sys_fuzz, and used to ensure the 4865 * get_systime() readings always increase and are fuzzed below sys_fuzz. 4866 */ 4867 void 4868 measure_precision(void) 4869 { 4870 /* 4871 * With sys_fuzz set to zero, get_systime() fuzzing of low bits 4872 * is effectively disabled. trunc_os_clock is FALSE to disable 4873 * get_ostime() simulation of a low-precision system clock. 4874 */ 4875 set_sys_fuzz(0.); 4876 trunc_os_clock = FALSE; 4877 measured_tick = measure_tick_fuzz(); 4878 set_sys_tick_precision(measured_tick); 4879 msyslog(LOG_INFO, "proto: precision = %.3f usec (%d)", 4880 sys_tick * 1e6, sys_precision); 4881 if (sys_fuzz < sys_tick) { 4882 msyslog(LOG_NOTICE, "proto: fuzz beneath %.3f usec", 4883 sys_fuzz * 1e6); 4884 } 4885 } 4886 4887 4888 /* 4889 * measure_tick_fuzz() 4890 * 4891 * measures the minimum time to read the clock (stored in sys_fuzz) 4892 * and returns the tick, the larger of the minimum increment observed 4893 * between successive clock readings and the time to read the clock. 4894 */ 4895 double 4896 measure_tick_fuzz(void) 4897 { 4898 l_fp minstep; /* MINSTEP as l_fp */ 4899 l_fp val; /* current seconds fraction */ 4900 l_fp last; /* last seconds fraction */ 4901 l_fp ldiff; /* val - last */ 4902 double tick; /* computed tick value */ 4903 double diff; 4904 long repeats; 4905 long max_repeats; 4906 int changes; 4907 int i; /* log2 precision */ 4908 4909 tick = MAXSTEP; 4910 max_repeats = 0; 4911 repeats = 0; 4912 changes = 0; 4913 DTOLFP(MINSTEP, &minstep); 4914 get_systime(&last); 4915 for (i = 0; i < MAXLOOPS && changes < MINCHANGES; i++) { 4916 get_systime(&val); 4917 ldiff = val; 4918 L_SUB(&ldiff, &last); 4919 last = val; 4920 if (L_ISGT(&ldiff, &minstep)) { 4921 max_repeats = max(repeats, max_repeats); 4922 repeats = 0; 4923 changes++; 4924 LFPTOD(&ldiff, diff); 4925 tick = min(diff, tick); 4926 } else { 4927 repeats++; 4928 } 4929 } 4930 if (changes < MINCHANGES) { 4931 msyslog(LOG_ERR, "Fatal error: precision could not be measured (MINSTEP too large?)"); 4932 exit(1); 4933 } 4934 4935 if (0 == max_repeats) { 4936 set_sys_fuzz(tick); 4937 } else { 4938 set_sys_fuzz(tick / max_repeats); 4939 } 4940 4941 return tick; 4942 } 4943 4944 4945 void 4946 set_sys_tick_precision( 4947 double tick 4948 ) 4949 { 4950 int i; 4951 4952 if (tick > 1.) { 4953 msyslog(LOG_ERR, 4954 "unsupported tick %.3f > 1s ignored", tick); 4955 return; 4956 } 4957 if (tick < measured_tick) { 4958 msyslog(LOG_ERR, 4959 "proto: tick %.3f less than measured tick %.3f, ignored", 4960 tick, measured_tick); 4961 return; 4962 } else if (tick > measured_tick) { 4963 trunc_os_clock = TRUE; 4964 msyslog(LOG_NOTICE, 4965 "proto: truncating system clock to multiples of %.9f", 4966 tick); 4967 } 4968 sys_tick = tick; 4969 4970 /* 4971 * Find the nearest power of two. 4972 */ 4973 for (i = 0; tick <= 1; i--) 4974 tick *= 2; 4975 if (tick - 1 > 1 - tick / 2) 4976 i++; 4977 4978 sys_precision = (s_char)i; 4979 } 4980 4981 4982 /* 4983 * init_proto - initialize the protocol module's data 4984 */ 4985 void 4986 init_proto(void) 4987 { 4988 l_fp dummy; 4989 int i; 4990 4991 /* 4992 * Fill in the sys_* stuff. Default is don't listen to 4993 * broadcasting, require authentication. 4994 */ 4995 set_sys_leap(LEAP_NOTINSYNC); 4996 sys_stratum = STRATUM_UNSPEC; 4997 memcpy(&sys_refid, "INIT", 4); 4998 sys_peer = NULL; 4999 sys_rootdelay = 0; 5000 sys_rootdisp = 0; 5001 L_CLR(&sys_reftime); 5002 sys_jitter = 0; 5003 measure_precision(); 5004 get_systime(&dummy); 5005 sys_survivors = 0; 5006 sys_manycastserver = 0; 5007 sys_bclient = 0; 5008 sys_bdelay = BDELAY_DEFAULT; /*[Bug 3031] delay cutoff */ 5009 sys_authenticate = 1; 5010 sys_stattime = current_time; 5011 orphwait = current_time + sys_orphwait; 5012 proto_clr_stats(); 5013 for (i = 0; i < MAX_TTL; ++i) 5014 sys_ttl[i] = (u_char)((i * 256) / MAX_TTL); 5015 sys_ttlmax = (MAX_TTL - 1); 5016 hardpps_enable = 0; 5017 stats_control = 1; 5018 } 5019 5020 5021 /* 5022 * proto_config - configure the protocol module 5023 */ 5024 void 5025 proto_config( 5026 int item, 5027 u_long value, 5028 double dvalue, 5029 sockaddr_u *svalue 5030 ) 5031 { 5032 /* 5033 * Figure out what he wants to change, then do it 5034 */ 5035 DPRINTF(2, ("proto_config: code %d value %lu dvalue %lf\n", 5036 item, value, dvalue)); 5037 5038 switch (item) { 5039 5040 /* 5041 * enable and disable commands - arguments are Boolean. 5042 */ 5043 case PROTO_AUTHENTICATE: /* authentication (auth) */ 5044 sys_authenticate = value; 5045 break; 5046 5047 case PROTO_BROADCLIENT: /* broadcast client (bclient) */ 5048 sys_bclient = (int)value; 5049 if (sys_bclient == 0) 5050 io_unsetbclient(); 5051 else 5052 io_setbclient(); 5053 break; 5054 5055 #ifdef REFCLOCK 5056 case PROTO_CAL: /* refclock calibrate (calibrate) */ 5057 cal_enable = value; 5058 break; 5059 #endif /* REFCLOCK */ 5060 5061 case PROTO_KERNEL: /* kernel discipline (kernel) */ 5062 select_loop(value); 5063 break; 5064 5065 case PROTO_MONITOR: /* monitoring (monitor) */ 5066 if (value) 5067 mon_start(MON_ON); 5068 else { 5069 mon_stop(MON_ON); 5070 if (mon_enabled) 5071 msyslog(LOG_WARNING, 5072 "restrict: 'monitor' cannot be disabled while 'limited' is enabled"); 5073 } 5074 break; 5075 5076 case PROTO_NTP: /* NTP discipline (ntp) */ 5077 ntp_enable = value; 5078 break; 5079 5080 case PROTO_MODE7: /* mode7 management (ntpdc) */ 5081 ntp_mode7 = value; 5082 break; 5083 5084 case PROTO_PPS: /* PPS discipline (pps) */ 5085 hardpps_enable = value; 5086 break; 5087 5088 case PROTO_FILEGEN: /* statistics (stats) */ 5089 stats_control = value; 5090 break; 5091 5092 /* 5093 * tos command - arguments are double, sometimes cast to int 5094 */ 5095 5096 case PROTO_BCPOLLBSTEP: /* Broadcast Poll Backstep gate (bcpollbstep) */ 5097 sys_bcpollbstep = (u_char)dvalue; 5098 break; 5099 5100 case PROTO_BEACON: /* manycast beacon (beacon) */ 5101 sys_beacon = (int)dvalue; 5102 break; 5103 5104 case PROTO_BROADDELAY: /* default broadcast delay (bdelay) */ 5105 sys_bdelay = (dvalue ? dvalue : BDELAY_DEFAULT); 5106 break; 5107 5108 case PROTO_CEILING: /* stratum ceiling (ceiling) */ 5109 sys_ceiling = (int)dvalue; 5110 break; 5111 5112 case PROTO_COHORT: /* cohort switch (cohort) */ 5113 sys_cohort = (int)dvalue; 5114 break; 5115 5116 case PROTO_FLOOR: /* stratum floor (floor) */ 5117 sys_floor = (int)dvalue; 5118 break; 5119 5120 case PROTO_MAXCLOCK: /* maximum candidates (maxclock) */ 5121 sys_maxclock = (int)dvalue; 5122 break; 5123 5124 case PROTO_MAXDIST: /* select threshold (maxdist) */ 5125 sys_maxdist = dvalue; 5126 break; 5127 5128 case PROTO_CALLDELAY: /* modem call delay (mdelay) */ 5129 break; /* NOT USED */ 5130 5131 case PROTO_MINCLOCK: /* minimum candidates (minclock) */ 5132 sys_minclock = (int)dvalue; 5133 break; 5134 5135 case PROTO_MINDISP: /* minimum distance (mindist) */ 5136 sys_mindisp = dvalue; 5137 break; 5138 5139 case PROTO_MINSANE: /* minimum survivors (minsane) */ 5140 sys_minsane = (int)dvalue; 5141 break; 5142 5143 case PROTO_ORPHAN: /* orphan stratum (orphan) */ 5144 sys_orphan = (int)dvalue; 5145 break; 5146 5147 case PROTO_ORPHWAIT: /* orphan wait (orphwait) */ 5148 orphwait -= sys_orphwait; 5149 sys_orphwait = (int)dvalue; 5150 orphwait += sys_orphwait; 5151 break; 5152 5153 /* 5154 * Miscellaneous commands 5155 */ 5156 case PROTO_MULTICAST_ADD: /* add group address */ 5157 if (svalue != NULL) 5158 io_multicast_add(svalue); 5159 sys_bclient = 1; 5160 break; 5161 5162 case PROTO_MULTICAST_DEL: /* delete group address */ 5163 if (svalue != NULL) 5164 io_multicast_del(svalue); 5165 break; 5166 5167 /* 5168 * Peer_clear Early policy choices 5169 */ 5170 5171 case PROTO_PCEDIGEST: /* Digest */ 5172 peer_clear_digest_early = value; 5173 break; 5174 5175 /* 5176 * Unpeer Early policy choices 5177 */ 5178 5179 case PROTO_UECRYPTO: /* Crypto */ 5180 unpeer_crypto_early = value; 5181 break; 5182 5183 case PROTO_UECRYPTONAK: /* Crypto_NAK */ 5184 unpeer_crypto_nak_early = value; 5185 break; 5186 5187 case PROTO_UEDIGEST: /* Digest */ 5188 unpeer_digest_early = value; 5189 break; 5190 5191 default: 5192 msyslog(LOG_NOTICE, 5193 "proto: unsupported option %d", item); 5194 } 5195 } 5196 5197 5198 /* 5199 * proto_clr_stats - clear protocol stat counters 5200 */ 5201 void 5202 proto_clr_stats(void) 5203 { 5204 sys_stattime = current_time; 5205 sys_received = 0; 5206 sys_processed = 0; 5207 sys_newversion = 0; 5208 sys_oldversion = 0; 5209 sys_declined = 0; 5210 sys_restricted = 0; 5211 sys_badlength = 0; 5212 sys_badauth = 0; 5213 sys_limitrejected = 0; 5214 sys_kodsent = 0; 5215 sys_lamport = 0; 5216 sys_tsrounding = 0; 5217 } 5218