xref: /freebsd/contrib/ntp/ntpd/ntp_proto.c (revision d6eb98610fa65663bf0df4574b7cb2c5c4ffda71)
1 /*
2  * ntp_proto.c - NTP version 4 protocol machinery
3  *
4  * ATTENTION: Get approval from Harlan on all changes to this file!
5  *	    (Harlan will be discussing these changes with Dave Mills.)
6  *
7  */
8 #ifdef HAVE_CONFIG_H
9 #include <config.h>
10 #endif
11 
12 #include "ntpd.h"
13 #include "ntp_stdlib.h"
14 #include "ntp_unixtime.h"
15 #include "ntp_control.h"
16 #include "ntp_string.h"
17 #include "ntp_leapsec.h"
18 #include "refidsmear.h"
19 #include "lib_strbuf.h"
20 
21 #include <stdio.h>
22 #ifdef HAVE_LIBSCF_H
23 #include <libscf.h>
24 #endif
25 #ifdef HAVE_UNISTD_H
26 #include <unistd.h>
27 #endif
28 
29 /* [Bug 3031] define automatic broadcastdelay cutoff preset */
30 #ifndef BDELAY_DEFAULT
31 # define BDELAY_DEFAULT (-0.050)
32 #endif
33 
34 /*
35  * This macro defines the authentication state. If x is 1 authentication
36  * is required; otherwise it is optional.
37  */
38 #define	AUTH(x, y)	((x) ? (y) == AUTH_OK \
39 			     : (y) == AUTH_OK || (y) == AUTH_NONE)
40 
41 typedef enum
42 auth_state {
43 	AUTH_UNKNOWN = -1,	/* Unknown */
44 	AUTH_NONE,		/* authentication not required */
45 	AUTH_OK,		/* authentication OK */
46 	AUTH_ERROR,		/* authentication error */
47 	AUTH_CRYPTO		/* crypto_NAK */
48 } auth_code;
49 
50 /*
51  * Set up Kiss Code values
52  */
53 
54 typedef enum
55 kiss_codes {
56 	NOKISS,				/* No Kiss Code */
57 	RATEKISS,			/* Rate limit Kiss Code */
58 	DENYKISS,			/* Deny Kiss */
59 	RSTRKISS,			/* Restricted Kiss */
60 	XKISS				/* Experimental Kiss */
61 } kiss_code;
62 
63 typedef enum
64 nak_error_codes {
65 	NONAK,				/* No NAK seen */
66 	INVALIDNAK,			/* NAK cannot be used */
67 	VALIDNAK			/* NAK is valid */
68 } nak_code;
69 
70 /*
71  * traffic shaping parameters
72  */
73 #define	NTP_IBURST	6	/* packets in iburst */
74 #define	RESP_DELAY	1	/* refclock burst delay (s) */
75 
76 /*
77  * pool soliciting restriction duration (s)
78  */
79 #define	POOL_SOLICIT_WINDOW	8
80 
81 /*
82  * peer_select groups statistics for a peer used by clock_select() and
83  * clock_cluster().
84  */
85 typedef struct peer_select_tag {
86 	struct peer *	peer;
87 	double		synch;	/* sync distance */
88 	double		error;	/* jitter */
89 	double		seljit;	/* selection jitter */
90 } peer_select;
91 
92 /*
93  * System variables are declared here. Unless specified otherwise, all
94  * times are in seconds.
95  */
96 u_char	sys_leap;		/* system leap indicator, use set_sys_leap() to change this */
97 u_char	xmt_leap;		/* leap indicator sent in client requests, set up by set_sys_leap() */
98 u_char	sys_stratum;		/* system stratum */
99 s_char	sys_precision;		/* local clock precision (log2 s) */
100 double	sys_rootdelay;		/* roundtrip delay to primary source */
101 double	sys_rootdisp;		/* dispersion to primary source */
102 u_int32 sys_refid;		/* reference id (network byte order) */
103 l_fp	sys_reftime;		/* last update time */
104 struct	peer *sys_peer;		/* current peer */
105 
106 #ifdef LEAP_SMEAR
107 struct leap_smear_info leap_smear;
108 #endif
109 int leap_sec_in_progress;
110 
111 /*
112  * Rate controls. Leaky buckets are used to throttle the packet
113  * transmission rates in order to protect busy servers such as at NIST
114  * and USNO. There is a counter for each association and another for KoD
115  * packets. The association counter decrements each second, but not
116  * below zero. Each time a packet is sent the counter is incremented by
117  * a configurable value representing the average interval between
118  * packets. A packet is delayed as long as the counter is greater than
119  * zero. Note this does not affect the time value computations.
120  */
121 /*
122  * Nonspecified system state variables
123  */
124 int	sys_bclient;		/* broadcast client enable */
125 double	sys_bdelay;		/* broadcast client default delay */
126 int	sys_authenticate;	/* requre authentication for config */
127 l_fp	sys_authdelay;		/* authentication delay */
128 double	sys_offset;	/* current local clock offset */
129 double	sys_mindisp = MINDISPERSE; /* minimum distance (s) */
130 double	sys_maxdist = MAXDISTANCE; /* selection threshold */
131 double	sys_jitter;		/* system jitter */
132 u_long	sys_epoch;		/* last clock update time */
133 static	double sys_clockhop;	/* clockhop threshold */
134 static int leap_vote_ins;	/* leap consensus for insert */
135 static int leap_vote_del;	/* leap consensus for delete */
136 keyid_t	sys_private;		/* private value for session seed */
137 int	sys_manycastserver;	/* respond to manycast client pkts */
138 int	ntp_mode7;		/* respond to ntpdc (mode7) */
139 int	peer_ntpdate;		/* active peers in ntpdate mode */
140 int	sys_survivors;		/* truest of the truechimers */
141 char	*sys_ident = NULL;	/* identity scheme */
142 
143 /*
144  * TOS and multicast mapping stuff
145  */
146 int	sys_floor = 0;		/* cluster stratum floor */
147 u_char	sys_bcpollbstep = 0;	/* Broadcast Poll backstep gate */
148 int	sys_ceiling = STRATUM_UNSPEC - 1; /* cluster stratum ceiling */
149 int	sys_minsane = 1;	/* minimum candidates */
150 int	sys_minclock = NTP_MINCLOCK; /* minimum candidates */
151 int	sys_maxclock = NTP_MAXCLOCK; /* maximum candidates */
152 int	sys_cohort = 0;		/* cohort switch */
153 int	sys_orphan = STRATUM_UNSPEC + 1; /* orphan stratum */
154 int	sys_orphwait = NTP_ORPHWAIT; /* orphan wait */
155 int	sys_beacon = BEACON;	/* manycast beacon interval */
156 u_int	sys_ttlmax;		/* max ttl mapping vector index */
157 u_char	sys_ttl[MAX_TTL];	/* ttl mapping vector */
158 
159 /*
160  * Statistics counters - first the good, then the bad
161  */
162 u_long	sys_stattime;		/* elapsed time */
163 u_long	sys_received;		/* packets received */
164 u_long	sys_processed;		/* packets for this host */
165 u_long	sys_newversion;		/* current version */
166 u_long	sys_oldversion;		/* old version */
167 u_long	sys_restricted;		/* access denied */
168 u_long	sys_badlength;		/* bad length or format */
169 u_long	sys_badauth;		/* bad authentication */
170 u_long	sys_declined;		/* declined */
171 u_long	sys_limitrejected;	/* rate exceeded */
172 u_long	sys_kodsent;		/* KoD sent */
173 
174 /*
175  * Mechanism knobs: how soon do we peer_clear() or unpeer()?
176  *
177  * The default way is "on-receipt".  If this was a packet from a
178  * well-behaved source, on-receipt will offer the fastest recovery.
179  * If this was from a DoS attack, the default way makes it easier
180  * for a bad-guy to DoS us.  So look and see what bites you harder
181  * and choose according to your environment.
182  */
183 int peer_clear_digest_early	= 1;	/* bad digest (TEST5) and Autokey */
184 int unpeer_crypto_early		= 1;	/* bad crypto (TEST9) */
185 int unpeer_crypto_nak_early	= 1;	/* crypto_NAK (TEST5) */
186 int unpeer_digest_early		= 1;	/* bad digest (TEST5) */
187 
188 int dynamic_interleave = DYNAMIC_INTERLEAVE;	/* Bug 2978 mitigation */
189 
190 int kiss_code_check(u_char hisleap, u_char hisstratum, u_char hismode, u_int32 refid);
191 nak_code	valid_NAK	(struct peer *peer, struct recvbuf *rbufp, u_char hismode);
192 static	double	root_distance	(struct peer *);
193 static	void	clock_combine	(peer_select *, int, int);
194 static	void	peer_xmit	(struct peer *);
195 static	void	fast_xmit	(struct recvbuf *, int, keyid_t, int);
196 static	void	pool_xmit	(struct peer *);
197 static	void	clock_update	(struct peer *);
198 static	void	measure_precision(void);
199 static	double	measure_tick_fuzz(void);
200 static	int	local_refid	(struct peer *);
201 static	int	peer_unfit	(struct peer *);
202 #ifdef AUTOKEY
203 static	int	group_test	(char *, char *);
204 #endif /* AUTOKEY */
205 #ifdef WORKER
206 void	pool_name_resolved	(int, int, void *, const char *,
207 				 const char *, const struct addrinfo *,
208 				 const struct addrinfo *);
209 #endif /* WORKER */
210 
211 const char *	amtoa		(int am);
212 
213 
214 void
215 set_sys_leap(
216 	u_char new_sys_leap
217 	)
218 {
219 	sys_leap = new_sys_leap;
220 	xmt_leap = sys_leap;
221 
222 	/*
223 	 * Under certain conditions we send faked leap bits to clients, so
224 	 * eventually change xmt_leap below, but never change LEAP_NOTINSYNC.
225 	 */
226 	if (xmt_leap != LEAP_NOTINSYNC) {
227 		if (leap_sec_in_progress) {
228 			/* always send "not sync" */
229 			xmt_leap = LEAP_NOTINSYNC;
230 		}
231 #ifdef LEAP_SMEAR
232 		else {
233 			/*
234 			 * If leap smear is enabled in general we must
235 			 * never send a leap second warning to clients,
236 			 * so make sure we only send "in sync".
237 			 */
238 			if (leap_smear.enabled)
239 				xmt_leap = LEAP_NOWARNING;
240 		}
241 #endif	/* LEAP_SMEAR */
242 	}
243 }
244 
245 
246 /*
247  * Kiss Code check
248  */
249 int
250 kiss_code_check(
251 	u_char hisleap,
252 	u_char hisstratum,
253 	u_char hismode,
254 	u_int32 refid
255 	)
256 {
257 
258 	if (   hismode == MODE_SERVER
259 	    && hisleap == LEAP_NOTINSYNC
260 	    && hisstratum == STRATUM_UNSPEC) {
261 		if(memcmp(&refid,"RATE", 4) == 0) {
262 			return (RATEKISS);
263 		} else if(memcmp(&refid,"DENY", 4) == 0) {
264 			return (DENYKISS);
265 		} else if(memcmp(&refid,"RSTR", 4) == 0) {
266 			return (RSTRKISS);
267 		} else if(memcmp(&refid,"X", 1) == 0) {
268 			return (XKISS);
269 		}
270 	}
271 	return (NOKISS);
272 }
273 
274 
275 /*
276  * Check that NAK is valid
277  */
278 nak_code
279 valid_NAK(
280 	  struct peer *peer,
281 	  struct recvbuf *rbufp,
282 	  u_char hismode
283 	  )
284 {
285 	int		base_packet_length = MIN_V4_PKT_LEN;
286 	int		remainder_size;
287 	struct pkt *	rpkt;
288 	int		keyid;
289 	l_fp		p_org;	/* origin timestamp */
290 	const l_fp *	myorg;	/* selected peer origin */
291 
292 	/*
293 	 * Check to see if there is something beyond the basic packet
294 	 */
295 	if (rbufp->recv_length == base_packet_length) {
296 		return NONAK;
297 	}
298 
299 	remainder_size = rbufp->recv_length - base_packet_length;
300 	/*
301 	 * Is this a potential NAK?
302 	 */
303 	if (remainder_size != 4) {
304 		return NONAK;
305 	}
306 
307 	/*
308 	 * Only server responses can contain NAK's
309 	 */
310 
311 	if (hismode != MODE_SERVER &&
312 	    hismode != MODE_ACTIVE &&
313 	    hismode != MODE_PASSIVE
314 	    ) {
315 		return INVALIDNAK;
316 	}
317 
318 	/*
319 	 * Make sure that the extra field in the packet is all zeros
320 	 */
321 	rpkt = &rbufp->recv_pkt;
322 	keyid = ntohl(((u_int32 *)rpkt)[base_packet_length / 4]);
323 	if (keyid != 0) {
324 		return INVALIDNAK;
325 	}
326 
327 	/*
328 	 * During the first few packets of the autokey dance there will
329 	 * not (yet) be a keyid, but in this case FLAG_SKEY is set.
330 	 * So the NAK is invalid if either there's no peer, or
331 	 * if the keyid is 0 and FLAG_SKEY is not set.
332 	 */
333 	if (!peer || (!peer->keyid && !(peer->flags & FLAG_SKEY))) {
334 		return INVALIDNAK;
335 	}
336 
337 	/*
338 	 * The ORIGIN must match, or this cannot be a valid NAK, either.
339 	 */
340 	NTOHL_FP(&rpkt->org, &p_org);
341 	if (peer->flip > 0)
342 		myorg = &peer->borg;
343 	else
344 		myorg = &peer->aorg;
345 
346 	if (L_ISZERO(&p_org) ||
347 	    L_ISZERO( myorg) ||
348 	    !L_ISEQU(&p_org, myorg)) {
349 		return INVALIDNAK;
350 	}
351 
352 	/* If we ever passed all that checks, we should be safe. Well,
353 	 * as safe as we can ever be with an unauthenticated crypto-nak.
354 	 */
355 	return VALIDNAK;
356 }
357 
358 
359 /*
360  * transmit - transmit procedure called by poll timeout
361  */
362 void
363 transmit(
364 	struct peer *peer	/* peer structure pointer */
365 	)
366 {
367 	u_char	hpoll;
368 
369 	/*
370 	 * The polling state machine. There are two kinds of machines,
371 	 * those that never expect a reply (broadcast and manycast
372 	 * server modes) and those that do (all other modes). The dance
373 	 * is intricate...
374 	 */
375 	hpoll = peer->hpoll;
376 
377 	/*
378 	 * If we haven't received anything (even if unsync) since last
379 	 * send, reset ppoll.
380 	 */
381 	if (peer->outdate > peer->timelastrec && !peer->reach)
382 		peer->ppoll = peer->maxpoll;
383 
384 	/*
385 	 * In broadcast mode the poll interval is never changed from
386 	 * minpoll.
387 	 */
388 	if (peer->cast_flags & (MDF_BCAST | MDF_MCAST)) {
389 		peer->outdate = current_time;
390 		poll_update(peer, hpoll);
391 		if (sys_leap != LEAP_NOTINSYNC)
392 			peer_xmit(peer);
393 		return;
394 	}
395 
396 	/*
397 	 * In manycast mode we start with unity ttl. The ttl is
398 	 * increased by one for each poll until either sys_maxclock
399 	 * servers have been found or the maximum ttl is reached. When
400 	 * sys_maxclock servers are found we stop polling until one or
401 	 * more servers have timed out or until less than sys_minclock
402 	 * associations turn up. In this case additional better servers
403 	 * are dragged in and preempt the existing ones.  Once every
404 	 * sys_beacon seconds we are to transmit unconditionally, but
405 	 * this code is not quite right -- peer->unreach counts polls
406 	 * and is being compared with sys_beacon, so the beacons happen
407 	 * every sys_beacon polls.
408 	 */
409 	if (peer->cast_flags & MDF_ACAST) {
410 		peer->outdate = current_time;
411 		poll_update(peer, hpoll);
412 		if (peer->unreach > sys_beacon) {
413 			peer->unreach = 0;
414 			peer->ttl = 0;
415 			peer_xmit(peer);
416 		} else if (   sys_survivors < sys_minclock
417 			   || peer_associations < sys_maxclock) {
418 			if (peer->ttl < sys_ttlmax)
419 				peer->ttl++;
420 			peer_xmit(peer);
421 		}
422 		peer->unreach++;
423 		return;
424 	}
425 
426 	/*
427 	 * Pool associations transmit unicast solicitations when there
428 	 * are less than a hard limit of 2 * sys_maxclock associations,
429 	 * and either less than sys_minclock survivors or less than
430 	 * sys_maxclock associations.  The hard limit prevents unbounded
431 	 * growth in associations if the system clock or network quality
432 	 * result in survivor count dipping below sys_minclock often.
433 	 * This was observed testing with pool, where sys_maxclock == 12
434 	 * resulted in 60 associations without the hard limit.  A
435 	 * similar hard limit on manycastclient ephemeral associations
436 	 * may be appropriate.
437 	 */
438 	if (peer->cast_flags & MDF_POOL) {
439 		peer->outdate = current_time;
440 		poll_update(peer, hpoll);
441 		if (   (peer_associations <= 2 * sys_maxclock)
442 		    && (   peer_associations < sys_maxclock
443 			|| sys_survivors < sys_minclock))
444 			pool_xmit(peer);
445 		return;
446 	}
447 
448 	/*
449 	 * In unicast modes the dance is much more intricate. It is
450 	 * designed to back off whenever possible to minimize network
451 	 * traffic.
452 	 */
453 	if (peer->burst == 0) {
454 		u_char oreach;
455 
456 		/*
457 		 * Update the reachability status. If not heard for
458 		 * three consecutive polls, stuff infinity in the clock
459 		 * filter.
460 		 */
461 		oreach = peer->reach;
462 		peer->outdate = current_time;
463 		peer->unreach++;
464 		peer->reach <<= 1;
465 		if (!peer->reach) {
466 
467 			/*
468 			 * Here the peer is unreachable. If it was
469 			 * previously reachable raise a trap. Send a
470 			 * burst if enabled.
471 			 */
472 			clock_filter(peer, 0., 0., MAXDISPERSE);
473 			if (oreach) {
474 				peer_unfit(peer);
475 				report_event(PEVNT_UNREACH, peer, NULL);
476 			}
477 			if (   (peer->flags & FLAG_IBURST)
478 			    && peer->retry == 0)
479 				peer->retry = NTP_RETRY;
480 		} else {
481 
482 			/*
483 			 * Here the peer is reachable. Send a burst if
484 			 * enabled and the peer is fit.  Reset unreach
485 			 * for persistent and ephemeral associations.
486 			 * Unreach is also reset for survivors in
487 			 * clock_select().
488 			 */
489 			hpoll = sys_poll;
490 			if (!(peer->flags & FLAG_PREEMPT))
491 				peer->unreach = 0;
492 			if (   (peer->flags & FLAG_BURST)
493 			    && peer->retry == 0
494 			    && !peer_unfit(peer))
495 				peer->retry = NTP_RETRY;
496 		}
497 
498 		/*
499 		 * Watch for timeout.  If ephemeral, toss the rascal;
500 		 * otherwise, bump the poll interval. Note the
501 		 * poll_update() routine will clamp it to maxpoll.
502 		 * If preemptible and we have more peers than maxclock,
503 		 * and this peer has the minimum score of preemptibles,
504 		 * demobilize.
505 		 */
506 		if (peer->unreach >= NTP_UNREACH) {
507 			hpoll++;
508 			/* ephemeral: no FLAG_CONFIG nor FLAG_PREEMPT */
509 			if (!(peer->flags & (FLAG_CONFIG | FLAG_PREEMPT))) {
510 				report_event(PEVNT_RESTART, peer, "timeout");
511 				peer_clear(peer, "TIME");
512 				unpeer(peer);
513 				return;
514 			}
515 			if (   (peer->flags & FLAG_PREEMPT)
516 			    && (peer_associations > sys_maxclock)
517 			    && score_all(peer)) {
518 				report_event(PEVNT_RESTART, peer, "timeout");
519 				peer_clear(peer, "TIME");
520 				unpeer(peer);
521 				return;
522 			}
523 		}
524 	} else {
525 		peer->burst--;
526 		if (peer->burst == 0) {
527 
528 			/*
529 			 * If ntpdate mode and the clock has not been
530 			 * set and all peers have completed the burst,
531 			 * we declare a successful failure.
532 			 */
533 			if (mode_ntpdate) {
534 				peer_ntpdate--;
535 				if (peer_ntpdate == 0) {
536 					msyslog(LOG_NOTICE,
537 					    "ntpd: no servers found");
538 					if (!msyslog_term)
539 						printf(
540 						    "ntpd: no servers found\n");
541 					exit (0);
542 				}
543 			}
544 		}
545 	}
546 	if (peer->retry > 0)
547 		peer->retry--;
548 
549 	/*
550 	 * Do not transmit if in broadcast client mode.
551 	 */
552 	poll_update(peer, hpoll);
553 	if (peer->hmode != MODE_BCLIENT)
554 		peer_xmit(peer);
555 
556 	return;
557 }
558 
559 
560 const char *
561 amtoa(
562 	int am
563 	)
564 {
565 	char *bp;
566 
567 	switch(am) {
568 	    case AM_ERR:	return "AM_ERR";
569 	    case AM_NOMATCH:	return "AM_NOMATCH";
570 	    case AM_PROCPKT:	return "AM_PROCPKT";
571 	    case AM_BCST:	return "AM_BCST";
572 	    case AM_FXMIT:	return "AM_FXMIT";
573 	    case AM_MANYCAST:	return "AM_MANYCAST";
574 	    case AM_NEWPASS:	return "AM_NEWPASS";
575 	    case AM_NEWBCL:	return "AM_NEWBCL";
576 	    case AM_POSSBCL:	return "AM_POSSBCL";
577 	    default:
578 		LIB_GETBUF(bp);
579 		snprintf(bp, LIB_BUFLENGTH, "AM_#%d", am);
580 		return bp;
581 	}
582 }
583 
584 
585 /*
586  * receive - receive procedure called for each packet received
587  */
588 void
589 receive(
590 	struct recvbuf *rbufp
591 	)
592 {
593 	register struct peer *peer;	/* peer structure pointer */
594 	register struct pkt *pkt;	/* receive packet pointer */
595 	u_char	hisversion;		/* packet version */
596 	u_char	hisleap;		/* packet leap indicator */
597 	u_char	hismode;		/* packet mode */
598 	u_char	hisstratum;		/* packet stratum */
599 	r4addr	r4a;			/* address restrictions */
600 	u_short	restrict_mask;		/* restrict bits */
601 	const char *hm_str;		/* hismode string */
602 	const char *am_str;		/* association match string */
603 	int	kissCode = NOKISS;	/* Kiss Code */
604 	int	has_mac;		/* length of MAC field */
605 	int	authlen;		/* offset of MAC field */
606 	auth_code is_authentic = AUTH_UNKNOWN;	/* Was AUTH_NONE */
607 	nak_code crypto_nak_test;	/* result of crypto-NAK check */
608 	int	retcode = AM_NOMATCH;	/* match code */
609 	keyid_t	skeyid = 0;		/* key IDs */
610 	u_int32	opcode = 0;		/* extension field opcode */
611 	sockaddr_u *dstadr_sin;		/* active runway */
612 	struct peer *peer2;		/* aux peer structure pointer */
613 	endpt	*match_ep;		/* newpeer() local address */
614 	l_fp	p_org;			/* origin timestamp */
615 	l_fp	p_rec;			/* receive timestamp */
616 	l_fp	p_xmt;			/* transmit timestamp */
617 #ifdef AUTOKEY
618 	char	hostname[NTP_MAXSTRLEN + 1];
619 	char	*groupname = NULL;
620 	struct autokey *ap;		/* autokey structure pointer */
621 	int	rval;			/* cookie snatcher */
622 	keyid_t	pkeyid = 0, tkeyid = 0;	/* key IDs */
623 #endif	/* AUTOKEY */
624 #ifdef HAVE_NTP_SIGND
625 	static unsigned char zero_key[16];
626 #endif /* HAVE_NTP_SIGND */
627 
628 	/*
629 	 * Note that there are many places we do not call record_raw_stats().
630 	 *
631 	 * We only want to call it *after* we've sent a response, or perhaps
632 	 * when we've decided to drop a packet.
633 	 */
634 
635 	/*
636 	 * Monitor the packet and get restrictions. Note that the packet
637 	 * length for control and private mode packets must be checked
638 	 * by the service routines. Some restrictions have to be handled
639 	 * later in order to generate a kiss-o'-death packet.
640 	 */
641 	/*
642 	 * Bogus port check is before anything, since it probably
643 	 * reveals a clogging attack.
644 	 */
645 	sys_received++;
646 	if (0 == SRCPORT(&rbufp->recv_srcadr)) {
647 		sys_badlength++;
648 		return;				/* bogus port */
649 	}
650 	restrictions(&rbufp->recv_srcadr, &r4a);
651 	restrict_mask = r4a.rflags;
652 
653 	pkt = &rbufp->recv_pkt;
654 	hisversion = PKT_VERSION(pkt->li_vn_mode);
655 	hisleap = PKT_LEAP(pkt->li_vn_mode);
656 	hismode = (int)PKT_MODE(pkt->li_vn_mode);
657 	hisstratum = PKT_TO_STRATUM(pkt->stratum);
658 	DPRINTF(1, ("receive: at %ld %s<-%s ippeerlimit %d mode %d iflags %s restrict %s org %#010x.%08x xmt %#010x.%08x\n",
659 		    current_time, stoa(&rbufp->dstadr->sin),
660 		    stoa(&rbufp->recv_srcadr), r4a.ippeerlimit, hismode,
661 		    build_iflags(rbufp->dstadr->flags),
662 		    build_rflags(restrict_mask),
663 		    ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf),
664 		    ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)));
665 
666 	/* See basic mode and broadcast checks, below */
667 	INSIST(0 != hisstratum);
668 
669 	if (restrict_mask & RES_IGNORE) {
670 		DPRINTF(2, ("receive: drop: RES_IGNORE\n"));
671 		sys_restricted++;
672 		return;				/* ignore everything */
673 	}
674 	if (hismode == MODE_PRIVATE) {
675 		if (!ntp_mode7 || (restrict_mask & RES_NOQUERY)) {
676 			DPRINTF(2, ("receive: drop: RES_NOQUERY\n"));
677 			sys_restricted++;
678 			return;			/* no query private */
679 		}
680 		process_private(rbufp, ((restrict_mask &
681 		    RES_NOMODIFY) == 0));
682 		return;
683 	}
684 	if (hismode == MODE_CONTROL) {
685 		if (restrict_mask & RES_NOQUERY) {
686 			DPRINTF(2, ("receive: drop: RES_NOQUERY\n"));
687 			sys_restricted++;
688 			return;			/* no query control */
689 		}
690 		process_control(rbufp, restrict_mask);
691 		return;
692 	}
693 	if (restrict_mask & RES_DONTSERVE) {
694 		DPRINTF(2, ("receive: drop: RES_DONTSERVE\n"));
695 		sys_restricted++;
696 		return;				/* no time serve */
697 	}
698 
699 	/*
700 	 * This is for testing. If restricted drop ten percent of
701 	 * surviving packets.
702 	 */
703 	if (restrict_mask & RES_FLAKE) {
704 		if ((double)ntp_random() / 0x7fffffff < .1) {
705 			DPRINTF(2, ("receive: drop: RES_FLAKE\n"));
706 			sys_restricted++;
707 			return;			/* no flakeway */
708 		}
709 	}
710 
711 	/*
712 	** Format Layer Checks
713 	**
714 	** Validate the packet format.  The packet size, packet header,
715 	** and any extension field lengths are checked.  We identify
716 	** the beginning of the MAC, to identify the upper limit of
717 	** of the hash computation.
718 	**
719 	** In case of a format layer check violation, the packet is
720 	** discarded with no further processing.
721 	*/
722 
723 	/*
724 	 * Version check must be after the query packets, since they
725 	 * intentionally use an early version.
726 	 */
727 	if (hisversion == NTP_VERSION) {
728 		sys_newversion++;		/* new version */
729 	} else if (   !(restrict_mask & RES_VERSION)
730 		   && hisversion >= NTP_OLDVERSION) {
731 		sys_oldversion++;		/* previous version */
732 	} else {
733 		DPRINTF(2, ("receive: drop: RES_VERSION\n"));
734 		sys_badlength++;
735 		return;				/* old version */
736 	}
737 
738 	/*
739 	 * Figure out his mode and validate the packet. This has some
740 	 * legacy raunch that probably should be removed. In very early
741 	 * NTP versions mode 0 was equivalent to what later versions
742 	 * would interpret as client mode.
743 	 */
744 	if (hismode == MODE_UNSPEC) {
745 		if (hisversion == NTP_OLDVERSION) {
746 			hismode = MODE_CLIENT;
747 		} else {
748 			DPRINTF(2, ("receive: drop: MODE_UNSPEC\n"));
749 			sys_badlength++;
750 			return;			/* invalid mode */
751 		}
752 	}
753 
754 	/*
755 	 * Parse the extension field if present. We figure out whether
756 	 * an extension field is present by measuring the MAC size. If
757 	 * the number of words following the packet header is 0, no MAC
758 	 * is present and the packet is not authenticated. If 1, the
759 	 * packet is a crypto-NAK; if 3, the packet is authenticated
760 	 * with DES; if 5, the packet is authenticated with MD5; if 6,
761 	 * the packet is authenticated with SHA. If 2 or * 4, the packet
762 	 * is a runt and discarded forthwith. If greater than 6, an
763 	 * extension field is present, so we subtract the length of the
764 	 * field and go around again.
765 	 *
766 	 * Note the above description is lame.  We should/could also check
767 	 * the two bytes that make up the EF type and subtype, and then
768 	 * check the two bytes that tell us the EF length.  A legacy MAC
769 	 * has a 4 byte keyID, and for conforming symmetric keys its value
770 	 * must be <= 64k, meaning the top two bytes will always be zero.
771 	 * Since the EF Type of 0 is reserved/unused, there's no way a
772 	 * conforming legacy MAC could ever be misinterpreted as an EF.
773 	 *
774 	 * There is more, but this isn't the place to document it.
775 	 */
776 
777 	authlen = LEN_PKT_NOMAC;
778 	has_mac = rbufp->recv_length - authlen;
779 	while (has_mac > 0) {
780 		u_int32	len;
781 #ifdef AUTOKEY
782 		u_int32	hostlen;
783 		struct exten *ep;
784 #endif /*AUTOKEY */
785 
786 		if (has_mac % 4 != 0 || has_mac < (int)MIN_MAC_LEN) {
787 			DPRINTF(2, ("receive: drop: bad post-packet length\n"));
788 			sys_badlength++;
789 			return;			/* bad length */
790 		}
791 		/*
792 		 * This next test is clearly wrong - it needlessly
793 		 * prohibits short EFs (which don't yet exist)
794 		 */
795 		if (has_mac <= (int)MAX_MAC_LEN) {
796 			skeyid = ntohl(((u_int32 *)pkt)[authlen / 4]);
797 			break;
798 
799 		} else {
800 			opcode = ntohl(((u_int32 *)pkt)[authlen / 4]);
801 			len = opcode & 0xffff;
802 			if (   len % 4 != 0
803 			    || len < 4
804 			    || (int)len + authlen > rbufp->recv_length) {
805 				DPRINTF(2, ("receive: drop: bad EF length\n"));
806 				sys_badlength++;
807 				return;		/* bad length */
808 			}
809 #ifdef AUTOKEY
810 			/*
811 			 * Extract calling group name for later.  If
812 			 * sys_groupname is non-NULL, there must be
813 			 * a group name provided to elicit a response.
814 			 */
815 			if (   (opcode & 0x3fff0000) == CRYPTO_ASSOC
816 			    && sys_groupname != NULL) {
817 				ep = (struct exten *)&((u_int32 *)pkt)[authlen / 4];
818 				hostlen = ntohl(ep->vallen);
819 				if (   hostlen >= sizeof(hostname)
820 				    || hostlen > len -
821 						offsetof(struct exten, pkt)) {
822 					DPRINTF(2, ("receive: drop: bad autokey hostname length\n"));
823 					sys_badlength++;
824 					return;		/* bad length */
825 				}
826 				memcpy(hostname, &ep->pkt, hostlen);
827 				hostname[hostlen] = '\0';
828 				groupname = strchr(hostname, '@');
829 				if (groupname == NULL) {
830 					DPRINTF(2, ("receive: drop: empty autokey groupname\n"));
831 					sys_declined++;
832 					return;
833 				}
834 				groupname++;
835 			}
836 #endif /* AUTOKEY */
837 			authlen += len;
838 			has_mac -= len;
839 		}
840 	}
841 
842 	/*
843 	 * If has_mac is < 0 we had a malformed packet.
844 	 */
845 	if (has_mac < 0) {
846 		DPRINTF(2, ("receive: drop: post-packet under-read\n"));
847 		sys_badlength++;
848 		return;		/* bad length */
849 	}
850 
851 	/*
852 	** Packet Data Verification Layer
853 	**
854 	** This layer verifies the packet data content.  If
855 	** authentication is required, a MAC must be present.
856 	** If a MAC is present, it must validate.
857 	** Crypto-NAK?  Look - a shiny thing!
858 	**
859 	** If authentication fails, we're done.
860 	*/
861 
862 	/*
863 	 * If authentication is explicitly required, a MAC must be present.
864 	 */
865 	if (restrict_mask & RES_DONTTRUST && has_mac == 0) {
866 		DPRINTF(2, ("receive: drop: RES_DONTTRUST\n"));
867 		sys_restricted++;
868 		return;				/* access denied */
869 	}
870 
871 	/*
872 	 * Update the MRU list and finger the cloggers. It can be a
873 	 * little expensive, so turn it off for production use.
874 	 * RES_LIMITED and RES_KOD will be cleared in the returned
875 	 * restrict_mask unless one or both actions are warranted.
876 	 */
877 	restrict_mask = ntp_monitor(rbufp, restrict_mask);
878 	if (restrict_mask & RES_LIMITED) {
879 		sys_limitrejected++;
880 		if (   !(restrict_mask & RES_KOD)
881 		    || MODE_BROADCAST == hismode
882 		    || MODE_SERVER == hismode) {
883 			if (MODE_SERVER == hismode) {
884 				DPRINTF(1, ("Possibly self-induced rate limiting of MODE_SERVER from %s\n",
885 					stoa(&rbufp->recv_srcadr)));
886 			} else {
887 				DPRINTF(2, ("receive: drop: RES_KOD\n"));
888 			}
889 			return;			/* rate exceeded */
890 		}
891 		if (hismode == MODE_CLIENT)
892 			fast_xmit(rbufp, MODE_SERVER, skeyid,
893 			    restrict_mask);
894 		else
895 			fast_xmit(rbufp, MODE_ACTIVE, skeyid,
896 			    restrict_mask);
897 		return;				/* rate exceeded */
898 	}
899 	restrict_mask &= ~RES_KOD;
900 
901 	/*
902 	 * We have tossed out as many buggy packets as possible early in
903 	 * the game to reduce the exposure to a clogging attack. Now we
904 	 * have to burn some cycles to find the association and
905 	 * authenticate the packet if required. Note that we burn only
906 	 * digest cycles, again to reduce exposure. There may be no
907 	 * matching association and that's okay.
908 	 *
909 	 * More on the autokey mambo. Normally the local interface is
910 	 * found when the association was mobilized with respect to a
911 	 * designated remote address. We assume packets arriving from
912 	 * the remote address arrive via this interface and the local
913 	 * address used to construct the autokey is the unicast address
914 	 * of the interface. However, if the sender is a broadcaster,
915 	 * the interface broadcast address is used instead.
916 	 * Notwithstanding this technobabble, if the sender is a
917 	 * multicaster, the broadcast address is null, so we use the
918 	 * unicast address anyway. Don't ask.
919 	 */
920 
921 	peer = findpeer(rbufp,  hismode, &retcode);
922 	dstadr_sin = &rbufp->dstadr->sin;
923 	NTOHL_FP(&pkt->org, &p_org);
924 	NTOHL_FP(&pkt->rec, &p_rec);
925 	NTOHL_FP(&pkt->xmt, &p_xmt);
926 	hm_str = modetoa(hismode);
927 	am_str = amtoa(retcode);
928 
929 	/*
930 	 * Authentication is conditioned by three switches:
931 	 *
932 	 * NOPEER  (RES_NOPEER) do not mobilize an association unless
933 	 *         authenticated
934 	 * NOTRUST (RES_DONTTRUST) do not allow access unless
935 	 *         authenticated (implies NOPEER)
936 	 * enable  (sys_authenticate) master NOPEER switch, by default
937 	 *         on
938 	 *
939 	 * The NOPEER and NOTRUST can be specified on a per-client basis
940 	 * using the restrict command. The enable switch if on implies
941 	 * NOPEER for all clients. There are four outcomes:
942 	 *
943 	 * NONE    The packet has no MAC.
944 	 * OK      the packet has a MAC and authentication succeeds
945 	 * ERROR   the packet has a MAC and authentication fails
946 	 * CRYPTO  crypto-NAK. The MAC has four octets only.
947 	 *
948 	 * Note: The AUTH(x, y) macro is used to filter outcomes. If x
949 	 * is zero, acceptable outcomes of y are NONE and OK. If x is
950 	 * one, the only acceptable outcome of y is OK.
951 	 */
952 	crypto_nak_test = valid_NAK(peer, rbufp, hismode);
953 
954 	/*
955 	 * Drop any invalid crypto-NAKs
956 	 */
957 	if (crypto_nak_test == INVALIDNAK) {
958 		report_event(PEVNT_AUTH, peer, "Invalid_NAK");
959 		if (0 != peer) {
960 			peer->badNAK++;
961 		}
962 		msyslog(LOG_ERR, "Invalid-NAK error at %ld %s<-%s",
963 			current_time, stoa(dstadr_sin), stoa(&rbufp->recv_srcadr));
964 		return;
965 	}
966 
967 	if (has_mac == 0) {
968 		restrict_mask &= ~RES_MSSNTP;
969 		is_authentic = AUTH_NONE; /* not required */
970 		DPRINTF(1, ("receive: at %ld %s<-%s mode %d/%s:%s len %d org %#010x.%08x xmt %#010x.%08x NOMAC\n",
971 			    current_time, stoa(dstadr_sin),
972 			    stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str,
973 			    authlen,
974 			    ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf),
975 			    ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)));
976 	} else if (crypto_nak_test == VALIDNAK) {
977 		restrict_mask &= ~RES_MSSNTP;
978 		is_authentic = AUTH_CRYPTO; /* crypto-NAK */
979 		DPRINTF(1, ("receive: at %ld %s<-%s mode %d/%s:%s keyid %08x len %d auth %d org %#010x.%08x xmt %#010x.%08x CRYPTONAK\n",
980 			    current_time, stoa(dstadr_sin),
981 			    stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str,
982 			    skeyid, authlen + has_mac, is_authentic,
983 			    ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf),
984 			    ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)));
985 
986 #ifdef HAVE_NTP_SIGND
987 		/*
988 		 * If the signature is 20 bytes long, the last 16 of
989 		 * which are zero, then this is a Microsoft client
990 		 * wanting AD-style authentication of the server's
991 		 * reply.
992 		 *
993 		 * This is described in Microsoft's WSPP docs, in MS-SNTP:
994 		 * http://msdn.microsoft.com/en-us/library/cc212930.aspx
995 		 */
996 	} else if (   has_mac == MAX_MD5_LEN
997 		   && (restrict_mask & RES_MSSNTP)
998 		   && (retcode == AM_FXMIT || retcode == AM_NEWPASS)
999 		   && (memcmp(zero_key, (char *)pkt + authlen + 4,
1000 			      MAX_MD5_LEN - 4) == 0)) {
1001 		is_authentic = AUTH_NONE;
1002 		DPRINTF(1, ("receive: at %ld %s<-%s mode %d/%s:%s len %d org %#010x.%08x xmt %#010x.%08x SIGND\n",
1003 			    current_time, stoa(dstadr_sin),
1004 			    stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str,
1005 			    authlen,
1006 			    ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf),
1007 			    ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)));
1008 #endif /* HAVE_NTP_SIGND */
1009 
1010 	} else {
1011 		/*
1012 		 * has_mac is not 0
1013 		 * Not a VALID_NAK
1014 		 * Not an MS-SNTP SIGND packet
1015 		 *
1016 		 * So there is a MAC here.
1017 		 */
1018 
1019 		restrict_mask &= ~RES_MSSNTP;
1020 #ifdef AUTOKEY
1021 		/*
1022 		 * For autokey modes, generate the session key
1023 		 * and install in the key cache. Use the socket
1024 		 * broadcast or unicast address as appropriate.
1025 		 */
1026 		if (crypto_flags && skeyid > NTP_MAXKEY) {
1027 
1028 			/*
1029 			 * More on the autokey dance (AKD). A cookie is
1030 			 * constructed from public and private values.
1031 			 * For broadcast packets, the cookie is public
1032 			 * (zero). For packets that match no
1033 			 * association, the cookie is hashed from the
1034 			 * addresses and private value. For server
1035 			 * packets, the cookie was previously obtained
1036 			 * from the server. For symmetric modes, the
1037 			 * cookie was previously constructed using an
1038 			 * agreement protocol; however, should PKI be
1039 			 * unavailable, we construct a fake agreement as
1040 			 * the EXOR of the peer and host cookies.
1041 			 *
1042 			 * hismode	ephemeral	persistent
1043 			 * =======================================
1044 			 * active	0		cookie#
1045 			 * passive	0%		cookie#
1046 			 * client	sys cookie	0%
1047 			 * server	0%		sys cookie
1048 			 * broadcast	0		0
1049 			 *
1050 			 * # if unsync, 0
1051 			 * % can't happen
1052 			 */
1053 			if (has_mac < (int)MAX_MD5_LEN) {
1054 				DPRINTF(2, ("receive: drop: MD5 digest too short\n"));
1055 				sys_badauth++;
1056 				return;
1057 			}
1058 			if (hismode == MODE_BROADCAST) {
1059 
1060 				/*
1061 				 * For broadcaster, use the interface
1062 				 * broadcast address when available;
1063 				 * otherwise, use the unicast address
1064 				 * found when the association was
1065 				 * mobilized. However, if this is from
1066 				 * the wildcard interface, game over.
1067 				 */
1068 				if (   crypto_flags
1069 				    && rbufp->dstadr ==
1070 				       ANY_INTERFACE_CHOOSE(&rbufp->recv_srcadr)) {
1071 					DPRINTF(2, ("receive: drop: BCAST from wildcard\n"));
1072 					sys_restricted++;
1073 					return;		/* no wildcard */
1074 				}
1075 				pkeyid = 0;
1076 				if (!SOCK_UNSPEC(&rbufp->dstadr->bcast))
1077 					dstadr_sin =
1078 					    &rbufp->dstadr->bcast;
1079 			} else if (peer == NULL) {
1080 				pkeyid = session_key(
1081 				    &rbufp->recv_srcadr, dstadr_sin, 0,
1082 				    sys_private, 0);
1083 			} else {
1084 				pkeyid = peer->pcookie;
1085 			}
1086 
1087 			/*
1088 			 * The session key includes both the public
1089 			 * values and cookie. In case of an extension
1090 			 * field, the cookie used for authentication
1091 			 * purposes is zero. Note the hash is saved for
1092 			 * use later in the autokey mambo.
1093 			 */
1094 			if (authlen > (int)LEN_PKT_NOMAC && pkeyid != 0) {
1095 				session_key(&rbufp->recv_srcadr,
1096 				    dstadr_sin, skeyid, 0, 2);
1097 				tkeyid = session_key(
1098 				    &rbufp->recv_srcadr, dstadr_sin,
1099 				    skeyid, pkeyid, 0);
1100 			} else {
1101 				tkeyid = session_key(
1102 				    &rbufp->recv_srcadr, dstadr_sin,
1103 				    skeyid, pkeyid, 2);
1104 			}
1105 
1106 		}
1107 #endif	/* AUTOKEY */
1108 
1109 		/*
1110 		 * Compute the cryptosum. Note a clogging attack may
1111 		 * succeed in bloating the key cache. If an autokey,
1112 		 * purge it immediately, since we won't be needing it
1113 		 * again. If the packet is authentic, it can mobilize an
1114 		 * association. Note that there is no key zero.
1115 		 */
1116 		if (!authdecrypt(skeyid, (u_int32 *)pkt, authlen,
1117 		    has_mac))
1118 			is_authentic = AUTH_ERROR;
1119 		else
1120 			is_authentic = AUTH_OK;
1121 #ifdef AUTOKEY
1122 		if (crypto_flags && skeyid > NTP_MAXKEY)
1123 			authtrust(skeyid, 0);
1124 #endif	/* AUTOKEY */
1125 		DPRINTF(1, ("receive: at %ld %s<-%s mode %d/%s:%s keyid %08x len %d auth %d org %#010x.%08x xmt %#010x.%08x MAC\n",
1126 			    current_time, stoa(dstadr_sin),
1127 			    stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str,
1128 			    skeyid, authlen + has_mac, is_authentic,
1129 			    ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf),
1130 			    ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)));
1131 	}
1132 
1133 
1134 	/*
1135 	 * Bug 3454:
1136 	 *
1137 	 * Now come at this from a different perspective:
1138 	 * - If we expect a MAC and it's not there, we drop it.
1139 	 * - If we expect one keyID and get another, we drop it.
1140 	 * - If we have a MAC ahd it hasn't been validated yet, try.
1141 	 * - if the provided MAC doesn't validate, we drop it.
1142 	 *
1143 	 * There might be more to this.
1144 	 */
1145 	if (0 != peer && 0 != peer->keyid) {
1146 		/* Should we msyslog() any of these? */
1147 
1148 		/*
1149 		 * This should catch:
1150 		 * - no keyID where one is expected,
1151 		 * - different keyID than what we expect.
1152 		 */
1153 		if (peer->keyid != skeyid) {
1154 			DPRINTF(2, ("receive: drop: Wanted keyID %d, got %d from %s\n",
1155 				    peer->keyid, skeyid,
1156 				    stoa(&rbufp->recv_srcadr)));
1157 			sys_restricted++;
1158 			return;			/* drop: access denied */
1159 		}
1160 
1161 		/*
1162 		 * if has_mac != 0 ...
1163 		 * - If it has not yet been validated, do so.
1164 		 *   (under what circumstances might that happen?)
1165 		 * - if missing or bad MAC, log and drop.
1166 		 */
1167 		if (0 != has_mac) {
1168 			if (is_authentic == AUTH_UNKNOWN) {
1169 				/* How can this happen? */
1170 				DPRINTF(2, ("receive: 3454 check: AUTH_UNKNOWN from %s\n",
1171 				    stoa(&rbufp->recv_srcadr)));
1172 				if (!authdecrypt(skeyid, (u_int32 *)pkt, authlen,
1173 				    has_mac)) {
1174 					/* MAC invalid or not found */
1175 					is_authentic = AUTH_ERROR;
1176 				} else {
1177 					is_authentic = AUTH_OK;
1178 				}
1179 			}
1180 			if (is_authentic != AUTH_OK) {
1181 				DPRINTF(2, ("receive: drop: missing or bad MAC from %s\n",
1182 					    stoa(&rbufp->recv_srcadr)));
1183 				sys_restricted++;
1184 				return;		/* drop: access denied */
1185 			}
1186 		}
1187 	}
1188 	/**/
1189 
1190 	/*
1191 	** On-Wire Protocol Layer
1192 	**
1193 	** Verify protocol operations consistent with the on-wire protocol.
1194 	** The protocol discards bogus and duplicate packets as well as
1195 	** minimizes disruptions doe to protocol restarts and dropped
1196 	** packets.  The operations are controlled by two timestamps:
1197 	** the transmit timestamp saved in the client state variables,
1198 	** and the origin timestamp in the server packet header.  The
1199 	** comparison of these two timestamps is called the loopback test.
1200 	** The transmit timestamp functions as a nonce to verify that the
1201 	** response corresponds to the original request.  The transmit
1202 	** timestamp also serves to discard replays of the most recent
1203 	** packet.  Upon failure of either test, the packet is discarded
1204 	** with no further action.
1205 	*/
1206 
1207 	/*
1208 	 * The association matching rules are implemented by a set of
1209 	 * routines and an association table. A packet matching an
1210 	 * association is processed by the peer process for that
1211 	 * association. If there are no errors, an ephemeral association
1212 	 * is mobilized: a broadcast packet mobilizes a broadcast client
1213 	 * aassociation; a manycast server packet mobilizes a manycast
1214 	 * client association; a symmetric active packet mobilizes a
1215 	 * symmetric passive association.
1216 	 */
1217 	DPRINTF(1, ("receive: MATCH_ASSOC dispatch: mode %d/%s:%s \n",
1218 		hismode, hm_str, am_str));
1219 	switch (retcode) {
1220 
1221 	/*
1222 	 * This is a client mode packet not matching any association. If
1223 	 * an ordinary client, simply toss a server mode packet back
1224 	 * over the fence. If a manycast client, we have to work a
1225 	 * little harder.
1226 	 *
1227 	 * There are cases here where we do not call record_raw_stats().
1228 	 */
1229 	case AM_FXMIT:
1230 
1231 		/*
1232 		 * If authentication OK, send a server reply; otherwise,
1233 		 * send a crypto-NAK.
1234 		 */
1235 		if (!(rbufp->dstadr->flags & INT_MCASTOPEN)) {
1236 			/* HMS: would be nice to log FAST_XMIT|BADAUTH|RESTRICTED */
1237 			record_raw_stats(&rbufp->recv_srcadr,
1238 			    &rbufp->dstadr->sin,
1239 			    &p_org, &p_rec, &p_xmt, &rbufp->recv_time,
1240 			    PKT_LEAP(pkt->li_vn_mode),
1241 			    PKT_VERSION(pkt->li_vn_mode),
1242 			    PKT_MODE(pkt->li_vn_mode),
1243 			    PKT_TO_STRATUM(pkt->stratum),
1244 			    pkt->ppoll,
1245 			    pkt->precision,
1246 			    FPTOD(NTOHS_FP(pkt->rootdelay)),
1247 			    FPTOD(NTOHS_FP(pkt->rootdisp)),
1248 			    pkt->refid,
1249 			    rbufp->recv_length - MIN_V4_PKT_LEN, (u_char *)&pkt->exten);
1250 
1251 			if (AUTH(restrict_mask & RES_DONTTRUST,
1252 			   is_authentic)) {
1253 				fast_xmit(rbufp, MODE_SERVER, skeyid,
1254 				    restrict_mask);
1255 			} else if (is_authentic == AUTH_ERROR) {
1256 				fast_xmit(rbufp, MODE_SERVER, 0,
1257 				    restrict_mask);
1258 				sys_badauth++;
1259 			} else {
1260 				DPRINTF(2, ("receive: AM_FXMIT drop: !mcast restricted\n"));
1261 				sys_restricted++;
1262 			}
1263 
1264 			return;			/* hooray */
1265 		}
1266 
1267 		/*
1268 		 * This must be manycast. Do not respond if not
1269 		 * configured as a manycast server.
1270 		 */
1271 		if (!sys_manycastserver) {
1272 			DPRINTF(2, ("receive: AM_FXMIT drop: Not manycastserver\n"));
1273 			sys_restricted++;
1274 			return;			/* not enabled */
1275 		}
1276 
1277 #ifdef AUTOKEY
1278 		/*
1279 		 * Do not respond if not the same group.
1280 		 */
1281 		if (group_test(groupname, NULL)) {
1282 			DPRINTF(2, ("receive: AM_FXMIT drop: empty groupname\n"));
1283 			sys_declined++;
1284 			return;
1285 		}
1286 #endif /* AUTOKEY */
1287 
1288 		/*
1289 		 * Do not respond if we are not synchronized or our
1290 		 * stratum is greater than the manycaster or the
1291 		 * manycaster has already synchronized to us.
1292 		 */
1293 		if (   sys_leap == LEAP_NOTINSYNC
1294 		    || sys_stratum >= hisstratum
1295 		    || (!sys_cohort && sys_stratum == hisstratum + 1)
1296 		    || rbufp->dstadr->addr_refid == pkt->refid) {
1297 			DPRINTF(2, ("receive: AM_FXMIT drop: LEAP_NOTINSYNC || stratum || loop\n"));
1298 			sys_declined++;
1299 			return;			/* no help */
1300 		}
1301 
1302 		/*
1303 		 * Respond only if authentication succeeds. Don't do a
1304 		 * crypto-NAK, as that would not be useful.
1305 		 */
1306 		if (AUTH(restrict_mask & RES_DONTTRUST, is_authentic)) {
1307 			record_raw_stats(&rbufp->recv_srcadr,
1308 			    &rbufp->dstadr->sin,
1309 			    &p_org, &p_rec, &p_xmt, &rbufp->recv_time,
1310 			    PKT_LEAP(pkt->li_vn_mode),
1311 			    PKT_VERSION(pkt->li_vn_mode),
1312 			    PKT_MODE(pkt->li_vn_mode),
1313 			    PKT_TO_STRATUM(pkt->stratum),
1314 			    pkt->ppoll,
1315 			    pkt->precision,
1316 			    FPTOD(NTOHS_FP(pkt->rootdelay)),
1317 			    FPTOD(NTOHS_FP(pkt->rootdisp)),
1318 			    pkt->refid,
1319 			    rbufp->recv_length - MIN_V4_PKT_LEN, (u_char *)&pkt->exten);
1320 
1321 			fast_xmit(rbufp, MODE_SERVER, skeyid,
1322 			    restrict_mask);
1323 		}
1324 		return;				/* hooray */
1325 
1326 	/*
1327 	 * This is a server mode packet returned in response to a client
1328 	 * mode packet sent to a multicast group address (for
1329 	 * manycastclient) or to a unicast address (for pool). The
1330 	 * origin timestamp is a good nonce to reliably associate the
1331 	 * reply with what was sent. If there is no match, that's
1332 	 * curious and could be an intruder attempting to clog, so we
1333 	 * just ignore it.
1334 	 *
1335 	 * If the packet is authentic and the manycastclient or pool
1336 	 * association is found, we mobilize a client association and
1337 	 * copy pertinent variables from the manycastclient or pool
1338 	 * association to the new client association. If not, just
1339 	 * ignore the packet.
1340 	 *
1341 	 * There is an implosion hazard at the manycast client, since
1342 	 * the manycast servers send the server packet immediately. If
1343 	 * the guy is already here, don't fire up a duplicate.
1344 	 *
1345 	 * There are cases here where we do not call record_raw_stats().
1346 	 */
1347 	case AM_MANYCAST:
1348 
1349 #ifdef AUTOKEY
1350 		/*
1351 		 * Do not respond if not the same group.
1352 		 */
1353 		if (group_test(groupname, NULL)) {
1354 			DPRINTF(2, ("receive: AM_MANYCAST drop: empty groupname\n"));
1355 			sys_declined++;
1356 			return;
1357 		}
1358 #endif /* AUTOKEY */
1359 		if ((peer2 = findmanycastpeer(rbufp)) == NULL) {
1360 			DPRINTF(2, ("receive: AM_MANYCAST drop: No manycast peer\n"));
1361 			sys_restricted++;
1362 			return;			/* not enabled */
1363 		}
1364 		if (!AUTH(  (!(peer2->cast_flags & MDF_POOL)
1365 			     && sys_authenticate)
1366 			  || (restrict_mask & (RES_NOPEER |
1367 			      RES_DONTTRUST)), is_authentic)
1368 		    /* MC: RES_NOEPEER? */
1369 		   ) {
1370 			DPRINTF(2, ("receive: AM_MANYCAST drop: bad auth || (NOPEER|DONTTRUST)\n"));
1371 			sys_restricted++;
1372 			return;			/* access denied */
1373 		}
1374 
1375 		/*
1376 		 * Do not respond if unsynchronized or stratum is below
1377 		 * the floor or at or above the ceiling.
1378 		 */
1379 		if (   hisleap == LEAP_NOTINSYNC
1380 		    || hisstratum < sys_floor
1381 		    || hisstratum >= sys_ceiling) {
1382 			DPRINTF(2, ("receive: AM_MANYCAST drop: unsync/stratum\n"));
1383 			sys_declined++;
1384 			return;			/* no help */
1385 		}
1386 		peer = newpeer(&rbufp->recv_srcadr, NULL, rbufp->dstadr,
1387 			       r4a.ippeerlimit, MODE_CLIENT, hisversion,
1388 			       peer2->minpoll, peer2->maxpoll,
1389 			       FLAG_PREEMPT | (FLAG_IBURST & peer2->flags),
1390 			       MDF_UCAST | MDF_UCLNT, 0, skeyid, sys_ident);
1391 		if (NULL == peer) {
1392 			DPRINTF(2, ("receive: AM_MANYCAST drop: duplicate\n"));
1393 			sys_declined++;
1394 			return;			/* ignore duplicate */
1395 		}
1396 
1397 		/*
1398 		 * After each ephemeral pool association is spun,
1399 		 * accelerate the next poll for the pool solicitor so
1400 		 * the pool will fill promptly.
1401 		 */
1402 		if (peer2->cast_flags & MDF_POOL)
1403 			peer2->nextdate = current_time + 1;
1404 
1405 		/*
1406 		 * Further processing of the solicitation response would
1407 		 * simply detect its origin timestamp as bogus for the
1408 		 * brand-new association (it matches the prototype
1409 		 * association) and tinker with peer->nextdate delaying
1410 		 * first sync.
1411 		 */
1412 		return;		/* solicitation response handled */
1413 
1414 	/*
1415 	 * This is the first packet received from a broadcast server. If
1416 	 * the packet is authentic and we are enabled as broadcast
1417 	 * client, mobilize a broadcast client association. We don't
1418 	 * kiss any frogs here.
1419 	 *
1420 	 * There are cases here where we do not call record_raw_stats().
1421 	 */
1422 	case AM_NEWBCL:
1423 
1424 #ifdef AUTOKEY
1425 		/*
1426 		 * Do not respond if not the same group.
1427 		 */
1428 		if (group_test(groupname, sys_ident)) {
1429 			DPRINTF(2, ("receive: AM_NEWBCL drop: groupname mismatch\n"));
1430 			sys_declined++;
1431 			return;
1432 		}
1433 #endif /* AUTOKEY */
1434 		if (sys_bclient == 0) {
1435 			DPRINTF(2, ("receive: AM_NEWBCL drop: not a bclient\n"));
1436 			sys_restricted++;
1437 			return;			/* not enabled */
1438 		}
1439 		if (!AUTH(sys_authenticate | (restrict_mask &
1440 			  (RES_NOPEER | RES_DONTTRUST)), is_authentic)
1441 		    /* NEWBCL: RES_NOEPEER? */
1442 		   ) {
1443 			DPRINTF(2, ("receive: AM_NEWBCL drop: AUTH failed\n"));
1444 			sys_restricted++;
1445 			return;			/* access denied */
1446 		}
1447 
1448 		/*
1449 		 * Do not respond if unsynchronized or stratum is below
1450 		 * the floor or at or above the ceiling.
1451 		 */
1452 		if (   hisleap == LEAP_NOTINSYNC
1453 		    || hisstratum < sys_floor
1454 		    || hisstratum >= sys_ceiling) {
1455 			DPRINTF(2, ("receive: AM_NEWBCL drop: Unsync or bad stratum\n"));
1456 			sys_declined++;
1457 			return;			/* no help */
1458 		}
1459 
1460 #ifdef AUTOKEY
1461 		/*
1462 		 * Do not respond if Autokey and the opcode is not a
1463 		 * CRYPTO_ASSOC response with association ID.
1464 		 */
1465 		if (   crypto_flags && skeyid > NTP_MAXKEY
1466 		    && (opcode & 0xffff0000) != (CRYPTO_ASSOC | CRYPTO_RESP)) {
1467 			DPRINTF(2, ("receive: AM_NEWBCL drop: Autokey but not CRYPTO_ASSOC\n"));
1468 			sys_declined++;
1469 			return;			/* protocol error */
1470 		}
1471 #endif	/* AUTOKEY */
1472 
1473 		/*
1474 		 * Broadcasts received via a multicast address may
1475 		 * arrive after a unicast volley has begun
1476 		 * with the same remote address.  newpeer() will not
1477 		 * find duplicate associations on other local endpoints
1478 		 * if a non-NULL endpoint is supplied.  multicastclient
1479 		 * ephemeral associations are unique across all local
1480 		 * endpoints.
1481 		 */
1482 		if (!(INT_MCASTOPEN & rbufp->dstadr->flags))
1483 			match_ep = rbufp->dstadr;
1484 		else
1485 			match_ep = NULL;
1486 
1487 		/*
1488 		 * Determine whether to execute the initial volley.
1489 		 */
1490 		if (sys_bdelay > 0.0) {
1491 #ifdef AUTOKEY
1492 			/*
1493 			 * If a two-way exchange is not possible,
1494 			 * neither is Autokey.
1495 			 */
1496 			if (crypto_flags && skeyid > NTP_MAXKEY) {
1497 				sys_restricted++;
1498 				DPRINTF(2, ("receive: AM_NEWBCL drop: Autokey but not 2-way\n"));
1499 				return;		/* no autokey */
1500 			}
1501 #endif	/* AUTOKEY */
1502 
1503 			/*
1504 			 * Do not execute the volley. Start out in
1505 			 * broadcast client mode.
1506 			 */
1507 			peer = newpeer(&rbufp->recv_srcadr, NULL, match_ep,
1508 			    r4a.ippeerlimit, MODE_BCLIENT, hisversion,
1509 			    pkt->ppoll, pkt->ppoll,
1510 			    FLAG_PREEMPT, MDF_BCLNT, 0, skeyid, sys_ident);
1511 			if (NULL == peer) {
1512 				DPRINTF(2, ("receive: AM_NEWBCL drop: duplicate\n"));
1513 				sys_restricted++;
1514 				return;		/* ignore duplicate */
1515 
1516 			} else {
1517 				peer->delay = sys_bdelay;
1518 				peer->bxmt = p_xmt;
1519 			}
1520 			break;
1521 		}
1522 
1523 		/*
1524 		 * Execute the initial volley in order to calibrate the
1525 		 * propagation delay and run the Autokey protocol.
1526 		 *
1527 		 * Note that the minpoll is taken from the broadcast
1528 		 * packet, normally 6 (64 s) and that the poll interval
1529 		 * is fixed at this value.
1530 		 */
1531 		peer = newpeer(&rbufp->recv_srcadr, NULL, match_ep,
1532 			       r4a.ippeerlimit, MODE_CLIENT, hisversion,
1533 			       pkt->ppoll, pkt->ppoll,
1534 			       FLAG_BC_VOL | FLAG_IBURST | FLAG_PREEMPT, MDF_BCLNT,
1535 			       0, skeyid, sys_ident);
1536 		if (NULL == peer) {
1537 			DPRINTF(2, ("receive: AM_NEWBCL drop: empty newpeer() failed\n"));
1538 			sys_restricted++;
1539 			return;			/* ignore duplicate */
1540 		}
1541 		peer->bxmt = p_xmt;
1542 #ifdef AUTOKEY
1543 		if (skeyid > NTP_MAXKEY)
1544 			crypto_recv(peer, rbufp);
1545 #endif	/* AUTOKEY */
1546 
1547 		return;				/* hooray */
1548 
1549 	/*
1550 	 * This is the first packet received from a potential ephemeral
1551 	 * symmetric active peer.  First, deal with broken Windows clients.
1552 	 * Then, if NOEPEER is enabled, drop it.  If the packet meets our
1553 	 * authenticty requirements and is the first he sent, mobilize
1554 	 * a passive association.
1555 	 * Otherwise, kiss the frog.
1556 	 *
1557 	 * There are cases here where we do not call record_raw_stats().
1558 	 */
1559 	case AM_NEWPASS:
1560 
1561 		DEBUG_REQUIRE(MODE_ACTIVE == hismode);
1562 
1563 #ifdef AUTOKEY
1564 		/*
1565 		 * Do not respond if not the same group.
1566 		 */
1567 		if (group_test(groupname, sys_ident)) {
1568 			DPRINTF(2, ("receive: AM_NEWPASS drop: Autokey group mismatch\n"));
1569 			sys_declined++;
1570 			return;
1571 		}
1572 #endif /* AUTOKEY */
1573 		if (!AUTH(sys_authenticate | (restrict_mask &
1574 			  (RES_NOPEER | RES_DONTTRUST)), is_authentic)
1575 		   ) {
1576 			/*
1577 			 * If authenticated but cannot mobilize an
1578 			 * association, send a symmetric passive
1579 			 * response without mobilizing an association.
1580 			 * This is for drat broken Windows clients. See
1581 			 * Microsoft KB 875424 for preferred workaround.
1582 			 */
1583 			if (AUTH(restrict_mask & RES_DONTTRUST,
1584 				 is_authentic)) {
1585 				fast_xmit(rbufp, MODE_PASSIVE, skeyid,
1586 				    restrict_mask);
1587 				return;			/* hooray */
1588 			}
1589 			/* HMS: Why is this next set of lines a feature? */
1590 			if (is_authentic == AUTH_ERROR) {
1591 				fast_xmit(rbufp, MODE_PASSIVE, 0,
1592 				    restrict_mask);
1593 				sys_restricted++;
1594 				return;
1595 			}
1596 
1597 			if (restrict_mask & RES_NOEPEER) {
1598 				DPRINTF(2, ("receive: AM_NEWPASS drop: NOEPEER\n"));
1599 				sys_declined++;
1600 				return;
1601 			}
1602 
1603 			/* [Bug 2941]
1604 			 * If we got here, the packet isn't part of an
1605 			 * existing association, either isn't correctly
1606 			 * authenticated or it is but we are refusing
1607 			 * ephemeral peer requests, and it didn't meet
1608 			 * either of the previous two special cases so we
1609 			 * should just drop it on the floor.  For example,
1610 			 * crypto-NAKs (is_authentic == AUTH_CRYPTO)
1611 			 * will make it this far.  This is just
1612 			 * debug-printed and not logged to avoid log
1613 			 * flooding.
1614 			 */
1615 			DPRINTF(2, ("receive: at %ld refusing to mobilize passive association"
1616 				    " with unknown peer %s mode %d/%s:%s keyid %08x len %d auth %d\n",
1617 				    current_time, stoa(&rbufp->recv_srcadr),
1618 				    hismode, hm_str, am_str, skeyid,
1619 				    (authlen + has_mac), is_authentic));
1620 			sys_declined++;
1621 			return;
1622 		}
1623 
1624 		if (restrict_mask & RES_NOEPEER) {
1625 			DPRINTF(2, ("receive: AM_NEWPASS drop: NOEPEER\n"));
1626 			sys_declined++;
1627 			return;
1628 		}
1629 
1630 		/*
1631 		 * Do not respond if synchronized and if stratum is
1632 		 * below the floor or at or above the ceiling. Note,
1633 		 * this allows an unsynchronized peer to synchronize to
1634 		 * us. It would be very strange if he did and then was
1635 		 * nipped, but that could only happen if we were
1636 		 * operating at the top end of the range.  It also means
1637 		 * we will spin an ephemeral association in response to
1638 		 * MODE_ACTIVE KoDs, which will time out eventually.
1639 		 */
1640 		if (   hisleap != LEAP_NOTINSYNC
1641 		    && (hisstratum < sys_floor || hisstratum >= sys_ceiling)) {
1642 			DPRINTF(2, ("receive: AM_NEWPASS drop: Autokey group mismatch\n"));
1643 			sys_declined++;
1644 			return;			/* no help */
1645 		}
1646 
1647 		/*
1648 		 * The message is correctly authenticated and allowed.
1649 		 * Mobilize a symmetric passive association, if we won't
1650 		 * exceed the ippeerlimit.
1651 		 */
1652 		if ((peer = newpeer(&rbufp->recv_srcadr, NULL, rbufp->dstadr,
1653 				    r4a.ippeerlimit, MODE_PASSIVE, hisversion,
1654 				    pkt->ppoll, NTP_MAXDPOLL, 0, MDF_UCAST, 0,
1655 				    skeyid, sys_ident)) == NULL) {
1656 			DPRINTF(2, ("receive: AM_NEWPASS drop: newpeer() failed\n"));
1657 			sys_declined++;
1658 			return;			/* ignore duplicate */
1659 		}
1660 		break;
1661 
1662 
1663 	/*
1664 	 * Process regular packet. Nothing special.
1665 	 *
1666 	 * There are cases here where we do not call record_raw_stats().
1667 	 */
1668 	case AM_PROCPKT:
1669 
1670 #ifdef AUTOKEY
1671 		/*
1672 		 * Do not respond if not the same group.
1673 		 */
1674 		if (group_test(groupname, peer->ident)) {
1675 			DPRINTF(2, ("receive: AM_PROCPKT drop: Autokey group mismatch\n"));
1676 			sys_declined++;
1677 			return;
1678 		}
1679 #endif /* AUTOKEY */
1680 
1681 		if (MODE_BROADCAST == hismode) {
1682 			int	bail = 0;
1683 			l_fp	tdiff;
1684 			u_long	deadband;
1685 
1686 			DPRINTF(2, ("receive: PROCPKT/BROADCAST: prev pkt %ld seconds ago, ppoll: %d, %d secs\n",
1687 				    (current_time - peer->timelastrec),
1688 				    peer->ppoll, (1 << peer->ppoll)
1689 				    ));
1690 			/* Things we can check:
1691 			 *
1692 			 * Did the poll interval change?
1693 			 * Is the poll interval in the packet in-range?
1694 			 * Did this packet arrive too soon?
1695 			 * Is the timestamp in this packet monotonic
1696 			 *  with respect to the previous packet?
1697 			 */
1698 
1699 			/* This is noteworthy, not error-worthy */
1700 			if (pkt->ppoll != peer->ppoll) {
1701 				msyslog(LOG_INFO, "receive: broadcast poll from %s changed from %u to %u",
1702 					stoa(&rbufp->recv_srcadr),
1703 					peer->ppoll, pkt->ppoll);
1704 			}
1705 
1706 			/* This is error-worthy */
1707 			if (   pkt->ppoll < peer->minpoll
1708 			    || pkt->ppoll > peer->maxpoll) {
1709 				msyslog(LOG_INFO, "receive: broadcast poll of %u from %s is out-of-range (%d to %d)!",
1710 					pkt->ppoll, stoa(&rbufp->recv_srcadr),
1711 					peer->minpoll, peer->maxpoll);
1712 				++bail;
1713 			}
1714 
1715 			/* too early? worth an error, too!
1716 			 *
1717 			 * [Bug 3113] Ensure that at least one poll
1718 			 * interval has elapsed since the last **clean**
1719 			 * packet was received.  We limit the check to
1720 			 * **clean** packets to prevent replayed packets
1721 			 * and incorrectly authenticated packets, which
1722 			 * we'll discard, from being used to create a
1723 			 * denial of service condition.
1724 			 */
1725 			deadband = (1u << pkt->ppoll);
1726 			if (FLAG_BC_VOL & peer->flags)
1727 				deadband -= 3;	/* allow greater fuzz after volley */
1728 			if ((current_time - peer->timereceived) < deadband) {
1729 				msyslog(LOG_INFO, "receive: broadcast packet from %s arrived after %lu, not %lu seconds!",
1730 					stoa(&rbufp->recv_srcadr),
1731 					(current_time - peer->timereceived),
1732 					deadband);
1733 				++bail;
1734 			}
1735 
1736 			/* Alert if time from the server is non-monotonic.
1737 			 *
1738 			 * [Bug 3114] is about Broadcast mode replay DoS.
1739 			 *
1740 			 * Broadcast mode *assumes* a trusted network.
1741 			 * Even so, it's nice to be robust in the face
1742 			 * of attacks.
1743 			 *
1744 			 * If we get an authenticated broadcast packet
1745 			 * with an "earlier" timestamp, it means one of
1746 			 * two things:
1747 			 *
1748 			 * - the broadcast server had a backward step.
1749 			 *
1750 			 * - somebody is trying a replay attack.
1751 			 *
1752 			 * deadband: By default, we assume the broadcast
1753 			 * network is trustable, so we take our accepted
1754 			 * broadcast packets as we receive them.  But
1755 			 * some folks might want to take additional poll
1756 			 * delays before believing a backward step.
1757 			 */
1758 			if (sys_bcpollbstep) {
1759 				/* pkt->ppoll or peer->ppoll ? */
1760 				deadband = (1u << pkt->ppoll)
1761 					   * sys_bcpollbstep + 2;
1762 			} else {
1763 				deadband = 0;
1764 			}
1765 
1766 			if (L_ISZERO(&peer->bxmt)) {
1767 				tdiff.l_ui = tdiff.l_uf = 0;
1768 			} else {
1769 				tdiff = p_xmt;
1770 				L_SUB(&tdiff, &peer->bxmt);
1771 			}
1772 			if (   tdiff.l_i < 0
1773 			    && (current_time - peer->timereceived) < deadband)
1774 			{
1775 				msyslog(LOG_INFO, "receive: broadcast packet from %s contains non-monotonic timestamp: %#010x.%08x -> %#010x.%08x",
1776 					stoa(&rbufp->recv_srcadr),
1777 					peer->bxmt.l_ui, peer->bxmt.l_uf,
1778 					p_xmt.l_ui, p_xmt.l_uf
1779 					);
1780 				++bail;
1781 			}
1782 
1783 			if (bail) {
1784 				DPRINTF(2, ("receive: AM_PROCPKT drop: bail\n"));
1785 				peer->timelastrec = current_time;
1786 				sys_declined++;
1787 				return;
1788 			}
1789 		}
1790 
1791 		break;
1792 
1793 	/*
1794 	 * A passive packet matches a passive association. This is
1795 	 * usually the result of reconfiguring a client on the fly. As
1796 	 * this association might be legitimate and this packet an
1797 	 * attempt to deny service, just ignore it.
1798 	 */
1799 	case AM_ERR:
1800 		DPRINTF(2, ("receive: AM_ERR drop.\n"));
1801 		sys_declined++;
1802 		return;
1803 
1804 	/*
1805 	 * For everything else there is the bit bucket.
1806 	 */
1807 	default:
1808 		DPRINTF(2, ("receive: default drop.\n"));
1809 		sys_declined++;
1810 		return;
1811 	}
1812 
1813 #ifdef AUTOKEY
1814 	/*
1815 	 * If the association is configured for Autokey, the packet must
1816 	 * have a public key ID; if not, the packet must have a
1817 	 * symmetric key ID.
1818 	 */
1819 	if (   is_authentic != AUTH_CRYPTO
1820 	    && (   ((peer->flags & FLAG_SKEY) && skeyid <= NTP_MAXKEY)
1821 	        || (!(peer->flags & FLAG_SKEY) && skeyid > NTP_MAXKEY))) {
1822 		DPRINTF(2, ("receive: drop: Autokey but wrong/bad auth\n"));
1823 		sys_badauth++;
1824 		return;
1825 	}
1826 #endif	/* AUTOKEY */
1827 
1828 	peer->received++;
1829 	peer->flash &= ~PKT_TEST_MASK;
1830 	if (peer->flags & FLAG_XBOGUS) {
1831 		peer->flags &= ~FLAG_XBOGUS;
1832 		peer->flash |= TEST3;
1833 	}
1834 
1835 	/*
1836 	 * Next comes a rigorous schedule of timestamp checking. If the
1837 	 * transmit timestamp is zero, the server has not initialized in
1838 	 * interleaved modes or is horribly broken.
1839 	 *
1840 	 * A KoD packet we pay attention to cannot have a 0 transmit
1841 	 * timestamp.
1842 	 */
1843 
1844 	kissCode = kiss_code_check(hisleap, hisstratum, hismode, pkt->refid);
1845 
1846 	if (L_ISZERO(&p_xmt)) {
1847 		peer->flash |= TEST3;			/* unsynch */
1848 		if (kissCode != NOKISS) {		/* KoD packet */
1849 			peer->bogusorg++;		/* for TEST2 or TEST3 */
1850 			msyslog(LOG_INFO,
1851 				"receive: Unexpected zero transmit timestamp in KoD from %s",
1852 				ntoa(&peer->srcadr));
1853 			return;
1854 		}
1855 
1856 	/*
1857 	 * If the transmit timestamp duplicates our previous one, the
1858 	 * packet is a replay. This prevents the bad guys from replaying
1859 	 * the most recent packet, authenticated or not.
1860 	 */
1861 	} else if (L_ISEQU(&peer->xmt, &p_xmt)) {
1862 		DPRINTF(2, ("receive: drop: Duplicate xmit\n"));
1863 		peer->flash |= TEST1;			/* duplicate */
1864 		peer->oldpkt++;
1865 		return;
1866 
1867 	/*
1868 	 * If this is a broadcast mode packet, make sure hisstratum
1869 	 * is appropriate.  Don't do anything else here - we wait to
1870 	 * see if this is an interleave broadcast packet until after
1871 	 * we've validated the MAC that SHOULD be provided.
1872 	 *
1873 	 * hisstratum cannot be 0 - see assertion above.
1874 	 * If hisstratum is 15, then we'll advertise as UNSPEC but
1875 	 * at least we'll be able to sync with the broadcast server.
1876 	 */
1877 	} else if (hismode == MODE_BROADCAST) {
1878 		/* 0 is unexpected too, and impossible */
1879 		if (STRATUM_UNSPEC <= hisstratum) {
1880 			/* Is this a ++sys_declined or ??? */
1881 			msyslog(LOG_INFO,
1882 				"receive: Unexpected stratum (%d) in broadcast from %s",
1883 				hisstratum, ntoa(&peer->srcadr));
1884 			return;
1885 		}
1886 
1887 	/*
1888 	 * Basic KoD validation checking:
1889 	 *
1890 	 * KoD packets are a mixed-blessing.  Forged KoD packets
1891 	 * are DoS attacks.  There are rare situations where we might
1892 	 * get a valid KoD response, though.  Since KoD packets are
1893 	 * a special case that complicate the checks we do next, we
1894 	 * handle the basic KoD checks here.
1895 	 *
1896 	 * Note that we expect the incoming KoD packet to have its
1897 	 * (nonzero) org, rec, and xmt timestamps set to the xmt timestamp
1898 	 * that we have previously sent out.  Watch interleave mode.
1899 	 */
1900 	} else if (kissCode != NOKISS) {
1901 		DEBUG_INSIST(!L_ISZERO(&p_xmt));
1902 		if (   L_ISZERO(&p_org)		/* We checked p_xmt above */
1903 		    || L_ISZERO(&p_rec)) {
1904 			peer->bogusorg++;
1905 			msyslog(LOG_INFO,
1906 				"receive: KoD packet from %s has a zero org or rec timestamp.  Ignoring.",
1907 				ntoa(&peer->srcadr));
1908 			return;
1909 		}
1910 
1911 		if (   !L_ISEQU(&p_xmt, &p_org)
1912 		    || !L_ISEQU(&p_xmt, &p_rec)) {
1913 			peer->bogusorg++;
1914 			msyslog(LOG_INFO,
1915 				"receive: KoD packet from %s has inconsistent xmt/org/rec timestamps.  Ignoring.",
1916 				ntoa(&peer->srcadr));
1917 			return;
1918 		}
1919 
1920 		/* Be conservative */
1921 		if (peer->flip == 0 && !L_ISEQU(&p_org, &peer->aorg)) {
1922 			peer->bogusorg++;
1923 			msyslog(LOG_INFO,
1924 				"receive: flip 0 KoD origin timestamp %#010x.%08x from %s does not match %#010x.%08x - ignoring.",
1925 				p_org.l_ui, p_org.l_uf,
1926 				ntoa(&peer->srcadr),
1927 				peer->aorg.l_ui, peer->aorg.l_uf);
1928 			return;
1929 		} else if (peer->flip == 1 && !L_ISEQU(&p_org, &peer->borg)) {
1930 			peer->bogusorg++;
1931 			msyslog(LOG_INFO,
1932 				"receive: flip 1 KoD origin timestamp %#010x.%08x from %s does not match interleave %#010x.%08x - ignoring.",
1933 				p_org.l_ui, p_org.l_uf,
1934 				ntoa(&peer->srcadr),
1935 				peer->borg.l_ui, peer->borg.l_uf);
1936 			return;
1937 		}
1938 
1939 	/*
1940 	 * Basic mode checks:
1941 	 *
1942 	 * If there is no origin timestamp, it's either an initial packet
1943 	 * or we've already received a response to our query.  Of course,
1944 	 * should 'aorg' be all-zero because this really was the original
1945 	 * transmit timestamp, we'll ignore this reply.  There is a window
1946 	 * of one nanosecond once every 136 years' time where this is
1947 	 * possible.  We currently ignore this situation, as a completely
1948 	 * zero timestamp is (quietly?) disallowed.
1949 	 *
1950 	 * Otherwise, check for bogus packet in basic mode.
1951 	 * If it is bogus, switch to interleaved mode and resynchronize,
1952 	 * but only after confirming the packet is not bogus in
1953 	 * symmetric interleaved mode.
1954 	 *
1955 	 * This could also mean somebody is forging packets claiming to
1956 	 * be from us, attempting to cause our server to KoD us.
1957 	 *
1958 	 * We have earlier asserted that hisstratum cannot be 0.
1959 	 * If hisstratum is STRATUM_UNSPEC, it means he's not sync'd.
1960 	 */
1961 	} else if (peer->flip == 0) {
1962 		if (0) {
1963 		} else if (L_ISZERO(&p_org)) {
1964 			const char *action;
1965 
1966 #ifdef BUG3361
1967 			msyslog(LOG_INFO,
1968 				"receive: BUG 3361: Clearing peer->aorg ");
1969 			L_CLR(&peer->aorg);
1970 #endif
1971 			/**/
1972 			switch (hismode) {
1973 			/* We allow 0org for: */
1974 			    case UCHAR_MAX:
1975 				action = "Allow";
1976 				break;
1977 			/* We disallow 0org for: */
1978 			    case MODE_UNSPEC:
1979 			    case MODE_ACTIVE:
1980 			    case MODE_PASSIVE:
1981 			    case MODE_CLIENT:
1982 			    case MODE_SERVER:
1983 			    case MODE_BROADCAST:
1984 				action = "Drop";
1985 				peer->bogusorg++;
1986 				peer->flash |= TEST2;	/* bogus */
1987 				break;
1988 			    default:
1989 				action = "";	/* for cranky compilers / MSVC */
1990 				INSIST(!"receive(): impossible hismode");
1991 				break;
1992 			}
1993 			/**/
1994 			msyslog(LOG_INFO,
1995 				"receive: %s 0 origin timestamp from %s@%s xmt %#010x.%08x",
1996 				action, hm_str, ntoa(&peer->srcadr),
1997 				ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf));
1998 		} else if (!L_ISEQU(&p_org, &peer->aorg)) {
1999 			/* are there cases here where we should bail? */
2000 			/* Should we set TEST2 if we decide to try xleave? */
2001 			peer->bogusorg++;
2002 			peer->flash |= TEST2;	/* bogus */
2003 			msyslog(LOG_INFO,
2004 				"receive: Unexpected origin timestamp %#010x.%08x does not match aorg %#010x.%08x from %s@%s xmt %#010x.%08x",
2005 				ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf),
2006 				peer->aorg.l_ui, peer->aorg.l_uf,
2007 				hm_str, ntoa(&peer->srcadr),
2008 				ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf));
2009 			if (  !L_ISZERO(&peer->dst)
2010 			    && L_ISEQU(&p_org, &peer->dst)) {
2011 				/* Might be the start of an interleave */
2012 				if (dynamic_interleave) {
2013 					peer->flip = 1;
2014 					report_event(PEVNT_XLEAVE, peer, NULL);
2015 				} else {
2016 					msyslog(LOG_INFO,
2017 						"receive: Dynamic interleave from %s@%s denied",
2018 						hm_str, ntoa(&peer->srcadr));
2019 				}
2020 			}
2021 		} else {
2022 			L_CLR(&peer->aorg);
2023 		}
2024 
2025 	/*
2026 	 * Check for valid nonzero timestamp fields.
2027 	 */
2028 	} else if (   L_ISZERO(&p_org)
2029 		   || L_ISZERO(&p_rec)
2030 		   || L_ISZERO(&peer->dst)) {
2031 		peer->flash |= TEST3;		/* unsynch */
2032 
2033 	/*
2034 	 * Check for bogus packet in interleaved symmetric mode. This
2035 	 * can happen if a packet is lost, duplicated or crossed. If
2036 	 * found, flip and resynchronize.
2037 	 */
2038 	} else if (   !L_ISZERO(&peer->dst)
2039 		   && !L_ISEQU(&p_org, &peer->dst)) {
2040 		DPRINTF(2, ("receive: drop: Bogus packet in interleaved symmetric mode\n"));
2041 		peer->bogusorg++;
2042 		peer->flags |= FLAG_XBOGUS;
2043 		peer->flash |= TEST2;		/* bogus */
2044 #ifdef BUG3453
2045 		return; /* Bogus packet, we are done */
2046 #endif
2047 	}
2048 
2049 	/**/
2050 
2051 	/*
2052 	 * If this is a crypto_NAK, the server cannot authenticate a
2053 	 * client packet. The server might have just changed keys. Clear
2054 	 * the association and restart the protocol.
2055 	 */
2056 	if (crypto_nak_test == VALIDNAK) {
2057 		report_event(PEVNT_AUTH, peer, "crypto_NAK");
2058 		peer->flash |= TEST5;		/* bad auth */
2059 		peer->badauth++;
2060 		if (peer->flags & FLAG_PREEMPT) {
2061 			if (unpeer_crypto_nak_early) {
2062 				unpeer(peer);
2063 			}
2064 			DPRINTF(2, ("receive: drop: PREEMPT crypto_NAK\n"));
2065 			return;
2066 		}
2067 #ifdef AUTOKEY
2068 		if (peer->crypto) {
2069 			peer_clear(peer, "AUTH");
2070 		}
2071 #endif	/* AUTOKEY */
2072 		DPRINTF(2, ("receive: drop: crypto_NAK\n"));
2073 		return;
2074 
2075 	/*
2076 	 * If the digest fails or it's missing for authenticated
2077 	 * associations, the client cannot authenticate a server
2078 	 * reply to a client packet previously sent. The loopback check
2079 	 * is designed to avoid a bait-and-switch attack, which was
2080 	 * possible in past versions. If symmetric modes, return a
2081 	 * crypto-NAK. The peer should restart the protocol.
2082 	 */
2083 	} else if (!AUTH(peer->keyid || has_mac ||
2084 			 (restrict_mask & RES_DONTTRUST), is_authentic)) {
2085 
2086 		if (peer->flash & PKT_TEST_MASK) {
2087 			msyslog(LOG_INFO,
2088 				"receive: Bad auth in packet with bad timestamps from %s denied - spoof?",
2089 				ntoa(&peer->srcadr));
2090 			return;
2091 		}
2092 
2093 		report_event(PEVNT_AUTH, peer, "digest");
2094 		peer->flash |= TEST5;		/* bad auth */
2095 		peer->badauth++;
2096 		if (   has_mac
2097 		    && (   hismode == MODE_ACTIVE
2098 			|| hismode == MODE_PASSIVE))
2099 			fast_xmit(rbufp, MODE_ACTIVE, 0, restrict_mask);
2100 		if (peer->flags & FLAG_PREEMPT) {
2101 			if (unpeer_digest_early) {
2102 				unpeer(peer);
2103 			}
2104 		}
2105 #ifdef AUTOKEY
2106 		else if (peer_clear_digest_early && peer->crypto) {
2107 			peer_clear(peer, "AUTH");
2108 		}
2109 #endif	/* AUTOKEY */
2110 		DPRINTF(2, ("receive: drop: Bad or missing AUTH\n"));
2111 		return;
2112 	}
2113 
2114 	/*
2115 	 * For broadcast packets:
2116 	 *
2117 	 * HMS: This next line never made much sense to me, even
2118 	 * when it was up higher:
2119 	 *   If an initial volley, bail out now and let the
2120 	 *   client do its stuff.
2121 	 *
2122 	 * If the packet has not failed authentication, then
2123 	 * - if the origin timestamp is nonzero this is an
2124 	 *   interleaved broadcast, so restart the protocol.
2125 	 * - else, this is not an interleaved broadcast packet.
2126 	 */
2127 	if (hismode == MODE_BROADCAST) {
2128 		if (   is_authentic == AUTH_OK
2129 		    || is_authentic == AUTH_NONE) {
2130 			if (!L_ISZERO(&p_org)) {
2131 				if (!(peer->flags & FLAG_XB)) {
2132 					msyslog(LOG_INFO,
2133 						"receive: Broadcast server at %s is in interleave mode",
2134 						ntoa(&peer->srcadr));
2135 					peer->flags |= FLAG_XB;
2136 					peer->aorg = p_xmt;
2137 					peer->borg = rbufp->recv_time;
2138 					report_event(PEVNT_XLEAVE, peer, NULL);
2139 					return;
2140 				}
2141 			} else if (peer->flags & FLAG_XB) {
2142 				msyslog(LOG_INFO,
2143 					"receive: Broadcast server at %s is no longer in interleave mode",
2144 					ntoa(&peer->srcadr));
2145 				peer->flags &= ~FLAG_XB;
2146 			}
2147 		} else {
2148 			msyslog(LOG_INFO,
2149 				"receive: Bad broadcast auth (%d) from %s",
2150 				is_authentic, ntoa(&peer->srcadr));
2151 		}
2152 
2153 		/*
2154 		 * Now that we know the packet is correctly authenticated,
2155 		 * update peer->bxmt.
2156 		 */
2157 		peer->bxmt = p_xmt;
2158 	}
2159 
2160 
2161 	/*
2162 	** Update the state variables.
2163 	*/
2164 	if (peer->flip == 0) {
2165 		if (hismode != MODE_BROADCAST)
2166 			peer->rec = p_xmt;
2167 		peer->dst = rbufp->recv_time;
2168 	}
2169 	peer->xmt = p_xmt;
2170 
2171 	/*
2172 	 * Set the peer ppoll to the maximum of the packet ppoll and the
2173 	 * peer minpoll. If a kiss-o'-death, set the peer minpoll to
2174 	 * this maximum and advance the headway to give the sender some
2175 	 * headroom. Very intricate.
2176 	 */
2177 
2178 	/*
2179 	 * Check for any kiss codes. Note this is only used when a server
2180 	 * responds to a packet request.
2181 	 */
2182 
2183 	/*
2184 	 * Check to see if this is a RATE Kiss Code
2185 	 * Currently this kiss code will accept whatever poll
2186 	 * rate that the server sends
2187 	 */
2188 	peer->ppoll = max(peer->minpoll, pkt->ppoll);
2189 	if (kissCode == RATEKISS) {
2190 		peer->selbroken++;	/* Increment the KoD count */
2191 		report_event(PEVNT_RATE, peer, NULL);
2192 		if (pkt->ppoll > peer->minpoll)
2193 			peer->minpoll = peer->ppoll;
2194 		peer->burst = peer->retry = 0;
2195 		peer->throttle = (NTP_SHIFT + 1) * (1 << peer->minpoll);
2196 		poll_update(peer, pkt->ppoll);
2197 		return;				/* kiss-o'-death */
2198 	}
2199 	if (kissCode != NOKISS) {
2200 		peer->selbroken++;	/* Increment the KoD count */
2201 		return;		/* Drop any other kiss code packets */
2202 	}
2203 
2204 
2205 	/*
2206 	 * XXX
2207 	 */
2208 
2209 
2210 	/*
2211 	 * If:
2212 	 *	- this is a *cast (uni-, broad-, or m-) server packet
2213 	 *	- and it's symmetric-key authenticated
2214 	 * then see if the sender's IP is trusted for this keyid.
2215 	 * If it is, great - nothing special to do here.
2216 	 * Otherwise, we should report and bail.
2217 	 *
2218 	 * Autokey-authenticated packets are accepted.
2219 	 */
2220 
2221 	switch (hismode) {
2222 	    case MODE_SERVER:		/* server mode */
2223 	    case MODE_BROADCAST:	/* broadcast mode */
2224 	    case MODE_ACTIVE:		/* symmetric active mode */
2225 	    case MODE_PASSIVE:		/* symmetric passive mode */
2226 		if (   is_authentic == AUTH_OK
2227 		    && skeyid
2228 		    && skeyid <= NTP_MAXKEY
2229 		    && !authistrustedip(skeyid, &peer->srcadr)) {
2230 			report_event(PEVNT_AUTH, peer, "authIP");
2231 			peer->badauth++;
2232 			return;
2233 		}
2234 		break;
2235 
2236 	    case MODE_CLIENT:		/* client mode */
2237 #if 0		/* At this point, MODE_CONTROL is overloaded by MODE_BCLIENT */
2238 	    case MODE_CONTROL:		/* control mode */
2239 #endif
2240 	    case MODE_PRIVATE:		/* private mode */
2241 	    case MODE_BCLIENT:		/* broadcast client mode */
2242 		break;
2243 
2244 	    case MODE_UNSPEC:		/* unspecified (old version) */
2245 	    default:
2246 		msyslog(LOG_INFO,
2247 			"receive: Unexpected mode (%d) in packet from %s",
2248 			hismode, ntoa(&peer->srcadr));
2249 		break;
2250 	}
2251 
2252 
2253 	/*
2254 	 * That was hard and I am sweaty, but the packet is squeaky
2255 	 * clean. Get on with real work.
2256 	 */
2257 	peer->timereceived = current_time;
2258 	peer->timelastrec = current_time;
2259 	if (is_authentic == AUTH_OK)
2260 		peer->flags |= FLAG_AUTHENTIC;
2261 	else
2262 		peer->flags &= ~FLAG_AUTHENTIC;
2263 
2264 #ifdef AUTOKEY
2265 	/*
2266 	 * More autokey dance. The rules of the cha-cha are as follows:
2267 	 *
2268 	 * 1. If there is no key or the key is not auto, do nothing.
2269 	 *
2270 	 * 2. If this packet is in response to the one just previously
2271 	 *    sent or from a broadcast server, do the extension fields.
2272 	 *    Otherwise, assume bogosity and bail out.
2273 	 *
2274 	 * 3. If an extension field contains a verified signature, it is
2275 	 *    self-authenticated and we sit the dance.
2276 	 *
2277 	 * 4. If this is a server reply, check only to see that the
2278 	 *    transmitted key ID matches the received key ID.
2279 	 *
2280 	 * 5. Check to see that one or more hashes of the current key ID
2281 	 *    matches the previous key ID or ultimate original key ID
2282 	 *    obtained from the broadcaster or symmetric peer. If no
2283 	 *    match, sit the dance and call for new autokey values.
2284 	 *
2285 	 * In case of crypto error, fire the orchestra, stop dancing and
2286 	 * restart the protocol.
2287 	 */
2288 	if (peer->flags & FLAG_SKEY) {
2289 		/*
2290 		 * Decrement remaining autokey hashes. This isn't
2291 		 * perfect if a packet is lost, but results in no harm.
2292 		 */
2293 		ap = (struct autokey *)peer->recval.ptr;
2294 		if (ap != NULL) {
2295 			if (ap->seq > 0)
2296 				ap->seq--;
2297 		}
2298 		peer->flash |= TEST8;
2299 		rval = crypto_recv(peer, rbufp);
2300 		if (rval == XEVNT_OK) {
2301 			peer->unreach = 0;
2302 		} else {
2303 			if (rval == XEVNT_ERR) {
2304 				report_event(PEVNT_RESTART, peer,
2305 				    "crypto error");
2306 				peer_clear(peer, "CRYP");
2307 				peer->flash |= TEST9;	/* bad crypt */
2308 				if (peer->flags & FLAG_PREEMPT) {
2309 					if (unpeer_crypto_early) {
2310 						unpeer(peer);
2311 					}
2312 				}
2313 			}
2314 			return;
2315 		}
2316 
2317 		/*
2318 		 * If server mode, verify the receive key ID matches
2319 		 * the transmit key ID.
2320 		 */
2321 		if (hismode == MODE_SERVER) {
2322 			if (skeyid == peer->keyid)
2323 				peer->flash &= ~TEST8;
2324 
2325 		/*
2326 		 * If an extension field is present, verify only that it
2327 		 * has been correctly signed. We don't need a sequence
2328 		 * check here, but the sequence continues.
2329 		 */
2330 		} else if (!(peer->flash & TEST8)) {
2331 			peer->pkeyid = skeyid;
2332 
2333 		/*
2334 		 * Now the fun part. Here, skeyid is the current ID in
2335 		 * the packet, pkeyid is the ID in the last packet and
2336 		 * tkeyid is the hash of skeyid. If the autokey values
2337 		 * have not been received, this is an automatic error.
2338 		 * If so, check that the tkeyid matches pkeyid. If not,
2339 		 * hash tkeyid and try again. If the number of hashes
2340 		 * exceeds the number remaining in the sequence, declare
2341 		 * a successful failure and refresh the autokey values.
2342 		 */
2343 		} else if (ap != NULL) {
2344 			int i;
2345 
2346 			for (i = 0; ; i++) {
2347 				if (   tkeyid == peer->pkeyid
2348 				    || tkeyid == ap->key) {
2349 					peer->flash &= ~TEST8;
2350 					peer->pkeyid = skeyid;
2351 					ap->seq -= i;
2352 					break;
2353 				}
2354 				if (i > ap->seq) {
2355 					peer->crypto &=
2356 					    ~CRYPTO_FLAG_AUTO;
2357 					break;
2358 				}
2359 				tkeyid = session_key(
2360 				    &rbufp->recv_srcadr, dstadr_sin,
2361 				    tkeyid, pkeyid, 0);
2362 			}
2363 			if (peer->flash & TEST8)
2364 				report_event(PEVNT_AUTH, peer, "keylist");
2365 		}
2366 		if (!(peer->crypto & CRYPTO_FLAG_PROV)) /* test 9 */
2367 			peer->flash |= TEST8;	/* bad autokey */
2368 
2369 		/*
2370 		 * The maximum lifetime of the protocol is about one
2371 		 * week before restarting the Autokey protocol to
2372 		 * refresh certificates and leapseconds values.
2373 		 */
2374 		if (current_time > peer->refresh) {
2375 			report_event(PEVNT_RESTART, peer,
2376 			    "crypto refresh");
2377 			peer_clear(peer, "TIME");
2378 			return;
2379 		}
2380 	}
2381 #endif	/* AUTOKEY */
2382 
2383 	/*
2384 	 * The dance is complete and the flash bits have been lit. Toss
2385 	 * the packet over the fence for processing, which may light up
2386 	 * more flashers.
2387 	 */
2388 	process_packet(peer, pkt, rbufp->recv_length);
2389 
2390 	/*
2391 	 * In interleaved mode update the state variables. Also adjust the
2392 	 * transmit phase to avoid crossover.
2393 	 */
2394 	if (peer->flip != 0) {
2395 		peer->rec = p_rec;
2396 		peer->dst = rbufp->recv_time;
2397 		if (peer->nextdate - current_time < (1U << min(peer->ppoll,
2398 		    peer->hpoll)) / 2)
2399 			peer->nextdate++;
2400 		else
2401 			peer->nextdate--;
2402 	}
2403 }
2404 
2405 
2406 /*
2407  * process_packet - Packet Procedure, a la Section 3.4.4 of RFC-1305
2408  *	Or almost, at least.  If we're in here we have a reasonable
2409  *	expectation that we will be having a long term
2410  *	relationship with this host.
2411  */
2412 void
2413 process_packet(
2414 	register struct peer *peer,
2415 	register struct pkt *pkt,
2416 	u_int	len
2417 	)
2418 {
2419 	double	t34, t21;
2420 	double	p_offset, p_del, p_disp;
2421 	l_fp	p_rec, p_xmt, p_org, p_reftime, ci;
2422 	u_char	pmode, pleap, pversion, pstratum;
2423 	char	statstr[NTP_MAXSTRLEN];
2424 #ifdef ASSYM
2425 	int	itemp;
2426 	double	etemp, ftemp, td;
2427 #endif /* ASSYM */
2428 
2429 #if 0
2430 	sys_processed++;
2431 	peer->processed++;
2432 #endif
2433 	p_del = FPTOD(NTOHS_FP(pkt->rootdelay));
2434 	p_offset = 0;
2435 	p_disp = FPTOD(NTOHS_FP(pkt->rootdisp));
2436 	NTOHL_FP(&pkt->reftime, &p_reftime);
2437 	NTOHL_FP(&pkt->org, &p_org);
2438 	NTOHL_FP(&pkt->rec, &p_rec);
2439 	NTOHL_FP(&pkt->xmt, &p_xmt);
2440 	pmode = PKT_MODE(pkt->li_vn_mode);
2441 	pleap = PKT_LEAP(pkt->li_vn_mode);
2442 	pversion = PKT_VERSION(pkt->li_vn_mode);
2443 	pstratum = PKT_TO_STRATUM(pkt->stratum);
2444 
2445 	/**/
2446 
2447 	/**/
2448 
2449 	/*
2450 	 * Verify the server is synchronized; that is, the leap bits,
2451 	 * stratum and root distance are valid.
2452 	 */
2453 	if (   pleap == LEAP_NOTINSYNC		/* test 6 */
2454 	    || pstratum < sys_floor || pstratum >= sys_ceiling)
2455 		peer->flash |= TEST6;		/* bad synch or strat */
2456 	if (p_del / 2 + p_disp >= MAXDISPERSE)	/* test 7 */
2457 		peer->flash |= TEST7;		/* bad header */
2458 
2459 	/*
2460 	 * If any tests fail at this point, the packet is discarded.
2461 	 * Note that some flashers may have already been set in the
2462 	 * receive() routine.
2463 	 */
2464 	if (peer->flash & PKT_TEST_MASK) {
2465 		peer->seldisptoolarge++;
2466 		DPRINTF(1, ("packet: flash header %04x\n",
2467 			    peer->flash));
2468 		poll_update(peer, peer->hpoll);	/* ppoll updated? */
2469 		return;
2470 	}
2471 
2472 	/**/
2473 
2474 #if 1
2475 	sys_processed++;
2476 	peer->processed++;
2477 #endif
2478 
2479 	/*
2480 	 * Capture the header values in the client/peer association..
2481 	 */
2482 	record_raw_stats(&peer->srcadr,
2483 	    peer->dstadr ? &peer->dstadr->sin : NULL,
2484 	    &p_org, &p_rec, &p_xmt, &peer->dst,
2485 	    pleap, pversion, pmode, pstratum, pkt->ppoll, pkt->precision,
2486 	    p_del, p_disp, pkt->refid,
2487 	    len - MIN_V4_PKT_LEN, (u_char *)&pkt->exten);
2488 	peer->leap = pleap;
2489 	peer->stratum = min(pstratum, STRATUM_UNSPEC);
2490 	peer->pmode = pmode;
2491 	peer->precision = pkt->precision;
2492 	peer->rootdelay = p_del;
2493 	peer->rootdisp = p_disp;
2494 	peer->refid = pkt->refid;		/* network byte order */
2495 	peer->reftime = p_reftime;
2496 
2497 	/*
2498 	 * First, if either burst mode is armed, enable the burst.
2499 	 * Compute the headway for the next packet and delay if
2500 	 * necessary to avoid exceeding the threshold.
2501 	 */
2502 	if (peer->retry > 0) {
2503 		peer->retry = 0;
2504 		if (peer->reach)
2505 			peer->burst = min(1 << (peer->hpoll -
2506 			    peer->minpoll), NTP_SHIFT) - 1;
2507 		else
2508 			peer->burst = NTP_IBURST - 1;
2509 		if (peer->burst > 0)
2510 			peer->nextdate = current_time;
2511 	}
2512 	poll_update(peer, peer->hpoll);
2513 
2514 	/**/
2515 
2516 	/*
2517 	 * If the peer was previously unreachable, raise a trap. In any
2518 	 * case, mark it reachable.
2519 	 */
2520 	if (!peer->reach) {
2521 		report_event(PEVNT_REACH, peer, NULL);
2522 		peer->timereachable = current_time;
2523 	}
2524 	peer->reach |= 1;
2525 
2526 	/*
2527 	 * For a client/server association, calculate the clock offset,
2528 	 * roundtrip delay and dispersion. The equations are reordered
2529 	 * from the spec for more efficient use of temporaries. For a
2530 	 * broadcast association, offset the last measurement by the
2531 	 * computed delay during the client/server volley. Note the
2532 	 * computation of dispersion includes the system precision plus
2533 	 * that due to the frequency error since the origin time.
2534 	 *
2535 	 * It is very important to respect the hazards of overflow. The
2536 	 * only permitted operation on raw timestamps is subtraction,
2537 	 * where the result is a signed quantity spanning from 68 years
2538 	 * in the past to 68 years in the future. To avoid loss of
2539 	 * precision, these calculations are done using 64-bit integer
2540 	 * arithmetic. However, the offset and delay calculations are
2541 	 * sums and differences of these first-order differences, which
2542 	 * if done using 64-bit integer arithmetic, would be valid over
2543 	 * only half that span. Since the typical first-order
2544 	 * differences are usually very small, they are converted to 64-
2545 	 * bit doubles and all remaining calculations done in floating-
2546 	 * double arithmetic. This preserves the accuracy while
2547 	 * retaining the 68-year span.
2548 	 *
2549 	 * There are three interleaving schemes, basic, interleaved
2550 	 * symmetric and interleaved broadcast. The timestamps are
2551 	 * idioscyncratically different. See the onwire briefing/white
2552 	 * paper at www.eecis.udel.edu/~mills for details.
2553 	 *
2554 	 * Interleaved symmetric mode
2555 	 * t1 = peer->aorg/borg, t2 = peer->rec, t3 = p_xmt,
2556 	 * t4 = peer->dst
2557 	 */
2558 	if (peer->flip != 0) {
2559 		ci = p_xmt;				/* t3 - t4 */
2560 		L_SUB(&ci, &peer->dst);
2561 		LFPTOD(&ci, t34);
2562 		ci = p_rec;				/* t2 - t1 */
2563 		if (peer->flip > 0)
2564 			L_SUB(&ci, &peer->borg);
2565 		else
2566 			L_SUB(&ci, &peer->aorg);
2567 		LFPTOD(&ci, t21);
2568 		p_del = t21 - t34;
2569 		p_offset = (t21 + t34) / 2.;
2570 		if (p_del < 0 || p_del > 1.) {
2571 			snprintf(statstr, sizeof(statstr),
2572 			    "t21 %.6f t34 %.6f", t21, t34);
2573 			report_event(PEVNT_XERR, peer, statstr);
2574 			return;
2575 		}
2576 
2577 	/*
2578 	 * Broadcast modes
2579 	 */
2580 	} else if (peer->pmode == MODE_BROADCAST) {
2581 
2582 		/*
2583 		 * Interleaved broadcast mode. Use interleaved timestamps.
2584 		 * t1 = peer->borg, t2 = p_org, t3 = p_org, t4 = aorg
2585 		 */
2586 		if (peer->flags & FLAG_XB) {
2587 			ci = p_org;			/* delay */
2588 			L_SUB(&ci, &peer->aorg);
2589 			LFPTOD(&ci, t34);
2590 			ci = p_org;			/* t2 - t1 */
2591 			L_SUB(&ci, &peer->borg);
2592 			LFPTOD(&ci, t21);
2593 			peer->aorg = p_xmt;
2594 			peer->borg = peer->dst;
2595 			if (t34 < 0 || t34 > 1.) {
2596 				/* drop all if in the initial volley */
2597 				if (FLAG_BC_VOL & peer->flags)
2598 					goto bcc_init_volley_fail;
2599 				snprintf(statstr, sizeof(statstr),
2600 				    "offset %.6f delay %.6f", t21, t34);
2601 				report_event(PEVNT_XERR, peer, statstr);
2602 				return;
2603 			}
2604 			p_offset = t21;
2605 			peer->xleave = t34;
2606 
2607 		/*
2608 		 * Basic broadcast - use direct timestamps.
2609 		 * t3 = p_xmt, t4 = peer->dst
2610 		 */
2611 		} else {
2612 			ci = p_xmt;		/* t3 - t4 */
2613 			L_SUB(&ci, &peer->dst);
2614 			LFPTOD(&ci, t34);
2615 			p_offset = t34;
2616 		}
2617 
2618 		/*
2619 		 * When calibration is complete and the clock is
2620 		 * synchronized, the bias is calculated as the difference
2621 		 * between the unicast timestamp and the broadcast
2622 		 * timestamp. This works for both basic and interleaved
2623 		 * modes.
2624 		 * [Bug 3031] Don't keep this peer when the delay
2625 		 * calculation gives reason to suspect clock steps.
2626 		 * This is assumed for delays > 50ms.
2627 		 */
2628 		if (FLAG_BC_VOL & peer->flags) {
2629 			peer->flags &= ~FLAG_BC_VOL;
2630 			peer->delay = fabs(peer->offset - p_offset) * 2;
2631 			DPRINTF(2, ("broadcast volley: initial delay=%.6f\n",
2632 				peer->delay));
2633 			if (peer->delay > fabs(sys_bdelay)) {
2634 		bcc_init_volley_fail:
2635 				DPRINTF(2, ("%s", "broadcast volley: initial delay exceeds limit\n"));
2636 				unpeer(peer);
2637 				return;
2638 			}
2639 		}
2640 		peer->nextdate = current_time + (1u << peer->ppoll) - 2u;
2641 		p_del = peer->delay;
2642 		p_offset += p_del / 2;
2643 
2644 
2645 	/*
2646 	 * Basic mode, otherwise known as the old fashioned way.
2647 	 *
2648 	 * t1 = p_org, t2 = p_rec, t3 = p_xmt, t4 = peer->dst
2649 	 */
2650 	} else {
2651 		ci = p_xmt;				/* t3 - t4 */
2652 		L_SUB(&ci, &peer->dst);
2653 		LFPTOD(&ci, t34);
2654 		ci = p_rec;				/* t2 - t1 */
2655 		L_SUB(&ci, &p_org);
2656 		LFPTOD(&ci, t21);
2657 		p_del = fabs(t21 - t34);
2658 		p_offset = (t21 + t34) / 2.;
2659 	}
2660 	p_del = max(p_del, LOGTOD(sys_precision));
2661 	p_disp = LOGTOD(sys_precision) + LOGTOD(peer->precision) +
2662 	    clock_phi * p_del;
2663 
2664 #if ASSYM
2665 	/*
2666 	 * This code calculates the outbound and inbound data rates by
2667 	 * measuring the differences between timestamps at different
2668 	 * packet lengths. This is helpful in cases of large asymmetric
2669 	 * delays commonly experienced on deep space communication
2670 	 * links.
2671 	 */
2672 	if (peer->t21_last > 0 && peer->t34_bytes > 0) {
2673 		itemp = peer->t21_bytes - peer->t21_last;
2674 		if (itemp > 25) {
2675 			etemp = t21 - peer->t21;
2676 			if (fabs(etemp) > 1e-6) {
2677 				ftemp = itemp / etemp;
2678 				if (ftemp > 1000.)
2679 					peer->r21 = ftemp;
2680 			}
2681 		}
2682 		itemp = len - peer->t34_bytes;
2683 		if (itemp > 25) {
2684 			etemp = -t34 - peer->t34;
2685 			if (fabs(etemp) > 1e-6) {
2686 				ftemp = itemp / etemp;
2687 				if (ftemp > 1000.)
2688 					peer->r34 = ftemp;
2689 			}
2690 		}
2691 	}
2692 
2693 	/*
2694 	 * The following section compensates for different data rates on
2695 	 * the outbound (d21) and inbound (t34) directions. To do this,
2696 	 * it finds t such that r21 * t - r34 * (d - t) = 0, where d is
2697 	 * the roundtrip delay. Then it calculates the correction as a
2698 	 * fraction of d.
2699 	 */
2700 	peer->t21 = t21;
2701 	peer->t21_last = peer->t21_bytes;
2702 	peer->t34 = -t34;
2703 	peer->t34_bytes = len;
2704 	DPRINTF(2, ("packet: t21 %.9lf %d t34 %.9lf %d\n", peer->t21,
2705 		    peer->t21_bytes, peer->t34, peer->t34_bytes));
2706 	if (peer->r21 > 0 && peer->r34 > 0 && p_del > 0) {
2707 		if (peer->pmode != MODE_BROADCAST)
2708 			td = (peer->r34 / (peer->r21 + peer->r34) -
2709 			    .5) * p_del;
2710 		else
2711 			td = 0;
2712 
2713 		/*
2714 		 * Unfortunately, in many cases the errors are
2715 		 * unacceptable, so for the present the rates are not
2716 		 * used. In future, we might find conditions where the
2717 		 * calculations are useful, so this should be considered
2718 		 * a work in progress.
2719 		 */
2720 		t21 -= td;
2721 		t34 -= td;
2722 		DPRINTF(2, ("packet: del %.6lf r21 %.1lf r34 %.1lf %.6lf\n",
2723 			    p_del, peer->r21 / 1e3, peer->r34 / 1e3,
2724 			    td));
2725 	}
2726 #endif /* ASSYM */
2727 
2728 	/*
2729 	 * That was awesome. Now hand off to the clock filter.
2730 	 */
2731 	clock_filter(peer, p_offset + peer->bias, p_del, p_disp);
2732 
2733 	/*
2734 	 * If we are in broadcast calibrate mode, return to broadcast
2735 	 * client mode when the client is fit and the autokey dance is
2736 	 * complete.
2737 	 */
2738 	if (   (FLAG_BC_VOL & peer->flags)
2739 	    && MODE_CLIENT == peer->hmode
2740 	    && !(TEST11 & peer_unfit(peer))) {	/* distance exceeded */
2741 #ifdef AUTOKEY
2742 		if (peer->flags & FLAG_SKEY) {
2743 			if (!(~peer->crypto & CRYPTO_FLAG_ALL))
2744 				peer->hmode = MODE_BCLIENT;
2745 		} else {
2746 			peer->hmode = MODE_BCLIENT;
2747 		}
2748 #else	/* !AUTOKEY follows */
2749 		peer->hmode = MODE_BCLIENT;
2750 #endif	/* !AUTOKEY */
2751 	}
2752 }
2753 
2754 
2755 /*
2756  * clock_update - Called at system process update intervals.
2757  */
2758 static void
2759 clock_update(
2760 	struct peer *peer	/* peer structure pointer */
2761 	)
2762 {
2763 	double	dtemp;
2764 	l_fp	now;
2765 #ifdef HAVE_LIBSCF_H
2766 	char	*fmri;
2767 #endif /* HAVE_LIBSCF_H */
2768 
2769 	/*
2770 	 * Update the system state variables. We do this very carefully,
2771 	 * as the poll interval might need to be clamped differently.
2772 	 */
2773 	sys_peer = peer;
2774 	sys_epoch = peer->epoch;
2775 	if (sys_poll < peer->minpoll)
2776 		sys_poll = peer->minpoll;
2777 	if (sys_poll > peer->maxpoll)
2778 		sys_poll = peer->maxpoll;
2779 	poll_update(peer, sys_poll);
2780 	sys_stratum = min(peer->stratum + 1, STRATUM_UNSPEC);
2781 	if (   peer->stratum == STRATUM_REFCLOCK
2782 	    || peer->stratum == STRATUM_UNSPEC)
2783 		sys_refid = peer->refid;
2784 	else
2785 		sys_refid = addr2refid(&peer->srcadr);
2786 	/*
2787 	 * Root Dispersion (E) is defined (in RFC 5905) as:
2788 	 *
2789 	 * E = p.epsilon_r + p.epsilon + p.psi + PHI*(s.t - p.t) + |THETA|
2790 	 *
2791 	 * where:
2792 	 *  p.epsilon_r is the PollProc's root dispersion
2793 	 *  p.epsilon   is the PollProc's dispersion
2794 	 *  p.psi       is the PollProc's jitter
2795 	 *  THETA       is the combined offset
2796 	 *
2797 	 * NB: Think Hard about where these numbers come from and
2798 	 * what they mean.  When did peer->update happen?  Has anything
2799 	 * interesting happened since then?  What values are the most
2800 	 * defensible?  Why?
2801 	 *
2802 	 * DLM thinks this equation is probably the best of all worse choices.
2803 	 */
2804 	dtemp	= peer->rootdisp
2805 		+ peer->disp
2806 		+ sys_jitter
2807 		+ clock_phi * (current_time - peer->update)
2808 		+ fabs(sys_offset);
2809 
2810 	if (dtemp > sys_mindisp)
2811 		sys_rootdisp = dtemp;
2812 	else
2813 		sys_rootdisp = sys_mindisp;
2814 	sys_rootdelay = peer->delay + peer->rootdelay;
2815 	sys_reftime = peer->dst;
2816 
2817 	DPRINTF(1, ("clock_update: at %lu sample %lu associd %d\n",
2818 		    current_time, peer->epoch, peer->associd));
2819 
2820 	/*
2821 	 * Comes now the moment of truth. Crank the clock discipline and
2822 	 * see what comes out.
2823 	 */
2824 	switch (local_clock(peer, sys_offset)) {
2825 
2826 	/*
2827 	 * Clock exceeds panic threshold. Life as we know it ends.
2828 	 */
2829 	case -1:
2830 #ifdef HAVE_LIBSCF_H
2831 		/*
2832 		 * For Solaris enter the maintenance mode.
2833 		 */
2834 		if ((fmri = getenv("SMF_FMRI")) != NULL) {
2835 			if (smf_maintain_instance(fmri, 0) < 0) {
2836 				printf("smf_maintain_instance: %s\n",
2837 				    scf_strerror(scf_error()));
2838 				exit(1);
2839 			}
2840 			/*
2841 			 * Sleep until SMF kills us.
2842 			 */
2843 			for (;;)
2844 				pause();
2845 		}
2846 #endif /* HAVE_LIBSCF_H */
2847 		exit (-1);
2848 		/* not reached */
2849 
2850 	/*
2851 	 * Clock was stepped. Flush all time values of all peers.
2852 	 */
2853 	case 2:
2854 		clear_all();
2855 		set_sys_leap(LEAP_NOTINSYNC);
2856 		sys_stratum = STRATUM_UNSPEC;
2857 		memcpy(&sys_refid, "STEP", 4);
2858 		sys_rootdelay = 0;
2859 		sys_rootdisp = 0;
2860 		L_CLR(&sys_reftime);
2861 		sys_jitter = LOGTOD(sys_precision);
2862 		leapsec_reset_frame();
2863 		break;
2864 
2865 	/*
2866 	 * Clock was slewed. Handle the leapsecond stuff.
2867 	 */
2868 	case 1:
2869 
2870 		/*
2871 		 * If this is the first time the clock is set, reset the
2872 		 * leap bits. If crypto, the timer will goose the setup
2873 		 * process.
2874 		 */
2875 		if (sys_leap == LEAP_NOTINSYNC) {
2876 			set_sys_leap(LEAP_NOWARNING);
2877 #ifdef AUTOKEY
2878 			if (crypto_flags)
2879 				crypto_update();
2880 #endif	/* AUTOKEY */
2881 			/*
2882 			 * If our parent process is waiting for the
2883 			 * first clock sync, send them home satisfied.
2884 			 */
2885 #ifdef HAVE_WORKING_FORK
2886 			if (waitsync_fd_to_close != -1) {
2887 				close(waitsync_fd_to_close);
2888 				waitsync_fd_to_close = -1;
2889 				DPRINTF(1, ("notified parent --wait-sync is done\n"));
2890 			}
2891 #endif /* HAVE_WORKING_FORK */
2892 
2893 		}
2894 
2895 		/*
2896 		 * If there is no leap second pending and the number of
2897 		 * survivor leap bits is greater than half the number of
2898 		 * survivors, try to schedule a leap for the end of the
2899 		 * current month. (This only works if no leap second for
2900 		 * that range is in the table, so doing this more than
2901 		 * once is mostly harmless.)
2902 		 */
2903 		if (leapsec == LSPROX_NOWARN) {
2904 			if (   leap_vote_ins > leap_vote_del
2905 			    && leap_vote_ins > sys_survivors / 2) {
2906 				get_systime(&now);
2907 				leapsec_add_dyn(TRUE, now.l_ui, NULL);
2908 			}
2909 			if (   leap_vote_del > leap_vote_ins
2910 			    && leap_vote_del > sys_survivors / 2) {
2911 				get_systime(&now);
2912 				leapsec_add_dyn(FALSE, now.l_ui, NULL);
2913 			}
2914 		}
2915 		break;
2916 
2917 	/*
2918 	 * Popcorn spike or step threshold exceeded. Pretend it never
2919 	 * happened.
2920 	 */
2921 	default:
2922 		break;
2923 	}
2924 }
2925 
2926 
2927 /*
2928  * poll_update - update peer poll interval
2929  */
2930 void
2931 poll_update(
2932 	struct peer *peer,	/* peer structure pointer */
2933 	u_char	mpoll
2934 	)
2935 {
2936 	u_long	next, utemp;
2937 	u_char	hpoll;
2938 
2939 	/*
2940 	 * This routine figures out when the next poll should be sent.
2941 	 * That turns out to be wickedly complicated. One problem is
2942 	 * that sometimes the time for the next poll is in the past when
2943 	 * the poll interval is reduced. We watch out for races here
2944 	 * between the receive process and the poll process.
2945 	 *
2946 	 * Clamp the poll interval between minpoll and maxpoll.
2947 	 */
2948 	hpoll = max(min(peer->maxpoll, mpoll), peer->minpoll);
2949 
2950 #ifdef AUTOKEY
2951 	/*
2952 	 * If during the crypto protocol the poll interval has changed,
2953 	 * the lifetimes in the key list are probably bogus. Purge the
2954 	 * the key list and regenerate it later.
2955 	 */
2956 	if ((peer->flags & FLAG_SKEY) && hpoll != peer->hpoll)
2957 		key_expire(peer);
2958 #endif	/* AUTOKEY */
2959 	peer->hpoll = hpoll;
2960 
2961 	/*
2962 	 * There are three variables important for poll scheduling, the
2963 	 * current time (current_time), next scheduled time (nextdate)
2964 	 * and the earliest time (utemp). The earliest time is 2 s
2965 	 * seconds, but could be more due to rate management. When
2966 	 * sending in a burst, use the earliest time. When not in a
2967 	 * burst but with a reply pending, send at the earliest time
2968 	 * unless the next scheduled time has not advanced. This can
2969 	 * only happen if multiple replies are pending in the same
2970 	 * response interval. Otherwise, send at the later of the next
2971 	 * scheduled time and the earliest time.
2972 	 *
2973 	 * Now we figure out if there is an override. If a burst is in
2974 	 * progress and we get called from the receive process, just
2975 	 * slink away. If called from the poll process, delay 1 s for a
2976 	 * reference clock, otherwise 2 s.
2977 	 */
2978 	utemp = current_time + max(peer->throttle - (NTP_SHIFT - 1) *
2979 	    (1 << peer->minpoll), ntp_minpkt);
2980 	if (peer->burst > 0) {
2981 		if (peer->nextdate > current_time)
2982 			return;
2983 #ifdef REFCLOCK
2984 		else if (peer->flags & FLAG_REFCLOCK)
2985 			peer->nextdate = current_time + RESP_DELAY;
2986 #endif /* REFCLOCK */
2987 		else
2988 			peer->nextdate = utemp;
2989 
2990 #ifdef AUTOKEY
2991 	/*
2992 	 * If a burst is not in progress and a crypto response message
2993 	 * is pending, delay 2 s, but only if this is a new interval.
2994 	 */
2995 	} else if (peer->cmmd != NULL) {
2996 		if (peer->nextdate > current_time) {
2997 			if (peer->nextdate + ntp_minpkt != utemp)
2998 				peer->nextdate = utemp;
2999 		} else {
3000 			peer->nextdate = utemp;
3001 		}
3002 #endif	/* AUTOKEY */
3003 
3004 	/*
3005 	 * The ordinary case. If a retry, use minpoll; if unreachable,
3006 	 * use host poll; otherwise, use the minimum of host and peer
3007 	 * polls; In other words, oversampling is okay but
3008 	 * understampling is evil. Use the maximum of this value and the
3009 	 * headway. If the average headway is greater than the headway
3010 	 * threshold, increase the headway by the minimum interval.
3011 	 */
3012 	} else {
3013 		if (peer->retry > 0)
3014 			hpoll = peer->minpoll;
3015 		else
3016 			hpoll = min(peer->ppoll, peer->hpoll);
3017 #ifdef REFCLOCK
3018 		if (peer->flags & FLAG_REFCLOCK)
3019 			next = 1 << hpoll;
3020 		else
3021 #endif /* REFCLOCK */
3022 			next = ((0x1000UL | (ntp_random() & 0x0ff)) <<
3023 			    hpoll) >> 12;
3024 		next += peer->outdate;
3025 		if (next > utemp)
3026 			peer->nextdate = next;
3027 		else
3028 			peer->nextdate = utemp;
3029 		if (peer->throttle > (1 << peer->minpoll))
3030 			peer->nextdate += ntp_minpkt;
3031 	}
3032 	DPRINTF(2, ("poll_update: at %lu %s poll %d burst %d retry %d head %d early %lu next %lu\n",
3033 		    current_time, ntoa(&peer->srcadr), peer->hpoll,
3034 		    peer->burst, peer->retry, peer->throttle,
3035 		    utemp - current_time, peer->nextdate -
3036 		    current_time));
3037 }
3038 
3039 
3040 /*
3041  * peer_clear - clear peer filter registers.  See Section 3.4.8 of the
3042  * spec.
3043  */
3044 void
3045 peer_clear(
3046 	struct peer *peer,		/* peer structure */
3047 	const char *ident		/* tally lights */
3048 	)
3049 {
3050 	u_char	u;
3051 	l_fp	bxmt = peer->bxmt;	/* bcast clients retain this! */
3052 
3053 #ifdef AUTOKEY
3054 	/*
3055 	 * If cryptographic credentials have been acquired, toss them to
3056 	 * Valhalla. Note that autokeys are ephemeral, in that they are
3057 	 * tossed immediately upon use. Therefore, the keylist can be
3058 	 * purged anytime without needing to preserve random keys. Note
3059 	 * that, if the peer is purged, the cryptographic variables are
3060 	 * purged, too. This makes it much harder to sneak in some
3061 	 * unauthenticated data in the clock filter.
3062 	 */
3063 	key_expire(peer);
3064 	if (peer->iffval != NULL)
3065 		BN_free(peer->iffval);
3066 	value_free(&peer->cookval);
3067 	value_free(&peer->recval);
3068 	value_free(&peer->encrypt);
3069 	value_free(&peer->sndval);
3070 	if (peer->cmmd != NULL)
3071 		free(peer->cmmd);
3072 	if (peer->subject != NULL)
3073 		free(peer->subject);
3074 	if (peer->issuer != NULL)
3075 		free(peer->issuer);
3076 #endif /* AUTOKEY */
3077 
3078 	/*
3079 	 * Clear all values, including the optional crypto values above.
3080 	 */
3081 	memset(CLEAR_TO_ZERO(peer), 0, LEN_CLEAR_TO_ZERO(peer));
3082 	peer->ppoll = peer->maxpoll;
3083 	peer->hpoll = peer->minpoll;
3084 	peer->disp = MAXDISPERSE;
3085 	peer->flash = peer_unfit(peer);
3086 	peer->jitter = LOGTOD(sys_precision);
3087 
3088 	/* Don't throw away our broadcast replay protection */
3089 	if (peer->hmode == MODE_BCLIENT)
3090 		peer->bxmt = bxmt;
3091 
3092 	/*
3093 	 * If interleave mode, initialize the alternate origin switch.
3094 	 */
3095 	if (peer->flags & FLAG_XLEAVE)
3096 		peer->flip = 1;
3097 	for (u = 0; u < NTP_SHIFT; u++) {
3098 		peer->filter_order[u] = u;
3099 		peer->filter_disp[u] = MAXDISPERSE;
3100 	}
3101 #ifdef REFCLOCK
3102 	if (!(peer->flags & FLAG_REFCLOCK)) {
3103 #endif
3104 		peer->leap = LEAP_NOTINSYNC;
3105 		peer->stratum = STRATUM_UNSPEC;
3106 		memcpy(&peer->refid, ident, 4);
3107 #ifdef REFCLOCK
3108 	} else {
3109 		/* Clear refclock sample filter */
3110 		peer->procptr->codeproc = 0;
3111 		peer->procptr->coderecv = 0;
3112 	}
3113 #endif
3114 
3115 	/*
3116 	 * During initialization use the association count to spread out
3117 	 * the polls at one-second intervals. Passive associations'
3118 	 * first poll is delayed by the "discard minimum" to avoid rate
3119 	 * limiting. Other post-startup new or cleared associations
3120 	 * randomize the first poll over the minimum poll interval to
3121 	 * avoid implosion.
3122 	 */
3123 	peer->nextdate = peer->update = peer->outdate = current_time;
3124 	if (initializing) {
3125 		peer->nextdate += peer_associations;
3126 	} else if (MODE_PASSIVE == peer->hmode) {
3127 		peer->nextdate += ntp_minpkt;
3128 	} else {
3129 		peer->nextdate += ntp_random() % peer->minpoll;
3130 	}
3131 #ifdef AUTOKEY
3132 	peer->refresh = current_time + (1 << NTP_REFRESH);
3133 #endif	/* AUTOKEY */
3134 	DPRINTF(1, ("peer_clear: at %ld next %ld associd %d refid %s\n",
3135 		    current_time, peer->nextdate, peer->associd,
3136 		    ident));
3137 }
3138 
3139 
3140 /*
3141  * clock_filter - add incoming clock sample to filter register and run
3142  *		  the filter procedure to find the best sample.
3143  */
3144 void
3145 clock_filter(
3146 	struct peer *peer,		/* peer structure pointer */
3147 	double	sample_offset,		/* clock offset */
3148 	double	sample_delay,		/* roundtrip delay */
3149 	double	sample_disp		/* dispersion */
3150 	)
3151 {
3152 	double	dst[NTP_SHIFT];		/* distance vector */
3153 	int	ord[NTP_SHIFT];		/* index vector */
3154 	int	i, j, k, m;
3155 	double	dtemp, etemp;
3156 	char	tbuf[80];
3157 
3158 	/*
3159 	 * A sample consists of the offset, delay, dispersion and epoch
3160 	 * of arrival. The offset and delay are determined by the on-
3161 	 * wire protocol. The dispersion grows from the last outbound
3162 	 * packet to the arrival of this one increased by the sum of the
3163 	 * peer precision and the system precision as required by the
3164 	 * error budget. First, shift the new arrival into the shift
3165 	 * register discarding the oldest one.
3166 	 */
3167 	j = peer->filter_nextpt;
3168 	peer->filter_offset[j] = sample_offset;
3169 	peer->filter_delay[j] = sample_delay;
3170 	peer->filter_disp[j] = sample_disp;
3171 	peer->filter_epoch[j] = current_time;
3172 	j = (j + 1) % NTP_SHIFT;
3173 	peer->filter_nextpt = j;
3174 
3175 	/*
3176 	 * Update dispersions since the last update and at the same
3177 	 * time initialize the distance and index lists. Since samples
3178 	 * become increasingly uncorrelated beyond the Allan intercept,
3179 	 * only under exceptional cases will an older sample be used.
3180 	 * Therefore, the distance list uses a compound metric. If the
3181 	 * dispersion is greater than the maximum dispersion, clamp the
3182 	 * distance at that value. If the time since the last update is
3183 	 * less than the Allan intercept use the delay; otherwise, use
3184 	 * the sum of the delay and dispersion.
3185 	 */
3186 	dtemp = clock_phi * (current_time - peer->update);
3187 	peer->update = current_time;
3188 	for (i = NTP_SHIFT - 1; i >= 0; i--) {
3189 		if (i != 0)
3190 			peer->filter_disp[j] += dtemp;
3191 		if (peer->filter_disp[j] >= MAXDISPERSE) {
3192 			peer->filter_disp[j] = MAXDISPERSE;
3193 			dst[i] = MAXDISPERSE;
3194 		} else if (peer->update - peer->filter_epoch[j] >
3195 		    (u_long)ULOGTOD(allan_xpt)) {
3196 			dst[i] = peer->filter_delay[j] +
3197 			    peer->filter_disp[j];
3198 		} else {
3199 			dst[i] = peer->filter_delay[j];
3200 		}
3201 		ord[i] = j;
3202 		j = (j + 1) % NTP_SHIFT;
3203 	}
3204 
3205 	/*
3206 	 * If the clock has stabilized, sort the samples by distance.
3207 	 */
3208 	if (freq_cnt == 0) {
3209 		for (i = 1; i < NTP_SHIFT; i++) {
3210 			for (j = 0; j < i; j++) {
3211 				if (dst[j] > dst[i]) {
3212 					k = ord[j];
3213 					ord[j] = ord[i];
3214 					ord[i] = k;
3215 					etemp = dst[j];
3216 					dst[j] = dst[i];
3217 					dst[i] = etemp;
3218 				}
3219 			}
3220 		}
3221 	}
3222 
3223 	/*
3224 	 * Copy the index list to the association structure so ntpq
3225 	 * can see it later. Prune the distance list to leave only
3226 	 * samples less than the maximum dispersion, which disfavors
3227 	 * uncorrelated samples older than the Allan intercept. To
3228 	 * further improve the jitter estimate, of the remainder leave
3229 	 * only samples less than the maximum distance, but keep at
3230 	 * least two samples for jitter calculation.
3231 	 */
3232 	m = 0;
3233 	for (i = 0; i < NTP_SHIFT; i++) {
3234 		peer->filter_order[i] = (u_char) ord[i];
3235 		if (   dst[i] >= MAXDISPERSE
3236 		    || (m >= 2 && dst[i] >= sys_maxdist))
3237 			continue;
3238 		m++;
3239 	}
3240 
3241 	/*
3242 	 * Compute the dispersion and jitter. The dispersion is weighted
3243 	 * exponentially by NTP_FWEIGHT (0.5) so it is normalized close
3244 	 * to 1.0. The jitter is the RMS differences relative to the
3245 	 * lowest delay sample.
3246 	 */
3247 	peer->disp = peer->jitter = 0;
3248 	k = ord[0];
3249 	for (i = NTP_SHIFT - 1; i >= 0; i--) {
3250 		j = ord[i];
3251 		peer->disp = NTP_FWEIGHT * (peer->disp +
3252 		    peer->filter_disp[j]);
3253 		if (i < m)
3254 			peer->jitter += DIFF(peer->filter_offset[j],
3255 			    peer->filter_offset[k]);
3256 	}
3257 
3258 	/*
3259 	 * If no acceptable samples remain in the shift register,
3260 	 * quietly tiptoe home leaving only the dispersion. Otherwise,
3261 	 * save the offset, delay and jitter. Note the jitter must not
3262 	 * be less than the precision.
3263 	 */
3264 	if (m == 0) {
3265 		clock_select();
3266 		return;
3267 	}
3268 	etemp = fabs(peer->offset - peer->filter_offset[k]);
3269 	peer->offset = peer->filter_offset[k];
3270 	peer->delay = peer->filter_delay[k];
3271 	if (m > 1)
3272 		peer->jitter /= m - 1;
3273 	peer->jitter = max(SQRT(peer->jitter), LOGTOD(sys_precision));
3274 
3275 	/*
3276 	 * If the the new sample and the current sample are both valid
3277 	 * and the difference between their offsets exceeds CLOCK_SGATE
3278 	 * (3) times the jitter and the interval between them is less
3279 	 * than twice the host poll interval, consider the new sample
3280 	 * a popcorn spike and ignore it.
3281 	 */
3282 	if (   peer->disp < sys_maxdist
3283 	    && peer->filter_disp[k] < sys_maxdist
3284 	    && etemp > CLOCK_SGATE * peer->jitter
3285 	    && peer->filter_epoch[k] - peer->epoch
3286 	       < 2. * ULOGTOD(peer->hpoll)) {
3287 		snprintf(tbuf, sizeof(tbuf), "%.6f s", etemp);
3288 		report_event(PEVNT_POPCORN, peer, tbuf);
3289 		return;
3290 	}
3291 
3292 	/*
3293 	 * A new minimum sample is useful only if it is later than the
3294 	 * last one used. In this design the maximum lifetime of any
3295 	 * sample is not greater than eight times the poll interval, so
3296 	 * the maximum interval between minimum samples is eight
3297 	 * packets.
3298 	 */
3299 	if (peer->filter_epoch[k] <= peer->epoch) {
3300 	DPRINTF(2, ("clock_filter: old sample %lu\n", current_time -
3301 		    peer->filter_epoch[k]));
3302 		return;
3303 	}
3304 	peer->epoch = peer->filter_epoch[k];
3305 
3306 	/*
3307 	 * The mitigated sample statistics are saved for later
3308 	 * processing. If not synchronized or not in a burst, tickle the
3309 	 * clock select algorithm.
3310 	 */
3311 	record_peer_stats(&peer->srcadr, ctlpeerstatus(peer),
3312 	    peer->offset, peer->delay, peer->disp, peer->jitter);
3313 	DPRINTF(1, ("clock_filter: n %d off %.6f del %.6f dsp %.6f jit %.6f\n",
3314 		    m, peer->offset, peer->delay, peer->disp,
3315 		    peer->jitter));
3316 	if (peer->burst == 0 || sys_leap == LEAP_NOTINSYNC)
3317 		clock_select();
3318 }
3319 
3320 
3321 /*
3322  * clock_select - find the pick-of-the-litter clock
3323  *
3324  * LOCKCLOCK: (1) If the local clock is the prefer peer, it will always
3325  * be enabled, even if declared falseticker, (2) only the prefer peer
3326  * can be selected as the system peer, (3) if the external source is
3327  * down, the system leap bits are set to 11 and the stratum set to
3328  * infinity.
3329  */
3330 void
3331 clock_select(void)
3332 {
3333 	struct peer *peer;
3334 	int	i, j, k, n;
3335 	int	nlist, nl2;
3336 	int	allow;
3337 	int	speer;
3338 	double	d, e, f, g;
3339 	double	high, low;
3340 	double	speermet;
3341 	double	orphmet = 2.0 * U_INT32_MAX; /* 2x is greater than */
3342 	struct endpoint endp;
3343 	struct peer *osys_peer;
3344 	struct peer *sys_prefer = NULL;	/* prefer peer */
3345 	struct peer *typesystem = NULL;
3346 	struct peer *typeorphan = NULL;
3347 #ifdef REFCLOCK
3348 	struct peer *typeacts = NULL;
3349 	struct peer *typelocal = NULL;
3350 	struct peer *typepps = NULL;
3351 #endif /* REFCLOCK */
3352 	static struct endpoint *endpoint = NULL;
3353 	static int *indx = NULL;
3354 	static peer_select *peers = NULL;
3355 	static u_int endpoint_size = 0;
3356 	static u_int peers_size = 0;
3357 	static u_int indx_size = 0;
3358 	size_t octets;
3359 
3360 	/*
3361 	 * Initialize and create endpoint, index and peer lists big
3362 	 * enough to handle all associations.
3363 	 */
3364 	osys_peer = sys_peer;
3365 	sys_survivors = 0;
3366 #ifdef LOCKCLOCK
3367 	set_sys_leap(LEAP_NOTINSYNC);
3368 	sys_stratum = STRATUM_UNSPEC;
3369 	memcpy(&sys_refid, "DOWN", 4);
3370 #endif /* LOCKCLOCK */
3371 
3372 	/*
3373 	 * Allocate dynamic space depending on the number of
3374 	 * associations.
3375 	 */
3376 	nlist = 1;
3377 	for (peer = peer_list; peer != NULL; peer = peer->p_link)
3378 		nlist++;
3379 	endpoint_size = ALIGNED_SIZE(nlist * 2 * sizeof(*endpoint));
3380 	peers_size = ALIGNED_SIZE(nlist * sizeof(*peers));
3381 	indx_size = ALIGNED_SIZE(nlist * 2 * sizeof(*indx));
3382 	octets = endpoint_size + peers_size + indx_size;
3383 	endpoint = erealloc(endpoint, octets);
3384 	peers = INC_ALIGNED_PTR(endpoint, endpoint_size);
3385 	indx = INC_ALIGNED_PTR(peers, peers_size);
3386 
3387 	/*
3388 	 * Initially, we populate the island with all the rifraff peers
3389 	 * that happen to be lying around. Those with seriously
3390 	 * defective clocks are immediately booted off the island. Then,
3391 	 * the falsetickers are culled and put to sea. The truechimers
3392 	 * remaining are subject to repeated rounds where the most
3393 	 * unpopular at each round is kicked off. When the population
3394 	 * has dwindled to sys_minclock, the survivors split a million
3395 	 * bucks and collectively crank the chimes.
3396 	 */
3397 	nlist = nl2 = 0;	/* none yet */
3398 	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3399 		peer->new_status = CTL_PST_SEL_REJECT;
3400 
3401 		/*
3402 		 * Leave the island immediately if the peer is
3403 		 * unfit to synchronize.
3404 		 */
3405 		if (peer_unfit(peer)) {
3406 			continue;
3407 		}
3408 
3409 		/*
3410 		 * If this peer is an orphan parent, elect the
3411 		 * one with the lowest metric defined as the
3412 		 * IPv4 address or the first 64 bits of the
3413 		 * hashed IPv6 address.  To ensure convergence
3414 		 * on the same selected orphan, consider as
3415 		 * well that this system may have the lowest
3416 		 * metric and be the orphan parent.  If this
3417 		 * system wins, sys_peer will be NULL to trigger
3418 		 * orphan mode in timer().
3419 		 */
3420 		if (peer->stratum == sys_orphan) {
3421 			u_int32	localmet;
3422 			u_int32 peermet;
3423 
3424 			if (peer->dstadr != NULL)
3425 				localmet = ntohl(peer->dstadr->addr_refid);
3426 			else
3427 				localmet = U_INT32_MAX;
3428 			peermet = ntohl(addr2refid(&peer->srcadr));
3429 			if (peermet < localmet && peermet < orphmet) {
3430 				typeorphan = peer;
3431 				orphmet = peermet;
3432 			}
3433 			continue;
3434 		}
3435 
3436 		/*
3437 		 * If this peer could have the orphan parent
3438 		 * as a synchronization ancestor, exclude it
3439 		 * from selection to avoid forming a
3440 		 * synchronization loop within the orphan mesh,
3441 		 * triggering stratum climb to infinity
3442 		 * instability.  Peers at stratum higher than
3443 		 * the orphan stratum could have the orphan
3444 		 * parent in ancestry so are excluded.
3445 		 * See http://bugs.ntp.org/2050
3446 		 */
3447 		if (peer->stratum > sys_orphan) {
3448 			continue;
3449 		}
3450 #ifdef REFCLOCK
3451 		/*
3452 		 * The following are special cases. We deal
3453 		 * with them later.
3454 		 */
3455 		if (!(peer->flags & FLAG_PREFER)) {
3456 			switch (peer->refclktype) {
3457 			case REFCLK_LOCALCLOCK:
3458 				if (   current_time > orphwait
3459 				    && typelocal == NULL)
3460 					typelocal = peer;
3461 				continue;
3462 
3463 			case REFCLK_ACTS:
3464 				if (   current_time > orphwait
3465 				    && typeacts == NULL)
3466 					typeacts = peer;
3467 				continue;
3468 			}
3469 		}
3470 #endif /* REFCLOCK */
3471 
3472 		/*
3473 		 * If we get this far, the peer can stay on the
3474 		 * island, but does not yet have the immunity
3475 		 * idol.
3476 		 */
3477 		peer->new_status = CTL_PST_SEL_SANE;
3478 		f = root_distance(peer);
3479 		peers[nlist].peer = peer;
3480 		peers[nlist].error = peer->jitter;
3481 		peers[nlist].synch = f;
3482 		nlist++;
3483 
3484 		/*
3485 		 * Insert each interval endpoint on the unsorted
3486 		 * endpoint[] list.
3487 		 */
3488 		e = peer->offset;
3489 		endpoint[nl2].type = -1;	/* lower end */
3490 		endpoint[nl2].val = e - f;
3491 		nl2++;
3492 		endpoint[nl2].type = 1;		/* upper end */
3493 		endpoint[nl2].val = e + f;
3494 		nl2++;
3495 	}
3496 	/*
3497 	 * Construct sorted indx[] of endpoint[] indexes ordered by
3498 	 * offset.
3499 	 */
3500 	for (i = 0; i < nl2; i++)
3501 		indx[i] = i;
3502 	for (i = 0; i < nl2; i++) {
3503 		endp = endpoint[indx[i]];
3504 		e = endp.val;
3505 		k = i;
3506 		for (j = i + 1; j < nl2; j++) {
3507 			endp = endpoint[indx[j]];
3508 			if (endp.val < e) {
3509 				e = endp.val;
3510 				k = j;
3511 			}
3512 		}
3513 		if (k != i) {
3514 			j = indx[k];
3515 			indx[k] = indx[i];
3516 			indx[i] = j;
3517 		}
3518 	}
3519 	for (i = 0; i < nl2; i++)
3520 		DPRINTF(3, ("select: endpoint %2d %.6f\n",
3521 			endpoint[indx[i]].type, endpoint[indx[i]].val));
3522 
3523 	/*
3524 	 * This is the actual algorithm that cleaves the truechimers
3525 	 * from the falsetickers. The original algorithm was described
3526 	 * in Keith Marzullo's dissertation, but has been modified for
3527 	 * better accuracy.
3528 	 *
3529 	 * Briefly put, we first assume there are no falsetickers, then
3530 	 * scan the candidate list first from the low end upwards and
3531 	 * then from the high end downwards. The scans stop when the
3532 	 * number of intersections equals the number of candidates less
3533 	 * the number of falsetickers. If this doesn't happen for a
3534 	 * given number of falsetickers, we bump the number of
3535 	 * falsetickers and try again. If the number of falsetickers
3536 	 * becomes equal to or greater than half the number of
3537 	 * candidates, the Albanians have won the Byzantine wars and
3538 	 * correct synchronization is not possible.
3539 	 *
3540 	 * Here, nlist is the number of candidates and allow is the
3541 	 * number of falsetickers. Upon exit, the truechimers are the
3542 	 * survivors with offsets not less than low and not greater than
3543 	 * high. There may be none of them.
3544 	 */
3545 	low = 1e9;
3546 	high = -1e9;
3547 	for (allow = 0; 2 * allow < nlist; allow++) {
3548 
3549 		/*
3550 		 * Bound the interval (low, high) as the smallest
3551 		 * interval containing points from the most sources.
3552 		 */
3553 		n = 0;
3554 		for (i = 0; i < nl2; i++) {
3555 			low = endpoint[indx[i]].val;
3556 			n -= endpoint[indx[i]].type;
3557 			if (n >= nlist - allow)
3558 				break;
3559 		}
3560 		n = 0;
3561 		for (j = nl2 - 1; j >= 0; j--) {
3562 			high = endpoint[indx[j]].val;
3563 			n += endpoint[indx[j]].type;
3564 			if (n >= nlist - allow)
3565 				break;
3566 		}
3567 
3568 		/*
3569 		 * If an interval containing truechimers is found, stop.
3570 		 * If not, increase the number of falsetickers and go
3571 		 * around again.
3572 		 */
3573 		if (high > low)
3574 			break;
3575 	}
3576 
3577 	/*
3578 	 * Clustering algorithm. Whittle candidate list of falsetickers,
3579 	 * who leave the island immediately. The TRUE peer is always a
3580 	 * truechimer. We must leave at least one peer to collect the
3581 	 * million bucks.
3582 	 *
3583 	 * We assert the correct time is contained in the interval, but
3584 	 * the best offset estimate for the interval might not be
3585 	 * contained in the interval. For this purpose, a truechimer is
3586 	 * defined as the midpoint of an interval that overlaps the
3587 	 * intersection interval.
3588 	 */
3589 	j = 0;
3590 	for (i = 0; i < nlist; i++) {
3591 		double	h;
3592 
3593 		peer = peers[i].peer;
3594 		h = peers[i].synch;
3595 		if ((   high <= low
3596 		     || peer->offset + h < low
3597 		     || peer->offset - h > high
3598 		    ) && !(peer->flags & FLAG_TRUE))
3599 			continue;
3600 
3601 #ifdef REFCLOCK
3602 		/*
3603 		 * Eligible PPS peers must survive the intersection
3604 		 * algorithm. Use the first one found, but don't
3605 		 * include any of them in the cluster population.
3606 		 */
3607 		if (peer->flags & FLAG_PPS) {
3608 			if (typepps == NULL)
3609 				typepps = peer;
3610 			if (!(peer->flags & FLAG_TSTAMP_PPS))
3611 				continue;
3612 		}
3613 #endif /* REFCLOCK */
3614 
3615 		if (j != i)
3616 			peers[j] = peers[i];
3617 		j++;
3618 	}
3619 	nlist = j;
3620 
3621 	/*
3622 	 * If no survivors remain at this point, check if the modem
3623 	 * driver, local driver or orphan parent in that order. If so,
3624 	 * nominate the first one found as the only survivor.
3625 	 * Otherwise, give up and leave the island to the rats.
3626 	 */
3627 	if (nlist == 0) {
3628 		peers[0].error = 0;
3629 		peers[0].synch = sys_mindisp;
3630 #ifdef REFCLOCK
3631 		if (typeacts != NULL) {
3632 			peers[0].peer = typeacts;
3633 			nlist = 1;
3634 		} else if (typelocal != NULL) {
3635 			peers[0].peer = typelocal;
3636 			nlist = 1;
3637 		} else
3638 #endif /* REFCLOCK */
3639 		if (typeorphan != NULL) {
3640 			peers[0].peer = typeorphan;
3641 			nlist = 1;
3642 		}
3643 	}
3644 
3645 	/*
3646 	 * Mark the candidates at this point as truechimers.
3647 	 */
3648 	for (i = 0; i < nlist; i++) {
3649 		peers[i].peer->new_status = CTL_PST_SEL_SELCAND;
3650 		DPRINTF(2, ("select: survivor %s %f\n",
3651 			stoa(&peers[i].peer->srcadr), peers[i].synch));
3652 	}
3653 
3654 	/*
3655 	 * Now, vote outliers off the island by select jitter weighted
3656 	 * by root distance. Continue voting as long as there are more
3657 	 * than sys_minclock survivors and the select jitter of the peer
3658 	 * with the worst metric is greater than the minimum peer
3659 	 * jitter. Stop if we are about to discard a TRUE or PREFER
3660 	 * peer, who of course have the immunity idol.
3661 	 */
3662 	while (1) {
3663 		d = 1e9;
3664 		e = -1e9;
3665 		g = 0;
3666 		k = 0;
3667 		for (i = 0; i < nlist; i++) {
3668 			if (peers[i].error < d)
3669 				d = peers[i].error;
3670 			peers[i].seljit = 0;
3671 			if (nlist > 1) {
3672 				f = 0;
3673 				for (j = 0; j < nlist; j++)
3674 					f += DIFF(peers[j].peer->offset,
3675 					    peers[i].peer->offset);
3676 				peers[i].seljit = SQRT(f / (nlist - 1));
3677 			}
3678 			if (peers[i].seljit * peers[i].synch > e) {
3679 				g = peers[i].seljit;
3680 				e = peers[i].seljit * peers[i].synch;
3681 				k = i;
3682 			}
3683 		}
3684 		g = max(g, LOGTOD(sys_precision));
3685 		if (   nlist <= max(1, sys_minclock)
3686 		    || g <= d
3687 		    || ((FLAG_TRUE | FLAG_PREFER) & peers[k].peer->flags))
3688 			break;
3689 
3690 		DPRINTF(3, ("select: drop %s seljit %.6f jit %.6f\n",
3691 			ntoa(&peers[k].peer->srcadr), g, d));
3692 		if (nlist > sys_maxclock)
3693 			peers[k].peer->new_status = CTL_PST_SEL_EXCESS;
3694 		for (j = k + 1; j < nlist; j++)
3695 			peers[j - 1] = peers[j];
3696 		nlist--;
3697 	}
3698 
3699 	/*
3700 	 * What remains is a list usually not greater than sys_minclock
3701 	 * peers. Note that unsynchronized peers cannot survive this
3702 	 * far.  Count and mark these survivors.
3703 	 *
3704 	 * While at it, count the number of leap warning bits found.
3705 	 * This will be used later to vote the system leap warning bit.
3706 	 * If a leap warning bit is found on a reference clock, the vote
3707 	 * is always won.
3708 	 *
3709 	 * Choose the system peer using a hybrid metric composed of the
3710 	 * selection jitter scaled by the root distance augmented by
3711 	 * stratum scaled by sys_mindisp (.001 by default). The goal of
3712 	 * the small stratum factor is to avoid clockhop between a
3713 	 * reference clock and a network peer which has a refclock and
3714 	 * is using an older ntpd, which does not floor sys_rootdisp at
3715 	 * sys_mindisp.
3716 	 *
3717 	 * In contrast, ntpd 4.2.6 and earlier used stratum primarily
3718 	 * in selecting the system peer, using a weight of 1 second of
3719 	 * additional root distance per stratum.  This heavy bias is no
3720 	 * longer appropriate, as the scaled root distance provides a
3721 	 * more rational metric carrying the cumulative error budget.
3722 	 */
3723 	e = 1e9;
3724 	speer = 0;
3725 	leap_vote_ins = 0;
3726 	leap_vote_del = 0;
3727 	for (i = 0; i < nlist; i++) {
3728 		peer = peers[i].peer;
3729 		peer->unreach = 0;
3730 		peer->new_status = CTL_PST_SEL_SYNCCAND;
3731 		sys_survivors++;
3732 		if (peer->leap == LEAP_ADDSECOND) {
3733 			if (peer->flags & FLAG_REFCLOCK)
3734 				leap_vote_ins = nlist;
3735 			else if (leap_vote_ins < nlist)
3736 				leap_vote_ins++;
3737 		}
3738 		if (peer->leap == LEAP_DELSECOND) {
3739 			if (peer->flags & FLAG_REFCLOCK)
3740 				leap_vote_del = nlist;
3741 			else if (leap_vote_del < nlist)
3742 				leap_vote_del++;
3743 		}
3744 		if (peer->flags & FLAG_PREFER)
3745 			sys_prefer = peer;
3746 		speermet = peers[i].seljit * peers[i].synch +
3747 		    peer->stratum * sys_mindisp;
3748 		if (speermet < e) {
3749 			e = speermet;
3750 			speer = i;
3751 		}
3752 	}
3753 
3754 	/*
3755 	 * Unless there are at least sys_misane survivors, leave the
3756 	 * building dark. Otherwise, do a clockhop dance. Ordinarily,
3757 	 * use the selected survivor speer. However, if the current
3758 	 * system peer is not speer, stay with the current system peer
3759 	 * as long as it doesn't get too old or too ugly.
3760 	 */
3761 	if (nlist > 0 && nlist >= sys_minsane) {
3762 		double	x;
3763 
3764 		typesystem = peers[speer].peer;
3765 		if (osys_peer == NULL || osys_peer == typesystem) {
3766 			sys_clockhop = 0;
3767 		} else if ((x = fabs(typesystem->offset -
3768 		    osys_peer->offset)) < sys_mindisp) {
3769 			if (sys_clockhop == 0)
3770 				sys_clockhop = sys_mindisp;
3771 			else
3772 				sys_clockhop *= .5;
3773 			DPRINTF(1, ("select: clockhop %d %.6f %.6f\n",
3774 				j, x, sys_clockhop));
3775 			if (fabs(x) < sys_clockhop)
3776 				typesystem = osys_peer;
3777 			else
3778 				sys_clockhop = 0;
3779 		} else {
3780 			sys_clockhop = 0;
3781 		}
3782 	}
3783 
3784 	/*
3785 	 * Mitigation rules of the game. We have the pick of the
3786 	 * litter in typesystem if any survivors are left. If
3787 	 * there is a prefer peer, use its offset and jitter.
3788 	 * Otherwise, use the combined offset and jitter of all kitters.
3789 	 */
3790 	if (typesystem != NULL) {
3791 		if (sys_prefer == NULL) {
3792 			typesystem->new_status = CTL_PST_SEL_SYSPEER;
3793 			clock_combine(peers, sys_survivors, speer);
3794 		} else {
3795 			typesystem = sys_prefer;
3796 			sys_clockhop = 0;
3797 			typesystem->new_status = CTL_PST_SEL_SYSPEER;
3798 			sys_offset = typesystem->offset;
3799 			sys_jitter = typesystem->jitter;
3800 		}
3801 		DPRINTF(1, ("select: combine offset %.9f jitter %.9f\n",
3802 			sys_offset, sys_jitter));
3803 	}
3804 #ifdef REFCLOCK
3805 	/*
3806 	 * If a PPS driver is lit and the combined offset is less than
3807 	 * 0.4 s, select the driver as the PPS peer and use its offset
3808 	 * and jitter. However, if this is the atom driver, use it only
3809 	 * if there is a prefer peer or there are no survivors and none
3810 	 * are required.
3811 	 */
3812 	if (   typepps != NULL
3813 	    && fabs(sys_offset) < 0.4
3814 	    && (   typepps->refclktype != REFCLK_ATOM_PPS
3815 		|| (   typepps->refclktype == REFCLK_ATOM_PPS
3816 		    && (   sys_prefer != NULL
3817 			|| (typesystem == NULL && sys_minsane == 0))))) {
3818 		typesystem = typepps;
3819 		sys_clockhop = 0;
3820 		typesystem->new_status = CTL_PST_SEL_PPS;
3821 		sys_offset = typesystem->offset;
3822 		sys_jitter = typesystem->jitter;
3823 		DPRINTF(1, ("select: pps offset %.9f jitter %.9f\n",
3824 			sys_offset, sys_jitter));
3825 	}
3826 #endif /* REFCLOCK */
3827 
3828 	/*
3829 	 * If there are no survivors at this point, there is no
3830 	 * system peer. If so and this is an old update, keep the
3831 	 * current statistics, but do not update the clock.
3832 	 */
3833 	if (typesystem == NULL) {
3834 		if (osys_peer != NULL) {
3835 			if (sys_orphwait > 0)
3836 				orphwait = current_time + sys_orphwait;
3837 			report_event(EVNT_NOPEER, NULL, NULL);
3838 		}
3839 		sys_peer = NULL;
3840 		for (peer = peer_list; peer != NULL; peer = peer->p_link)
3841 			peer->status = peer->new_status;
3842 		return;
3843 	}
3844 
3845 	/*
3846 	 * Do not use old data, as this may mess up the clock discipline
3847 	 * stability.
3848 	 */
3849 	if (typesystem->epoch <= sys_epoch)
3850 		return;
3851 
3852 	/*
3853 	 * We have found the alpha male. Wind the clock.
3854 	 */
3855 	if (osys_peer != typesystem)
3856 		report_event(PEVNT_NEWPEER, typesystem, NULL);
3857 	for (peer = peer_list; peer != NULL; peer = peer->p_link)
3858 		peer->status = peer->new_status;
3859 	clock_update(typesystem);
3860 }
3861 
3862 
3863 static void
3864 clock_combine(
3865 	peer_select *	peers,	/* survivor list */
3866 	int		npeers,	/* number of survivors */
3867 	int		syspeer	/* index of sys.peer */
3868 	)
3869 {
3870 	int	i;
3871 	double	x, y, z, w;
3872 
3873 	y = z = w = 0;
3874 	for (i = 0; i < npeers; i++) {
3875 		x = 1. / peers[i].synch;
3876 		y += x;
3877 		z += x * peers[i].peer->offset;
3878 		w += x * DIFF(peers[i].peer->offset,
3879 		    peers[syspeer].peer->offset);
3880 	}
3881 	sys_offset = z / y;
3882 	sys_jitter = SQRT(w / y + SQUARE(peers[syspeer].seljit));
3883 }
3884 
3885 
3886 /*
3887  * root_distance - compute synchronization distance from peer to root
3888  */
3889 static double
3890 root_distance(
3891 	struct peer *peer	/* peer structure pointer */
3892 	)
3893 {
3894 	double	dtemp;
3895 
3896 	/*
3897 	 * Root Distance (LAMBDA) is defined as:
3898 	 * (delta + DELTA)/2 + epsilon + EPSILON + D
3899 	 *
3900 	 * where:
3901 	 *  delta   is the round-trip delay
3902 	 *  DELTA   is the root delay
3903 	 *  epsilon is the peer dispersion
3904 	 *	    + (15 usec each second)
3905 	 *  EPSILON is the root dispersion
3906 	 *  D       is sys_jitter
3907 	 *
3908 	 * NB: Think hard about why we are using these values, and what
3909 	 * the alternatives are, and the various pros/cons.
3910 	 *
3911 	 * DLM thinks these are probably the best choices from any of the
3912 	 * other worse choices.
3913 	 */
3914 	dtemp = (peer->delay + peer->rootdelay) / 2
3915 		+ peer->disp
3916 		  + clock_phi * (current_time - peer->update)
3917 		+ peer->rootdisp
3918 		+ peer->jitter;
3919 	/*
3920 	 * Careful squeak here. The value returned must be greater than
3921 	 * the minimum root dispersion in order to avoid clockhop with
3922 	 * highly precise reference clocks. Note that the root distance
3923 	 * cannot exceed the sys_maxdist, as this is the cutoff by the
3924 	 * selection algorithm.
3925 	 */
3926 	if (dtemp < sys_mindisp)
3927 		dtemp = sys_mindisp;
3928 	return (dtemp);
3929 }
3930 
3931 
3932 /*
3933  * peer_xmit - send packet for persistent association.
3934  */
3935 static void
3936 peer_xmit(
3937 	struct peer *peer	/* peer structure pointer */
3938 	)
3939 {
3940 	struct pkt xpkt;	/* transmit packet */
3941 	size_t	sendlen, authlen;
3942 	keyid_t	xkeyid = 0;	/* transmit key ID */
3943 	l_fp	xmt_tx, xmt_ty;
3944 
3945 	if (!peer->dstadr)	/* drop peers without interface */
3946 		return;
3947 
3948 	xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, peer->version,
3949 	    peer->hmode);
3950 	xpkt.stratum = STRATUM_TO_PKT(sys_stratum);
3951 	xpkt.ppoll = peer->hpoll;
3952 	xpkt.precision = sys_precision;
3953 	xpkt.refid = sys_refid;
3954 	xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay));
3955 	xpkt.rootdisp =  HTONS_FP(DTOUFP(sys_rootdisp));
3956 	HTONL_FP(&sys_reftime, &xpkt.reftime);
3957 	HTONL_FP(&peer->rec, &xpkt.org);
3958 	HTONL_FP(&peer->dst, &xpkt.rec);
3959 
3960 	/*
3961 	 * If the received packet contains a MAC, the transmitted packet
3962 	 * is authenticated and contains a MAC. If not, the transmitted
3963 	 * packet is not authenticated.
3964 	 *
3965 	 * It is most important when autokey is in use that the local
3966 	 * interface IP address be known before the first packet is
3967 	 * sent. Otherwise, it is not possible to compute a correct MAC
3968 	 * the recipient will accept. Thus, the I/O semantics have to do
3969 	 * a little more work. In particular, the wildcard interface
3970 	 * might not be usable.
3971 	 */
3972 	sendlen = LEN_PKT_NOMAC;
3973 	if (
3974 #ifdef AUTOKEY
3975 	    !(peer->flags & FLAG_SKEY) &&
3976 #endif	/* !AUTOKEY */
3977 	    peer->keyid == 0) {
3978 
3979 		/*
3980 		 * Transmit a-priori timestamps
3981 		 */
3982 		get_systime(&xmt_tx);
3983 		if (peer->flip == 0) {	/* basic mode */
3984 			peer->aorg = xmt_tx;
3985 			HTONL_FP(&xmt_tx, &xpkt.xmt);
3986 		} else {		/* interleaved modes */
3987 			if (peer->hmode == MODE_BROADCAST) { /* bcst */
3988 				HTONL_FP(&xmt_tx, &xpkt.xmt);
3989 				if (peer->flip > 0)
3990 					HTONL_FP(&peer->borg,
3991 					    &xpkt.org);
3992 				else
3993 					HTONL_FP(&peer->aorg,
3994 					    &xpkt.org);
3995 			} else {	/* symmetric */
3996 				if (peer->flip > 0)
3997 					HTONL_FP(&peer->borg,
3998 					    &xpkt.xmt);
3999 				else
4000 					HTONL_FP(&peer->aorg,
4001 					    &xpkt.xmt);
4002 			}
4003 		}
4004 		peer->t21_bytes = sendlen;
4005 		sendpkt(&peer->srcadr, peer->dstadr,
4006 			sys_ttl[(peer->ttl >= sys_ttlmax) ? sys_ttlmax : peer->ttl],
4007 			&xpkt, sendlen);
4008 		peer->sent++;
4009 		peer->throttle += (1 << peer->minpoll) - 2;
4010 
4011 		/*
4012 		 * Capture a-posteriori timestamps
4013 		 */
4014 		get_systime(&xmt_ty);
4015 		if (peer->flip != 0) {		/* interleaved modes */
4016 			if (peer->flip > 0)
4017 				peer->aorg = xmt_ty;
4018 			else
4019 				peer->borg = xmt_ty;
4020 			peer->flip = -peer->flip;
4021 		}
4022 		L_SUB(&xmt_ty, &xmt_tx);
4023 		LFPTOD(&xmt_ty, peer->xleave);
4024 		DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d len %zu xmt %#010x.%08x\n",
4025 			    current_time,
4026 			    peer->dstadr ? stoa(&peer->dstadr->sin) : "-",
4027 			    stoa(&peer->srcadr), peer->hmode, sendlen,
4028 			    xmt_tx.l_ui, xmt_tx.l_uf));
4029 		return;
4030 	}
4031 
4032 	/*
4033 	 * Authentication is enabled, so the transmitted packet must be
4034 	 * authenticated. If autokey is enabled, fuss with the various
4035 	 * modes; otherwise, symmetric key cryptography is used.
4036 	 */
4037 #ifdef AUTOKEY
4038 	if (peer->flags & FLAG_SKEY) {
4039 		struct exten *exten;	/* extension field */
4040 
4041 		/*
4042 		 * The Public Key Dance (PKD): Cryptographic credentials
4043 		 * are contained in extension fields, each including a
4044 		 * 4-octet length/code word followed by a 4-octet
4045 		 * association ID and optional additional data. Optional
4046 		 * data includes a 4-octet data length field followed by
4047 		 * the data itself. Request messages are sent from a
4048 		 * configured association; response messages can be sent
4049 		 * from a configured association or can take the fast
4050 		 * path without ever matching an association. Response
4051 		 * messages have the same code as the request, but have
4052 		 * a response bit and possibly an error bit set. In this
4053 		 * implementation, a message may contain no more than
4054 		 * one command and one or more responses.
4055 		 *
4056 		 * Cryptographic session keys include both a public and
4057 		 * a private componet. Request and response messages
4058 		 * using extension fields are always sent with the
4059 		 * private component set to zero. Packets without
4060 		 * extension fields indlude the private component when
4061 		 * the session key is generated.
4062 		 */
4063 		while (1) {
4064 
4065 			/*
4066 			 * Allocate and initialize a keylist if not
4067 			 * already done. Then, use the list in inverse
4068 			 * order, discarding keys once used. Keep the
4069 			 * latest key around until the next one, so
4070 			 * clients can use client/server packets to
4071 			 * compute propagation delay.
4072 			 *
4073 			 * Note that once a key is used from the list,
4074 			 * it is retained in the key cache until the
4075 			 * next key is used. This is to allow a client
4076 			 * to retrieve the encrypted session key
4077 			 * identifier to verify authenticity.
4078 			 *
4079 			 * If for some reason a key is no longer in the
4080 			 * key cache, a birthday has happened or the key
4081 			 * has expired, so the pseudo-random sequence is
4082 			 * broken. In that case, purge the keylist and
4083 			 * regenerate it.
4084 			 */
4085 			if (peer->keynumber == 0)
4086 				make_keylist(peer, peer->dstadr);
4087 			else
4088 				peer->keynumber--;
4089 			xkeyid = peer->keylist[peer->keynumber];
4090 			if (authistrusted(xkeyid))
4091 				break;
4092 			else
4093 				key_expire(peer);
4094 		}
4095 		peer->keyid = xkeyid;
4096 		exten = NULL;
4097 		switch (peer->hmode) {
4098 
4099 		/*
4100 		 * In broadcast server mode the autokey values are
4101 		 * required by the broadcast clients. Push them when a
4102 		 * new keylist is generated; otherwise, push the
4103 		 * association message so the client can request them at
4104 		 * other times.
4105 		 */
4106 		case MODE_BROADCAST:
4107 			if (peer->flags & FLAG_ASSOC)
4108 				exten = crypto_args(peer, CRYPTO_AUTO |
4109 				    CRYPTO_RESP, peer->associd, NULL);
4110 			else
4111 				exten = crypto_args(peer, CRYPTO_ASSOC |
4112 				    CRYPTO_RESP, peer->associd, NULL);
4113 			break;
4114 
4115 		/*
4116 		 * In symmetric modes the parameter, certificate,
4117 		 * identity, cookie and autokey exchanges are
4118 		 * required. The leapsecond exchange is optional. But, a
4119 		 * peer will not believe the other peer until the other
4120 		 * peer has synchronized, so the certificate exchange
4121 		 * might loop until then. If a peer finds a broken
4122 		 * autokey sequence, it uses the autokey exchange to
4123 		 * retrieve the autokey values. In any case, if a new
4124 		 * keylist is generated, the autokey values are pushed.
4125 		 */
4126 		case MODE_ACTIVE:
4127 		case MODE_PASSIVE:
4128 
4129 			/*
4130 			 * Parameter, certificate and identity.
4131 			 */
4132 			if (!peer->crypto)
4133 				exten = crypto_args(peer, CRYPTO_ASSOC,
4134 				    peer->associd, hostval.ptr);
4135 			else if (!(peer->crypto & CRYPTO_FLAG_CERT))
4136 				exten = crypto_args(peer, CRYPTO_CERT,
4137 				    peer->associd, peer->issuer);
4138 			else if (!(peer->crypto & CRYPTO_FLAG_VRFY))
4139 				exten = crypto_args(peer,
4140 				    crypto_ident(peer), peer->associd,
4141 				    NULL);
4142 
4143 			/*
4144 			 * Cookie and autokey. We request the cookie
4145 			 * only when the this peer and the other peer
4146 			 * are synchronized. But, this peer needs the
4147 			 * autokey values when the cookie is zero. Any
4148 			 * time we regenerate the key list, we offer the
4149 			 * autokey values without being asked. If for
4150 			 * some reason either peer finds a broken
4151 			 * autokey sequence, the autokey exchange is
4152 			 * used to retrieve the autokey values.
4153 			 */
4154 			else if (   sys_leap != LEAP_NOTINSYNC
4155 				 && peer->leap != LEAP_NOTINSYNC
4156 				 && !(peer->crypto & CRYPTO_FLAG_COOK))
4157 				exten = crypto_args(peer, CRYPTO_COOK,
4158 				    peer->associd, NULL);
4159 			else if (!(peer->crypto & CRYPTO_FLAG_AUTO))
4160 				exten = crypto_args(peer, CRYPTO_AUTO,
4161 				    peer->associd, NULL);
4162 			else if (   peer->flags & FLAG_ASSOC
4163 				 && peer->crypto & CRYPTO_FLAG_SIGN)
4164 				exten = crypto_args(peer, CRYPTO_AUTO |
4165 				    CRYPTO_RESP, peer->assoc, NULL);
4166 
4167 			/*
4168 			 * Wait for clock sync, then sign the
4169 			 * certificate and retrieve the leapsecond
4170 			 * values.
4171 			 */
4172 			else if (sys_leap == LEAP_NOTINSYNC)
4173 				break;
4174 
4175 			else if (!(peer->crypto & CRYPTO_FLAG_SIGN))
4176 				exten = crypto_args(peer, CRYPTO_SIGN,
4177 				    peer->associd, hostval.ptr);
4178 			else if (!(peer->crypto & CRYPTO_FLAG_LEAP))
4179 				exten = crypto_args(peer, CRYPTO_LEAP,
4180 				    peer->associd, NULL);
4181 			break;
4182 
4183 		/*
4184 		 * In client mode the parameter, certificate, identity,
4185 		 * cookie and sign exchanges are required. The
4186 		 * leapsecond exchange is optional. If broadcast client
4187 		 * mode the same exchanges are required, except that the
4188 		 * autokey exchange is substitutes for the cookie
4189 		 * exchange, since the cookie is always zero. If the
4190 		 * broadcast client finds a broken autokey sequence, it
4191 		 * uses the autokey exchange to retrieve the autokey
4192 		 * values.
4193 		 */
4194 		case MODE_CLIENT:
4195 
4196 			/*
4197 			 * Parameter, certificate and identity.
4198 			 */
4199 			if (!peer->crypto)
4200 				exten = crypto_args(peer, CRYPTO_ASSOC,
4201 				    peer->associd, hostval.ptr);
4202 			else if (!(peer->crypto & CRYPTO_FLAG_CERT))
4203 				exten = crypto_args(peer, CRYPTO_CERT,
4204 				    peer->associd, peer->issuer);
4205 			else if (!(peer->crypto & CRYPTO_FLAG_VRFY))
4206 				exten = crypto_args(peer,
4207 				    crypto_ident(peer), peer->associd,
4208 				    NULL);
4209 
4210 			/*
4211 			 * Cookie and autokey. These are requests, but
4212 			 * we use the peer association ID with autokey
4213 			 * rather than our own.
4214 			 */
4215 			else if (!(peer->crypto & CRYPTO_FLAG_COOK))
4216 				exten = crypto_args(peer, CRYPTO_COOK,
4217 				    peer->associd, NULL);
4218 			else if (!(peer->crypto & CRYPTO_FLAG_AUTO))
4219 				exten = crypto_args(peer, CRYPTO_AUTO,
4220 				    peer->assoc, NULL);
4221 
4222 			/*
4223 			 * Wait for clock sync, then sign the
4224 			 * certificate and retrieve the leapsecond
4225 			 * values.
4226 			 */
4227 			else if (sys_leap == LEAP_NOTINSYNC)
4228 				break;
4229 
4230 			else if (!(peer->crypto & CRYPTO_FLAG_SIGN))
4231 				exten = crypto_args(peer, CRYPTO_SIGN,
4232 				    peer->associd, hostval.ptr);
4233 			else if (!(peer->crypto & CRYPTO_FLAG_LEAP))
4234 				exten = crypto_args(peer, CRYPTO_LEAP,
4235 				    peer->associd, NULL);
4236 			break;
4237 		}
4238 
4239 		/*
4240 		 * Add a queued extension field if present. This is
4241 		 * always a request message, so the reply ID is already
4242 		 * in the message. If an error occurs, the error bit is
4243 		 * lit in the response.
4244 		 */
4245 		if (peer->cmmd != NULL) {
4246 			u_int32 temp32;
4247 
4248 			temp32 = CRYPTO_RESP;
4249 			peer->cmmd->opcode |= htonl(temp32);
4250 			sendlen += crypto_xmit(peer, &xpkt, NULL,
4251 			    sendlen, peer->cmmd, 0);
4252 			free(peer->cmmd);
4253 			peer->cmmd = NULL;
4254 		}
4255 
4256 		/*
4257 		 * Add an extension field created above. All but the
4258 		 * autokey response message are request messages.
4259 		 */
4260 		if (exten != NULL) {
4261 			if (exten->opcode != 0)
4262 				sendlen += crypto_xmit(peer, &xpkt,
4263 				    NULL, sendlen, exten, 0);
4264 			free(exten);
4265 		}
4266 
4267 		/*
4268 		 * Calculate the next session key. Since extension
4269 		 * fields are present, the cookie value is zero.
4270 		 */
4271 		if (sendlen > (int)LEN_PKT_NOMAC) {
4272 			session_key(&peer->dstadr->sin, &peer->srcadr,
4273 			    xkeyid, 0, 2);
4274 		}
4275 	}
4276 #endif	/* AUTOKEY */
4277 
4278 	/*
4279 	 * Transmit a-priori timestamps
4280 	 */
4281 	get_systime(&xmt_tx);
4282 	if (peer->flip == 0) {		/* basic mode */
4283 		peer->aorg = xmt_tx;
4284 		HTONL_FP(&xmt_tx, &xpkt.xmt);
4285 	} else {			/* interleaved modes */
4286 		if (peer->hmode == MODE_BROADCAST) { /* bcst */
4287 			HTONL_FP(&xmt_tx, &xpkt.xmt);
4288 			if (peer->flip > 0)
4289 				HTONL_FP(&peer->borg, &xpkt.org);
4290 			else
4291 				HTONL_FP(&peer->aorg, &xpkt.org);
4292 		} else {		/* symmetric */
4293 			if (peer->flip > 0)
4294 				HTONL_FP(&peer->borg, &xpkt.xmt);
4295 			else
4296 				HTONL_FP(&peer->aorg, &xpkt.xmt);
4297 		}
4298 	}
4299 	xkeyid = peer->keyid;
4300 	authlen = authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen);
4301 	if (authlen == 0) {
4302 		report_event(PEVNT_AUTH, peer, "no key");
4303 		peer->flash |= TEST5;		/* auth error */
4304 		peer->badauth++;
4305 		return;
4306 	}
4307 	sendlen += authlen;
4308 #ifdef AUTOKEY
4309 	if (xkeyid > NTP_MAXKEY)
4310 		authtrust(xkeyid, 0);
4311 #endif	/* AUTOKEY */
4312 	if (sendlen > sizeof(xpkt)) {
4313 		msyslog(LOG_ERR, "peer_xmit: buffer overflow %zu", sendlen);
4314 		exit (-1);
4315 	}
4316 	peer->t21_bytes = sendlen;
4317 	sendpkt(&peer->srcadr, peer->dstadr,
4318 		sys_ttl[(peer->ttl >= sys_ttlmax) ? sys_ttlmax : peer->ttl],
4319 		&xpkt, sendlen);
4320 	peer->sent++;
4321 	peer->throttle += (1 << peer->minpoll) - 2;
4322 
4323 	/*
4324 	 * Capture a-posteriori timestamps
4325 	 */
4326 	get_systime(&xmt_ty);
4327 	if (peer->flip != 0) {			/* interleaved modes */
4328 		if (peer->flip > 0)
4329 			peer->aorg = xmt_ty;
4330 		else
4331 			peer->borg = xmt_ty;
4332 		peer->flip = -peer->flip;
4333 	}
4334 	L_SUB(&xmt_ty, &xmt_tx);
4335 	LFPTOD(&xmt_ty, peer->xleave);
4336 #ifdef AUTOKEY
4337 	DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d keyid %08x len %zu index %d\n",
4338 		    current_time, latoa(peer->dstadr),
4339 		    ntoa(&peer->srcadr), peer->hmode, xkeyid, sendlen,
4340 		    peer->keynumber));
4341 #else	/* !AUTOKEY follows */
4342 	DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d keyid %08x len %zu\n",
4343 		    current_time, peer->dstadr ?
4344 		    ntoa(&peer->dstadr->sin) : "-",
4345 		    ntoa(&peer->srcadr), peer->hmode, xkeyid, sendlen));
4346 #endif	/* !AUTOKEY */
4347 
4348 	return;
4349 }
4350 
4351 
4352 #ifdef LEAP_SMEAR
4353 
4354 static void
4355 leap_smear_add_offs(
4356 	l_fp *t,
4357 	l_fp *t_recv
4358 	)
4359 {
4360 
4361 	L_ADD(t, &leap_smear.offset);
4362 
4363 	/*
4364 	** XXX: Should the smear be added to the root dispersion?
4365 	*/
4366 
4367 	return;
4368 }
4369 
4370 #endif /* LEAP_SMEAR */
4371 
4372 
4373 /*
4374  * fast_xmit - Send packet for nonpersistent association. Note that
4375  * neither the source or destination can be a broadcast address.
4376  */
4377 static void
4378 fast_xmit(
4379 	struct recvbuf *rbufp,	/* receive packet pointer */
4380 	int	xmode,		/* receive mode */
4381 	keyid_t	xkeyid,		/* transmit key ID */
4382 	int	flags		/* restrict mask */
4383 	)
4384 {
4385 	struct pkt xpkt;	/* transmit packet structure */
4386 	struct pkt *rpkt;	/* receive packet structure */
4387 	l_fp	xmt_tx, xmt_ty;
4388 	size_t	sendlen;
4389 #ifdef AUTOKEY
4390 	u_int32	temp32;
4391 #endif
4392 
4393 	/*
4394 	 * Initialize transmit packet header fields from the receive
4395 	 * buffer provided. We leave the fields intact as received, but
4396 	 * set the peer poll at the maximum of the receive peer poll and
4397 	 * the system minimum poll (ntp_minpoll). This is for KoD rate
4398 	 * control and not strictly specification compliant, but doesn't
4399 	 * break anything.
4400 	 *
4401 	 * If the gazinta was from a multicast address, the gazoutta
4402 	 * must go out another way.
4403 	 */
4404 	rpkt = &rbufp->recv_pkt;
4405 	if (rbufp->dstadr->flags & INT_MCASTOPEN)
4406 		rbufp->dstadr = findinterface(&rbufp->recv_srcadr);
4407 
4408 	/*
4409 	 * If this is a kiss-o'-death (KoD) packet, show leap
4410 	 * unsynchronized, stratum zero, reference ID the four-character
4411 	 * kiss code and system root delay. Note we don't reveal the
4412 	 * local time, so these packets can't be used for
4413 	 * synchronization.
4414 	 */
4415 	if (flags & RES_KOD) {
4416 		sys_kodsent++;
4417 		xpkt.li_vn_mode = PKT_LI_VN_MODE(LEAP_NOTINSYNC,
4418 		    PKT_VERSION(rpkt->li_vn_mode), xmode);
4419 		xpkt.stratum = STRATUM_PKT_UNSPEC;
4420 		xpkt.ppoll = max(rpkt->ppoll, ntp_minpoll);
4421 		xpkt.precision = rpkt->precision;
4422 		memcpy(&xpkt.refid, "RATE", 4);
4423 		xpkt.rootdelay = rpkt->rootdelay;
4424 		xpkt.rootdisp = rpkt->rootdisp;
4425 		xpkt.reftime = rpkt->reftime;
4426 		xpkt.org = rpkt->xmt;
4427 		xpkt.rec = rpkt->xmt;
4428 		xpkt.xmt = rpkt->xmt;
4429 
4430 	/*
4431 	 * This is a normal packet. Use the system variables.
4432 	 */
4433 	} else {
4434 #ifdef LEAP_SMEAR
4435 		/*
4436 		 * Make copies of the variables which can be affected by smearing.
4437 		 */
4438 		l_fp this_ref_time;
4439 		l_fp this_recv_time;
4440 #endif
4441 
4442 		/*
4443 		 * If we are inside the leap smear interval we add the current smear offset to
4444 		 * the packet receive time, to the packet transmit time, and eventually to the
4445 		 * reftime to make sure the reftime isn't later than the transmit/receive times.
4446 		 */
4447 		xpkt.li_vn_mode = PKT_LI_VN_MODE(xmt_leap,
4448 		    PKT_VERSION(rpkt->li_vn_mode), xmode);
4449 
4450 		xpkt.stratum = STRATUM_TO_PKT(sys_stratum);
4451 		xpkt.ppoll = max(rpkt->ppoll, ntp_minpoll);
4452 		xpkt.precision = sys_precision;
4453 		xpkt.refid = sys_refid;
4454 		xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay));
4455 		xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp));
4456 
4457 #ifdef LEAP_SMEAR
4458 		this_ref_time = sys_reftime;
4459 		if (leap_smear.in_progress) {
4460 			leap_smear_add_offs(&this_ref_time, NULL);
4461 			xpkt.refid = convertLFPToRefID(leap_smear.offset);
4462 			DPRINTF(2, ("fast_xmit: leap_smear.in_progress: refid %8x, smear %s\n",
4463 				ntohl(xpkt.refid),
4464 				lfptoa(&leap_smear.offset, 8)
4465 				));
4466 		}
4467 		HTONL_FP(&this_ref_time, &xpkt.reftime);
4468 #else
4469 		HTONL_FP(&sys_reftime, &xpkt.reftime);
4470 #endif
4471 
4472 		xpkt.org = rpkt->xmt;
4473 
4474 #ifdef LEAP_SMEAR
4475 		this_recv_time = rbufp->recv_time;
4476 		if (leap_smear.in_progress)
4477 			leap_smear_add_offs(&this_recv_time, NULL);
4478 		HTONL_FP(&this_recv_time, &xpkt.rec);
4479 #else
4480 		HTONL_FP(&rbufp->recv_time, &xpkt.rec);
4481 #endif
4482 
4483 		get_systime(&xmt_tx);
4484 #ifdef LEAP_SMEAR
4485 		if (leap_smear.in_progress)
4486 			leap_smear_add_offs(&xmt_tx, &this_recv_time);
4487 #endif
4488 		HTONL_FP(&xmt_tx, &xpkt.xmt);
4489 	}
4490 
4491 #ifdef HAVE_NTP_SIGND
4492 	if (flags & RES_MSSNTP) {
4493 		send_via_ntp_signd(rbufp, xmode, xkeyid, flags, &xpkt);
4494 		return;
4495 	}
4496 #endif /* HAVE_NTP_SIGND */
4497 
4498 	/*
4499 	 * If the received packet contains a MAC, the transmitted packet
4500 	 * is authenticated and contains a MAC. If not, the transmitted
4501 	 * packet is not authenticated.
4502 	 */
4503 	sendlen = LEN_PKT_NOMAC;
4504 	if (rbufp->recv_length == sendlen) {
4505 		sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, 0, &xpkt,
4506 		    sendlen);
4507 		DPRINTF(1, ("fast_xmit: at %ld %s->%s mode %d len %lu\n",
4508 			    current_time, stoa(&rbufp->dstadr->sin),
4509 			    stoa(&rbufp->recv_srcadr), xmode,
4510 			    (u_long)sendlen));
4511 		return;
4512 	}
4513 
4514 	/*
4515 	 * The received packet contains a MAC, so the transmitted packet
4516 	 * must be authenticated. For symmetric key cryptography, use
4517 	 * the predefined and trusted symmetric keys to generate the
4518 	 * cryptosum. For autokey cryptography, use the server private
4519 	 * value to generate the cookie, which is unique for every
4520 	 * source-destination-key ID combination.
4521 	 */
4522 #ifdef AUTOKEY
4523 	if (xkeyid > NTP_MAXKEY) {
4524 		keyid_t cookie;
4525 
4526 		/*
4527 		 * The only way to get here is a reply to a legitimate
4528 		 * client request message, so the mode must be
4529 		 * MODE_SERVER. If an extension field is present, there
4530 		 * can be only one and that must be a command. Do what
4531 		 * needs, but with private value of zero so the poor
4532 		 * jerk can decode it. If no extension field is present,
4533 		 * use the cookie to generate the session key.
4534 		 */
4535 		cookie = session_key(&rbufp->recv_srcadr,
4536 		    &rbufp->dstadr->sin, 0, sys_private, 0);
4537 		if ((size_t)rbufp->recv_length > sendlen + MAX_MAC_LEN) {
4538 			session_key(&rbufp->dstadr->sin,
4539 			    &rbufp->recv_srcadr, xkeyid, 0, 2);
4540 			temp32 = CRYPTO_RESP;
4541 			rpkt->exten[0] |= htonl(temp32);
4542 			sendlen += crypto_xmit(NULL, &xpkt, rbufp,
4543 			    sendlen, (struct exten *)rpkt->exten,
4544 			    cookie);
4545 		} else {
4546 			session_key(&rbufp->dstadr->sin,
4547 			    &rbufp->recv_srcadr, xkeyid, cookie, 2);
4548 		}
4549 	}
4550 #endif	/* AUTOKEY */
4551 	get_systime(&xmt_tx);
4552 	sendlen += authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen);
4553 #ifdef AUTOKEY
4554 	if (xkeyid > NTP_MAXKEY)
4555 		authtrust(xkeyid, 0);
4556 #endif	/* AUTOKEY */
4557 	sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, 0, &xpkt, sendlen);
4558 	get_systime(&xmt_ty);
4559 	L_SUB(&xmt_ty, &xmt_tx);
4560 	sys_authdelay = xmt_ty;
4561 	DPRINTF(1, ("fast_xmit: at %ld %s->%s mode %d keyid %08x len %lu\n",
4562 		    current_time, ntoa(&rbufp->dstadr->sin),
4563 		    ntoa(&rbufp->recv_srcadr), xmode, xkeyid,
4564 		    (u_long)sendlen));
4565 }
4566 
4567 
4568 /*
4569  * pool_xmit - resolve hostname or send unicast solicitation for pool.
4570  */
4571 static void
4572 pool_xmit(
4573 	struct peer *pool	/* pool solicitor association */
4574 	)
4575 {
4576 #ifdef WORKER
4577 	struct pkt		xpkt;	/* transmit packet structure */
4578 	struct addrinfo		hints;
4579 	int			rc;
4580 	struct interface *	lcladr;
4581 	sockaddr_u *		rmtadr;
4582 	r4addr			r4a;
4583 	int			restrict_mask;
4584 	struct peer *		p;
4585 	l_fp			xmt_tx;
4586 
4587 	if (NULL == pool->ai) {
4588 		if (pool->addrs != NULL) {
4589 			/* free() is used with copy_addrinfo_list() */
4590 			free(pool->addrs);
4591 			pool->addrs = NULL;
4592 		}
4593 		ZERO(hints);
4594 		hints.ai_family = AF(&pool->srcadr);
4595 		hints.ai_socktype = SOCK_DGRAM;
4596 		hints.ai_protocol = IPPROTO_UDP;
4597 		/* ignore getaddrinfo_sometime() errors, we will retry */
4598 		rc = getaddrinfo_sometime(
4599 			pool->hostname,
4600 			"ntp",
4601 			&hints,
4602 			0,			/* no retry */
4603 			&pool_name_resolved,
4604 			(void *)(intptr_t)pool->associd);
4605 		if (!rc)
4606 			DPRINTF(1, ("pool DNS lookup %s started\n",
4607 				pool->hostname));
4608 		else
4609 			msyslog(LOG_ERR,
4610 				"unable to start pool DNS %s: %m",
4611 				pool->hostname);
4612 		return;
4613 	}
4614 
4615 	do {
4616 		/* copy_addrinfo_list ai_addr points to a sockaddr_u */
4617 		rmtadr = (sockaddr_u *)(void *)pool->ai->ai_addr;
4618 		pool->ai = pool->ai->ai_next;
4619 		p = findexistingpeer(rmtadr, NULL, NULL, MODE_CLIENT, 0, NULL);
4620 	} while (p != NULL && pool->ai != NULL);
4621 	if (p != NULL)
4622 		return;	/* out of addresses, re-query DNS next poll */
4623 	restrictions(rmtadr, &r4a);
4624 	restrict_mask = r4a.rflags;
4625 	if (RES_FLAGS & restrict_mask)
4626 		restrict_source(rmtadr, 0,
4627 				current_time + POOL_SOLICIT_WINDOW + 1);
4628 	lcladr = findinterface(rmtadr);
4629 	memset(&xpkt, 0, sizeof(xpkt));
4630 	xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, pool->version,
4631 					 MODE_CLIENT);
4632 	xpkt.stratum = STRATUM_TO_PKT(sys_stratum);
4633 	xpkt.ppoll = pool->hpoll;
4634 	xpkt.precision = sys_precision;
4635 	xpkt.refid = sys_refid;
4636 	xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay));
4637 	xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp));
4638 	HTONL_FP(&sys_reftime, &xpkt.reftime);
4639 	get_systime(&xmt_tx);
4640 	pool->aorg = xmt_tx;
4641 	HTONL_FP(&xmt_tx, &xpkt.xmt);
4642 	sendpkt(rmtadr, lcladr,
4643 		sys_ttl[(pool->ttl >= sys_ttlmax) ? sys_ttlmax : pool->ttl],
4644 		&xpkt, LEN_PKT_NOMAC);
4645 	pool->sent++;
4646 	pool->throttle += (1 << pool->minpoll) - 2;
4647 	DPRINTF(1, ("pool_xmit: at %ld %s->%s pool\n",
4648 		    current_time, latoa(lcladr), stoa(rmtadr)));
4649 	msyslog(LOG_INFO, "Soliciting pool server %s", stoa(rmtadr));
4650 #endif	/* WORKER */
4651 }
4652 
4653 
4654 #ifdef AUTOKEY
4655 	/*
4656 	 * group_test - test if this is the same group
4657 	 *
4658 	 * host		assoc		return		action
4659 	 * none		none		0		mobilize *
4660 	 * none		group		0		mobilize *
4661 	 * group	none		0		mobilize *
4662 	 * group	group		1		mobilize
4663 	 * group	different	1		ignore
4664 	 * * ignore if notrust
4665 	 */
4666 int
4667 group_test(
4668 	char	*grp,
4669 	char	*ident
4670 	)
4671 {
4672 	if (grp == NULL)
4673 		return (0);
4674 
4675 	if (strcmp(grp, sys_groupname) == 0)
4676 		return (0);
4677 
4678 	if (ident == NULL)
4679 		return (1);
4680 
4681 	if (strcmp(grp, ident) == 0)
4682 		return (0);
4683 
4684 	return (1);
4685 }
4686 #endif /* AUTOKEY */
4687 
4688 
4689 #ifdef WORKER
4690 void
4691 pool_name_resolved(
4692 	int			rescode,
4693 	int			gai_errno,
4694 	void *			context,
4695 	const char *		name,
4696 	const char *		service,
4697 	const struct addrinfo *	hints,
4698 	const struct addrinfo *	res
4699 	)
4700 {
4701 	struct peer *	pool;	/* pool solicitor association */
4702 	associd_t	assoc;
4703 
4704 	if (rescode) {
4705 		msyslog(LOG_ERR,
4706 			"error resolving pool %s: %s (%d)",
4707 			name, gai_strerror(rescode), rescode);
4708 		return;
4709 	}
4710 
4711 	assoc = (associd_t)(intptr_t)context;
4712 	pool = findpeerbyassoc(assoc);
4713 	if (NULL == pool) {
4714 		msyslog(LOG_ERR,
4715 			"Could not find assoc %u for pool DNS %s",
4716 			assoc, name);
4717 		return;
4718 	}
4719 	DPRINTF(1, ("pool DNS %s completed\n", name));
4720 	pool->addrs = copy_addrinfo_list(res);
4721 	pool->ai = pool->addrs;
4722 	pool_xmit(pool);
4723 
4724 }
4725 #endif	/* WORKER */
4726 
4727 
4728 #ifdef AUTOKEY
4729 /*
4730  * key_expire - purge the key list
4731  */
4732 void
4733 key_expire(
4734 	struct peer *peer	/* peer structure pointer */
4735 	)
4736 {
4737 	int i;
4738 
4739 	if (peer->keylist != NULL) {
4740 		for (i = 0; i <= peer->keynumber; i++)
4741 			authtrust(peer->keylist[i], 0);
4742 		free(peer->keylist);
4743 		peer->keylist = NULL;
4744 	}
4745 	value_free(&peer->sndval);
4746 	peer->keynumber = 0;
4747 	peer->flags &= ~FLAG_ASSOC;
4748 	DPRINTF(1, ("key_expire: at %lu associd %d\n", current_time,
4749 		    peer->associd));
4750 }
4751 #endif	/* AUTOKEY */
4752 
4753 
4754 /*
4755  * local_refid(peer) - check peer refid to avoid selecting peers
4756  *		       currently synced to this ntpd.
4757  */
4758 static int
4759 local_refid(
4760 	struct peer *	p
4761 	)
4762 {
4763 	endpt *	unicast_ep;
4764 
4765 	if (p->dstadr != NULL && !(INT_MCASTIF & p->dstadr->flags))
4766 		unicast_ep = p->dstadr;
4767 	else
4768 		unicast_ep = findinterface(&p->srcadr);
4769 
4770 	if (unicast_ep != NULL && p->refid == unicast_ep->addr_refid)
4771 		return TRUE;
4772 	else
4773 		return FALSE;
4774 }
4775 
4776 
4777 /*
4778  * Determine if the peer is unfit for synchronization
4779  *
4780  * A peer is unfit for synchronization if
4781  * > TEST10 bad leap or stratum below floor or at or above ceiling
4782  * > TEST11 root distance exceeded for remote peer
4783  * > TEST12 a direct or indirect synchronization loop would form
4784  * > TEST13 unreachable or noselect
4785  */
4786 int				/* FALSE if fit, TRUE if unfit */
4787 peer_unfit(
4788 	struct peer *peer	/* peer structure pointer */
4789 	)
4790 {
4791 	int	rval = 0;
4792 
4793 	/*
4794 	 * A stratum error occurs if (1) the server has never been
4795 	 * synchronized, (2) the server stratum is below the floor or
4796 	 * greater than or equal to the ceiling.
4797 	 */
4798 	if (   peer->leap == LEAP_NOTINSYNC
4799 	    || peer->stratum < sys_floor
4800 	    || peer->stratum >= sys_ceiling) {
4801 		rval |= TEST10;		/* bad synch or stratum */
4802 	}
4803 
4804 	/*
4805 	 * A distance error for a remote peer occurs if the root
4806 	 * distance is greater than or equal to the distance threshold
4807 	 * plus the increment due to one host poll interval.
4808 	 */
4809 	if (   !(peer->flags & FLAG_REFCLOCK)
4810 	    && root_distance(peer) >= sys_maxdist
4811 				      + clock_phi * ULOGTOD(peer->hpoll)) {
4812 		rval |= TEST11;		/* distance exceeded */
4813 	}
4814 
4815 	/*
4816 	 * A loop error occurs if the remote peer is synchronized to the
4817 	 * local peer or if the remote peer is synchronized to the same
4818 	 * server as the local peer but only if the remote peer is
4819 	 * neither a reference clock nor an orphan.
4820 	 */
4821 	if (peer->stratum > 1 && local_refid(peer)) {
4822 		rval |= TEST12;		/* synchronization loop */
4823 	}
4824 
4825 	/*
4826 	 * An unreachable error occurs if the server is unreachable or
4827 	 * the noselect bit is set.
4828 	 */
4829 	if (!peer->reach || (peer->flags & FLAG_NOSELECT)) {
4830 		rval |= TEST13;		/* unreachable */
4831 	}
4832 
4833 	peer->flash &= ~PEER_TEST_MASK;
4834 	peer->flash |= rval;
4835 	return (rval);
4836 }
4837 
4838 
4839 /*
4840  * Find the precision of this particular machine
4841  */
4842 #define MINSTEP		20e-9	/* minimum clock increment (s) */
4843 #define MAXSTEP		1	/* maximum clock increment (s) */
4844 #define MINCHANGES	12	/* minimum number of step samples */
4845 #define MAXLOOPS	((int)(1. / MINSTEP))	/* avoid infinite loop */
4846 
4847 /*
4848  * This routine measures the system precision defined as the minimum of
4849  * a sequence of differences between successive readings of the system
4850  * clock. However, if a difference is less than MINSTEP, the clock has
4851  * been read more than once during a clock tick and the difference is
4852  * ignored. We set MINSTEP greater than zero in case something happens
4853  * like a cache miss, and to tolerate underlying system clocks which
4854  * ensure each reading is strictly greater than prior readings while
4855  * using an underlying stepping (not interpolated) clock.
4856  *
4857  * sys_tick and sys_precision represent the time to read the clock for
4858  * systems with high-precision clocks, and the tick interval or step
4859  * size for lower-precision stepping clocks.
4860  *
4861  * This routine also measures the time to read the clock on stepping
4862  * system clocks by counting the number of readings between changes of
4863  * the underlying clock.  With either type of clock, the minimum time
4864  * to read the clock is saved as sys_fuzz, and used to ensure the
4865  * get_systime() readings always increase and are fuzzed below sys_fuzz.
4866  */
4867 void
4868 measure_precision(void)
4869 {
4870 	/*
4871 	 * With sys_fuzz set to zero, get_systime() fuzzing of low bits
4872 	 * is effectively disabled.  trunc_os_clock is FALSE to disable
4873 	 * get_ostime() simulation of a low-precision system clock.
4874 	 */
4875 	set_sys_fuzz(0.);
4876 	trunc_os_clock = FALSE;
4877 	measured_tick = measure_tick_fuzz();
4878 	set_sys_tick_precision(measured_tick);
4879 	msyslog(LOG_INFO, "proto: precision = %.3f usec (%d)",
4880 		sys_tick * 1e6, sys_precision);
4881 	if (sys_fuzz < sys_tick) {
4882 		msyslog(LOG_NOTICE, "proto: fuzz beneath %.3f usec",
4883 			sys_fuzz * 1e6);
4884 	}
4885 }
4886 
4887 
4888 /*
4889  * measure_tick_fuzz()
4890  *
4891  * measures the minimum time to read the clock (stored in sys_fuzz)
4892  * and returns the tick, the larger of the minimum increment observed
4893  * between successive clock readings and the time to read the clock.
4894  */
4895 double
4896 measure_tick_fuzz(void)
4897 {
4898 	l_fp	minstep;	/* MINSTEP as l_fp */
4899 	l_fp	val;		/* current seconds fraction */
4900 	l_fp	last;		/* last seconds fraction */
4901 	l_fp	ldiff;		/* val - last */
4902 	double	tick;		/* computed tick value */
4903 	double	diff;
4904 	long	repeats;
4905 	long	max_repeats;
4906 	int	changes;
4907 	int	i;		/* log2 precision */
4908 
4909 	tick = MAXSTEP;
4910 	max_repeats = 0;
4911 	repeats = 0;
4912 	changes = 0;
4913 	DTOLFP(MINSTEP, &minstep);
4914 	get_systime(&last);
4915 	for (i = 0; i < MAXLOOPS && changes < MINCHANGES; i++) {
4916 		get_systime(&val);
4917 		ldiff = val;
4918 		L_SUB(&ldiff, &last);
4919 		last = val;
4920 		if (L_ISGT(&ldiff, &minstep)) {
4921 			max_repeats = max(repeats, max_repeats);
4922 			repeats = 0;
4923 			changes++;
4924 			LFPTOD(&ldiff, diff);
4925 			tick = min(diff, tick);
4926 		} else {
4927 			repeats++;
4928 		}
4929 	}
4930 	if (changes < MINCHANGES) {
4931 		msyslog(LOG_ERR, "Fatal error: precision could not be measured (MINSTEP too large?)");
4932 		exit(1);
4933 	}
4934 
4935 	if (0 == max_repeats) {
4936 		set_sys_fuzz(tick);
4937 	} else {
4938 		set_sys_fuzz(tick / max_repeats);
4939 	}
4940 
4941 	return tick;
4942 }
4943 
4944 
4945 void
4946 set_sys_tick_precision(
4947 	double tick
4948 	)
4949 {
4950 	int i;
4951 
4952 	if (tick > 1.) {
4953 		msyslog(LOG_ERR,
4954 			"unsupported tick %.3f > 1s ignored", tick);
4955 		return;
4956 	}
4957 	if (tick < measured_tick) {
4958 		msyslog(LOG_ERR,
4959 			"proto: tick %.3f less than measured tick %.3f, ignored",
4960 			tick, measured_tick);
4961 		return;
4962 	} else if (tick > measured_tick) {
4963 		trunc_os_clock = TRUE;
4964 		msyslog(LOG_NOTICE,
4965 			"proto: truncating system clock to multiples of %.9f",
4966 			tick);
4967 	}
4968 	sys_tick = tick;
4969 
4970 	/*
4971 	 * Find the nearest power of two.
4972 	 */
4973 	for (i = 0; tick <= 1; i--)
4974 		tick *= 2;
4975 	if (tick - 1 > 1 - tick / 2)
4976 		i++;
4977 
4978 	sys_precision = (s_char)i;
4979 }
4980 
4981 
4982 /*
4983  * init_proto - initialize the protocol module's data
4984  */
4985 void
4986 init_proto(void)
4987 {
4988 	l_fp	dummy;
4989 	int	i;
4990 
4991 	/*
4992 	 * Fill in the sys_* stuff.  Default is don't listen to
4993 	 * broadcasting, require authentication.
4994 	 */
4995 	set_sys_leap(LEAP_NOTINSYNC);
4996 	sys_stratum = STRATUM_UNSPEC;
4997 	memcpy(&sys_refid, "INIT", 4);
4998 	sys_peer = NULL;
4999 	sys_rootdelay = 0;
5000 	sys_rootdisp = 0;
5001 	L_CLR(&sys_reftime);
5002 	sys_jitter = 0;
5003 	measure_precision();
5004 	get_systime(&dummy);
5005 	sys_survivors = 0;
5006 	sys_manycastserver = 0;
5007 	sys_bclient = 0;
5008 	sys_bdelay = BDELAY_DEFAULT;	/*[Bug 3031] delay cutoff */
5009 	sys_authenticate = 1;
5010 	sys_stattime = current_time;
5011 	orphwait = current_time + sys_orphwait;
5012 	proto_clr_stats();
5013 	for (i = 0; i < MAX_TTL; ++i)
5014 		sys_ttl[i] = (u_char)((i * 256) / MAX_TTL);
5015 	sys_ttlmax = (MAX_TTL - 1);
5016 	hardpps_enable = 0;
5017 	stats_control = 1;
5018 }
5019 
5020 
5021 /*
5022  * proto_config - configure the protocol module
5023  */
5024 void
5025 proto_config(
5026 	int	item,
5027 	u_long	value,
5028 	double	dvalue,
5029 	sockaddr_u *svalue
5030 	)
5031 {
5032 	/*
5033 	 * Figure out what he wants to change, then do it
5034 	 */
5035 	DPRINTF(2, ("proto_config: code %d value %lu dvalue %lf\n",
5036 		    item, value, dvalue));
5037 
5038 	switch (item) {
5039 
5040 	/*
5041 	 * enable and disable commands - arguments are Boolean.
5042 	 */
5043 	case PROTO_AUTHENTICATE: /* authentication (auth) */
5044 		sys_authenticate = value;
5045 		break;
5046 
5047 	case PROTO_BROADCLIENT: /* broadcast client (bclient) */
5048 		sys_bclient = (int)value;
5049 		if (sys_bclient == 0)
5050 			io_unsetbclient();
5051 		else
5052 			io_setbclient();
5053 		break;
5054 
5055 #ifdef REFCLOCK
5056 	case PROTO_CAL:		/* refclock calibrate (calibrate) */
5057 		cal_enable = value;
5058 		break;
5059 #endif /* REFCLOCK */
5060 
5061 	case PROTO_KERNEL:	/* kernel discipline (kernel) */
5062 		select_loop(value);
5063 		break;
5064 
5065 	case PROTO_MONITOR:	/* monitoring (monitor) */
5066 		if (value)
5067 			mon_start(MON_ON);
5068 		else {
5069 			mon_stop(MON_ON);
5070 			if (mon_enabled)
5071 				msyslog(LOG_WARNING,
5072 					"restrict: 'monitor' cannot be disabled while 'limited' is enabled");
5073 		}
5074 		break;
5075 
5076 	case PROTO_NTP:		/* NTP discipline (ntp) */
5077 		ntp_enable = value;
5078 		break;
5079 
5080 	case PROTO_MODE7:	/* mode7 management (ntpdc) */
5081 		ntp_mode7 = value;
5082 		break;
5083 
5084 	case PROTO_PPS:		/* PPS discipline (pps) */
5085 		hardpps_enable = value;
5086 		break;
5087 
5088 	case PROTO_FILEGEN:	/* statistics (stats) */
5089 		stats_control = value;
5090 		break;
5091 
5092 	/*
5093 	 * tos command - arguments are double, sometimes cast to int
5094 	 */
5095 
5096 	case PROTO_BCPOLLBSTEP:	/* Broadcast Poll Backstep gate (bcpollbstep) */
5097 		sys_bcpollbstep = (u_char)dvalue;
5098 		break;
5099 
5100 	case PROTO_BEACON:	/* manycast beacon (beacon) */
5101 		sys_beacon = (int)dvalue;
5102 		break;
5103 
5104 	case PROTO_BROADDELAY:	/* default broadcast delay (bdelay) */
5105 		sys_bdelay = (dvalue ? dvalue : BDELAY_DEFAULT);
5106 		break;
5107 
5108 	case PROTO_CEILING:	/* stratum ceiling (ceiling) */
5109 		sys_ceiling = (int)dvalue;
5110 		break;
5111 
5112 	case PROTO_COHORT:	/* cohort switch (cohort) */
5113 		sys_cohort = (int)dvalue;
5114 		break;
5115 
5116 	case PROTO_FLOOR:	/* stratum floor (floor) */
5117 		sys_floor = (int)dvalue;
5118 		break;
5119 
5120 	case PROTO_MAXCLOCK:	/* maximum candidates (maxclock) */
5121 		sys_maxclock = (int)dvalue;
5122 		break;
5123 
5124 	case PROTO_MAXDIST:	/* select threshold (maxdist) */
5125 		sys_maxdist = dvalue;
5126 		break;
5127 
5128 	case PROTO_CALLDELAY:	/* modem call delay (mdelay) */
5129 		break;		/* NOT USED */
5130 
5131 	case PROTO_MINCLOCK:	/* minimum candidates (minclock) */
5132 		sys_minclock = (int)dvalue;
5133 		break;
5134 
5135 	case PROTO_MINDISP:	/* minimum distance (mindist) */
5136 		sys_mindisp = dvalue;
5137 		break;
5138 
5139 	case PROTO_MINSANE:	/* minimum survivors (minsane) */
5140 		sys_minsane = (int)dvalue;
5141 		break;
5142 
5143 	case PROTO_ORPHAN:	/* orphan stratum (orphan) */
5144 		sys_orphan = (int)dvalue;
5145 		break;
5146 
5147 	case PROTO_ORPHWAIT:	/* orphan wait (orphwait) */
5148 		orphwait -= sys_orphwait;
5149 		sys_orphwait = (int)dvalue;
5150 		orphwait += sys_orphwait;
5151 		break;
5152 
5153 	/*
5154 	 * Miscellaneous commands
5155 	 */
5156 	case PROTO_MULTICAST_ADD: /* add group address */
5157 		if (svalue != NULL)
5158 			io_multicast_add(svalue);
5159 		sys_bclient = 1;
5160 		break;
5161 
5162 	case PROTO_MULTICAST_DEL: /* delete group address */
5163 		if (svalue != NULL)
5164 			io_multicast_del(svalue);
5165 		break;
5166 
5167 	/*
5168 	 * Peer_clear Early policy choices
5169 	 */
5170 
5171 	case PROTO_PCEDIGEST:	/* Digest */
5172 		peer_clear_digest_early = value;
5173 		break;
5174 
5175 	/*
5176 	 * Unpeer Early policy choices
5177 	 */
5178 
5179 	case PROTO_UECRYPTO:	/* Crypto */
5180 		unpeer_crypto_early = value;
5181 		break;
5182 
5183 	case PROTO_UECRYPTONAK:	/* Crypto_NAK */
5184 		unpeer_crypto_nak_early = value;
5185 		break;
5186 
5187 	case PROTO_UEDIGEST:	/* Digest */
5188 		unpeer_digest_early = value;
5189 		break;
5190 
5191 	default:
5192 		msyslog(LOG_NOTICE,
5193 		    "proto: unsupported option %d", item);
5194 	}
5195 }
5196 
5197 
5198 /*
5199  * proto_clr_stats - clear protocol stat counters
5200  */
5201 void
5202 proto_clr_stats(void)
5203 {
5204 	sys_stattime = current_time;
5205 	sys_received = 0;
5206 	sys_processed = 0;
5207 	sys_newversion = 0;
5208 	sys_oldversion = 0;
5209 	sys_declined = 0;
5210 	sys_restricted = 0;
5211 	sys_badlength = 0;
5212 	sys_badauth = 0;
5213 	sys_limitrejected = 0;
5214 	sys_kodsent = 0;
5215 	sys_lamport = 0;
5216 	sys_tsrounding = 0;
5217 }
5218