1 /* 2 * ntp_proto.c - NTP version 4 protocol machinery 3 * 4 * ATTENTION: Get approval from Dave Mills on all changes to this file! 5 * 6 */ 7 #ifdef HAVE_CONFIG_H 8 #include <config.h> 9 #endif 10 11 #include "ntpd.h" 12 #include "ntp_stdlib.h" 13 #include "ntp_unixtime.h" 14 #include "ntp_control.h" 15 #include "ntp_string.h" 16 #include "ntp_leapsec.h" 17 #include "refidsmear.h" 18 #include "lib_strbuf.h" 19 20 #include <stdio.h> 21 #ifdef HAVE_LIBSCF_H 22 #include <libscf.h> 23 #endif 24 #ifdef HAVE_UNISTD_H 25 #include <unistd.h> 26 #endif 27 28 /* 29 * This macro defines the authentication state. If x is 1 authentication 30 * is required; othewise it is optional. 31 */ 32 #define AUTH(x, y) ((x) ? (y) == AUTH_OK \ 33 : (y) == AUTH_OK || (y) == AUTH_NONE) 34 35 #define AUTH_NONE 0 /* authentication not required */ 36 #define AUTH_OK 1 /* authentication OK */ 37 #define AUTH_ERROR 2 /* authentication error */ 38 #define AUTH_CRYPTO 3 /* crypto_NAK */ 39 40 /* 41 * Set up Kiss Code values 42 */ 43 44 enum kiss_codes { 45 NOKISS, /* No Kiss Code */ 46 RATEKISS, /* Rate limit Kiss Code */ 47 DENYKISS, /* Deny Kiss */ 48 RSTRKISS, /* Restricted Kiss */ 49 XKISS, /* Experimental Kiss */ 50 UNKNOWNKISS /* Unknown Kiss Code */ 51 }; 52 53 /* 54 * traffic shaping parameters 55 */ 56 #define NTP_IBURST 6 /* packets in iburst */ 57 #define RESP_DELAY 1 /* refclock burst delay (s) */ 58 59 /* 60 * pool soliciting restriction duration (s) 61 */ 62 #define POOL_SOLICIT_WINDOW 8 63 64 /* 65 * peer_select groups statistics for a peer used by clock_select() and 66 * clock_cluster(). 67 */ 68 typedef struct peer_select_tag { 69 struct peer * peer; 70 double synch; /* sync distance */ 71 double error; /* jitter */ 72 double seljit; /* selection jitter */ 73 } peer_select; 74 75 /* 76 * System variables are declared here. Unless specified otherwise, all 77 * times are in seconds. 78 */ 79 u_char sys_leap; /* system leap indicator, use set_sys_leap() to change this */ 80 u_char xmt_leap; /* leap indicator sent in client requests, set up by set_sys_leap() */ 81 u_char sys_stratum; /* system stratum */ 82 s_char sys_precision; /* local clock precision (log2 s) */ 83 double sys_rootdelay; /* roundtrip delay to primary source */ 84 double sys_rootdisp; /* dispersion to primary source */ 85 u_int32 sys_refid; /* reference id (network byte order) */ 86 l_fp sys_reftime; /* last update time */ 87 struct peer *sys_peer; /* current peer */ 88 89 #ifdef LEAP_SMEAR 90 struct leap_smear_info leap_smear; 91 #endif 92 int leap_sec_in_progress; 93 94 /* 95 * Rate controls. Leaky buckets are used to throttle the packet 96 * transmission rates in order to protect busy servers such as at NIST 97 * and USNO. There is a counter for each association and another for KoD 98 * packets. The association counter decrements each second, but not 99 * below zero. Each time a packet is sent the counter is incremented by 100 * a configurable value representing the average interval between 101 * packets. A packet is delayed as long as the counter is greater than 102 * zero. Note this does not affect the time value computations. 103 */ 104 /* 105 * Nonspecified system state variables 106 */ 107 int sys_bclient; /* broadcast client enable */ 108 double sys_bdelay; /* broadcast client default delay */ 109 int sys_authenticate; /* requre authentication for config */ 110 l_fp sys_authdelay; /* authentication delay */ 111 double sys_offset; /* current local clock offset */ 112 double sys_mindisp = MINDISPERSE; /* minimum distance (s) */ 113 double sys_maxdist = MAXDISTANCE; /* selection threshold */ 114 double sys_jitter; /* system jitter */ 115 u_long sys_epoch; /* last clock update time */ 116 static double sys_clockhop; /* clockhop threshold */ 117 static int leap_vote_ins; /* leap consensus for insert */ 118 static int leap_vote_del; /* leap consensus for delete */ 119 keyid_t sys_private; /* private value for session seed */ 120 int sys_manycastserver; /* respond to manycast client pkts */ 121 int ntp_mode7; /* respond to ntpdc (mode7) */ 122 int peer_ntpdate; /* active peers in ntpdate mode */ 123 int sys_survivors; /* truest of the truechimers */ 124 char *sys_ident = NULL; /* identity scheme */ 125 126 /* 127 * TOS and multicast mapping stuff 128 */ 129 int sys_floor = 0; /* cluster stratum floor */ 130 int sys_ceiling = STRATUM_UNSPEC - 1; /* cluster stratum ceiling */ 131 int sys_minsane = 1; /* minimum candidates */ 132 int sys_minclock = NTP_MINCLOCK; /* minimum candidates */ 133 int sys_maxclock = NTP_MAXCLOCK; /* maximum candidates */ 134 int sys_cohort = 0; /* cohort switch */ 135 int sys_orphan = STRATUM_UNSPEC + 1; /* orphan stratum */ 136 int sys_orphwait = NTP_ORPHWAIT; /* orphan wait */ 137 int sys_beacon = BEACON; /* manycast beacon interval */ 138 int sys_ttlmax; /* max ttl mapping vector index */ 139 u_char sys_ttl[MAX_TTL]; /* ttl mapping vector */ 140 141 /* 142 * Statistics counters - first the good, then the bad 143 */ 144 u_long sys_stattime; /* elapsed time */ 145 u_long sys_received; /* packets received */ 146 u_long sys_processed; /* packets for this host */ 147 u_long sys_newversion; /* current version */ 148 u_long sys_oldversion; /* old version */ 149 u_long sys_restricted; /* access denied */ 150 u_long sys_badlength; /* bad length or format */ 151 u_long sys_badauth; /* bad authentication */ 152 u_long sys_declined; /* declined */ 153 u_long sys_limitrejected; /* rate exceeded */ 154 u_long sys_kodsent; /* KoD sent */ 155 156 static int kiss_code_check(u_char hisleap, u_char hisstratum, u_char hismode, u_int32 refid); 157 static double root_distance (struct peer *); 158 static void clock_combine (peer_select *, int, int); 159 static void peer_xmit (struct peer *); 160 static void fast_xmit (struct recvbuf *, int, keyid_t, int); 161 static void pool_xmit (struct peer *); 162 static void clock_update (struct peer *); 163 static void measure_precision(void); 164 static double measure_tick_fuzz(void); 165 static int local_refid (struct peer *); 166 static int peer_unfit (struct peer *); 167 #ifdef AUTOKEY 168 static int group_test (char *, char *); 169 #endif /* AUTOKEY */ 170 #ifdef WORKER 171 void pool_name_resolved (int, int, void *, const char *, 172 const char *, const struct addrinfo *, 173 const struct addrinfo *); 174 #endif /* WORKER */ 175 176 const char * amtoa (int am); 177 178 179 void 180 set_sys_leap( 181 u_char new_sys_leap 182 ) 183 { 184 sys_leap = new_sys_leap; 185 xmt_leap = sys_leap; 186 187 /* 188 * Under certain conditions we send faked leap bits to clients, so 189 * eventually change xmt_leap below, but never change LEAP_NOTINSYNC. 190 */ 191 if (xmt_leap != LEAP_NOTINSYNC) { 192 if (leap_sec_in_progress) { 193 /* always send "not sync" */ 194 xmt_leap = LEAP_NOTINSYNC; 195 } 196 #ifdef LEAP_SMEAR 197 else { 198 /* 199 * If leap smear is enabled in general we must 200 * never send a leap second warning to clients, 201 * so make sure we only send "in sync". 202 */ 203 if (leap_smear.enabled) 204 xmt_leap = LEAP_NOWARNING; 205 } 206 #endif /* LEAP_SMEAR */ 207 } 208 } 209 210 211 /* 212 * Kiss Code check 213 */ 214 int 215 kiss_code_check( 216 u_char hisleap, 217 u_char hisstratum, 218 u_char hismode, 219 u_int32 refid 220 ) 221 { 222 223 if ( hismode == MODE_SERVER 224 && hisleap == LEAP_NOTINSYNC 225 && hisstratum == STRATUM_UNSPEC) { 226 if(memcmp(&refid,"RATE", 4) == 0) { 227 return (RATEKISS); 228 } else if(memcmp(&refid,"DENY", 4) == 0) { 229 return (DENYKISS); 230 } else if(memcmp(&refid,"RSTR", 4) == 0) { 231 return (RSTRKISS); 232 } else if(memcmp(&refid,"X", 1) == 0) { 233 return (XKISS); 234 } else { 235 return (UNKNOWNKISS); 236 } 237 } else { 238 return (NOKISS); 239 } 240 } 241 242 243 /* 244 * transmit - transmit procedure called by poll timeout 245 */ 246 void 247 transmit( 248 struct peer *peer /* peer structure pointer */ 249 ) 250 { 251 u_char hpoll; 252 253 /* 254 * The polling state machine. There are two kinds of machines, 255 * those that never expect a reply (broadcast and manycast 256 * server modes) and those that do (all other modes). The dance 257 * is intricate... 258 */ 259 hpoll = peer->hpoll; 260 261 /* 262 * In broadcast mode the poll interval is never changed from 263 * minpoll. 264 */ 265 if (peer->cast_flags & (MDF_BCAST | MDF_MCAST)) { 266 peer->outdate = current_time; 267 if (sys_leap != LEAP_NOTINSYNC) 268 peer_xmit(peer); 269 poll_update(peer, hpoll); 270 return; 271 } 272 273 /* 274 * In manycast mode we start with unity ttl. The ttl is 275 * increased by one for each poll until either sys_maxclock 276 * servers have been found or the maximum ttl is reached. When 277 * sys_maxclock servers are found we stop polling until one or 278 * more servers have timed out or until less than sys_minclock 279 * associations turn up. In this case additional better servers 280 * are dragged in and preempt the existing ones. Once every 281 * sys_beacon seconds we are to transmit unconditionally, but 282 * this code is not quite right -- peer->unreach counts polls 283 * and is being compared with sys_beacon, so the beacons happen 284 * every sys_beacon polls. 285 */ 286 if (peer->cast_flags & MDF_ACAST) { 287 peer->outdate = current_time; 288 if (peer->unreach > sys_beacon) { 289 peer->unreach = 0; 290 peer->ttl = 0; 291 peer_xmit(peer); 292 } else if ( sys_survivors < sys_minclock 293 || peer_associations < sys_maxclock) { 294 if (peer->ttl < (u_int32)sys_ttlmax) 295 peer->ttl++; 296 peer_xmit(peer); 297 } 298 peer->unreach++; 299 poll_update(peer, hpoll); 300 return; 301 } 302 303 /* 304 * Pool associations transmit unicast solicitations when there 305 * are less than a hard limit of 2 * sys_maxclock associations, 306 * and either less than sys_minclock survivors or less than 307 * sys_maxclock associations. The hard limit prevents unbounded 308 * growth in associations if the system clock or network quality 309 * result in survivor count dipping below sys_minclock often. 310 * This was observed testing with pool, where sys_maxclock == 12 311 * resulted in 60 associations without the hard limit. A 312 * similar hard limit on manycastclient ephemeral associations 313 * may be appropriate. 314 */ 315 if (peer->cast_flags & MDF_POOL) { 316 peer->outdate = current_time; 317 if ( (peer_associations <= 2 * sys_maxclock) 318 && ( peer_associations < sys_maxclock 319 || sys_survivors < sys_minclock)) 320 pool_xmit(peer); 321 poll_update(peer, hpoll); 322 return; 323 } 324 325 /* 326 * In unicast modes the dance is much more intricate. It is 327 * designed to back off whenever possible to minimize network 328 * traffic. 329 */ 330 if (peer->burst == 0) { 331 u_char oreach; 332 333 /* 334 * Update the reachability status. If not heard for 335 * three consecutive polls, stuff infinity in the clock 336 * filter. 337 */ 338 oreach = peer->reach; 339 peer->outdate = current_time; 340 peer->unreach++; 341 peer->reach <<= 1; 342 if (!peer->reach) { 343 344 /* 345 * Here the peer is unreachable. If it was 346 * previously reachable raise a trap. Send a 347 * burst if enabled. 348 */ 349 clock_filter(peer, 0., 0., MAXDISPERSE); 350 if (oreach) { 351 peer_unfit(peer); 352 report_event(PEVNT_UNREACH, peer, NULL); 353 } 354 if ( (peer->flags & FLAG_IBURST) 355 && peer->retry == 0) 356 peer->retry = NTP_RETRY; 357 } else { 358 359 /* 360 * Here the peer is reachable. Send a burst if 361 * enabled and the peer is fit. Reset unreach 362 * for persistent and ephemeral associations. 363 * Unreach is also reset for survivors in 364 * clock_select(). 365 */ 366 hpoll = sys_poll; 367 if (!(peer->flags & FLAG_PREEMPT)) 368 peer->unreach = 0; 369 if ( (peer->flags & FLAG_BURST) 370 && peer->retry == 0 371 && !peer_unfit(peer)) 372 peer->retry = NTP_RETRY; 373 } 374 375 /* 376 * Watch for timeout. If ephemeral, toss the rascal; 377 * otherwise, bump the poll interval. Note the 378 * poll_update() routine will clamp it to maxpoll. 379 * If preemptible and we have more peers than maxclock, 380 * and this peer has the minimum score of preemptibles, 381 * demobilize. 382 */ 383 if (peer->unreach >= NTP_UNREACH) { 384 hpoll++; 385 /* ephemeral: no FLAG_CONFIG nor FLAG_PREEMPT */ 386 if (!(peer->flags & (FLAG_CONFIG | FLAG_PREEMPT))) { 387 report_event(PEVNT_RESTART, peer, "timeout"); 388 peer_clear(peer, "TIME"); 389 unpeer(peer); 390 return; 391 } 392 if ( (peer->flags & FLAG_PREEMPT) 393 && (peer_associations > sys_maxclock) 394 && score_all(peer)) { 395 report_event(PEVNT_RESTART, peer, "timeout"); 396 peer_clear(peer, "TIME"); 397 unpeer(peer); 398 return; 399 } 400 } 401 } else { 402 peer->burst--; 403 if (peer->burst == 0) { 404 405 /* 406 * If ntpdate mode and the clock has not been 407 * set and all peers have completed the burst, 408 * we declare a successful failure. 409 */ 410 if (mode_ntpdate) { 411 peer_ntpdate--; 412 if (peer_ntpdate == 0) { 413 msyslog(LOG_NOTICE, 414 "ntpd: no servers found"); 415 if (!msyslog_term) 416 printf( 417 "ntpd: no servers found\n"); 418 exit (0); 419 } 420 } 421 } 422 } 423 if (peer->retry > 0) 424 peer->retry--; 425 426 /* 427 * Do not transmit if in broadcast client mode. 428 */ 429 if (peer->hmode != MODE_BCLIENT) 430 peer_xmit(peer); 431 poll_update(peer, hpoll); 432 433 return; 434 } 435 436 437 const char * 438 amtoa( 439 int am 440 ) 441 { 442 char *bp; 443 444 switch(am) { 445 case AM_ERR: return "AM_ERR"; 446 case AM_NOMATCH: return "AM_NOMATCH"; 447 case AM_PROCPKT: return "AM_PROCPKT"; 448 case AM_BCST: return "AM_BCST"; 449 case AM_FXMIT: return "AM_FXMIT"; 450 case AM_MANYCAST: return "AM_MANYCAST"; 451 case AM_NEWPASS: return "AM_NEWPASS"; 452 case AM_NEWBCL: return "AM_NEWBCL"; 453 case AM_POSSBCL: return "AM_POSSBCL"; 454 default: 455 LIB_GETBUF(bp); 456 snprintf(bp, LIB_BUFLENGTH, "AM_#%d", am); 457 return bp; 458 } 459 } 460 461 462 /* 463 * receive - receive procedure called for each packet received 464 */ 465 void 466 receive( 467 struct recvbuf *rbufp 468 ) 469 { 470 register struct peer *peer; /* peer structure pointer */ 471 register struct pkt *pkt; /* receive packet pointer */ 472 u_char hisversion; /* packet version */ 473 u_char hisleap; /* packet leap indicator */ 474 u_char hismode; /* packet mode */ 475 u_char hisstratum; /* packet stratum */ 476 u_short restrict_mask; /* restrict bits */ 477 const char *hm_str; /* hismode string */ 478 const char *am_str; /* association match string */ 479 int kissCode = NOKISS; /* Kiss Code */ 480 int has_mac; /* length of MAC field */ 481 int authlen; /* offset of MAC field */ 482 int is_authentic = 0; /* cryptosum ok */ 483 int retcode = AM_NOMATCH; /* match code */ 484 keyid_t skeyid = 0; /* key IDs */ 485 u_int32 opcode = 0; /* extension field opcode */ 486 sockaddr_u *dstadr_sin; /* active runway */ 487 struct peer *peer2; /* aux peer structure pointer */ 488 endpt *match_ep; /* newpeer() local address */ 489 l_fp p_org; /* origin timestamp */ 490 l_fp p_rec; /* receive timestamp */ 491 l_fp p_xmt; /* transmit timestamp */ 492 #ifdef AUTOKEY 493 char hostname[NTP_MAXSTRLEN + 1]; 494 char *groupname = NULL; 495 struct autokey *ap; /* autokey structure pointer */ 496 int rval; /* cookie snatcher */ 497 keyid_t pkeyid = 0, tkeyid = 0; /* key IDs */ 498 #endif /* AUTOKEY */ 499 #ifdef HAVE_NTP_SIGND 500 static unsigned char zero_key[16]; 501 #endif /* HAVE_NTP_SIGND */ 502 503 /* 504 * Monitor the packet and get restrictions. Note that the packet 505 * length for control and private mode packets must be checked 506 * by the service routines. Some restrictions have to be handled 507 * later in order to generate a kiss-o'-death packet. 508 */ 509 /* 510 * Bogus port check is before anything, since it probably 511 * reveals a clogging attack. 512 */ 513 sys_received++; 514 if (0 == SRCPORT(&rbufp->recv_srcadr)) { 515 sys_badlength++; 516 return; /* bogus port */ 517 } 518 restrict_mask = restrictions(&rbufp->recv_srcadr); 519 pkt = &rbufp->recv_pkt; 520 DPRINTF(2, ("receive: at %ld %s<-%s flags %x restrict %03x org %#010x.%08x xmt %#010x.%08x\n", 521 current_time, stoa(&rbufp->dstadr->sin), 522 stoa(&rbufp->recv_srcadr), rbufp->dstadr->flags, 523 restrict_mask, ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 524 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 525 hisversion = PKT_VERSION(pkt->li_vn_mode); 526 hisleap = PKT_LEAP(pkt->li_vn_mode); 527 hismode = (int)PKT_MODE(pkt->li_vn_mode); 528 hisstratum = PKT_TO_STRATUM(pkt->stratum); 529 if (restrict_mask & RES_IGNORE) { 530 sys_restricted++; 531 return; /* ignore everything */ 532 } 533 if (hismode == MODE_PRIVATE) { 534 if (!ntp_mode7 || (restrict_mask & RES_NOQUERY)) { 535 sys_restricted++; 536 return; /* no query private */ 537 } 538 process_private(rbufp, ((restrict_mask & 539 RES_NOMODIFY) == 0)); 540 return; 541 } 542 if (hismode == MODE_CONTROL) { 543 if (restrict_mask & RES_NOQUERY) { 544 sys_restricted++; 545 return; /* no query control */ 546 } 547 process_control(rbufp, restrict_mask); 548 return; 549 } 550 if (restrict_mask & RES_DONTSERVE) { 551 sys_restricted++; 552 return; /* no time serve */ 553 } 554 555 /* 556 * This is for testing. If restricted drop ten percent of 557 * surviving packets. 558 */ 559 if (restrict_mask & RES_FLAKE) { 560 if ((double)ntp_random() / 0x7fffffff < .1) { 561 sys_restricted++; 562 return; /* no flakeway */ 563 } 564 } 565 566 /* 567 * Version check must be after the query packets, since they 568 * intentionally use an early version. 569 */ 570 if (hisversion == NTP_VERSION) { 571 sys_newversion++; /* new version */ 572 } else if ( !(restrict_mask & RES_VERSION) 573 && hisversion >= NTP_OLDVERSION) { 574 sys_oldversion++; /* previous version */ 575 } else { 576 sys_badlength++; 577 return; /* old version */ 578 } 579 580 /* 581 * Figure out his mode and validate the packet. This has some 582 * legacy raunch that probably should be removed. In very early 583 * NTP versions mode 0 was equivalent to what later versions 584 * would interpret as client mode. 585 */ 586 if (hismode == MODE_UNSPEC) { 587 if (hisversion == NTP_OLDVERSION) { 588 hismode = MODE_CLIENT; 589 } else { 590 sys_badlength++; 591 return; /* invalid mode */ 592 } 593 } 594 595 /* 596 * Parse the extension field if present. We figure out whether 597 * an extension field is present by measuring the MAC size. If 598 * the number of words following the packet header is 0, no MAC 599 * is present and the packet is not authenticated. If 1, the 600 * packet is a crypto-NAK; if 3, the packet is authenticated 601 * with DES; if 5, the packet is authenticated with MD5; if 6, 602 * the packet is authenticated with SHA. If 2 or * 4, the packet 603 * is a runt and discarded forthwith. If greater than 6, an 604 * extension field is present, so we subtract the length of the 605 * field and go around again. 606 */ 607 authlen = LEN_PKT_NOMAC; 608 has_mac = rbufp->recv_length - authlen; 609 while (has_mac > 0) { 610 u_int32 len; 611 #ifdef AUTOKEY 612 u_int32 hostlen; 613 struct exten *ep; 614 #endif /*AUTOKEY */ 615 616 if (has_mac % 4 != 0 || has_mac < (int)MIN_MAC_LEN) { 617 sys_badlength++; 618 return; /* bad length */ 619 } 620 if (has_mac <= (int)MAX_MAC_LEN) { 621 skeyid = ntohl(((u_int32 *)pkt)[authlen / 4]); 622 break; 623 624 } else { 625 opcode = ntohl(((u_int32 *)pkt)[authlen / 4]); 626 len = opcode & 0xffff; 627 if ( len % 4 != 0 628 || len < 4 629 || (int)len + authlen > rbufp->recv_length) { 630 sys_badlength++; 631 return; /* bad length */ 632 } 633 #ifdef AUTOKEY 634 /* 635 * Extract calling group name for later. If 636 * sys_groupname is non-NULL, there must be 637 * a group name provided to elicit a response. 638 */ 639 if ( (opcode & 0x3fff0000) == CRYPTO_ASSOC 640 && sys_groupname != NULL) { 641 ep = (struct exten *)&((u_int32 *)pkt)[authlen / 4]; 642 hostlen = ntohl(ep->vallen); 643 if ( hostlen >= sizeof(hostname) 644 || hostlen > len - 645 offsetof(struct exten, pkt)) { 646 sys_badlength++; 647 return; /* bad length */ 648 } 649 memcpy(hostname, &ep->pkt, hostlen); 650 hostname[hostlen] = '\0'; 651 groupname = strchr(hostname, '@'); 652 if (groupname == NULL) { 653 sys_declined++; 654 return; 655 } 656 groupname++; 657 } 658 #endif /* AUTOKEY */ 659 authlen += len; 660 has_mac -= len; 661 } 662 } 663 664 /* 665 * If has_mac is < 0 we had a malformed packet. 666 */ 667 if (has_mac < 0) { 668 sys_badlength++; 669 return; /* bad length */ 670 } 671 672 /* 673 * If authentication required, a MAC must be present. 674 */ 675 if (restrict_mask & RES_DONTTRUST && has_mac == 0) { 676 sys_restricted++; 677 return; /* access denied */ 678 } 679 680 /* 681 * Update the MRU list and finger the cloggers. It can be a 682 * little expensive, so turn it off for production use. 683 * RES_LIMITED and RES_KOD will be cleared in the returned 684 * restrict_mask unless one or both actions are warranted. 685 */ 686 restrict_mask = ntp_monitor(rbufp, restrict_mask); 687 if (restrict_mask & RES_LIMITED) { 688 sys_limitrejected++; 689 if ( !(restrict_mask & RES_KOD) 690 || MODE_BROADCAST == hismode 691 || MODE_SERVER == hismode) { 692 if (MODE_SERVER == hismode) 693 DPRINTF(1, ("Possibly self-induced rate limiting of MODE_SERVER from %s\n", 694 stoa(&rbufp->recv_srcadr))); 695 return; /* rate exceeded */ 696 } 697 if (hismode == MODE_CLIENT) 698 fast_xmit(rbufp, MODE_SERVER, skeyid, 699 restrict_mask); 700 else 701 fast_xmit(rbufp, MODE_ACTIVE, skeyid, 702 restrict_mask); 703 return; /* rate exceeded */ 704 } 705 restrict_mask &= ~RES_KOD; 706 707 /* 708 * We have tossed out as many buggy packets as possible early in 709 * the game to reduce the exposure to a clogging attack. Now we 710 * have to burn some cycles to find the association and 711 * authenticate the packet if required. Note that we burn only 712 * digest cycles, again to reduce exposure. There may be no 713 * matching association and that's okay. 714 * 715 * More on the autokey mambo. Normally the local interface is 716 * found when the association was mobilized with respect to a 717 * designated remote address. We assume packets arriving from 718 * the remote address arrive via this interface and the local 719 * address used to construct the autokey is the unicast address 720 * of the interface. However, if the sender is a broadcaster, 721 * the interface broadcast address is used instead. 722 * Notwithstanding this technobabble, if the sender is a 723 * multicaster, the broadcast address is null, so we use the 724 * unicast address anyway. Don't ask. 725 */ 726 peer = findpeer(rbufp, hismode, &retcode); 727 dstadr_sin = &rbufp->dstadr->sin; 728 NTOHL_FP(&pkt->org, &p_org); 729 NTOHL_FP(&pkt->rec, &p_rec); 730 NTOHL_FP(&pkt->xmt, &p_xmt); 731 hm_str = modetoa(hismode); 732 am_str = amtoa(retcode); 733 734 /* 735 * Authentication is conditioned by three switches: 736 * 737 * NOPEER (RES_NOPEER) do not mobilize an association unless 738 * authenticated 739 * NOTRUST (RES_DONTTRUST) do not allow access unless 740 * authenticated (implies NOPEER) 741 * enable (sys_authenticate) master NOPEER switch, by default 742 * on 743 * 744 * The NOPEER and NOTRUST can be specified on a per-client basis 745 * using the restrict command. The enable switch if on implies 746 * NOPEER for all clients. There are four outcomes: 747 * 748 * NONE The packet has no MAC. 749 * OK the packet has a MAC and authentication succeeds 750 * ERROR the packet has a MAC and authentication fails 751 * CRYPTO crypto-NAK. The MAC has four octets only. 752 * 753 * Note: The AUTH(x, y) macro is used to filter outcomes. If x 754 * is zero, acceptable outcomes of y are NONE and OK. If x is 755 * one, the only acceptable outcome of y is OK. 756 */ 757 758 if (has_mac == 0) { 759 restrict_mask &= ~RES_MSSNTP; 760 is_authentic = AUTH_NONE; /* not required */ 761 DPRINTF(2, ("receive: at %ld %s<-%s mode %d/%s:%s len %d org %#010x.%08x xmt %#010x.%08x NOMAC\n", 762 current_time, stoa(dstadr_sin), 763 stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str, 764 authlen, 765 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 766 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 767 } else if (has_mac == 4) { 768 restrict_mask &= ~RES_MSSNTP; 769 is_authentic = AUTH_CRYPTO; /* crypto-NAK */ 770 DPRINTF(2, ("receive: at %ld %s<-%s mode %d/%s:%s keyid %08x len %d auth %d org %#010x.%08x xmt %#010x.%08x MAC4\n", 771 current_time, stoa(dstadr_sin), 772 stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str, 773 skeyid, authlen + has_mac, is_authentic, 774 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 775 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 776 777 #ifdef HAVE_NTP_SIGND 778 /* 779 * If the signature is 20 bytes long, the last 16 of 780 * which are zero, then this is a Microsoft client 781 * wanting AD-style authentication of the server's 782 * reply. 783 * 784 * This is described in Microsoft's WSPP docs, in MS-SNTP: 785 * http://msdn.microsoft.com/en-us/library/cc212930.aspx 786 */ 787 } else if ( has_mac == MAX_MD5_LEN 788 && (restrict_mask & RES_MSSNTP) 789 && (retcode == AM_FXMIT || retcode == AM_NEWPASS) 790 && (memcmp(zero_key, (char *)pkt + authlen + 4, 791 MAX_MD5_LEN - 4) == 0)) { 792 is_authentic = AUTH_NONE; 793 #endif /* HAVE_NTP_SIGND */ 794 795 } else { 796 restrict_mask &= ~RES_MSSNTP; 797 #ifdef AUTOKEY 798 /* 799 * For autokey modes, generate the session key 800 * and install in the key cache. Use the socket 801 * broadcast or unicast address as appropriate. 802 */ 803 if (crypto_flags && skeyid > NTP_MAXKEY) { 804 805 /* 806 * More on the autokey dance (AKD). A cookie is 807 * constructed from public and private values. 808 * For broadcast packets, the cookie is public 809 * (zero). For packets that match no 810 * association, the cookie is hashed from the 811 * addresses and private value. For server 812 * packets, the cookie was previously obtained 813 * from the server. For symmetric modes, the 814 * cookie was previously constructed using an 815 * agreement protocol; however, should PKI be 816 * unavailable, we construct a fake agreement as 817 * the EXOR of the peer and host cookies. 818 * 819 * hismode ephemeral persistent 820 * ======================================= 821 * active 0 cookie# 822 * passive 0% cookie# 823 * client sys cookie 0% 824 * server 0% sys cookie 825 * broadcast 0 0 826 * 827 * # if unsync, 0 828 * % can't happen 829 */ 830 if (has_mac < (int)MAX_MD5_LEN) { 831 sys_badauth++; 832 return; 833 } 834 if (hismode == MODE_BROADCAST) { 835 836 /* 837 * For broadcaster, use the interface 838 * broadcast address when available; 839 * otherwise, use the unicast address 840 * found when the association was 841 * mobilized. However, if this is from 842 * the wildcard interface, game over. 843 */ 844 if ( crypto_flags 845 && rbufp->dstadr == 846 ANY_INTERFACE_CHOOSE(&rbufp->recv_srcadr)) { 847 sys_restricted++; 848 return; /* no wildcard */ 849 } 850 pkeyid = 0; 851 if (!SOCK_UNSPEC(&rbufp->dstadr->bcast)) 852 dstadr_sin = 853 &rbufp->dstadr->bcast; 854 } else if (peer == NULL) { 855 pkeyid = session_key( 856 &rbufp->recv_srcadr, dstadr_sin, 0, 857 sys_private, 0); 858 } else { 859 pkeyid = peer->pcookie; 860 } 861 862 /* 863 * The session key includes both the public 864 * values and cookie. In case of an extension 865 * field, the cookie used for authentication 866 * purposes is zero. Note the hash is saved for 867 * use later in the autokey mambo. 868 */ 869 if (authlen > (int)LEN_PKT_NOMAC && pkeyid != 0) { 870 session_key(&rbufp->recv_srcadr, 871 dstadr_sin, skeyid, 0, 2); 872 tkeyid = session_key( 873 &rbufp->recv_srcadr, dstadr_sin, 874 skeyid, pkeyid, 0); 875 } else { 876 tkeyid = session_key( 877 &rbufp->recv_srcadr, dstadr_sin, 878 skeyid, pkeyid, 2); 879 } 880 881 } 882 #endif /* AUTOKEY */ 883 884 /* 885 * Compute the cryptosum. Note a clogging attack may 886 * succeed in bloating the key cache. If an autokey, 887 * purge it immediately, since we won't be needing it 888 * again. If the packet is authentic, it can mobilize an 889 * association. Note that there is no key zero. 890 */ 891 if (!authdecrypt(skeyid, (u_int32 *)pkt, authlen, 892 has_mac)) 893 is_authentic = AUTH_ERROR; 894 else 895 is_authentic = AUTH_OK; 896 #ifdef AUTOKEY 897 if (crypto_flags && skeyid > NTP_MAXKEY) 898 authtrust(skeyid, 0); 899 #endif /* AUTOKEY */ 900 DPRINTF(2, ("receive: at %ld %s<-%s mode %d/%s:%s keyid %08x len %d auth %d org %#010x.%08x xmt %#010x.%08x\n", 901 current_time, stoa(dstadr_sin), 902 stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str, 903 skeyid, authlen + has_mac, is_authentic, 904 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 905 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 906 } 907 908 /* 909 * The association matching rules are implemented by a set of 910 * routines and an association table. A packet matching an 911 * association is processed by the peer process for that 912 * association. If there are no errors, an ephemeral association 913 * is mobilized: a broadcast packet mobilizes a broadcast client 914 * aassociation; a manycast server packet mobilizes a manycast 915 * client association; a symmetric active packet mobilizes a 916 * symmetric passive association. 917 */ 918 switch (retcode) { 919 920 /* 921 * This is a client mode packet not matching any association. If 922 * an ordinary client, simply toss a server mode packet back 923 * over the fence. If a manycast client, we have to work a 924 * little harder. 925 */ 926 case AM_FXMIT: 927 928 /* 929 * If authentication OK, send a server reply; otherwise, 930 * send a crypto-NAK. 931 */ 932 if (!(rbufp->dstadr->flags & INT_MCASTOPEN)) { 933 if (AUTH(restrict_mask & RES_DONTTRUST, 934 is_authentic)) { 935 fast_xmit(rbufp, MODE_SERVER, skeyid, 936 restrict_mask); 937 } else if (is_authentic == AUTH_ERROR) { 938 fast_xmit(rbufp, MODE_SERVER, 0, 939 restrict_mask); 940 sys_badauth++; 941 } else { 942 sys_restricted++; 943 } 944 return; /* hooray */ 945 } 946 947 /* 948 * This must be manycast. Do not respond if not 949 * configured as a manycast server. 950 */ 951 if (!sys_manycastserver) { 952 sys_restricted++; 953 return; /* not enabled */ 954 } 955 956 #ifdef AUTOKEY 957 /* 958 * Do not respond if not the same group. 959 */ 960 if (group_test(groupname, NULL)) { 961 sys_declined++; 962 return; 963 } 964 #endif /* AUTOKEY */ 965 966 /* 967 * Do not respond if we are not synchronized or our 968 * stratum is greater than the manycaster or the 969 * manycaster has already synchronized to us. 970 */ 971 if ( sys_leap == LEAP_NOTINSYNC 972 || sys_stratum >= hisstratum 973 || (!sys_cohort && sys_stratum == hisstratum + 1) 974 || rbufp->dstadr->addr_refid == pkt->refid) { 975 sys_declined++; 976 return; /* no help */ 977 } 978 979 /* 980 * Respond only if authentication succeeds. Don't do a 981 * crypto-NAK, as that would not be useful. 982 */ 983 if (AUTH(restrict_mask & RES_DONTTRUST, is_authentic)) 984 fast_xmit(rbufp, MODE_SERVER, skeyid, 985 restrict_mask); 986 return; /* hooray */ 987 988 /* 989 * This is a server mode packet returned in response to a client 990 * mode packet sent to a multicast group address (for 991 * manycastclient) or to a unicast address (for pool). The 992 * origin timestamp is a good nonce to reliably associate the 993 * reply with what was sent. If there is no match, that's 994 * curious and could be an intruder attempting to clog, so we 995 * just ignore it. 996 * 997 * If the packet is authentic and the manycastclient or pool 998 * association is found, we mobilize a client association and 999 * copy pertinent variables from the manycastclient or pool 1000 * association to the new client association. If not, just 1001 * ignore the packet. 1002 * 1003 * There is an implosion hazard at the manycast client, since 1004 * the manycast servers send the server packet immediately. If 1005 * the guy is already here, don't fire up a duplicate. 1006 */ 1007 case AM_MANYCAST: 1008 1009 #ifdef AUTOKEY 1010 /* 1011 * Do not respond if not the same group. 1012 */ 1013 if (group_test(groupname, NULL)) { 1014 sys_declined++; 1015 return; 1016 } 1017 #endif /* AUTOKEY */ 1018 if ((peer2 = findmanycastpeer(rbufp)) == NULL) { 1019 sys_restricted++; 1020 return; /* not enabled */ 1021 } 1022 if (!AUTH( (!(peer2->cast_flags & MDF_POOL) 1023 && sys_authenticate) 1024 || (restrict_mask & (RES_NOPEER | 1025 RES_DONTTRUST)), is_authentic)) { 1026 sys_restricted++; 1027 return; /* access denied */ 1028 } 1029 1030 /* 1031 * Do not respond if unsynchronized or stratum is below 1032 * the floor or at or above the ceiling. 1033 */ 1034 if ( hisleap == LEAP_NOTINSYNC 1035 || hisstratum < sys_floor 1036 || hisstratum >= sys_ceiling) { 1037 sys_declined++; 1038 return; /* no help */ 1039 } 1040 peer = newpeer(&rbufp->recv_srcadr, NULL, rbufp->dstadr, 1041 MODE_CLIENT, hisversion, peer2->minpoll, 1042 peer2->maxpoll, FLAG_PREEMPT | 1043 (FLAG_IBURST & peer2->flags), MDF_UCAST | 1044 MDF_UCLNT, 0, skeyid, sys_ident); 1045 if (NULL == peer) { 1046 sys_declined++; 1047 return; /* ignore duplicate */ 1048 } 1049 1050 /* 1051 * After each ephemeral pool association is spun, 1052 * accelerate the next poll for the pool solicitor so 1053 * the pool will fill promptly. 1054 */ 1055 if (peer2->cast_flags & MDF_POOL) 1056 peer2->nextdate = current_time + 1; 1057 1058 /* 1059 * Further processing of the solicitation response would 1060 * simply detect its origin timestamp as bogus for the 1061 * brand-new association (it matches the prototype 1062 * association) and tinker with peer->nextdate delaying 1063 * first sync. 1064 */ 1065 return; /* solicitation response handled */ 1066 1067 /* 1068 * This is the first packet received from a broadcast server. If 1069 * the packet is authentic and we are enabled as broadcast 1070 * client, mobilize a broadcast client association. We don't 1071 * kiss any frogs here. 1072 */ 1073 case AM_NEWBCL: 1074 1075 #ifdef AUTOKEY 1076 /* 1077 * Do not respond if not the same group. 1078 */ 1079 if (group_test(groupname, sys_ident)) { 1080 sys_declined++; 1081 return; 1082 } 1083 #endif /* AUTOKEY */ 1084 if (sys_bclient == 0) { 1085 sys_restricted++; 1086 return; /* not enabled */ 1087 } 1088 if (!AUTH(sys_authenticate | (restrict_mask & 1089 (RES_NOPEER | RES_DONTTRUST)), is_authentic)) { 1090 sys_restricted++; 1091 return; /* access denied */ 1092 } 1093 1094 /* 1095 * Do not respond if unsynchronized or stratum is below 1096 * the floor or at or above the ceiling. 1097 */ 1098 if ( hisleap == LEAP_NOTINSYNC 1099 || hisstratum < sys_floor 1100 || hisstratum >= sys_ceiling) { 1101 sys_declined++; 1102 return; /* no help */ 1103 } 1104 1105 #ifdef AUTOKEY 1106 /* 1107 * Do not respond if Autokey and the opcode is not a 1108 * CRYPTO_ASSOC response with association ID. 1109 */ 1110 if ( crypto_flags && skeyid > NTP_MAXKEY 1111 && (opcode & 0xffff0000) != (CRYPTO_ASSOC | CRYPTO_RESP)) { 1112 sys_declined++; 1113 return; /* protocol error */ 1114 } 1115 #endif /* AUTOKEY */ 1116 1117 /* 1118 * Broadcasts received via a multicast address may 1119 * arrive after a unicast volley has begun 1120 * with the same remote address. newpeer() will not 1121 * find duplicate associations on other local endpoints 1122 * if a non-NULL endpoint is supplied. multicastclient 1123 * ephemeral associations are unique across all local 1124 * endpoints. 1125 */ 1126 if (!(INT_MCASTOPEN & rbufp->dstadr->flags)) 1127 match_ep = rbufp->dstadr; 1128 else 1129 match_ep = NULL; 1130 1131 /* 1132 * Determine whether to execute the initial volley. 1133 */ 1134 if (sys_bdelay != 0) { 1135 #ifdef AUTOKEY 1136 /* 1137 * If a two-way exchange is not possible, 1138 * neither is Autokey. 1139 */ 1140 if (crypto_flags && skeyid > NTP_MAXKEY) { 1141 sys_restricted++; 1142 return; /* no autokey */ 1143 } 1144 #endif /* AUTOKEY */ 1145 1146 /* 1147 * Do not execute the volley. Start out in 1148 * broadcast client mode. 1149 */ 1150 peer = newpeer(&rbufp->recv_srcadr, NULL, 1151 match_ep, MODE_BCLIENT, hisversion, 1152 pkt->ppoll, pkt->ppoll, FLAG_PREEMPT, 1153 MDF_BCLNT, 0, skeyid, sys_ident); 1154 if (NULL == peer) { 1155 sys_restricted++; 1156 return; /* ignore duplicate */ 1157 1158 } else { 1159 peer->delay = sys_bdelay; 1160 } 1161 break; 1162 } 1163 1164 /* 1165 * Execute the initial volley in order to calibrate the 1166 * propagation delay and run the Autokey protocol. 1167 * 1168 * Note that the minpoll is taken from the broadcast 1169 * packet, normally 6 (64 s) and that the poll interval 1170 * is fixed at this value. 1171 */ 1172 peer = newpeer(&rbufp->recv_srcadr, NULL, match_ep, 1173 MODE_CLIENT, hisversion, pkt->ppoll, pkt->ppoll, 1174 FLAG_BC_VOL | FLAG_IBURST | FLAG_PREEMPT, MDF_BCLNT, 1175 0, skeyid, sys_ident); 1176 if (NULL == peer) { 1177 sys_restricted++; 1178 return; /* ignore duplicate */ 1179 } 1180 #ifdef AUTOKEY 1181 if (skeyid > NTP_MAXKEY) 1182 crypto_recv(peer, rbufp); 1183 #endif /* AUTOKEY */ 1184 1185 return; /* hooray */ 1186 1187 /* 1188 * This is the first packet received from a symmetric active 1189 * peer. If the packet is authentic and the first he sent, 1190 * mobilize a passive association. If not, kiss the frog. 1191 */ 1192 case AM_NEWPASS: 1193 1194 #ifdef AUTOKEY 1195 /* 1196 * Do not respond if not the same group. 1197 */ 1198 if (group_test(groupname, sys_ident)) { 1199 sys_declined++; 1200 return; 1201 } 1202 #endif /* AUTOKEY */ 1203 if (!AUTH(sys_authenticate | (restrict_mask & 1204 (RES_NOPEER | RES_DONTTRUST)), is_authentic)) { 1205 1206 /* 1207 * If authenticated but cannot mobilize an 1208 * association, send a symmetric passive 1209 * response without mobilizing an association. 1210 * This is for drat broken Windows clients. See 1211 * Microsoft KB 875424 for preferred workaround. 1212 */ 1213 if (AUTH(restrict_mask & RES_DONTTRUST, 1214 is_authentic)) { 1215 fast_xmit(rbufp, MODE_PASSIVE, skeyid, 1216 restrict_mask); 1217 return; /* hooray */ 1218 } 1219 if (is_authentic == AUTH_ERROR) { 1220 fast_xmit(rbufp, MODE_ACTIVE, 0, 1221 restrict_mask); 1222 sys_restricted++; 1223 return; 1224 } 1225 /* [Bug 2941] 1226 * If we got here, the packet isn't part of an 1227 * existing association, it isn't correctly 1228 * authenticated, and it didn't meet either of 1229 * the previous two special cases so we should 1230 * just drop it on the floor. For example, 1231 * crypto-NAKs (is_authentic == AUTH_CRYPTO) 1232 * will make it this far. This is just 1233 * debug-printed and not logged to avoid log 1234 * flooding. 1235 */ 1236 DPRINTF(2, ("receive: at %ld refusing to mobilize passive association" 1237 " with unknown peer %s mode %d/%s:%s keyid %08x len %d auth %d\n", 1238 current_time, stoa(&rbufp->recv_srcadr), 1239 hismode, hm_str, am_str, skeyid, 1240 (authlen + has_mac), is_authentic)); 1241 sys_declined++; 1242 return; 1243 } 1244 1245 /* 1246 * Do not respond if synchronized and if stratum is 1247 * below the floor or at or above the ceiling. Note, 1248 * this allows an unsynchronized peer to synchronize to 1249 * us. It would be very strange if he did and then was 1250 * nipped, but that could only happen if we were 1251 * operating at the top end of the range. It also means 1252 * we will spin an ephemeral association in response to 1253 * MODE_ACTIVE KoDs, which will time out eventually. 1254 */ 1255 if ( hisleap != LEAP_NOTINSYNC 1256 && (hisstratum < sys_floor || hisstratum >= sys_ceiling)) { 1257 sys_declined++; 1258 return; /* no help */ 1259 } 1260 1261 /* 1262 * The message is correctly authenticated and allowed. 1263 * Mobilize a symmetric passive association. 1264 */ 1265 if ((peer = newpeer(&rbufp->recv_srcadr, NULL, 1266 rbufp->dstadr, MODE_PASSIVE, hisversion, pkt->ppoll, 1267 NTP_MAXDPOLL, 0, MDF_UCAST, 0, skeyid, 1268 sys_ident)) == NULL) { 1269 sys_declined++; 1270 return; /* ignore duplicate */ 1271 } 1272 break; 1273 1274 1275 /* 1276 * Process regular packet. Nothing special. 1277 */ 1278 case AM_PROCPKT: 1279 1280 #ifdef AUTOKEY 1281 /* 1282 * Do not respond if not the same group. 1283 */ 1284 if (group_test(groupname, peer->ident)) { 1285 sys_declined++; 1286 return; 1287 } 1288 #endif /* AUTOKEY */ 1289 break; 1290 1291 /* 1292 * A passive packet matches a passive association. This is 1293 * usually the result of reconfiguring a client on the fly. As 1294 * this association might be legitimate and this packet an 1295 * attempt to deny service, just ignore it. 1296 */ 1297 case AM_ERR: 1298 sys_declined++; 1299 return; 1300 1301 /* 1302 * For everything else there is the bit bucket. 1303 */ 1304 default: 1305 sys_declined++; 1306 return; 1307 } 1308 1309 #ifdef AUTOKEY 1310 /* 1311 * If the association is configured for Autokey, the packet must 1312 * have a public key ID; if not, the packet must have a 1313 * symmetric key ID. 1314 */ 1315 if ( is_authentic != AUTH_CRYPTO 1316 && ( ((peer->flags & FLAG_SKEY) && skeyid <= NTP_MAXKEY) 1317 || (!(peer->flags & FLAG_SKEY) && skeyid > NTP_MAXKEY))) { 1318 sys_badauth++; 1319 return; 1320 } 1321 #endif /* AUTOKEY */ 1322 peer->received++; 1323 peer->flash &= ~PKT_TEST_MASK; 1324 if (peer->flags & FLAG_XBOGUS) { 1325 peer->flags &= ~FLAG_XBOGUS; 1326 peer->flash |= TEST3; 1327 } 1328 1329 /* 1330 * Next comes a rigorous schedule of timestamp checking. If the 1331 * transmit timestamp is zero, the server has not initialized in 1332 * interleaved modes or is horribly broken. 1333 */ 1334 if (L_ISZERO(&p_xmt)) { 1335 peer->flash |= TEST3; /* unsynch */ 1336 1337 /* 1338 * If the transmit timestamp duplicates a previous one, the 1339 * packet is a replay. This prevents the bad guys from replaying 1340 * the most recent packet, authenticated or not. 1341 */ 1342 } else if (L_ISEQU(&peer->xmt, &p_xmt)) { 1343 peer->flash |= TEST1; /* duplicate */ 1344 peer->oldpkt++; 1345 return; 1346 1347 /* 1348 * If this is a broadcast mode packet, skip further checking. If 1349 * an initial volley, bail out now and let the client do its 1350 * stuff. If the origin timestamp is nonzero, this is an 1351 * interleaved broadcast. so restart the protocol. 1352 */ 1353 } else if (hismode == MODE_BROADCAST) { 1354 if (!L_ISZERO(&p_org) && !(peer->flags & FLAG_XB)) { 1355 peer->flags |= FLAG_XB; 1356 peer->aorg = p_xmt; 1357 peer->borg = rbufp->recv_time; 1358 report_event(PEVNT_XLEAVE, peer, NULL); 1359 return; 1360 } 1361 1362 /* 1363 * Basic mode checks: 1364 * 1365 * If there is no origin timestamp, it's an initial packet. 1366 * 1367 * Otherwise, check for bogus packet in basic mode. 1368 * If it is bogus, switch to interleaved mode and resynchronize, 1369 * but only after confirming the packet is not bogus in 1370 * symmetric interleaved mode. 1371 * 1372 * This could also mean somebody is forging packets claiming to 1373 * be from us, attempting to cause our server to KoD us. 1374 */ 1375 } else if (peer->flip == 0) { 1376 if (0 < hisstratum && L_ISZERO(&p_org)) { 1377 L_CLR(&peer->aorg); 1378 } else if (!L_ISEQU(&p_org, &peer->aorg)) { 1379 peer->bogusorg++; 1380 peer->flash |= TEST2; /* bogus */ 1381 msyslog(LOG_INFO, 1382 "receive: Unexpected origin timestamp %#010x.%08x from %s xmt %#010x.%08x", 1383 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 1384 ntoa(&peer->srcadr), 1385 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)); 1386 if ( !L_ISZERO(&peer->dst) 1387 && L_ISEQU(&p_org, &peer->dst)) { 1388 /* Might be the start of an interleave */ 1389 peer->flip = 1; 1390 report_event(PEVNT_XLEAVE, peer, NULL); 1391 } 1392 return; /* Bogus or possible interleave packet */ 1393 } else { 1394 L_CLR(&peer->aorg); 1395 } 1396 1397 /* 1398 * Check for valid nonzero timestamp fields. 1399 */ 1400 } else if (L_ISZERO(&p_org) || L_ISZERO(&p_rec) || 1401 L_ISZERO(&peer->dst)) { 1402 peer->flash |= TEST3; /* unsynch */ 1403 1404 /* 1405 * Check for bogus packet in interleaved symmetric mode. This 1406 * can happen if a packet is lost, duplicated or crossed. If 1407 * found, flip and resynchronize. 1408 */ 1409 } else if ( !L_ISZERO(&peer->dst) 1410 && !L_ISEQU(&p_org, &peer->dst)) { 1411 peer->bogusorg++; 1412 peer->flags |= FLAG_XBOGUS; 1413 peer->flash |= TEST2; /* bogus */ 1414 return; /* Bogus packet, we are done */ 1415 } 1416 1417 /* 1418 * If this is a crypto_NAK, the server cannot authenticate a 1419 * client packet. The server might have just changed keys. Clear 1420 * the association and restart the protocol. 1421 */ 1422 if (is_authentic == AUTH_CRYPTO) { 1423 report_event(PEVNT_AUTH, peer, "crypto_NAK"); 1424 peer->flash |= TEST5; /* bad auth */ 1425 peer->badauth++; 1426 if (peer->flags & FLAG_PREEMPT) { 1427 unpeer(peer); 1428 return; 1429 } 1430 #ifdef AUTOKEY 1431 if (peer->crypto) 1432 peer_clear(peer, "AUTH"); 1433 #endif /* AUTOKEY */ 1434 return; 1435 1436 /* 1437 * If the digest fails or it's missing for authenticated 1438 * associations, the client cannot authenticate a server 1439 * reply to a client packet previously sent. The loopback check 1440 * is designed to avoid a bait-and-switch attack, which was 1441 * possible in past versions. If symmetric modes, return a 1442 * crypto-NAK. The peer should restart the protocol. 1443 */ 1444 } else if (!AUTH(peer->keyid || has_mac || 1445 (restrict_mask & RES_DONTTRUST), is_authentic)) { 1446 report_event(PEVNT_AUTH, peer, "digest"); 1447 peer->flash |= TEST5; /* bad auth */ 1448 peer->badauth++; 1449 if ( has_mac 1450 && (hismode == MODE_ACTIVE || hismode == MODE_PASSIVE)) 1451 fast_xmit(rbufp, MODE_ACTIVE, 0, restrict_mask); 1452 if (peer->flags & FLAG_PREEMPT) { 1453 unpeer(peer); 1454 return; 1455 } 1456 #ifdef AUTOKEY 1457 if (peer->crypto) 1458 peer_clear(peer, "AUTH"); 1459 #endif /* AUTOKEY */ 1460 return; 1461 } 1462 1463 /* 1464 * Update the state variables. 1465 */ 1466 if (peer->flip == 0) { 1467 if (hismode != MODE_BROADCAST) 1468 peer->rec = p_xmt; 1469 peer->dst = rbufp->recv_time; 1470 } 1471 peer->xmt = p_xmt; 1472 1473 /* 1474 * Set the peer ppoll to the maximum of the packet ppoll and the 1475 * peer minpoll. If a kiss-o'-death, set the peer minpoll to 1476 * this maximum and advance the headway to give the sender some 1477 * headroom. Very intricate. 1478 */ 1479 1480 /* 1481 * Check for any kiss codes. Note this is only used when a server 1482 * responds to a packet request 1483 */ 1484 1485 kissCode = kiss_code_check(hisleap, hisstratum, hismode, pkt->refid); 1486 1487 /* 1488 * Check to see if this is a RATE Kiss Code 1489 * Currently this kiss code will accept whatever poll 1490 * rate that the server sends 1491 */ 1492 peer->ppoll = max(peer->minpoll, pkt->ppoll); 1493 if (kissCode == RATEKISS) { 1494 peer->selbroken++; /* Increment the KoD count */ 1495 report_event(PEVNT_RATE, peer, NULL); 1496 if (pkt->ppoll > peer->minpoll) 1497 peer->minpoll = peer->ppoll; 1498 peer->burst = peer->retry = 0; 1499 peer->throttle = (NTP_SHIFT + 1) * (1 << peer->minpoll); 1500 poll_update(peer, pkt->ppoll); 1501 return; /* kiss-o'-death */ 1502 } 1503 if (kissCode != NOKISS) { 1504 peer->selbroken++; /* Increment the KoD count */ 1505 return; /* Drop any other kiss code packets */ 1506 } 1507 1508 1509 /* 1510 * That was hard and I am sweaty, but the packet is squeaky 1511 * clean. Get on with real work. 1512 */ 1513 peer->timereceived = current_time; 1514 if (is_authentic == AUTH_OK) 1515 peer->flags |= FLAG_AUTHENTIC; 1516 else 1517 peer->flags &= ~FLAG_AUTHENTIC; 1518 1519 #ifdef AUTOKEY 1520 /* 1521 * More autokey dance. The rules of the cha-cha are as follows: 1522 * 1523 * 1. If there is no key or the key is not auto, do nothing. 1524 * 1525 * 2. If this packet is in response to the one just previously 1526 * sent or from a broadcast server, do the extension fields. 1527 * Otherwise, assume bogosity and bail out. 1528 * 1529 * 3. If an extension field contains a verified signature, it is 1530 * self-authenticated and we sit the dance. 1531 * 1532 * 4. If this is a server reply, check only to see that the 1533 * transmitted key ID matches the received key ID. 1534 * 1535 * 5. Check to see that one or more hashes of the current key ID 1536 * matches the previous key ID or ultimate original key ID 1537 * obtained from the broadcaster or symmetric peer. If no 1538 * match, sit the dance and call for new autokey values. 1539 * 1540 * In case of crypto error, fire the orchestra, stop dancing and 1541 * restart the protocol. 1542 */ 1543 if (peer->flags & FLAG_SKEY) { 1544 /* 1545 * Decrement remaining autokey hashes. This isn't 1546 * perfect if a packet is lost, but results in no harm. 1547 */ 1548 ap = (struct autokey *)peer->recval.ptr; 1549 if (ap != NULL) { 1550 if (ap->seq > 0) 1551 ap->seq--; 1552 } 1553 peer->flash |= TEST8; 1554 rval = crypto_recv(peer, rbufp); 1555 if (rval == XEVNT_OK) { 1556 peer->unreach = 0; 1557 } else { 1558 if (rval == XEVNT_ERR) { 1559 report_event(PEVNT_RESTART, peer, 1560 "crypto error"); 1561 peer_clear(peer, "CRYP"); 1562 peer->flash |= TEST9; /* bad crypt */ 1563 if (peer->flags & FLAG_PREEMPT) 1564 unpeer(peer); 1565 } 1566 return; 1567 } 1568 1569 /* 1570 * If server mode, verify the receive key ID matches 1571 * the transmit key ID. 1572 */ 1573 if (hismode == MODE_SERVER) { 1574 if (skeyid == peer->keyid) 1575 peer->flash &= ~TEST8; 1576 1577 /* 1578 * If an extension field is present, verify only that it 1579 * has been correctly signed. We don't need a sequence 1580 * check here, but the sequence continues. 1581 */ 1582 } else if (!(peer->flash & TEST8)) { 1583 peer->pkeyid = skeyid; 1584 1585 /* 1586 * Now the fun part. Here, skeyid is the current ID in 1587 * the packet, pkeyid is the ID in the last packet and 1588 * tkeyid is the hash of skeyid. If the autokey values 1589 * have not been received, this is an automatic error. 1590 * If so, check that the tkeyid matches pkeyid. If not, 1591 * hash tkeyid and try again. If the number of hashes 1592 * exceeds the number remaining in the sequence, declare 1593 * a successful failure and refresh the autokey values. 1594 */ 1595 } else if (ap != NULL) { 1596 int i; 1597 1598 for (i = 0; ; i++) { 1599 if ( tkeyid == peer->pkeyid 1600 || tkeyid == ap->key) { 1601 peer->flash &= ~TEST8; 1602 peer->pkeyid = skeyid; 1603 ap->seq -= i; 1604 break; 1605 } 1606 if (i > ap->seq) { 1607 peer->crypto &= 1608 ~CRYPTO_FLAG_AUTO; 1609 break; 1610 } 1611 tkeyid = session_key( 1612 &rbufp->recv_srcadr, dstadr_sin, 1613 tkeyid, pkeyid, 0); 1614 } 1615 if (peer->flash & TEST8) 1616 report_event(PEVNT_AUTH, peer, "keylist"); 1617 } 1618 if (!(peer->crypto & CRYPTO_FLAG_PROV)) /* test 9 */ 1619 peer->flash |= TEST8; /* bad autokey */ 1620 1621 /* 1622 * The maximum lifetime of the protocol is about one 1623 * week before restarting the Autokey protocol to 1624 * refresh certificates and leapseconds values. 1625 */ 1626 if (current_time > peer->refresh) { 1627 report_event(PEVNT_RESTART, peer, 1628 "crypto refresh"); 1629 peer_clear(peer, "TIME"); 1630 return; 1631 } 1632 } 1633 #endif /* AUTOKEY */ 1634 1635 /* 1636 * The dance is complete and the flash bits have been lit. Toss 1637 * the packet over the fence for processing, which may light up 1638 * more flashers. 1639 */ 1640 process_packet(peer, pkt, rbufp->recv_length); 1641 1642 /* 1643 * In interleaved mode update the state variables. Also adjust the 1644 * transmit phase to avoid crossover. 1645 */ 1646 if (peer->flip != 0) { 1647 peer->rec = p_rec; 1648 peer->dst = rbufp->recv_time; 1649 if (peer->nextdate - current_time < (1U << min(peer->ppoll, 1650 peer->hpoll)) / 2) 1651 peer->nextdate++; 1652 else 1653 peer->nextdate--; 1654 } 1655 } 1656 1657 1658 /* 1659 * process_packet - Packet Procedure, a la Section 3.4.4 of the 1660 * specification. Or almost, at least. If we're in here we have a 1661 * reasonable expectation that we will be having a long term 1662 * relationship with this host. 1663 */ 1664 void 1665 process_packet( 1666 register struct peer *peer, 1667 register struct pkt *pkt, 1668 u_int len 1669 ) 1670 { 1671 double t34, t21; 1672 double p_offset, p_del, p_disp; 1673 l_fp p_rec, p_xmt, p_org, p_reftime, ci; 1674 u_char pmode, pleap, pversion, pstratum; 1675 char statstr[NTP_MAXSTRLEN]; 1676 #ifdef ASSYM 1677 int itemp; 1678 double etemp, ftemp, td; 1679 #endif /* ASSYM */ 1680 1681 sys_processed++; 1682 peer->processed++; 1683 p_del = FPTOD(NTOHS_FP(pkt->rootdelay)); 1684 p_offset = 0; 1685 p_disp = FPTOD(NTOHS_FP(pkt->rootdisp)); 1686 NTOHL_FP(&pkt->reftime, &p_reftime); 1687 NTOHL_FP(&pkt->org, &p_org); 1688 NTOHL_FP(&pkt->rec, &p_rec); 1689 NTOHL_FP(&pkt->xmt, &p_xmt); 1690 pmode = PKT_MODE(pkt->li_vn_mode); 1691 pleap = PKT_LEAP(pkt->li_vn_mode); 1692 pversion = PKT_VERSION(pkt->li_vn_mode); 1693 pstratum = PKT_TO_STRATUM(pkt->stratum); 1694 1695 /* 1696 * Capture the header values in the client/peer association.. 1697 */ 1698 record_raw_stats(&peer->srcadr, peer->dstadr ? 1699 &peer->dstadr->sin : NULL, 1700 &p_org, &p_rec, &p_xmt, &peer->dst, 1701 pleap, pversion, pmode, pstratum, pkt->ppoll, pkt->precision, 1702 p_del, p_disp, pkt->refid); 1703 peer->leap = pleap; 1704 peer->stratum = min(pstratum, STRATUM_UNSPEC); 1705 peer->pmode = pmode; 1706 peer->precision = pkt->precision; 1707 peer->rootdelay = p_del; 1708 peer->rootdisp = p_disp; 1709 peer->refid = pkt->refid; /* network byte order */ 1710 peer->reftime = p_reftime; 1711 1712 /* 1713 * First, if either burst mode is armed, enable the burst. 1714 * Compute the headway for the next packet and delay if 1715 * necessary to avoid exceeding the threshold. 1716 */ 1717 if (peer->retry > 0) { 1718 peer->retry = 0; 1719 if (peer->reach) 1720 peer->burst = min(1 << (peer->hpoll - 1721 peer->minpoll), NTP_SHIFT) - 1; 1722 else 1723 peer->burst = NTP_IBURST - 1; 1724 if (peer->burst > 0) 1725 peer->nextdate = current_time; 1726 } 1727 poll_update(peer, peer->hpoll); 1728 1729 /* 1730 * Verify the server is synchronized; that is, the leap bits, 1731 * stratum and root distance are valid. 1732 */ 1733 if ( pleap == LEAP_NOTINSYNC /* test 6 */ 1734 || pstratum < sys_floor || pstratum >= sys_ceiling) 1735 peer->flash |= TEST6; /* bad synch or strat */ 1736 if (p_del / 2 + p_disp >= MAXDISPERSE) /* test 7 */ 1737 peer->flash |= TEST7; /* bad header */ 1738 1739 /* 1740 * If any tests fail at this point, the packet is discarded. 1741 * Note that some flashers may have already been set in the 1742 * receive() routine. 1743 */ 1744 if (peer->flash & PKT_TEST_MASK) { 1745 peer->seldisptoolarge++; 1746 DPRINTF(1, ("packet: flash header %04x\n", 1747 peer->flash)); 1748 return; 1749 } 1750 1751 /* 1752 * If the peer was previously unreachable, raise a trap. In any 1753 * case, mark it reachable. 1754 */ 1755 if (!peer->reach) { 1756 report_event(PEVNT_REACH, peer, NULL); 1757 peer->timereachable = current_time; 1758 } 1759 peer->reach |= 1; 1760 1761 /* 1762 * For a client/server association, calculate the clock offset, 1763 * roundtrip delay and dispersion. The equations are reordered 1764 * from the spec for more efficient use of temporaries. For a 1765 * broadcast association, offset the last measurement by the 1766 * computed delay during the client/server volley. Note the 1767 * computation of dispersion includes the system precision plus 1768 * that due to the frequency error since the origin time. 1769 * 1770 * It is very important to respect the hazards of overflow. The 1771 * only permitted operation on raw timestamps is subtraction, 1772 * where the result is a signed quantity spanning from 68 years 1773 * in the past to 68 years in the future. To avoid loss of 1774 * precision, these calculations are done using 64-bit integer 1775 * arithmetic. However, the offset and delay calculations are 1776 * sums and differences of these first-order differences, which 1777 * if done using 64-bit integer arithmetic, would be valid over 1778 * only half that span. Since the typical first-order 1779 * differences are usually very small, they are converted to 64- 1780 * bit doubles and all remaining calculations done in floating- 1781 * double arithmetic. This preserves the accuracy while 1782 * retaining the 68-year span. 1783 * 1784 * There are three interleaving schemes, basic, interleaved 1785 * symmetric and interleaved broadcast. The timestamps are 1786 * idioscyncratically different. See the onwire briefing/white 1787 * paper at www.eecis.udel.edu/~mills for details. 1788 * 1789 * Interleaved symmetric mode 1790 * t1 = peer->aorg/borg, t2 = peer->rec, t3 = p_xmt, 1791 * t4 = peer->dst 1792 */ 1793 if (peer->flip != 0) { 1794 ci = p_xmt; /* t3 - t4 */ 1795 L_SUB(&ci, &peer->dst); 1796 LFPTOD(&ci, t34); 1797 ci = p_rec; /* t2 - t1 */ 1798 if (peer->flip > 0) 1799 L_SUB(&ci, &peer->borg); 1800 else 1801 L_SUB(&ci, &peer->aorg); 1802 LFPTOD(&ci, t21); 1803 p_del = t21 - t34; 1804 p_offset = (t21 + t34) / 2.; 1805 if (p_del < 0 || p_del > 1.) { 1806 snprintf(statstr, sizeof(statstr), 1807 "t21 %.6f t34 %.6f", t21, t34); 1808 report_event(PEVNT_XERR, peer, statstr); 1809 return; 1810 } 1811 1812 /* 1813 * Broadcast modes 1814 */ 1815 } else if (peer->pmode == MODE_BROADCAST) { 1816 1817 /* 1818 * Interleaved broadcast mode. Use interleaved timestamps. 1819 * t1 = peer->borg, t2 = p_org, t3 = p_org, t4 = aorg 1820 */ 1821 if (peer->flags & FLAG_XB) { 1822 ci = p_org; /* delay */ 1823 L_SUB(&ci, &peer->aorg); 1824 LFPTOD(&ci, t34); 1825 ci = p_org; /* t2 - t1 */ 1826 L_SUB(&ci, &peer->borg); 1827 LFPTOD(&ci, t21); 1828 peer->aorg = p_xmt; 1829 peer->borg = peer->dst; 1830 if (t34 < 0 || t34 > 1.) { 1831 snprintf(statstr, sizeof(statstr), 1832 "offset %.6f delay %.6f", t21, t34); 1833 report_event(PEVNT_XERR, peer, statstr); 1834 return; 1835 } 1836 p_offset = t21; 1837 peer->xleave = t34; 1838 1839 /* 1840 * Basic broadcast - use direct timestamps. 1841 * t3 = p_xmt, t4 = peer->dst 1842 */ 1843 } else { 1844 ci = p_xmt; /* t3 - t4 */ 1845 L_SUB(&ci, &peer->dst); 1846 LFPTOD(&ci, t34); 1847 p_offset = t34; 1848 } 1849 1850 /* 1851 * When calibration is complete and the clock is 1852 * synchronized, the bias is calculated as the difference 1853 * between the unicast timestamp and the broadcast 1854 * timestamp. This works for both basic and interleaved 1855 * modes. 1856 */ 1857 if (FLAG_BC_VOL & peer->flags) { 1858 peer->flags &= ~FLAG_BC_VOL; 1859 peer->delay = fabs(peer->offset - p_offset) * 2; 1860 } 1861 p_del = peer->delay; 1862 p_offset += p_del / 2; 1863 1864 1865 /* 1866 * Basic mode, otherwise known as the old fashioned way. 1867 * 1868 * t1 = p_org, t2 = p_rec, t3 = p_xmt, t4 = peer->dst 1869 */ 1870 } else { 1871 ci = p_xmt; /* t3 - t4 */ 1872 L_SUB(&ci, &peer->dst); 1873 LFPTOD(&ci, t34); 1874 ci = p_rec; /* t2 - t1 */ 1875 L_SUB(&ci, &p_org); 1876 LFPTOD(&ci, t21); 1877 p_del = fabs(t21 - t34); 1878 p_offset = (t21 + t34) / 2.; 1879 } 1880 p_del = max(p_del, LOGTOD(sys_precision)); 1881 p_disp = LOGTOD(sys_precision) + LOGTOD(peer->precision) + 1882 clock_phi * p_del; 1883 1884 #if ASSYM 1885 /* 1886 * This code calculates the outbound and inbound data rates by 1887 * measuring the differences between timestamps at different 1888 * packet lengths. This is helpful in cases of large asymmetric 1889 * delays commonly experienced on deep space communication 1890 * links. 1891 */ 1892 if (peer->t21_last > 0 && peer->t34_bytes > 0) { 1893 itemp = peer->t21_bytes - peer->t21_last; 1894 if (itemp > 25) { 1895 etemp = t21 - peer->t21; 1896 if (fabs(etemp) > 1e-6) { 1897 ftemp = itemp / etemp; 1898 if (ftemp > 1000.) 1899 peer->r21 = ftemp; 1900 } 1901 } 1902 itemp = len - peer->t34_bytes; 1903 if (itemp > 25) { 1904 etemp = -t34 - peer->t34; 1905 if (fabs(etemp) > 1e-6) { 1906 ftemp = itemp / etemp; 1907 if (ftemp > 1000.) 1908 peer->r34 = ftemp; 1909 } 1910 } 1911 } 1912 1913 /* 1914 * The following section compensates for different data rates on 1915 * the outbound (d21) and inbound (t34) directions. To do this, 1916 * it finds t such that r21 * t - r34 * (d - t) = 0, where d is 1917 * the roundtrip delay. Then it calculates the correction as a 1918 * fraction of d. 1919 */ 1920 peer->t21 = t21; 1921 peer->t21_last = peer->t21_bytes; 1922 peer->t34 = -t34; 1923 peer->t34_bytes = len; 1924 DPRINTF(2, ("packet: t21 %.9lf %d t34 %.9lf %d\n", peer->t21, 1925 peer->t21_bytes, peer->t34, peer->t34_bytes)); 1926 if (peer->r21 > 0 && peer->r34 > 0 && p_del > 0) { 1927 if (peer->pmode != MODE_BROADCAST) 1928 td = (peer->r34 / (peer->r21 + peer->r34) - 1929 .5) * p_del; 1930 else 1931 td = 0; 1932 1933 /* 1934 * Unfortunately, in many cases the errors are 1935 * unacceptable, so for the present the rates are not 1936 * used. In future, we might find conditions where the 1937 * calculations are useful, so this should be considered 1938 * a work in progress. 1939 */ 1940 t21 -= td; 1941 t34 -= td; 1942 DPRINTF(2, ("packet: del %.6lf r21 %.1lf r34 %.1lf %.6lf\n", 1943 p_del, peer->r21 / 1e3, peer->r34 / 1e3, 1944 td)); 1945 } 1946 #endif /* ASSYM */ 1947 1948 /* 1949 * That was awesome. Now hand off to the clock filter. 1950 */ 1951 clock_filter(peer, p_offset + peer->bias, p_del, p_disp); 1952 1953 /* 1954 * If we are in broadcast calibrate mode, return to broadcast 1955 * client mode when the client is fit and the autokey dance is 1956 * complete. 1957 */ 1958 if ( (FLAG_BC_VOL & peer->flags) 1959 && MODE_CLIENT == peer->hmode 1960 && !(TEST11 & peer_unfit(peer))) { /* distance exceeded */ 1961 #ifdef AUTOKEY 1962 if (peer->flags & FLAG_SKEY) { 1963 if (!(~peer->crypto & CRYPTO_FLAG_ALL)) 1964 peer->hmode = MODE_BCLIENT; 1965 } else { 1966 peer->hmode = MODE_BCLIENT; 1967 } 1968 #else /* !AUTOKEY follows */ 1969 peer->hmode = MODE_BCLIENT; 1970 #endif /* !AUTOKEY */ 1971 } 1972 } 1973 1974 1975 /* 1976 * clock_update - Called at system process update intervals. 1977 */ 1978 static void 1979 clock_update( 1980 struct peer *peer /* peer structure pointer */ 1981 ) 1982 { 1983 double dtemp; 1984 l_fp now; 1985 #ifdef HAVE_LIBSCF_H 1986 char *fmri; 1987 #endif /* HAVE_LIBSCF_H */ 1988 1989 /* 1990 * Update the system state variables. We do this very carefully, 1991 * as the poll interval might need to be clamped differently. 1992 */ 1993 sys_peer = peer; 1994 sys_epoch = peer->epoch; 1995 if (sys_poll < peer->minpoll) 1996 sys_poll = peer->minpoll; 1997 if (sys_poll > peer->maxpoll) 1998 sys_poll = peer->maxpoll; 1999 poll_update(peer, sys_poll); 2000 sys_stratum = min(peer->stratum + 1, STRATUM_UNSPEC); 2001 if ( peer->stratum == STRATUM_REFCLOCK 2002 || peer->stratum == STRATUM_UNSPEC) 2003 sys_refid = peer->refid; 2004 else 2005 sys_refid = addr2refid(&peer->srcadr); 2006 /* 2007 * Root Dispersion (E) is defined (in RFC 5905) as: 2008 * 2009 * E = p.epsilon_r + p.epsilon + p.psi + PHI*(s.t - p.t) + |THETA| 2010 * 2011 * where: 2012 * p.epsilon_r is the PollProc's root dispersion 2013 * p.epsilon is the PollProc's dispersion 2014 * p.psi is the PollProc's jitter 2015 * THETA is the combined offset 2016 * 2017 * NB: Think Hard about where these numbers come from and 2018 * what they mean. When did peer->update happen? Has anything 2019 * interesting happened since then? What values are the most 2020 * defensible? Why? 2021 * 2022 * DLM thinks this equation is probably the best of all worse choices. 2023 */ 2024 dtemp = peer->rootdisp 2025 + peer->disp 2026 + sys_jitter 2027 + clock_phi * (current_time - peer->update) 2028 + fabs(sys_offset); 2029 2030 if (dtemp > sys_mindisp) 2031 sys_rootdisp = dtemp; 2032 else 2033 sys_rootdisp = sys_mindisp; 2034 sys_rootdelay = peer->delay + peer->rootdelay; 2035 sys_reftime = peer->dst; 2036 2037 DPRINTF(1, ("clock_update: at %lu sample %lu associd %d\n", 2038 current_time, peer->epoch, peer->associd)); 2039 2040 /* 2041 * Comes now the moment of truth. Crank the clock discipline and 2042 * see what comes out. 2043 */ 2044 switch (local_clock(peer, sys_offset)) { 2045 2046 /* 2047 * Clock exceeds panic threshold. Life as we know it ends. 2048 */ 2049 case -1: 2050 #ifdef HAVE_LIBSCF_H 2051 /* 2052 * For Solaris enter the maintenance mode. 2053 */ 2054 if ((fmri = getenv("SMF_FMRI")) != NULL) { 2055 if (smf_maintain_instance(fmri, 0) < 0) { 2056 printf("smf_maintain_instance: %s\n", 2057 scf_strerror(scf_error())); 2058 exit(1); 2059 } 2060 /* 2061 * Sleep until SMF kills us. 2062 */ 2063 for (;;) 2064 pause(); 2065 } 2066 #endif /* HAVE_LIBSCF_H */ 2067 exit (-1); 2068 /* not reached */ 2069 2070 /* 2071 * Clock was stepped. Flush all time values of all peers. 2072 */ 2073 case 2: 2074 clear_all(); 2075 set_sys_leap(LEAP_NOTINSYNC); 2076 sys_stratum = STRATUM_UNSPEC; 2077 memcpy(&sys_refid, "STEP", 4); 2078 sys_rootdelay = 0; 2079 sys_rootdisp = 0; 2080 L_CLR(&sys_reftime); 2081 sys_jitter = LOGTOD(sys_precision); 2082 leapsec_reset_frame(); 2083 break; 2084 2085 /* 2086 * Clock was slewed. Handle the leapsecond stuff. 2087 */ 2088 case 1: 2089 2090 /* 2091 * If this is the first time the clock is set, reset the 2092 * leap bits. If crypto, the timer will goose the setup 2093 * process. 2094 */ 2095 if (sys_leap == LEAP_NOTINSYNC) { 2096 set_sys_leap(LEAP_NOWARNING); 2097 #ifdef AUTOKEY 2098 if (crypto_flags) 2099 crypto_update(); 2100 #endif /* AUTOKEY */ 2101 /* 2102 * If our parent process is waiting for the 2103 * first clock sync, send them home satisfied. 2104 */ 2105 #ifdef HAVE_WORKING_FORK 2106 if (waitsync_fd_to_close != -1) { 2107 close(waitsync_fd_to_close); 2108 waitsync_fd_to_close = -1; 2109 DPRINTF(1, ("notified parent --wait-sync is done\n")); 2110 } 2111 #endif /* HAVE_WORKING_FORK */ 2112 2113 } 2114 2115 /* 2116 * If there is no leap second pending and the number of 2117 * survivor leap bits is greater than half the number of 2118 * survivors, try to schedule a leap for the end of the 2119 * current month. (This only works if no leap second for 2120 * that range is in the table, so doing this more than 2121 * once is mostly harmless.) 2122 */ 2123 if (leapsec == LSPROX_NOWARN) { 2124 if ( leap_vote_ins > leap_vote_del 2125 && leap_vote_ins > sys_survivors / 2) { 2126 get_systime(&now); 2127 leapsec_add_dyn(TRUE, now.l_ui, NULL); 2128 } 2129 if ( leap_vote_del > leap_vote_ins 2130 && leap_vote_del > sys_survivors / 2) { 2131 get_systime(&now); 2132 leapsec_add_dyn(FALSE, now.l_ui, NULL); 2133 } 2134 } 2135 break; 2136 2137 /* 2138 * Popcorn spike or step threshold exceeded. Pretend it never 2139 * happened. 2140 */ 2141 default: 2142 break; 2143 } 2144 } 2145 2146 2147 /* 2148 * poll_update - update peer poll interval 2149 */ 2150 void 2151 poll_update( 2152 struct peer *peer, /* peer structure pointer */ 2153 u_char mpoll 2154 ) 2155 { 2156 u_long next, utemp; 2157 u_char hpoll; 2158 2159 /* 2160 * This routine figures out when the next poll should be sent. 2161 * That turns out to be wickedly complicated. One problem is 2162 * that sometimes the time for the next poll is in the past when 2163 * the poll interval is reduced. We watch out for races here 2164 * between the receive process and the poll process. 2165 * 2166 * Clamp the poll interval between minpoll and maxpoll. 2167 */ 2168 hpoll = max(min(peer->maxpoll, mpoll), peer->minpoll); 2169 2170 #ifdef AUTOKEY 2171 /* 2172 * If during the crypto protocol the poll interval has changed, 2173 * the lifetimes in the key list are probably bogus. Purge the 2174 * the key list and regenerate it later. 2175 */ 2176 if ((peer->flags & FLAG_SKEY) && hpoll != peer->hpoll) 2177 key_expire(peer); 2178 #endif /* AUTOKEY */ 2179 peer->hpoll = hpoll; 2180 2181 /* 2182 * There are three variables important for poll scheduling, the 2183 * current time (current_time), next scheduled time (nextdate) 2184 * and the earliest time (utemp). The earliest time is 2 s 2185 * seconds, but could be more due to rate management. When 2186 * sending in a burst, use the earliest time. When not in a 2187 * burst but with a reply pending, send at the earliest time 2188 * unless the next scheduled time has not advanced. This can 2189 * only happen if multiple replies are pending in the same 2190 * response interval. Otherwise, send at the later of the next 2191 * scheduled time and the earliest time. 2192 * 2193 * Now we figure out if there is an override. If a burst is in 2194 * progress and we get called from the receive process, just 2195 * slink away. If called from the poll process, delay 1 s for a 2196 * reference clock, otherwise 2 s. 2197 */ 2198 utemp = current_time + max(peer->throttle - (NTP_SHIFT - 1) * 2199 (1 << peer->minpoll), ntp_minpkt); 2200 if (peer->burst > 0) { 2201 if (peer->nextdate > current_time) 2202 return; 2203 #ifdef REFCLOCK 2204 else if (peer->flags & FLAG_REFCLOCK) 2205 peer->nextdate = current_time + RESP_DELAY; 2206 #endif /* REFCLOCK */ 2207 else 2208 peer->nextdate = utemp; 2209 2210 #ifdef AUTOKEY 2211 /* 2212 * If a burst is not in progress and a crypto response message 2213 * is pending, delay 2 s, but only if this is a new interval. 2214 */ 2215 } else if (peer->cmmd != NULL) { 2216 if (peer->nextdate > current_time) { 2217 if (peer->nextdate + ntp_minpkt != utemp) 2218 peer->nextdate = utemp; 2219 } else { 2220 peer->nextdate = utemp; 2221 } 2222 #endif /* AUTOKEY */ 2223 2224 /* 2225 * The ordinary case. If a retry, use minpoll; if unreachable, 2226 * use host poll; otherwise, use the minimum of host and peer 2227 * polls; In other words, oversampling is okay but 2228 * understampling is evil. Use the maximum of this value and the 2229 * headway. If the average headway is greater than the headway 2230 * threshold, increase the headway by the minimum interval. 2231 */ 2232 } else { 2233 if (peer->retry > 0) 2234 hpoll = peer->minpoll; 2235 else if (!(peer->reach)) 2236 hpoll = peer->hpoll; 2237 else 2238 hpoll = min(peer->ppoll, peer->hpoll); 2239 #ifdef REFCLOCK 2240 if (peer->flags & FLAG_REFCLOCK) 2241 next = 1 << hpoll; 2242 else 2243 #endif /* REFCLOCK */ 2244 next = ((0x1000UL | (ntp_random() & 0x0ff)) << 2245 hpoll) >> 12; 2246 next += peer->outdate; 2247 if (next > utemp) 2248 peer->nextdate = next; 2249 else 2250 peer->nextdate = utemp; 2251 if (peer->throttle > (1 << peer->minpoll)) 2252 peer->nextdate += ntp_minpkt; 2253 } 2254 DPRINTF(2, ("poll_update: at %lu %s poll %d burst %d retry %d head %d early %lu next %lu\n", 2255 current_time, ntoa(&peer->srcadr), peer->hpoll, 2256 peer->burst, peer->retry, peer->throttle, 2257 utemp - current_time, peer->nextdate - 2258 current_time)); 2259 } 2260 2261 2262 /* 2263 * peer_clear - clear peer filter registers. See Section 3.4.8 of the 2264 * spec. 2265 */ 2266 void 2267 peer_clear( 2268 struct peer *peer, /* peer structure */ 2269 const char *ident /* tally lights */ 2270 ) 2271 { 2272 u_char u; 2273 2274 #ifdef AUTOKEY 2275 /* 2276 * If cryptographic credentials have been acquired, toss them to 2277 * Valhalla. Note that autokeys are ephemeral, in that they are 2278 * tossed immediately upon use. Therefore, the keylist can be 2279 * purged anytime without needing to preserve random keys. Note 2280 * that, if the peer is purged, the cryptographic variables are 2281 * purged, too. This makes it much harder to sneak in some 2282 * unauthenticated data in the clock filter. 2283 */ 2284 key_expire(peer); 2285 if (peer->iffval != NULL) 2286 BN_free(peer->iffval); 2287 value_free(&peer->cookval); 2288 value_free(&peer->recval); 2289 value_free(&peer->encrypt); 2290 value_free(&peer->sndval); 2291 if (peer->cmmd != NULL) 2292 free(peer->cmmd); 2293 if (peer->subject != NULL) 2294 free(peer->subject); 2295 if (peer->issuer != NULL) 2296 free(peer->issuer); 2297 #endif /* AUTOKEY */ 2298 2299 /* 2300 * Clear all values, including the optional crypto values above. 2301 */ 2302 memset(CLEAR_TO_ZERO(peer), 0, LEN_CLEAR_TO_ZERO(peer)); 2303 peer->ppoll = peer->maxpoll; 2304 peer->hpoll = peer->minpoll; 2305 peer->disp = MAXDISPERSE; 2306 peer->flash = peer_unfit(peer); 2307 peer->jitter = LOGTOD(sys_precision); 2308 2309 /* 2310 * If interleave mode, initialize the alternate origin switch. 2311 */ 2312 if (peer->flags & FLAG_XLEAVE) 2313 peer->flip = 1; 2314 for (u = 0; u < NTP_SHIFT; u++) { 2315 peer->filter_order[u] = u; 2316 peer->filter_disp[u] = MAXDISPERSE; 2317 } 2318 #ifdef REFCLOCK 2319 if (!(peer->flags & FLAG_REFCLOCK)) { 2320 #endif 2321 peer->leap = LEAP_NOTINSYNC; 2322 peer->stratum = STRATUM_UNSPEC; 2323 memcpy(&peer->refid, ident, 4); 2324 #ifdef REFCLOCK 2325 } 2326 #endif 2327 2328 /* 2329 * During initialization use the association count to spread out 2330 * the polls at one-second intervals. Passive associations' 2331 * first poll is delayed by the "discard minimum" to avoid rate 2332 * limiting. Other post-startup new or cleared associations 2333 * randomize the first poll over the minimum poll interval to 2334 * avoid implosion. 2335 */ 2336 peer->nextdate = peer->update = peer->outdate = current_time; 2337 if (initializing) { 2338 peer->nextdate += peer_associations; 2339 } else if (MODE_PASSIVE == peer->hmode) { 2340 peer->nextdate += ntp_minpkt; 2341 } else { 2342 peer->nextdate += ntp_random() % peer->minpoll; 2343 } 2344 #ifdef AUTOKEY 2345 peer->refresh = current_time + (1 << NTP_REFRESH); 2346 #endif /* AUTOKEY */ 2347 DPRINTF(1, ("peer_clear: at %ld next %ld associd %d refid %s\n", 2348 current_time, peer->nextdate, peer->associd, 2349 ident)); 2350 } 2351 2352 2353 /* 2354 * clock_filter - add incoming clock sample to filter register and run 2355 * the filter procedure to find the best sample. 2356 */ 2357 void 2358 clock_filter( 2359 struct peer *peer, /* peer structure pointer */ 2360 double sample_offset, /* clock offset */ 2361 double sample_delay, /* roundtrip delay */ 2362 double sample_disp /* dispersion */ 2363 ) 2364 { 2365 double dst[NTP_SHIFT]; /* distance vector */ 2366 int ord[NTP_SHIFT]; /* index vector */ 2367 int i, j, k, m; 2368 double dtemp, etemp; 2369 char tbuf[80]; 2370 2371 /* 2372 * A sample consists of the offset, delay, dispersion and epoch 2373 * of arrival. The offset and delay are determined by the on- 2374 * wire protocol. The dispersion grows from the last outbound 2375 * packet to the arrival of this one increased by the sum of the 2376 * peer precision and the system precision as required by the 2377 * error budget. First, shift the new arrival into the shift 2378 * register discarding the oldest one. 2379 */ 2380 j = peer->filter_nextpt; 2381 peer->filter_offset[j] = sample_offset; 2382 peer->filter_delay[j] = sample_delay; 2383 peer->filter_disp[j] = sample_disp; 2384 peer->filter_epoch[j] = current_time; 2385 j = (j + 1) % NTP_SHIFT; 2386 peer->filter_nextpt = j; 2387 2388 /* 2389 * Update dispersions since the last update and at the same 2390 * time initialize the distance and index lists. Since samples 2391 * become increasingly uncorrelated beyond the Allan intercept, 2392 * only under exceptional cases will an older sample be used. 2393 * Therefore, the distance list uses a compound metric. If the 2394 * dispersion is greater than the maximum dispersion, clamp the 2395 * distance at that value. If the time since the last update is 2396 * less than the Allan intercept use the delay; otherwise, use 2397 * the sum of the delay and dispersion. 2398 */ 2399 dtemp = clock_phi * (current_time - peer->update); 2400 peer->update = current_time; 2401 for (i = NTP_SHIFT - 1; i >= 0; i--) { 2402 if (i != 0) 2403 peer->filter_disp[j] += dtemp; 2404 if (peer->filter_disp[j] >= MAXDISPERSE) { 2405 peer->filter_disp[j] = MAXDISPERSE; 2406 dst[i] = MAXDISPERSE; 2407 } else if (peer->update - peer->filter_epoch[j] > 2408 (u_long)ULOGTOD(allan_xpt)) { 2409 dst[i] = peer->filter_delay[j] + 2410 peer->filter_disp[j]; 2411 } else { 2412 dst[i] = peer->filter_delay[j]; 2413 } 2414 ord[i] = j; 2415 j = (j + 1) % NTP_SHIFT; 2416 } 2417 2418 /* 2419 * If the clock has stabilized, sort the samples by distance. 2420 */ 2421 if (freq_cnt == 0) { 2422 for (i = 1; i < NTP_SHIFT; i++) { 2423 for (j = 0; j < i; j++) { 2424 if (dst[j] > dst[i]) { 2425 k = ord[j]; 2426 ord[j] = ord[i]; 2427 ord[i] = k; 2428 etemp = dst[j]; 2429 dst[j] = dst[i]; 2430 dst[i] = etemp; 2431 } 2432 } 2433 } 2434 } 2435 2436 /* 2437 * Copy the index list to the association structure so ntpq 2438 * can see it later. Prune the distance list to leave only 2439 * samples less than the maximum dispersion, which disfavors 2440 * uncorrelated samples older than the Allan intercept. To 2441 * further improve the jitter estimate, of the remainder leave 2442 * only samples less than the maximum distance, but keep at 2443 * least two samples for jitter calculation. 2444 */ 2445 m = 0; 2446 for (i = 0; i < NTP_SHIFT; i++) { 2447 peer->filter_order[i] = (u_char) ord[i]; 2448 if ( dst[i] >= MAXDISPERSE 2449 || (m >= 2 && dst[i] >= sys_maxdist)) 2450 continue; 2451 m++; 2452 } 2453 2454 /* 2455 * Compute the dispersion and jitter. The dispersion is weighted 2456 * exponentially by NTP_FWEIGHT (0.5) so it is normalized close 2457 * to 1.0. The jitter is the RMS differences relative to the 2458 * lowest delay sample. 2459 */ 2460 peer->disp = peer->jitter = 0; 2461 k = ord[0]; 2462 for (i = NTP_SHIFT - 1; i >= 0; i--) { 2463 j = ord[i]; 2464 peer->disp = NTP_FWEIGHT * (peer->disp + 2465 peer->filter_disp[j]); 2466 if (i < m) 2467 peer->jitter += DIFF(peer->filter_offset[j], 2468 peer->filter_offset[k]); 2469 } 2470 2471 /* 2472 * If no acceptable samples remain in the shift register, 2473 * quietly tiptoe home leaving only the dispersion. Otherwise, 2474 * save the offset, delay and jitter. Note the jitter must not 2475 * be less than the precision. 2476 */ 2477 if (m == 0) { 2478 clock_select(); 2479 return; 2480 } 2481 etemp = fabs(peer->offset - peer->filter_offset[k]); 2482 peer->offset = peer->filter_offset[k]; 2483 peer->delay = peer->filter_delay[k]; 2484 if (m > 1) 2485 peer->jitter /= m - 1; 2486 peer->jitter = max(SQRT(peer->jitter), LOGTOD(sys_precision)); 2487 2488 /* 2489 * If the the new sample and the current sample are both valid 2490 * and the difference between their offsets exceeds CLOCK_SGATE 2491 * (3) times the jitter and the interval between them is less 2492 * than twice the host poll interval, consider the new sample 2493 * a popcorn spike and ignore it. 2494 */ 2495 if ( peer->disp < sys_maxdist 2496 && peer->filter_disp[k] < sys_maxdist 2497 && etemp > CLOCK_SGATE * peer->jitter 2498 && peer->filter_epoch[k] - peer->epoch 2499 < 2. * ULOGTOD(peer->hpoll)) { 2500 snprintf(tbuf, sizeof(tbuf), "%.6f s", etemp); 2501 report_event(PEVNT_POPCORN, peer, tbuf); 2502 return; 2503 } 2504 2505 /* 2506 * A new minimum sample is useful only if it is later than the 2507 * last one used. In this design the maximum lifetime of any 2508 * sample is not greater than eight times the poll interval, so 2509 * the maximum interval between minimum samples is eight 2510 * packets. 2511 */ 2512 if (peer->filter_epoch[k] <= peer->epoch) { 2513 DPRINTF(2, ("clock_filter: old sample %lu\n", current_time - 2514 peer->filter_epoch[k])); 2515 return; 2516 } 2517 peer->epoch = peer->filter_epoch[k]; 2518 2519 /* 2520 * The mitigated sample statistics are saved for later 2521 * processing. If not synchronized or not in a burst, tickle the 2522 * clock select algorithm. 2523 */ 2524 record_peer_stats(&peer->srcadr, ctlpeerstatus(peer), 2525 peer->offset, peer->delay, peer->disp, peer->jitter); 2526 DPRINTF(1, ("clock_filter: n %d off %.6f del %.6f dsp %.6f jit %.6f\n", 2527 m, peer->offset, peer->delay, peer->disp, 2528 peer->jitter)); 2529 if (peer->burst == 0 || sys_leap == LEAP_NOTINSYNC) 2530 clock_select(); 2531 } 2532 2533 2534 /* 2535 * clock_select - find the pick-of-the-litter clock 2536 * 2537 * LOCKCLOCK: (1) If the local clock is the prefer peer, it will always 2538 * be enabled, even if declared falseticker, (2) only the prefer peer 2539 * can be selected as the system peer, (3) if the external source is 2540 * down, the system leap bits are set to 11 and the stratum set to 2541 * infinity. 2542 */ 2543 void 2544 clock_select(void) 2545 { 2546 struct peer *peer; 2547 int i, j, k, n; 2548 int nlist, nl2; 2549 int allow; 2550 int speer; 2551 double d, e, f, g; 2552 double high, low; 2553 double speermet; 2554 double orphmet = 2.0 * U_INT32_MAX; /* 2x is greater than */ 2555 struct endpoint endp; 2556 struct peer *osys_peer; 2557 struct peer *sys_prefer = NULL; /* prefer peer */ 2558 struct peer *typesystem = NULL; 2559 struct peer *typeorphan = NULL; 2560 #ifdef REFCLOCK 2561 struct peer *typeacts = NULL; 2562 struct peer *typelocal = NULL; 2563 struct peer *typepps = NULL; 2564 #endif /* REFCLOCK */ 2565 static struct endpoint *endpoint = NULL; 2566 static int *indx = NULL; 2567 static peer_select *peers = NULL; 2568 static u_int endpoint_size = 0; 2569 static u_int peers_size = 0; 2570 static u_int indx_size = 0; 2571 size_t octets; 2572 2573 /* 2574 * Initialize and create endpoint, index and peer lists big 2575 * enough to handle all associations. 2576 */ 2577 osys_peer = sys_peer; 2578 sys_survivors = 0; 2579 #ifdef LOCKCLOCK 2580 set_sys_leap(LEAP_NOTINSYNC); 2581 sys_stratum = STRATUM_UNSPEC; 2582 memcpy(&sys_refid, "DOWN", 4); 2583 #endif /* LOCKCLOCK */ 2584 2585 /* 2586 * Allocate dynamic space depending on the number of 2587 * associations. 2588 */ 2589 nlist = 1; 2590 for (peer = peer_list; peer != NULL; peer = peer->p_link) 2591 nlist++; 2592 endpoint_size = ALIGNED_SIZE(nlist * 2 * sizeof(*endpoint)); 2593 peers_size = ALIGNED_SIZE(nlist * sizeof(*peers)); 2594 indx_size = ALIGNED_SIZE(nlist * 2 * sizeof(*indx)); 2595 octets = endpoint_size + peers_size + indx_size; 2596 endpoint = erealloc(endpoint, octets); 2597 peers = INC_ALIGNED_PTR(endpoint, endpoint_size); 2598 indx = INC_ALIGNED_PTR(peers, peers_size); 2599 2600 /* 2601 * Initially, we populate the island with all the rifraff peers 2602 * that happen to be lying around. Those with seriously 2603 * defective clocks are immediately booted off the island. Then, 2604 * the falsetickers are culled and put to sea. The truechimers 2605 * remaining are subject to repeated rounds where the most 2606 * unpopular at each round is kicked off. When the population 2607 * has dwindled to sys_minclock, the survivors split a million 2608 * bucks and collectively crank the chimes. 2609 */ 2610 nlist = nl2 = 0; /* none yet */ 2611 for (peer = peer_list; peer != NULL; peer = peer->p_link) { 2612 peer->new_status = CTL_PST_SEL_REJECT; 2613 2614 /* 2615 * Leave the island immediately if the peer is 2616 * unfit to synchronize. 2617 */ 2618 if (peer_unfit(peer)) 2619 continue; 2620 2621 /* 2622 * If this peer is an orphan parent, elect the 2623 * one with the lowest metric defined as the 2624 * IPv4 address or the first 64 bits of the 2625 * hashed IPv6 address. To ensure convergence 2626 * on the same selected orphan, consider as 2627 * well that this system may have the lowest 2628 * metric and be the orphan parent. If this 2629 * system wins, sys_peer will be NULL to trigger 2630 * orphan mode in timer(). 2631 */ 2632 if (peer->stratum == sys_orphan) { 2633 u_int32 localmet; 2634 u_int32 peermet; 2635 2636 if (peer->dstadr != NULL) 2637 localmet = ntohl(peer->dstadr->addr_refid); 2638 else 2639 localmet = U_INT32_MAX; 2640 peermet = ntohl(addr2refid(&peer->srcadr)); 2641 if (peermet < localmet && peermet < orphmet) { 2642 typeorphan = peer; 2643 orphmet = peermet; 2644 } 2645 continue; 2646 } 2647 2648 /* 2649 * If this peer could have the orphan parent 2650 * as a synchronization ancestor, exclude it 2651 * from selection to avoid forming a 2652 * synchronization loop within the orphan mesh, 2653 * triggering stratum climb to infinity 2654 * instability. Peers at stratum higher than 2655 * the orphan stratum could have the orphan 2656 * parent in ancestry so are excluded. 2657 * See http://bugs.ntp.org/2050 2658 */ 2659 if (peer->stratum > sys_orphan) 2660 continue; 2661 #ifdef REFCLOCK 2662 /* 2663 * The following are special cases. We deal 2664 * with them later. 2665 */ 2666 if (!(peer->flags & FLAG_PREFER)) { 2667 switch (peer->refclktype) { 2668 case REFCLK_LOCALCLOCK: 2669 if ( current_time > orphwait 2670 && typelocal == NULL) 2671 typelocal = peer; 2672 continue; 2673 2674 case REFCLK_ACTS: 2675 if ( current_time > orphwait 2676 && typeacts == NULL) 2677 typeacts = peer; 2678 continue; 2679 } 2680 } 2681 #endif /* REFCLOCK */ 2682 2683 /* 2684 * If we get this far, the peer can stay on the 2685 * island, but does not yet have the immunity 2686 * idol. 2687 */ 2688 peer->new_status = CTL_PST_SEL_SANE; 2689 f = root_distance(peer); 2690 peers[nlist].peer = peer; 2691 peers[nlist].error = peer->jitter; 2692 peers[nlist].synch = f; 2693 nlist++; 2694 2695 /* 2696 * Insert each interval endpoint on the unsorted 2697 * endpoint[] list. 2698 */ 2699 e = peer->offset; 2700 endpoint[nl2].type = -1; /* lower end */ 2701 endpoint[nl2].val = e - f; 2702 nl2++; 2703 endpoint[nl2].type = 1; /* upper end */ 2704 endpoint[nl2].val = e + f; 2705 nl2++; 2706 } 2707 /* 2708 * Construct sorted indx[] of endpoint[] indexes ordered by 2709 * offset. 2710 */ 2711 for (i = 0; i < nl2; i++) 2712 indx[i] = i; 2713 for (i = 0; i < nl2; i++) { 2714 endp = endpoint[indx[i]]; 2715 e = endp.val; 2716 k = i; 2717 for (j = i + 1; j < nl2; j++) { 2718 endp = endpoint[indx[j]]; 2719 if (endp.val < e) { 2720 e = endp.val; 2721 k = j; 2722 } 2723 } 2724 if (k != i) { 2725 j = indx[k]; 2726 indx[k] = indx[i]; 2727 indx[i] = j; 2728 } 2729 } 2730 for (i = 0; i < nl2; i++) 2731 DPRINTF(3, ("select: endpoint %2d %.6f\n", 2732 endpoint[indx[i]].type, endpoint[indx[i]].val)); 2733 2734 /* 2735 * This is the actual algorithm that cleaves the truechimers 2736 * from the falsetickers. The original algorithm was described 2737 * in Keith Marzullo's dissertation, but has been modified for 2738 * better accuracy. 2739 * 2740 * Briefly put, we first assume there are no falsetickers, then 2741 * scan the candidate list first from the low end upwards and 2742 * then from the high end downwards. The scans stop when the 2743 * number of intersections equals the number of candidates less 2744 * the number of falsetickers. If this doesn't happen for a 2745 * given number of falsetickers, we bump the number of 2746 * falsetickers and try again. If the number of falsetickers 2747 * becomes equal to or greater than half the number of 2748 * candidates, the Albanians have won the Byzantine wars and 2749 * correct synchronization is not possible. 2750 * 2751 * Here, nlist is the number of candidates and allow is the 2752 * number of falsetickers. Upon exit, the truechimers are the 2753 * survivors with offsets not less than low and not greater than 2754 * high. There may be none of them. 2755 */ 2756 low = 1e9; 2757 high = -1e9; 2758 for (allow = 0; 2 * allow < nlist; allow++) { 2759 2760 /* 2761 * Bound the interval (low, high) as the smallest 2762 * interval containing points from the most sources. 2763 */ 2764 n = 0; 2765 for (i = 0; i < nl2; i++) { 2766 low = endpoint[indx[i]].val; 2767 n -= endpoint[indx[i]].type; 2768 if (n >= nlist - allow) 2769 break; 2770 } 2771 n = 0; 2772 for (j = nl2 - 1; j >= 0; j--) { 2773 high = endpoint[indx[j]].val; 2774 n += endpoint[indx[j]].type; 2775 if (n >= nlist - allow) 2776 break; 2777 } 2778 2779 /* 2780 * If an interval containing truechimers is found, stop. 2781 * If not, increase the number of falsetickers and go 2782 * around again. 2783 */ 2784 if (high > low) 2785 break; 2786 } 2787 2788 /* 2789 * Clustering algorithm. Whittle candidate list of falsetickers, 2790 * who leave the island immediately. The TRUE peer is always a 2791 * truechimer. We must leave at least one peer to collect the 2792 * million bucks. 2793 * 2794 * We assert the correct time is contained in the interval, but 2795 * the best offset estimate for the interval might not be 2796 * contained in the interval. For this purpose, a truechimer is 2797 * defined as the midpoint of an interval that overlaps the 2798 * intersection interval. 2799 */ 2800 j = 0; 2801 for (i = 0; i < nlist; i++) { 2802 double h; 2803 2804 peer = peers[i].peer; 2805 h = peers[i].synch; 2806 if (( high <= low 2807 || peer->offset + h < low 2808 || peer->offset - h > high 2809 ) && !(peer->flags & FLAG_TRUE)) 2810 continue; 2811 2812 #ifdef REFCLOCK 2813 /* 2814 * Eligible PPS peers must survive the intersection 2815 * algorithm. Use the first one found, but don't 2816 * include any of them in the cluster population. 2817 */ 2818 if (peer->flags & FLAG_PPS) { 2819 if (typepps == NULL) 2820 typepps = peer; 2821 if (!(peer->flags & FLAG_TSTAMP_PPS)) 2822 continue; 2823 } 2824 #endif /* REFCLOCK */ 2825 2826 if (j != i) 2827 peers[j] = peers[i]; 2828 j++; 2829 } 2830 nlist = j; 2831 2832 /* 2833 * If no survivors remain at this point, check if the modem 2834 * driver, local driver or orphan parent in that order. If so, 2835 * nominate the first one found as the only survivor. 2836 * Otherwise, give up and leave the island to the rats. 2837 */ 2838 if (nlist == 0) { 2839 peers[0].error = 0; 2840 peers[0].synch = sys_mindisp; 2841 #ifdef REFCLOCK 2842 if (typeacts != NULL) { 2843 peers[0].peer = typeacts; 2844 nlist = 1; 2845 } else if (typelocal != NULL) { 2846 peers[0].peer = typelocal; 2847 nlist = 1; 2848 } else 2849 #endif /* REFCLOCK */ 2850 if (typeorphan != NULL) { 2851 peers[0].peer = typeorphan; 2852 nlist = 1; 2853 } 2854 } 2855 2856 /* 2857 * Mark the candidates at this point as truechimers. 2858 */ 2859 for (i = 0; i < nlist; i++) { 2860 peers[i].peer->new_status = CTL_PST_SEL_SELCAND; 2861 DPRINTF(2, ("select: survivor %s %f\n", 2862 stoa(&peers[i].peer->srcadr), peers[i].synch)); 2863 } 2864 2865 /* 2866 * Now, vote outliers off the island by select jitter weighted 2867 * by root distance. Continue voting as long as there are more 2868 * than sys_minclock survivors and the select jitter of the peer 2869 * with the worst metric is greater than the minimum peer 2870 * jitter. Stop if we are about to discard a TRUE or PREFER 2871 * peer, who of course have the immunity idol. 2872 */ 2873 while (1) { 2874 d = 1e9; 2875 e = -1e9; 2876 g = 0; 2877 k = 0; 2878 for (i = 0; i < nlist; i++) { 2879 if (peers[i].error < d) 2880 d = peers[i].error; 2881 peers[i].seljit = 0; 2882 if (nlist > 1) { 2883 f = 0; 2884 for (j = 0; j < nlist; j++) 2885 f += DIFF(peers[j].peer->offset, 2886 peers[i].peer->offset); 2887 peers[i].seljit = SQRT(f / (nlist - 1)); 2888 } 2889 if (peers[i].seljit * peers[i].synch > e) { 2890 g = peers[i].seljit; 2891 e = peers[i].seljit * peers[i].synch; 2892 k = i; 2893 } 2894 } 2895 g = max(g, LOGTOD(sys_precision)); 2896 if ( nlist <= max(1, sys_minclock) 2897 || g <= d 2898 || ((FLAG_TRUE | FLAG_PREFER) & peers[k].peer->flags)) 2899 break; 2900 2901 DPRINTF(3, ("select: drop %s seljit %.6f jit %.6f\n", 2902 ntoa(&peers[k].peer->srcadr), g, d)); 2903 if (nlist > sys_maxclock) 2904 peers[k].peer->new_status = CTL_PST_SEL_EXCESS; 2905 for (j = k + 1; j < nlist; j++) 2906 peers[j - 1] = peers[j]; 2907 nlist--; 2908 } 2909 2910 /* 2911 * What remains is a list usually not greater than sys_minclock 2912 * peers. Note that unsynchronized peers cannot survive this 2913 * far. Count and mark these survivors. 2914 * 2915 * While at it, count the number of leap warning bits found. 2916 * This will be used later to vote the system leap warning bit. 2917 * If a leap warning bit is found on a reference clock, the vote 2918 * is always won. 2919 * 2920 * Choose the system peer using a hybrid metric composed of the 2921 * selection jitter scaled by the root distance augmented by 2922 * stratum scaled by sys_mindisp (.001 by default). The goal of 2923 * the small stratum factor is to avoid clockhop between a 2924 * reference clock and a network peer which has a refclock and 2925 * is using an older ntpd, which does not floor sys_rootdisp at 2926 * sys_mindisp. 2927 * 2928 * In contrast, ntpd 4.2.6 and earlier used stratum primarily 2929 * in selecting the system peer, using a weight of 1 second of 2930 * additional root distance per stratum. This heavy bias is no 2931 * longer appropriate, as the scaled root distance provides a 2932 * more rational metric carrying the cumulative error budget. 2933 */ 2934 e = 1e9; 2935 speer = 0; 2936 leap_vote_ins = 0; 2937 leap_vote_del = 0; 2938 for (i = 0; i < nlist; i++) { 2939 peer = peers[i].peer; 2940 peer->unreach = 0; 2941 peer->new_status = CTL_PST_SEL_SYNCCAND; 2942 sys_survivors++; 2943 if (peer->leap == LEAP_ADDSECOND) { 2944 if (peer->flags & FLAG_REFCLOCK) 2945 leap_vote_ins = nlist; 2946 else if (leap_vote_ins < nlist) 2947 leap_vote_ins++; 2948 } 2949 if (peer->leap == LEAP_DELSECOND) { 2950 if (peer->flags & FLAG_REFCLOCK) 2951 leap_vote_del = nlist; 2952 else if (leap_vote_del < nlist) 2953 leap_vote_del++; 2954 } 2955 if (peer->flags & FLAG_PREFER) 2956 sys_prefer = peer; 2957 speermet = peers[i].seljit * peers[i].synch + 2958 peer->stratum * sys_mindisp; 2959 if (speermet < e) { 2960 e = speermet; 2961 speer = i; 2962 } 2963 } 2964 2965 /* 2966 * Unless there are at least sys_misane survivors, leave the 2967 * building dark. Otherwise, do a clockhop dance. Ordinarily, 2968 * use the selected survivor speer. However, if the current 2969 * system peer is not speer, stay with the current system peer 2970 * as long as it doesn't get too old or too ugly. 2971 */ 2972 if (nlist > 0 && nlist >= sys_minsane) { 2973 double x; 2974 2975 typesystem = peers[speer].peer; 2976 if (osys_peer == NULL || osys_peer == typesystem) { 2977 sys_clockhop = 0; 2978 } else if ((x = fabs(typesystem->offset - 2979 osys_peer->offset)) < sys_mindisp) { 2980 if (sys_clockhop == 0) 2981 sys_clockhop = sys_mindisp; 2982 else 2983 sys_clockhop *= .5; 2984 DPRINTF(1, ("select: clockhop %d %.6f %.6f\n", 2985 j, x, sys_clockhop)); 2986 if (fabs(x) < sys_clockhop) 2987 typesystem = osys_peer; 2988 else 2989 sys_clockhop = 0; 2990 } else { 2991 sys_clockhop = 0; 2992 } 2993 } 2994 2995 /* 2996 * Mitigation rules of the game. We have the pick of the 2997 * litter in typesystem if any survivors are left. If 2998 * there is a prefer peer, use its offset and jitter. 2999 * Otherwise, use the combined offset and jitter of all kitters. 3000 */ 3001 if (typesystem != NULL) { 3002 if (sys_prefer == NULL) { 3003 typesystem->new_status = CTL_PST_SEL_SYSPEER; 3004 clock_combine(peers, sys_survivors, speer); 3005 } else { 3006 typesystem = sys_prefer; 3007 sys_clockhop = 0; 3008 typesystem->new_status = CTL_PST_SEL_SYSPEER; 3009 sys_offset = typesystem->offset; 3010 sys_jitter = typesystem->jitter; 3011 } 3012 DPRINTF(1, ("select: combine offset %.9f jitter %.9f\n", 3013 sys_offset, sys_jitter)); 3014 } 3015 #ifdef REFCLOCK 3016 /* 3017 * If a PPS driver is lit and the combined offset is less than 3018 * 0.4 s, select the driver as the PPS peer and use its offset 3019 * and jitter. However, if this is the atom driver, use it only 3020 * if there is a prefer peer or there are no survivors and none 3021 * are required. 3022 */ 3023 if ( typepps != NULL 3024 && fabs(sys_offset) < 0.4 3025 && ( typepps->refclktype != REFCLK_ATOM_PPS 3026 || ( typepps->refclktype == REFCLK_ATOM_PPS 3027 && ( sys_prefer != NULL 3028 || (typesystem == NULL && sys_minsane == 0))))) { 3029 typesystem = typepps; 3030 sys_clockhop = 0; 3031 typesystem->new_status = CTL_PST_SEL_PPS; 3032 sys_offset = typesystem->offset; 3033 sys_jitter = typesystem->jitter; 3034 DPRINTF(1, ("select: pps offset %.9f jitter %.9f\n", 3035 sys_offset, sys_jitter)); 3036 } 3037 #endif /* REFCLOCK */ 3038 3039 /* 3040 * If there are no survivors at this point, there is no 3041 * system peer. If so and this is an old update, keep the 3042 * current statistics, but do not update the clock. 3043 */ 3044 if (typesystem == NULL) { 3045 if (osys_peer != NULL) { 3046 if (sys_orphwait > 0) 3047 orphwait = current_time + sys_orphwait; 3048 report_event(EVNT_NOPEER, NULL, NULL); 3049 } 3050 sys_peer = NULL; 3051 for (peer = peer_list; peer != NULL; peer = peer->p_link) 3052 peer->status = peer->new_status; 3053 return; 3054 } 3055 3056 /* 3057 * Do not use old data, as this may mess up the clock discipline 3058 * stability. 3059 */ 3060 if (typesystem->epoch <= sys_epoch) 3061 return; 3062 3063 /* 3064 * We have found the alpha male. Wind the clock. 3065 */ 3066 if (osys_peer != typesystem) 3067 report_event(PEVNT_NEWPEER, typesystem, NULL); 3068 for (peer = peer_list; peer != NULL; peer = peer->p_link) 3069 peer->status = peer->new_status; 3070 clock_update(typesystem); 3071 } 3072 3073 3074 static void 3075 clock_combine( 3076 peer_select * peers, /* survivor list */ 3077 int npeers, /* number of survivors */ 3078 int syspeer /* index of sys.peer */ 3079 ) 3080 { 3081 int i; 3082 double x, y, z, w; 3083 3084 y = z = w = 0; 3085 for (i = 0; i < npeers; i++) { 3086 x = 1. / peers[i].synch; 3087 y += x; 3088 z += x * peers[i].peer->offset; 3089 w += x * DIFF(peers[i].peer->offset, 3090 peers[syspeer].peer->offset); 3091 } 3092 sys_offset = z / y; 3093 sys_jitter = SQRT(w / y + SQUARE(peers[syspeer].seljit)); 3094 } 3095 3096 3097 /* 3098 * root_distance - compute synchronization distance from peer to root 3099 */ 3100 static double 3101 root_distance( 3102 struct peer *peer /* peer structure pointer */ 3103 ) 3104 { 3105 double dtemp; 3106 3107 /* 3108 * Root Distance (LAMBDA) is defined as: 3109 * (delta + DELTA)/2 + epsilon + EPSILON + phi 3110 * 3111 * where: 3112 * delta is the round-trip delay 3113 * DELTA is the root delay 3114 * epsilon is the remote server precision + local precision 3115 * + (15 usec each second) 3116 * EPSILON is the root dispersion 3117 * phi is the peer jitter statistic 3118 * 3119 * NB: Think hard about why we are using these values, and what 3120 * the alternatives are, and the various pros/cons. 3121 * 3122 * DLM thinks these are probably the best choices from any of the 3123 * other worse choices. 3124 */ 3125 dtemp = (peer->delay + peer->rootdelay) / 2 3126 + LOGTOD(peer->precision) 3127 + LOGTOD(sys_precision) 3128 + clock_phi * (current_time - peer->update) 3129 + peer->rootdisp 3130 + peer->jitter; 3131 /* 3132 * Careful squeak here. The value returned must be greater than 3133 * the minimum root dispersion in order to avoid clockhop with 3134 * highly precise reference clocks. Note that the root distance 3135 * cannot exceed the sys_maxdist, as this is the cutoff by the 3136 * selection algorithm. 3137 */ 3138 if (dtemp < sys_mindisp) 3139 dtemp = sys_mindisp; 3140 return (dtemp); 3141 } 3142 3143 3144 /* 3145 * peer_xmit - send packet for persistent association. 3146 */ 3147 static void 3148 peer_xmit( 3149 struct peer *peer /* peer structure pointer */ 3150 ) 3151 { 3152 struct pkt xpkt; /* transmit packet */ 3153 size_t sendlen, authlen; 3154 keyid_t xkeyid = 0; /* transmit key ID */ 3155 l_fp xmt_tx, xmt_ty; 3156 3157 if (!peer->dstadr) /* drop peers without interface */ 3158 return; 3159 3160 xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, peer->version, 3161 peer->hmode); 3162 xpkt.stratum = STRATUM_TO_PKT(sys_stratum); 3163 xpkt.ppoll = peer->hpoll; 3164 xpkt.precision = sys_precision; 3165 xpkt.refid = sys_refid; 3166 xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay)); 3167 xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp)); 3168 HTONL_FP(&sys_reftime, &xpkt.reftime); 3169 HTONL_FP(&peer->rec, &xpkt.org); 3170 HTONL_FP(&peer->dst, &xpkt.rec); 3171 3172 /* 3173 * If the received packet contains a MAC, the transmitted packet 3174 * is authenticated and contains a MAC. If not, the transmitted 3175 * packet is not authenticated. 3176 * 3177 * It is most important when autokey is in use that the local 3178 * interface IP address be known before the first packet is 3179 * sent. Otherwise, it is not possible to compute a correct MAC 3180 * the recipient will accept. Thus, the I/O semantics have to do 3181 * a little more work. In particular, the wildcard interface 3182 * might not be usable. 3183 */ 3184 sendlen = LEN_PKT_NOMAC; 3185 if ( 3186 #ifdef AUTOKEY 3187 !(peer->flags & FLAG_SKEY) && 3188 #endif /* !AUTOKEY */ 3189 peer->keyid == 0) { 3190 3191 /* 3192 * Transmit a-priori timestamps 3193 */ 3194 get_systime(&xmt_tx); 3195 if (peer->flip == 0) { /* basic mode */ 3196 peer->aorg = xmt_tx; 3197 HTONL_FP(&xmt_tx, &xpkt.xmt); 3198 } else { /* interleaved modes */ 3199 if (peer->hmode == MODE_BROADCAST) { /* bcst */ 3200 HTONL_FP(&xmt_tx, &xpkt.xmt); 3201 if (peer->flip > 0) 3202 HTONL_FP(&peer->borg, 3203 &xpkt.org); 3204 else 3205 HTONL_FP(&peer->aorg, 3206 &xpkt.org); 3207 } else { /* symmetric */ 3208 if (peer->flip > 0) 3209 HTONL_FP(&peer->borg, 3210 &xpkt.xmt); 3211 else 3212 HTONL_FP(&peer->aorg, 3213 &xpkt.xmt); 3214 } 3215 } 3216 peer->t21_bytes = sendlen; 3217 sendpkt(&peer->srcadr, peer->dstadr, sys_ttl[peer->ttl], 3218 &xpkt, sendlen); 3219 peer->sent++; 3220 peer->throttle += (1 << peer->minpoll) - 2; 3221 3222 /* 3223 * Capture a-posteriori timestamps 3224 */ 3225 get_systime(&xmt_ty); 3226 if (peer->flip != 0) { /* interleaved modes */ 3227 if (peer->flip > 0) 3228 peer->aorg = xmt_ty; 3229 else 3230 peer->borg = xmt_ty; 3231 peer->flip = -peer->flip; 3232 } 3233 L_SUB(&xmt_ty, &xmt_tx); 3234 LFPTOD(&xmt_ty, peer->xleave); 3235 DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d len %zu xmt %#010x.%08x\n", 3236 current_time, 3237 peer->dstadr ? stoa(&peer->dstadr->sin) : "-", 3238 stoa(&peer->srcadr), peer->hmode, sendlen, 3239 xmt_tx.l_ui, xmt_tx.l_uf)); 3240 return; 3241 } 3242 3243 /* 3244 * Authentication is enabled, so the transmitted packet must be 3245 * authenticated. If autokey is enabled, fuss with the various 3246 * modes; otherwise, symmetric key cryptography is used. 3247 */ 3248 #ifdef AUTOKEY 3249 if (peer->flags & FLAG_SKEY) { 3250 struct exten *exten; /* extension field */ 3251 3252 /* 3253 * The Public Key Dance (PKD): Cryptographic credentials 3254 * are contained in extension fields, each including a 3255 * 4-octet length/code word followed by a 4-octet 3256 * association ID and optional additional data. Optional 3257 * data includes a 4-octet data length field followed by 3258 * the data itself. Request messages are sent from a 3259 * configured association; response messages can be sent 3260 * from a configured association or can take the fast 3261 * path without ever matching an association. Response 3262 * messages have the same code as the request, but have 3263 * a response bit and possibly an error bit set. In this 3264 * implementation, a message may contain no more than 3265 * one command and one or more responses. 3266 * 3267 * Cryptographic session keys include both a public and 3268 * a private componet. Request and response messages 3269 * using extension fields are always sent with the 3270 * private component set to zero. Packets without 3271 * extension fields indlude the private component when 3272 * the session key is generated. 3273 */ 3274 while (1) { 3275 3276 /* 3277 * Allocate and initialize a keylist if not 3278 * already done. Then, use the list in inverse 3279 * order, discarding keys once used. Keep the 3280 * latest key around until the next one, so 3281 * clients can use client/server packets to 3282 * compute propagation delay. 3283 * 3284 * Note that once a key is used from the list, 3285 * it is retained in the key cache until the 3286 * next key is used. This is to allow a client 3287 * to retrieve the encrypted session key 3288 * identifier to verify authenticity. 3289 * 3290 * If for some reason a key is no longer in the 3291 * key cache, a birthday has happened or the key 3292 * has expired, so the pseudo-random sequence is 3293 * broken. In that case, purge the keylist and 3294 * regenerate it. 3295 */ 3296 if (peer->keynumber == 0) 3297 make_keylist(peer, peer->dstadr); 3298 else 3299 peer->keynumber--; 3300 xkeyid = peer->keylist[peer->keynumber]; 3301 if (authistrusted(xkeyid)) 3302 break; 3303 else 3304 key_expire(peer); 3305 } 3306 peer->keyid = xkeyid; 3307 exten = NULL; 3308 switch (peer->hmode) { 3309 3310 /* 3311 * In broadcast server mode the autokey values are 3312 * required by the broadcast clients. Push them when a 3313 * new keylist is generated; otherwise, push the 3314 * association message so the client can request them at 3315 * other times. 3316 */ 3317 case MODE_BROADCAST: 3318 if (peer->flags & FLAG_ASSOC) 3319 exten = crypto_args(peer, CRYPTO_AUTO | 3320 CRYPTO_RESP, peer->associd, NULL); 3321 else 3322 exten = crypto_args(peer, CRYPTO_ASSOC | 3323 CRYPTO_RESP, peer->associd, NULL); 3324 break; 3325 3326 /* 3327 * In symmetric modes the parameter, certificate, 3328 * identity, cookie and autokey exchanges are 3329 * required. The leapsecond exchange is optional. But, a 3330 * peer will not believe the other peer until the other 3331 * peer has synchronized, so the certificate exchange 3332 * might loop until then. If a peer finds a broken 3333 * autokey sequence, it uses the autokey exchange to 3334 * retrieve the autokey values. In any case, if a new 3335 * keylist is generated, the autokey values are pushed. 3336 */ 3337 case MODE_ACTIVE: 3338 case MODE_PASSIVE: 3339 3340 /* 3341 * Parameter, certificate and identity. 3342 */ 3343 if (!peer->crypto) 3344 exten = crypto_args(peer, CRYPTO_ASSOC, 3345 peer->associd, hostval.ptr); 3346 else if (!(peer->crypto & CRYPTO_FLAG_CERT)) 3347 exten = crypto_args(peer, CRYPTO_CERT, 3348 peer->associd, peer->issuer); 3349 else if (!(peer->crypto & CRYPTO_FLAG_VRFY)) 3350 exten = crypto_args(peer, 3351 crypto_ident(peer), peer->associd, 3352 NULL); 3353 3354 /* 3355 * Cookie and autokey. We request the cookie 3356 * only when the this peer and the other peer 3357 * are synchronized. But, this peer needs the 3358 * autokey values when the cookie is zero. Any 3359 * time we regenerate the key list, we offer the 3360 * autokey values without being asked. If for 3361 * some reason either peer finds a broken 3362 * autokey sequence, the autokey exchange is 3363 * used to retrieve the autokey values. 3364 */ 3365 else if ( sys_leap != LEAP_NOTINSYNC 3366 && peer->leap != LEAP_NOTINSYNC 3367 && !(peer->crypto & CRYPTO_FLAG_COOK)) 3368 exten = crypto_args(peer, CRYPTO_COOK, 3369 peer->associd, NULL); 3370 else if (!(peer->crypto & CRYPTO_FLAG_AUTO)) 3371 exten = crypto_args(peer, CRYPTO_AUTO, 3372 peer->associd, NULL); 3373 else if ( peer->flags & FLAG_ASSOC 3374 && peer->crypto & CRYPTO_FLAG_SIGN) 3375 exten = crypto_args(peer, CRYPTO_AUTO | 3376 CRYPTO_RESP, peer->assoc, NULL); 3377 3378 /* 3379 * Wait for clock sync, then sign the 3380 * certificate and retrieve the leapsecond 3381 * values. 3382 */ 3383 else if (sys_leap == LEAP_NOTINSYNC) 3384 break; 3385 3386 else if (!(peer->crypto & CRYPTO_FLAG_SIGN)) 3387 exten = crypto_args(peer, CRYPTO_SIGN, 3388 peer->associd, hostval.ptr); 3389 else if (!(peer->crypto & CRYPTO_FLAG_LEAP)) 3390 exten = crypto_args(peer, CRYPTO_LEAP, 3391 peer->associd, NULL); 3392 break; 3393 3394 /* 3395 * In client mode the parameter, certificate, identity, 3396 * cookie and sign exchanges are required. The 3397 * leapsecond exchange is optional. If broadcast client 3398 * mode the same exchanges are required, except that the 3399 * autokey exchange is substitutes for the cookie 3400 * exchange, since the cookie is always zero. If the 3401 * broadcast client finds a broken autokey sequence, it 3402 * uses the autokey exchange to retrieve the autokey 3403 * values. 3404 */ 3405 case MODE_CLIENT: 3406 3407 /* 3408 * Parameter, certificate and identity. 3409 */ 3410 if (!peer->crypto) 3411 exten = crypto_args(peer, CRYPTO_ASSOC, 3412 peer->associd, hostval.ptr); 3413 else if (!(peer->crypto & CRYPTO_FLAG_CERT)) 3414 exten = crypto_args(peer, CRYPTO_CERT, 3415 peer->associd, peer->issuer); 3416 else if (!(peer->crypto & CRYPTO_FLAG_VRFY)) 3417 exten = crypto_args(peer, 3418 crypto_ident(peer), peer->associd, 3419 NULL); 3420 3421 /* 3422 * Cookie and autokey. These are requests, but 3423 * we use the peer association ID with autokey 3424 * rather than our own. 3425 */ 3426 else if (!(peer->crypto & CRYPTO_FLAG_COOK)) 3427 exten = crypto_args(peer, CRYPTO_COOK, 3428 peer->associd, NULL); 3429 else if (!(peer->crypto & CRYPTO_FLAG_AUTO)) 3430 exten = crypto_args(peer, CRYPTO_AUTO, 3431 peer->assoc, NULL); 3432 3433 /* 3434 * Wait for clock sync, then sign the 3435 * certificate and retrieve the leapsecond 3436 * values. 3437 */ 3438 else if (sys_leap == LEAP_NOTINSYNC) 3439 break; 3440 3441 else if (!(peer->crypto & CRYPTO_FLAG_SIGN)) 3442 exten = crypto_args(peer, CRYPTO_SIGN, 3443 peer->associd, hostval.ptr); 3444 else if (!(peer->crypto & CRYPTO_FLAG_LEAP)) 3445 exten = crypto_args(peer, CRYPTO_LEAP, 3446 peer->associd, NULL); 3447 break; 3448 } 3449 3450 /* 3451 * Add a queued extension field if present. This is 3452 * always a request message, so the reply ID is already 3453 * in the message. If an error occurs, the error bit is 3454 * lit in the response. 3455 */ 3456 if (peer->cmmd != NULL) { 3457 u_int32 temp32; 3458 3459 temp32 = CRYPTO_RESP; 3460 peer->cmmd->opcode |= htonl(temp32); 3461 sendlen += crypto_xmit(peer, &xpkt, NULL, 3462 sendlen, peer->cmmd, 0); 3463 free(peer->cmmd); 3464 peer->cmmd = NULL; 3465 } 3466 3467 /* 3468 * Add an extension field created above. All but the 3469 * autokey response message are request messages. 3470 */ 3471 if (exten != NULL) { 3472 if (exten->opcode != 0) 3473 sendlen += crypto_xmit(peer, &xpkt, 3474 NULL, sendlen, exten, 0); 3475 free(exten); 3476 } 3477 3478 /* 3479 * Calculate the next session key. Since extension 3480 * fields are present, the cookie value is zero. 3481 */ 3482 if (sendlen > (int)LEN_PKT_NOMAC) { 3483 session_key(&peer->dstadr->sin, &peer->srcadr, 3484 xkeyid, 0, 2); 3485 } 3486 } 3487 #endif /* AUTOKEY */ 3488 3489 /* 3490 * Transmit a-priori timestamps 3491 */ 3492 get_systime(&xmt_tx); 3493 if (peer->flip == 0) { /* basic mode */ 3494 peer->aorg = xmt_tx; 3495 HTONL_FP(&xmt_tx, &xpkt.xmt); 3496 } else { /* interleaved modes */ 3497 if (peer->hmode == MODE_BROADCAST) { /* bcst */ 3498 HTONL_FP(&xmt_tx, &xpkt.xmt); 3499 if (peer->flip > 0) 3500 HTONL_FP(&peer->borg, &xpkt.org); 3501 else 3502 HTONL_FP(&peer->aorg, &xpkt.org); 3503 } else { /* symmetric */ 3504 if (peer->flip > 0) 3505 HTONL_FP(&peer->borg, &xpkt.xmt); 3506 else 3507 HTONL_FP(&peer->aorg, &xpkt.xmt); 3508 } 3509 } 3510 xkeyid = peer->keyid; 3511 authlen = authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen); 3512 if (authlen == 0) { 3513 report_event(PEVNT_AUTH, peer, "no key"); 3514 peer->flash |= TEST5; /* auth error */ 3515 peer->badauth++; 3516 return; 3517 } 3518 sendlen += authlen; 3519 #ifdef AUTOKEY 3520 if (xkeyid > NTP_MAXKEY) 3521 authtrust(xkeyid, 0); 3522 #endif /* AUTOKEY */ 3523 if (sendlen > sizeof(xpkt)) { 3524 msyslog(LOG_ERR, "peer_xmit: buffer overflow %zu", sendlen); 3525 exit (-1); 3526 } 3527 peer->t21_bytes = sendlen; 3528 sendpkt(&peer->srcadr, peer->dstadr, sys_ttl[peer->ttl], &xpkt, 3529 sendlen); 3530 peer->sent++; 3531 peer->throttle += (1 << peer->minpoll) - 2; 3532 3533 /* 3534 * Capture a-posteriori timestamps 3535 */ 3536 get_systime(&xmt_ty); 3537 if (peer->flip != 0) { /* interleaved modes */ 3538 if (peer->flip > 0) 3539 peer->aorg = xmt_ty; 3540 else 3541 peer->borg = xmt_ty; 3542 peer->flip = -peer->flip; 3543 } 3544 L_SUB(&xmt_ty, &xmt_tx); 3545 LFPTOD(&xmt_ty, peer->xleave); 3546 #ifdef AUTOKEY 3547 DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d keyid %08x len %zu index %d\n", 3548 current_time, latoa(peer->dstadr), 3549 ntoa(&peer->srcadr), peer->hmode, xkeyid, sendlen, 3550 peer->keynumber)); 3551 #else /* !AUTOKEY follows */ 3552 DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d keyid %08x len %d\n", 3553 current_time, peer->dstadr ? 3554 ntoa(&peer->dstadr->sin) : "-", 3555 ntoa(&peer->srcadr), peer->hmode, xkeyid, sendlen)); 3556 #endif /* !AUTOKEY */ 3557 3558 return; 3559 } 3560 3561 3562 #ifdef LEAP_SMEAR 3563 3564 static void 3565 leap_smear_add_offs( 3566 l_fp *t, 3567 l_fp *t_recv 3568 ) 3569 { 3570 3571 L_ADD(t, &leap_smear.offset); 3572 3573 return; 3574 } 3575 3576 #endif /* LEAP_SMEAR */ 3577 3578 3579 /* 3580 * fast_xmit - Send packet for nonpersistent association. Note that 3581 * neither the source or destination can be a broadcast address. 3582 */ 3583 static void 3584 fast_xmit( 3585 struct recvbuf *rbufp, /* receive packet pointer */ 3586 int xmode, /* receive mode */ 3587 keyid_t xkeyid, /* transmit key ID */ 3588 int flags /* restrict mask */ 3589 ) 3590 { 3591 struct pkt xpkt; /* transmit packet structure */ 3592 struct pkt *rpkt; /* receive packet structure */ 3593 l_fp xmt_tx, xmt_ty; 3594 size_t sendlen; 3595 #ifdef AUTOKEY 3596 u_int32 temp32; 3597 #endif 3598 3599 /* 3600 * Initialize transmit packet header fields from the receive 3601 * buffer provided. We leave the fields intact as received, but 3602 * set the peer poll at the maximum of the receive peer poll and 3603 * the system minimum poll (ntp_minpoll). This is for KoD rate 3604 * control and not strictly specification compliant, but doesn't 3605 * break anything. 3606 * 3607 * If the gazinta was from a multicast address, the gazoutta 3608 * must go out another way. 3609 */ 3610 rpkt = &rbufp->recv_pkt; 3611 if (rbufp->dstadr->flags & INT_MCASTOPEN) 3612 rbufp->dstadr = findinterface(&rbufp->recv_srcadr); 3613 3614 /* 3615 * If this is a kiss-o'-death (KoD) packet, show leap 3616 * unsynchronized, stratum zero, reference ID the four-character 3617 * kiss code and system root delay. Note we don't reveal the 3618 * local time, so these packets can't be used for 3619 * synchronization. 3620 */ 3621 if (flags & RES_KOD) { 3622 sys_kodsent++; 3623 xpkt.li_vn_mode = PKT_LI_VN_MODE(LEAP_NOTINSYNC, 3624 PKT_VERSION(rpkt->li_vn_mode), xmode); 3625 xpkt.stratum = STRATUM_PKT_UNSPEC; 3626 xpkt.ppoll = max(rpkt->ppoll, ntp_minpoll); 3627 xpkt.precision = rpkt->precision; 3628 memcpy(&xpkt.refid, "RATE", 4); 3629 xpkt.rootdelay = rpkt->rootdelay; 3630 xpkt.rootdisp = rpkt->rootdisp; 3631 xpkt.reftime = rpkt->reftime; 3632 xpkt.org = rpkt->xmt; 3633 xpkt.rec = rpkt->xmt; 3634 xpkt.xmt = rpkt->xmt; 3635 3636 /* 3637 * This is a normal packet. Use the system variables. 3638 */ 3639 } else { 3640 #ifdef LEAP_SMEAR 3641 /* 3642 * Make copies of the variables which can be affected by smearing. 3643 */ 3644 l_fp this_ref_time; 3645 l_fp this_recv_time; 3646 #endif 3647 3648 /* 3649 * If we are inside the leap smear interval we add the current smear offset to 3650 * the packet receive time, to the packet transmit time, and eventually to the 3651 * reftime to make sure the reftime isn't later than the transmit/receive times. 3652 */ 3653 xpkt.li_vn_mode = PKT_LI_VN_MODE(xmt_leap, 3654 PKT_VERSION(rpkt->li_vn_mode), xmode); 3655 3656 xpkt.stratum = STRATUM_TO_PKT(sys_stratum); 3657 xpkt.ppoll = max(rpkt->ppoll, ntp_minpoll); 3658 xpkt.precision = sys_precision; 3659 xpkt.refid = sys_refid; 3660 xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay)); 3661 xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp)); 3662 3663 #ifdef LEAP_SMEAR 3664 this_ref_time = sys_reftime; 3665 if (leap_smear.in_progress) { 3666 leap_smear_add_offs(&this_ref_time, NULL); 3667 xpkt.refid = convertLFPToRefID(leap_smear.offset); 3668 DPRINTF(2, ("fast_xmit: leap_smear.in_progress: refid %8x, smear %s\n", 3669 ntohl(xpkt.refid), 3670 lfptoa(&leap_smear.offset, 8) 3671 )); 3672 } 3673 HTONL_FP(&this_ref_time, &xpkt.reftime); 3674 #else 3675 HTONL_FP(&sys_reftime, &xpkt.reftime); 3676 #endif 3677 3678 xpkt.org = rpkt->xmt; 3679 3680 #ifdef LEAP_SMEAR 3681 this_recv_time = rbufp->recv_time; 3682 if (leap_smear.in_progress) 3683 leap_smear_add_offs(&this_recv_time, NULL); 3684 HTONL_FP(&this_recv_time, &xpkt.rec); 3685 #else 3686 HTONL_FP(&rbufp->recv_time, &xpkt.rec); 3687 #endif 3688 3689 get_systime(&xmt_tx); 3690 #ifdef LEAP_SMEAR 3691 if (leap_smear.in_progress) 3692 leap_smear_add_offs(&xmt_tx, &this_recv_time); 3693 #endif 3694 HTONL_FP(&xmt_tx, &xpkt.xmt); 3695 } 3696 3697 #ifdef HAVE_NTP_SIGND 3698 if (flags & RES_MSSNTP) { 3699 send_via_ntp_signd(rbufp, xmode, xkeyid, flags, &xpkt); 3700 return; 3701 } 3702 #endif /* HAVE_NTP_SIGND */ 3703 3704 /* 3705 * If the received packet contains a MAC, the transmitted packet 3706 * is authenticated and contains a MAC. If not, the transmitted 3707 * packet is not authenticated. 3708 */ 3709 sendlen = LEN_PKT_NOMAC; 3710 if (rbufp->recv_length == sendlen) { 3711 sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, 0, &xpkt, 3712 sendlen); 3713 DPRINTF(1, ("fast_xmit: at %ld %s->%s mode %d len %lu\n", 3714 current_time, stoa(&rbufp->dstadr->sin), 3715 stoa(&rbufp->recv_srcadr), xmode, 3716 (u_long)sendlen)); 3717 return; 3718 } 3719 3720 /* 3721 * The received packet contains a MAC, so the transmitted packet 3722 * must be authenticated. For symmetric key cryptography, use 3723 * the predefined and trusted symmetric keys to generate the 3724 * cryptosum. For autokey cryptography, use the server private 3725 * value to generate the cookie, which is unique for every 3726 * source-destination-key ID combination. 3727 */ 3728 #ifdef AUTOKEY 3729 if (xkeyid > NTP_MAXKEY) { 3730 keyid_t cookie; 3731 3732 /* 3733 * The only way to get here is a reply to a legitimate 3734 * client request message, so the mode must be 3735 * MODE_SERVER. If an extension field is present, there 3736 * can be only one and that must be a command. Do what 3737 * needs, but with private value of zero so the poor 3738 * jerk can decode it. If no extension field is present, 3739 * use the cookie to generate the session key. 3740 */ 3741 cookie = session_key(&rbufp->recv_srcadr, 3742 &rbufp->dstadr->sin, 0, sys_private, 0); 3743 if ((size_t)rbufp->recv_length > sendlen + MAX_MAC_LEN) { 3744 session_key(&rbufp->dstadr->sin, 3745 &rbufp->recv_srcadr, xkeyid, 0, 2); 3746 temp32 = CRYPTO_RESP; 3747 rpkt->exten[0] |= htonl(temp32); 3748 sendlen += crypto_xmit(NULL, &xpkt, rbufp, 3749 sendlen, (struct exten *)rpkt->exten, 3750 cookie); 3751 } else { 3752 session_key(&rbufp->dstadr->sin, 3753 &rbufp->recv_srcadr, xkeyid, cookie, 2); 3754 } 3755 } 3756 #endif /* AUTOKEY */ 3757 get_systime(&xmt_tx); 3758 sendlen += authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen); 3759 #ifdef AUTOKEY 3760 if (xkeyid > NTP_MAXKEY) 3761 authtrust(xkeyid, 0); 3762 #endif /* AUTOKEY */ 3763 sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, 0, &xpkt, sendlen); 3764 get_systime(&xmt_ty); 3765 L_SUB(&xmt_ty, &xmt_tx); 3766 sys_authdelay = xmt_ty; 3767 DPRINTF(1, ("fast_xmit: at %ld %s->%s mode %d keyid %08x len %lu\n", 3768 current_time, ntoa(&rbufp->dstadr->sin), 3769 ntoa(&rbufp->recv_srcadr), xmode, xkeyid, 3770 (u_long)sendlen)); 3771 } 3772 3773 3774 /* 3775 * pool_xmit - resolve hostname or send unicast solicitation for pool. 3776 */ 3777 static void 3778 pool_xmit( 3779 struct peer *pool /* pool solicitor association */ 3780 ) 3781 { 3782 #ifdef WORKER 3783 struct pkt xpkt; /* transmit packet structure */ 3784 struct addrinfo hints; 3785 int rc; 3786 struct interface * lcladr; 3787 sockaddr_u * rmtadr; 3788 int restrict_mask; 3789 struct peer * p; 3790 l_fp xmt_tx; 3791 3792 if (NULL == pool->ai) { 3793 if (pool->addrs != NULL) { 3794 /* free() is used with copy_addrinfo_list() */ 3795 free(pool->addrs); 3796 pool->addrs = NULL; 3797 } 3798 ZERO(hints); 3799 hints.ai_family = AF(&pool->srcadr); 3800 hints.ai_socktype = SOCK_DGRAM; 3801 hints.ai_protocol = IPPROTO_UDP; 3802 /* ignore getaddrinfo_sometime() errors, we will retry */ 3803 rc = getaddrinfo_sometime( 3804 pool->hostname, 3805 "ntp", 3806 &hints, 3807 0, /* no retry */ 3808 &pool_name_resolved, 3809 (void *)(intptr_t)pool->associd); 3810 if (!rc) 3811 DPRINTF(1, ("pool DNS lookup %s started\n", 3812 pool->hostname)); 3813 else 3814 msyslog(LOG_ERR, 3815 "unable to start pool DNS %s: %m", 3816 pool->hostname); 3817 return; 3818 } 3819 3820 do { 3821 /* copy_addrinfo_list ai_addr points to a sockaddr_u */ 3822 rmtadr = (sockaddr_u *)(void *)pool->ai->ai_addr; 3823 pool->ai = pool->ai->ai_next; 3824 p = findexistingpeer(rmtadr, NULL, NULL, MODE_CLIENT, 0); 3825 } while (p != NULL && pool->ai != NULL); 3826 if (p != NULL) 3827 return; /* out of addresses, re-query DNS next poll */ 3828 restrict_mask = restrictions(rmtadr); 3829 if (RES_FLAGS & restrict_mask) 3830 restrict_source(rmtadr, 0, 3831 current_time + POOL_SOLICIT_WINDOW + 1); 3832 lcladr = findinterface(rmtadr); 3833 memset(&xpkt, 0, sizeof(xpkt)); 3834 xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, pool->version, 3835 MODE_CLIENT); 3836 xpkt.stratum = STRATUM_TO_PKT(sys_stratum); 3837 xpkt.ppoll = pool->hpoll; 3838 xpkt.precision = sys_precision; 3839 xpkt.refid = sys_refid; 3840 xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay)); 3841 xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp)); 3842 HTONL_FP(&sys_reftime, &xpkt.reftime); 3843 get_systime(&xmt_tx); 3844 pool->aorg = xmt_tx; 3845 HTONL_FP(&xmt_tx, &xpkt.xmt); 3846 sendpkt(rmtadr, lcladr, sys_ttl[pool->ttl], &xpkt, 3847 LEN_PKT_NOMAC); 3848 pool->sent++; 3849 pool->throttle += (1 << pool->minpoll) - 2; 3850 DPRINTF(1, ("pool_xmit: at %ld %s->%s pool\n", 3851 current_time, latoa(lcladr), stoa(rmtadr))); 3852 msyslog(LOG_INFO, "Soliciting pool server %s", stoa(rmtadr)); 3853 #endif /* WORKER */ 3854 } 3855 3856 3857 #ifdef AUTOKEY 3858 /* 3859 * group_test - test if this is the same group 3860 * 3861 * host assoc return action 3862 * none none 0 mobilize * 3863 * none group 0 mobilize * 3864 * group none 0 mobilize * 3865 * group group 1 mobilize 3866 * group different 1 ignore 3867 * * ignore if notrust 3868 */ 3869 int 3870 group_test( 3871 char *grp, 3872 char *ident 3873 ) 3874 { 3875 if (grp == NULL) 3876 return (0); 3877 3878 if (strcmp(grp, sys_groupname) == 0) 3879 return (0); 3880 3881 if (ident == NULL) 3882 return (1); 3883 3884 if (strcmp(grp, ident) == 0) 3885 return (0); 3886 3887 return (1); 3888 } 3889 #endif /* AUTOKEY */ 3890 3891 #ifdef WORKER 3892 void 3893 pool_name_resolved( 3894 int rescode, 3895 int gai_errno, 3896 void * context, 3897 const char * name, 3898 const char * service, 3899 const struct addrinfo * hints, 3900 const struct addrinfo * res 3901 ) 3902 { 3903 struct peer * pool; /* pool solicitor association */ 3904 associd_t assoc; 3905 3906 if (rescode) { 3907 msyslog(LOG_ERR, 3908 "error resolving pool %s: %s (%d)", 3909 name, gai_strerror(rescode), rescode); 3910 return; 3911 } 3912 3913 assoc = (associd_t)(intptr_t)context; 3914 pool = findpeerbyassoc(assoc); 3915 if (NULL == pool) { 3916 msyslog(LOG_ERR, 3917 "Could not find assoc %u for pool DNS %s", 3918 assoc, name); 3919 return; 3920 } 3921 DPRINTF(1, ("pool DNS %s completed\n", name)); 3922 pool->addrs = copy_addrinfo_list(res); 3923 pool->ai = pool->addrs; 3924 pool_xmit(pool); 3925 3926 } 3927 #endif /* WORKER */ 3928 3929 3930 #ifdef AUTOKEY 3931 /* 3932 * key_expire - purge the key list 3933 */ 3934 void 3935 key_expire( 3936 struct peer *peer /* peer structure pointer */ 3937 ) 3938 { 3939 int i; 3940 3941 if (peer->keylist != NULL) { 3942 for (i = 0; i <= peer->keynumber; i++) 3943 authtrust(peer->keylist[i], 0); 3944 free(peer->keylist); 3945 peer->keylist = NULL; 3946 } 3947 value_free(&peer->sndval); 3948 peer->keynumber = 0; 3949 peer->flags &= ~FLAG_ASSOC; 3950 DPRINTF(1, ("key_expire: at %lu associd %d\n", current_time, 3951 peer->associd)); 3952 } 3953 #endif /* AUTOKEY */ 3954 3955 3956 /* 3957 * local_refid(peer) - check peer refid to avoid selecting peers 3958 * currently synced to this ntpd. 3959 */ 3960 static int 3961 local_refid( 3962 struct peer * p 3963 ) 3964 { 3965 endpt * unicast_ep; 3966 3967 if (p->dstadr != NULL && !(INT_MCASTIF & p->dstadr->flags)) 3968 unicast_ep = p->dstadr; 3969 else 3970 unicast_ep = findinterface(&p->srcadr); 3971 3972 if (unicast_ep != NULL && p->refid == unicast_ep->addr_refid) 3973 return TRUE; 3974 else 3975 return FALSE; 3976 } 3977 3978 3979 /* 3980 * Determine if the peer is unfit for synchronization 3981 * 3982 * A peer is unfit for synchronization if 3983 * > TEST10 bad leap or stratum below floor or at or above ceiling 3984 * > TEST11 root distance exceeded for remote peer 3985 * > TEST12 a direct or indirect synchronization loop would form 3986 * > TEST13 unreachable or noselect 3987 */ 3988 int /* FALSE if fit, TRUE if unfit */ 3989 peer_unfit( 3990 struct peer *peer /* peer structure pointer */ 3991 ) 3992 { 3993 int rval = 0; 3994 3995 /* 3996 * A stratum error occurs if (1) the server has never been 3997 * synchronized, (2) the server stratum is below the floor or 3998 * greater than or equal to the ceiling. 3999 */ 4000 if ( peer->leap == LEAP_NOTINSYNC 4001 || peer->stratum < sys_floor 4002 || peer->stratum >= sys_ceiling) 4003 rval |= TEST10; /* bad synch or stratum */ 4004 4005 /* 4006 * A distance error for a remote peer occurs if the root 4007 * distance is greater than or equal to the distance threshold 4008 * plus the increment due to one host poll interval. 4009 */ 4010 if ( !(peer->flags & FLAG_REFCLOCK) 4011 && root_distance(peer) >= sys_maxdist 4012 + clock_phi * ULOGTOD(peer->hpoll)) 4013 rval |= TEST11; /* distance exceeded */ 4014 4015 /* 4016 * A loop error occurs if the remote peer is synchronized to the 4017 * local peer or if the remote peer is synchronized to the same 4018 * server as the local peer but only if the remote peer is 4019 * neither a reference clock nor an orphan. 4020 */ 4021 if (peer->stratum > 1 && local_refid(peer)) 4022 rval |= TEST12; /* synchronization loop */ 4023 4024 /* 4025 * An unreachable error occurs if the server is unreachable or 4026 * the noselect bit is set. 4027 */ 4028 if (!peer->reach || (peer->flags & FLAG_NOSELECT)) 4029 rval |= TEST13; /* unreachable */ 4030 4031 peer->flash &= ~PEER_TEST_MASK; 4032 peer->flash |= rval; 4033 return (rval); 4034 } 4035 4036 4037 /* 4038 * Find the precision of this particular machine 4039 */ 4040 #define MINSTEP 20e-9 /* minimum clock increment (s) */ 4041 #define MAXSTEP 1 /* maximum clock increment (s) */ 4042 #define MINCHANGES 12 /* minimum number of step samples */ 4043 #define MAXLOOPS ((int)(1. / MINSTEP)) /* avoid infinite loop */ 4044 4045 /* 4046 * This routine measures the system precision defined as the minimum of 4047 * a sequence of differences between successive readings of the system 4048 * clock. However, if a difference is less than MINSTEP, the clock has 4049 * been read more than once during a clock tick and the difference is 4050 * ignored. We set MINSTEP greater than zero in case something happens 4051 * like a cache miss, and to tolerate underlying system clocks which 4052 * ensure each reading is strictly greater than prior readings while 4053 * using an underlying stepping (not interpolated) clock. 4054 * 4055 * sys_tick and sys_precision represent the time to read the clock for 4056 * systems with high-precision clocks, and the tick interval or step 4057 * size for lower-precision stepping clocks. 4058 * 4059 * This routine also measures the time to read the clock on stepping 4060 * system clocks by counting the number of readings between changes of 4061 * the underlying clock. With either type of clock, the minimum time 4062 * to read the clock is saved as sys_fuzz, and used to ensure the 4063 * get_systime() readings always increase and are fuzzed below sys_fuzz. 4064 */ 4065 void 4066 measure_precision(void) 4067 { 4068 /* 4069 * With sys_fuzz set to zero, get_systime() fuzzing of low bits 4070 * is effectively disabled. trunc_os_clock is FALSE to disable 4071 * get_ostime() simulation of a low-precision system clock. 4072 */ 4073 set_sys_fuzz(0.); 4074 trunc_os_clock = FALSE; 4075 measured_tick = measure_tick_fuzz(); 4076 set_sys_tick_precision(measured_tick); 4077 msyslog(LOG_INFO, "proto: precision = %.3f usec (%d)", 4078 sys_tick * 1e6, sys_precision); 4079 if (sys_fuzz < sys_tick) { 4080 msyslog(LOG_NOTICE, "proto: fuzz beneath %.3f usec", 4081 sys_fuzz * 1e6); 4082 } 4083 } 4084 4085 4086 /* 4087 * measure_tick_fuzz() 4088 * 4089 * measures the minimum time to read the clock (stored in sys_fuzz) 4090 * and returns the tick, the larger of the minimum increment observed 4091 * between successive clock readings and the time to read the clock. 4092 */ 4093 double 4094 measure_tick_fuzz(void) 4095 { 4096 l_fp minstep; /* MINSTEP as l_fp */ 4097 l_fp val; /* current seconds fraction */ 4098 l_fp last; /* last seconds fraction */ 4099 l_fp ldiff; /* val - last */ 4100 double tick; /* computed tick value */ 4101 double diff; 4102 long repeats; 4103 long max_repeats; 4104 int changes; 4105 int i; /* log2 precision */ 4106 4107 tick = MAXSTEP; 4108 max_repeats = 0; 4109 repeats = 0; 4110 changes = 0; 4111 DTOLFP(MINSTEP, &minstep); 4112 get_systime(&last); 4113 for (i = 0; i < MAXLOOPS && changes < MINCHANGES; i++) { 4114 get_systime(&val); 4115 ldiff = val; 4116 L_SUB(&ldiff, &last); 4117 last = val; 4118 if (L_ISGT(&ldiff, &minstep)) { 4119 max_repeats = max(repeats, max_repeats); 4120 repeats = 0; 4121 changes++; 4122 LFPTOD(&ldiff, diff); 4123 tick = min(diff, tick); 4124 } else { 4125 repeats++; 4126 } 4127 } 4128 if (changes < MINCHANGES) { 4129 msyslog(LOG_ERR, "Fatal error: precision could not be measured (MINSTEP too large?)"); 4130 exit(1); 4131 } 4132 4133 if (0 == max_repeats) { 4134 set_sys_fuzz(tick); 4135 } else { 4136 set_sys_fuzz(tick / max_repeats); 4137 } 4138 4139 return tick; 4140 } 4141 4142 4143 void 4144 set_sys_tick_precision( 4145 double tick 4146 ) 4147 { 4148 int i; 4149 4150 if (tick > 1.) { 4151 msyslog(LOG_ERR, 4152 "unsupported tick %.3f > 1s ignored", tick); 4153 return; 4154 } 4155 if (tick < measured_tick) { 4156 msyslog(LOG_ERR, 4157 "proto: tick %.3f less than measured tick %.3f, ignored", 4158 tick, measured_tick); 4159 return; 4160 } else if (tick > measured_tick) { 4161 trunc_os_clock = TRUE; 4162 msyslog(LOG_NOTICE, 4163 "proto: truncating system clock to multiples of %.9f", 4164 tick); 4165 } 4166 sys_tick = tick; 4167 4168 /* 4169 * Find the nearest power of two. 4170 */ 4171 for (i = 0; tick <= 1; i--) 4172 tick *= 2; 4173 if (tick - 1 > 1 - tick / 2) 4174 i++; 4175 4176 sys_precision = (s_char)i; 4177 } 4178 4179 4180 /* 4181 * init_proto - initialize the protocol module's data 4182 */ 4183 void 4184 init_proto(void) 4185 { 4186 l_fp dummy; 4187 int i; 4188 4189 /* 4190 * Fill in the sys_* stuff. Default is don't listen to 4191 * broadcasting, require authentication. 4192 */ 4193 set_sys_leap(LEAP_NOTINSYNC); 4194 sys_stratum = STRATUM_UNSPEC; 4195 memcpy(&sys_refid, "INIT", 4); 4196 sys_peer = NULL; 4197 sys_rootdelay = 0; 4198 sys_rootdisp = 0; 4199 L_CLR(&sys_reftime); 4200 sys_jitter = 0; 4201 measure_precision(); 4202 get_systime(&dummy); 4203 sys_survivors = 0; 4204 sys_manycastserver = 0; 4205 sys_bclient = 0; 4206 sys_bdelay = 0; 4207 sys_authenticate = 1; 4208 sys_stattime = current_time; 4209 orphwait = current_time + sys_orphwait; 4210 proto_clr_stats(); 4211 for (i = 0; i < MAX_TTL; i++) { 4212 sys_ttl[i] = (u_char)((i * 256) / MAX_TTL); 4213 sys_ttlmax = i; 4214 } 4215 hardpps_enable = 0; 4216 stats_control = 1; 4217 } 4218 4219 4220 /* 4221 * proto_config - configure the protocol module 4222 */ 4223 void 4224 proto_config( 4225 int item, 4226 u_long value, 4227 double dvalue, 4228 sockaddr_u *svalue 4229 ) 4230 { 4231 /* 4232 * Figure out what he wants to change, then do it 4233 */ 4234 DPRINTF(2, ("proto_config: code %d value %lu dvalue %lf\n", 4235 item, value, dvalue)); 4236 4237 switch (item) { 4238 4239 /* 4240 * enable and disable commands - arguments are Boolean. 4241 */ 4242 case PROTO_AUTHENTICATE: /* authentication (auth) */ 4243 sys_authenticate = value; 4244 break; 4245 4246 case PROTO_BROADCLIENT: /* broadcast client (bclient) */ 4247 sys_bclient = (int)value; 4248 if (sys_bclient == 0) 4249 io_unsetbclient(); 4250 else 4251 io_setbclient(); 4252 break; 4253 4254 #ifdef REFCLOCK 4255 case PROTO_CAL: /* refclock calibrate (calibrate) */ 4256 cal_enable = value; 4257 break; 4258 #endif /* REFCLOCK */ 4259 4260 case PROTO_KERNEL: /* kernel discipline (kernel) */ 4261 select_loop(value); 4262 break; 4263 4264 case PROTO_MONITOR: /* monitoring (monitor) */ 4265 if (value) 4266 mon_start(MON_ON); 4267 else { 4268 mon_stop(MON_ON); 4269 if (mon_enabled) 4270 msyslog(LOG_WARNING, 4271 "restrict: 'monitor' cannot be disabled while 'limited' is enabled"); 4272 } 4273 break; 4274 4275 case PROTO_NTP: /* NTP discipline (ntp) */ 4276 ntp_enable = value; 4277 break; 4278 4279 case PROTO_MODE7: /* mode7 management (ntpdc) */ 4280 ntp_mode7 = value; 4281 break; 4282 4283 case PROTO_PPS: /* PPS discipline (pps) */ 4284 hardpps_enable = value; 4285 break; 4286 4287 case PROTO_FILEGEN: /* statistics (stats) */ 4288 stats_control = value; 4289 break; 4290 4291 /* 4292 * tos command - arguments are double, sometimes cast to int 4293 */ 4294 case PROTO_BEACON: /* manycast beacon (beacon) */ 4295 sys_beacon = (int)dvalue; 4296 break; 4297 4298 case PROTO_BROADDELAY: /* default broadcast delay (bdelay) */ 4299 sys_bdelay = dvalue; 4300 break; 4301 4302 case PROTO_CEILING: /* stratum ceiling (ceiling) */ 4303 sys_ceiling = (int)dvalue; 4304 break; 4305 4306 case PROTO_COHORT: /* cohort switch (cohort) */ 4307 sys_cohort = (int)dvalue; 4308 break; 4309 4310 case PROTO_FLOOR: /* stratum floor (floor) */ 4311 sys_floor = (int)dvalue; 4312 break; 4313 4314 case PROTO_MAXCLOCK: /* maximum candidates (maxclock) */ 4315 sys_maxclock = (int)dvalue; 4316 break; 4317 4318 case PROTO_MAXDIST: /* select threshold (maxdist) */ 4319 sys_maxdist = dvalue; 4320 break; 4321 4322 case PROTO_CALLDELAY: /* modem call delay (mdelay) */ 4323 break; /* NOT USED */ 4324 4325 case PROTO_MINCLOCK: /* minimum candidates (minclock) */ 4326 sys_minclock = (int)dvalue; 4327 break; 4328 4329 case PROTO_MINDISP: /* minimum distance (mindist) */ 4330 sys_mindisp = dvalue; 4331 break; 4332 4333 case PROTO_MINSANE: /* minimum survivors (minsane) */ 4334 sys_minsane = (int)dvalue; 4335 break; 4336 4337 case PROTO_ORPHAN: /* orphan stratum (orphan) */ 4338 sys_orphan = (int)dvalue; 4339 break; 4340 4341 case PROTO_ORPHWAIT: /* orphan wait (orphwait) */ 4342 orphwait -= sys_orphwait; 4343 sys_orphwait = (int)dvalue; 4344 orphwait += sys_orphwait; 4345 break; 4346 4347 /* 4348 * Miscellaneous commands 4349 */ 4350 case PROTO_MULTICAST_ADD: /* add group address */ 4351 if (svalue != NULL) 4352 io_multicast_add(svalue); 4353 sys_bclient = 1; 4354 break; 4355 4356 case PROTO_MULTICAST_DEL: /* delete group address */ 4357 if (svalue != NULL) 4358 io_multicast_del(svalue); 4359 break; 4360 4361 default: 4362 msyslog(LOG_NOTICE, 4363 "proto: unsupported option %d", item); 4364 } 4365 } 4366 4367 4368 /* 4369 * proto_clr_stats - clear protocol stat counters 4370 */ 4371 void 4372 proto_clr_stats(void) 4373 { 4374 sys_stattime = current_time; 4375 sys_received = 0; 4376 sys_processed = 0; 4377 sys_newversion = 0; 4378 sys_oldversion = 0; 4379 sys_declined = 0; 4380 sys_restricted = 0; 4381 sys_badlength = 0; 4382 sys_badauth = 0; 4383 sys_limitrejected = 0; 4384 sys_kodsent = 0; 4385 } 4386