1 /* 2 * ntp_proto.c - NTP version 4 protocol machinery 3 * 4 * ATTENTION: Get approval from Dave Mills on all changes to this file! 5 * 6 */ 7 #ifdef HAVE_CONFIG_H 8 #include <config.h> 9 #endif 10 11 #include "ntpd.h" 12 #include "ntp_stdlib.h" 13 #include "ntp_unixtime.h" 14 #include "ntp_control.h" 15 #include "ntp_string.h" 16 #include "ntp_leapsec.h" 17 #include "refidsmear.h" 18 #include "lib_strbuf.h" 19 20 #include <stdio.h> 21 #ifdef HAVE_LIBSCF_H 22 #include <libscf.h> 23 #endif 24 #ifdef HAVE_UNISTD_H 25 #include <unistd.h> 26 #endif 27 28 /* [Bug 3031] define automatic broadcastdelay cutoff preset */ 29 #ifndef BDELAY_DEFAULT 30 # define BDELAY_DEFAULT (-0.050) 31 #endif 32 33 /* 34 * This macro defines the authentication state. If x is 1 authentication 35 * is required; othewise it is optional. 36 */ 37 #define AUTH(x, y) ((x) ? (y) == AUTH_OK \ 38 : (y) == AUTH_OK || (y) == AUTH_NONE) 39 40 #define AUTH_NONE 0 /* authentication not required */ 41 #define AUTH_OK 1 /* authentication OK */ 42 #define AUTH_ERROR 2 /* authentication error */ 43 #define AUTH_CRYPTO 3 /* crypto_NAK */ 44 45 /* 46 * Set up Kiss Code values 47 */ 48 49 enum kiss_codes { 50 NOKISS, /* No Kiss Code */ 51 RATEKISS, /* Rate limit Kiss Code */ 52 DENYKISS, /* Deny Kiss */ 53 RSTRKISS, /* Restricted Kiss */ 54 XKISS, /* Experimental Kiss */ 55 UNKNOWNKISS /* Unknown Kiss Code */ 56 }; 57 58 enum nak_error_codes { 59 NONAK, /* No NAK seen */ 60 INVALIDNAK, /* NAK cannot be used */ 61 VALIDNAK /* NAK is valid */ 62 }; 63 64 /* 65 * traffic shaping parameters 66 */ 67 #define NTP_IBURST 6 /* packets in iburst */ 68 #define RESP_DELAY 1 /* refclock burst delay (s) */ 69 70 /* 71 * pool soliciting restriction duration (s) 72 */ 73 #define POOL_SOLICIT_WINDOW 8 74 75 /* 76 * peer_select groups statistics for a peer used by clock_select() and 77 * clock_cluster(). 78 */ 79 typedef struct peer_select_tag { 80 struct peer * peer; 81 double synch; /* sync distance */ 82 double error; /* jitter */ 83 double seljit; /* selection jitter */ 84 } peer_select; 85 86 /* 87 * System variables are declared here. Unless specified otherwise, all 88 * times are in seconds. 89 */ 90 u_char sys_leap; /* system leap indicator, use set_sys_leap() to change this */ 91 u_char xmt_leap; /* leap indicator sent in client requests, set up by set_sys_leap() */ 92 u_char sys_stratum; /* system stratum */ 93 s_char sys_precision; /* local clock precision (log2 s) */ 94 double sys_rootdelay; /* roundtrip delay to primary source */ 95 double sys_rootdisp; /* dispersion to primary source */ 96 u_int32 sys_refid; /* reference id (network byte order) */ 97 l_fp sys_reftime; /* last update time */ 98 struct peer *sys_peer; /* current peer */ 99 100 #ifdef LEAP_SMEAR 101 struct leap_smear_info leap_smear; 102 #endif 103 int leap_sec_in_progress; 104 105 /* 106 * Rate controls. Leaky buckets are used to throttle the packet 107 * transmission rates in order to protect busy servers such as at NIST 108 * and USNO. There is a counter for each association and another for KoD 109 * packets. The association counter decrements each second, but not 110 * below zero. Each time a packet is sent the counter is incremented by 111 * a configurable value representing the average interval between 112 * packets. A packet is delayed as long as the counter is greater than 113 * zero. Note this does not affect the time value computations. 114 */ 115 /* 116 * Nonspecified system state variables 117 */ 118 int sys_bclient; /* broadcast client enable */ 119 double sys_bdelay; /* broadcast client default delay */ 120 int sys_authenticate; /* requre authentication for config */ 121 l_fp sys_authdelay; /* authentication delay */ 122 double sys_offset; /* current local clock offset */ 123 double sys_mindisp = MINDISPERSE; /* minimum distance (s) */ 124 double sys_maxdist = MAXDISTANCE; /* selection threshold */ 125 double sys_jitter; /* system jitter */ 126 u_long sys_epoch; /* last clock update time */ 127 static double sys_clockhop; /* clockhop threshold */ 128 static int leap_vote_ins; /* leap consensus for insert */ 129 static int leap_vote_del; /* leap consensus for delete */ 130 keyid_t sys_private; /* private value for session seed */ 131 int sys_manycastserver; /* respond to manycast client pkts */ 132 int ntp_mode7; /* respond to ntpdc (mode7) */ 133 int peer_ntpdate; /* active peers in ntpdate mode */ 134 int sys_survivors; /* truest of the truechimers */ 135 char *sys_ident = NULL; /* identity scheme */ 136 137 /* 138 * TOS and multicast mapping stuff 139 */ 140 int sys_floor = 0; /* cluster stratum floor */ 141 int sys_ceiling = STRATUM_UNSPEC - 1; /* cluster stratum ceiling */ 142 int sys_minsane = 1; /* minimum candidates */ 143 int sys_minclock = NTP_MINCLOCK; /* minimum candidates */ 144 int sys_maxclock = NTP_MAXCLOCK; /* maximum candidates */ 145 int sys_cohort = 0; /* cohort switch */ 146 int sys_orphan = STRATUM_UNSPEC + 1; /* orphan stratum */ 147 int sys_orphwait = NTP_ORPHWAIT; /* orphan wait */ 148 int sys_beacon = BEACON; /* manycast beacon interval */ 149 int sys_ttlmax; /* max ttl mapping vector index */ 150 u_char sys_ttl[MAX_TTL]; /* ttl mapping vector */ 151 152 /* 153 * Statistics counters - first the good, then the bad 154 */ 155 u_long sys_stattime; /* elapsed time */ 156 u_long sys_received; /* packets received */ 157 u_long sys_processed; /* packets for this host */ 158 u_long sys_newversion; /* current version */ 159 u_long sys_oldversion; /* old version */ 160 u_long sys_restricted; /* access denied */ 161 u_long sys_badlength; /* bad length or format */ 162 u_long sys_badauth; /* bad authentication */ 163 u_long sys_declined; /* declined */ 164 u_long sys_limitrejected; /* rate exceeded */ 165 u_long sys_kodsent; /* KoD sent */ 166 167 /* 168 * Mechanism knobs: how soon do we unpeer()? 169 * 170 * The default way is "on-receipt". If this was a packet from a 171 * well-behaved source, on-receipt will offer the fastest recovery. 172 * If this was from a DoS attack, the default way makes it easier 173 * for a bad-guy to DoS us. So look and see what bites you harder 174 * and choose according to your environment. 175 */ 176 int unpeer_crypto_early = 1; /* bad crypto (TEST9) */ 177 int unpeer_crypto_nak_early = 1; /* crypto_NAK (TEST5) */ 178 int unpeer_digest_early = 1; /* bad digest (TEST5) */ 179 180 int dynamic_interleave = DYNAMIC_INTERLEAVE; /* Bug 2978 mitigation */ 181 182 int kiss_code_check(u_char hisleap, u_char hisstratum, u_char hismode, u_int32 refid); 183 enum nak_error_codes valid_NAK(struct peer *peer, struct recvbuf *rbufp, u_char hismode); 184 static double root_distance (struct peer *); 185 static void clock_combine (peer_select *, int, int); 186 static void peer_xmit (struct peer *); 187 static void fast_xmit (struct recvbuf *, int, keyid_t, int); 188 static void pool_xmit (struct peer *); 189 static void clock_update (struct peer *); 190 static void measure_precision(void); 191 static double measure_tick_fuzz(void); 192 static int local_refid (struct peer *); 193 static int peer_unfit (struct peer *); 194 #ifdef AUTOKEY 195 static int group_test (char *, char *); 196 #endif /* AUTOKEY */ 197 #ifdef WORKER 198 void pool_name_resolved (int, int, void *, const char *, 199 const char *, const struct addrinfo *, 200 const struct addrinfo *); 201 #endif /* WORKER */ 202 203 const char * amtoa (int am); 204 205 206 void 207 set_sys_leap( 208 u_char new_sys_leap 209 ) 210 { 211 sys_leap = new_sys_leap; 212 xmt_leap = sys_leap; 213 214 /* 215 * Under certain conditions we send faked leap bits to clients, so 216 * eventually change xmt_leap below, but never change LEAP_NOTINSYNC. 217 */ 218 if (xmt_leap != LEAP_NOTINSYNC) { 219 if (leap_sec_in_progress) { 220 /* always send "not sync" */ 221 xmt_leap = LEAP_NOTINSYNC; 222 } 223 #ifdef LEAP_SMEAR 224 else { 225 /* 226 * If leap smear is enabled in general we must 227 * never send a leap second warning to clients, 228 * so make sure we only send "in sync". 229 */ 230 if (leap_smear.enabled) 231 xmt_leap = LEAP_NOWARNING; 232 } 233 #endif /* LEAP_SMEAR */ 234 } 235 } 236 237 238 /* 239 * Kiss Code check 240 */ 241 int 242 kiss_code_check( 243 u_char hisleap, 244 u_char hisstratum, 245 u_char hismode, 246 u_int32 refid 247 ) 248 { 249 250 if ( hismode == MODE_SERVER 251 && hisleap == LEAP_NOTINSYNC 252 && hisstratum == STRATUM_UNSPEC) { 253 if(memcmp(&refid,"RATE", 4) == 0) { 254 return (RATEKISS); 255 } else if(memcmp(&refid,"DENY", 4) == 0) { 256 return (DENYKISS); 257 } else if(memcmp(&refid,"RSTR", 4) == 0) { 258 return (RSTRKISS); 259 } else if(memcmp(&refid,"X", 1) == 0) { 260 return (XKISS); 261 } else { 262 return (UNKNOWNKISS); 263 } 264 } else { 265 return (NOKISS); 266 } 267 } 268 269 270 /* 271 * Check that NAK is valid 272 */ 273 enum nak_error_codes 274 valid_NAK( 275 struct peer *peer, 276 struct recvbuf *rbufp, 277 u_char hismode 278 ) 279 { 280 int base_packet_length = MIN_V4_PKT_LEN; 281 int remainder_size; 282 struct pkt *rpkt; 283 int keyid; 284 285 /* 286 * Check to see if there is something beyond the basic packet 287 */ 288 if (rbufp->recv_length == base_packet_length) { 289 return NONAK; 290 } 291 292 remainder_size = rbufp->recv_length - base_packet_length; 293 /* 294 * Is this a potential NAK? 295 */ 296 if (remainder_size != 4) { 297 return NONAK; 298 } 299 300 /* 301 * Only server responses can contain NAK's 302 */ 303 304 if (hismode != MODE_SERVER && 305 hismode != MODE_ACTIVE && 306 hismode != MODE_PASSIVE 307 ) { 308 return (INVALIDNAK); 309 } 310 311 /* 312 * Make sure that the extra field in the packet is all zeros 313 */ 314 rpkt = &rbufp->recv_pkt; 315 keyid = ntohl(((u_int32 *)rpkt)[base_packet_length / 4]); 316 if (keyid != 0) { 317 return (INVALIDNAK); 318 } 319 320 /* 321 * Only valid if peer uses a key 322 */ 323 if (peer->keyid > 0 || peer->flags & FLAG_SKEY) { 324 return (VALIDNAK); 325 } 326 else { 327 return (INVALIDNAK); 328 } 329 } 330 331 332 /* 333 * transmit - transmit procedure called by poll timeout 334 */ 335 void 336 transmit( 337 struct peer *peer /* peer structure pointer */ 338 ) 339 { 340 u_char hpoll; 341 342 /* 343 * The polling state machine. There are two kinds of machines, 344 * those that never expect a reply (broadcast and manycast 345 * server modes) and those that do (all other modes). The dance 346 * is intricate... 347 */ 348 hpoll = peer->hpoll; 349 350 /* 351 * In broadcast mode the poll interval is never changed from 352 * minpoll. 353 */ 354 if (peer->cast_flags & (MDF_BCAST | MDF_MCAST)) { 355 peer->outdate = current_time; 356 if (sys_leap != LEAP_NOTINSYNC) 357 peer_xmit(peer); 358 poll_update(peer, hpoll); 359 return; 360 } 361 362 /* 363 * In manycast mode we start with unity ttl. The ttl is 364 * increased by one for each poll until either sys_maxclock 365 * servers have been found or the maximum ttl is reached. When 366 * sys_maxclock servers are found we stop polling until one or 367 * more servers have timed out or until less than sys_minclock 368 * associations turn up. In this case additional better servers 369 * are dragged in and preempt the existing ones. Once every 370 * sys_beacon seconds we are to transmit unconditionally, but 371 * this code is not quite right -- peer->unreach counts polls 372 * and is being compared with sys_beacon, so the beacons happen 373 * every sys_beacon polls. 374 */ 375 if (peer->cast_flags & MDF_ACAST) { 376 peer->outdate = current_time; 377 if (peer->unreach > sys_beacon) { 378 peer->unreach = 0; 379 peer->ttl = 0; 380 peer_xmit(peer); 381 } else if ( sys_survivors < sys_minclock 382 || peer_associations < sys_maxclock) { 383 if (peer->ttl < (u_int32)sys_ttlmax) 384 peer->ttl++; 385 peer_xmit(peer); 386 } 387 peer->unreach++; 388 poll_update(peer, hpoll); 389 return; 390 } 391 392 /* 393 * Pool associations transmit unicast solicitations when there 394 * are less than a hard limit of 2 * sys_maxclock associations, 395 * and either less than sys_minclock survivors or less than 396 * sys_maxclock associations. The hard limit prevents unbounded 397 * growth in associations if the system clock or network quality 398 * result in survivor count dipping below sys_minclock often. 399 * This was observed testing with pool, where sys_maxclock == 12 400 * resulted in 60 associations without the hard limit. A 401 * similar hard limit on manycastclient ephemeral associations 402 * may be appropriate. 403 */ 404 if (peer->cast_flags & MDF_POOL) { 405 peer->outdate = current_time; 406 if ( (peer_associations <= 2 * sys_maxclock) 407 && ( peer_associations < sys_maxclock 408 || sys_survivors < sys_minclock)) 409 pool_xmit(peer); 410 poll_update(peer, hpoll); 411 return; 412 } 413 414 /* 415 * In unicast modes the dance is much more intricate. It is 416 * designed to back off whenever possible to minimize network 417 * traffic. 418 */ 419 if (peer->burst == 0) { 420 u_char oreach; 421 422 /* 423 * Update the reachability status. If not heard for 424 * three consecutive polls, stuff infinity in the clock 425 * filter. 426 */ 427 oreach = peer->reach; 428 peer->outdate = current_time; 429 peer->unreach++; 430 peer->reach <<= 1; 431 if (!peer->reach) { 432 433 /* 434 * Here the peer is unreachable. If it was 435 * previously reachable raise a trap. Send a 436 * burst if enabled. 437 */ 438 clock_filter(peer, 0., 0., MAXDISPERSE); 439 if (oreach) { 440 peer_unfit(peer); 441 report_event(PEVNT_UNREACH, peer, NULL); 442 } 443 if ( (peer->flags & FLAG_IBURST) 444 && peer->retry == 0) 445 peer->retry = NTP_RETRY; 446 } else { 447 448 /* 449 * Here the peer is reachable. Send a burst if 450 * enabled and the peer is fit. Reset unreach 451 * for persistent and ephemeral associations. 452 * Unreach is also reset for survivors in 453 * clock_select(). 454 */ 455 hpoll = sys_poll; 456 if (!(peer->flags & FLAG_PREEMPT)) 457 peer->unreach = 0; 458 if ( (peer->flags & FLAG_BURST) 459 && peer->retry == 0 460 && !peer_unfit(peer)) 461 peer->retry = NTP_RETRY; 462 } 463 464 /* 465 * Watch for timeout. If ephemeral, toss the rascal; 466 * otherwise, bump the poll interval. Note the 467 * poll_update() routine will clamp it to maxpoll. 468 * If preemptible and we have more peers than maxclock, 469 * and this peer has the minimum score of preemptibles, 470 * demobilize. 471 */ 472 if (peer->unreach >= NTP_UNREACH) { 473 hpoll++; 474 /* ephemeral: no FLAG_CONFIG nor FLAG_PREEMPT */ 475 if (!(peer->flags & (FLAG_CONFIG | FLAG_PREEMPT))) { 476 report_event(PEVNT_RESTART, peer, "timeout"); 477 peer_clear(peer, "TIME"); 478 unpeer(peer); 479 return; 480 } 481 if ( (peer->flags & FLAG_PREEMPT) 482 && (peer_associations > sys_maxclock) 483 && score_all(peer)) { 484 report_event(PEVNT_RESTART, peer, "timeout"); 485 peer_clear(peer, "TIME"); 486 unpeer(peer); 487 return; 488 } 489 } 490 } else { 491 peer->burst--; 492 if (peer->burst == 0) { 493 494 /* 495 * If ntpdate mode and the clock has not been 496 * set and all peers have completed the burst, 497 * we declare a successful failure. 498 */ 499 if (mode_ntpdate) { 500 peer_ntpdate--; 501 if (peer_ntpdate == 0) { 502 msyslog(LOG_NOTICE, 503 "ntpd: no servers found"); 504 if (!msyslog_term) 505 printf( 506 "ntpd: no servers found\n"); 507 exit (0); 508 } 509 } 510 } 511 } 512 if (peer->retry > 0) 513 peer->retry--; 514 515 /* 516 * Do not transmit if in broadcast client mode. 517 */ 518 if (peer->hmode != MODE_BCLIENT) 519 peer_xmit(peer); 520 poll_update(peer, hpoll); 521 522 return; 523 } 524 525 526 const char * 527 amtoa( 528 int am 529 ) 530 { 531 char *bp; 532 533 switch(am) { 534 case AM_ERR: return "AM_ERR"; 535 case AM_NOMATCH: return "AM_NOMATCH"; 536 case AM_PROCPKT: return "AM_PROCPKT"; 537 case AM_BCST: return "AM_BCST"; 538 case AM_FXMIT: return "AM_FXMIT"; 539 case AM_MANYCAST: return "AM_MANYCAST"; 540 case AM_NEWPASS: return "AM_NEWPASS"; 541 case AM_NEWBCL: return "AM_NEWBCL"; 542 case AM_POSSBCL: return "AM_POSSBCL"; 543 default: 544 LIB_GETBUF(bp); 545 snprintf(bp, LIB_BUFLENGTH, "AM_#%d", am); 546 return bp; 547 } 548 } 549 550 551 /* 552 * receive - receive procedure called for each packet received 553 */ 554 void 555 receive( 556 struct recvbuf *rbufp 557 ) 558 { 559 register struct peer *peer; /* peer structure pointer */ 560 register struct pkt *pkt; /* receive packet pointer */ 561 u_char hisversion; /* packet version */ 562 u_char hisleap; /* packet leap indicator */ 563 u_char hismode; /* packet mode */ 564 u_char hisstratum; /* packet stratum */ 565 u_short restrict_mask; /* restrict bits */ 566 const char *hm_str; /* hismode string */ 567 const char *am_str; /* association match string */ 568 int kissCode = NOKISS; /* Kiss Code */ 569 int has_mac; /* length of MAC field */ 570 int authlen; /* offset of MAC field */ 571 int is_authentic = 0; /* cryptosum ok */ 572 int crypto_nak_test; /* result of crypto-NAK check */ 573 int retcode = AM_NOMATCH; /* match code */ 574 keyid_t skeyid = 0; /* key IDs */ 575 u_int32 opcode = 0; /* extension field opcode */ 576 sockaddr_u *dstadr_sin; /* active runway */ 577 struct peer *peer2; /* aux peer structure pointer */ 578 endpt *match_ep; /* newpeer() local address */ 579 l_fp p_org; /* origin timestamp */ 580 l_fp p_rec; /* receive timestamp */ 581 l_fp p_xmt; /* transmit timestamp */ 582 #ifdef AUTOKEY 583 char hostname[NTP_MAXSTRLEN + 1]; 584 char *groupname = NULL; 585 struct autokey *ap; /* autokey structure pointer */ 586 int rval; /* cookie snatcher */ 587 keyid_t pkeyid = 0, tkeyid = 0; /* key IDs */ 588 #endif /* AUTOKEY */ 589 #ifdef HAVE_NTP_SIGND 590 static unsigned char zero_key[16]; 591 #endif /* HAVE_NTP_SIGND */ 592 593 /* 594 * Monitor the packet and get restrictions. Note that the packet 595 * length for control and private mode packets must be checked 596 * by the service routines. Some restrictions have to be handled 597 * later in order to generate a kiss-o'-death packet. 598 */ 599 /* 600 * Bogus port check is before anything, since it probably 601 * reveals a clogging attack. 602 */ 603 sys_received++; 604 if (0 == SRCPORT(&rbufp->recv_srcadr)) { 605 sys_badlength++; 606 return; /* bogus port */ 607 } 608 restrict_mask = restrictions(&rbufp->recv_srcadr); 609 pkt = &rbufp->recv_pkt; 610 DPRINTF(2, ("receive: at %ld %s<-%s flags %x restrict %03x org %#010x.%08x xmt %#010x.%08x\n", 611 current_time, stoa(&rbufp->dstadr->sin), 612 stoa(&rbufp->recv_srcadr), rbufp->dstadr->flags, 613 restrict_mask, ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 614 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 615 hisversion = PKT_VERSION(pkt->li_vn_mode); 616 hisleap = PKT_LEAP(pkt->li_vn_mode); 617 hismode = (int)PKT_MODE(pkt->li_vn_mode); 618 hisstratum = PKT_TO_STRATUM(pkt->stratum); 619 if (restrict_mask & RES_IGNORE) { 620 sys_restricted++; 621 return; /* ignore everything */ 622 } 623 if (hismode == MODE_PRIVATE) { 624 if (!ntp_mode7 || (restrict_mask & RES_NOQUERY)) { 625 sys_restricted++; 626 return; /* no query private */ 627 } 628 process_private(rbufp, ((restrict_mask & 629 RES_NOMODIFY) == 0)); 630 return; 631 } 632 if (hismode == MODE_CONTROL) { 633 if (restrict_mask & RES_NOQUERY) { 634 sys_restricted++; 635 return; /* no query control */ 636 } 637 process_control(rbufp, restrict_mask); 638 return; 639 } 640 if (restrict_mask & RES_DONTSERVE) { 641 sys_restricted++; 642 return; /* no time serve */ 643 } 644 645 /* 646 * This is for testing. If restricted drop ten percent of 647 * surviving packets. 648 */ 649 if (restrict_mask & RES_FLAKE) { 650 if ((double)ntp_random() / 0x7fffffff < .1) { 651 sys_restricted++; 652 return; /* no flakeway */ 653 } 654 } 655 656 /* 657 * Version check must be after the query packets, since they 658 * intentionally use an early version. 659 */ 660 if (hisversion == NTP_VERSION) { 661 sys_newversion++; /* new version */ 662 } else if ( !(restrict_mask & RES_VERSION) 663 && hisversion >= NTP_OLDVERSION) { 664 sys_oldversion++; /* previous version */ 665 } else { 666 sys_badlength++; 667 return; /* old version */ 668 } 669 670 /* 671 * Figure out his mode and validate the packet. This has some 672 * legacy raunch that probably should be removed. In very early 673 * NTP versions mode 0 was equivalent to what later versions 674 * would interpret as client mode. 675 */ 676 if (hismode == MODE_UNSPEC) { 677 if (hisversion == NTP_OLDVERSION) { 678 hismode = MODE_CLIENT; 679 } else { 680 sys_badlength++; 681 return; /* invalid mode */ 682 } 683 } 684 685 /* 686 * Parse the extension field if present. We figure out whether 687 * an extension field is present by measuring the MAC size. If 688 * the number of words following the packet header is 0, no MAC 689 * is present and the packet is not authenticated. If 1, the 690 * packet is a crypto-NAK; if 3, the packet is authenticated 691 * with DES; if 5, the packet is authenticated with MD5; if 6, 692 * the packet is authenticated with SHA. If 2 or * 4, the packet 693 * is a runt and discarded forthwith. If greater than 6, an 694 * extension field is present, so we subtract the length of the 695 * field and go around again. 696 */ 697 698 authlen = LEN_PKT_NOMAC; 699 has_mac = rbufp->recv_length - authlen; 700 while (has_mac > 0) { 701 u_int32 len; 702 #ifdef AUTOKEY 703 u_int32 hostlen; 704 struct exten *ep; 705 #endif /*AUTOKEY */ 706 707 if (has_mac % 4 != 0 || has_mac < (int)MIN_MAC_LEN) { 708 sys_badlength++; 709 return; /* bad length */ 710 } 711 if (has_mac <= (int)MAX_MAC_LEN) { 712 skeyid = ntohl(((u_int32 *)pkt)[authlen / 4]); 713 break; 714 715 } else { 716 opcode = ntohl(((u_int32 *)pkt)[authlen / 4]); 717 len = opcode & 0xffff; 718 if ( len % 4 != 0 719 || len < 4 720 || (int)len + authlen > rbufp->recv_length) { 721 sys_badlength++; 722 return; /* bad length */ 723 } 724 #ifdef AUTOKEY 725 /* 726 * Extract calling group name for later. If 727 * sys_groupname is non-NULL, there must be 728 * a group name provided to elicit a response. 729 */ 730 if ( (opcode & 0x3fff0000) == CRYPTO_ASSOC 731 && sys_groupname != NULL) { 732 ep = (struct exten *)&((u_int32 *)pkt)[authlen / 4]; 733 hostlen = ntohl(ep->vallen); 734 if ( hostlen >= sizeof(hostname) 735 || hostlen > len - 736 offsetof(struct exten, pkt)) { 737 sys_badlength++; 738 return; /* bad length */ 739 } 740 memcpy(hostname, &ep->pkt, hostlen); 741 hostname[hostlen] = '\0'; 742 groupname = strchr(hostname, '@'); 743 if (groupname == NULL) { 744 sys_declined++; 745 return; 746 } 747 groupname++; 748 } 749 #endif /* AUTOKEY */ 750 authlen += len; 751 has_mac -= len; 752 } 753 } 754 755 /* 756 * If has_mac is < 0 we had a malformed packet. 757 */ 758 if (has_mac < 0) { 759 sys_badlength++; 760 return; /* bad length */ 761 } 762 763 /* 764 * If authentication required, a MAC must be present. 765 */ 766 if (restrict_mask & RES_DONTTRUST && has_mac == 0) { 767 sys_restricted++; 768 return; /* access denied */ 769 } 770 771 /* 772 * Update the MRU list and finger the cloggers. It can be a 773 * little expensive, so turn it off for production use. 774 * RES_LIMITED and RES_KOD will be cleared in the returned 775 * restrict_mask unless one or both actions are warranted. 776 */ 777 restrict_mask = ntp_monitor(rbufp, restrict_mask); 778 if (restrict_mask & RES_LIMITED) { 779 sys_limitrejected++; 780 if ( !(restrict_mask & RES_KOD) 781 || MODE_BROADCAST == hismode 782 || MODE_SERVER == hismode) { 783 if (MODE_SERVER == hismode) 784 DPRINTF(1, ("Possibly self-induced rate limiting of MODE_SERVER from %s\n", 785 stoa(&rbufp->recv_srcadr))); 786 return; /* rate exceeded */ 787 } 788 if (hismode == MODE_CLIENT) 789 fast_xmit(rbufp, MODE_SERVER, skeyid, 790 restrict_mask); 791 else 792 fast_xmit(rbufp, MODE_ACTIVE, skeyid, 793 restrict_mask); 794 return; /* rate exceeded */ 795 } 796 restrict_mask &= ~RES_KOD; 797 798 /* 799 * We have tossed out as many buggy packets as possible early in 800 * the game to reduce the exposure to a clogging attack. Now we 801 * have to burn some cycles to find the association and 802 * authenticate the packet if required. Note that we burn only 803 * digest cycles, again to reduce exposure. There may be no 804 * matching association and that's okay. 805 * 806 * More on the autokey mambo. Normally the local interface is 807 * found when the association was mobilized with respect to a 808 * designated remote address. We assume packets arriving from 809 * the remote address arrive via this interface and the local 810 * address used to construct the autokey is the unicast address 811 * of the interface. However, if the sender is a broadcaster, 812 * the interface broadcast address is used instead. 813 * Notwithstanding this technobabble, if the sender is a 814 * multicaster, the broadcast address is null, so we use the 815 * unicast address anyway. Don't ask. 816 */ 817 peer = findpeer(rbufp, hismode, &retcode); 818 dstadr_sin = &rbufp->dstadr->sin; 819 NTOHL_FP(&pkt->org, &p_org); 820 NTOHL_FP(&pkt->rec, &p_rec); 821 NTOHL_FP(&pkt->xmt, &p_xmt); 822 hm_str = modetoa(hismode); 823 am_str = amtoa(retcode); 824 825 /* 826 * Authentication is conditioned by three switches: 827 * 828 * NOPEER (RES_NOPEER) do not mobilize an association unless 829 * authenticated 830 * NOTRUST (RES_DONTTRUST) do not allow access unless 831 * authenticated (implies NOPEER) 832 * enable (sys_authenticate) master NOPEER switch, by default 833 * on 834 * 835 * The NOPEER and NOTRUST can be specified on a per-client basis 836 * using the restrict command. The enable switch if on implies 837 * NOPEER for all clients. There are four outcomes: 838 * 839 * NONE The packet has no MAC. 840 * OK the packet has a MAC and authentication succeeds 841 * ERROR the packet has a MAC and authentication fails 842 * CRYPTO crypto-NAK. The MAC has four octets only. 843 * 844 * Note: The AUTH(x, y) macro is used to filter outcomes. If x 845 * is zero, acceptable outcomes of y are NONE and OK. If x is 846 * one, the only acceptable outcome of y is OK. 847 */ 848 crypto_nak_test = valid_NAK(peer, rbufp, hismode); 849 850 /* 851 * Drop any invalid crypto-NAKs 852 */ 853 if (crypto_nak_test == INVALIDNAK) { 854 report_event(PEVNT_AUTH, peer, "Invalid_NAK"); 855 if (0 != peer) { 856 peer->badNAK++; 857 } 858 msyslog(LOG_ERR, "Invalid-NAK error at %ld %s<-%s", 859 current_time, stoa(dstadr_sin), stoa(&rbufp->recv_srcadr)); 860 return; 861 } 862 863 if (has_mac == 0) { 864 restrict_mask &= ~RES_MSSNTP; 865 is_authentic = AUTH_NONE; /* not required */ 866 DPRINTF(2, ("receive: at %ld %s<-%s mode %d/%s:%s len %d org %#010x.%08x xmt %#010x.%08x NOMAC\n", 867 current_time, stoa(dstadr_sin), 868 stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str, 869 authlen, 870 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 871 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 872 } else if (crypto_nak_test == VALIDNAK) { 873 restrict_mask &= ~RES_MSSNTP; 874 is_authentic = AUTH_CRYPTO; /* crypto-NAK */ 875 DPRINTF(2, ("receive: at %ld %s<-%s mode %d/%s:%s keyid %08x len %d auth %d org %#010x.%08x xmt %#010x.%08x MAC4\n", 876 current_time, stoa(dstadr_sin), 877 stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str, 878 skeyid, authlen + has_mac, is_authentic, 879 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 880 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 881 882 #ifdef HAVE_NTP_SIGND 883 /* 884 * If the signature is 20 bytes long, the last 16 of 885 * which are zero, then this is a Microsoft client 886 * wanting AD-style authentication of the server's 887 * reply. 888 * 889 * This is described in Microsoft's WSPP docs, in MS-SNTP: 890 * http://msdn.microsoft.com/en-us/library/cc212930.aspx 891 */ 892 } else if ( has_mac == MAX_MD5_LEN 893 && (restrict_mask & RES_MSSNTP) 894 && (retcode == AM_FXMIT || retcode == AM_NEWPASS) 895 && (memcmp(zero_key, (char *)pkt + authlen + 4, 896 MAX_MD5_LEN - 4) == 0)) { 897 is_authentic = AUTH_NONE; 898 #endif /* HAVE_NTP_SIGND */ 899 900 } else { 901 restrict_mask &= ~RES_MSSNTP; 902 #ifdef AUTOKEY 903 /* 904 * For autokey modes, generate the session key 905 * and install in the key cache. Use the socket 906 * broadcast or unicast address as appropriate. 907 */ 908 if (crypto_flags && skeyid > NTP_MAXKEY) { 909 910 /* 911 * More on the autokey dance (AKD). A cookie is 912 * constructed from public and private values. 913 * For broadcast packets, the cookie is public 914 * (zero). For packets that match no 915 * association, the cookie is hashed from the 916 * addresses and private value. For server 917 * packets, the cookie was previously obtained 918 * from the server. For symmetric modes, the 919 * cookie was previously constructed using an 920 * agreement protocol; however, should PKI be 921 * unavailable, we construct a fake agreement as 922 * the EXOR of the peer and host cookies. 923 * 924 * hismode ephemeral persistent 925 * ======================================= 926 * active 0 cookie# 927 * passive 0% cookie# 928 * client sys cookie 0% 929 * server 0% sys cookie 930 * broadcast 0 0 931 * 932 * # if unsync, 0 933 * % can't happen 934 */ 935 if (has_mac < (int)MAX_MD5_LEN) { 936 sys_badauth++; 937 return; 938 } 939 if (hismode == MODE_BROADCAST) { 940 941 /* 942 * For broadcaster, use the interface 943 * broadcast address when available; 944 * otherwise, use the unicast address 945 * found when the association was 946 * mobilized. However, if this is from 947 * the wildcard interface, game over. 948 */ 949 if ( crypto_flags 950 && rbufp->dstadr == 951 ANY_INTERFACE_CHOOSE(&rbufp->recv_srcadr)) { 952 sys_restricted++; 953 return; /* no wildcard */ 954 } 955 pkeyid = 0; 956 if (!SOCK_UNSPEC(&rbufp->dstadr->bcast)) 957 dstadr_sin = 958 &rbufp->dstadr->bcast; 959 } else if (peer == NULL) { 960 pkeyid = session_key( 961 &rbufp->recv_srcadr, dstadr_sin, 0, 962 sys_private, 0); 963 } else { 964 pkeyid = peer->pcookie; 965 } 966 967 /* 968 * The session key includes both the public 969 * values and cookie. In case of an extension 970 * field, the cookie used for authentication 971 * purposes is zero. Note the hash is saved for 972 * use later in the autokey mambo. 973 */ 974 if (authlen > (int)LEN_PKT_NOMAC && pkeyid != 0) { 975 session_key(&rbufp->recv_srcadr, 976 dstadr_sin, skeyid, 0, 2); 977 tkeyid = session_key( 978 &rbufp->recv_srcadr, dstadr_sin, 979 skeyid, pkeyid, 0); 980 } else { 981 tkeyid = session_key( 982 &rbufp->recv_srcadr, dstadr_sin, 983 skeyid, pkeyid, 2); 984 } 985 986 } 987 #endif /* AUTOKEY */ 988 989 /* 990 * Compute the cryptosum. Note a clogging attack may 991 * succeed in bloating the key cache. If an autokey, 992 * purge it immediately, since we won't be needing it 993 * again. If the packet is authentic, it can mobilize an 994 * association. Note that there is no key zero. 995 */ 996 if (!authdecrypt(skeyid, (u_int32 *)pkt, authlen, 997 has_mac)) 998 is_authentic = AUTH_ERROR; 999 else 1000 is_authentic = AUTH_OK; 1001 #ifdef AUTOKEY 1002 if (crypto_flags && skeyid > NTP_MAXKEY) 1003 authtrust(skeyid, 0); 1004 #endif /* AUTOKEY */ 1005 DPRINTF(2, ("receive: at %ld %s<-%s mode %d/%s:%s keyid %08x len %d auth %d org %#010x.%08x xmt %#010x.%08x\n", 1006 current_time, stoa(dstadr_sin), 1007 stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str, 1008 skeyid, authlen + has_mac, is_authentic, 1009 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 1010 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 1011 } 1012 1013 /* 1014 * The association matching rules are implemented by a set of 1015 * routines and an association table. A packet matching an 1016 * association is processed by the peer process for that 1017 * association. If there are no errors, an ephemeral association 1018 * is mobilized: a broadcast packet mobilizes a broadcast client 1019 * aassociation; a manycast server packet mobilizes a manycast 1020 * client association; a symmetric active packet mobilizes a 1021 * symmetric passive association. 1022 */ 1023 switch (retcode) { 1024 1025 /* 1026 * This is a client mode packet not matching any association. If 1027 * an ordinary client, simply toss a server mode packet back 1028 * over the fence. If a manycast client, we have to work a 1029 * little harder. 1030 */ 1031 case AM_FXMIT: 1032 1033 /* 1034 * If authentication OK, send a server reply; otherwise, 1035 * send a crypto-NAK. 1036 */ 1037 if (!(rbufp->dstadr->flags & INT_MCASTOPEN)) { 1038 if (AUTH(restrict_mask & RES_DONTTRUST, 1039 is_authentic)) { 1040 fast_xmit(rbufp, MODE_SERVER, skeyid, 1041 restrict_mask); 1042 } else if (is_authentic == AUTH_ERROR) { 1043 fast_xmit(rbufp, MODE_SERVER, 0, 1044 restrict_mask); 1045 sys_badauth++; 1046 } else { 1047 sys_restricted++; 1048 } 1049 return; /* hooray */ 1050 } 1051 1052 /* 1053 * This must be manycast. Do not respond if not 1054 * configured as a manycast server. 1055 */ 1056 if (!sys_manycastserver) { 1057 sys_restricted++; 1058 return; /* not enabled */ 1059 } 1060 1061 #ifdef AUTOKEY 1062 /* 1063 * Do not respond if not the same group. 1064 */ 1065 if (group_test(groupname, NULL)) { 1066 sys_declined++; 1067 return; 1068 } 1069 #endif /* AUTOKEY */ 1070 1071 /* 1072 * Do not respond if we are not synchronized or our 1073 * stratum is greater than the manycaster or the 1074 * manycaster has already synchronized to us. 1075 */ 1076 if ( sys_leap == LEAP_NOTINSYNC 1077 || sys_stratum >= hisstratum 1078 || (!sys_cohort && sys_stratum == hisstratum + 1) 1079 || rbufp->dstadr->addr_refid == pkt->refid) { 1080 sys_declined++; 1081 return; /* no help */ 1082 } 1083 1084 /* 1085 * Respond only if authentication succeeds. Don't do a 1086 * crypto-NAK, as that would not be useful. 1087 */ 1088 if (AUTH(restrict_mask & RES_DONTTRUST, is_authentic)) 1089 fast_xmit(rbufp, MODE_SERVER, skeyid, 1090 restrict_mask); 1091 return; /* hooray */ 1092 1093 /* 1094 * This is a server mode packet returned in response to a client 1095 * mode packet sent to a multicast group address (for 1096 * manycastclient) or to a unicast address (for pool). The 1097 * origin timestamp is a good nonce to reliably associate the 1098 * reply with what was sent. If there is no match, that's 1099 * curious and could be an intruder attempting to clog, so we 1100 * just ignore it. 1101 * 1102 * If the packet is authentic and the manycastclient or pool 1103 * association is found, we mobilize a client association and 1104 * copy pertinent variables from the manycastclient or pool 1105 * association to the new client association. If not, just 1106 * ignore the packet. 1107 * 1108 * There is an implosion hazard at the manycast client, since 1109 * the manycast servers send the server packet immediately. If 1110 * the guy is already here, don't fire up a duplicate. 1111 */ 1112 case AM_MANYCAST: 1113 1114 #ifdef AUTOKEY 1115 /* 1116 * Do not respond if not the same group. 1117 */ 1118 if (group_test(groupname, NULL)) { 1119 sys_declined++; 1120 return; 1121 } 1122 #endif /* AUTOKEY */ 1123 if ((peer2 = findmanycastpeer(rbufp)) == NULL) { 1124 sys_restricted++; 1125 return; /* not enabled */ 1126 } 1127 if (!AUTH( (!(peer2->cast_flags & MDF_POOL) 1128 && sys_authenticate) 1129 || (restrict_mask & (RES_NOPEER | 1130 RES_DONTTRUST)), is_authentic)) { 1131 sys_restricted++; 1132 return; /* access denied */ 1133 } 1134 1135 /* 1136 * Do not respond if unsynchronized or stratum is below 1137 * the floor or at or above the ceiling. 1138 */ 1139 if ( hisleap == LEAP_NOTINSYNC 1140 || hisstratum < sys_floor 1141 || hisstratum >= sys_ceiling) { 1142 sys_declined++; 1143 return; /* no help */ 1144 } 1145 peer = newpeer(&rbufp->recv_srcadr, NULL, rbufp->dstadr, 1146 MODE_CLIENT, hisversion, peer2->minpoll, 1147 peer2->maxpoll, FLAG_PREEMPT | 1148 (FLAG_IBURST & peer2->flags), MDF_UCAST | 1149 MDF_UCLNT, 0, skeyid, sys_ident); 1150 if (NULL == peer) { 1151 sys_declined++; 1152 return; /* ignore duplicate */ 1153 } 1154 1155 /* 1156 * After each ephemeral pool association is spun, 1157 * accelerate the next poll for the pool solicitor so 1158 * the pool will fill promptly. 1159 */ 1160 if (peer2->cast_flags & MDF_POOL) 1161 peer2->nextdate = current_time + 1; 1162 1163 /* 1164 * Further processing of the solicitation response would 1165 * simply detect its origin timestamp as bogus for the 1166 * brand-new association (it matches the prototype 1167 * association) and tinker with peer->nextdate delaying 1168 * first sync. 1169 */ 1170 return; /* solicitation response handled */ 1171 1172 /* 1173 * This is the first packet received from a broadcast server. If 1174 * the packet is authentic and we are enabled as broadcast 1175 * client, mobilize a broadcast client association. We don't 1176 * kiss any frogs here. 1177 */ 1178 case AM_NEWBCL: 1179 1180 #ifdef AUTOKEY 1181 /* 1182 * Do not respond if not the same group. 1183 */ 1184 if (group_test(groupname, sys_ident)) { 1185 sys_declined++; 1186 return; 1187 } 1188 #endif /* AUTOKEY */ 1189 if (sys_bclient == 0) { 1190 sys_restricted++; 1191 return; /* not enabled */ 1192 } 1193 if (!AUTH(sys_authenticate | (restrict_mask & 1194 (RES_NOPEER | RES_DONTTRUST)), is_authentic)) { 1195 sys_restricted++; 1196 return; /* access denied */ 1197 } 1198 1199 /* 1200 * Do not respond if unsynchronized or stratum is below 1201 * the floor or at or above the ceiling. 1202 */ 1203 if ( hisleap == LEAP_NOTINSYNC 1204 || hisstratum < sys_floor 1205 || hisstratum >= sys_ceiling) { 1206 sys_declined++; 1207 return; /* no help */ 1208 } 1209 1210 #ifdef AUTOKEY 1211 /* 1212 * Do not respond if Autokey and the opcode is not a 1213 * CRYPTO_ASSOC response with association ID. 1214 */ 1215 if ( crypto_flags && skeyid > NTP_MAXKEY 1216 && (opcode & 0xffff0000) != (CRYPTO_ASSOC | CRYPTO_RESP)) { 1217 sys_declined++; 1218 return; /* protocol error */ 1219 } 1220 #endif /* AUTOKEY */ 1221 1222 /* 1223 * Broadcasts received via a multicast address may 1224 * arrive after a unicast volley has begun 1225 * with the same remote address. newpeer() will not 1226 * find duplicate associations on other local endpoints 1227 * if a non-NULL endpoint is supplied. multicastclient 1228 * ephemeral associations are unique across all local 1229 * endpoints. 1230 */ 1231 if (!(INT_MCASTOPEN & rbufp->dstadr->flags)) 1232 match_ep = rbufp->dstadr; 1233 else 1234 match_ep = NULL; 1235 1236 /* 1237 * Determine whether to execute the initial volley. 1238 */ 1239 if (sys_bdelay > 0.0) { 1240 #ifdef AUTOKEY 1241 /* 1242 * If a two-way exchange is not possible, 1243 * neither is Autokey. 1244 */ 1245 if (crypto_flags && skeyid > NTP_MAXKEY) { 1246 sys_restricted++; 1247 return; /* no autokey */ 1248 } 1249 #endif /* AUTOKEY */ 1250 1251 /* 1252 * Do not execute the volley. Start out in 1253 * broadcast client mode. 1254 */ 1255 peer = newpeer(&rbufp->recv_srcadr, NULL, 1256 match_ep, MODE_BCLIENT, hisversion, 1257 pkt->ppoll, pkt->ppoll, FLAG_PREEMPT, 1258 MDF_BCLNT, 0, skeyid, sys_ident); 1259 if (NULL == peer) { 1260 sys_restricted++; 1261 return; /* ignore duplicate */ 1262 1263 } else { 1264 peer->delay = sys_bdelay; 1265 peer->bxmt = p_xmt; 1266 } 1267 break; 1268 } 1269 1270 /* 1271 * Execute the initial volley in order to calibrate the 1272 * propagation delay and run the Autokey protocol. 1273 * 1274 * Note that the minpoll is taken from the broadcast 1275 * packet, normally 6 (64 s) and that the poll interval 1276 * is fixed at this value. 1277 */ 1278 peer = newpeer(&rbufp->recv_srcadr, NULL, match_ep, 1279 MODE_CLIENT, hisversion, pkt->ppoll, pkt->ppoll, 1280 FLAG_BC_VOL | FLAG_IBURST | FLAG_PREEMPT, MDF_BCLNT, 1281 0, skeyid, sys_ident); 1282 if (NULL == peer) { 1283 sys_restricted++; 1284 return; /* ignore duplicate */ 1285 } 1286 peer->bxmt = p_xmt; 1287 #ifdef AUTOKEY 1288 if (skeyid > NTP_MAXKEY) 1289 crypto_recv(peer, rbufp); 1290 #endif /* AUTOKEY */ 1291 1292 return; /* hooray */ 1293 1294 /* 1295 * This is the first packet received from a symmetric active 1296 * peer. If the packet is authentic and the first he sent, 1297 * mobilize a passive association. If not, kiss the frog. 1298 */ 1299 case AM_NEWPASS: 1300 1301 #ifdef AUTOKEY 1302 /* 1303 * Do not respond if not the same group. 1304 */ 1305 if (group_test(groupname, sys_ident)) { 1306 sys_declined++; 1307 return; 1308 } 1309 #endif /* AUTOKEY */ 1310 if (!AUTH(sys_authenticate | (restrict_mask & 1311 (RES_NOPEER | RES_DONTTRUST)), is_authentic)) { 1312 1313 /* 1314 * If authenticated but cannot mobilize an 1315 * association, send a symmetric passive 1316 * response without mobilizing an association. 1317 * This is for drat broken Windows clients. See 1318 * Microsoft KB 875424 for preferred workaround. 1319 */ 1320 if (AUTH(restrict_mask & RES_DONTTRUST, 1321 is_authentic)) { 1322 fast_xmit(rbufp, MODE_PASSIVE, skeyid, 1323 restrict_mask); 1324 return; /* hooray */ 1325 } 1326 if (is_authentic == AUTH_ERROR) { 1327 fast_xmit(rbufp, MODE_ACTIVE, 0, 1328 restrict_mask); 1329 sys_restricted++; 1330 return; 1331 } 1332 /* [Bug 2941] 1333 * If we got here, the packet isn't part of an 1334 * existing association, it isn't correctly 1335 * authenticated, and it didn't meet either of 1336 * the previous two special cases so we should 1337 * just drop it on the floor. For example, 1338 * crypto-NAKs (is_authentic == AUTH_CRYPTO) 1339 * will make it this far. This is just 1340 * debug-printed and not logged to avoid log 1341 * flooding. 1342 */ 1343 DPRINTF(2, ("receive: at %ld refusing to mobilize passive association" 1344 " with unknown peer %s mode %d/%s:%s keyid %08x len %d auth %d\n", 1345 current_time, stoa(&rbufp->recv_srcadr), 1346 hismode, hm_str, am_str, skeyid, 1347 (authlen + has_mac), is_authentic)); 1348 sys_declined++; 1349 return; 1350 } 1351 1352 /* 1353 * Do not respond if synchronized and if stratum is 1354 * below the floor or at or above the ceiling. Note, 1355 * this allows an unsynchronized peer to synchronize to 1356 * us. It would be very strange if he did and then was 1357 * nipped, but that could only happen if we were 1358 * operating at the top end of the range. It also means 1359 * we will spin an ephemeral association in response to 1360 * MODE_ACTIVE KoDs, which will time out eventually. 1361 */ 1362 if ( hisleap != LEAP_NOTINSYNC 1363 && (hisstratum < sys_floor || hisstratum >= sys_ceiling)) { 1364 sys_declined++; 1365 return; /* no help */ 1366 } 1367 1368 /* 1369 * The message is correctly authenticated and allowed. 1370 * Mobilize a symmetric passive association. 1371 */ 1372 if ((peer = newpeer(&rbufp->recv_srcadr, NULL, 1373 rbufp->dstadr, MODE_PASSIVE, hisversion, pkt->ppoll, 1374 NTP_MAXDPOLL, 0, MDF_UCAST, 0, skeyid, 1375 sys_ident)) == NULL) { 1376 sys_declined++; 1377 return; /* ignore duplicate */ 1378 } 1379 break; 1380 1381 1382 /* 1383 * Process regular packet. Nothing special. 1384 */ 1385 case AM_PROCPKT: 1386 1387 #ifdef AUTOKEY 1388 /* 1389 * Do not respond if not the same group. 1390 */ 1391 if (group_test(groupname, peer->ident)) { 1392 sys_declined++; 1393 return; 1394 } 1395 #endif /* AUTOKEY */ 1396 1397 if (MODE_BROADCAST == hismode) { 1398 int bail = 0; 1399 l_fp tdiff; 1400 u_long deadband; 1401 1402 DPRINTF(2, ("receive: PROCPKT/BROADCAST: prev pkt %ld seconds ago, ppoll: %d, %d secs\n", 1403 (current_time - peer->timelastrec), 1404 peer->ppoll, (1 << peer->ppoll) 1405 )); 1406 /* Things we can check: 1407 * 1408 * Did the poll interval change? 1409 * Is the poll interval in the packet in-range? 1410 * Did this packet arrive too soon? 1411 * Is the timestamp in this packet monotonic 1412 * with respect to the previous packet? 1413 */ 1414 1415 /* This is noteworthy, not error-worthy */ 1416 if (pkt->ppoll != peer->ppoll) { 1417 msyslog(LOG_INFO, "receive: broadcast poll from %s changed from %ud to %ud", 1418 stoa(&rbufp->recv_srcadr), 1419 peer->ppoll, pkt->ppoll); 1420 } 1421 1422 /* This is error-worthy */ 1423 if (pkt->ppoll < peer->minpoll || 1424 pkt->ppoll > peer->maxpoll ) { 1425 msyslog(LOG_INFO, "receive: broadcast poll of %ud from %s is out-of-range (%d to %d)!", 1426 pkt->ppoll, stoa(&rbufp->recv_srcadr), 1427 peer->minpoll, peer->maxpoll); 1428 ++bail; 1429 } 1430 1431 /* too early? worth an error, too! */ 1432 deadband = (1u << pkt->ppoll); 1433 if (FLAG_BC_VOL & peer->flags) 1434 deadband -= 3; /* allow greater fuzz after volley */ 1435 if ((current_time - peer->timelastrec) < deadband) { 1436 msyslog(LOG_INFO, "receive: broadcast packet from %s arrived after %lu, not %lu seconds!", 1437 stoa(&rbufp->recv_srcadr), 1438 (current_time - peer->timelastrec), 1439 deadband); 1440 ++bail; 1441 } 1442 1443 /* Alert if time from the server is non-monotonic */ 1444 tdiff = p_xmt; 1445 L_SUB(&tdiff, &peer->bxmt); 1446 if (tdiff.l_i < 0) { 1447 msyslog(LOG_INFO, "receive: broadcast packet from %s contains non-monotonic timestamp: %#010x.%08x -> %#010x.%08x", 1448 stoa(&rbufp->recv_srcadr), 1449 peer->bxmt.l_ui, peer->bxmt.l_uf, 1450 p_xmt.l_ui, p_xmt.l_uf 1451 ); 1452 ++bail; 1453 } 1454 1455 peer->bxmt = p_xmt; 1456 1457 if (bail) { 1458 peer->timelastrec = current_time; 1459 sys_declined++; 1460 return; 1461 } 1462 } 1463 1464 break; 1465 1466 /* 1467 * A passive packet matches a passive association. This is 1468 * usually the result of reconfiguring a client on the fly. As 1469 * this association might be legitimate and this packet an 1470 * attempt to deny service, just ignore it. 1471 */ 1472 case AM_ERR: 1473 sys_declined++; 1474 return; 1475 1476 /* 1477 * For everything else there is the bit bucket. 1478 */ 1479 default: 1480 sys_declined++; 1481 return; 1482 } 1483 1484 #ifdef AUTOKEY 1485 /* 1486 * If the association is configured for Autokey, the packet must 1487 * have a public key ID; if not, the packet must have a 1488 * symmetric key ID. 1489 */ 1490 if ( is_authentic != AUTH_CRYPTO 1491 && ( ((peer->flags & FLAG_SKEY) && skeyid <= NTP_MAXKEY) 1492 || (!(peer->flags & FLAG_SKEY) && skeyid > NTP_MAXKEY))) { 1493 sys_badauth++; 1494 return; 1495 } 1496 #endif /* AUTOKEY */ 1497 1498 peer->received++; 1499 peer->flash &= ~PKT_TEST_MASK; 1500 if (peer->flags & FLAG_XBOGUS) { 1501 peer->flags &= ~FLAG_XBOGUS; 1502 peer->flash |= TEST3; 1503 } 1504 1505 /* 1506 * Next comes a rigorous schedule of timestamp checking. If the 1507 * transmit timestamp is zero, the server has not initialized in 1508 * interleaved modes or is horribly broken. 1509 * 1510 * A KoD packet we pay attention to cannot have a 0 transmit 1511 * timestamp. 1512 */ 1513 if (L_ISZERO(&p_xmt)) { 1514 peer->flash |= TEST3; /* unsynch */ 1515 if (0 == hisstratum) { /* KoD packet */ 1516 peer->bogusorg++; /* for TEST2 or TEST3 */ 1517 msyslog(LOG_INFO, 1518 "receive: Unexpected zero transmit timestamp in KoD from %s", 1519 ntoa(&peer->srcadr)); 1520 return; 1521 } 1522 1523 /* 1524 * If the transmit timestamp duplicates our previous one, the 1525 * packet is a replay. This prevents the bad guys from replaying 1526 * the most recent packet, authenticated or not. 1527 */ 1528 } else if (L_ISEQU(&peer->xmt, &p_xmt)) { 1529 peer->flash |= TEST1; /* duplicate */ 1530 peer->oldpkt++; 1531 return; 1532 1533 /* 1534 * If this is a broadcast mode packet, skip further checking. If 1535 * an initial volley, bail out now and let the client do its 1536 * stuff. If the origin timestamp is nonzero, this is an 1537 * interleaved broadcast. so restart the protocol. 1538 */ 1539 } else if (hismode == MODE_BROADCAST) { 1540 if (!L_ISZERO(&p_org) && !(peer->flags & FLAG_XB)) { 1541 peer->flags |= FLAG_XB; 1542 peer->aorg = p_xmt; 1543 peer->borg = rbufp->recv_time; 1544 report_event(PEVNT_XLEAVE, peer, NULL); 1545 return; 1546 } 1547 1548 /* 1549 * Basic KoD validation checking: 1550 * 1551 * KoD packets are a mixed-blessing. Forged KoD packets 1552 * are DoS attacks. There are rare situations where we might 1553 * get a valid KoD response, though. Since KoD packets are 1554 * a special case that complicate the checks we do next, we 1555 * handle the basic KoD checks here. 1556 * 1557 * Note that we expect the incoming KoD packet to have its 1558 * (nonzero) org, rec, and xmt timestamps set to the xmt timestamp 1559 * that we have previously sent out. Watch interleave mode. 1560 */ 1561 } else if (0 == hisstratum) { 1562 DEBUG_INSIST(!L_ISZERO(&p_xmt)); 1563 if ( L_ISZERO(&p_org) /* We checked p_xmt above */ 1564 || L_ISZERO(&p_rec)) { 1565 peer->bogusorg++; 1566 msyslog(LOG_INFO, 1567 "receive: KoD packet from %s has a zero org or rec timestamp. Ignoring.", 1568 ntoa(&peer->srcadr)); 1569 return; 1570 } 1571 1572 if ( !L_ISEQU(&p_xmt, &p_org) 1573 || !L_ISEQU(&p_xmt, &p_rec)) { 1574 peer->bogusorg++; 1575 msyslog(LOG_INFO, 1576 "receive: KoD packet from %s has inconsistent xmt/org/rec timestamps. Ignoring.", 1577 ntoa(&peer->srcadr)); 1578 return; 1579 } 1580 1581 /* Be conservative */ 1582 if (peer->flip == 0 && !L_ISEQU(&p_org, &peer->aorg)) { 1583 peer->bogusorg++; 1584 msyslog(LOG_INFO, 1585 "receive: flip 0 KoD origin timestamp %#010x.%08x from %s does not match %#010x.%08x - ignoring.", 1586 p_org.l_ui, p_org.l_uf, 1587 ntoa(&peer->srcadr), 1588 peer->aorg.l_ui, peer->aorg.l_uf); 1589 return; 1590 } else if (peer->flip == 1 && !L_ISEQU(&p_org, &peer->borg)) { 1591 peer->bogusorg++; 1592 msyslog(LOG_INFO, 1593 "receive: flip 1 KoD origin timestamp %#010x.%08x from %s does not match interleave %#010x.%08x - ignoring.", 1594 p_org.l_ui, p_org.l_uf, 1595 ntoa(&peer->srcadr), 1596 peer->borg.l_ui, peer->borg.l_uf); 1597 return; 1598 } 1599 1600 /* 1601 * Basic mode checks: 1602 * 1603 * If there is no origin timestamp, it's either an initial packet 1604 * or we've already received a response to our query. Of course, 1605 * should 'aorg' be all-zero because this really was the original 1606 * transmit timestamp, we'll ignore this reply. There is a window 1607 * of one nanosecond once every 136 years' time where this is 1608 * possible. We currently ignore this situation. 1609 * 1610 * Otherwise, check for bogus packet in basic mode. 1611 * If it is bogus, switch to interleaved mode and resynchronize, 1612 * but only after confirming the packet is not bogus in 1613 * symmetric interleaved mode. 1614 * 1615 * This could also mean somebody is forging packets claiming to 1616 * be from us, attempting to cause our server to KoD us. 1617 */ 1618 } else if (peer->flip == 0) { 1619 INSIST(0 != hisstratum); 1620 if (0) { 1621 } else if (L_ISZERO(&p_org)) { 1622 msyslog(LOG_INFO, 1623 "receive: Got 0 origin timestamp from %s@%s xmt %#010x.%08x", 1624 hm_str, ntoa(&peer->srcadr), 1625 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)); 1626 L_CLR(&peer->aorg); 1627 } else if (!L_ISEQU(&p_org, &peer->aorg)) { 1628 /* are there cases here where we should bail? */ 1629 /* Should we set TEST2 if we decide to try xleave? */ 1630 peer->bogusorg++; 1631 peer->flash |= TEST2; /* bogus */ 1632 msyslog(LOG_INFO, 1633 "receive: Unexpected origin timestamp %#010x.%08x does not match aorg %#010x.%08x from %s@%s xmt %#010x.%08x", 1634 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 1635 peer->aorg.l_ui, peer->aorg.l_uf, 1636 hm_str, ntoa(&peer->srcadr), 1637 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)); 1638 if ( !L_ISZERO(&peer->dst) 1639 && L_ISEQU(&p_org, &peer->dst)) { 1640 /* Might be the start of an interleave */ 1641 if (dynamic_interleave) { 1642 peer->flip = 1; 1643 report_event(PEVNT_XLEAVE, peer, NULL); 1644 } else { 1645 msyslog(LOG_INFO, 1646 "receive: Dynamic interleave from %s@%s denied", 1647 hm_str, ntoa(&peer->srcadr)); 1648 } 1649 } 1650 } else { 1651 L_CLR(&peer->aorg); 1652 } 1653 1654 /* 1655 * Check for valid nonzero timestamp fields. 1656 */ 1657 } else if (L_ISZERO(&p_org) || L_ISZERO(&p_rec) || 1658 L_ISZERO(&peer->dst)) { 1659 peer->flash |= TEST3; /* unsynch */ 1660 1661 /* 1662 * Check for bogus packet in interleaved symmetric mode. This 1663 * can happen if a packet is lost, duplicated or crossed. If 1664 * found, flip and resynchronize. 1665 */ 1666 } else if ( !L_ISZERO(&peer->dst) 1667 && !L_ISEQU(&p_org, &peer->dst)) { 1668 peer->bogusorg++; 1669 peer->flags |= FLAG_XBOGUS; 1670 peer->flash |= TEST2; /* bogus */ 1671 return; /* Bogus packet, we are done */ 1672 } 1673 1674 /* 1675 * If this is a crypto_NAK, the server cannot authenticate a 1676 * client packet. The server might have just changed keys. Clear 1677 * the association and restart the protocol. 1678 */ 1679 if (crypto_nak_test == VALIDNAK) { 1680 report_event(PEVNT_AUTH, peer, "crypto_NAK"); 1681 peer->flash |= TEST5; /* bad auth */ 1682 peer->badauth++; 1683 if (peer->flags & FLAG_PREEMPT) { 1684 if (unpeer_crypto_nak_early) { 1685 unpeer(peer); 1686 } 1687 return; 1688 } 1689 #ifdef AUTOKEY 1690 if (peer->crypto) 1691 peer_clear(peer, "AUTH"); 1692 #endif /* AUTOKEY */ 1693 return; 1694 1695 /* 1696 * If the digest fails or it's missing for authenticated 1697 * associations, the client cannot authenticate a server 1698 * reply to a client packet previously sent. The loopback check 1699 * is designed to avoid a bait-and-switch attack, which was 1700 * possible in past versions. If symmetric modes, return a 1701 * crypto-NAK. The peer should restart the protocol. 1702 */ 1703 } else if (!AUTH(peer->keyid || has_mac || 1704 (restrict_mask & RES_DONTTRUST), is_authentic)) { 1705 report_event(PEVNT_AUTH, peer, "digest"); 1706 peer->flash |= TEST5; /* bad auth */ 1707 peer->badauth++; 1708 if ( has_mac 1709 && (hismode == MODE_ACTIVE || hismode == MODE_PASSIVE)) 1710 fast_xmit(rbufp, MODE_ACTIVE, 0, restrict_mask); 1711 if (peer->flags & FLAG_PREEMPT) { 1712 if (unpeer_digest_early) { 1713 unpeer(peer); 1714 } 1715 return; 1716 } 1717 #ifdef AUTOKEY 1718 if (peer->crypto) 1719 peer_clear(peer, "AUTH"); 1720 #endif /* AUTOKEY */ 1721 return; 1722 } 1723 1724 /* 1725 * Update the state variables. 1726 */ 1727 if (peer->flip == 0) { 1728 if (hismode != MODE_BROADCAST) 1729 peer->rec = p_xmt; 1730 peer->dst = rbufp->recv_time; 1731 } 1732 peer->xmt = p_xmt; 1733 1734 /* 1735 * Set the peer ppoll to the maximum of the packet ppoll and the 1736 * peer minpoll. If a kiss-o'-death, set the peer minpoll to 1737 * this maximum and advance the headway to give the sender some 1738 * headroom. Very intricate. 1739 */ 1740 1741 /* 1742 * Check for any kiss codes. Note this is only used when a server 1743 * responds to a packet request 1744 */ 1745 1746 kissCode = kiss_code_check(hisleap, hisstratum, hismode, pkt->refid); 1747 1748 /* 1749 * Check to see if this is a RATE Kiss Code 1750 * Currently this kiss code will accept whatever poll 1751 * rate that the server sends 1752 */ 1753 peer->ppoll = max(peer->minpoll, pkt->ppoll); 1754 if (kissCode == RATEKISS) { 1755 peer->selbroken++; /* Increment the KoD count */ 1756 report_event(PEVNT_RATE, peer, NULL); 1757 if (pkt->ppoll > peer->minpoll) 1758 peer->minpoll = peer->ppoll; 1759 peer->burst = peer->retry = 0; 1760 peer->throttle = (NTP_SHIFT + 1) * (1 << peer->minpoll); 1761 poll_update(peer, pkt->ppoll); 1762 return; /* kiss-o'-death */ 1763 } 1764 if (kissCode != NOKISS) { 1765 peer->selbroken++; /* Increment the KoD count */ 1766 return; /* Drop any other kiss code packets */ 1767 } 1768 1769 /* 1770 * If: 1771 * - this is a *cast (uni-, broad-, or m-) server packet 1772 * - and it's symmetric-key authenticated 1773 * then see if the sender's IP is trusted for this keyid. 1774 * If it is, great - nothing special to do here. 1775 * Otherwise, we should report and bail. 1776 * 1777 * Autokey-authenticated packets are accepted. 1778 */ 1779 1780 switch (hismode) { 1781 case MODE_SERVER: /* server mode */ 1782 case MODE_BROADCAST: /* broadcast mode */ 1783 case MODE_ACTIVE: /* symmetric active mode */ 1784 case MODE_PASSIVE: /* symmetric passive mode */ 1785 if ( is_authentic == AUTH_OK 1786 && skeyid 1787 && skeyid <= NTP_MAXKEY 1788 && !authistrustedip(skeyid, &peer->srcadr)) { 1789 report_event(PEVNT_AUTH, peer, "authIP"); 1790 peer->badauth++; 1791 return; 1792 } 1793 break; 1794 1795 case MODE_CLIENT: /* client mode */ 1796 #if 0 /* At this point, MODE_CONTROL is overloaded by MODE_BCLIENT */ 1797 case MODE_CONTROL: /* control mode */ 1798 #endif 1799 case MODE_PRIVATE: /* private mode */ 1800 case MODE_BCLIENT: /* broadcast client mode */ 1801 break; 1802 1803 case MODE_UNSPEC: /* unspecified (old version) */ 1804 default: 1805 msyslog(LOG_INFO, 1806 "receive: Unexpected mode (%d) in packet from %s", 1807 hismode, ntoa(&peer->srcadr)); 1808 break; 1809 } 1810 1811 1812 /* 1813 * That was hard and I am sweaty, but the packet is squeaky 1814 * clean. Get on with real work. 1815 */ 1816 peer->timereceived = current_time; 1817 peer->timelastrec = current_time; 1818 if (is_authentic == AUTH_OK) 1819 peer->flags |= FLAG_AUTHENTIC; 1820 else 1821 peer->flags &= ~FLAG_AUTHENTIC; 1822 1823 #ifdef AUTOKEY 1824 /* 1825 * More autokey dance. The rules of the cha-cha are as follows: 1826 * 1827 * 1. If there is no key or the key is not auto, do nothing. 1828 * 1829 * 2. If this packet is in response to the one just previously 1830 * sent or from a broadcast server, do the extension fields. 1831 * Otherwise, assume bogosity and bail out. 1832 * 1833 * 3. If an extension field contains a verified signature, it is 1834 * self-authenticated and we sit the dance. 1835 * 1836 * 4. If this is a server reply, check only to see that the 1837 * transmitted key ID matches the received key ID. 1838 * 1839 * 5. Check to see that one or more hashes of the current key ID 1840 * matches the previous key ID or ultimate original key ID 1841 * obtained from the broadcaster or symmetric peer. If no 1842 * match, sit the dance and call for new autokey values. 1843 * 1844 * In case of crypto error, fire the orchestra, stop dancing and 1845 * restart the protocol. 1846 */ 1847 if (peer->flags & FLAG_SKEY) { 1848 /* 1849 * Decrement remaining autokey hashes. This isn't 1850 * perfect if a packet is lost, but results in no harm. 1851 */ 1852 ap = (struct autokey *)peer->recval.ptr; 1853 if (ap != NULL) { 1854 if (ap->seq > 0) 1855 ap->seq--; 1856 } 1857 peer->flash |= TEST8; 1858 rval = crypto_recv(peer, rbufp); 1859 if (rval == XEVNT_OK) { 1860 peer->unreach = 0; 1861 } else { 1862 if (rval == XEVNT_ERR) { 1863 report_event(PEVNT_RESTART, peer, 1864 "crypto error"); 1865 peer_clear(peer, "CRYP"); 1866 peer->flash |= TEST9; /* bad crypt */ 1867 if (peer->flags & FLAG_PREEMPT) { 1868 if (unpeer_crypto_early) { 1869 unpeer(peer); 1870 } 1871 } 1872 } 1873 return; 1874 } 1875 1876 /* 1877 * If server mode, verify the receive key ID matches 1878 * the transmit key ID. 1879 */ 1880 if (hismode == MODE_SERVER) { 1881 if (skeyid == peer->keyid) 1882 peer->flash &= ~TEST8; 1883 1884 /* 1885 * If an extension field is present, verify only that it 1886 * has been correctly signed. We don't need a sequence 1887 * check here, but the sequence continues. 1888 */ 1889 } else if (!(peer->flash & TEST8)) { 1890 peer->pkeyid = skeyid; 1891 1892 /* 1893 * Now the fun part. Here, skeyid is the current ID in 1894 * the packet, pkeyid is the ID in the last packet and 1895 * tkeyid is the hash of skeyid. If the autokey values 1896 * have not been received, this is an automatic error. 1897 * If so, check that the tkeyid matches pkeyid. If not, 1898 * hash tkeyid and try again. If the number of hashes 1899 * exceeds the number remaining in the sequence, declare 1900 * a successful failure and refresh the autokey values. 1901 */ 1902 } else if (ap != NULL) { 1903 int i; 1904 1905 for (i = 0; ; i++) { 1906 if ( tkeyid == peer->pkeyid 1907 || tkeyid == ap->key) { 1908 peer->flash &= ~TEST8; 1909 peer->pkeyid = skeyid; 1910 ap->seq -= i; 1911 break; 1912 } 1913 if (i > ap->seq) { 1914 peer->crypto &= 1915 ~CRYPTO_FLAG_AUTO; 1916 break; 1917 } 1918 tkeyid = session_key( 1919 &rbufp->recv_srcadr, dstadr_sin, 1920 tkeyid, pkeyid, 0); 1921 } 1922 if (peer->flash & TEST8) 1923 report_event(PEVNT_AUTH, peer, "keylist"); 1924 } 1925 if (!(peer->crypto & CRYPTO_FLAG_PROV)) /* test 9 */ 1926 peer->flash |= TEST8; /* bad autokey */ 1927 1928 /* 1929 * The maximum lifetime of the protocol is about one 1930 * week before restarting the Autokey protocol to 1931 * refresh certificates and leapseconds values. 1932 */ 1933 if (current_time > peer->refresh) { 1934 report_event(PEVNT_RESTART, peer, 1935 "crypto refresh"); 1936 peer_clear(peer, "TIME"); 1937 return; 1938 } 1939 } 1940 #endif /* AUTOKEY */ 1941 1942 /* 1943 * The dance is complete and the flash bits have been lit. Toss 1944 * the packet over the fence for processing, which may light up 1945 * more flashers. 1946 */ 1947 process_packet(peer, pkt, rbufp->recv_length); 1948 1949 /* 1950 * In interleaved mode update the state variables. Also adjust the 1951 * transmit phase to avoid crossover. 1952 */ 1953 if (peer->flip != 0) { 1954 peer->rec = p_rec; 1955 peer->dst = rbufp->recv_time; 1956 if (peer->nextdate - current_time < (1U << min(peer->ppoll, 1957 peer->hpoll)) / 2) 1958 peer->nextdate++; 1959 else 1960 peer->nextdate--; 1961 } 1962 } 1963 1964 1965 /* 1966 * process_packet - Packet Procedure, a la Section 3.4.4 of the 1967 * specification. Or almost, at least. If we're in here we have a 1968 * reasonable expectation that we will be having a long term 1969 * relationship with this host. 1970 */ 1971 void 1972 process_packet( 1973 register struct peer *peer, 1974 register struct pkt *pkt, 1975 u_int len 1976 ) 1977 { 1978 double t34, t21; 1979 double p_offset, p_del, p_disp; 1980 l_fp p_rec, p_xmt, p_org, p_reftime, ci; 1981 u_char pmode, pleap, pversion, pstratum; 1982 char statstr[NTP_MAXSTRLEN]; 1983 #ifdef ASSYM 1984 int itemp; 1985 double etemp, ftemp, td; 1986 #endif /* ASSYM */ 1987 1988 sys_processed++; 1989 peer->processed++; 1990 p_del = FPTOD(NTOHS_FP(pkt->rootdelay)); 1991 p_offset = 0; 1992 p_disp = FPTOD(NTOHS_FP(pkt->rootdisp)); 1993 NTOHL_FP(&pkt->reftime, &p_reftime); 1994 NTOHL_FP(&pkt->org, &p_org); 1995 NTOHL_FP(&pkt->rec, &p_rec); 1996 NTOHL_FP(&pkt->xmt, &p_xmt); 1997 pmode = PKT_MODE(pkt->li_vn_mode); 1998 pleap = PKT_LEAP(pkt->li_vn_mode); 1999 pversion = PKT_VERSION(pkt->li_vn_mode); 2000 pstratum = PKT_TO_STRATUM(pkt->stratum); 2001 2002 /* 2003 * Capture the header values in the client/peer association.. 2004 */ 2005 record_raw_stats(&peer->srcadr, peer->dstadr ? 2006 &peer->dstadr->sin : NULL, 2007 &p_org, &p_rec, &p_xmt, &peer->dst, 2008 pleap, pversion, pmode, pstratum, pkt->ppoll, pkt->precision, 2009 p_del, p_disp, pkt->refid); 2010 peer->leap = pleap; 2011 peer->stratum = min(pstratum, STRATUM_UNSPEC); 2012 peer->pmode = pmode; 2013 peer->precision = pkt->precision; 2014 peer->rootdelay = p_del; 2015 peer->rootdisp = p_disp; 2016 peer->refid = pkt->refid; /* network byte order */ 2017 peer->reftime = p_reftime; 2018 2019 /* 2020 * First, if either burst mode is armed, enable the burst. 2021 * Compute the headway for the next packet and delay if 2022 * necessary to avoid exceeding the threshold. 2023 */ 2024 if (peer->retry > 0) { 2025 peer->retry = 0; 2026 if (peer->reach) 2027 peer->burst = min(1 << (peer->hpoll - 2028 peer->minpoll), NTP_SHIFT) - 1; 2029 else 2030 peer->burst = NTP_IBURST - 1; 2031 if (peer->burst > 0) 2032 peer->nextdate = current_time; 2033 } 2034 poll_update(peer, peer->hpoll); 2035 2036 /* 2037 * Verify the server is synchronized; that is, the leap bits, 2038 * stratum and root distance are valid. 2039 */ 2040 if ( pleap == LEAP_NOTINSYNC /* test 6 */ 2041 || pstratum < sys_floor || pstratum >= sys_ceiling) 2042 peer->flash |= TEST6; /* bad synch or strat */ 2043 if (p_del / 2 + p_disp >= MAXDISPERSE) /* test 7 */ 2044 peer->flash |= TEST7; /* bad header */ 2045 2046 /* 2047 * If any tests fail at this point, the packet is discarded. 2048 * Note that some flashers may have already been set in the 2049 * receive() routine. 2050 */ 2051 if (peer->flash & PKT_TEST_MASK) { 2052 peer->seldisptoolarge++; 2053 DPRINTF(1, ("packet: flash header %04x\n", 2054 peer->flash)); 2055 return; 2056 } 2057 2058 /* 2059 * If the peer was previously unreachable, raise a trap. In any 2060 * case, mark it reachable. 2061 */ 2062 if (!peer->reach) { 2063 report_event(PEVNT_REACH, peer, NULL); 2064 peer->timereachable = current_time; 2065 } 2066 peer->reach |= 1; 2067 2068 /* 2069 * For a client/server association, calculate the clock offset, 2070 * roundtrip delay and dispersion. The equations are reordered 2071 * from the spec for more efficient use of temporaries. For a 2072 * broadcast association, offset the last measurement by the 2073 * computed delay during the client/server volley. Note the 2074 * computation of dispersion includes the system precision plus 2075 * that due to the frequency error since the origin time. 2076 * 2077 * It is very important to respect the hazards of overflow. The 2078 * only permitted operation on raw timestamps is subtraction, 2079 * where the result is a signed quantity spanning from 68 years 2080 * in the past to 68 years in the future. To avoid loss of 2081 * precision, these calculations are done using 64-bit integer 2082 * arithmetic. However, the offset and delay calculations are 2083 * sums and differences of these first-order differences, which 2084 * if done using 64-bit integer arithmetic, would be valid over 2085 * only half that span. Since the typical first-order 2086 * differences are usually very small, they are converted to 64- 2087 * bit doubles and all remaining calculations done in floating- 2088 * double arithmetic. This preserves the accuracy while 2089 * retaining the 68-year span. 2090 * 2091 * There are three interleaving schemes, basic, interleaved 2092 * symmetric and interleaved broadcast. The timestamps are 2093 * idioscyncratically different. See the onwire briefing/white 2094 * paper at www.eecis.udel.edu/~mills for details. 2095 * 2096 * Interleaved symmetric mode 2097 * t1 = peer->aorg/borg, t2 = peer->rec, t3 = p_xmt, 2098 * t4 = peer->dst 2099 */ 2100 if (peer->flip != 0) { 2101 ci = p_xmt; /* t3 - t4 */ 2102 L_SUB(&ci, &peer->dst); 2103 LFPTOD(&ci, t34); 2104 ci = p_rec; /* t2 - t1 */ 2105 if (peer->flip > 0) 2106 L_SUB(&ci, &peer->borg); 2107 else 2108 L_SUB(&ci, &peer->aorg); 2109 LFPTOD(&ci, t21); 2110 p_del = t21 - t34; 2111 p_offset = (t21 + t34) / 2.; 2112 if (p_del < 0 || p_del > 1.) { 2113 snprintf(statstr, sizeof(statstr), 2114 "t21 %.6f t34 %.6f", t21, t34); 2115 report_event(PEVNT_XERR, peer, statstr); 2116 return; 2117 } 2118 2119 /* 2120 * Broadcast modes 2121 */ 2122 } else if (peer->pmode == MODE_BROADCAST) { 2123 2124 /* 2125 * Interleaved broadcast mode. Use interleaved timestamps. 2126 * t1 = peer->borg, t2 = p_org, t3 = p_org, t4 = aorg 2127 */ 2128 if (peer->flags & FLAG_XB) { 2129 ci = p_org; /* delay */ 2130 L_SUB(&ci, &peer->aorg); 2131 LFPTOD(&ci, t34); 2132 ci = p_org; /* t2 - t1 */ 2133 L_SUB(&ci, &peer->borg); 2134 LFPTOD(&ci, t21); 2135 peer->aorg = p_xmt; 2136 peer->borg = peer->dst; 2137 if (t34 < 0 || t34 > 1.) { 2138 /* drop all if in the initial volley */ 2139 if (FLAG_BC_VOL & peer->flags) 2140 goto bcc_init_volley_fail; 2141 snprintf(statstr, sizeof(statstr), 2142 "offset %.6f delay %.6f", t21, t34); 2143 report_event(PEVNT_XERR, peer, statstr); 2144 return; 2145 } 2146 p_offset = t21; 2147 peer->xleave = t34; 2148 2149 /* 2150 * Basic broadcast - use direct timestamps. 2151 * t3 = p_xmt, t4 = peer->dst 2152 */ 2153 } else { 2154 ci = p_xmt; /* t3 - t4 */ 2155 L_SUB(&ci, &peer->dst); 2156 LFPTOD(&ci, t34); 2157 p_offset = t34; 2158 } 2159 2160 /* 2161 * When calibration is complete and the clock is 2162 * synchronized, the bias is calculated as the difference 2163 * between the unicast timestamp and the broadcast 2164 * timestamp. This works for both basic and interleaved 2165 * modes. 2166 * [Bug 3031] Don't keep this peer when the delay 2167 * calculation gives reason to suspect clock steps. 2168 * This is assumed for delays > 50ms. 2169 */ 2170 if (FLAG_BC_VOL & peer->flags) { 2171 peer->flags &= ~FLAG_BC_VOL; 2172 peer->delay = fabs(peer->offset - p_offset) * 2; 2173 DPRINTF(2, ("broadcast volley: initial delay=%.6f\n", 2174 peer->delay)); 2175 if (peer->delay > fabs(sys_bdelay)) { 2176 bcc_init_volley_fail: 2177 DPRINTF(2, ("%s", "broadcast volley: initial delay exceeds limit\n")); 2178 unpeer(peer); 2179 return; 2180 } 2181 } 2182 peer->nextdate = current_time + (1u << peer->ppoll) - 2u; 2183 p_del = peer->delay; 2184 p_offset += p_del / 2; 2185 2186 2187 /* 2188 * Basic mode, otherwise known as the old fashioned way. 2189 * 2190 * t1 = p_org, t2 = p_rec, t3 = p_xmt, t4 = peer->dst 2191 */ 2192 } else { 2193 ci = p_xmt; /* t3 - t4 */ 2194 L_SUB(&ci, &peer->dst); 2195 LFPTOD(&ci, t34); 2196 ci = p_rec; /* t2 - t1 */ 2197 L_SUB(&ci, &p_org); 2198 LFPTOD(&ci, t21); 2199 p_del = fabs(t21 - t34); 2200 p_offset = (t21 + t34) / 2.; 2201 } 2202 p_del = max(p_del, LOGTOD(sys_precision)); 2203 p_disp = LOGTOD(sys_precision) + LOGTOD(peer->precision) + 2204 clock_phi * p_del; 2205 2206 #if ASSYM 2207 /* 2208 * This code calculates the outbound and inbound data rates by 2209 * measuring the differences between timestamps at different 2210 * packet lengths. This is helpful in cases of large asymmetric 2211 * delays commonly experienced on deep space communication 2212 * links. 2213 */ 2214 if (peer->t21_last > 0 && peer->t34_bytes > 0) { 2215 itemp = peer->t21_bytes - peer->t21_last; 2216 if (itemp > 25) { 2217 etemp = t21 - peer->t21; 2218 if (fabs(etemp) > 1e-6) { 2219 ftemp = itemp / etemp; 2220 if (ftemp > 1000.) 2221 peer->r21 = ftemp; 2222 } 2223 } 2224 itemp = len - peer->t34_bytes; 2225 if (itemp > 25) { 2226 etemp = -t34 - peer->t34; 2227 if (fabs(etemp) > 1e-6) { 2228 ftemp = itemp / etemp; 2229 if (ftemp > 1000.) 2230 peer->r34 = ftemp; 2231 } 2232 } 2233 } 2234 2235 /* 2236 * The following section compensates for different data rates on 2237 * the outbound (d21) and inbound (t34) directions. To do this, 2238 * it finds t such that r21 * t - r34 * (d - t) = 0, where d is 2239 * the roundtrip delay. Then it calculates the correction as a 2240 * fraction of d. 2241 */ 2242 peer->t21 = t21; 2243 peer->t21_last = peer->t21_bytes; 2244 peer->t34 = -t34; 2245 peer->t34_bytes = len; 2246 DPRINTF(2, ("packet: t21 %.9lf %d t34 %.9lf %d\n", peer->t21, 2247 peer->t21_bytes, peer->t34, peer->t34_bytes)); 2248 if (peer->r21 > 0 && peer->r34 > 0 && p_del > 0) { 2249 if (peer->pmode != MODE_BROADCAST) 2250 td = (peer->r34 / (peer->r21 + peer->r34) - 2251 .5) * p_del; 2252 else 2253 td = 0; 2254 2255 /* 2256 * Unfortunately, in many cases the errors are 2257 * unacceptable, so for the present the rates are not 2258 * used. In future, we might find conditions where the 2259 * calculations are useful, so this should be considered 2260 * a work in progress. 2261 */ 2262 t21 -= td; 2263 t34 -= td; 2264 DPRINTF(2, ("packet: del %.6lf r21 %.1lf r34 %.1lf %.6lf\n", 2265 p_del, peer->r21 / 1e3, peer->r34 / 1e3, 2266 td)); 2267 } 2268 #endif /* ASSYM */ 2269 2270 /* 2271 * That was awesome. Now hand off to the clock filter. 2272 */ 2273 clock_filter(peer, p_offset + peer->bias, p_del, p_disp); 2274 2275 /* 2276 * If we are in broadcast calibrate mode, return to broadcast 2277 * client mode when the client is fit and the autokey dance is 2278 * complete. 2279 */ 2280 if ( (FLAG_BC_VOL & peer->flags) 2281 && MODE_CLIENT == peer->hmode 2282 && !(TEST11 & peer_unfit(peer))) { /* distance exceeded */ 2283 #ifdef AUTOKEY 2284 if (peer->flags & FLAG_SKEY) { 2285 if (!(~peer->crypto & CRYPTO_FLAG_ALL)) 2286 peer->hmode = MODE_BCLIENT; 2287 } else { 2288 peer->hmode = MODE_BCLIENT; 2289 } 2290 #else /* !AUTOKEY follows */ 2291 peer->hmode = MODE_BCLIENT; 2292 #endif /* !AUTOKEY */ 2293 } 2294 } 2295 2296 2297 /* 2298 * clock_update - Called at system process update intervals. 2299 */ 2300 static void 2301 clock_update( 2302 struct peer *peer /* peer structure pointer */ 2303 ) 2304 { 2305 double dtemp; 2306 l_fp now; 2307 #ifdef HAVE_LIBSCF_H 2308 char *fmri; 2309 #endif /* HAVE_LIBSCF_H */ 2310 2311 /* 2312 * Update the system state variables. We do this very carefully, 2313 * as the poll interval might need to be clamped differently. 2314 */ 2315 sys_peer = peer; 2316 sys_epoch = peer->epoch; 2317 if (sys_poll < peer->minpoll) 2318 sys_poll = peer->minpoll; 2319 if (sys_poll > peer->maxpoll) 2320 sys_poll = peer->maxpoll; 2321 poll_update(peer, sys_poll); 2322 sys_stratum = min(peer->stratum + 1, STRATUM_UNSPEC); 2323 if ( peer->stratum == STRATUM_REFCLOCK 2324 || peer->stratum == STRATUM_UNSPEC) 2325 sys_refid = peer->refid; 2326 else 2327 sys_refid = addr2refid(&peer->srcadr); 2328 /* 2329 * Root Dispersion (E) is defined (in RFC 5905) as: 2330 * 2331 * E = p.epsilon_r + p.epsilon + p.psi + PHI*(s.t - p.t) + |THETA| 2332 * 2333 * where: 2334 * p.epsilon_r is the PollProc's root dispersion 2335 * p.epsilon is the PollProc's dispersion 2336 * p.psi is the PollProc's jitter 2337 * THETA is the combined offset 2338 * 2339 * NB: Think Hard about where these numbers come from and 2340 * what they mean. When did peer->update happen? Has anything 2341 * interesting happened since then? What values are the most 2342 * defensible? Why? 2343 * 2344 * DLM thinks this equation is probably the best of all worse choices. 2345 */ 2346 dtemp = peer->rootdisp 2347 + peer->disp 2348 + sys_jitter 2349 + clock_phi * (current_time - peer->update) 2350 + fabs(sys_offset); 2351 2352 if (dtemp > sys_mindisp) 2353 sys_rootdisp = dtemp; 2354 else 2355 sys_rootdisp = sys_mindisp; 2356 sys_rootdelay = peer->delay + peer->rootdelay; 2357 sys_reftime = peer->dst; 2358 2359 DPRINTF(1, ("clock_update: at %lu sample %lu associd %d\n", 2360 current_time, peer->epoch, peer->associd)); 2361 2362 /* 2363 * Comes now the moment of truth. Crank the clock discipline and 2364 * see what comes out. 2365 */ 2366 switch (local_clock(peer, sys_offset)) { 2367 2368 /* 2369 * Clock exceeds panic threshold. Life as we know it ends. 2370 */ 2371 case -1: 2372 #ifdef HAVE_LIBSCF_H 2373 /* 2374 * For Solaris enter the maintenance mode. 2375 */ 2376 if ((fmri = getenv("SMF_FMRI")) != NULL) { 2377 if (smf_maintain_instance(fmri, 0) < 0) { 2378 printf("smf_maintain_instance: %s\n", 2379 scf_strerror(scf_error())); 2380 exit(1); 2381 } 2382 /* 2383 * Sleep until SMF kills us. 2384 */ 2385 for (;;) 2386 pause(); 2387 } 2388 #endif /* HAVE_LIBSCF_H */ 2389 exit (-1); 2390 /* not reached */ 2391 2392 /* 2393 * Clock was stepped. Flush all time values of all peers. 2394 */ 2395 case 2: 2396 clear_all(); 2397 set_sys_leap(LEAP_NOTINSYNC); 2398 sys_stratum = STRATUM_UNSPEC; 2399 memcpy(&sys_refid, "STEP", 4); 2400 sys_rootdelay = 0; 2401 sys_rootdisp = 0; 2402 L_CLR(&sys_reftime); 2403 sys_jitter = LOGTOD(sys_precision); 2404 leapsec_reset_frame(); 2405 break; 2406 2407 /* 2408 * Clock was slewed. Handle the leapsecond stuff. 2409 */ 2410 case 1: 2411 2412 /* 2413 * If this is the first time the clock is set, reset the 2414 * leap bits. If crypto, the timer will goose the setup 2415 * process. 2416 */ 2417 if (sys_leap == LEAP_NOTINSYNC) { 2418 set_sys_leap(LEAP_NOWARNING); 2419 #ifdef AUTOKEY 2420 if (crypto_flags) 2421 crypto_update(); 2422 #endif /* AUTOKEY */ 2423 /* 2424 * If our parent process is waiting for the 2425 * first clock sync, send them home satisfied. 2426 */ 2427 #ifdef HAVE_WORKING_FORK 2428 if (waitsync_fd_to_close != -1) { 2429 close(waitsync_fd_to_close); 2430 waitsync_fd_to_close = -1; 2431 DPRINTF(1, ("notified parent --wait-sync is done\n")); 2432 } 2433 #endif /* HAVE_WORKING_FORK */ 2434 2435 } 2436 2437 /* 2438 * If there is no leap second pending and the number of 2439 * survivor leap bits is greater than half the number of 2440 * survivors, try to schedule a leap for the end of the 2441 * current month. (This only works if no leap second for 2442 * that range is in the table, so doing this more than 2443 * once is mostly harmless.) 2444 */ 2445 if (leapsec == LSPROX_NOWARN) { 2446 if ( leap_vote_ins > leap_vote_del 2447 && leap_vote_ins > sys_survivors / 2) { 2448 get_systime(&now); 2449 leapsec_add_dyn(TRUE, now.l_ui, NULL); 2450 } 2451 if ( leap_vote_del > leap_vote_ins 2452 && leap_vote_del > sys_survivors / 2) { 2453 get_systime(&now); 2454 leapsec_add_dyn(FALSE, now.l_ui, NULL); 2455 } 2456 } 2457 break; 2458 2459 /* 2460 * Popcorn spike or step threshold exceeded. Pretend it never 2461 * happened. 2462 */ 2463 default: 2464 break; 2465 } 2466 } 2467 2468 2469 /* 2470 * poll_update - update peer poll interval 2471 */ 2472 void 2473 poll_update( 2474 struct peer *peer, /* peer structure pointer */ 2475 u_char mpoll 2476 ) 2477 { 2478 u_long next, utemp; 2479 u_char hpoll; 2480 2481 /* 2482 * This routine figures out when the next poll should be sent. 2483 * That turns out to be wickedly complicated. One problem is 2484 * that sometimes the time for the next poll is in the past when 2485 * the poll interval is reduced. We watch out for races here 2486 * between the receive process and the poll process. 2487 * 2488 * Clamp the poll interval between minpoll and maxpoll. 2489 */ 2490 hpoll = max(min(peer->maxpoll, mpoll), peer->minpoll); 2491 2492 #ifdef AUTOKEY 2493 /* 2494 * If during the crypto protocol the poll interval has changed, 2495 * the lifetimes in the key list are probably bogus. Purge the 2496 * the key list and regenerate it later. 2497 */ 2498 if ((peer->flags & FLAG_SKEY) && hpoll != peer->hpoll) 2499 key_expire(peer); 2500 #endif /* AUTOKEY */ 2501 peer->hpoll = hpoll; 2502 2503 /* 2504 * There are three variables important for poll scheduling, the 2505 * current time (current_time), next scheduled time (nextdate) 2506 * and the earliest time (utemp). The earliest time is 2 s 2507 * seconds, but could be more due to rate management. When 2508 * sending in a burst, use the earliest time. When not in a 2509 * burst but with a reply pending, send at the earliest time 2510 * unless the next scheduled time has not advanced. This can 2511 * only happen if multiple replies are pending in the same 2512 * response interval. Otherwise, send at the later of the next 2513 * scheduled time and the earliest time. 2514 * 2515 * Now we figure out if there is an override. If a burst is in 2516 * progress and we get called from the receive process, just 2517 * slink away. If called from the poll process, delay 1 s for a 2518 * reference clock, otherwise 2 s. 2519 */ 2520 utemp = current_time + max(peer->throttle - (NTP_SHIFT - 1) * 2521 (1 << peer->minpoll), ntp_minpkt); 2522 if (peer->burst > 0) { 2523 if (peer->nextdate > current_time) 2524 return; 2525 #ifdef REFCLOCK 2526 else if (peer->flags & FLAG_REFCLOCK) 2527 peer->nextdate = current_time + RESP_DELAY; 2528 #endif /* REFCLOCK */ 2529 else 2530 peer->nextdate = utemp; 2531 2532 #ifdef AUTOKEY 2533 /* 2534 * If a burst is not in progress and a crypto response message 2535 * is pending, delay 2 s, but only if this is a new interval. 2536 */ 2537 } else if (peer->cmmd != NULL) { 2538 if (peer->nextdate > current_time) { 2539 if (peer->nextdate + ntp_minpkt != utemp) 2540 peer->nextdate = utemp; 2541 } else { 2542 peer->nextdate = utemp; 2543 } 2544 #endif /* AUTOKEY */ 2545 2546 /* 2547 * The ordinary case. If a retry, use minpoll; if unreachable, 2548 * use host poll; otherwise, use the minimum of host and peer 2549 * polls; In other words, oversampling is okay but 2550 * understampling is evil. Use the maximum of this value and the 2551 * headway. If the average headway is greater than the headway 2552 * threshold, increase the headway by the minimum interval. 2553 */ 2554 } else { 2555 if (peer->retry > 0) 2556 hpoll = peer->minpoll; 2557 else if (!(peer->reach)) 2558 hpoll = peer->hpoll; 2559 else 2560 hpoll = min(peer->ppoll, peer->hpoll); 2561 #ifdef REFCLOCK 2562 if (peer->flags & FLAG_REFCLOCK) 2563 next = 1 << hpoll; 2564 else 2565 #endif /* REFCLOCK */ 2566 next = ((0x1000UL | (ntp_random() & 0x0ff)) << 2567 hpoll) >> 12; 2568 next += peer->outdate; 2569 if (next > utemp) 2570 peer->nextdate = next; 2571 else 2572 peer->nextdate = utemp; 2573 if (peer->throttle > (1 << peer->minpoll)) 2574 peer->nextdate += ntp_minpkt; 2575 } 2576 DPRINTF(2, ("poll_update: at %lu %s poll %d burst %d retry %d head %d early %lu next %lu\n", 2577 current_time, ntoa(&peer->srcadr), peer->hpoll, 2578 peer->burst, peer->retry, peer->throttle, 2579 utemp - current_time, peer->nextdate - 2580 current_time)); 2581 } 2582 2583 2584 /* 2585 * peer_clear - clear peer filter registers. See Section 3.4.8 of the 2586 * spec. 2587 */ 2588 void 2589 peer_clear( 2590 struct peer *peer, /* peer structure */ 2591 const char *ident /* tally lights */ 2592 ) 2593 { 2594 u_char u; 2595 2596 #ifdef AUTOKEY 2597 /* 2598 * If cryptographic credentials have been acquired, toss them to 2599 * Valhalla. Note that autokeys are ephemeral, in that they are 2600 * tossed immediately upon use. Therefore, the keylist can be 2601 * purged anytime without needing to preserve random keys. Note 2602 * that, if the peer is purged, the cryptographic variables are 2603 * purged, too. This makes it much harder to sneak in some 2604 * unauthenticated data in the clock filter. 2605 */ 2606 key_expire(peer); 2607 if (peer->iffval != NULL) 2608 BN_free(peer->iffval); 2609 value_free(&peer->cookval); 2610 value_free(&peer->recval); 2611 value_free(&peer->encrypt); 2612 value_free(&peer->sndval); 2613 if (peer->cmmd != NULL) 2614 free(peer->cmmd); 2615 if (peer->subject != NULL) 2616 free(peer->subject); 2617 if (peer->issuer != NULL) 2618 free(peer->issuer); 2619 #endif /* AUTOKEY */ 2620 2621 /* 2622 * Clear all values, including the optional crypto values above. 2623 */ 2624 memset(CLEAR_TO_ZERO(peer), 0, LEN_CLEAR_TO_ZERO(peer)); 2625 peer->ppoll = peer->maxpoll; 2626 peer->hpoll = peer->minpoll; 2627 peer->disp = MAXDISPERSE; 2628 peer->flash = peer_unfit(peer); 2629 peer->jitter = LOGTOD(sys_precision); 2630 2631 /* 2632 * If interleave mode, initialize the alternate origin switch. 2633 */ 2634 if (peer->flags & FLAG_XLEAVE) 2635 peer->flip = 1; 2636 for (u = 0; u < NTP_SHIFT; u++) { 2637 peer->filter_order[u] = u; 2638 peer->filter_disp[u] = MAXDISPERSE; 2639 } 2640 #ifdef REFCLOCK 2641 if (!(peer->flags & FLAG_REFCLOCK)) { 2642 #endif 2643 peer->leap = LEAP_NOTINSYNC; 2644 peer->stratum = STRATUM_UNSPEC; 2645 memcpy(&peer->refid, ident, 4); 2646 #ifdef REFCLOCK 2647 } 2648 #endif 2649 2650 /* 2651 * During initialization use the association count to spread out 2652 * the polls at one-second intervals. Passive associations' 2653 * first poll is delayed by the "discard minimum" to avoid rate 2654 * limiting. Other post-startup new or cleared associations 2655 * randomize the first poll over the minimum poll interval to 2656 * avoid implosion. 2657 */ 2658 peer->nextdate = peer->update = peer->outdate = current_time; 2659 if (initializing) { 2660 peer->nextdate += peer_associations; 2661 } else if (MODE_PASSIVE == peer->hmode) { 2662 peer->nextdate += ntp_minpkt; 2663 } else { 2664 peer->nextdate += ntp_random() % peer->minpoll; 2665 } 2666 #ifdef AUTOKEY 2667 peer->refresh = current_time + (1 << NTP_REFRESH); 2668 #endif /* AUTOKEY */ 2669 DPRINTF(1, ("peer_clear: at %ld next %ld associd %d refid %s\n", 2670 current_time, peer->nextdate, peer->associd, 2671 ident)); 2672 } 2673 2674 2675 /* 2676 * clock_filter - add incoming clock sample to filter register and run 2677 * the filter procedure to find the best sample. 2678 */ 2679 void 2680 clock_filter( 2681 struct peer *peer, /* peer structure pointer */ 2682 double sample_offset, /* clock offset */ 2683 double sample_delay, /* roundtrip delay */ 2684 double sample_disp /* dispersion */ 2685 ) 2686 { 2687 double dst[NTP_SHIFT]; /* distance vector */ 2688 int ord[NTP_SHIFT]; /* index vector */ 2689 int i, j, k, m; 2690 double dtemp, etemp; 2691 char tbuf[80]; 2692 2693 /* 2694 * A sample consists of the offset, delay, dispersion and epoch 2695 * of arrival. The offset and delay are determined by the on- 2696 * wire protocol. The dispersion grows from the last outbound 2697 * packet to the arrival of this one increased by the sum of the 2698 * peer precision and the system precision as required by the 2699 * error budget. First, shift the new arrival into the shift 2700 * register discarding the oldest one. 2701 */ 2702 j = peer->filter_nextpt; 2703 peer->filter_offset[j] = sample_offset; 2704 peer->filter_delay[j] = sample_delay; 2705 peer->filter_disp[j] = sample_disp; 2706 peer->filter_epoch[j] = current_time; 2707 j = (j + 1) % NTP_SHIFT; 2708 peer->filter_nextpt = j; 2709 2710 /* 2711 * Update dispersions since the last update and at the same 2712 * time initialize the distance and index lists. Since samples 2713 * become increasingly uncorrelated beyond the Allan intercept, 2714 * only under exceptional cases will an older sample be used. 2715 * Therefore, the distance list uses a compound metric. If the 2716 * dispersion is greater than the maximum dispersion, clamp the 2717 * distance at that value. If the time since the last update is 2718 * less than the Allan intercept use the delay; otherwise, use 2719 * the sum of the delay and dispersion. 2720 */ 2721 dtemp = clock_phi * (current_time - peer->update); 2722 peer->update = current_time; 2723 for (i = NTP_SHIFT - 1; i >= 0; i--) { 2724 if (i != 0) 2725 peer->filter_disp[j] += dtemp; 2726 if (peer->filter_disp[j] >= MAXDISPERSE) { 2727 peer->filter_disp[j] = MAXDISPERSE; 2728 dst[i] = MAXDISPERSE; 2729 } else if (peer->update - peer->filter_epoch[j] > 2730 (u_long)ULOGTOD(allan_xpt)) { 2731 dst[i] = peer->filter_delay[j] + 2732 peer->filter_disp[j]; 2733 } else { 2734 dst[i] = peer->filter_delay[j]; 2735 } 2736 ord[i] = j; 2737 j = (j + 1) % NTP_SHIFT; 2738 } 2739 2740 /* 2741 * If the clock has stabilized, sort the samples by distance. 2742 */ 2743 if (freq_cnt == 0) { 2744 for (i = 1; i < NTP_SHIFT; i++) { 2745 for (j = 0; j < i; j++) { 2746 if (dst[j] > dst[i]) { 2747 k = ord[j]; 2748 ord[j] = ord[i]; 2749 ord[i] = k; 2750 etemp = dst[j]; 2751 dst[j] = dst[i]; 2752 dst[i] = etemp; 2753 } 2754 } 2755 } 2756 } 2757 2758 /* 2759 * Copy the index list to the association structure so ntpq 2760 * can see it later. Prune the distance list to leave only 2761 * samples less than the maximum dispersion, which disfavors 2762 * uncorrelated samples older than the Allan intercept. To 2763 * further improve the jitter estimate, of the remainder leave 2764 * only samples less than the maximum distance, but keep at 2765 * least two samples for jitter calculation. 2766 */ 2767 m = 0; 2768 for (i = 0; i < NTP_SHIFT; i++) { 2769 peer->filter_order[i] = (u_char) ord[i]; 2770 if ( dst[i] >= MAXDISPERSE 2771 || (m >= 2 && dst[i] >= sys_maxdist)) 2772 continue; 2773 m++; 2774 } 2775 2776 /* 2777 * Compute the dispersion and jitter. The dispersion is weighted 2778 * exponentially by NTP_FWEIGHT (0.5) so it is normalized close 2779 * to 1.0. The jitter is the RMS differences relative to the 2780 * lowest delay sample. 2781 */ 2782 peer->disp = peer->jitter = 0; 2783 k = ord[0]; 2784 for (i = NTP_SHIFT - 1; i >= 0; i--) { 2785 j = ord[i]; 2786 peer->disp = NTP_FWEIGHT * (peer->disp + 2787 peer->filter_disp[j]); 2788 if (i < m) 2789 peer->jitter += DIFF(peer->filter_offset[j], 2790 peer->filter_offset[k]); 2791 } 2792 2793 /* 2794 * If no acceptable samples remain in the shift register, 2795 * quietly tiptoe home leaving only the dispersion. Otherwise, 2796 * save the offset, delay and jitter. Note the jitter must not 2797 * be less than the precision. 2798 */ 2799 if (m == 0) { 2800 clock_select(); 2801 return; 2802 } 2803 etemp = fabs(peer->offset - peer->filter_offset[k]); 2804 peer->offset = peer->filter_offset[k]; 2805 peer->delay = peer->filter_delay[k]; 2806 if (m > 1) 2807 peer->jitter /= m - 1; 2808 peer->jitter = max(SQRT(peer->jitter), LOGTOD(sys_precision)); 2809 2810 /* 2811 * If the the new sample and the current sample are both valid 2812 * and the difference between their offsets exceeds CLOCK_SGATE 2813 * (3) times the jitter and the interval between them is less 2814 * than twice the host poll interval, consider the new sample 2815 * a popcorn spike and ignore it. 2816 */ 2817 if ( peer->disp < sys_maxdist 2818 && peer->filter_disp[k] < sys_maxdist 2819 && etemp > CLOCK_SGATE * peer->jitter 2820 && peer->filter_epoch[k] - peer->epoch 2821 < 2. * ULOGTOD(peer->hpoll)) { 2822 snprintf(tbuf, sizeof(tbuf), "%.6f s", etemp); 2823 report_event(PEVNT_POPCORN, peer, tbuf); 2824 return; 2825 } 2826 2827 /* 2828 * A new minimum sample is useful only if it is later than the 2829 * last one used. In this design the maximum lifetime of any 2830 * sample is not greater than eight times the poll interval, so 2831 * the maximum interval between minimum samples is eight 2832 * packets. 2833 */ 2834 if (peer->filter_epoch[k] <= peer->epoch) { 2835 DPRINTF(2, ("clock_filter: old sample %lu\n", current_time - 2836 peer->filter_epoch[k])); 2837 return; 2838 } 2839 peer->epoch = peer->filter_epoch[k]; 2840 2841 /* 2842 * The mitigated sample statistics are saved for later 2843 * processing. If not synchronized or not in a burst, tickle the 2844 * clock select algorithm. 2845 */ 2846 record_peer_stats(&peer->srcadr, ctlpeerstatus(peer), 2847 peer->offset, peer->delay, peer->disp, peer->jitter); 2848 DPRINTF(1, ("clock_filter: n %d off %.6f del %.6f dsp %.6f jit %.6f\n", 2849 m, peer->offset, peer->delay, peer->disp, 2850 peer->jitter)); 2851 if (peer->burst == 0 || sys_leap == LEAP_NOTINSYNC) 2852 clock_select(); 2853 } 2854 2855 2856 /* 2857 * clock_select - find the pick-of-the-litter clock 2858 * 2859 * LOCKCLOCK: (1) If the local clock is the prefer peer, it will always 2860 * be enabled, even if declared falseticker, (2) only the prefer peer 2861 * can be selected as the system peer, (3) if the external source is 2862 * down, the system leap bits are set to 11 and the stratum set to 2863 * infinity. 2864 */ 2865 void 2866 clock_select(void) 2867 { 2868 struct peer *peer; 2869 int i, j, k, n; 2870 int nlist, nl2; 2871 int allow; 2872 int speer; 2873 double d, e, f, g; 2874 double high, low; 2875 double speermet; 2876 double orphmet = 2.0 * U_INT32_MAX; /* 2x is greater than */ 2877 struct endpoint endp; 2878 struct peer *osys_peer; 2879 struct peer *sys_prefer = NULL; /* prefer peer */ 2880 struct peer *typesystem = NULL; 2881 struct peer *typeorphan = NULL; 2882 #ifdef REFCLOCK 2883 struct peer *typeacts = NULL; 2884 struct peer *typelocal = NULL; 2885 struct peer *typepps = NULL; 2886 #endif /* REFCLOCK */ 2887 static struct endpoint *endpoint = NULL; 2888 static int *indx = NULL; 2889 static peer_select *peers = NULL; 2890 static u_int endpoint_size = 0; 2891 static u_int peers_size = 0; 2892 static u_int indx_size = 0; 2893 size_t octets; 2894 2895 /* 2896 * Initialize and create endpoint, index and peer lists big 2897 * enough to handle all associations. 2898 */ 2899 osys_peer = sys_peer; 2900 sys_survivors = 0; 2901 #ifdef LOCKCLOCK 2902 set_sys_leap(LEAP_NOTINSYNC); 2903 sys_stratum = STRATUM_UNSPEC; 2904 memcpy(&sys_refid, "DOWN", 4); 2905 #endif /* LOCKCLOCK */ 2906 2907 /* 2908 * Allocate dynamic space depending on the number of 2909 * associations. 2910 */ 2911 nlist = 1; 2912 for (peer = peer_list; peer != NULL; peer = peer->p_link) 2913 nlist++; 2914 endpoint_size = ALIGNED_SIZE(nlist * 2 * sizeof(*endpoint)); 2915 peers_size = ALIGNED_SIZE(nlist * sizeof(*peers)); 2916 indx_size = ALIGNED_SIZE(nlist * 2 * sizeof(*indx)); 2917 octets = endpoint_size + peers_size + indx_size; 2918 endpoint = erealloc(endpoint, octets); 2919 peers = INC_ALIGNED_PTR(endpoint, endpoint_size); 2920 indx = INC_ALIGNED_PTR(peers, peers_size); 2921 2922 /* 2923 * Initially, we populate the island with all the rifraff peers 2924 * that happen to be lying around. Those with seriously 2925 * defective clocks are immediately booted off the island. Then, 2926 * the falsetickers are culled and put to sea. The truechimers 2927 * remaining are subject to repeated rounds where the most 2928 * unpopular at each round is kicked off. When the population 2929 * has dwindled to sys_minclock, the survivors split a million 2930 * bucks and collectively crank the chimes. 2931 */ 2932 nlist = nl2 = 0; /* none yet */ 2933 for (peer = peer_list; peer != NULL; peer = peer->p_link) { 2934 peer->new_status = CTL_PST_SEL_REJECT; 2935 2936 /* 2937 * Leave the island immediately if the peer is 2938 * unfit to synchronize. 2939 */ 2940 if (peer_unfit(peer)) 2941 continue; 2942 2943 /* 2944 * If this peer is an orphan parent, elect the 2945 * one with the lowest metric defined as the 2946 * IPv4 address or the first 64 bits of the 2947 * hashed IPv6 address. To ensure convergence 2948 * on the same selected orphan, consider as 2949 * well that this system may have the lowest 2950 * metric and be the orphan parent. If this 2951 * system wins, sys_peer will be NULL to trigger 2952 * orphan mode in timer(). 2953 */ 2954 if (peer->stratum == sys_orphan) { 2955 u_int32 localmet; 2956 u_int32 peermet; 2957 2958 if (peer->dstadr != NULL) 2959 localmet = ntohl(peer->dstadr->addr_refid); 2960 else 2961 localmet = U_INT32_MAX; 2962 peermet = ntohl(addr2refid(&peer->srcadr)); 2963 if (peermet < localmet && peermet < orphmet) { 2964 typeorphan = peer; 2965 orphmet = peermet; 2966 } 2967 continue; 2968 } 2969 2970 /* 2971 * If this peer could have the orphan parent 2972 * as a synchronization ancestor, exclude it 2973 * from selection to avoid forming a 2974 * synchronization loop within the orphan mesh, 2975 * triggering stratum climb to infinity 2976 * instability. Peers at stratum higher than 2977 * the orphan stratum could have the orphan 2978 * parent in ancestry so are excluded. 2979 * See http://bugs.ntp.org/2050 2980 */ 2981 if (peer->stratum > sys_orphan) 2982 continue; 2983 #ifdef REFCLOCK 2984 /* 2985 * The following are special cases. We deal 2986 * with them later. 2987 */ 2988 if (!(peer->flags & FLAG_PREFER)) { 2989 switch (peer->refclktype) { 2990 case REFCLK_LOCALCLOCK: 2991 if ( current_time > orphwait 2992 && typelocal == NULL) 2993 typelocal = peer; 2994 continue; 2995 2996 case REFCLK_ACTS: 2997 if ( current_time > orphwait 2998 && typeacts == NULL) 2999 typeacts = peer; 3000 continue; 3001 } 3002 } 3003 #endif /* REFCLOCK */ 3004 3005 /* 3006 * If we get this far, the peer can stay on the 3007 * island, but does not yet have the immunity 3008 * idol. 3009 */ 3010 peer->new_status = CTL_PST_SEL_SANE; 3011 f = root_distance(peer); 3012 peers[nlist].peer = peer; 3013 peers[nlist].error = peer->jitter; 3014 peers[nlist].synch = f; 3015 nlist++; 3016 3017 /* 3018 * Insert each interval endpoint on the unsorted 3019 * endpoint[] list. 3020 */ 3021 e = peer->offset; 3022 endpoint[nl2].type = -1; /* lower end */ 3023 endpoint[nl2].val = e - f; 3024 nl2++; 3025 endpoint[nl2].type = 1; /* upper end */ 3026 endpoint[nl2].val = e + f; 3027 nl2++; 3028 } 3029 /* 3030 * Construct sorted indx[] of endpoint[] indexes ordered by 3031 * offset. 3032 */ 3033 for (i = 0; i < nl2; i++) 3034 indx[i] = i; 3035 for (i = 0; i < nl2; i++) { 3036 endp = endpoint[indx[i]]; 3037 e = endp.val; 3038 k = i; 3039 for (j = i + 1; j < nl2; j++) { 3040 endp = endpoint[indx[j]]; 3041 if (endp.val < e) { 3042 e = endp.val; 3043 k = j; 3044 } 3045 } 3046 if (k != i) { 3047 j = indx[k]; 3048 indx[k] = indx[i]; 3049 indx[i] = j; 3050 } 3051 } 3052 for (i = 0; i < nl2; i++) 3053 DPRINTF(3, ("select: endpoint %2d %.6f\n", 3054 endpoint[indx[i]].type, endpoint[indx[i]].val)); 3055 3056 /* 3057 * This is the actual algorithm that cleaves the truechimers 3058 * from the falsetickers. The original algorithm was described 3059 * in Keith Marzullo's dissertation, but has been modified for 3060 * better accuracy. 3061 * 3062 * Briefly put, we first assume there are no falsetickers, then 3063 * scan the candidate list first from the low end upwards and 3064 * then from the high end downwards. The scans stop when the 3065 * number of intersections equals the number of candidates less 3066 * the number of falsetickers. If this doesn't happen for a 3067 * given number of falsetickers, we bump the number of 3068 * falsetickers and try again. If the number of falsetickers 3069 * becomes equal to or greater than half the number of 3070 * candidates, the Albanians have won the Byzantine wars and 3071 * correct synchronization is not possible. 3072 * 3073 * Here, nlist is the number of candidates and allow is the 3074 * number of falsetickers. Upon exit, the truechimers are the 3075 * survivors with offsets not less than low and not greater than 3076 * high. There may be none of them. 3077 */ 3078 low = 1e9; 3079 high = -1e9; 3080 for (allow = 0; 2 * allow < nlist; allow++) { 3081 3082 /* 3083 * Bound the interval (low, high) as the smallest 3084 * interval containing points from the most sources. 3085 */ 3086 n = 0; 3087 for (i = 0; i < nl2; i++) { 3088 low = endpoint[indx[i]].val; 3089 n -= endpoint[indx[i]].type; 3090 if (n >= nlist - allow) 3091 break; 3092 } 3093 n = 0; 3094 for (j = nl2 - 1; j >= 0; j--) { 3095 high = endpoint[indx[j]].val; 3096 n += endpoint[indx[j]].type; 3097 if (n >= nlist - allow) 3098 break; 3099 } 3100 3101 /* 3102 * If an interval containing truechimers is found, stop. 3103 * If not, increase the number of falsetickers and go 3104 * around again. 3105 */ 3106 if (high > low) 3107 break; 3108 } 3109 3110 /* 3111 * Clustering algorithm. Whittle candidate list of falsetickers, 3112 * who leave the island immediately. The TRUE peer is always a 3113 * truechimer. We must leave at least one peer to collect the 3114 * million bucks. 3115 * 3116 * We assert the correct time is contained in the interval, but 3117 * the best offset estimate for the interval might not be 3118 * contained in the interval. For this purpose, a truechimer is 3119 * defined as the midpoint of an interval that overlaps the 3120 * intersection interval. 3121 */ 3122 j = 0; 3123 for (i = 0; i < nlist; i++) { 3124 double h; 3125 3126 peer = peers[i].peer; 3127 h = peers[i].synch; 3128 if (( high <= low 3129 || peer->offset + h < low 3130 || peer->offset - h > high 3131 ) && !(peer->flags & FLAG_TRUE)) 3132 continue; 3133 3134 #ifdef REFCLOCK 3135 /* 3136 * Eligible PPS peers must survive the intersection 3137 * algorithm. Use the first one found, but don't 3138 * include any of them in the cluster population. 3139 */ 3140 if (peer->flags & FLAG_PPS) { 3141 if (typepps == NULL) 3142 typepps = peer; 3143 if (!(peer->flags & FLAG_TSTAMP_PPS)) 3144 continue; 3145 } 3146 #endif /* REFCLOCK */ 3147 3148 if (j != i) 3149 peers[j] = peers[i]; 3150 j++; 3151 } 3152 nlist = j; 3153 3154 /* 3155 * If no survivors remain at this point, check if the modem 3156 * driver, local driver or orphan parent in that order. If so, 3157 * nominate the first one found as the only survivor. 3158 * Otherwise, give up and leave the island to the rats. 3159 */ 3160 if (nlist == 0) { 3161 peers[0].error = 0; 3162 peers[0].synch = sys_mindisp; 3163 #ifdef REFCLOCK 3164 if (typeacts != NULL) { 3165 peers[0].peer = typeacts; 3166 nlist = 1; 3167 } else if (typelocal != NULL) { 3168 peers[0].peer = typelocal; 3169 nlist = 1; 3170 } else 3171 #endif /* REFCLOCK */ 3172 if (typeorphan != NULL) { 3173 peers[0].peer = typeorphan; 3174 nlist = 1; 3175 } 3176 } 3177 3178 /* 3179 * Mark the candidates at this point as truechimers. 3180 */ 3181 for (i = 0; i < nlist; i++) { 3182 peers[i].peer->new_status = CTL_PST_SEL_SELCAND; 3183 DPRINTF(2, ("select: survivor %s %f\n", 3184 stoa(&peers[i].peer->srcadr), peers[i].synch)); 3185 } 3186 3187 /* 3188 * Now, vote outliers off the island by select jitter weighted 3189 * by root distance. Continue voting as long as there are more 3190 * than sys_minclock survivors and the select jitter of the peer 3191 * with the worst metric is greater than the minimum peer 3192 * jitter. Stop if we are about to discard a TRUE or PREFER 3193 * peer, who of course have the immunity idol. 3194 */ 3195 while (1) { 3196 d = 1e9; 3197 e = -1e9; 3198 g = 0; 3199 k = 0; 3200 for (i = 0; i < nlist; i++) { 3201 if (peers[i].error < d) 3202 d = peers[i].error; 3203 peers[i].seljit = 0; 3204 if (nlist > 1) { 3205 f = 0; 3206 for (j = 0; j < nlist; j++) 3207 f += DIFF(peers[j].peer->offset, 3208 peers[i].peer->offset); 3209 peers[i].seljit = SQRT(f / (nlist - 1)); 3210 } 3211 if (peers[i].seljit * peers[i].synch > e) { 3212 g = peers[i].seljit; 3213 e = peers[i].seljit * peers[i].synch; 3214 k = i; 3215 } 3216 } 3217 g = max(g, LOGTOD(sys_precision)); 3218 if ( nlist <= max(1, sys_minclock) 3219 || g <= d 3220 || ((FLAG_TRUE | FLAG_PREFER) & peers[k].peer->flags)) 3221 break; 3222 3223 DPRINTF(3, ("select: drop %s seljit %.6f jit %.6f\n", 3224 ntoa(&peers[k].peer->srcadr), g, d)); 3225 if (nlist > sys_maxclock) 3226 peers[k].peer->new_status = CTL_PST_SEL_EXCESS; 3227 for (j = k + 1; j < nlist; j++) 3228 peers[j - 1] = peers[j]; 3229 nlist--; 3230 } 3231 3232 /* 3233 * What remains is a list usually not greater than sys_minclock 3234 * peers. Note that unsynchronized peers cannot survive this 3235 * far. Count and mark these survivors. 3236 * 3237 * While at it, count the number of leap warning bits found. 3238 * This will be used later to vote the system leap warning bit. 3239 * If a leap warning bit is found on a reference clock, the vote 3240 * is always won. 3241 * 3242 * Choose the system peer using a hybrid metric composed of the 3243 * selection jitter scaled by the root distance augmented by 3244 * stratum scaled by sys_mindisp (.001 by default). The goal of 3245 * the small stratum factor is to avoid clockhop between a 3246 * reference clock and a network peer which has a refclock and 3247 * is using an older ntpd, which does not floor sys_rootdisp at 3248 * sys_mindisp. 3249 * 3250 * In contrast, ntpd 4.2.6 and earlier used stratum primarily 3251 * in selecting the system peer, using a weight of 1 second of 3252 * additional root distance per stratum. This heavy bias is no 3253 * longer appropriate, as the scaled root distance provides a 3254 * more rational metric carrying the cumulative error budget. 3255 */ 3256 e = 1e9; 3257 speer = 0; 3258 leap_vote_ins = 0; 3259 leap_vote_del = 0; 3260 for (i = 0; i < nlist; i++) { 3261 peer = peers[i].peer; 3262 peer->unreach = 0; 3263 peer->new_status = CTL_PST_SEL_SYNCCAND; 3264 sys_survivors++; 3265 if (peer->leap == LEAP_ADDSECOND) { 3266 if (peer->flags & FLAG_REFCLOCK) 3267 leap_vote_ins = nlist; 3268 else if (leap_vote_ins < nlist) 3269 leap_vote_ins++; 3270 } 3271 if (peer->leap == LEAP_DELSECOND) { 3272 if (peer->flags & FLAG_REFCLOCK) 3273 leap_vote_del = nlist; 3274 else if (leap_vote_del < nlist) 3275 leap_vote_del++; 3276 } 3277 if (peer->flags & FLAG_PREFER) 3278 sys_prefer = peer; 3279 speermet = peers[i].seljit * peers[i].synch + 3280 peer->stratum * sys_mindisp; 3281 if (speermet < e) { 3282 e = speermet; 3283 speer = i; 3284 } 3285 } 3286 3287 /* 3288 * Unless there are at least sys_misane survivors, leave the 3289 * building dark. Otherwise, do a clockhop dance. Ordinarily, 3290 * use the selected survivor speer. However, if the current 3291 * system peer is not speer, stay with the current system peer 3292 * as long as it doesn't get too old or too ugly. 3293 */ 3294 if (nlist > 0 && nlist >= sys_minsane) { 3295 double x; 3296 3297 typesystem = peers[speer].peer; 3298 if (osys_peer == NULL || osys_peer == typesystem) { 3299 sys_clockhop = 0; 3300 } else if ((x = fabs(typesystem->offset - 3301 osys_peer->offset)) < sys_mindisp) { 3302 if (sys_clockhop == 0) 3303 sys_clockhop = sys_mindisp; 3304 else 3305 sys_clockhop *= .5; 3306 DPRINTF(1, ("select: clockhop %d %.6f %.6f\n", 3307 j, x, sys_clockhop)); 3308 if (fabs(x) < sys_clockhop) 3309 typesystem = osys_peer; 3310 else 3311 sys_clockhop = 0; 3312 } else { 3313 sys_clockhop = 0; 3314 } 3315 } 3316 3317 /* 3318 * Mitigation rules of the game. We have the pick of the 3319 * litter in typesystem if any survivors are left. If 3320 * there is a prefer peer, use its offset and jitter. 3321 * Otherwise, use the combined offset and jitter of all kitters. 3322 */ 3323 if (typesystem != NULL) { 3324 if (sys_prefer == NULL) { 3325 typesystem->new_status = CTL_PST_SEL_SYSPEER; 3326 clock_combine(peers, sys_survivors, speer); 3327 } else { 3328 typesystem = sys_prefer; 3329 sys_clockhop = 0; 3330 typesystem->new_status = CTL_PST_SEL_SYSPEER; 3331 sys_offset = typesystem->offset; 3332 sys_jitter = typesystem->jitter; 3333 } 3334 DPRINTF(1, ("select: combine offset %.9f jitter %.9f\n", 3335 sys_offset, sys_jitter)); 3336 } 3337 #ifdef REFCLOCK 3338 /* 3339 * If a PPS driver is lit and the combined offset is less than 3340 * 0.4 s, select the driver as the PPS peer and use its offset 3341 * and jitter. However, if this is the atom driver, use it only 3342 * if there is a prefer peer or there are no survivors and none 3343 * are required. 3344 */ 3345 if ( typepps != NULL 3346 && fabs(sys_offset) < 0.4 3347 && ( typepps->refclktype != REFCLK_ATOM_PPS 3348 || ( typepps->refclktype == REFCLK_ATOM_PPS 3349 && ( sys_prefer != NULL 3350 || (typesystem == NULL && sys_minsane == 0))))) { 3351 typesystem = typepps; 3352 sys_clockhop = 0; 3353 typesystem->new_status = CTL_PST_SEL_PPS; 3354 sys_offset = typesystem->offset; 3355 sys_jitter = typesystem->jitter; 3356 DPRINTF(1, ("select: pps offset %.9f jitter %.9f\n", 3357 sys_offset, sys_jitter)); 3358 } 3359 #endif /* REFCLOCK */ 3360 3361 /* 3362 * If there are no survivors at this point, there is no 3363 * system peer. If so and this is an old update, keep the 3364 * current statistics, but do not update the clock. 3365 */ 3366 if (typesystem == NULL) { 3367 if (osys_peer != NULL) { 3368 if (sys_orphwait > 0) 3369 orphwait = current_time + sys_orphwait; 3370 report_event(EVNT_NOPEER, NULL, NULL); 3371 } 3372 sys_peer = NULL; 3373 for (peer = peer_list; peer != NULL; peer = peer->p_link) 3374 peer->status = peer->new_status; 3375 return; 3376 } 3377 3378 /* 3379 * Do not use old data, as this may mess up the clock discipline 3380 * stability. 3381 */ 3382 if (typesystem->epoch <= sys_epoch) 3383 return; 3384 3385 /* 3386 * We have found the alpha male. Wind the clock. 3387 */ 3388 if (osys_peer != typesystem) 3389 report_event(PEVNT_NEWPEER, typesystem, NULL); 3390 for (peer = peer_list; peer != NULL; peer = peer->p_link) 3391 peer->status = peer->new_status; 3392 clock_update(typesystem); 3393 } 3394 3395 3396 static void 3397 clock_combine( 3398 peer_select * peers, /* survivor list */ 3399 int npeers, /* number of survivors */ 3400 int syspeer /* index of sys.peer */ 3401 ) 3402 { 3403 int i; 3404 double x, y, z, w; 3405 3406 y = z = w = 0; 3407 for (i = 0; i < npeers; i++) { 3408 x = 1. / peers[i].synch; 3409 y += x; 3410 z += x * peers[i].peer->offset; 3411 w += x * DIFF(peers[i].peer->offset, 3412 peers[syspeer].peer->offset); 3413 } 3414 sys_offset = z / y; 3415 sys_jitter = SQRT(w / y + SQUARE(peers[syspeer].seljit)); 3416 } 3417 3418 3419 /* 3420 * root_distance - compute synchronization distance from peer to root 3421 */ 3422 static double 3423 root_distance( 3424 struct peer *peer /* peer structure pointer */ 3425 ) 3426 { 3427 double dtemp; 3428 3429 /* 3430 * Root Distance (LAMBDA) is defined as: 3431 * (delta + DELTA)/2 + epsilon + EPSILON + phi 3432 * 3433 * where: 3434 * delta is the round-trip delay 3435 * DELTA is the root delay 3436 * epsilon is the remote server precision + local precision 3437 * + (15 usec each second) 3438 * EPSILON is the root dispersion 3439 * phi is the peer jitter statistic 3440 * 3441 * NB: Think hard about why we are using these values, and what 3442 * the alternatives are, and the various pros/cons. 3443 * 3444 * DLM thinks these are probably the best choices from any of the 3445 * other worse choices. 3446 */ 3447 dtemp = (peer->delay + peer->rootdelay) / 2 3448 + LOGTOD(peer->precision) 3449 + LOGTOD(sys_precision) 3450 + clock_phi * (current_time - peer->update) 3451 + peer->rootdisp 3452 + peer->jitter; 3453 /* 3454 * Careful squeak here. The value returned must be greater than 3455 * the minimum root dispersion in order to avoid clockhop with 3456 * highly precise reference clocks. Note that the root distance 3457 * cannot exceed the sys_maxdist, as this is the cutoff by the 3458 * selection algorithm. 3459 */ 3460 if (dtemp < sys_mindisp) 3461 dtemp = sys_mindisp; 3462 return (dtemp); 3463 } 3464 3465 3466 /* 3467 * peer_xmit - send packet for persistent association. 3468 */ 3469 static void 3470 peer_xmit( 3471 struct peer *peer /* peer structure pointer */ 3472 ) 3473 { 3474 struct pkt xpkt; /* transmit packet */ 3475 size_t sendlen, authlen; 3476 keyid_t xkeyid = 0; /* transmit key ID */ 3477 l_fp xmt_tx, xmt_ty; 3478 3479 if (!peer->dstadr) /* drop peers without interface */ 3480 return; 3481 3482 xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, peer->version, 3483 peer->hmode); 3484 xpkt.stratum = STRATUM_TO_PKT(sys_stratum); 3485 xpkt.ppoll = peer->hpoll; 3486 xpkt.precision = sys_precision; 3487 xpkt.refid = sys_refid; 3488 xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay)); 3489 xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp)); 3490 HTONL_FP(&sys_reftime, &xpkt.reftime); 3491 HTONL_FP(&peer->rec, &xpkt.org); 3492 HTONL_FP(&peer->dst, &xpkt.rec); 3493 3494 /* 3495 * If the received packet contains a MAC, the transmitted packet 3496 * is authenticated and contains a MAC. If not, the transmitted 3497 * packet is not authenticated. 3498 * 3499 * It is most important when autokey is in use that the local 3500 * interface IP address be known before the first packet is 3501 * sent. Otherwise, it is not possible to compute a correct MAC 3502 * the recipient will accept. Thus, the I/O semantics have to do 3503 * a little more work. In particular, the wildcard interface 3504 * might not be usable. 3505 */ 3506 sendlen = LEN_PKT_NOMAC; 3507 if ( 3508 #ifdef AUTOKEY 3509 !(peer->flags & FLAG_SKEY) && 3510 #endif /* !AUTOKEY */ 3511 peer->keyid == 0) { 3512 3513 /* 3514 * Transmit a-priori timestamps 3515 */ 3516 get_systime(&xmt_tx); 3517 if (peer->flip == 0) { /* basic mode */ 3518 peer->aorg = xmt_tx; 3519 HTONL_FP(&xmt_tx, &xpkt.xmt); 3520 } else { /* interleaved modes */ 3521 if (peer->hmode == MODE_BROADCAST) { /* bcst */ 3522 HTONL_FP(&xmt_tx, &xpkt.xmt); 3523 if (peer->flip > 0) 3524 HTONL_FP(&peer->borg, 3525 &xpkt.org); 3526 else 3527 HTONL_FP(&peer->aorg, 3528 &xpkt.org); 3529 } else { /* symmetric */ 3530 if (peer->flip > 0) 3531 HTONL_FP(&peer->borg, 3532 &xpkt.xmt); 3533 else 3534 HTONL_FP(&peer->aorg, 3535 &xpkt.xmt); 3536 } 3537 } 3538 peer->t21_bytes = sendlen; 3539 sendpkt(&peer->srcadr, peer->dstadr, sys_ttl[peer->ttl], 3540 &xpkt, sendlen); 3541 peer->sent++; 3542 peer->throttle += (1 << peer->minpoll) - 2; 3543 3544 /* 3545 * Capture a-posteriori timestamps 3546 */ 3547 get_systime(&xmt_ty); 3548 if (peer->flip != 0) { /* interleaved modes */ 3549 if (peer->flip > 0) 3550 peer->aorg = xmt_ty; 3551 else 3552 peer->borg = xmt_ty; 3553 peer->flip = -peer->flip; 3554 } 3555 L_SUB(&xmt_ty, &xmt_tx); 3556 LFPTOD(&xmt_ty, peer->xleave); 3557 DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d len %zu xmt %#010x.%08x\n", 3558 current_time, 3559 peer->dstadr ? stoa(&peer->dstadr->sin) : "-", 3560 stoa(&peer->srcadr), peer->hmode, sendlen, 3561 xmt_tx.l_ui, xmt_tx.l_uf)); 3562 return; 3563 } 3564 3565 /* 3566 * Authentication is enabled, so the transmitted packet must be 3567 * authenticated. If autokey is enabled, fuss with the various 3568 * modes; otherwise, symmetric key cryptography is used. 3569 */ 3570 #ifdef AUTOKEY 3571 if (peer->flags & FLAG_SKEY) { 3572 struct exten *exten; /* extension field */ 3573 3574 /* 3575 * The Public Key Dance (PKD): Cryptographic credentials 3576 * are contained in extension fields, each including a 3577 * 4-octet length/code word followed by a 4-octet 3578 * association ID and optional additional data. Optional 3579 * data includes a 4-octet data length field followed by 3580 * the data itself. Request messages are sent from a 3581 * configured association; response messages can be sent 3582 * from a configured association or can take the fast 3583 * path without ever matching an association. Response 3584 * messages have the same code as the request, but have 3585 * a response bit and possibly an error bit set. In this 3586 * implementation, a message may contain no more than 3587 * one command and one or more responses. 3588 * 3589 * Cryptographic session keys include both a public and 3590 * a private componet. Request and response messages 3591 * using extension fields are always sent with the 3592 * private component set to zero. Packets without 3593 * extension fields indlude the private component when 3594 * the session key is generated. 3595 */ 3596 while (1) { 3597 3598 /* 3599 * Allocate and initialize a keylist if not 3600 * already done. Then, use the list in inverse 3601 * order, discarding keys once used. Keep the 3602 * latest key around until the next one, so 3603 * clients can use client/server packets to 3604 * compute propagation delay. 3605 * 3606 * Note that once a key is used from the list, 3607 * it is retained in the key cache until the 3608 * next key is used. This is to allow a client 3609 * to retrieve the encrypted session key 3610 * identifier to verify authenticity. 3611 * 3612 * If for some reason a key is no longer in the 3613 * key cache, a birthday has happened or the key 3614 * has expired, so the pseudo-random sequence is 3615 * broken. In that case, purge the keylist and 3616 * regenerate it. 3617 */ 3618 if (peer->keynumber == 0) 3619 make_keylist(peer, peer->dstadr); 3620 else 3621 peer->keynumber--; 3622 xkeyid = peer->keylist[peer->keynumber]; 3623 if (authistrusted(xkeyid)) 3624 break; 3625 else 3626 key_expire(peer); 3627 } 3628 peer->keyid = xkeyid; 3629 exten = NULL; 3630 switch (peer->hmode) { 3631 3632 /* 3633 * In broadcast server mode the autokey values are 3634 * required by the broadcast clients. Push them when a 3635 * new keylist is generated; otherwise, push the 3636 * association message so the client can request them at 3637 * other times. 3638 */ 3639 case MODE_BROADCAST: 3640 if (peer->flags & FLAG_ASSOC) 3641 exten = crypto_args(peer, CRYPTO_AUTO | 3642 CRYPTO_RESP, peer->associd, NULL); 3643 else 3644 exten = crypto_args(peer, CRYPTO_ASSOC | 3645 CRYPTO_RESP, peer->associd, NULL); 3646 break; 3647 3648 /* 3649 * In symmetric modes the parameter, certificate, 3650 * identity, cookie and autokey exchanges are 3651 * required. The leapsecond exchange is optional. But, a 3652 * peer will not believe the other peer until the other 3653 * peer has synchronized, so the certificate exchange 3654 * might loop until then. If a peer finds a broken 3655 * autokey sequence, it uses the autokey exchange to 3656 * retrieve the autokey values. In any case, if a new 3657 * keylist is generated, the autokey values are pushed. 3658 */ 3659 case MODE_ACTIVE: 3660 case MODE_PASSIVE: 3661 3662 /* 3663 * Parameter, certificate and identity. 3664 */ 3665 if (!peer->crypto) 3666 exten = crypto_args(peer, CRYPTO_ASSOC, 3667 peer->associd, hostval.ptr); 3668 else if (!(peer->crypto & CRYPTO_FLAG_CERT)) 3669 exten = crypto_args(peer, CRYPTO_CERT, 3670 peer->associd, peer->issuer); 3671 else if (!(peer->crypto & CRYPTO_FLAG_VRFY)) 3672 exten = crypto_args(peer, 3673 crypto_ident(peer), peer->associd, 3674 NULL); 3675 3676 /* 3677 * Cookie and autokey. We request the cookie 3678 * only when the this peer and the other peer 3679 * are synchronized. But, this peer needs the 3680 * autokey values when the cookie is zero. Any 3681 * time we regenerate the key list, we offer the 3682 * autokey values without being asked. If for 3683 * some reason either peer finds a broken 3684 * autokey sequence, the autokey exchange is 3685 * used to retrieve the autokey values. 3686 */ 3687 else if ( sys_leap != LEAP_NOTINSYNC 3688 && peer->leap != LEAP_NOTINSYNC 3689 && !(peer->crypto & CRYPTO_FLAG_COOK)) 3690 exten = crypto_args(peer, CRYPTO_COOK, 3691 peer->associd, NULL); 3692 else if (!(peer->crypto & CRYPTO_FLAG_AUTO)) 3693 exten = crypto_args(peer, CRYPTO_AUTO, 3694 peer->associd, NULL); 3695 else if ( peer->flags & FLAG_ASSOC 3696 && peer->crypto & CRYPTO_FLAG_SIGN) 3697 exten = crypto_args(peer, CRYPTO_AUTO | 3698 CRYPTO_RESP, peer->assoc, NULL); 3699 3700 /* 3701 * Wait for clock sync, then sign the 3702 * certificate and retrieve the leapsecond 3703 * values. 3704 */ 3705 else if (sys_leap == LEAP_NOTINSYNC) 3706 break; 3707 3708 else if (!(peer->crypto & CRYPTO_FLAG_SIGN)) 3709 exten = crypto_args(peer, CRYPTO_SIGN, 3710 peer->associd, hostval.ptr); 3711 else if (!(peer->crypto & CRYPTO_FLAG_LEAP)) 3712 exten = crypto_args(peer, CRYPTO_LEAP, 3713 peer->associd, NULL); 3714 break; 3715 3716 /* 3717 * In client mode the parameter, certificate, identity, 3718 * cookie and sign exchanges are required. The 3719 * leapsecond exchange is optional. If broadcast client 3720 * mode the same exchanges are required, except that the 3721 * autokey exchange is substitutes for the cookie 3722 * exchange, since the cookie is always zero. If the 3723 * broadcast client finds a broken autokey sequence, it 3724 * uses the autokey exchange to retrieve the autokey 3725 * values. 3726 */ 3727 case MODE_CLIENT: 3728 3729 /* 3730 * Parameter, certificate and identity. 3731 */ 3732 if (!peer->crypto) 3733 exten = crypto_args(peer, CRYPTO_ASSOC, 3734 peer->associd, hostval.ptr); 3735 else if (!(peer->crypto & CRYPTO_FLAG_CERT)) 3736 exten = crypto_args(peer, CRYPTO_CERT, 3737 peer->associd, peer->issuer); 3738 else if (!(peer->crypto & CRYPTO_FLAG_VRFY)) 3739 exten = crypto_args(peer, 3740 crypto_ident(peer), peer->associd, 3741 NULL); 3742 3743 /* 3744 * Cookie and autokey. These are requests, but 3745 * we use the peer association ID with autokey 3746 * rather than our own. 3747 */ 3748 else if (!(peer->crypto & CRYPTO_FLAG_COOK)) 3749 exten = crypto_args(peer, CRYPTO_COOK, 3750 peer->associd, NULL); 3751 else if (!(peer->crypto & CRYPTO_FLAG_AUTO)) 3752 exten = crypto_args(peer, CRYPTO_AUTO, 3753 peer->assoc, NULL); 3754 3755 /* 3756 * Wait for clock sync, then sign the 3757 * certificate and retrieve the leapsecond 3758 * values. 3759 */ 3760 else if (sys_leap == LEAP_NOTINSYNC) 3761 break; 3762 3763 else if (!(peer->crypto & CRYPTO_FLAG_SIGN)) 3764 exten = crypto_args(peer, CRYPTO_SIGN, 3765 peer->associd, hostval.ptr); 3766 else if (!(peer->crypto & CRYPTO_FLAG_LEAP)) 3767 exten = crypto_args(peer, CRYPTO_LEAP, 3768 peer->associd, NULL); 3769 break; 3770 } 3771 3772 /* 3773 * Add a queued extension field if present. This is 3774 * always a request message, so the reply ID is already 3775 * in the message. If an error occurs, the error bit is 3776 * lit in the response. 3777 */ 3778 if (peer->cmmd != NULL) { 3779 u_int32 temp32; 3780 3781 temp32 = CRYPTO_RESP; 3782 peer->cmmd->opcode |= htonl(temp32); 3783 sendlen += crypto_xmit(peer, &xpkt, NULL, 3784 sendlen, peer->cmmd, 0); 3785 free(peer->cmmd); 3786 peer->cmmd = NULL; 3787 } 3788 3789 /* 3790 * Add an extension field created above. All but the 3791 * autokey response message are request messages. 3792 */ 3793 if (exten != NULL) { 3794 if (exten->opcode != 0) 3795 sendlen += crypto_xmit(peer, &xpkt, 3796 NULL, sendlen, exten, 0); 3797 free(exten); 3798 } 3799 3800 /* 3801 * Calculate the next session key. Since extension 3802 * fields are present, the cookie value is zero. 3803 */ 3804 if (sendlen > (int)LEN_PKT_NOMAC) { 3805 session_key(&peer->dstadr->sin, &peer->srcadr, 3806 xkeyid, 0, 2); 3807 } 3808 } 3809 #endif /* AUTOKEY */ 3810 3811 /* 3812 * Transmit a-priori timestamps 3813 */ 3814 get_systime(&xmt_tx); 3815 if (peer->flip == 0) { /* basic mode */ 3816 peer->aorg = xmt_tx; 3817 HTONL_FP(&xmt_tx, &xpkt.xmt); 3818 } else { /* interleaved modes */ 3819 if (peer->hmode == MODE_BROADCAST) { /* bcst */ 3820 HTONL_FP(&xmt_tx, &xpkt.xmt); 3821 if (peer->flip > 0) 3822 HTONL_FP(&peer->borg, &xpkt.org); 3823 else 3824 HTONL_FP(&peer->aorg, &xpkt.org); 3825 } else { /* symmetric */ 3826 if (peer->flip > 0) 3827 HTONL_FP(&peer->borg, &xpkt.xmt); 3828 else 3829 HTONL_FP(&peer->aorg, &xpkt.xmt); 3830 } 3831 } 3832 xkeyid = peer->keyid; 3833 authlen = authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen); 3834 if (authlen == 0) { 3835 report_event(PEVNT_AUTH, peer, "no key"); 3836 peer->flash |= TEST5; /* auth error */ 3837 peer->badauth++; 3838 return; 3839 } 3840 sendlen += authlen; 3841 #ifdef AUTOKEY 3842 if (xkeyid > NTP_MAXKEY) 3843 authtrust(xkeyid, 0); 3844 #endif /* AUTOKEY */ 3845 if (sendlen > sizeof(xpkt)) { 3846 msyslog(LOG_ERR, "peer_xmit: buffer overflow %zu", sendlen); 3847 exit (-1); 3848 } 3849 peer->t21_bytes = sendlen; 3850 sendpkt(&peer->srcadr, peer->dstadr, sys_ttl[peer->ttl], &xpkt, 3851 sendlen); 3852 peer->sent++; 3853 peer->throttle += (1 << peer->minpoll) - 2; 3854 3855 /* 3856 * Capture a-posteriori timestamps 3857 */ 3858 get_systime(&xmt_ty); 3859 if (peer->flip != 0) { /* interleaved modes */ 3860 if (peer->flip > 0) 3861 peer->aorg = xmt_ty; 3862 else 3863 peer->borg = xmt_ty; 3864 peer->flip = -peer->flip; 3865 } 3866 L_SUB(&xmt_ty, &xmt_tx); 3867 LFPTOD(&xmt_ty, peer->xleave); 3868 #ifdef AUTOKEY 3869 DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d keyid %08x len %zu index %d\n", 3870 current_time, latoa(peer->dstadr), 3871 ntoa(&peer->srcadr), peer->hmode, xkeyid, sendlen, 3872 peer->keynumber)); 3873 #else /* !AUTOKEY follows */ 3874 DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d keyid %08x len %d\n", 3875 current_time, peer->dstadr ? 3876 ntoa(&peer->dstadr->sin) : "-", 3877 ntoa(&peer->srcadr), peer->hmode, xkeyid, sendlen)); 3878 #endif /* !AUTOKEY */ 3879 3880 return; 3881 } 3882 3883 3884 #ifdef LEAP_SMEAR 3885 3886 static void 3887 leap_smear_add_offs( 3888 l_fp *t, 3889 l_fp *t_recv 3890 ) 3891 { 3892 3893 L_ADD(t, &leap_smear.offset); 3894 3895 return; 3896 } 3897 3898 #endif /* LEAP_SMEAR */ 3899 3900 3901 /* 3902 * fast_xmit - Send packet for nonpersistent association. Note that 3903 * neither the source or destination can be a broadcast address. 3904 */ 3905 static void 3906 fast_xmit( 3907 struct recvbuf *rbufp, /* receive packet pointer */ 3908 int xmode, /* receive mode */ 3909 keyid_t xkeyid, /* transmit key ID */ 3910 int flags /* restrict mask */ 3911 ) 3912 { 3913 struct pkt xpkt; /* transmit packet structure */ 3914 struct pkt *rpkt; /* receive packet structure */ 3915 l_fp xmt_tx, xmt_ty; 3916 size_t sendlen; 3917 #ifdef AUTOKEY 3918 u_int32 temp32; 3919 #endif 3920 3921 /* 3922 * Initialize transmit packet header fields from the receive 3923 * buffer provided. We leave the fields intact as received, but 3924 * set the peer poll at the maximum of the receive peer poll and 3925 * the system minimum poll (ntp_minpoll). This is for KoD rate 3926 * control and not strictly specification compliant, but doesn't 3927 * break anything. 3928 * 3929 * If the gazinta was from a multicast address, the gazoutta 3930 * must go out another way. 3931 */ 3932 rpkt = &rbufp->recv_pkt; 3933 if (rbufp->dstadr->flags & INT_MCASTOPEN) 3934 rbufp->dstadr = findinterface(&rbufp->recv_srcadr); 3935 3936 /* 3937 * If this is a kiss-o'-death (KoD) packet, show leap 3938 * unsynchronized, stratum zero, reference ID the four-character 3939 * kiss code and system root delay. Note we don't reveal the 3940 * local time, so these packets can't be used for 3941 * synchronization. 3942 */ 3943 if (flags & RES_KOD) { 3944 sys_kodsent++; 3945 xpkt.li_vn_mode = PKT_LI_VN_MODE(LEAP_NOTINSYNC, 3946 PKT_VERSION(rpkt->li_vn_mode), xmode); 3947 xpkt.stratum = STRATUM_PKT_UNSPEC; 3948 xpkt.ppoll = max(rpkt->ppoll, ntp_minpoll); 3949 xpkt.precision = rpkt->precision; 3950 memcpy(&xpkt.refid, "RATE", 4); 3951 xpkt.rootdelay = rpkt->rootdelay; 3952 xpkt.rootdisp = rpkt->rootdisp; 3953 xpkt.reftime = rpkt->reftime; 3954 xpkt.org = rpkt->xmt; 3955 xpkt.rec = rpkt->xmt; 3956 xpkt.xmt = rpkt->xmt; 3957 3958 /* 3959 * This is a normal packet. Use the system variables. 3960 */ 3961 } else { 3962 #ifdef LEAP_SMEAR 3963 /* 3964 * Make copies of the variables which can be affected by smearing. 3965 */ 3966 l_fp this_ref_time; 3967 l_fp this_recv_time; 3968 #endif 3969 3970 /* 3971 * If we are inside the leap smear interval we add the current smear offset to 3972 * the packet receive time, to the packet transmit time, and eventually to the 3973 * reftime to make sure the reftime isn't later than the transmit/receive times. 3974 */ 3975 xpkt.li_vn_mode = PKT_LI_VN_MODE(xmt_leap, 3976 PKT_VERSION(rpkt->li_vn_mode), xmode); 3977 3978 xpkt.stratum = STRATUM_TO_PKT(sys_stratum); 3979 xpkt.ppoll = max(rpkt->ppoll, ntp_minpoll); 3980 xpkt.precision = sys_precision; 3981 xpkt.refid = sys_refid; 3982 xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay)); 3983 xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp)); 3984 3985 #ifdef LEAP_SMEAR 3986 this_ref_time = sys_reftime; 3987 if (leap_smear.in_progress) { 3988 leap_smear_add_offs(&this_ref_time, NULL); 3989 xpkt.refid = convertLFPToRefID(leap_smear.offset); 3990 DPRINTF(2, ("fast_xmit: leap_smear.in_progress: refid %8x, smear %s\n", 3991 ntohl(xpkt.refid), 3992 lfptoa(&leap_smear.offset, 8) 3993 )); 3994 } 3995 HTONL_FP(&this_ref_time, &xpkt.reftime); 3996 #else 3997 HTONL_FP(&sys_reftime, &xpkt.reftime); 3998 #endif 3999 4000 xpkt.org = rpkt->xmt; 4001 4002 #ifdef LEAP_SMEAR 4003 this_recv_time = rbufp->recv_time; 4004 if (leap_smear.in_progress) 4005 leap_smear_add_offs(&this_recv_time, NULL); 4006 HTONL_FP(&this_recv_time, &xpkt.rec); 4007 #else 4008 HTONL_FP(&rbufp->recv_time, &xpkt.rec); 4009 #endif 4010 4011 get_systime(&xmt_tx); 4012 #ifdef LEAP_SMEAR 4013 if (leap_smear.in_progress) 4014 leap_smear_add_offs(&xmt_tx, &this_recv_time); 4015 #endif 4016 HTONL_FP(&xmt_tx, &xpkt.xmt); 4017 } 4018 4019 #ifdef HAVE_NTP_SIGND 4020 if (flags & RES_MSSNTP) { 4021 send_via_ntp_signd(rbufp, xmode, xkeyid, flags, &xpkt); 4022 return; 4023 } 4024 #endif /* HAVE_NTP_SIGND */ 4025 4026 /* 4027 * If the received packet contains a MAC, the transmitted packet 4028 * is authenticated and contains a MAC. If not, the transmitted 4029 * packet is not authenticated. 4030 */ 4031 sendlen = LEN_PKT_NOMAC; 4032 if (rbufp->recv_length == sendlen) { 4033 sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, 0, &xpkt, 4034 sendlen); 4035 DPRINTF(1, ("fast_xmit: at %ld %s->%s mode %d len %lu\n", 4036 current_time, stoa(&rbufp->dstadr->sin), 4037 stoa(&rbufp->recv_srcadr), xmode, 4038 (u_long)sendlen)); 4039 return; 4040 } 4041 4042 /* 4043 * The received packet contains a MAC, so the transmitted packet 4044 * must be authenticated. For symmetric key cryptography, use 4045 * the predefined and trusted symmetric keys to generate the 4046 * cryptosum. For autokey cryptography, use the server private 4047 * value to generate the cookie, which is unique for every 4048 * source-destination-key ID combination. 4049 */ 4050 #ifdef AUTOKEY 4051 if (xkeyid > NTP_MAXKEY) { 4052 keyid_t cookie; 4053 4054 /* 4055 * The only way to get here is a reply to a legitimate 4056 * client request message, so the mode must be 4057 * MODE_SERVER. If an extension field is present, there 4058 * can be only one and that must be a command. Do what 4059 * needs, but with private value of zero so the poor 4060 * jerk can decode it. If no extension field is present, 4061 * use the cookie to generate the session key. 4062 */ 4063 cookie = session_key(&rbufp->recv_srcadr, 4064 &rbufp->dstadr->sin, 0, sys_private, 0); 4065 if ((size_t)rbufp->recv_length > sendlen + MAX_MAC_LEN) { 4066 session_key(&rbufp->dstadr->sin, 4067 &rbufp->recv_srcadr, xkeyid, 0, 2); 4068 temp32 = CRYPTO_RESP; 4069 rpkt->exten[0] |= htonl(temp32); 4070 sendlen += crypto_xmit(NULL, &xpkt, rbufp, 4071 sendlen, (struct exten *)rpkt->exten, 4072 cookie); 4073 } else { 4074 session_key(&rbufp->dstadr->sin, 4075 &rbufp->recv_srcadr, xkeyid, cookie, 2); 4076 } 4077 } 4078 #endif /* AUTOKEY */ 4079 get_systime(&xmt_tx); 4080 sendlen += authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen); 4081 #ifdef AUTOKEY 4082 if (xkeyid > NTP_MAXKEY) 4083 authtrust(xkeyid, 0); 4084 #endif /* AUTOKEY */ 4085 sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, 0, &xpkt, sendlen); 4086 get_systime(&xmt_ty); 4087 L_SUB(&xmt_ty, &xmt_tx); 4088 sys_authdelay = xmt_ty; 4089 DPRINTF(1, ("fast_xmit: at %ld %s->%s mode %d keyid %08x len %lu\n", 4090 current_time, ntoa(&rbufp->dstadr->sin), 4091 ntoa(&rbufp->recv_srcadr), xmode, xkeyid, 4092 (u_long)sendlen)); 4093 } 4094 4095 4096 /* 4097 * pool_xmit - resolve hostname or send unicast solicitation for pool. 4098 */ 4099 static void 4100 pool_xmit( 4101 struct peer *pool /* pool solicitor association */ 4102 ) 4103 { 4104 #ifdef WORKER 4105 struct pkt xpkt; /* transmit packet structure */ 4106 struct addrinfo hints; 4107 int rc; 4108 struct interface * lcladr; 4109 sockaddr_u * rmtadr; 4110 int restrict_mask; 4111 struct peer * p; 4112 l_fp xmt_tx; 4113 4114 if (NULL == pool->ai) { 4115 if (pool->addrs != NULL) { 4116 /* free() is used with copy_addrinfo_list() */ 4117 free(pool->addrs); 4118 pool->addrs = NULL; 4119 } 4120 ZERO(hints); 4121 hints.ai_family = AF(&pool->srcadr); 4122 hints.ai_socktype = SOCK_DGRAM; 4123 hints.ai_protocol = IPPROTO_UDP; 4124 /* ignore getaddrinfo_sometime() errors, we will retry */ 4125 rc = getaddrinfo_sometime( 4126 pool->hostname, 4127 "ntp", 4128 &hints, 4129 0, /* no retry */ 4130 &pool_name_resolved, 4131 (void *)(intptr_t)pool->associd); 4132 if (!rc) 4133 DPRINTF(1, ("pool DNS lookup %s started\n", 4134 pool->hostname)); 4135 else 4136 msyslog(LOG_ERR, 4137 "unable to start pool DNS %s: %m", 4138 pool->hostname); 4139 return; 4140 } 4141 4142 do { 4143 /* copy_addrinfo_list ai_addr points to a sockaddr_u */ 4144 rmtadr = (sockaddr_u *)(void *)pool->ai->ai_addr; 4145 pool->ai = pool->ai->ai_next; 4146 p = findexistingpeer(rmtadr, NULL, NULL, MODE_CLIENT, 0); 4147 } while (p != NULL && pool->ai != NULL); 4148 if (p != NULL) 4149 return; /* out of addresses, re-query DNS next poll */ 4150 restrict_mask = restrictions(rmtadr); 4151 if (RES_FLAGS & restrict_mask) 4152 restrict_source(rmtadr, 0, 4153 current_time + POOL_SOLICIT_WINDOW + 1); 4154 lcladr = findinterface(rmtadr); 4155 memset(&xpkt, 0, sizeof(xpkt)); 4156 xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, pool->version, 4157 MODE_CLIENT); 4158 xpkt.stratum = STRATUM_TO_PKT(sys_stratum); 4159 xpkt.ppoll = pool->hpoll; 4160 xpkt.precision = sys_precision; 4161 xpkt.refid = sys_refid; 4162 xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay)); 4163 xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp)); 4164 HTONL_FP(&sys_reftime, &xpkt.reftime); 4165 get_systime(&xmt_tx); 4166 pool->aorg = xmt_tx; 4167 HTONL_FP(&xmt_tx, &xpkt.xmt); 4168 sendpkt(rmtadr, lcladr, sys_ttl[pool->ttl], &xpkt, 4169 LEN_PKT_NOMAC); 4170 pool->sent++; 4171 pool->throttle += (1 << pool->minpoll) - 2; 4172 DPRINTF(1, ("pool_xmit: at %ld %s->%s pool\n", 4173 current_time, latoa(lcladr), stoa(rmtadr))); 4174 msyslog(LOG_INFO, "Soliciting pool server %s", stoa(rmtadr)); 4175 #endif /* WORKER */ 4176 } 4177 4178 4179 #ifdef AUTOKEY 4180 /* 4181 * group_test - test if this is the same group 4182 * 4183 * host assoc return action 4184 * none none 0 mobilize * 4185 * none group 0 mobilize * 4186 * group none 0 mobilize * 4187 * group group 1 mobilize 4188 * group different 1 ignore 4189 * * ignore if notrust 4190 */ 4191 int 4192 group_test( 4193 char *grp, 4194 char *ident 4195 ) 4196 { 4197 if (grp == NULL) 4198 return (0); 4199 4200 if (strcmp(grp, sys_groupname) == 0) 4201 return (0); 4202 4203 if (ident == NULL) 4204 return (1); 4205 4206 if (strcmp(grp, ident) == 0) 4207 return (0); 4208 4209 return (1); 4210 } 4211 #endif /* AUTOKEY */ 4212 4213 4214 #ifdef WORKER 4215 void 4216 pool_name_resolved( 4217 int rescode, 4218 int gai_errno, 4219 void * context, 4220 const char * name, 4221 const char * service, 4222 const struct addrinfo * hints, 4223 const struct addrinfo * res 4224 ) 4225 { 4226 struct peer * pool; /* pool solicitor association */ 4227 associd_t assoc; 4228 4229 if (rescode) { 4230 msyslog(LOG_ERR, 4231 "error resolving pool %s: %s (%d)", 4232 name, gai_strerror(rescode), rescode); 4233 return; 4234 } 4235 4236 assoc = (associd_t)(intptr_t)context; 4237 pool = findpeerbyassoc(assoc); 4238 if (NULL == pool) { 4239 msyslog(LOG_ERR, 4240 "Could not find assoc %u for pool DNS %s", 4241 assoc, name); 4242 return; 4243 } 4244 DPRINTF(1, ("pool DNS %s completed\n", name)); 4245 pool->addrs = copy_addrinfo_list(res); 4246 pool->ai = pool->addrs; 4247 pool_xmit(pool); 4248 4249 } 4250 #endif /* WORKER */ 4251 4252 4253 #ifdef AUTOKEY 4254 /* 4255 * key_expire - purge the key list 4256 */ 4257 void 4258 key_expire( 4259 struct peer *peer /* peer structure pointer */ 4260 ) 4261 { 4262 int i; 4263 4264 if (peer->keylist != NULL) { 4265 for (i = 0; i <= peer->keynumber; i++) 4266 authtrust(peer->keylist[i], 0); 4267 free(peer->keylist); 4268 peer->keylist = NULL; 4269 } 4270 value_free(&peer->sndval); 4271 peer->keynumber = 0; 4272 peer->flags &= ~FLAG_ASSOC; 4273 DPRINTF(1, ("key_expire: at %lu associd %d\n", current_time, 4274 peer->associd)); 4275 } 4276 #endif /* AUTOKEY */ 4277 4278 4279 /* 4280 * local_refid(peer) - check peer refid to avoid selecting peers 4281 * currently synced to this ntpd. 4282 */ 4283 static int 4284 local_refid( 4285 struct peer * p 4286 ) 4287 { 4288 endpt * unicast_ep; 4289 4290 if (p->dstadr != NULL && !(INT_MCASTIF & p->dstadr->flags)) 4291 unicast_ep = p->dstadr; 4292 else 4293 unicast_ep = findinterface(&p->srcadr); 4294 4295 if (unicast_ep != NULL && p->refid == unicast_ep->addr_refid) 4296 return TRUE; 4297 else 4298 return FALSE; 4299 } 4300 4301 4302 /* 4303 * Determine if the peer is unfit for synchronization 4304 * 4305 * A peer is unfit for synchronization if 4306 * > TEST10 bad leap or stratum below floor or at or above ceiling 4307 * > TEST11 root distance exceeded for remote peer 4308 * > TEST12 a direct or indirect synchronization loop would form 4309 * > TEST13 unreachable or noselect 4310 */ 4311 int /* FALSE if fit, TRUE if unfit */ 4312 peer_unfit( 4313 struct peer *peer /* peer structure pointer */ 4314 ) 4315 { 4316 int rval = 0; 4317 4318 /* 4319 * A stratum error occurs if (1) the server has never been 4320 * synchronized, (2) the server stratum is below the floor or 4321 * greater than or equal to the ceiling. 4322 */ 4323 if ( peer->leap == LEAP_NOTINSYNC 4324 || peer->stratum < sys_floor 4325 || peer->stratum >= sys_ceiling) 4326 rval |= TEST10; /* bad synch or stratum */ 4327 4328 /* 4329 * A distance error for a remote peer occurs if the root 4330 * distance is greater than or equal to the distance threshold 4331 * plus the increment due to one host poll interval. 4332 */ 4333 if ( !(peer->flags & FLAG_REFCLOCK) 4334 && root_distance(peer) >= sys_maxdist 4335 + clock_phi * ULOGTOD(peer->hpoll)) 4336 rval |= TEST11; /* distance exceeded */ 4337 4338 /* 4339 * A loop error occurs if the remote peer is synchronized to the 4340 * local peer or if the remote peer is synchronized to the same 4341 * server as the local peer but only if the remote peer is 4342 * neither a reference clock nor an orphan. 4343 */ 4344 if (peer->stratum > 1 && local_refid(peer)) 4345 rval |= TEST12; /* synchronization loop */ 4346 4347 /* 4348 * An unreachable error occurs if the server is unreachable or 4349 * the noselect bit is set. 4350 */ 4351 if (!peer->reach || (peer->flags & FLAG_NOSELECT)) 4352 rval |= TEST13; /* unreachable */ 4353 4354 peer->flash &= ~PEER_TEST_MASK; 4355 peer->flash |= rval; 4356 return (rval); 4357 } 4358 4359 4360 /* 4361 * Find the precision of this particular machine 4362 */ 4363 #define MINSTEP 20e-9 /* minimum clock increment (s) */ 4364 #define MAXSTEP 1 /* maximum clock increment (s) */ 4365 #define MINCHANGES 12 /* minimum number of step samples */ 4366 #define MAXLOOPS ((int)(1. / MINSTEP)) /* avoid infinite loop */ 4367 4368 /* 4369 * This routine measures the system precision defined as the minimum of 4370 * a sequence of differences between successive readings of the system 4371 * clock. However, if a difference is less than MINSTEP, the clock has 4372 * been read more than once during a clock tick and the difference is 4373 * ignored. We set MINSTEP greater than zero in case something happens 4374 * like a cache miss, and to tolerate underlying system clocks which 4375 * ensure each reading is strictly greater than prior readings while 4376 * using an underlying stepping (not interpolated) clock. 4377 * 4378 * sys_tick and sys_precision represent the time to read the clock for 4379 * systems with high-precision clocks, and the tick interval or step 4380 * size for lower-precision stepping clocks. 4381 * 4382 * This routine also measures the time to read the clock on stepping 4383 * system clocks by counting the number of readings between changes of 4384 * the underlying clock. With either type of clock, the minimum time 4385 * to read the clock is saved as sys_fuzz, and used to ensure the 4386 * get_systime() readings always increase and are fuzzed below sys_fuzz. 4387 */ 4388 void 4389 measure_precision(void) 4390 { 4391 /* 4392 * With sys_fuzz set to zero, get_systime() fuzzing of low bits 4393 * is effectively disabled. trunc_os_clock is FALSE to disable 4394 * get_ostime() simulation of a low-precision system clock. 4395 */ 4396 set_sys_fuzz(0.); 4397 trunc_os_clock = FALSE; 4398 measured_tick = measure_tick_fuzz(); 4399 set_sys_tick_precision(measured_tick); 4400 msyslog(LOG_INFO, "proto: precision = %.3f usec (%d)", 4401 sys_tick * 1e6, sys_precision); 4402 if (sys_fuzz < sys_tick) { 4403 msyslog(LOG_NOTICE, "proto: fuzz beneath %.3f usec", 4404 sys_fuzz * 1e6); 4405 } 4406 } 4407 4408 4409 /* 4410 * measure_tick_fuzz() 4411 * 4412 * measures the minimum time to read the clock (stored in sys_fuzz) 4413 * and returns the tick, the larger of the minimum increment observed 4414 * between successive clock readings and the time to read the clock. 4415 */ 4416 double 4417 measure_tick_fuzz(void) 4418 { 4419 l_fp minstep; /* MINSTEP as l_fp */ 4420 l_fp val; /* current seconds fraction */ 4421 l_fp last; /* last seconds fraction */ 4422 l_fp ldiff; /* val - last */ 4423 double tick; /* computed tick value */ 4424 double diff; 4425 long repeats; 4426 long max_repeats; 4427 int changes; 4428 int i; /* log2 precision */ 4429 4430 tick = MAXSTEP; 4431 max_repeats = 0; 4432 repeats = 0; 4433 changes = 0; 4434 DTOLFP(MINSTEP, &minstep); 4435 get_systime(&last); 4436 for (i = 0; i < MAXLOOPS && changes < MINCHANGES; i++) { 4437 get_systime(&val); 4438 ldiff = val; 4439 L_SUB(&ldiff, &last); 4440 last = val; 4441 if (L_ISGT(&ldiff, &minstep)) { 4442 max_repeats = max(repeats, max_repeats); 4443 repeats = 0; 4444 changes++; 4445 LFPTOD(&ldiff, diff); 4446 tick = min(diff, tick); 4447 } else { 4448 repeats++; 4449 } 4450 } 4451 if (changes < MINCHANGES) { 4452 msyslog(LOG_ERR, "Fatal error: precision could not be measured (MINSTEP too large?)"); 4453 exit(1); 4454 } 4455 4456 if (0 == max_repeats) { 4457 set_sys_fuzz(tick); 4458 } else { 4459 set_sys_fuzz(tick / max_repeats); 4460 } 4461 4462 return tick; 4463 } 4464 4465 4466 void 4467 set_sys_tick_precision( 4468 double tick 4469 ) 4470 { 4471 int i; 4472 4473 if (tick > 1.) { 4474 msyslog(LOG_ERR, 4475 "unsupported tick %.3f > 1s ignored", tick); 4476 return; 4477 } 4478 if (tick < measured_tick) { 4479 msyslog(LOG_ERR, 4480 "proto: tick %.3f less than measured tick %.3f, ignored", 4481 tick, measured_tick); 4482 return; 4483 } else if (tick > measured_tick) { 4484 trunc_os_clock = TRUE; 4485 msyslog(LOG_NOTICE, 4486 "proto: truncating system clock to multiples of %.9f", 4487 tick); 4488 } 4489 sys_tick = tick; 4490 4491 /* 4492 * Find the nearest power of two. 4493 */ 4494 for (i = 0; tick <= 1; i--) 4495 tick *= 2; 4496 if (tick - 1 > 1 - tick / 2) 4497 i++; 4498 4499 sys_precision = (s_char)i; 4500 } 4501 4502 4503 /* 4504 * init_proto - initialize the protocol module's data 4505 */ 4506 void 4507 init_proto(void) 4508 { 4509 l_fp dummy; 4510 int i; 4511 4512 /* 4513 * Fill in the sys_* stuff. Default is don't listen to 4514 * broadcasting, require authentication. 4515 */ 4516 set_sys_leap(LEAP_NOTINSYNC); 4517 sys_stratum = STRATUM_UNSPEC; 4518 memcpy(&sys_refid, "INIT", 4); 4519 sys_peer = NULL; 4520 sys_rootdelay = 0; 4521 sys_rootdisp = 0; 4522 L_CLR(&sys_reftime); 4523 sys_jitter = 0; 4524 measure_precision(); 4525 get_systime(&dummy); 4526 sys_survivors = 0; 4527 sys_manycastserver = 0; 4528 sys_bclient = 0; 4529 sys_bdelay = BDELAY_DEFAULT; /*[Bug 3031] delay cutoff */ 4530 sys_authenticate = 1; 4531 sys_stattime = current_time; 4532 orphwait = current_time + sys_orphwait; 4533 proto_clr_stats(); 4534 for (i = 0; i < MAX_TTL; i++) { 4535 sys_ttl[i] = (u_char)((i * 256) / MAX_TTL); 4536 sys_ttlmax = i; 4537 } 4538 hardpps_enable = 0; 4539 stats_control = 1; 4540 } 4541 4542 4543 /* 4544 * proto_config - configure the protocol module 4545 */ 4546 void 4547 proto_config( 4548 int item, 4549 u_long value, 4550 double dvalue, 4551 sockaddr_u *svalue 4552 ) 4553 { 4554 /* 4555 * Figure out what he wants to change, then do it 4556 */ 4557 DPRINTF(2, ("proto_config: code %d value %lu dvalue %lf\n", 4558 item, value, dvalue)); 4559 4560 switch (item) { 4561 4562 /* 4563 * enable and disable commands - arguments are Boolean. 4564 */ 4565 case PROTO_AUTHENTICATE: /* authentication (auth) */ 4566 sys_authenticate = value; 4567 break; 4568 4569 case PROTO_BROADCLIENT: /* broadcast client (bclient) */ 4570 sys_bclient = (int)value; 4571 if (sys_bclient == 0) 4572 io_unsetbclient(); 4573 else 4574 io_setbclient(); 4575 break; 4576 4577 #ifdef REFCLOCK 4578 case PROTO_CAL: /* refclock calibrate (calibrate) */ 4579 cal_enable = value; 4580 break; 4581 #endif /* REFCLOCK */ 4582 4583 case PROTO_KERNEL: /* kernel discipline (kernel) */ 4584 select_loop(value); 4585 break; 4586 4587 case PROTO_MONITOR: /* monitoring (monitor) */ 4588 if (value) 4589 mon_start(MON_ON); 4590 else { 4591 mon_stop(MON_ON); 4592 if (mon_enabled) 4593 msyslog(LOG_WARNING, 4594 "restrict: 'monitor' cannot be disabled while 'limited' is enabled"); 4595 } 4596 break; 4597 4598 case PROTO_NTP: /* NTP discipline (ntp) */ 4599 ntp_enable = value; 4600 break; 4601 4602 case PROTO_MODE7: /* mode7 management (ntpdc) */ 4603 ntp_mode7 = value; 4604 break; 4605 4606 case PROTO_PPS: /* PPS discipline (pps) */ 4607 hardpps_enable = value; 4608 break; 4609 4610 case PROTO_FILEGEN: /* statistics (stats) */ 4611 stats_control = value; 4612 break; 4613 4614 /* 4615 * tos command - arguments are double, sometimes cast to int 4616 */ 4617 case PROTO_BEACON: /* manycast beacon (beacon) */ 4618 sys_beacon = (int)dvalue; 4619 break; 4620 4621 case PROTO_BROADDELAY: /* default broadcast delay (bdelay) */ 4622 sys_bdelay = (dvalue ? dvalue : BDELAY_DEFAULT); 4623 break; 4624 4625 case PROTO_CEILING: /* stratum ceiling (ceiling) */ 4626 sys_ceiling = (int)dvalue; 4627 break; 4628 4629 case PROTO_COHORT: /* cohort switch (cohort) */ 4630 sys_cohort = (int)dvalue; 4631 break; 4632 4633 case PROTO_FLOOR: /* stratum floor (floor) */ 4634 sys_floor = (int)dvalue; 4635 break; 4636 4637 case PROTO_MAXCLOCK: /* maximum candidates (maxclock) */ 4638 sys_maxclock = (int)dvalue; 4639 break; 4640 4641 case PROTO_MAXDIST: /* select threshold (maxdist) */ 4642 sys_maxdist = dvalue; 4643 break; 4644 4645 case PROTO_CALLDELAY: /* modem call delay (mdelay) */ 4646 break; /* NOT USED */ 4647 4648 case PROTO_MINCLOCK: /* minimum candidates (minclock) */ 4649 sys_minclock = (int)dvalue; 4650 break; 4651 4652 case PROTO_MINDISP: /* minimum distance (mindist) */ 4653 sys_mindisp = dvalue; 4654 break; 4655 4656 case PROTO_MINSANE: /* minimum survivors (minsane) */ 4657 sys_minsane = (int)dvalue; 4658 break; 4659 4660 case PROTO_ORPHAN: /* orphan stratum (orphan) */ 4661 sys_orphan = (int)dvalue; 4662 break; 4663 4664 case PROTO_ORPHWAIT: /* orphan wait (orphwait) */ 4665 orphwait -= sys_orphwait; 4666 sys_orphwait = (int)dvalue; 4667 orphwait += sys_orphwait; 4668 break; 4669 4670 /* 4671 * Miscellaneous commands 4672 */ 4673 case PROTO_MULTICAST_ADD: /* add group address */ 4674 if (svalue != NULL) 4675 io_multicast_add(svalue); 4676 sys_bclient = 1; 4677 break; 4678 4679 case PROTO_MULTICAST_DEL: /* delete group address */ 4680 if (svalue != NULL) 4681 io_multicast_del(svalue); 4682 break; 4683 4684 /* 4685 * Unpeer Early policy choices 4686 */ 4687 4688 case PROTO_UECRYPTO: /* Crypto */ 4689 unpeer_crypto_early = value; 4690 break; 4691 4692 case PROTO_UECRYPTONAK: /* Crypto_NAK */ 4693 unpeer_crypto_nak_early = value; 4694 break; 4695 4696 case PROTO_UEDIGEST: /* Digest */ 4697 unpeer_digest_early = value; 4698 break; 4699 4700 default: 4701 msyslog(LOG_NOTICE, 4702 "proto: unsupported option %d", item); 4703 } 4704 } 4705 4706 4707 /* 4708 * proto_clr_stats - clear protocol stat counters 4709 */ 4710 void 4711 proto_clr_stats(void) 4712 { 4713 sys_stattime = current_time; 4714 sys_received = 0; 4715 sys_processed = 0; 4716 sys_newversion = 0; 4717 sys_oldversion = 0; 4718 sys_declined = 0; 4719 sys_restricted = 0; 4720 sys_badlength = 0; 4721 sys_badauth = 0; 4722 sys_limitrejected = 0; 4723 sys_kodsent = 0; 4724 } 4725