xref: /freebsd/contrib/ntp/ntpd/ntp_proto.c (revision 1f4bcc459a76b7aa664f3fd557684cd0ba6da352)
1 /*
2  * ntp_proto.c - NTP version 4 protocol machinery
3  *
4  * ATTENTION: Get approval from Dave Mills on all changes to this file!
5  *
6  */
7 #ifdef HAVE_CONFIG_H
8 #include <config.h>
9 #endif
10 
11 #include "ntpd.h"
12 #include "ntp_stdlib.h"
13 #include "ntp_unixtime.h"
14 #include "ntp_control.h"
15 #include "ntp_string.h"
16 #include "ntp_leapsec.h"
17 #include "refidsmear.h"
18 #include "lib_strbuf.h"
19 
20 #include <stdio.h>
21 #ifdef HAVE_LIBSCF_H
22 #include <libscf.h>
23 #endif
24 #ifdef HAVE_UNISTD_H
25 #include <unistd.h>
26 #endif
27 
28 /*
29  * This macro defines the authentication state. If x is 1 authentication
30  * is required; othewise it is optional.
31  */
32 #define	AUTH(x, y)	((x) ? (y) == AUTH_OK \
33 			     : (y) == AUTH_OK || (y) == AUTH_NONE)
34 
35 #define	AUTH_NONE	0	/* authentication not required */
36 #define	AUTH_OK		1	/* authentication OK */
37 #define	AUTH_ERROR	2	/* authentication error */
38 #define	AUTH_CRYPTO	3	/* crypto_NAK */
39 
40 /*
41  * Set up Kiss Code values
42  */
43 
44 enum kiss_codes {
45 	NOKISS,				/* No Kiss Code */
46 	RATEKISS,			/* Rate limit Kiss Code */
47 	DENYKISS,			/* Deny Kiss */
48 	RSTRKISS,			/* Restricted Kiss */
49 	XKISS,				/* Experimental Kiss */
50 	UNKNOWNKISS			/* Unknown Kiss Code */
51 };
52 
53 /*
54  * traffic shaping parameters
55  */
56 #define	NTP_IBURST	6	/* packets in iburst */
57 #define	RESP_DELAY	1	/* refclock burst delay (s) */
58 
59 /*
60  * pool soliciting restriction duration (s)
61  */
62 #define	POOL_SOLICIT_WINDOW	8
63 
64 /*
65  * peer_select groups statistics for a peer used by clock_select() and
66  * clock_cluster().
67  */
68 typedef struct peer_select_tag {
69 	struct peer *	peer;
70 	double		synch;	/* sync distance */
71 	double		error;	/* jitter */
72 	double		seljit;	/* selection jitter */
73 } peer_select;
74 
75 /*
76  * System variables are declared here. Unless specified otherwise, all
77  * times are in seconds.
78  */
79 u_char	sys_leap;		/* system leap indicator, use set_sys_leap() to change this */
80 u_char	xmt_leap;		/* leap indicator sent in client requests, set up by set_sys_leap() */
81 u_char	sys_stratum;		/* system stratum */
82 s_char	sys_precision;		/* local clock precision (log2 s) */
83 double	sys_rootdelay;		/* roundtrip delay to primary source */
84 double	sys_rootdisp;		/* dispersion to primary source */
85 u_int32 sys_refid;		/* reference id (network byte order) */
86 l_fp	sys_reftime;		/* last update time */
87 struct	peer *sys_peer;		/* current peer */
88 
89 #ifdef LEAP_SMEAR
90 struct leap_smear_info leap_smear;
91 #endif
92 int leap_sec_in_progress;
93 
94 /*
95  * Rate controls. Leaky buckets are used to throttle the packet
96  * transmission rates in order to protect busy servers such as at NIST
97  * and USNO. There is a counter for each association and another for KoD
98  * packets. The association counter decrements each second, but not
99  * below zero. Each time a packet is sent the counter is incremented by
100  * a configurable value representing the average interval between
101  * packets. A packet is delayed as long as the counter is greater than
102  * zero. Note this does not affect the time value computations.
103  */
104 /*
105  * Nonspecified system state variables
106  */
107 int	sys_bclient;		/* broadcast client enable */
108 double	sys_bdelay;		/* broadcast client default delay */
109 int	sys_authenticate;	/* requre authentication for config */
110 l_fp	sys_authdelay;		/* authentication delay */
111 double	sys_offset;	/* current local clock offset */
112 double	sys_mindisp = MINDISPERSE; /* minimum distance (s) */
113 double	sys_maxdist = MAXDISTANCE; /* selection threshold */
114 double	sys_jitter;		/* system jitter */
115 u_long	sys_epoch;		/* last clock update time */
116 static	double sys_clockhop;	/* clockhop threshold */
117 static int leap_vote_ins;	/* leap consensus for insert */
118 static int leap_vote_del;	/* leap consensus for delete */
119 keyid_t	sys_private;		/* private value for session seed */
120 int	sys_manycastserver;	/* respond to manycast client pkts */
121 int	ntp_mode7;		/* respond to ntpdc (mode7) */
122 int	peer_ntpdate;		/* active peers in ntpdate mode */
123 int	sys_survivors;		/* truest of the truechimers */
124 char	*sys_ident = NULL;	/* identity scheme */
125 
126 /*
127  * TOS and multicast mapping stuff
128  */
129 int	sys_floor = 0;		/* cluster stratum floor */
130 int	sys_ceiling = STRATUM_UNSPEC - 1; /* cluster stratum ceiling */
131 int	sys_minsane = 1;	/* minimum candidates */
132 int	sys_minclock = NTP_MINCLOCK; /* minimum candidates */
133 int	sys_maxclock = NTP_MAXCLOCK; /* maximum candidates */
134 int	sys_cohort = 0;		/* cohort switch */
135 int	sys_orphan = STRATUM_UNSPEC + 1; /* orphan stratum */
136 int	sys_orphwait = NTP_ORPHWAIT; /* orphan wait */
137 int	sys_beacon = BEACON;	/* manycast beacon interval */
138 int	sys_ttlmax;		/* max ttl mapping vector index */
139 u_char	sys_ttl[MAX_TTL];	/* ttl mapping vector */
140 
141 /*
142  * Statistics counters - first the good, then the bad
143  */
144 u_long	sys_stattime;		/* elapsed time */
145 u_long	sys_received;		/* packets received */
146 u_long	sys_processed;		/* packets for this host */
147 u_long	sys_newversion;		/* current version */
148 u_long	sys_oldversion;		/* old version */
149 u_long	sys_restricted;		/* access denied */
150 u_long	sys_badlength;		/* bad length or format */
151 u_long	sys_badauth;		/* bad authentication */
152 u_long	sys_declined;		/* declined */
153 u_long	sys_limitrejected;	/* rate exceeded */
154 u_long	sys_kodsent;		/* KoD sent */
155 
156 /*
157  * Mechanism knobs: how soon do we unpeer()?
158  *
159  * The default way is "on-receipt".  If this was a packet from a
160  * well-behaved source, on-receipt will offer the fastest recovery.
161  * If this was from a DoS attack, the default way makes it easier
162  * for a bad-guy to DoS us.  So look and see what bites you harder
163  * and choose according to your environment.
164  */
165 int unpeer_crypto_early		= 1;	/* bad crypto (TEST9) */
166 int unpeer_crypto_nak_early	= 1;	/* crypto_NAK (TEST5) */
167 int unpeer_digest_early		= 1;	/* bad digest (TEST5) */
168 
169 static int kiss_code_check(u_char hisleap, u_char hisstratum, u_char hismode, u_int32 refid);
170 static	double	root_distance	(struct peer *);
171 static	void	clock_combine	(peer_select *, int, int);
172 static	void	peer_xmit	(struct peer *);
173 static	void	fast_xmit	(struct recvbuf *, int, keyid_t, int);
174 static	void	pool_xmit	(struct peer *);
175 static	void	clock_update	(struct peer *);
176 static	void	measure_precision(void);
177 static	double	measure_tick_fuzz(void);
178 static	int	local_refid	(struct peer *);
179 static	int	peer_unfit	(struct peer *);
180 #ifdef AUTOKEY
181 static	int	group_test	(char *, char *);
182 #endif /* AUTOKEY */
183 #ifdef WORKER
184 void	pool_name_resolved	(int, int, void *, const char *,
185 				 const char *, const struct addrinfo *,
186 				 const struct addrinfo *);
187 #endif /* WORKER */
188 
189 const char *	amtoa		(int am);
190 
191 
192 void
193 set_sys_leap(
194 	u_char new_sys_leap
195 	)
196 {
197 	sys_leap = new_sys_leap;
198 	xmt_leap = sys_leap;
199 
200 	/*
201 	 * Under certain conditions we send faked leap bits to clients, so
202 	 * eventually change xmt_leap below, but never change LEAP_NOTINSYNC.
203 	 */
204 	if (xmt_leap != LEAP_NOTINSYNC) {
205 		if (leap_sec_in_progress) {
206 			/* always send "not sync" */
207 			xmt_leap = LEAP_NOTINSYNC;
208 		}
209 #ifdef LEAP_SMEAR
210 		else {
211 			/*
212 			 * If leap smear is enabled in general we must
213 			 * never send a leap second warning to clients,
214 			 * so make sure we only send "in sync".
215 			 */
216 			if (leap_smear.enabled)
217 				xmt_leap = LEAP_NOWARNING;
218 		}
219 #endif	/* LEAP_SMEAR */
220 	}
221 }
222 
223 
224 /*
225  * Kiss Code check
226  */
227 int
228 kiss_code_check(
229 	u_char hisleap,
230 	u_char hisstratum,
231 	u_char hismode,
232 	u_int32 refid
233 	)
234 {
235 
236 	if (   hismode == MODE_SERVER
237 	    && hisleap == LEAP_NOTINSYNC
238 	    && hisstratum == STRATUM_UNSPEC) {
239 		if(memcmp(&refid,"RATE", 4) == 0) {
240 			return (RATEKISS);
241 		} else if(memcmp(&refid,"DENY", 4) == 0) {
242 			return (DENYKISS);
243 		} else if(memcmp(&refid,"RSTR", 4) == 0) {
244 			return (RSTRKISS);
245 		} else if(memcmp(&refid,"X", 1) == 0) {
246 			return (XKISS);
247 		} else {
248 			return (UNKNOWNKISS);
249 		}
250 	} else {
251 		return (NOKISS);
252 	}
253 }
254 
255 
256 /*
257  * transmit - transmit procedure called by poll timeout
258  */
259 void
260 transmit(
261 	struct peer *peer	/* peer structure pointer */
262 	)
263 {
264 	u_char	hpoll;
265 
266 	/*
267 	 * The polling state machine. There are two kinds of machines,
268 	 * those that never expect a reply (broadcast and manycast
269 	 * server modes) and those that do (all other modes). The dance
270 	 * is intricate...
271 	 */
272 	hpoll = peer->hpoll;
273 
274 	/*
275 	 * In broadcast mode the poll interval is never changed from
276 	 * minpoll.
277 	 */
278 	if (peer->cast_flags & (MDF_BCAST | MDF_MCAST)) {
279 		peer->outdate = current_time;
280 		if (sys_leap != LEAP_NOTINSYNC)
281 			peer_xmit(peer);
282 		poll_update(peer, hpoll);
283 		return;
284 	}
285 
286 	/*
287 	 * In manycast mode we start with unity ttl. The ttl is
288 	 * increased by one for each poll until either sys_maxclock
289 	 * servers have been found or the maximum ttl is reached. When
290 	 * sys_maxclock servers are found we stop polling until one or
291 	 * more servers have timed out or until less than sys_minclock
292 	 * associations turn up. In this case additional better servers
293 	 * are dragged in and preempt the existing ones.  Once every
294 	 * sys_beacon seconds we are to transmit unconditionally, but
295 	 * this code is not quite right -- peer->unreach counts polls
296 	 * and is being compared with sys_beacon, so the beacons happen
297 	 * every sys_beacon polls.
298 	 */
299 	if (peer->cast_flags & MDF_ACAST) {
300 		peer->outdate = current_time;
301 		if (peer->unreach > sys_beacon) {
302 			peer->unreach = 0;
303 			peer->ttl = 0;
304 			peer_xmit(peer);
305 		} else if (   sys_survivors < sys_minclock
306 			   || peer_associations < sys_maxclock) {
307 			if (peer->ttl < (u_int32)sys_ttlmax)
308 				peer->ttl++;
309 			peer_xmit(peer);
310 		}
311 		peer->unreach++;
312 		poll_update(peer, hpoll);
313 		return;
314 	}
315 
316 	/*
317 	 * Pool associations transmit unicast solicitations when there
318 	 * are less than a hard limit of 2 * sys_maxclock associations,
319 	 * and either less than sys_minclock survivors or less than
320 	 * sys_maxclock associations.  The hard limit prevents unbounded
321 	 * growth in associations if the system clock or network quality
322 	 * result in survivor count dipping below sys_minclock often.
323 	 * This was observed testing with pool, where sys_maxclock == 12
324 	 * resulted in 60 associations without the hard limit.  A
325 	 * similar hard limit on manycastclient ephemeral associations
326 	 * may be appropriate.
327 	 */
328 	if (peer->cast_flags & MDF_POOL) {
329 		peer->outdate = current_time;
330 		if (   (peer_associations <= 2 * sys_maxclock)
331 		    && (   peer_associations < sys_maxclock
332 			|| sys_survivors < sys_minclock))
333 			pool_xmit(peer);
334 		poll_update(peer, hpoll);
335 		return;
336 	}
337 
338 	/*
339 	 * In unicast modes the dance is much more intricate. It is
340 	 * designed to back off whenever possible to minimize network
341 	 * traffic.
342 	 */
343 	if (peer->burst == 0) {
344 		u_char oreach;
345 
346 		/*
347 		 * Update the reachability status. If not heard for
348 		 * three consecutive polls, stuff infinity in the clock
349 		 * filter.
350 		 */
351 		oreach = peer->reach;
352 		peer->outdate = current_time;
353 		peer->unreach++;
354 		peer->reach <<= 1;
355 		if (!peer->reach) {
356 
357 			/*
358 			 * Here the peer is unreachable. If it was
359 			 * previously reachable raise a trap. Send a
360 			 * burst if enabled.
361 			 */
362 			clock_filter(peer, 0., 0., MAXDISPERSE);
363 			if (oreach) {
364 				peer_unfit(peer);
365 				report_event(PEVNT_UNREACH, peer, NULL);
366 			}
367 			if (   (peer->flags & FLAG_IBURST)
368 			    && peer->retry == 0)
369 				peer->retry = NTP_RETRY;
370 		} else {
371 
372 			/*
373 			 * Here the peer is reachable. Send a burst if
374 			 * enabled and the peer is fit.  Reset unreach
375 			 * for persistent and ephemeral associations.
376 			 * Unreach is also reset for survivors in
377 			 * clock_select().
378 			 */
379 			hpoll = sys_poll;
380 			if (!(peer->flags & FLAG_PREEMPT))
381 				peer->unreach = 0;
382 			if (   (peer->flags & FLAG_BURST)
383 			    && peer->retry == 0
384 			    && !peer_unfit(peer))
385 				peer->retry = NTP_RETRY;
386 		}
387 
388 		/*
389 		 * Watch for timeout.  If ephemeral, toss the rascal;
390 		 * otherwise, bump the poll interval. Note the
391 		 * poll_update() routine will clamp it to maxpoll.
392 		 * If preemptible and we have more peers than maxclock,
393 		 * and this peer has the minimum score of preemptibles,
394 		 * demobilize.
395 		 */
396 		if (peer->unreach >= NTP_UNREACH) {
397 			hpoll++;
398 			/* ephemeral: no FLAG_CONFIG nor FLAG_PREEMPT */
399 			if (!(peer->flags & (FLAG_CONFIG | FLAG_PREEMPT))) {
400 				report_event(PEVNT_RESTART, peer, "timeout");
401 				peer_clear(peer, "TIME");
402 				unpeer(peer);
403 				return;
404 			}
405 			if (   (peer->flags & FLAG_PREEMPT)
406 			    && (peer_associations > sys_maxclock)
407 			    && score_all(peer)) {
408 				report_event(PEVNT_RESTART, peer, "timeout");
409 				peer_clear(peer, "TIME");
410 				unpeer(peer);
411 				return;
412 			}
413 		}
414 	} else {
415 		peer->burst--;
416 		if (peer->burst == 0) {
417 
418 			/*
419 			 * If ntpdate mode and the clock has not been
420 			 * set and all peers have completed the burst,
421 			 * we declare a successful failure.
422 			 */
423 			if (mode_ntpdate) {
424 				peer_ntpdate--;
425 				if (peer_ntpdate == 0) {
426 					msyslog(LOG_NOTICE,
427 					    "ntpd: no servers found");
428 					if (!msyslog_term)
429 						printf(
430 						    "ntpd: no servers found\n");
431 					exit (0);
432 				}
433 			}
434 		}
435 	}
436 	if (peer->retry > 0)
437 		peer->retry--;
438 
439 	/*
440 	 * Do not transmit if in broadcast client mode.
441 	 */
442 	if (peer->hmode != MODE_BCLIENT)
443 		peer_xmit(peer);
444 	poll_update(peer, hpoll);
445 
446 	return;
447 }
448 
449 
450 const char *
451 amtoa(
452 	int am
453 	)
454 {
455 	char *bp;
456 
457 	switch(am) {
458 	    case AM_ERR:	return "AM_ERR";
459 	    case AM_NOMATCH:	return "AM_NOMATCH";
460 	    case AM_PROCPKT:	return "AM_PROCPKT";
461 	    case AM_BCST:	return "AM_BCST";
462 	    case AM_FXMIT:	return "AM_FXMIT";
463 	    case AM_MANYCAST:	return "AM_MANYCAST";
464 	    case AM_NEWPASS:	return "AM_NEWPASS";
465 	    case AM_NEWBCL:	return "AM_NEWBCL";
466 	    case AM_POSSBCL:	return "AM_POSSBCL";
467 	    default:
468 		LIB_GETBUF(bp);
469 		snprintf(bp, LIB_BUFLENGTH, "AM_#%d", am);
470 		return bp;
471 	}
472 }
473 
474 
475 /*
476  * receive - receive procedure called for each packet received
477  */
478 void
479 receive(
480 	struct recvbuf *rbufp
481 	)
482 {
483 	register struct peer *peer;	/* peer structure pointer */
484 	register struct pkt *pkt;	/* receive packet pointer */
485 	u_char	hisversion;		/* packet version */
486 	u_char	hisleap;		/* packet leap indicator */
487 	u_char	hismode;		/* packet mode */
488 	u_char	hisstratum;		/* packet stratum */
489 	u_short	restrict_mask;		/* restrict bits */
490 	const char *hm_str;		/* hismode string */
491 	const char *am_str;		/* association match string */
492 	int	kissCode = NOKISS;	/* Kiss Code */
493 	int	has_mac;		/* length of MAC field */
494 	int	authlen;		/* offset of MAC field */
495 	int	is_authentic = 0;	/* cryptosum ok */
496 	int	retcode = AM_NOMATCH;	/* match code */
497 	keyid_t	skeyid = 0;		/* key IDs */
498 	u_int32	opcode = 0;		/* extension field opcode */
499 	sockaddr_u *dstadr_sin;		/* active runway */
500 	struct peer *peer2;		/* aux peer structure pointer */
501 	endpt	*match_ep;		/* newpeer() local address */
502 	l_fp	p_org;			/* origin timestamp */
503 	l_fp	p_rec;			/* receive timestamp */
504 	l_fp	p_xmt;			/* transmit timestamp */
505 #ifdef AUTOKEY
506 	char	hostname[NTP_MAXSTRLEN + 1];
507 	char	*groupname = NULL;
508 	struct autokey *ap;		/* autokey structure pointer */
509 	int	rval;			/* cookie snatcher */
510 	keyid_t	pkeyid = 0, tkeyid = 0;	/* key IDs */
511 #endif	/* AUTOKEY */
512 #ifdef HAVE_NTP_SIGND
513 	static unsigned char zero_key[16];
514 #endif /* HAVE_NTP_SIGND */
515 
516 	/*
517 	 * Monitor the packet and get restrictions. Note that the packet
518 	 * length for control and private mode packets must be checked
519 	 * by the service routines. Some restrictions have to be handled
520 	 * later in order to generate a kiss-o'-death packet.
521 	 */
522 	/*
523 	 * Bogus port check is before anything, since it probably
524 	 * reveals a clogging attack.
525 	 */
526 	sys_received++;
527 	if (0 == SRCPORT(&rbufp->recv_srcadr)) {
528 		sys_badlength++;
529 		return;				/* bogus port */
530 	}
531 	restrict_mask = restrictions(&rbufp->recv_srcadr);
532 	pkt = &rbufp->recv_pkt;
533 	DPRINTF(2, ("receive: at %ld %s<-%s flags %x restrict %03x org %#010x.%08x xmt %#010x.%08x\n",
534 		    current_time, stoa(&rbufp->dstadr->sin),
535 		    stoa(&rbufp->recv_srcadr), rbufp->dstadr->flags,
536 		    restrict_mask, ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf),
537 		    ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)));
538 	hisversion = PKT_VERSION(pkt->li_vn_mode);
539 	hisleap = PKT_LEAP(pkt->li_vn_mode);
540 	hismode = (int)PKT_MODE(pkt->li_vn_mode);
541 	hisstratum = PKT_TO_STRATUM(pkt->stratum);
542 	if (restrict_mask & RES_IGNORE) {
543 		sys_restricted++;
544 		return;				/* ignore everything */
545 	}
546 	if (hismode == MODE_PRIVATE) {
547 		if (!ntp_mode7 || (restrict_mask & RES_NOQUERY)) {
548 			sys_restricted++;
549 			return;			/* no query private */
550 		}
551 		process_private(rbufp, ((restrict_mask &
552 		    RES_NOMODIFY) == 0));
553 		return;
554 	}
555 	if (hismode == MODE_CONTROL) {
556 		if (restrict_mask & RES_NOQUERY) {
557 			sys_restricted++;
558 			return;			/* no query control */
559 		}
560 		process_control(rbufp, restrict_mask);
561 		return;
562 	}
563 	if (restrict_mask & RES_DONTSERVE) {
564 		sys_restricted++;
565 		return;				/* no time serve */
566 	}
567 
568 	/*
569 	 * This is for testing. If restricted drop ten percent of
570 	 * surviving packets.
571 	 */
572 	if (restrict_mask & RES_FLAKE) {
573 		if ((double)ntp_random() / 0x7fffffff < .1) {
574 			sys_restricted++;
575 			return;			/* no flakeway */
576 		}
577 	}
578 
579 	/*
580 	 * Version check must be after the query packets, since they
581 	 * intentionally use an early version.
582 	 */
583 	if (hisversion == NTP_VERSION) {
584 		sys_newversion++;		/* new version */
585 	} else if (   !(restrict_mask & RES_VERSION)
586 		   && hisversion >= NTP_OLDVERSION) {
587 		sys_oldversion++;		/* previous version */
588 	} else {
589 		sys_badlength++;
590 		return;				/* old version */
591 	}
592 
593 	/*
594 	 * Figure out his mode and validate the packet. This has some
595 	 * legacy raunch that probably should be removed. In very early
596 	 * NTP versions mode 0 was equivalent to what later versions
597 	 * would interpret as client mode.
598 	 */
599 	if (hismode == MODE_UNSPEC) {
600 		if (hisversion == NTP_OLDVERSION) {
601 			hismode = MODE_CLIENT;
602 		} else {
603 			sys_badlength++;
604 			return;                 /* invalid mode */
605 		}
606 	}
607 
608 	/*
609 	 * Parse the extension field if present. We figure out whether
610 	 * an extension field is present by measuring the MAC size. If
611 	 * the number of words following the packet header is 0, no MAC
612 	 * is present and the packet is not authenticated. If 1, the
613 	 * packet is a crypto-NAK; if 3, the packet is authenticated
614 	 * with DES; if 5, the packet is authenticated with MD5; if 6,
615 	 * the packet is authenticated with SHA. If 2 or * 4, the packet
616 	 * is a runt and discarded forthwith. If greater than 6, an
617 	 * extension field is present, so we subtract the length of the
618 	 * field and go around again.
619 	 */
620 	authlen = LEN_PKT_NOMAC;
621 	has_mac = rbufp->recv_length - authlen;
622 	while (has_mac > 0) {
623 		u_int32	len;
624 #ifdef AUTOKEY
625 		u_int32	hostlen;
626 		struct exten *ep;
627 #endif /*AUTOKEY */
628 
629 		if (has_mac % 4 != 0 || has_mac < (int)MIN_MAC_LEN) {
630 			sys_badlength++;
631 			return;			/* bad length */
632 		}
633 		if (has_mac <= (int)MAX_MAC_LEN) {
634 			skeyid = ntohl(((u_int32 *)pkt)[authlen / 4]);
635 			break;
636 
637 		} else {
638 			opcode = ntohl(((u_int32 *)pkt)[authlen / 4]);
639 			len = opcode & 0xffff;
640 			if (   len % 4 != 0
641 			    || len < 4
642 			    || (int)len + authlen > rbufp->recv_length) {
643 				sys_badlength++;
644 				return;		/* bad length */
645 			}
646 #ifdef AUTOKEY
647 			/*
648 			 * Extract calling group name for later.  If
649 			 * sys_groupname is non-NULL, there must be
650 			 * a group name provided to elicit a response.
651 			 */
652 			if (   (opcode & 0x3fff0000) == CRYPTO_ASSOC
653 			    && sys_groupname != NULL) {
654 				ep = (struct exten *)&((u_int32 *)pkt)[authlen / 4];
655 				hostlen = ntohl(ep->vallen);
656 				if (   hostlen >= sizeof(hostname)
657 				    || hostlen > len -
658 						offsetof(struct exten, pkt)) {
659 					sys_badlength++;
660 					return;		/* bad length */
661 				}
662 				memcpy(hostname, &ep->pkt, hostlen);
663 				hostname[hostlen] = '\0';
664 				groupname = strchr(hostname, '@');
665 				if (groupname == NULL) {
666 					sys_declined++;
667 					return;
668 				}
669 				groupname++;
670 			}
671 #endif /* AUTOKEY */
672 			authlen += len;
673 			has_mac -= len;
674 		}
675 	}
676 
677 	/*
678 	 * If has_mac is < 0 we had a malformed packet.
679 	 */
680 	if (has_mac < 0) {
681 		sys_badlength++;
682 		return;		/* bad length */
683 	}
684 
685 	/*
686 	 * If authentication required, a MAC must be present.
687 	 */
688 	if (restrict_mask & RES_DONTTRUST && has_mac == 0) {
689 		sys_restricted++;
690 		return;				/* access denied */
691 	}
692 
693 	/*
694 	 * Update the MRU list and finger the cloggers. It can be a
695 	 * little expensive, so turn it off for production use.
696 	 * RES_LIMITED and RES_KOD will be cleared in the returned
697 	 * restrict_mask unless one or both actions are warranted.
698 	 */
699 	restrict_mask = ntp_monitor(rbufp, restrict_mask);
700 	if (restrict_mask & RES_LIMITED) {
701 		sys_limitrejected++;
702 		if (   !(restrict_mask & RES_KOD)
703 		    || MODE_BROADCAST == hismode
704 		    || MODE_SERVER == hismode) {
705 			if (MODE_SERVER == hismode)
706 				DPRINTF(1, ("Possibly self-induced rate limiting of MODE_SERVER from %s\n",
707 					stoa(&rbufp->recv_srcadr)));
708 			return;			/* rate exceeded */
709 		}
710 		if (hismode == MODE_CLIENT)
711 			fast_xmit(rbufp, MODE_SERVER, skeyid,
712 			    restrict_mask);
713 		else
714 			fast_xmit(rbufp, MODE_ACTIVE, skeyid,
715 			    restrict_mask);
716 		return;				/* rate exceeded */
717 	}
718 	restrict_mask &= ~RES_KOD;
719 
720 	/*
721 	 * We have tossed out as many buggy packets as possible early in
722 	 * the game to reduce the exposure to a clogging attack. Now we
723 	 * have to burn some cycles to find the association and
724 	 * authenticate the packet if required. Note that we burn only
725 	 * digest cycles, again to reduce exposure. There may be no
726 	 * matching association and that's okay.
727 	 *
728 	 * More on the autokey mambo. Normally the local interface is
729 	 * found when the association was mobilized with respect to a
730 	 * designated remote address. We assume packets arriving from
731 	 * the remote address arrive via this interface and the local
732 	 * address used to construct the autokey is the unicast address
733 	 * of the interface. However, if the sender is a broadcaster,
734 	 * the interface broadcast address is used instead.
735 	 * Notwithstanding this technobabble, if the sender is a
736 	 * multicaster, the broadcast address is null, so we use the
737 	 * unicast address anyway. Don't ask.
738 	 */
739 	peer = findpeer(rbufp,  hismode, &retcode);
740 	dstadr_sin = &rbufp->dstadr->sin;
741 	NTOHL_FP(&pkt->org, &p_org);
742 	NTOHL_FP(&pkt->rec, &p_rec);
743 	NTOHL_FP(&pkt->xmt, &p_xmt);
744 	hm_str = modetoa(hismode);
745 	am_str = amtoa(retcode);
746 
747 	/*
748 	 * Authentication is conditioned by three switches:
749 	 *
750 	 * NOPEER  (RES_NOPEER) do not mobilize an association unless
751 	 *         authenticated
752 	 * NOTRUST (RES_DONTTRUST) do not allow access unless
753 	 *         authenticated (implies NOPEER)
754 	 * enable  (sys_authenticate) master NOPEER switch, by default
755 	 *         on
756 	 *
757 	 * The NOPEER and NOTRUST can be specified on a per-client basis
758 	 * using the restrict command. The enable switch if on implies
759 	 * NOPEER for all clients. There are four outcomes:
760 	 *
761 	 * NONE    The packet has no MAC.
762 	 * OK      the packet has a MAC and authentication succeeds
763 	 * ERROR   the packet has a MAC and authentication fails
764 	 * CRYPTO  crypto-NAK. The MAC has four octets only.
765 	 *
766 	 * Note: The AUTH(x, y) macro is used to filter outcomes. If x
767 	 * is zero, acceptable outcomes of y are NONE and OK. If x is
768 	 * one, the only acceptable outcome of y is OK.
769 	 */
770 
771 	if (has_mac == 0) {
772 		restrict_mask &= ~RES_MSSNTP;
773 		is_authentic = AUTH_NONE; /* not required */
774 		DPRINTF(2, ("receive: at %ld %s<-%s mode %d/%s:%s len %d org %#010x.%08x xmt %#010x.%08x NOMAC\n",
775 			    current_time, stoa(dstadr_sin),
776 			    stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str,
777 			    authlen,
778 			    ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf),
779 			    ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)));
780 	} else if (has_mac == 4) {
781 		restrict_mask &= ~RES_MSSNTP;
782 		is_authentic = AUTH_CRYPTO; /* crypto-NAK */
783 		DPRINTF(2, ("receive: at %ld %s<-%s mode %d/%s:%s keyid %08x len %d auth %d org %#010x.%08x xmt %#010x.%08x MAC4\n",
784 			    current_time, stoa(dstadr_sin),
785 			    stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str,
786 			    skeyid, authlen + has_mac, is_authentic,
787 			    ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf),
788 			    ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)));
789 
790 #ifdef HAVE_NTP_SIGND
791 		/*
792 		 * If the signature is 20 bytes long, the last 16 of
793 		 * which are zero, then this is a Microsoft client
794 		 * wanting AD-style authentication of the server's
795 		 * reply.
796 		 *
797 		 * This is described in Microsoft's WSPP docs, in MS-SNTP:
798 		 * http://msdn.microsoft.com/en-us/library/cc212930.aspx
799 		 */
800 	} else if (   has_mac == MAX_MD5_LEN
801 		   && (restrict_mask & RES_MSSNTP)
802 		   && (retcode == AM_FXMIT || retcode == AM_NEWPASS)
803 		   && (memcmp(zero_key, (char *)pkt + authlen + 4,
804 			      MAX_MD5_LEN - 4) == 0)) {
805 		is_authentic = AUTH_NONE;
806 #endif /* HAVE_NTP_SIGND */
807 
808 	} else {
809 		restrict_mask &= ~RES_MSSNTP;
810 #ifdef AUTOKEY
811 		/*
812 		 * For autokey modes, generate the session key
813 		 * and install in the key cache. Use the socket
814 		 * broadcast or unicast address as appropriate.
815 		 */
816 		if (crypto_flags && skeyid > NTP_MAXKEY) {
817 
818 			/*
819 			 * More on the autokey dance (AKD). A cookie is
820 			 * constructed from public and private values.
821 			 * For broadcast packets, the cookie is public
822 			 * (zero). For packets that match no
823 			 * association, the cookie is hashed from the
824 			 * addresses and private value. For server
825 			 * packets, the cookie was previously obtained
826 			 * from the server. For symmetric modes, the
827 			 * cookie was previously constructed using an
828 			 * agreement protocol; however, should PKI be
829 			 * unavailable, we construct a fake agreement as
830 			 * the EXOR of the peer and host cookies.
831 			 *
832 			 * hismode	ephemeral	persistent
833 			 * =======================================
834 			 * active	0		cookie#
835 			 * passive	0%		cookie#
836 			 * client	sys cookie	0%
837 			 * server	0%		sys cookie
838 			 * broadcast	0		0
839 			 *
840 			 * # if unsync, 0
841 			 * % can't happen
842 			 */
843 			if (has_mac < (int)MAX_MD5_LEN) {
844 				sys_badauth++;
845 				return;
846 			}
847 			if (hismode == MODE_BROADCAST) {
848 
849 				/*
850 				 * For broadcaster, use the interface
851 				 * broadcast address when available;
852 				 * otherwise, use the unicast address
853 				 * found when the association was
854 				 * mobilized. However, if this is from
855 				 * the wildcard interface, game over.
856 				 */
857 				if (   crypto_flags
858 				    && rbufp->dstadr ==
859 				       ANY_INTERFACE_CHOOSE(&rbufp->recv_srcadr)) {
860 					sys_restricted++;
861 					return;	     /* no wildcard */
862 				}
863 				pkeyid = 0;
864 				if (!SOCK_UNSPEC(&rbufp->dstadr->bcast))
865 					dstadr_sin =
866 					    &rbufp->dstadr->bcast;
867 			} else if (peer == NULL) {
868 				pkeyid = session_key(
869 				    &rbufp->recv_srcadr, dstadr_sin, 0,
870 				    sys_private, 0);
871 			} else {
872 				pkeyid = peer->pcookie;
873 			}
874 
875 			/*
876 			 * The session key includes both the public
877 			 * values and cookie. In case of an extension
878 			 * field, the cookie used for authentication
879 			 * purposes is zero. Note the hash is saved for
880 			 * use later in the autokey mambo.
881 			 */
882 			if (authlen > (int)LEN_PKT_NOMAC && pkeyid != 0) {
883 				session_key(&rbufp->recv_srcadr,
884 				    dstadr_sin, skeyid, 0, 2);
885 				tkeyid = session_key(
886 				    &rbufp->recv_srcadr, dstadr_sin,
887 				    skeyid, pkeyid, 0);
888 			} else {
889 				tkeyid = session_key(
890 				    &rbufp->recv_srcadr, dstadr_sin,
891 				    skeyid, pkeyid, 2);
892 			}
893 
894 		}
895 #endif	/* AUTOKEY */
896 
897 		/*
898 		 * Compute the cryptosum. Note a clogging attack may
899 		 * succeed in bloating the key cache. If an autokey,
900 		 * purge it immediately, since we won't be needing it
901 		 * again. If the packet is authentic, it can mobilize an
902 		 * association. Note that there is no key zero.
903 		 */
904 		if (!authdecrypt(skeyid, (u_int32 *)pkt, authlen,
905 		    has_mac))
906 			is_authentic = AUTH_ERROR;
907 		else
908 			is_authentic = AUTH_OK;
909 #ifdef AUTOKEY
910 		if (crypto_flags && skeyid > NTP_MAXKEY)
911 			authtrust(skeyid, 0);
912 #endif	/* AUTOKEY */
913 		DPRINTF(2, ("receive: at %ld %s<-%s mode %d/%s:%s keyid %08x len %d auth %d org %#010x.%08x xmt %#010x.%08x\n",
914 			    current_time, stoa(dstadr_sin),
915 			    stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str,
916 			    skeyid, authlen + has_mac, is_authentic,
917 			    ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf),
918 			    ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)));
919 	}
920 
921 	/*
922 	 * The association matching rules are implemented by a set of
923 	 * routines and an association table. A packet matching an
924 	 * association is processed by the peer process for that
925 	 * association. If there are no errors, an ephemeral association
926 	 * is mobilized: a broadcast packet mobilizes a broadcast client
927 	 * aassociation; a manycast server packet mobilizes a manycast
928 	 * client association; a symmetric active packet mobilizes a
929 	 * symmetric passive association.
930 	 */
931 	switch (retcode) {
932 
933 	/*
934 	 * This is a client mode packet not matching any association. If
935 	 * an ordinary client, simply toss a server mode packet back
936 	 * over the fence. If a manycast client, we have to work a
937 	 * little harder.
938 	 */
939 	case AM_FXMIT:
940 
941 		/*
942 		 * If authentication OK, send a server reply; otherwise,
943 		 * send a crypto-NAK.
944 		 */
945 		if (!(rbufp->dstadr->flags & INT_MCASTOPEN)) {
946 			if (AUTH(restrict_mask & RES_DONTTRUST,
947 			   is_authentic)) {
948 				fast_xmit(rbufp, MODE_SERVER, skeyid,
949 				    restrict_mask);
950 			} else if (is_authentic == AUTH_ERROR) {
951 				fast_xmit(rbufp, MODE_SERVER, 0,
952 				    restrict_mask);
953 				sys_badauth++;
954 			} else {
955 				sys_restricted++;
956 			}
957 			return;			/* hooray */
958 		}
959 
960 		/*
961 		 * This must be manycast. Do not respond if not
962 		 * configured as a manycast server.
963 		 */
964 		if (!sys_manycastserver) {
965 			sys_restricted++;
966 			return;			/* not enabled */
967 		}
968 
969 #ifdef AUTOKEY
970 		/*
971 		 * Do not respond if not the same group.
972 		 */
973 		if (group_test(groupname, NULL)) {
974 			sys_declined++;
975 			return;
976 		}
977 #endif /* AUTOKEY */
978 
979 		/*
980 		 * Do not respond if we are not synchronized or our
981 		 * stratum is greater than the manycaster or the
982 		 * manycaster has already synchronized to us.
983 		 */
984 		if (   sys_leap == LEAP_NOTINSYNC
985 		    || sys_stratum >= hisstratum
986 		    || (!sys_cohort && sys_stratum == hisstratum + 1)
987 		    || rbufp->dstadr->addr_refid == pkt->refid) {
988 			sys_declined++;
989 			return;			/* no help */
990 		}
991 
992 		/*
993 		 * Respond only if authentication succeeds. Don't do a
994 		 * crypto-NAK, as that would not be useful.
995 		 */
996 		if (AUTH(restrict_mask & RES_DONTTRUST, is_authentic))
997 			fast_xmit(rbufp, MODE_SERVER, skeyid,
998 			    restrict_mask);
999 		return;				/* hooray */
1000 
1001 	/*
1002 	 * This is a server mode packet returned in response to a client
1003 	 * mode packet sent to a multicast group address (for
1004 	 * manycastclient) or to a unicast address (for pool). The
1005 	 * origin timestamp is a good nonce to reliably associate the
1006 	 * reply with what was sent. If there is no match, that's
1007 	 * curious and could be an intruder attempting to clog, so we
1008 	 * just ignore it.
1009 	 *
1010 	 * If the packet is authentic and the manycastclient or pool
1011 	 * association is found, we mobilize a client association and
1012 	 * copy pertinent variables from the manycastclient or pool
1013 	 * association to the new client association. If not, just
1014 	 * ignore the packet.
1015 	 *
1016 	 * There is an implosion hazard at the manycast client, since
1017 	 * the manycast servers send the server packet immediately. If
1018 	 * the guy is already here, don't fire up a duplicate.
1019 	 */
1020 	case AM_MANYCAST:
1021 
1022 #ifdef AUTOKEY
1023 		/*
1024 		 * Do not respond if not the same group.
1025 		 */
1026 		if (group_test(groupname, NULL)) {
1027 			sys_declined++;
1028 			return;
1029 		}
1030 #endif /* AUTOKEY */
1031 		if ((peer2 = findmanycastpeer(rbufp)) == NULL) {
1032 			sys_restricted++;
1033 			return;			/* not enabled */
1034 		}
1035 		if (!AUTH(  (!(peer2->cast_flags & MDF_POOL)
1036 			     && sys_authenticate)
1037 			  || (restrict_mask & (RES_NOPEER |
1038 			      RES_DONTTRUST)), is_authentic)) {
1039 			sys_restricted++;
1040 			return;			/* access denied */
1041 		}
1042 
1043 		/*
1044 		 * Do not respond if unsynchronized or stratum is below
1045 		 * the floor or at or above the ceiling.
1046 		 */
1047 		if (   hisleap == LEAP_NOTINSYNC
1048 		    || hisstratum < sys_floor
1049 		    || hisstratum >= sys_ceiling) {
1050 			sys_declined++;
1051 			return;			/* no help */
1052 		}
1053 		peer = newpeer(&rbufp->recv_srcadr, NULL, rbufp->dstadr,
1054 			       MODE_CLIENT, hisversion, peer2->minpoll,
1055 			       peer2->maxpoll, FLAG_PREEMPT |
1056 			       (FLAG_IBURST & peer2->flags), MDF_UCAST |
1057 			       MDF_UCLNT, 0, skeyid, sys_ident);
1058 		if (NULL == peer) {
1059 			sys_declined++;
1060 			return;			/* ignore duplicate  */
1061 		}
1062 
1063 		/*
1064 		 * After each ephemeral pool association is spun,
1065 		 * accelerate the next poll for the pool solicitor so
1066 		 * the pool will fill promptly.
1067 		 */
1068 		if (peer2->cast_flags & MDF_POOL)
1069 			peer2->nextdate = current_time + 1;
1070 
1071 		/*
1072 		 * Further processing of the solicitation response would
1073 		 * simply detect its origin timestamp as bogus for the
1074 		 * brand-new association (it matches the prototype
1075 		 * association) and tinker with peer->nextdate delaying
1076 		 * first sync.
1077 		 */
1078 		return;		/* solicitation response handled */
1079 
1080 	/*
1081 	 * This is the first packet received from a broadcast server. If
1082 	 * the packet is authentic and we are enabled as broadcast
1083 	 * client, mobilize a broadcast client association. We don't
1084 	 * kiss any frogs here.
1085 	 */
1086 	case AM_NEWBCL:
1087 
1088 #ifdef AUTOKEY
1089 		/*
1090 		 * Do not respond if not the same group.
1091 		 */
1092 		if (group_test(groupname, sys_ident)) {
1093 			sys_declined++;
1094 			return;
1095 		}
1096 #endif /* AUTOKEY */
1097 		if (sys_bclient == 0) {
1098 			sys_restricted++;
1099 			return;			/* not enabled */
1100 		}
1101 		if (!AUTH(sys_authenticate | (restrict_mask &
1102 		    (RES_NOPEER | RES_DONTTRUST)), is_authentic)) {
1103 			sys_restricted++;
1104 			return;			/* access denied */
1105 		}
1106 
1107 		/*
1108 		 * Do not respond if unsynchronized or stratum is below
1109 		 * the floor or at or above the ceiling.
1110 		 */
1111 		if (   hisleap == LEAP_NOTINSYNC
1112 		    || hisstratum < sys_floor
1113 		    || hisstratum >= sys_ceiling) {
1114 			sys_declined++;
1115 			return;			/* no help */
1116 		}
1117 
1118 #ifdef AUTOKEY
1119 		/*
1120 		 * Do not respond if Autokey and the opcode is not a
1121 		 * CRYPTO_ASSOC response with association ID.
1122 		 */
1123 		if (   crypto_flags && skeyid > NTP_MAXKEY
1124 		    && (opcode & 0xffff0000) != (CRYPTO_ASSOC | CRYPTO_RESP)) {
1125 			sys_declined++;
1126 			return;			/* protocol error */
1127 		}
1128 #endif	/* AUTOKEY */
1129 
1130 		/*
1131 		 * Broadcasts received via a multicast address may
1132 		 * arrive after a unicast volley has begun
1133 		 * with the same remote address.  newpeer() will not
1134 		 * find duplicate associations on other local endpoints
1135 		 * if a non-NULL endpoint is supplied.  multicastclient
1136 		 * ephemeral associations are unique across all local
1137 		 * endpoints.
1138 		 */
1139 		if (!(INT_MCASTOPEN & rbufp->dstadr->flags))
1140 			match_ep = rbufp->dstadr;
1141 		else
1142 			match_ep = NULL;
1143 
1144 		/*
1145 		 * Determine whether to execute the initial volley.
1146 		 */
1147 		if (sys_bdelay != 0) {
1148 #ifdef AUTOKEY
1149 			/*
1150 			 * If a two-way exchange is not possible,
1151 			 * neither is Autokey.
1152 			 */
1153 			if (crypto_flags && skeyid > NTP_MAXKEY) {
1154 				sys_restricted++;
1155 				return;		/* no autokey */
1156 			}
1157 #endif	/* AUTOKEY */
1158 
1159 			/*
1160 			 * Do not execute the volley. Start out in
1161 			 * broadcast client mode.
1162 			 */
1163 			peer = newpeer(&rbufp->recv_srcadr, NULL,
1164 			    match_ep, MODE_BCLIENT, hisversion,
1165 			    pkt->ppoll, pkt->ppoll, FLAG_PREEMPT,
1166 			    MDF_BCLNT, 0, skeyid, sys_ident);
1167 			if (NULL == peer) {
1168 				sys_restricted++;
1169 				return;		/* ignore duplicate */
1170 
1171 			} else {
1172 				peer->delay = sys_bdelay;
1173 				peer->bxmt = p_xmt;
1174 			}
1175 			break;
1176 		}
1177 
1178 		/*
1179 		 * Execute the initial volley in order to calibrate the
1180 		 * propagation delay and run the Autokey protocol.
1181 		 *
1182 		 * Note that the minpoll is taken from the broadcast
1183 		 * packet, normally 6 (64 s) and that the poll interval
1184 		 * is fixed at this value.
1185 		 */
1186 		peer = newpeer(&rbufp->recv_srcadr, NULL, match_ep,
1187 		    MODE_CLIENT, hisversion, pkt->ppoll, pkt->ppoll,
1188 		    FLAG_BC_VOL | FLAG_IBURST | FLAG_PREEMPT, MDF_BCLNT,
1189 		    0, skeyid, sys_ident);
1190 		if (NULL == peer) {
1191 			sys_restricted++;
1192 			return;			/* ignore duplicate */
1193 		}
1194 		peer->bxmt = p_xmt;
1195 #ifdef AUTOKEY
1196 		if (skeyid > NTP_MAXKEY)
1197 			crypto_recv(peer, rbufp);
1198 #endif	/* AUTOKEY */
1199 
1200 		return;				/* hooray */
1201 
1202 	/*
1203 	 * This is the first packet received from a symmetric active
1204 	 * peer. If the packet is authentic and the first he sent,
1205 	 * mobilize a passive association. If not, kiss the frog.
1206 	 */
1207 	case AM_NEWPASS:
1208 
1209 #ifdef AUTOKEY
1210 		/*
1211 		 * Do not respond if not the same group.
1212 		 */
1213 		if (group_test(groupname, sys_ident)) {
1214 			sys_declined++;
1215 			return;
1216 		}
1217 #endif /* AUTOKEY */
1218 		if (!AUTH(sys_authenticate | (restrict_mask &
1219 		    (RES_NOPEER | RES_DONTTRUST)), is_authentic)) {
1220 
1221 			/*
1222 			 * If authenticated but cannot mobilize an
1223 			 * association, send a symmetric passive
1224 			 * response without mobilizing an association.
1225 			 * This is for drat broken Windows clients. See
1226 			 * Microsoft KB 875424 for preferred workaround.
1227 			 */
1228 			if (AUTH(restrict_mask & RES_DONTTRUST,
1229 			    is_authentic)) {
1230 				fast_xmit(rbufp, MODE_PASSIVE, skeyid,
1231 				    restrict_mask);
1232 				return;			/* hooray */
1233 			}
1234 			if (is_authentic == AUTH_ERROR) {
1235 				fast_xmit(rbufp, MODE_ACTIVE, 0,
1236 				    restrict_mask);
1237 				sys_restricted++;
1238 				return;
1239 			}
1240 			/* [Bug 2941]
1241 			 * If we got here, the packet isn't part of an
1242 			 * existing association, it isn't correctly
1243 			 * authenticated, and it didn't meet either of
1244 			 * the previous two special cases so we should
1245 			 * just drop it on the floor.  For example,
1246 			 * crypto-NAKs (is_authentic == AUTH_CRYPTO)
1247 			 * will make it this far.  This is just
1248 			 * debug-printed and not logged to avoid log
1249 			 * flooding.
1250 			 */
1251 			DPRINTF(2, ("receive: at %ld refusing to mobilize passive association"
1252 				    " with unknown peer %s mode %d/%s:%s keyid %08x len %d auth %d\n",
1253 				    current_time, stoa(&rbufp->recv_srcadr),
1254 				    hismode, hm_str, am_str, skeyid,
1255 				    (authlen + has_mac), is_authentic));
1256 			sys_declined++;
1257 			return;
1258 		}
1259 
1260 		/*
1261 		 * Do not respond if synchronized and if stratum is
1262 		 * below the floor or at or above the ceiling. Note,
1263 		 * this allows an unsynchronized peer to synchronize to
1264 		 * us. It would be very strange if he did and then was
1265 		 * nipped, but that could only happen if we were
1266 		 * operating at the top end of the range.  It also means
1267 		 * we will spin an ephemeral association in response to
1268 		 * MODE_ACTIVE KoDs, which will time out eventually.
1269 		 */
1270 		if (   hisleap != LEAP_NOTINSYNC
1271 		    && (hisstratum < sys_floor || hisstratum >= sys_ceiling)) {
1272 			sys_declined++;
1273 			return;			/* no help */
1274 		}
1275 
1276 		/*
1277 		 * The message is correctly authenticated and allowed.
1278 		 * Mobilize a symmetric passive association.
1279 		 */
1280 		if ((peer = newpeer(&rbufp->recv_srcadr, NULL,
1281 		    rbufp->dstadr, MODE_PASSIVE, hisversion, pkt->ppoll,
1282 		    NTP_MAXDPOLL, 0, MDF_UCAST, 0, skeyid,
1283 		    sys_ident)) == NULL) {
1284 			sys_declined++;
1285 			return;			/* ignore duplicate */
1286 		}
1287 		break;
1288 
1289 
1290 	/*
1291 	 * Process regular packet. Nothing special.
1292 	 */
1293 	case AM_PROCPKT:
1294 
1295 #ifdef AUTOKEY
1296 		/*
1297 		 * Do not respond if not the same group.
1298 		 */
1299 		if (group_test(groupname, peer->ident)) {
1300 			sys_declined++;
1301 			return;
1302 		}
1303 #endif /* AUTOKEY */
1304 
1305 		if (MODE_BROADCAST == hismode) {
1306 			u_char poll;
1307 			int bail = 0;
1308 			l_fp tdiff;
1309 
1310 			DPRINTF(2, ("receive: PROCPKT/BROADCAST: prev pkt %ld seconds ago, ppoll: %d, %d secs\n",
1311 				    (current_time - peer->timelastrec),
1312 				    peer->ppoll, (1 << peer->ppoll)
1313 				    ));
1314 			/* Things we can check:
1315 			 *
1316 			 * Did the poll interval change?
1317 			 * Is the poll interval in the packet in-range?
1318 			 * Did this packet arrive too soon?
1319 			 * Is the timestamp in this packet monotonic
1320 			 *  with respect to the previous packet?
1321 			 */
1322 
1323 			/* This is noteworthy, not error-worthy */
1324 			if (pkt->ppoll != peer->ppoll) {
1325 				msyslog(LOG_INFO, "receive: broadcast poll from %s changed from %ud to %ud",
1326 					stoa(&rbufp->recv_srcadr),
1327 					peer->ppoll, pkt->ppoll);
1328 			}
1329 
1330 			poll = min(peer->maxpoll,
1331 				   max(peer->minpoll, pkt->ppoll));
1332 
1333 			/* This is error-worthy */
1334 			if (pkt->ppoll != poll) {
1335 				msyslog(LOG_INFO, "receive: broadcast poll of %ud from %s is out-of-range (%d to %d)!",
1336 					pkt->ppoll, stoa(&rbufp->recv_srcadr),
1337 					peer->minpoll, peer->maxpoll);
1338 				++bail;
1339 			}
1340 
1341 			if (  (current_time - peer->timelastrec)
1342 			    < (1 << pkt->ppoll)) {
1343 				msyslog(LOG_INFO, "receive: broadcast packet from %s arrived after %ld, not %d seconds!",
1344 					stoa(&rbufp->recv_srcadr),
1345 					(current_time - peer->timelastrec),
1346 					(1 << pkt->ppoll)
1347 					);
1348 				++bail;
1349 			}
1350 
1351 			tdiff = p_xmt;
1352 			L_SUB(&tdiff, &peer->bxmt);
1353 			if (tdiff.l_i < 0) {
1354 				msyslog(LOG_INFO, "receive: broadcast packet from %s contains non-monotonic timestamp: %#010x.%08x -> %#010x.%08x",
1355 					stoa(&rbufp->recv_srcadr),
1356 					peer->bxmt.l_ui, peer->bxmt.l_uf,
1357 					p_xmt.l_ui, p_xmt.l_uf
1358 					);
1359 				++bail;
1360 			}
1361 
1362 			peer->bxmt = p_xmt;
1363 
1364 			if (bail) {
1365 				peer->timelastrec = current_time;
1366 				sys_declined++;
1367 				return;
1368 			}
1369 		}
1370 
1371 		break;
1372 
1373 	/*
1374 	 * A passive packet matches a passive association. This is
1375 	 * usually the result of reconfiguring a client on the fly. As
1376 	 * this association might be legitimate and this packet an
1377 	 * attempt to deny service, just ignore it.
1378 	 */
1379 	case AM_ERR:
1380 		sys_declined++;
1381 		return;
1382 
1383 	/*
1384 	 * For everything else there is the bit bucket.
1385 	 */
1386 	default:
1387 		sys_declined++;
1388 		return;
1389 	}
1390 
1391 #ifdef AUTOKEY
1392 	/*
1393 	 * If the association is configured for Autokey, the packet must
1394 	 * have a public key ID; if not, the packet must have a
1395 	 * symmetric key ID.
1396 	 */
1397 	if (   is_authentic != AUTH_CRYPTO
1398 	    && (   ((peer->flags & FLAG_SKEY) && skeyid <= NTP_MAXKEY)
1399 	        || (!(peer->flags & FLAG_SKEY) && skeyid > NTP_MAXKEY))) {
1400 		sys_badauth++;
1401 		return;
1402 	}
1403 #endif	/* AUTOKEY */
1404 	peer->received++;
1405 	peer->flash &= ~PKT_TEST_MASK;
1406 	if (peer->flags & FLAG_XBOGUS) {
1407 		peer->flags &= ~FLAG_XBOGUS;
1408 		peer->flash |= TEST3;
1409 	}
1410 
1411 	/*
1412 	 * Next comes a rigorous schedule of timestamp checking. If the
1413 	 * transmit timestamp is zero, the server has not initialized in
1414 	 * interleaved modes or is horribly broken.
1415 	 */
1416 	if (L_ISZERO(&p_xmt)) {
1417 		peer->flash |= TEST3;			/* unsynch */
1418 
1419 	/*
1420 	 * If the transmit timestamp duplicates a previous one, the
1421 	 * packet is a replay. This prevents the bad guys from replaying
1422 	 * the most recent packet, authenticated or not.
1423 	 */
1424 	} else if (L_ISEQU(&peer->xmt, &p_xmt)) {
1425 		peer->flash |= TEST1;			/* duplicate */
1426 		peer->oldpkt++;
1427 		return;
1428 
1429 	/*
1430 	 * If this is a broadcast mode packet, skip further checking. If
1431 	 * an initial volley, bail out now and let the client do its
1432 	 * stuff. If the origin timestamp is nonzero, this is an
1433 	 * interleaved broadcast. so restart the protocol.
1434 	 */
1435 	} else if (hismode == MODE_BROADCAST) {
1436 		if (!L_ISZERO(&p_org) && !(peer->flags & FLAG_XB)) {
1437 			peer->flags |= FLAG_XB;
1438 			peer->aorg = p_xmt;
1439 			peer->borg = rbufp->recv_time;
1440 			report_event(PEVNT_XLEAVE, peer, NULL);
1441 			return;
1442 		}
1443 
1444 	/*
1445 	 * Basic mode checks:
1446 	 *
1447 	 * If there is no origin timestamp, it's either an initial packet
1448 	 * or we've already received a response to our query.  Of course,
1449 	 * should 'aorg' be all-zero because this really was the original
1450 	 * transmit timestamp, we'll drop the reply.  There is a window of
1451 	 * one nanosecond once every 136 years' time where this is possible.
1452 	 * We currently ignore this situation.
1453 	 *
1454 	 * Otherwise, check for bogus packet in basic mode.
1455 	 * If it is bogus, switch to interleaved mode and resynchronize,
1456 	 * but only after confirming the packet is not bogus in
1457 	 * symmetric interleaved mode.
1458 	 *
1459 	 * This could also mean somebody is forging packets claiming to
1460 	 * be from us, attempting to cause our server to KoD us.
1461 	 */
1462 	} else if (peer->flip == 0) {
1463 		if (0 < hisstratum && L_ISZERO(&p_org)) {
1464 			L_CLR(&peer->aorg);
1465 		} else if (    L_ISZERO(&peer->aorg)
1466 			   || !L_ISEQU(&p_org, &peer->aorg)) {
1467 			peer->bogusorg++;
1468 			peer->flash |= TEST2;	/* bogus */
1469 			msyslog(LOG_INFO,
1470 				"receive: Unexpected origin timestamp %#010x.%08x from %s xmt %#010x.%08x",
1471 				ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf),
1472 				ntoa(&peer->srcadr),
1473 				ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf));
1474 			if (  !L_ISZERO(&peer->dst)
1475 			    && L_ISEQU(&p_org, &peer->dst)) {
1476 				/* Might be the start of an interleave */
1477 				peer->flip = 1;
1478 				report_event(PEVNT_XLEAVE, peer, NULL);
1479 			}
1480 			return; /* Bogus or possible interleave packet */
1481 		} else {
1482 			L_CLR(&peer->aorg);
1483 		}
1484 
1485 	/*
1486 	 * Check for valid nonzero timestamp fields.
1487 	 */
1488 	} else if (L_ISZERO(&p_org) || L_ISZERO(&p_rec) ||
1489 	    L_ISZERO(&peer->dst)) {
1490 		peer->flash |= TEST3;		/* unsynch */
1491 
1492 	/*
1493 	 * Check for bogus packet in interleaved symmetric mode. This
1494 	 * can happen if a packet is lost, duplicated or crossed. If
1495 	 * found, flip and resynchronize.
1496 	 */
1497 	} else if (   !L_ISZERO(&peer->dst)
1498 		   && !L_ISEQU(&p_org, &peer->dst)) {
1499 		peer->bogusorg++;
1500 		peer->flags |= FLAG_XBOGUS;
1501 		peer->flash |= TEST2;		/* bogus */
1502 		return; /* Bogus packet, we are done */
1503 	}
1504 
1505 	/*
1506 	 * If this is a crypto_NAK, the server cannot authenticate a
1507 	 * client packet. The server might have just changed keys. Clear
1508 	 * the association and restart the protocol.
1509 	 */
1510 	if (is_authentic == AUTH_CRYPTO) {
1511 		report_event(PEVNT_AUTH, peer, "crypto_NAK");
1512 		peer->flash |= TEST5;		/* bad auth */
1513 		peer->badauth++;
1514 		if (peer->flags & FLAG_PREEMPT) {
1515 			if (unpeer_crypto_nak_early) {
1516 				unpeer(peer);
1517 			}
1518 			return;
1519 		}
1520 #ifdef AUTOKEY
1521 		if (peer->crypto)
1522 			peer_clear(peer, "AUTH");
1523 #endif	/* AUTOKEY */
1524 		return;
1525 
1526 	/*
1527 	 * If the digest fails or it's missing for authenticated
1528 	 * associations, the client cannot authenticate a server
1529 	 * reply to a client packet previously sent. The loopback check
1530 	 * is designed to avoid a bait-and-switch attack, which was
1531 	 * possible in past versions. If symmetric modes, return a
1532 	 * crypto-NAK. The peer should restart the protocol.
1533 	 */
1534 	} else if (!AUTH(peer->keyid || has_mac ||
1535 			 (restrict_mask & RES_DONTTRUST), is_authentic)) {
1536 		report_event(PEVNT_AUTH, peer, "digest");
1537 		peer->flash |= TEST5;		/* bad auth */
1538 		peer->badauth++;
1539 		if (   has_mac
1540 		    && (hismode == MODE_ACTIVE || hismode == MODE_PASSIVE))
1541 			fast_xmit(rbufp, MODE_ACTIVE, 0, restrict_mask);
1542 		if (peer->flags & FLAG_PREEMPT) {
1543 			if (unpeer_digest_early) {
1544 				unpeer(peer);
1545 			}
1546 			return;
1547 		}
1548 #ifdef AUTOKEY
1549 		if (peer->crypto)
1550 			peer_clear(peer, "AUTH");
1551 #endif	/* AUTOKEY */
1552 		return;
1553 	}
1554 
1555 	/*
1556 	 * Update the state variables.
1557 	 */
1558 	if (peer->flip == 0) {
1559 		if (hismode != MODE_BROADCAST)
1560 			peer->rec = p_xmt;
1561 		peer->dst = rbufp->recv_time;
1562 	}
1563 	peer->xmt = p_xmt;
1564 
1565 	/*
1566 	 * Set the peer ppoll to the maximum of the packet ppoll and the
1567 	 * peer minpoll. If a kiss-o'-death, set the peer minpoll to
1568 	 * this maximum and advance the headway to give the sender some
1569 	 * headroom. Very intricate.
1570 	 */
1571 
1572 	/*
1573 	 * Check for any kiss codes. Note this is only used when a server
1574 	 * responds to a packet request
1575 	 */
1576 
1577 	kissCode = kiss_code_check(hisleap, hisstratum, hismode, pkt->refid);
1578 
1579 	/*
1580 	 * Check to see if this is a RATE Kiss Code
1581 	 * Currently this kiss code will accept whatever poll
1582 	 * rate that the server sends
1583 	 */
1584 	peer->ppoll = max(peer->minpoll, pkt->ppoll);
1585 	if (kissCode == RATEKISS) {
1586 		peer->selbroken++;	/* Increment the KoD count */
1587 		report_event(PEVNT_RATE, peer, NULL);
1588 		if (pkt->ppoll > peer->minpoll)
1589 			peer->minpoll = peer->ppoll;
1590 		peer->burst = peer->retry = 0;
1591 		peer->throttle = (NTP_SHIFT + 1) * (1 << peer->minpoll);
1592 		poll_update(peer, pkt->ppoll);
1593 		return;				/* kiss-o'-death */
1594 	}
1595 	if (kissCode != NOKISS) {
1596 		peer->selbroken++;	/* Increment the KoD count */
1597 		return;		/* Drop any other kiss code packets */
1598 	}
1599 
1600 	/*
1601 	 * If:
1602 	 *	- this is a *cast (uni-, broad-, or m-) server packet
1603 	 *	- and it's authenticated
1604 	 * then see if the sender's IP is trusted for this keyid.
1605 	 * If it is, great - nothing special to do here.
1606 	 * Otherwise, we should report and bail.
1607 	 */
1608 
1609 	switch (hismode) {
1610 	    case MODE_SERVER:		/* server mode */
1611 	    case MODE_BROADCAST:	/* broadcast mode */
1612 	    case MODE_ACTIVE:		/* symmetric active mode */
1613 		if (   is_authentic == AUTH_OK
1614 		    && !authistrustedip(skeyid, &peer->srcadr)) {
1615 			report_event(PEVNT_AUTH, peer, "authIP");
1616 			peer->badauth++;
1617 			return;
1618 		}
1619 	    	break;
1620 
1621 	    case MODE_UNSPEC:		/* unspecified (old version) */
1622 	    case MODE_PASSIVE:		/* symmetric passive mode */
1623 	    case MODE_CLIENT:		/* client mode */
1624 #if 0		/* At this point, MODE_CONTROL is overloaded by MODE_BCLIENT */
1625 	    case MODE_CONTROL:		/* control mode */
1626 #endif
1627 	    case MODE_PRIVATE:		/* private mode */
1628 	    case MODE_BCLIENT:		/* broadcast client mode */
1629 	    	break;
1630 	    default:
1631 	    	break;
1632 	}
1633 
1634 
1635 	/*
1636 	 * That was hard and I am sweaty, but the packet is squeaky
1637 	 * clean. Get on with real work.
1638 	 */
1639 	peer->timereceived = current_time;
1640 	peer->timelastrec = current_time;
1641 	if (is_authentic == AUTH_OK)
1642 		peer->flags |= FLAG_AUTHENTIC;
1643 	else
1644 		peer->flags &= ~FLAG_AUTHENTIC;
1645 
1646 #ifdef AUTOKEY
1647 	/*
1648 	 * More autokey dance. The rules of the cha-cha are as follows:
1649 	 *
1650 	 * 1. If there is no key or the key is not auto, do nothing.
1651 	 *
1652 	 * 2. If this packet is in response to the one just previously
1653 	 *    sent or from a broadcast server, do the extension fields.
1654 	 *    Otherwise, assume bogosity and bail out.
1655 	 *
1656 	 * 3. If an extension field contains a verified signature, it is
1657 	 *    self-authenticated and we sit the dance.
1658 	 *
1659 	 * 4. If this is a server reply, check only to see that the
1660 	 *    transmitted key ID matches the received key ID.
1661 	 *
1662 	 * 5. Check to see that one or more hashes of the current key ID
1663 	 *    matches the previous key ID or ultimate original key ID
1664 	 *    obtained from the broadcaster or symmetric peer. If no
1665 	 *    match, sit the dance and call for new autokey values.
1666 	 *
1667 	 * In case of crypto error, fire the orchestra, stop dancing and
1668 	 * restart the protocol.
1669 	 */
1670 	if (peer->flags & FLAG_SKEY) {
1671 		/*
1672 		 * Decrement remaining autokey hashes. This isn't
1673 		 * perfect if a packet is lost, but results in no harm.
1674 		 */
1675 		ap = (struct autokey *)peer->recval.ptr;
1676 		if (ap != NULL) {
1677 			if (ap->seq > 0)
1678 				ap->seq--;
1679 		}
1680 		peer->flash |= TEST8;
1681 		rval = crypto_recv(peer, rbufp);
1682 		if (rval == XEVNT_OK) {
1683 			peer->unreach = 0;
1684 		} else {
1685 			if (rval == XEVNT_ERR) {
1686 				report_event(PEVNT_RESTART, peer,
1687 				    "crypto error");
1688 				peer_clear(peer, "CRYP");
1689 				peer->flash |= TEST9;	/* bad crypt */
1690 				if (peer->flags & FLAG_PREEMPT) {
1691 					if (unpeer_crypto_early) {
1692 						unpeer(peer);
1693 					}
1694 				}
1695 			}
1696 			return;
1697 		}
1698 
1699 		/*
1700 		 * If server mode, verify the receive key ID matches
1701 		 * the transmit key ID.
1702 		 */
1703 		if (hismode == MODE_SERVER) {
1704 			if (skeyid == peer->keyid)
1705 				peer->flash &= ~TEST8;
1706 
1707 		/*
1708 		 * If an extension field is present, verify only that it
1709 		 * has been correctly signed. We don't need a sequence
1710 		 * check here, but the sequence continues.
1711 		 */
1712 		} else if (!(peer->flash & TEST8)) {
1713 			peer->pkeyid = skeyid;
1714 
1715 		/*
1716 		 * Now the fun part. Here, skeyid is the current ID in
1717 		 * the packet, pkeyid is the ID in the last packet and
1718 		 * tkeyid is the hash of skeyid. If the autokey values
1719 		 * have not been received, this is an automatic error.
1720 		 * If so, check that the tkeyid matches pkeyid. If not,
1721 		 * hash tkeyid and try again. If the number of hashes
1722 		 * exceeds the number remaining in the sequence, declare
1723 		 * a successful failure and refresh the autokey values.
1724 		 */
1725 		} else if (ap != NULL) {
1726 			int i;
1727 
1728 			for (i = 0; ; i++) {
1729 				if (   tkeyid == peer->pkeyid
1730 				    || tkeyid == ap->key) {
1731 					peer->flash &= ~TEST8;
1732 					peer->pkeyid = skeyid;
1733 					ap->seq -= i;
1734 					break;
1735 				}
1736 				if (i > ap->seq) {
1737 					peer->crypto &=
1738 					    ~CRYPTO_FLAG_AUTO;
1739 					break;
1740 				}
1741 				tkeyid = session_key(
1742 				    &rbufp->recv_srcadr, dstadr_sin,
1743 				    tkeyid, pkeyid, 0);
1744 			}
1745 			if (peer->flash & TEST8)
1746 				report_event(PEVNT_AUTH, peer, "keylist");
1747 		}
1748 		if (!(peer->crypto & CRYPTO_FLAG_PROV)) /* test 9 */
1749 			peer->flash |= TEST8;	/* bad autokey */
1750 
1751 		/*
1752 		 * The maximum lifetime of the protocol is about one
1753 		 * week before restarting the Autokey protocol to
1754 		 * refresh certificates and leapseconds values.
1755 		 */
1756 		if (current_time > peer->refresh) {
1757 			report_event(PEVNT_RESTART, peer,
1758 			    "crypto refresh");
1759 			peer_clear(peer, "TIME");
1760 			return;
1761 		}
1762 	}
1763 #endif	/* AUTOKEY */
1764 
1765 	/*
1766 	 * The dance is complete and the flash bits have been lit. Toss
1767 	 * the packet over the fence for processing, which may light up
1768 	 * more flashers.
1769 	 */
1770 	process_packet(peer, pkt, rbufp->recv_length);
1771 
1772 	/*
1773 	 * In interleaved mode update the state variables. Also adjust the
1774 	 * transmit phase to avoid crossover.
1775 	 */
1776 	if (peer->flip != 0) {
1777 		peer->rec = p_rec;
1778 		peer->dst = rbufp->recv_time;
1779 		if (peer->nextdate - current_time < (1U << min(peer->ppoll,
1780 		    peer->hpoll)) / 2)
1781 			peer->nextdate++;
1782 		else
1783 			peer->nextdate--;
1784 	}
1785 }
1786 
1787 
1788 /*
1789  * process_packet - Packet Procedure, a la Section 3.4.4 of the
1790  *	specification. Or almost, at least. If we're in here we have a
1791  *	reasonable expectation that we will be having a long term
1792  *	relationship with this host.
1793  */
1794 void
1795 process_packet(
1796 	register struct peer *peer,
1797 	register struct pkt *pkt,
1798 	u_int	len
1799 	)
1800 {
1801 	double	t34, t21;
1802 	double	p_offset, p_del, p_disp;
1803 	l_fp	p_rec, p_xmt, p_org, p_reftime, ci;
1804 	u_char	pmode, pleap, pversion, pstratum;
1805 	char	statstr[NTP_MAXSTRLEN];
1806 #ifdef ASSYM
1807 	int	itemp;
1808 	double	etemp, ftemp, td;
1809 #endif /* ASSYM */
1810 
1811 	sys_processed++;
1812 	peer->processed++;
1813 	p_del = FPTOD(NTOHS_FP(pkt->rootdelay));
1814 	p_offset = 0;
1815 	p_disp = FPTOD(NTOHS_FP(pkt->rootdisp));
1816 	NTOHL_FP(&pkt->reftime, &p_reftime);
1817 	NTOHL_FP(&pkt->org, &p_org);
1818 	NTOHL_FP(&pkt->rec, &p_rec);
1819 	NTOHL_FP(&pkt->xmt, &p_xmt);
1820 	pmode = PKT_MODE(pkt->li_vn_mode);
1821 	pleap = PKT_LEAP(pkt->li_vn_mode);
1822 	pversion = PKT_VERSION(pkt->li_vn_mode);
1823 	pstratum = PKT_TO_STRATUM(pkt->stratum);
1824 
1825 	/*
1826 	 * Capture the header values in the client/peer association..
1827 	 */
1828 	record_raw_stats(&peer->srcadr, peer->dstadr ?
1829 	    &peer->dstadr->sin : NULL,
1830 	    &p_org, &p_rec, &p_xmt, &peer->dst,
1831 	    pleap, pversion, pmode, pstratum, pkt->ppoll, pkt->precision,
1832 	    p_del, p_disp, pkt->refid);
1833 	peer->leap = pleap;
1834 	peer->stratum = min(pstratum, STRATUM_UNSPEC);
1835 	peer->pmode = pmode;
1836 	peer->precision = pkt->precision;
1837 	peer->rootdelay = p_del;
1838 	peer->rootdisp = p_disp;
1839 	peer->refid = pkt->refid;		/* network byte order */
1840 	peer->reftime = p_reftime;
1841 
1842 	/*
1843 	 * First, if either burst mode is armed, enable the burst.
1844 	 * Compute the headway for the next packet and delay if
1845 	 * necessary to avoid exceeding the threshold.
1846 	 */
1847 	if (peer->retry > 0) {
1848 		peer->retry = 0;
1849 		if (peer->reach)
1850 			peer->burst = min(1 << (peer->hpoll -
1851 			    peer->minpoll), NTP_SHIFT) - 1;
1852 		else
1853 			peer->burst = NTP_IBURST - 1;
1854 		if (peer->burst > 0)
1855 			peer->nextdate = current_time;
1856 	}
1857 	poll_update(peer, peer->hpoll);
1858 
1859 	/*
1860 	 * Verify the server is synchronized; that is, the leap bits,
1861 	 * stratum and root distance are valid.
1862 	 */
1863 	if (   pleap == LEAP_NOTINSYNC		/* test 6 */
1864 	    || pstratum < sys_floor || pstratum >= sys_ceiling)
1865 		peer->flash |= TEST6;		/* bad synch or strat */
1866 	if (p_del / 2 + p_disp >= MAXDISPERSE)	/* test 7 */
1867 		peer->flash |= TEST7;		/* bad header */
1868 
1869 	/*
1870 	 * If any tests fail at this point, the packet is discarded.
1871 	 * Note that some flashers may have already been set in the
1872 	 * receive() routine.
1873 	 */
1874 	if (peer->flash & PKT_TEST_MASK) {
1875 		peer->seldisptoolarge++;
1876 		DPRINTF(1, ("packet: flash header %04x\n",
1877 			    peer->flash));
1878 		return;
1879 	}
1880 
1881 	/*
1882 	 * If the peer was previously unreachable, raise a trap. In any
1883 	 * case, mark it reachable.
1884 	 */
1885 	if (!peer->reach) {
1886 		report_event(PEVNT_REACH, peer, NULL);
1887 		peer->timereachable = current_time;
1888 	}
1889 	peer->reach |= 1;
1890 
1891 	/*
1892 	 * For a client/server association, calculate the clock offset,
1893 	 * roundtrip delay and dispersion. The equations are reordered
1894 	 * from the spec for more efficient use of temporaries. For a
1895 	 * broadcast association, offset the last measurement by the
1896 	 * computed delay during the client/server volley. Note the
1897 	 * computation of dispersion includes the system precision plus
1898 	 * that due to the frequency error since the origin time.
1899 	 *
1900 	 * It is very important to respect the hazards of overflow. The
1901 	 * only permitted operation on raw timestamps is subtraction,
1902 	 * where the result is a signed quantity spanning from 68 years
1903 	 * in the past to 68 years in the future. To avoid loss of
1904 	 * precision, these calculations are done using 64-bit integer
1905 	 * arithmetic. However, the offset and delay calculations are
1906 	 * sums and differences of these first-order differences, which
1907 	 * if done using 64-bit integer arithmetic, would be valid over
1908 	 * only half that span. Since the typical first-order
1909 	 * differences are usually very small, they are converted to 64-
1910 	 * bit doubles and all remaining calculations done in floating-
1911 	 * double arithmetic. This preserves the accuracy while
1912 	 * retaining the 68-year span.
1913 	 *
1914 	 * There are three interleaving schemes, basic, interleaved
1915 	 * symmetric and interleaved broadcast. The timestamps are
1916 	 * idioscyncratically different. See the onwire briefing/white
1917 	 * paper at www.eecis.udel.edu/~mills for details.
1918 	 *
1919 	 * Interleaved symmetric mode
1920 	 * t1 = peer->aorg/borg, t2 = peer->rec, t3 = p_xmt,
1921 	 * t4 = peer->dst
1922 	 */
1923 	if (peer->flip != 0) {
1924 		ci = p_xmt;				/* t3 - t4 */
1925 		L_SUB(&ci, &peer->dst);
1926 		LFPTOD(&ci, t34);
1927 		ci = p_rec;				/* t2 - t1 */
1928 		if (peer->flip > 0)
1929 			L_SUB(&ci, &peer->borg);
1930 		else
1931 			L_SUB(&ci, &peer->aorg);
1932 		LFPTOD(&ci, t21);
1933 		p_del = t21 - t34;
1934 		p_offset = (t21 + t34) / 2.;
1935 		if (p_del < 0 || p_del > 1.) {
1936 			snprintf(statstr, sizeof(statstr),
1937 			    "t21 %.6f t34 %.6f", t21, t34);
1938 			report_event(PEVNT_XERR, peer, statstr);
1939 			return;
1940 		}
1941 
1942 	/*
1943 	 * Broadcast modes
1944 	 */
1945 	} else if (peer->pmode == MODE_BROADCAST) {
1946 
1947 		/*
1948 		 * Interleaved broadcast mode. Use interleaved timestamps.
1949 		 * t1 = peer->borg, t2 = p_org, t3 = p_org, t4 = aorg
1950 		 */
1951 		if (peer->flags & FLAG_XB) {
1952 			ci = p_org;			/* delay */
1953 			L_SUB(&ci, &peer->aorg);
1954 			LFPTOD(&ci, t34);
1955 			ci = p_org;			/* t2 - t1 */
1956 			L_SUB(&ci, &peer->borg);
1957 			LFPTOD(&ci, t21);
1958 			peer->aorg = p_xmt;
1959 			peer->borg = peer->dst;
1960 			if (t34 < 0 || t34 > 1.) {
1961 				snprintf(statstr, sizeof(statstr),
1962 				    "offset %.6f delay %.6f", t21, t34);
1963 				report_event(PEVNT_XERR, peer, statstr);
1964 				return;
1965 			}
1966 			p_offset = t21;
1967 			peer->xleave = t34;
1968 
1969 		/*
1970 		 * Basic broadcast - use direct timestamps.
1971 		 * t3 = p_xmt, t4 = peer->dst
1972 		 */
1973 		} else {
1974 			ci = p_xmt;		/* t3 - t4 */
1975 			L_SUB(&ci, &peer->dst);
1976 			LFPTOD(&ci, t34);
1977 			p_offset = t34;
1978 		}
1979 
1980 		/*
1981 		 * When calibration is complete and the clock is
1982 		 * synchronized, the bias is calculated as the difference
1983 		 * between the unicast timestamp and the broadcast
1984 		 * timestamp. This works for both basic and interleaved
1985 		 * modes.
1986 		 */
1987 		if (FLAG_BC_VOL & peer->flags) {
1988 			peer->flags &= ~FLAG_BC_VOL;
1989 			peer->delay = fabs(peer->offset - p_offset) * 2;
1990 		}
1991 		p_del = peer->delay;
1992 		p_offset += p_del / 2;
1993 
1994 
1995 	/*
1996 	 * Basic mode, otherwise known as the old fashioned way.
1997 	 *
1998 	 * t1 = p_org, t2 = p_rec, t3 = p_xmt, t4 = peer->dst
1999 	 */
2000 	} else {
2001 		ci = p_xmt;				/* t3 - t4 */
2002 		L_SUB(&ci, &peer->dst);
2003 		LFPTOD(&ci, t34);
2004 		ci = p_rec;				/* t2 - t1 */
2005 		L_SUB(&ci, &p_org);
2006 		LFPTOD(&ci, t21);
2007 		p_del = fabs(t21 - t34);
2008 		p_offset = (t21 + t34) / 2.;
2009 	}
2010 	p_del = max(p_del, LOGTOD(sys_precision));
2011 	p_disp = LOGTOD(sys_precision) + LOGTOD(peer->precision) +
2012 	    clock_phi * p_del;
2013 
2014 #if ASSYM
2015 	/*
2016 	 * This code calculates the outbound and inbound data rates by
2017 	 * measuring the differences between timestamps at different
2018 	 * packet lengths. This is helpful in cases of large asymmetric
2019 	 * delays commonly experienced on deep space communication
2020 	 * links.
2021 	 */
2022 	if (peer->t21_last > 0 && peer->t34_bytes > 0) {
2023 		itemp = peer->t21_bytes - peer->t21_last;
2024 		if (itemp > 25) {
2025 			etemp = t21 - peer->t21;
2026 			if (fabs(etemp) > 1e-6) {
2027 				ftemp = itemp / etemp;
2028 				if (ftemp > 1000.)
2029 					peer->r21 = ftemp;
2030 			}
2031 		}
2032 		itemp = len - peer->t34_bytes;
2033 		if (itemp > 25) {
2034 			etemp = -t34 - peer->t34;
2035 			if (fabs(etemp) > 1e-6) {
2036 				ftemp = itemp / etemp;
2037 				if (ftemp > 1000.)
2038 					peer->r34 = ftemp;
2039 			}
2040 		}
2041 	}
2042 
2043 	/*
2044 	 * The following section compensates for different data rates on
2045 	 * the outbound (d21) and inbound (t34) directions. To do this,
2046 	 * it finds t such that r21 * t - r34 * (d - t) = 0, where d is
2047 	 * the roundtrip delay. Then it calculates the correction as a
2048 	 * fraction of d.
2049 	 */
2050 	peer->t21 = t21;
2051 	peer->t21_last = peer->t21_bytes;
2052 	peer->t34 = -t34;
2053 	peer->t34_bytes = len;
2054 	DPRINTF(2, ("packet: t21 %.9lf %d t34 %.9lf %d\n", peer->t21,
2055 		    peer->t21_bytes, peer->t34, peer->t34_bytes));
2056 	if (peer->r21 > 0 && peer->r34 > 0 && p_del > 0) {
2057 		if (peer->pmode != MODE_BROADCAST)
2058 			td = (peer->r34 / (peer->r21 + peer->r34) -
2059 			    .5) * p_del;
2060 		else
2061 			td = 0;
2062 
2063 		/*
2064 		 * Unfortunately, in many cases the errors are
2065 		 * unacceptable, so for the present the rates are not
2066 		 * used. In future, we might find conditions where the
2067 		 * calculations are useful, so this should be considered
2068 		 * a work in progress.
2069 		 */
2070 		t21 -= td;
2071 		t34 -= td;
2072 		DPRINTF(2, ("packet: del %.6lf r21 %.1lf r34 %.1lf %.6lf\n",
2073 			    p_del, peer->r21 / 1e3, peer->r34 / 1e3,
2074 			    td));
2075 	}
2076 #endif /* ASSYM */
2077 
2078 	/*
2079 	 * That was awesome. Now hand off to the clock filter.
2080 	 */
2081 	clock_filter(peer, p_offset + peer->bias, p_del, p_disp);
2082 
2083 	/*
2084 	 * If we are in broadcast calibrate mode, return to broadcast
2085 	 * client mode when the client is fit and the autokey dance is
2086 	 * complete.
2087 	 */
2088 	if (   (FLAG_BC_VOL & peer->flags)
2089 	    && MODE_CLIENT == peer->hmode
2090 	    && !(TEST11 & peer_unfit(peer))) {	/* distance exceeded */
2091 #ifdef AUTOKEY
2092 		if (peer->flags & FLAG_SKEY) {
2093 			if (!(~peer->crypto & CRYPTO_FLAG_ALL))
2094 				peer->hmode = MODE_BCLIENT;
2095 		} else {
2096 			peer->hmode = MODE_BCLIENT;
2097 		}
2098 #else	/* !AUTOKEY follows */
2099 		peer->hmode = MODE_BCLIENT;
2100 #endif	/* !AUTOKEY */
2101 	}
2102 }
2103 
2104 
2105 /*
2106  * clock_update - Called at system process update intervals.
2107  */
2108 static void
2109 clock_update(
2110 	struct peer *peer	/* peer structure pointer */
2111 	)
2112 {
2113 	double	dtemp;
2114 	l_fp	now;
2115 #ifdef HAVE_LIBSCF_H
2116 	char	*fmri;
2117 #endif /* HAVE_LIBSCF_H */
2118 
2119 	/*
2120 	 * Update the system state variables. We do this very carefully,
2121 	 * as the poll interval might need to be clamped differently.
2122 	 */
2123 	sys_peer = peer;
2124 	sys_epoch = peer->epoch;
2125 	if (sys_poll < peer->minpoll)
2126 		sys_poll = peer->minpoll;
2127 	if (sys_poll > peer->maxpoll)
2128 		sys_poll = peer->maxpoll;
2129 	poll_update(peer, sys_poll);
2130 	sys_stratum = min(peer->stratum + 1, STRATUM_UNSPEC);
2131 	if (   peer->stratum == STRATUM_REFCLOCK
2132 	    || peer->stratum == STRATUM_UNSPEC)
2133 		sys_refid = peer->refid;
2134 	else
2135 		sys_refid = addr2refid(&peer->srcadr);
2136 	/*
2137 	 * Root Dispersion (E) is defined (in RFC 5905) as:
2138 	 *
2139 	 * E = p.epsilon_r + p.epsilon + p.psi + PHI*(s.t - p.t) + |THETA|
2140 	 *
2141 	 * where:
2142 	 *  p.epsilon_r is the PollProc's root dispersion
2143 	 *  p.epsilon   is the PollProc's dispersion
2144 	 *  p.psi       is the PollProc's jitter
2145 	 *  THETA       is the combined offset
2146 	 *
2147 	 * NB: Think Hard about where these numbers come from and
2148 	 * what they mean.  When did peer->update happen?  Has anything
2149 	 * interesting happened since then?  What values are the most
2150 	 * defensible?  Why?
2151 	 *
2152 	 * DLM thinks this equation is probably the best of all worse choices.
2153 	 */
2154 	dtemp	= peer->rootdisp
2155 		+ peer->disp
2156 		+ sys_jitter
2157 		+ clock_phi * (current_time - peer->update)
2158 		+ fabs(sys_offset);
2159 
2160 	if (dtemp > sys_mindisp)
2161 		sys_rootdisp = dtemp;
2162 	else
2163 		sys_rootdisp = sys_mindisp;
2164 	sys_rootdelay = peer->delay + peer->rootdelay;
2165 	sys_reftime = peer->dst;
2166 
2167 	DPRINTF(1, ("clock_update: at %lu sample %lu associd %d\n",
2168 		    current_time, peer->epoch, peer->associd));
2169 
2170 	/*
2171 	 * Comes now the moment of truth. Crank the clock discipline and
2172 	 * see what comes out.
2173 	 */
2174 	switch (local_clock(peer, sys_offset)) {
2175 
2176 	/*
2177 	 * Clock exceeds panic threshold. Life as we know it ends.
2178 	 */
2179 	case -1:
2180 #ifdef HAVE_LIBSCF_H
2181 		/*
2182 		 * For Solaris enter the maintenance mode.
2183 		 */
2184 		if ((fmri = getenv("SMF_FMRI")) != NULL) {
2185 			if (smf_maintain_instance(fmri, 0) < 0) {
2186 				printf("smf_maintain_instance: %s\n",
2187 				    scf_strerror(scf_error()));
2188 				exit(1);
2189 			}
2190 			/*
2191 			 * Sleep until SMF kills us.
2192 			 */
2193 			for (;;)
2194 				pause();
2195 		}
2196 #endif /* HAVE_LIBSCF_H */
2197 		exit (-1);
2198 		/* not reached */
2199 
2200 	/*
2201 	 * Clock was stepped. Flush all time values of all peers.
2202 	 */
2203 	case 2:
2204 		clear_all();
2205 		set_sys_leap(LEAP_NOTINSYNC);
2206 		sys_stratum = STRATUM_UNSPEC;
2207 		memcpy(&sys_refid, "STEP", 4);
2208 		sys_rootdelay = 0;
2209 		sys_rootdisp = 0;
2210 		L_CLR(&sys_reftime);
2211 		sys_jitter = LOGTOD(sys_precision);
2212 		leapsec_reset_frame();
2213 		break;
2214 
2215 	/*
2216 	 * Clock was slewed. Handle the leapsecond stuff.
2217 	 */
2218 	case 1:
2219 
2220 		/*
2221 		 * If this is the first time the clock is set, reset the
2222 		 * leap bits. If crypto, the timer will goose the setup
2223 		 * process.
2224 		 */
2225 		if (sys_leap == LEAP_NOTINSYNC) {
2226 			set_sys_leap(LEAP_NOWARNING);
2227 #ifdef AUTOKEY
2228 			if (crypto_flags)
2229 				crypto_update();
2230 #endif	/* AUTOKEY */
2231 			/*
2232 			 * If our parent process is waiting for the
2233 			 * first clock sync, send them home satisfied.
2234 			 */
2235 #ifdef HAVE_WORKING_FORK
2236 			if (waitsync_fd_to_close != -1) {
2237 				close(waitsync_fd_to_close);
2238 				waitsync_fd_to_close = -1;
2239 				DPRINTF(1, ("notified parent --wait-sync is done\n"));
2240 			}
2241 #endif /* HAVE_WORKING_FORK */
2242 
2243 		}
2244 
2245 		/*
2246 		 * If there is no leap second pending and the number of
2247 		 * survivor leap bits is greater than half the number of
2248 		 * survivors, try to schedule a leap for the end of the
2249 		 * current month. (This only works if no leap second for
2250 		 * that range is in the table, so doing this more than
2251 		 * once is mostly harmless.)
2252 		 */
2253 		if (leapsec == LSPROX_NOWARN) {
2254 			if (   leap_vote_ins > leap_vote_del
2255 			    && leap_vote_ins > sys_survivors / 2) {
2256 				get_systime(&now);
2257 				leapsec_add_dyn(TRUE, now.l_ui, NULL);
2258 			}
2259 			if (   leap_vote_del > leap_vote_ins
2260 			    && leap_vote_del > sys_survivors / 2) {
2261 				get_systime(&now);
2262 				leapsec_add_dyn(FALSE, now.l_ui, NULL);
2263 			}
2264 		}
2265 		break;
2266 
2267 	/*
2268 	 * Popcorn spike or step threshold exceeded. Pretend it never
2269 	 * happened.
2270 	 */
2271 	default:
2272 		break;
2273 	}
2274 }
2275 
2276 
2277 /*
2278  * poll_update - update peer poll interval
2279  */
2280 void
2281 poll_update(
2282 	struct peer *peer,	/* peer structure pointer */
2283 	u_char	mpoll
2284 	)
2285 {
2286 	u_long	next, utemp;
2287 	u_char	hpoll;
2288 
2289 	/*
2290 	 * This routine figures out when the next poll should be sent.
2291 	 * That turns out to be wickedly complicated. One problem is
2292 	 * that sometimes the time for the next poll is in the past when
2293 	 * the poll interval is reduced. We watch out for races here
2294 	 * between the receive process and the poll process.
2295 	 *
2296 	 * Clamp the poll interval between minpoll and maxpoll.
2297 	 */
2298 	hpoll = max(min(peer->maxpoll, mpoll), peer->minpoll);
2299 
2300 #ifdef AUTOKEY
2301 	/*
2302 	 * If during the crypto protocol the poll interval has changed,
2303 	 * the lifetimes in the key list are probably bogus. Purge the
2304 	 * the key list and regenerate it later.
2305 	 */
2306 	if ((peer->flags & FLAG_SKEY) && hpoll != peer->hpoll)
2307 		key_expire(peer);
2308 #endif	/* AUTOKEY */
2309 	peer->hpoll = hpoll;
2310 
2311 	/*
2312 	 * There are three variables important for poll scheduling, the
2313 	 * current time (current_time), next scheduled time (nextdate)
2314 	 * and the earliest time (utemp). The earliest time is 2 s
2315 	 * seconds, but could be more due to rate management. When
2316 	 * sending in a burst, use the earliest time. When not in a
2317 	 * burst but with a reply pending, send at the earliest time
2318 	 * unless the next scheduled time has not advanced. This can
2319 	 * only happen if multiple replies are pending in the same
2320 	 * response interval. Otherwise, send at the later of the next
2321 	 * scheduled time and the earliest time.
2322 	 *
2323 	 * Now we figure out if there is an override. If a burst is in
2324 	 * progress and we get called from the receive process, just
2325 	 * slink away. If called from the poll process, delay 1 s for a
2326 	 * reference clock, otherwise 2 s.
2327 	 */
2328 	utemp = current_time + max(peer->throttle - (NTP_SHIFT - 1) *
2329 	    (1 << peer->minpoll), ntp_minpkt);
2330 	if (peer->burst > 0) {
2331 		if (peer->nextdate > current_time)
2332 			return;
2333 #ifdef REFCLOCK
2334 		else if (peer->flags & FLAG_REFCLOCK)
2335 			peer->nextdate = current_time + RESP_DELAY;
2336 #endif /* REFCLOCK */
2337 		else
2338 			peer->nextdate = utemp;
2339 
2340 #ifdef AUTOKEY
2341 	/*
2342 	 * If a burst is not in progress and a crypto response message
2343 	 * is pending, delay 2 s, but only if this is a new interval.
2344 	 */
2345 	} else if (peer->cmmd != NULL) {
2346 		if (peer->nextdate > current_time) {
2347 			if (peer->nextdate + ntp_minpkt != utemp)
2348 				peer->nextdate = utemp;
2349 		} else {
2350 			peer->nextdate = utemp;
2351 		}
2352 #endif	/* AUTOKEY */
2353 
2354 	/*
2355 	 * The ordinary case. If a retry, use minpoll; if unreachable,
2356 	 * use host poll; otherwise, use the minimum of host and peer
2357 	 * polls; In other words, oversampling is okay but
2358 	 * understampling is evil. Use the maximum of this value and the
2359 	 * headway. If the average headway is greater than the headway
2360 	 * threshold, increase the headway by the minimum interval.
2361 	 */
2362 	} else {
2363 		if (peer->retry > 0)
2364 			hpoll = peer->minpoll;
2365 		else if (!(peer->reach))
2366 			hpoll = peer->hpoll;
2367 		else
2368 			hpoll = min(peer->ppoll, peer->hpoll);
2369 #ifdef REFCLOCK
2370 		if (peer->flags & FLAG_REFCLOCK)
2371 			next = 1 << hpoll;
2372 		else
2373 #endif /* REFCLOCK */
2374 			next = ((0x1000UL | (ntp_random() & 0x0ff)) <<
2375 			    hpoll) >> 12;
2376 		next += peer->outdate;
2377 		if (next > utemp)
2378 			peer->nextdate = next;
2379 		else
2380 			peer->nextdate = utemp;
2381 		if (peer->throttle > (1 << peer->minpoll))
2382 			peer->nextdate += ntp_minpkt;
2383 	}
2384 	DPRINTF(2, ("poll_update: at %lu %s poll %d burst %d retry %d head %d early %lu next %lu\n",
2385 		    current_time, ntoa(&peer->srcadr), peer->hpoll,
2386 		    peer->burst, peer->retry, peer->throttle,
2387 		    utemp - current_time, peer->nextdate -
2388 		    current_time));
2389 }
2390 
2391 
2392 /*
2393  * peer_clear - clear peer filter registers.  See Section 3.4.8 of the
2394  * spec.
2395  */
2396 void
2397 peer_clear(
2398 	struct peer *peer,		/* peer structure */
2399 	const char *ident		/* tally lights */
2400 	)
2401 {
2402 	u_char	u;
2403 
2404 #ifdef AUTOKEY
2405 	/*
2406 	 * If cryptographic credentials have been acquired, toss them to
2407 	 * Valhalla. Note that autokeys are ephemeral, in that they are
2408 	 * tossed immediately upon use. Therefore, the keylist can be
2409 	 * purged anytime without needing to preserve random keys. Note
2410 	 * that, if the peer is purged, the cryptographic variables are
2411 	 * purged, too. This makes it much harder to sneak in some
2412 	 * unauthenticated data in the clock filter.
2413 	 */
2414 	key_expire(peer);
2415 	if (peer->iffval != NULL)
2416 		BN_free(peer->iffval);
2417 	value_free(&peer->cookval);
2418 	value_free(&peer->recval);
2419 	value_free(&peer->encrypt);
2420 	value_free(&peer->sndval);
2421 	if (peer->cmmd != NULL)
2422 		free(peer->cmmd);
2423 	if (peer->subject != NULL)
2424 		free(peer->subject);
2425 	if (peer->issuer != NULL)
2426 		free(peer->issuer);
2427 #endif /* AUTOKEY */
2428 
2429 	/*
2430 	 * Clear all values, including the optional crypto values above.
2431 	 */
2432 	memset(CLEAR_TO_ZERO(peer), 0, LEN_CLEAR_TO_ZERO(peer));
2433 	peer->ppoll = peer->maxpoll;
2434 	peer->hpoll = peer->minpoll;
2435 	peer->disp = MAXDISPERSE;
2436 	peer->flash = peer_unfit(peer);
2437 	peer->jitter = LOGTOD(sys_precision);
2438 
2439 	/*
2440 	 * If interleave mode, initialize the alternate origin switch.
2441 	 */
2442 	if (peer->flags & FLAG_XLEAVE)
2443 		peer->flip = 1;
2444 	for (u = 0; u < NTP_SHIFT; u++) {
2445 		peer->filter_order[u] = u;
2446 		peer->filter_disp[u] = MAXDISPERSE;
2447 	}
2448 #ifdef REFCLOCK
2449 	if (!(peer->flags & FLAG_REFCLOCK)) {
2450 #endif
2451 		peer->leap = LEAP_NOTINSYNC;
2452 		peer->stratum = STRATUM_UNSPEC;
2453 		memcpy(&peer->refid, ident, 4);
2454 #ifdef REFCLOCK
2455 	}
2456 #endif
2457 
2458 	/*
2459 	 * During initialization use the association count to spread out
2460 	 * the polls at one-second intervals. Passive associations'
2461 	 * first poll is delayed by the "discard minimum" to avoid rate
2462 	 * limiting. Other post-startup new or cleared associations
2463 	 * randomize the first poll over the minimum poll interval to
2464 	 * avoid implosion.
2465 	 */
2466 	peer->nextdate = peer->update = peer->outdate = current_time;
2467 	if (initializing) {
2468 		peer->nextdate += peer_associations;
2469 	} else if (MODE_PASSIVE == peer->hmode) {
2470 		peer->nextdate += ntp_minpkt;
2471 	} else {
2472 		peer->nextdate += ntp_random() % peer->minpoll;
2473 	}
2474 #ifdef AUTOKEY
2475 	peer->refresh = current_time + (1 << NTP_REFRESH);
2476 #endif	/* AUTOKEY */
2477 	DPRINTF(1, ("peer_clear: at %ld next %ld associd %d refid %s\n",
2478 		    current_time, peer->nextdate, peer->associd,
2479 		    ident));
2480 }
2481 
2482 
2483 /*
2484  * clock_filter - add incoming clock sample to filter register and run
2485  *		  the filter procedure to find the best sample.
2486  */
2487 void
2488 clock_filter(
2489 	struct peer *peer,		/* peer structure pointer */
2490 	double	sample_offset,		/* clock offset */
2491 	double	sample_delay,		/* roundtrip delay */
2492 	double	sample_disp		/* dispersion */
2493 	)
2494 {
2495 	double	dst[NTP_SHIFT];		/* distance vector */
2496 	int	ord[NTP_SHIFT];		/* index vector */
2497 	int	i, j, k, m;
2498 	double	dtemp, etemp;
2499 	char	tbuf[80];
2500 
2501 	/*
2502 	 * A sample consists of the offset, delay, dispersion and epoch
2503 	 * of arrival. The offset and delay are determined by the on-
2504 	 * wire protocol. The dispersion grows from the last outbound
2505 	 * packet to the arrival of this one increased by the sum of the
2506 	 * peer precision and the system precision as required by the
2507 	 * error budget. First, shift the new arrival into the shift
2508 	 * register discarding the oldest one.
2509 	 */
2510 	j = peer->filter_nextpt;
2511 	peer->filter_offset[j] = sample_offset;
2512 	peer->filter_delay[j] = sample_delay;
2513 	peer->filter_disp[j] = sample_disp;
2514 	peer->filter_epoch[j] = current_time;
2515 	j = (j + 1) % NTP_SHIFT;
2516 	peer->filter_nextpt = j;
2517 
2518 	/*
2519 	 * Update dispersions since the last update and at the same
2520 	 * time initialize the distance and index lists. Since samples
2521 	 * become increasingly uncorrelated beyond the Allan intercept,
2522 	 * only under exceptional cases will an older sample be used.
2523 	 * Therefore, the distance list uses a compound metric. If the
2524 	 * dispersion is greater than the maximum dispersion, clamp the
2525 	 * distance at that value. If the time since the last update is
2526 	 * less than the Allan intercept use the delay; otherwise, use
2527 	 * the sum of the delay and dispersion.
2528 	 */
2529 	dtemp = clock_phi * (current_time - peer->update);
2530 	peer->update = current_time;
2531 	for (i = NTP_SHIFT - 1; i >= 0; i--) {
2532 		if (i != 0)
2533 			peer->filter_disp[j] += dtemp;
2534 		if (peer->filter_disp[j] >= MAXDISPERSE) {
2535 			peer->filter_disp[j] = MAXDISPERSE;
2536 			dst[i] = MAXDISPERSE;
2537 		} else if (peer->update - peer->filter_epoch[j] >
2538 		    (u_long)ULOGTOD(allan_xpt)) {
2539 			dst[i] = peer->filter_delay[j] +
2540 			    peer->filter_disp[j];
2541 		} else {
2542 			dst[i] = peer->filter_delay[j];
2543 		}
2544 		ord[i] = j;
2545 		j = (j + 1) % NTP_SHIFT;
2546 	}
2547 
2548 	/*
2549 	 * If the clock has stabilized, sort the samples by distance.
2550 	 */
2551 	if (freq_cnt == 0) {
2552 		for (i = 1; i < NTP_SHIFT; i++) {
2553 			for (j = 0; j < i; j++) {
2554 				if (dst[j] > dst[i]) {
2555 					k = ord[j];
2556 					ord[j] = ord[i];
2557 					ord[i] = k;
2558 					etemp = dst[j];
2559 					dst[j] = dst[i];
2560 					dst[i] = etemp;
2561 				}
2562 			}
2563 		}
2564 	}
2565 
2566 	/*
2567 	 * Copy the index list to the association structure so ntpq
2568 	 * can see it later. Prune the distance list to leave only
2569 	 * samples less than the maximum dispersion, which disfavors
2570 	 * uncorrelated samples older than the Allan intercept. To
2571 	 * further improve the jitter estimate, of the remainder leave
2572 	 * only samples less than the maximum distance, but keep at
2573 	 * least two samples for jitter calculation.
2574 	 */
2575 	m = 0;
2576 	for (i = 0; i < NTP_SHIFT; i++) {
2577 		peer->filter_order[i] = (u_char) ord[i];
2578 		if (   dst[i] >= MAXDISPERSE
2579 		    || (m >= 2 && dst[i] >= sys_maxdist))
2580 			continue;
2581 		m++;
2582 	}
2583 
2584 	/*
2585 	 * Compute the dispersion and jitter. The dispersion is weighted
2586 	 * exponentially by NTP_FWEIGHT (0.5) so it is normalized close
2587 	 * to 1.0. The jitter is the RMS differences relative to the
2588 	 * lowest delay sample.
2589 	 */
2590 	peer->disp = peer->jitter = 0;
2591 	k = ord[0];
2592 	for (i = NTP_SHIFT - 1; i >= 0; i--) {
2593 		j = ord[i];
2594 		peer->disp = NTP_FWEIGHT * (peer->disp +
2595 		    peer->filter_disp[j]);
2596 		if (i < m)
2597 			peer->jitter += DIFF(peer->filter_offset[j],
2598 			    peer->filter_offset[k]);
2599 	}
2600 
2601 	/*
2602 	 * If no acceptable samples remain in the shift register,
2603 	 * quietly tiptoe home leaving only the dispersion. Otherwise,
2604 	 * save the offset, delay and jitter. Note the jitter must not
2605 	 * be less than the precision.
2606 	 */
2607 	if (m == 0) {
2608 		clock_select();
2609 		return;
2610 	}
2611 	etemp = fabs(peer->offset - peer->filter_offset[k]);
2612 	peer->offset = peer->filter_offset[k];
2613 	peer->delay = peer->filter_delay[k];
2614 	if (m > 1)
2615 		peer->jitter /= m - 1;
2616 	peer->jitter = max(SQRT(peer->jitter), LOGTOD(sys_precision));
2617 
2618 	/*
2619 	 * If the the new sample and the current sample are both valid
2620 	 * and the difference between their offsets exceeds CLOCK_SGATE
2621 	 * (3) times the jitter and the interval between them is less
2622 	 * than twice the host poll interval, consider the new sample
2623 	 * a popcorn spike and ignore it.
2624 	 */
2625 	if (   peer->disp < sys_maxdist
2626 	    && peer->filter_disp[k] < sys_maxdist
2627 	    && etemp > CLOCK_SGATE * peer->jitter
2628 	    && peer->filter_epoch[k] - peer->epoch
2629 	       < 2. * ULOGTOD(peer->hpoll)) {
2630 		snprintf(tbuf, sizeof(tbuf), "%.6f s", etemp);
2631 		report_event(PEVNT_POPCORN, peer, tbuf);
2632 		return;
2633 	}
2634 
2635 	/*
2636 	 * A new minimum sample is useful only if it is later than the
2637 	 * last one used. In this design the maximum lifetime of any
2638 	 * sample is not greater than eight times the poll interval, so
2639 	 * the maximum interval between minimum samples is eight
2640 	 * packets.
2641 	 */
2642 	if (peer->filter_epoch[k] <= peer->epoch) {
2643 	DPRINTF(2, ("clock_filter: old sample %lu\n", current_time -
2644 		    peer->filter_epoch[k]));
2645 		return;
2646 	}
2647 	peer->epoch = peer->filter_epoch[k];
2648 
2649 	/*
2650 	 * The mitigated sample statistics are saved for later
2651 	 * processing. If not synchronized or not in a burst, tickle the
2652 	 * clock select algorithm.
2653 	 */
2654 	record_peer_stats(&peer->srcadr, ctlpeerstatus(peer),
2655 	    peer->offset, peer->delay, peer->disp, peer->jitter);
2656 	DPRINTF(1, ("clock_filter: n %d off %.6f del %.6f dsp %.6f jit %.6f\n",
2657 		    m, peer->offset, peer->delay, peer->disp,
2658 		    peer->jitter));
2659 	if (peer->burst == 0 || sys_leap == LEAP_NOTINSYNC)
2660 		clock_select();
2661 }
2662 
2663 
2664 /*
2665  * clock_select - find the pick-of-the-litter clock
2666  *
2667  * LOCKCLOCK: (1) If the local clock is the prefer peer, it will always
2668  * be enabled, even if declared falseticker, (2) only the prefer peer
2669  * can be selected as the system peer, (3) if the external source is
2670  * down, the system leap bits are set to 11 and the stratum set to
2671  * infinity.
2672  */
2673 void
2674 clock_select(void)
2675 {
2676 	struct peer *peer;
2677 	int	i, j, k, n;
2678 	int	nlist, nl2;
2679 	int	allow;
2680 	int	speer;
2681 	double	d, e, f, g;
2682 	double	high, low;
2683 	double	speermet;
2684 	double	orphmet = 2.0 * U_INT32_MAX; /* 2x is greater than */
2685 	struct endpoint endp;
2686 	struct peer *osys_peer;
2687 	struct peer *sys_prefer = NULL;	/* prefer peer */
2688 	struct peer *typesystem = NULL;
2689 	struct peer *typeorphan = NULL;
2690 #ifdef REFCLOCK
2691 	struct peer *typeacts = NULL;
2692 	struct peer *typelocal = NULL;
2693 	struct peer *typepps = NULL;
2694 #endif /* REFCLOCK */
2695 	static struct endpoint *endpoint = NULL;
2696 	static int *indx = NULL;
2697 	static peer_select *peers = NULL;
2698 	static u_int endpoint_size = 0;
2699 	static u_int peers_size = 0;
2700 	static u_int indx_size = 0;
2701 	size_t octets;
2702 
2703 	/*
2704 	 * Initialize and create endpoint, index and peer lists big
2705 	 * enough to handle all associations.
2706 	 */
2707 	osys_peer = sys_peer;
2708 	sys_survivors = 0;
2709 #ifdef LOCKCLOCK
2710 	set_sys_leap(LEAP_NOTINSYNC);
2711 	sys_stratum = STRATUM_UNSPEC;
2712 	memcpy(&sys_refid, "DOWN", 4);
2713 #endif /* LOCKCLOCK */
2714 
2715 	/*
2716 	 * Allocate dynamic space depending on the number of
2717 	 * associations.
2718 	 */
2719 	nlist = 1;
2720 	for (peer = peer_list; peer != NULL; peer = peer->p_link)
2721 		nlist++;
2722 	endpoint_size = ALIGNED_SIZE(nlist * 2 * sizeof(*endpoint));
2723 	peers_size = ALIGNED_SIZE(nlist * sizeof(*peers));
2724 	indx_size = ALIGNED_SIZE(nlist * 2 * sizeof(*indx));
2725 	octets = endpoint_size + peers_size + indx_size;
2726 	endpoint = erealloc(endpoint, octets);
2727 	peers = INC_ALIGNED_PTR(endpoint, endpoint_size);
2728 	indx = INC_ALIGNED_PTR(peers, peers_size);
2729 
2730 	/*
2731 	 * Initially, we populate the island with all the rifraff peers
2732 	 * that happen to be lying around. Those with seriously
2733 	 * defective clocks are immediately booted off the island. Then,
2734 	 * the falsetickers are culled and put to sea. The truechimers
2735 	 * remaining are subject to repeated rounds where the most
2736 	 * unpopular at each round is kicked off. When the population
2737 	 * has dwindled to sys_minclock, the survivors split a million
2738 	 * bucks and collectively crank the chimes.
2739 	 */
2740 	nlist = nl2 = 0;	/* none yet */
2741 	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
2742 		peer->new_status = CTL_PST_SEL_REJECT;
2743 
2744 		/*
2745 		 * Leave the island immediately if the peer is
2746 		 * unfit to synchronize.
2747 		 */
2748 		if (peer_unfit(peer))
2749 			continue;
2750 
2751 		/*
2752 		 * If this peer is an orphan parent, elect the
2753 		 * one with the lowest metric defined as the
2754 		 * IPv4 address or the first 64 bits of the
2755 		 * hashed IPv6 address.  To ensure convergence
2756 		 * on the same selected orphan, consider as
2757 		 * well that this system may have the lowest
2758 		 * metric and be the orphan parent.  If this
2759 		 * system wins, sys_peer will be NULL to trigger
2760 		 * orphan mode in timer().
2761 		 */
2762 		if (peer->stratum == sys_orphan) {
2763 			u_int32	localmet;
2764 			u_int32 peermet;
2765 
2766 			if (peer->dstadr != NULL)
2767 				localmet = ntohl(peer->dstadr->addr_refid);
2768 			else
2769 				localmet = U_INT32_MAX;
2770 			peermet = ntohl(addr2refid(&peer->srcadr));
2771 			if (peermet < localmet && peermet < orphmet) {
2772 				typeorphan = peer;
2773 				orphmet = peermet;
2774 			}
2775 			continue;
2776 		}
2777 
2778 		/*
2779 		 * If this peer could have the orphan parent
2780 		 * as a synchronization ancestor, exclude it
2781 		 * from selection to avoid forming a
2782 		 * synchronization loop within the orphan mesh,
2783 		 * triggering stratum climb to infinity
2784 		 * instability.  Peers at stratum higher than
2785 		 * the orphan stratum could have the orphan
2786 		 * parent in ancestry so are excluded.
2787 		 * See http://bugs.ntp.org/2050
2788 		 */
2789 		if (peer->stratum > sys_orphan)
2790 			continue;
2791 #ifdef REFCLOCK
2792 		/*
2793 		 * The following are special cases. We deal
2794 		 * with them later.
2795 		 */
2796 		if (!(peer->flags & FLAG_PREFER)) {
2797 			switch (peer->refclktype) {
2798 			case REFCLK_LOCALCLOCK:
2799 				if (   current_time > orphwait
2800 				    && typelocal == NULL)
2801 					typelocal = peer;
2802 				continue;
2803 
2804 			case REFCLK_ACTS:
2805 				if (   current_time > orphwait
2806 				    && typeacts == NULL)
2807 					typeacts = peer;
2808 				continue;
2809 			}
2810 		}
2811 #endif /* REFCLOCK */
2812 
2813 		/*
2814 		 * If we get this far, the peer can stay on the
2815 		 * island, but does not yet have the immunity
2816 		 * idol.
2817 		 */
2818 		peer->new_status = CTL_PST_SEL_SANE;
2819 		f = root_distance(peer);
2820 		peers[nlist].peer = peer;
2821 		peers[nlist].error = peer->jitter;
2822 		peers[nlist].synch = f;
2823 		nlist++;
2824 
2825 		/*
2826 		 * Insert each interval endpoint on the unsorted
2827 		 * endpoint[] list.
2828 		 */
2829 		e = peer->offset;
2830 		endpoint[nl2].type = -1;	/* lower end */
2831 		endpoint[nl2].val = e - f;
2832 		nl2++;
2833 		endpoint[nl2].type = 1;		/* upper end */
2834 		endpoint[nl2].val = e + f;
2835 		nl2++;
2836 	}
2837 	/*
2838 	 * Construct sorted indx[] of endpoint[] indexes ordered by
2839 	 * offset.
2840 	 */
2841 	for (i = 0; i < nl2; i++)
2842 		indx[i] = i;
2843 	for (i = 0; i < nl2; i++) {
2844 		endp = endpoint[indx[i]];
2845 		e = endp.val;
2846 		k = i;
2847 		for (j = i + 1; j < nl2; j++) {
2848 			endp = endpoint[indx[j]];
2849 			if (endp.val < e) {
2850 				e = endp.val;
2851 				k = j;
2852 			}
2853 		}
2854 		if (k != i) {
2855 			j = indx[k];
2856 			indx[k] = indx[i];
2857 			indx[i] = j;
2858 		}
2859 	}
2860 	for (i = 0; i < nl2; i++)
2861 		DPRINTF(3, ("select: endpoint %2d %.6f\n",
2862 			endpoint[indx[i]].type, endpoint[indx[i]].val));
2863 
2864 	/*
2865 	 * This is the actual algorithm that cleaves the truechimers
2866 	 * from the falsetickers. The original algorithm was described
2867 	 * in Keith Marzullo's dissertation, but has been modified for
2868 	 * better accuracy.
2869 	 *
2870 	 * Briefly put, we first assume there are no falsetickers, then
2871 	 * scan the candidate list first from the low end upwards and
2872 	 * then from the high end downwards. The scans stop when the
2873 	 * number of intersections equals the number of candidates less
2874 	 * the number of falsetickers. If this doesn't happen for a
2875 	 * given number of falsetickers, we bump the number of
2876 	 * falsetickers and try again. If the number of falsetickers
2877 	 * becomes equal to or greater than half the number of
2878 	 * candidates, the Albanians have won the Byzantine wars and
2879 	 * correct synchronization is not possible.
2880 	 *
2881 	 * Here, nlist is the number of candidates and allow is the
2882 	 * number of falsetickers. Upon exit, the truechimers are the
2883 	 * survivors with offsets not less than low and not greater than
2884 	 * high. There may be none of them.
2885 	 */
2886 	low = 1e9;
2887 	high = -1e9;
2888 	for (allow = 0; 2 * allow < nlist; allow++) {
2889 
2890 		/*
2891 		 * Bound the interval (low, high) as the smallest
2892 		 * interval containing points from the most sources.
2893 		 */
2894 		n = 0;
2895 		for (i = 0; i < nl2; i++) {
2896 			low = endpoint[indx[i]].val;
2897 			n -= endpoint[indx[i]].type;
2898 			if (n >= nlist - allow)
2899 				break;
2900 		}
2901 		n = 0;
2902 		for (j = nl2 - 1; j >= 0; j--) {
2903 			high = endpoint[indx[j]].val;
2904 			n += endpoint[indx[j]].type;
2905 			if (n >= nlist - allow)
2906 				break;
2907 		}
2908 
2909 		/*
2910 		 * If an interval containing truechimers is found, stop.
2911 		 * If not, increase the number of falsetickers and go
2912 		 * around again.
2913 		 */
2914 		if (high > low)
2915 			break;
2916 	}
2917 
2918 	/*
2919 	 * Clustering algorithm. Whittle candidate list of falsetickers,
2920 	 * who leave the island immediately. The TRUE peer is always a
2921 	 * truechimer. We must leave at least one peer to collect the
2922 	 * million bucks.
2923 	 *
2924 	 * We assert the correct time is contained in the interval, but
2925 	 * the best offset estimate for the interval might not be
2926 	 * contained in the interval. For this purpose, a truechimer is
2927 	 * defined as the midpoint of an interval that overlaps the
2928 	 * intersection interval.
2929 	 */
2930 	j = 0;
2931 	for (i = 0; i < nlist; i++) {
2932 		double	h;
2933 
2934 		peer = peers[i].peer;
2935 		h = peers[i].synch;
2936 		if ((   high <= low
2937 		     || peer->offset + h < low
2938 		     || peer->offset - h > high
2939 		    ) && !(peer->flags & FLAG_TRUE))
2940 			continue;
2941 
2942 #ifdef REFCLOCK
2943 		/*
2944 		 * Eligible PPS peers must survive the intersection
2945 		 * algorithm. Use the first one found, but don't
2946 		 * include any of them in the cluster population.
2947 		 */
2948 		if (peer->flags & FLAG_PPS) {
2949 			if (typepps == NULL)
2950 				typepps = peer;
2951 			if (!(peer->flags & FLAG_TSTAMP_PPS))
2952 				continue;
2953 		}
2954 #endif /* REFCLOCK */
2955 
2956 		if (j != i)
2957 			peers[j] = peers[i];
2958 		j++;
2959 	}
2960 	nlist = j;
2961 
2962 	/*
2963 	 * If no survivors remain at this point, check if the modem
2964 	 * driver, local driver or orphan parent in that order. If so,
2965 	 * nominate the first one found as the only survivor.
2966 	 * Otherwise, give up and leave the island to the rats.
2967 	 */
2968 	if (nlist == 0) {
2969 		peers[0].error = 0;
2970 		peers[0].synch = sys_mindisp;
2971 #ifdef REFCLOCK
2972 		if (typeacts != NULL) {
2973 			peers[0].peer = typeacts;
2974 			nlist = 1;
2975 		} else if (typelocal != NULL) {
2976 			peers[0].peer = typelocal;
2977 			nlist = 1;
2978 		} else
2979 #endif /* REFCLOCK */
2980 		if (typeorphan != NULL) {
2981 			peers[0].peer = typeorphan;
2982 			nlist = 1;
2983 		}
2984 	}
2985 
2986 	/*
2987 	 * Mark the candidates at this point as truechimers.
2988 	 */
2989 	for (i = 0; i < nlist; i++) {
2990 		peers[i].peer->new_status = CTL_PST_SEL_SELCAND;
2991 		DPRINTF(2, ("select: survivor %s %f\n",
2992 			stoa(&peers[i].peer->srcadr), peers[i].synch));
2993 	}
2994 
2995 	/*
2996 	 * Now, vote outliers off the island by select jitter weighted
2997 	 * by root distance. Continue voting as long as there are more
2998 	 * than sys_minclock survivors and the select jitter of the peer
2999 	 * with the worst metric is greater than the minimum peer
3000 	 * jitter. Stop if we are about to discard a TRUE or PREFER
3001 	 * peer, who of course have the immunity idol.
3002 	 */
3003 	while (1) {
3004 		d = 1e9;
3005 		e = -1e9;
3006 		g = 0;
3007 		k = 0;
3008 		for (i = 0; i < nlist; i++) {
3009 			if (peers[i].error < d)
3010 				d = peers[i].error;
3011 			peers[i].seljit = 0;
3012 			if (nlist > 1) {
3013 				f = 0;
3014 				for (j = 0; j < nlist; j++)
3015 					f += DIFF(peers[j].peer->offset,
3016 					    peers[i].peer->offset);
3017 				peers[i].seljit = SQRT(f / (nlist - 1));
3018 			}
3019 			if (peers[i].seljit * peers[i].synch > e) {
3020 				g = peers[i].seljit;
3021 				e = peers[i].seljit * peers[i].synch;
3022 				k = i;
3023 			}
3024 		}
3025 		g = max(g, LOGTOD(sys_precision));
3026 		if (   nlist <= max(1, sys_minclock)
3027 		    || g <= d
3028 		    || ((FLAG_TRUE | FLAG_PREFER) & peers[k].peer->flags))
3029 			break;
3030 
3031 		DPRINTF(3, ("select: drop %s seljit %.6f jit %.6f\n",
3032 			ntoa(&peers[k].peer->srcadr), g, d));
3033 		if (nlist > sys_maxclock)
3034 			peers[k].peer->new_status = CTL_PST_SEL_EXCESS;
3035 		for (j = k + 1; j < nlist; j++)
3036 			peers[j - 1] = peers[j];
3037 		nlist--;
3038 	}
3039 
3040 	/*
3041 	 * What remains is a list usually not greater than sys_minclock
3042 	 * peers. Note that unsynchronized peers cannot survive this
3043 	 * far.  Count and mark these survivors.
3044 	 *
3045 	 * While at it, count the number of leap warning bits found.
3046 	 * This will be used later to vote the system leap warning bit.
3047 	 * If a leap warning bit is found on a reference clock, the vote
3048 	 * is always won.
3049 	 *
3050 	 * Choose the system peer using a hybrid metric composed of the
3051 	 * selection jitter scaled by the root distance augmented by
3052 	 * stratum scaled by sys_mindisp (.001 by default). The goal of
3053 	 * the small stratum factor is to avoid clockhop between a
3054 	 * reference clock and a network peer which has a refclock and
3055 	 * is using an older ntpd, which does not floor sys_rootdisp at
3056 	 * sys_mindisp.
3057 	 *
3058 	 * In contrast, ntpd 4.2.6 and earlier used stratum primarily
3059 	 * in selecting the system peer, using a weight of 1 second of
3060 	 * additional root distance per stratum.  This heavy bias is no
3061 	 * longer appropriate, as the scaled root distance provides a
3062 	 * more rational metric carrying the cumulative error budget.
3063 	 */
3064 	e = 1e9;
3065 	speer = 0;
3066 	leap_vote_ins = 0;
3067 	leap_vote_del = 0;
3068 	for (i = 0; i < nlist; i++) {
3069 		peer = peers[i].peer;
3070 		peer->unreach = 0;
3071 		peer->new_status = CTL_PST_SEL_SYNCCAND;
3072 		sys_survivors++;
3073 		if (peer->leap == LEAP_ADDSECOND) {
3074 			if (peer->flags & FLAG_REFCLOCK)
3075 				leap_vote_ins = nlist;
3076 			else if (leap_vote_ins < nlist)
3077 				leap_vote_ins++;
3078 		}
3079 		if (peer->leap == LEAP_DELSECOND) {
3080 			if (peer->flags & FLAG_REFCLOCK)
3081 				leap_vote_del = nlist;
3082 			else if (leap_vote_del < nlist)
3083 				leap_vote_del++;
3084 		}
3085 		if (peer->flags & FLAG_PREFER)
3086 			sys_prefer = peer;
3087 		speermet = peers[i].seljit * peers[i].synch +
3088 		    peer->stratum * sys_mindisp;
3089 		if (speermet < e) {
3090 			e = speermet;
3091 			speer = i;
3092 		}
3093 	}
3094 
3095 	/*
3096 	 * Unless there are at least sys_misane survivors, leave the
3097 	 * building dark. Otherwise, do a clockhop dance. Ordinarily,
3098 	 * use the selected survivor speer. However, if the current
3099 	 * system peer is not speer, stay with the current system peer
3100 	 * as long as it doesn't get too old or too ugly.
3101 	 */
3102 	if (nlist > 0 && nlist >= sys_minsane) {
3103 		double	x;
3104 
3105 		typesystem = peers[speer].peer;
3106 		if (osys_peer == NULL || osys_peer == typesystem) {
3107 			sys_clockhop = 0;
3108 		} else if ((x = fabs(typesystem->offset -
3109 		    osys_peer->offset)) < sys_mindisp) {
3110 			if (sys_clockhop == 0)
3111 				sys_clockhop = sys_mindisp;
3112 			else
3113 				sys_clockhop *= .5;
3114 			DPRINTF(1, ("select: clockhop %d %.6f %.6f\n",
3115 				j, x, sys_clockhop));
3116 			if (fabs(x) < sys_clockhop)
3117 				typesystem = osys_peer;
3118 			else
3119 				sys_clockhop = 0;
3120 		} else {
3121 			sys_clockhop = 0;
3122 		}
3123 	}
3124 
3125 	/*
3126 	 * Mitigation rules of the game. We have the pick of the
3127 	 * litter in typesystem if any survivors are left. If
3128 	 * there is a prefer peer, use its offset and jitter.
3129 	 * Otherwise, use the combined offset and jitter of all kitters.
3130 	 */
3131 	if (typesystem != NULL) {
3132 		if (sys_prefer == NULL) {
3133 			typesystem->new_status = CTL_PST_SEL_SYSPEER;
3134 			clock_combine(peers, sys_survivors, speer);
3135 		} else {
3136 			typesystem = sys_prefer;
3137 			sys_clockhop = 0;
3138 			typesystem->new_status = CTL_PST_SEL_SYSPEER;
3139 			sys_offset = typesystem->offset;
3140 			sys_jitter = typesystem->jitter;
3141 		}
3142 		DPRINTF(1, ("select: combine offset %.9f jitter %.9f\n",
3143 			sys_offset, sys_jitter));
3144 	}
3145 #ifdef REFCLOCK
3146 	/*
3147 	 * If a PPS driver is lit and the combined offset is less than
3148 	 * 0.4 s, select the driver as the PPS peer and use its offset
3149 	 * and jitter. However, if this is the atom driver, use it only
3150 	 * if there is a prefer peer or there are no survivors and none
3151 	 * are required.
3152 	 */
3153 	if (   typepps != NULL
3154 	    && fabs(sys_offset) < 0.4
3155 	    && (   typepps->refclktype != REFCLK_ATOM_PPS
3156 		|| (   typepps->refclktype == REFCLK_ATOM_PPS
3157 		    && (   sys_prefer != NULL
3158 			|| (typesystem == NULL && sys_minsane == 0))))) {
3159 		typesystem = typepps;
3160 		sys_clockhop = 0;
3161 		typesystem->new_status = CTL_PST_SEL_PPS;
3162 		sys_offset = typesystem->offset;
3163 		sys_jitter = typesystem->jitter;
3164 		DPRINTF(1, ("select: pps offset %.9f jitter %.9f\n",
3165 			sys_offset, sys_jitter));
3166 	}
3167 #endif /* REFCLOCK */
3168 
3169 	/*
3170 	 * If there are no survivors at this point, there is no
3171 	 * system peer. If so and this is an old update, keep the
3172 	 * current statistics, but do not update the clock.
3173 	 */
3174 	if (typesystem == NULL) {
3175 		if (osys_peer != NULL) {
3176 			if (sys_orphwait > 0)
3177 				orphwait = current_time + sys_orphwait;
3178 			report_event(EVNT_NOPEER, NULL, NULL);
3179 		}
3180 		sys_peer = NULL;
3181 		for (peer = peer_list; peer != NULL; peer = peer->p_link)
3182 			peer->status = peer->new_status;
3183 		return;
3184 	}
3185 
3186 	/*
3187 	 * Do not use old data, as this may mess up the clock discipline
3188 	 * stability.
3189 	 */
3190 	if (typesystem->epoch <= sys_epoch)
3191 		return;
3192 
3193 	/*
3194 	 * We have found the alpha male. Wind the clock.
3195 	 */
3196 	if (osys_peer != typesystem)
3197 		report_event(PEVNT_NEWPEER, typesystem, NULL);
3198 	for (peer = peer_list; peer != NULL; peer = peer->p_link)
3199 		peer->status = peer->new_status;
3200 	clock_update(typesystem);
3201 }
3202 
3203 
3204 static void
3205 clock_combine(
3206 	peer_select *	peers,	/* survivor list */
3207 	int		npeers,	/* number of survivors */
3208 	int		syspeer	/* index of sys.peer */
3209 	)
3210 {
3211 	int	i;
3212 	double	x, y, z, w;
3213 
3214 	y = z = w = 0;
3215 	for (i = 0; i < npeers; i++) {
3216 		x = 1. / peers[i].synch;
3217 		y += x;
3218 		z += x * peers[i].peer->offset;
3219 		w += x * DIFF(peers[i].peer->offset,
3220 		    peers[syspeer].peer->offset);
3221 	}
3222 	sys_offset = z / y;
3223 	sys_jitter = SQRT(w / y + SQUARE(peers[syspeer].seljit));
3224 }
3225 
3226 
3227 /*
3228  * root_distance - compute synchronization distance from peer to root
3229  */
3230 static double
3231 root_distance(
3232 	struct peer *peer	/* peer structure pointer */
3233 	)
3234 {
3235 	double	dtemp;
3236 
3237 	/*
3238 	 * Root Distance (LAMBDA) is defined as:
3239 	 * (delta + DELTA)/2 + epsilon + EPSILON + phi
3240 	 *
3241 	 * where:
3242 	 *  delta   is the round-trip delay
3243 	 *  DELTA   is the root delay
3244 	 *  epsilon is the remote server precision + local precision
3245 	 *	    + (15 usec each second)
3246 	 *  EPSILON is the root dispersion
3247 	 *  phi     is the peer jitter statistic
3248 	 *
3249 	 * NB: Think hard about why we are using these values, and what
3250 	 * the alternatives are, and the various pros/cons.
3251 	 *
3252 	 * DLM thinks these are probably the best choices from any of the
3253 	 * other worse choices.
3254 	 */
3255 	dtemp = (peer->delay + peer->rootdelay) / 2
3256 		+ LOGTOD(peer->precision)
3257 		  + LOGTOD(sys_precision)
3258 		  + clock_phi * (current_time - peer->update)
3259 		+ peer->rootdisp
3260 		+ peer->jitter;
3261 	/*
3262 	 * Careful squeak here. The value returned must be greater than
3263 	 * the minimum root dispersion in order to avoid clockhop with
3264 	 * highly precise reference clocks. Note that the root distance
3265 	 * cannot exceed the sys_maxdist, as this is the cutoff by the
3266 	 * selection algorithm.
3267 	 */
3268 	if (dtemp < sys_mindisp)
3269 		dtemp = sys_mindisp;
3270 	return (dtemp);
3271 }
3272 
3273 
3274 /*
3275  * peer_xmit - send packet for persistent association.
3276  */
3277 static void
3278 peer_xmit(
3279 	struct peer *peer	/* peer structure pointer */
3280 	)
3281 {
3282 	struct pkt xpkt;	/* transmit packet */
3283 	size_t	sendlen, authlen;
3284 	keyid_t	xkeyid = 0;	/* transmit key ID */
3285 	l_fp	xmt_tx, xmt_ty;
3286 
3287 	if (!peer->dstadr)	/* drop peers without interface */
3288 		return;
3289 
3290 	xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, peer->version,
3291 	    peer->hmode);
3292 	xpkt.stratum = STRATUM_TO_PKT(sys_stratum);
3293 	xpkt.ppoll = peer->hpoll;
3294 	xpkt.precision = sys_precision;
3295 	xpkt.refid = sys_refid;
3296 	xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay));
3297 	xpkt.rootdisp =  HTONS_FP(DTOUFP(sys_rootdisp));
3298 	HTONL_FP(&sys_reftime, &xpkt.reftime);
3299 	HTONL_FP(&peer->rec, &xpkt.org);
3300 	HTONL_FP(&peer->dst, &xpkt.rec);
3301 
3302 	/*
3303 	 * If the received packet contains a MAC, the transmitted packet
3304 	 * is authenticated and contains a MAC. If not, the transmitted
3305 	 * packet is not authenticated.
3306 	 *
3307 	 * It is most important when autokey is in use that the local
3308 	 * interface IP address be known before the first packet is
3309 	 * sent. Otherwise, it is not possible to compute a correct MAC
3310 	 * the recipient will accept. Thus, the I/O semantics have to do
3311 	 * a little more work. In particular, the wildcard interface
3312 	 * might not be usable.
3313 	 */
3314 	sendlen = LEN_PKT_NOMAC;
3315 	if (
3316 #ifdef AUTOKEY
3317 	    !(peer->flags & FLAG_SKEY) &&
3318 #endif	/* !AUTOKEY */
3319 	    peer->keyid == 0) {
3320 
3321 		/*
3322 		 * Transmit a-priori timestamps
3323 		 */
3324 		get_systime(&xmt_tx);
3325 		if (peer->flip == 0) {	/* basic mode */
3326 			peer->aorg = xmt_tx;
3327 			HTONL_FP(&xmt_tx, &xpkt.xmt);
3328 		} else {		/* interleaved modes */
3329 			if (peer->hmode == MODE_BROADCAST) { /* bcst */
3330 				HTONL_FP(&xmt_tx, &xpkt.xmt);
3331 				if (peer->flip > 0)
3332 					HTONL_FP(&peer->borg,
3333 					    &xpkt.org);
3334 				else
3335 					HTONL_FP(&peer->aorg,
3336 					    &xpkt.org);
3337 			} else {	/* symmetric */
3338 				if (peer->flip > 0)
3339 					HTONL_FP(&peer->borg,
3340 					    &xpkt.xmt);
3341 				else
3342 					HTONL_FP(&peer->aorg,
3343 					    &xpkt.xmt);
3344 			}
3345 		}
3346 		peer->t21_bytes = sendlen;
3347 		sendpkt(&peer->srcadr, peer->dstadr, sys_ttl[peer->ttl],
3348 		    &xpkt, sendlen);
3349 		peer->sent++;
3350 		peer->throttle += (1 << peer->minpoll) - 2;
3351 
3352 		/*
3353 		 * Capture a-posteriori timestamps
3354 		 */
3355 		get_systime(&xmt_ty);
3356 		if (peer->flip != 0) {		/* interleaved modes */
3357 			if (peer->flip > 0)
3358 				peer->aorg = xmt_ty;
3359 			else
3360 				peer->borg = xmt_ty;
3361 			peer->flip = -peer->flip;
3362 		}
3363 		L_SUB(&xmt_ty, &xmt_tx);
3364 		LFPTOD(&xmt_ty, peer->xleave);
3365 		DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d len %zu xmt %#010x.%08x\n",
3366 			    current_time,
3367 			    peer->dstadr ? stoa(&peer->dstadr->sin) : "-",
3368 		            stoa(&peer->srcadr), peer->hmode, sendlen,
3369 			    xmt_tx.l_ui, xmt_tx.l_uf));
3370 		return;
3371 	}
3372 
3373 	/*
3374 	 * Authentication is enabled, so the transmitted packet must be
3375 	 * authenticated. If autokey is enabled, fuss with the various
3376 	 * modes; otherwise, symmetric key cryptography is used.
3377 	 */
3378 #ifdef AUTOKEY
3379 	if (peer->flags & FLAG_SKEY) {
3380 		struct exten *exten;	/* extension field */
3381 
3382 		/*
3383 		 * The Public Key Dance (PKD): Cryptographic credentials
3384 		 * are contained in extension fields, each including a
3385 		 * 4-octet length/code word followed by a 4-octet
3386 		 * association ID and optional additional data. Optional
3387 		 * data includes a 4-octet data length field followed by
3388 		 * the data itself. Request messages are sent from a
3389 		 * configured association; response messages can be sent
3390 		 * from a configured association or can take the fast
3391 		 * path without ever matching an association. Response
3392 		 * messages have the same code as the request, but have
3393 		 * a response bit and possibly an error bit set. In this
3394 		 * implementation, a message may contain no more than
3395 		 * one command and one or more responses.
3396 		 *
3397 		 * Cryptographic session keys include both a public and
3398 		 * a private componet. Request and response messages
3399 		 * using extension fields are always sent with the
3400 		 * private component set to zero. Packets without
3401 		 * extension fields indlude the private component when
3402 		 * the session key is generated.
3403 		 */
3404 		while (1) {
3405 
3406 			/*
3407 			 * Allocate and initialize a keylist if not
3408 			 * already done. Then, use the list in inverse
3409 			 * order, discarding keys once used. Keep the
3410 			 * latest key around until the next one, so
3411 			 * clients can use client/server packets to
3412 			 * compute propagation delay.
3413 			 *
3414 			 * Note that once a key is used from the list,
3415 			 * it is retained in the key cache until the
3416 			 * next key is used. This is to allow a client
3417 			 * to retrieve the encrypted session key
3418 			 * identifier to verify authenticity.
3419 			 *
3420 			 * If for some reason a key is no longer in the
3421 			 * key cache, a birthday has happened or the key
3422 			 * has expired, so the pseudo-random sequence is
3423 			 * broken. In that case, purge the keylist and
3424 			 * regenerate it.
3425 			 */
3426 			if (peer->keynumber == 0)
3427 				make_keylist(peer, peer->dstadr);
3428 			else
3429 				peer->keynumber--;
3430 			xkeyid = peer->keylist[peer->keynumber];
3431 			if (authistrusted(xkeyid))
3432 				break;
3433 			else
3434 				key_expire(peer);
3435 		}
3436 		peer->keyid = xkeyid;
3437 		exten = NULL;
3438 		switch (peer->hmode) {
3439 
3440 		/*
3441 		 * In broadcast server mode the autokey values are
3442 		 * required by the broadcast clients. Push them when a
3443 		 * new keylist is generated; otherwise, push the
3444 		 * association message so the client can request them at
3445 		 * other times.
3446 		 */
3447 		case MODE_BROADCAST:
3448 			if (peer->flags & FLAG_ASSOC)
3449 				exten = crypto_args(peer, CRYPTO_AUTO |
3450 				    CRYPTO_RESP, peer->associd, NULL);
3451 			else
3452 				exten = crypto_args(peer, CRYPTO_ASSOC |
3453 				    CRYPTO_RESP, peer->associd, NULL);
3454 			break;
3455 
3456 		/*
3457 		 * In symmetric modes the parameter, certificate,
3458 		 * identity, cookie and autokey exchanges are
3459 		 * required. The leapsecond exchange is optional. But, a
3460 		 * peer will not believe the other peer until the other
3461 		 * peer has synchronized, so the certificate exchange
3462 		 * might loop until then. If a peer finds a broken
3463 		 * autokey sequence, it uses the autokey exchange to
3464 		 * retrieve the autokey values. In any case, if a new
3465 		 * keylist is generated, the autokey values are pushed.
3466 		 */
3467 		case MODE_ACTIVE:
3468 		case MODE_PASSIVE:
3469 
3470 			/*
3471 			 * Parameter, certificate and identity.
3472 			 */
3473 			if (!peer->crypto)
3474 				exten = crypto_args(peer, CRYPTO_ASSOC,
3475 				    peer->associd, hostval.ptr);
3476 			else if (!(peer->crypto & CRYPTO_FLAG_CERT))
3477 				exten = crypto_args(peer, CRYPTO_CERT,
3478 				    peer->associd, peer->issuer);
3479 			else if (!(peer->crypto & CRYPTO_FLAG_VRFY))
3480 				exten = crypto_args(peer,
3481 				    crypto_ident(peer), peer->associd,
3482 				    NULL);
3483 
3484 			/*
3485 			 * Cookie and autokey. We request the cookie
3486 			 * only when the this peer and the other peer
3487 			 * are synchronized. But, this peer needs the
3488 			 * autokey values when the cookie is zero. Any
3489 			 * time we regenerate the key list, we offer the
3490 			 * autokey values without being asked. If for
3491 			 * some reason either peer finds a broken
3492 			 * autokey sequence, the autokey exchange is
3493 			 * used to retrieve the autokey values.
3494 			 */
3495 			else if (   sys_leap != LEAP_NOTINSYNC
3496 				 && peer->leap != LEAP_NOTINSYNC
3497 				 && !(peer->crypto & CRYPTO_FLAG_COOK))
3498 				exten = crypto_args(peer, CRYPTO_COOK,
3499 				    peer->associd, NULL);
3500 			else if (!(peer->crypto & CRYPTO_FLAG_AUTO))
3501 				exten = crypto_args(peer, CRYPTO_AUTO,
3502 				    peer->associd, NULL);
3503 			else if (   peer->flags & FLAG_ASSOC
3504 				 && peer->crypto & CRYPTO_FLAG_SIGN)
3505 				exten = crypto_args(peer, CRYPTO_AUTO |
3506 				    CRYPTO_RESP, peer->assoc, NULL);
3507 
3508 			/*
3509 			 * Wait for clock sync, then sign the
3510 			 * certificate and retrieve the leapsecond
3511 			 * values.
3512 			 */
3513 			else if (sys_leap == LEAP_NOTINSYNC)
3514 				break;
3515 
3516 			else if (!(peer->crypto & CRYPTO_FLAG_SIGN))
3517 				exten = crypto_args(peer, CRYPTO_SIGN,
3518 				    peer->associd, hostval.ptr);
3519 			else if (!(peer->crypto & CRYPTO_FLAG_LEAP))
3520 				exten = crypto_args(peer, CRYPTO_LEAP,
3521 				    peer->associd, NULL);
3522 			break;
3523 
3524 		/*
3525 		 * In client mode the parameter, certificate, identity,
3526 		 * cookie and sign exchanges are required. The
3527 		 * leapsecond exchange is optional. If broadcast client
3528 		 * mode the same exchanges are required, except that the
3529 		 * autokey exchange is substitutes for the cookie
3530 		 * exchange, since the cookie is always zero. If the
3531 		 * broadcast client finds a broken autokey sequence, it
3532 		 * uses the autokey exchange to retrieve the autokey
3533 		 * values.
3534 		 */
3535 		case MODE_CLIENT:
3536 
3537 			/*
3538 			 * Parameter, certificate and identity.
3539 			 */
3540 			if (!peer->crypto)
3541 				exten = crypto_args(peer, CRYPTO_ASSOC,
3542 				    peer->associd, hostval.ptr);
3543 			else if (!(peer->crypto & CRYPTO_FLAG_CERT))
3544 				exten = crypto_args(peer, CRYPTO_CERT,
3545 				    peer->associd, peer->issuer);
3546 			else if (!(peer->crypto & CRYPTO_FLAG_VRFY))
3547 				exten = crypto_args(peer,
3548 				    crypto_ident(peer), peer->associd,
3549 				    NULL);
3550 
3551 			/*
3552 			 * Cookie and autokey. These are requests, but
3553 			 * we use the peer association ID with autokey
3554 			 * rather than our own.
3555 			 */
3556 			else if (!(peer->crypto & CRYPTO_FLAG_COOK))
3557 				exten = crypto_args(peer, CRYPTO_COOK,
3558 				    peer->associd, NULL);
3559 			else if (!(peer->crypto & CRYPTO_FLAG_AUTO))
3560 				exten = crypto_args(peer, CRYPTO_AUTO,
3561 				    peer->assoc, NULL);
3562 
3563 			/*
3564 			 * Wait for clock sync, then sign the
3565 			 * certificate and retrieve the leapsecond
3566 			 * values.
3567 			 */
3568 			else if (sys_leap == LEAP_NOTINSYNC)
3569 				break;
3570 
3571 			else if (!(peer->crypto & CRYPTO_FLAG_SIGN))
3572 				exten = crypto_args(peer, CRYPTO_SIGN,
3573 				    peer->associd, hostval.ptr);
3574 			else if (!(peer->crypto & CRYPTO_FLAG_LEAP))
3575 				exten = crypto_args(peer, CRYPTO_LEAP,
3576 				    peer->associd, NULL);
3577 			break;
3578 		}
3579 
3580 		/*
3581 		 * Add a queued extension field if present. This is
3582 		 * always a request message, so the reply ID is already
3583 		 * in the message. If an error occurs, the error bit is
3584 		 * lit in the response.
3585 		 */
3586 		if (peer->cmmd != NULL) {
3587 			u_int32 temp32;
3588 
3589 			temp32 = CRYPTO_RESP;
3590 			peer->cmmd->opcode |= htonl(temp32);
3591 			sendlen += crypto_xmit(peer, &xpkt, NULL,
3592 			    sendlen, peer->cmmd, 0);
3593 			free(peer->cmmd);
3594 			peer->cmmd = NULL;
3595 		}
3596 
3597 		/*
3598 		 * Add an extension field created above. All but the
3599 		 * autokey response message are request messages.
3600 		 */
3601 		if (exten != NULL) {
3602 			if (exten->opcode != 0)
3603 				sendlen += crypto_xmit(peer, &xpkt,
3604 				    NULL, sendlen, exten, 0);
3605 			free(exten);
3606 		}
3607 
3608 		/*
3609 		 * Calculate the next session key. Since extension
3610 		 * fields are present, the cookie value is zero.
3611 		 */
3612 		if (sendlen > (int)LEN_PKT_NOMAC) {
3613 			session_key(&peer->dstadr->sin, &peer->srcadr,
3614 			    xkeyid, 0, 2);
3615 		}
3616 	}
3617 #endif	/* AUTOKEY */
3618 
3619 	/*
3620 	 * Transmit a-priori timestamps
3621 	 */
3622 	get_systime(&xmt_tx);
3623 	if (peer->flip == 0) {		/* basic mode */
3624 		peer->aorg = xmt_tx;
3625 		HTONL_FP(&xmt_tx, &xpkt.xmt);
3626 	} else {			/* interleaved modes */
3627 		if (peer->hmode == MODE_BROADCAST) { /* bcst */
3628 			HTONL_FP(&xmt_tx, &xpkt.xmt);
3629 			if (peer->flip > 0)
3630 				HTONL_FP(&peer->borg, &xpkt.org);
3631 			else
3632 				HTONL_FP(&peer->aorg, &xpkt.org);
3633 		} else {		/* symmetric */
3634 			if (peer->flip > 0)
3635 				HTONL_FP(&peer->borg, &xpkt.xmt);
3636 			else
3637 				HTONL_FP(&peer->aorg, &xpkt.xmt);
3638 		}
3639 	}
3640 	xkeyid = peer->keyid;
3641 	authlen = authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen);
3642 	if (authlen == 0) {
3643 		report_event(PEVNT_AUTH, peer, "no key");
3644 		peer->flash |= TEST5;		/* auth error */
3645 		peer->badauth++;
3646 		return;
3647 	}
3648 	sendlen += authlen;
3649 #ifdef AUTOKEY
3650 	if (xkeyid > NTP_MAXKEY)
3651 		authtrust(xkeyid, 0);
3652 #endif	/* AUTOKEY */
3653 	if (sendlen > sizeof(xpkt)) {
3654 		msyslog(LOG_ERR, "peer_xmit: buffer overflow %zu", sendlen);
3655 		exit (-1);
3656 	}
3657 	peer->t21_bytes = sendlen;
3658 	sendpkt(&peer->srcadr, peer->dstadr, sys_ttl[peer->ttl], &xpkt,
3659 	    sendlen);
3660 	peer->sent++;
3661 	peer->throttle += (1 << peer->minpoll) - 2;
3662 
3663 	/*
3664 	 * Capture a-posteriori timestamps
3665 	 */
3666 	get_systime(&xmt_ty);
3667 	if (peer->flip != 0) {			/* interleaved modes */
3668 		if (peer->flip > 0)
3669 			peer->aorg = xmt_ty;
3670 		else
3671 			peer->borg = xmt_ty;
3672 		peer->flip = -peer->flip;
3673 	}
3674 	L_SUB(&xmt_ty, &xmt_tx);
3675 	LFPTOD(&xmt_ty, peer->xleave);
3676 #ifdef AUTOKEY
3677 	DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d keyid %08x len %zu index %d\n",
3678 		    current_time, latoa(peer->dstadr),
3679 		    ntoa(&peer->srcadr), peer->hmode, xkeyid, sendlen,
3680 		    peer->keynumber));
3681 #else	/* !AUTOKEY follows */
3682 	DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d keyid %08x len %d\n",
3683 		    current_time, peer->dstadr ?
3684 		    ntoa(&peer->dstadr->sin) : "-",
3685 		    ntoa(&peer->srcadr), peer->hmode, xkeyid, sendlen));
3686 #endif	/* !AUTOKEY */
3687 
3688 	return;
3689 }
3690 
3691 
3692 #ifdef LEAP_SMEAR
3693 
3694 static void
3695 leap_smear_add_offs(
3696 	l_fp *t,
3697 	l_fp *t_recv
3698 	)
3699 {
3700 
3701 	L_ADD(t, &leap_smear.offset);
3702 
3703 	return;
3704 }
3705 
3706 #endif  /* LEAP_SMEAR */
3707 
3708 
3709 /*
3710  * fast_xmit - Send packet for nonpersistent association. Note that
3711  * neither the source or destination can be a broadcast address.
3712  */
3713 static void
3714 fast_xmit(
3715 	struct recvbuf *rbufp,	/* receive packet pointer */
3716 	int	xmode,		/* receive mode */
3717 	keyid_t	xkeyid,		/* transmit key ID */
3718 	int	flags		/* restrict mask */
3719 	)
3720 {
3721 	struct pkt xpkt;	/* transmit packet structure */
3722 	struct pkt *rpkt;	/* receive packet structure */
3723 	l_fp	xmt_tx, xmt_ty;
3724 	size_t	sendlen;
3725 #ifdef AUTOKEY
3726 	u_int32	temp32;
3727 #endif
3728 
3729 	/*
3730 	 * Initialize transmit packet header fields from the receive
3731 	 * buffer provided. We leave the fields intact as received, but
3732 	 * set the peer poll at the maximum of the receive peer poll and
3733 	 * the system minimum poll (ntp_minpoll). This is for KoD rate
3734 	 * control and not strictly specification compliant, but doesn't
3735 	 * break anything.
3736 	 *
3737 	 * If the gazinta was from a multicast address, the gazoutta
3738 	 * must go out another way.
3739 	 */
3740 	rpkt = &rbufp->recv_pkt;
3741 	if (rbufp->dstadr->flags & INT_MCASTOPEN)
3742 		rbufp->dstadr = findinterface(&rbufp->recv_srcadr);
3743 
3744 	/*
3745 	 * If this is a kiss-o'-death (KoD) packet, show leap
3746 	 * unsynchronized, stratum zero, reference ID the four-character
3747 	 * kiss code and system root delay. Note we don't reveal the
3748 	 * local time, so these packets can't be used for
3749 	 * synchronization.
3750 	 */
3751 	if (flags & RES_KOD) {
3752 		sys_kodsent++;
3753 		xpkt.li_vn_mode = PKT_LI_VN_MODE(LEAP_NOTINSYNC,
3754 		    PKT_VERSION(rpkt->li_vn_mode), xmode);
3755 		xpkt.stratum = STRATUM_PKT_UNSPEC;
3756 		xpkt.ppoll = max(rpkt->ppoll, ntp_minpoll);
3757 		xpkt.precision = rpkt->precision;
3758 		memcpy(&xpkt.refid, "RATE", 4);
3759 		xpkt.rootdelay = rpkt->rootdelay;
3760 		xpkt.rootdisp = rpkt->rootdisp;
3761 		xpkt.reftime = rpkt->reftime;
3762 		xpkt.org = rpkt->xmt;
3763 		xpkt.rec = rpkt->xmt;
3764 		xpkt.xmt = rpkt->xmt;
3765 
3766 	/*
3767 	 * This is a normal packet. Use the system variables.
3768 	 */
3769 	} else {
3770 #ifdef LEAP_SMEAR
3771 		/*
3772 		 * Make copies of the variables which can be affected by smearing.
3773 		 */
3774 		l_fp this_ref_time;
3775 		l_fp this_recv_time;
3776 #endif
3777 
3778 		/*
3779 		 * If we are inside the leap smear interval we add the current smear offset to
3780 		 * the packet receive time, to the packet transmit time, and eventually to the
3781 		 * reftime to make sure the reftime isn't later than the transmit/receive times.
3782 		 */
3783 		xpkt.li_vn_mode = PKT_LI_VN_MODE(xmt_leap,
3784 		    PKT_VERSION(rpkt->li_vn_mode), xmode);
3785 
3786 		xpkt.stratum = STRATUM_TO_PKT(sys_stratum);
3787 		xpkt.ppoll = max(rpkt->ppoll, ntp_minpoll);
3788 		xpkt.precision = sys_precision;
3789 		xpkt.refid = sys_refid;
3790 		xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay));
3791 		xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp));
3792 
3793 #ifdef LEAP_SMEAR
3794 		this_ref_time = sys_reftime;
3795 		if (leap_smear.in_progress) {
3796 			leap_smear_add_offs(&this_ref_time, NULL);
3797 			xpkt.refid = convertLFPToRefID(leap_smear.offset);
3798 			DPRINTF(2, ("fast_xmit: leap_smear.in_progress: refid %8x, smear %s\n",
3799 				ntohl(xpkt.refid),
3800 				lfptoa(&leap_smear.offset, 8)
3801 				));
3802 		}
3803 		HTONL_FP(&this_ref_time, &xpkt.reftime);
3804 #else
3805 		HTONL_FP(&sys_reftime, &xpkt.reftime);
3806 #endif
3807 
3808 		xpkt.org = rpkt->xmt;
3809 
3810 #ifdef LEAP_SMEAR
3811 		this_recv_time = rbufp->recv_time;
3812 		if (leap_smear.in_progress)
3813 			leap_smear_add_offs(&this_recv_time, NULL);
3814 		HTONL_FP(&this_recv_time, &xpkt.rec);
3815 #else
3816 		HTONL_FP(&rbufp->recv_time, &xpkt.rec);
3817 #endif
3818 
3819 		get_systime(&xmt_tx);
3820 #ifdef LEAP_SMEAR
3821 		if (leap_smear.in_progress)
3822 			leap_smear_add_offs(&xmt_tx, &this_recv_time);
3823 #endif
3824 		HTONL_FP(&xmt_tx, &xpkt.xmt);
3825 	}
3826 
3827 #ifdef HAVE_NTP_SIGND
3828 	if (flags & RES_MSSNTP) {
3829 		send_via_ntp_signd(rbufp, xmode, xkeyid, flags, &xpkt);
3830 		return;
3831 	}
3832 #endif /* HAVE_NTP_SIGND */
3833 
3834 	/*
3835 	 * If the received packet contains a MAC, the transmitted packet
3836 	 * is authenticated and contains a MAC. If not, the transmitted
3837 	 * packet is not authenticated.
3838 	 */
3839 	sendlen = LEN_PKT_NOMAC;
3840 	if (rbufp->recv_length == sendlen) {
3841 		sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, 0, &xpkt,
3842 		    sendlen);
3843 		DPRINTF(1, ("fast_xmit: at %ld %s->%s mode %d len %lu\n",
3844 			    current_time, stoa(&rbufp->dstadr->sin),
3845 			    stoa(&rbufp->recv_srcadr), xmode,
3846 			    (u_long)sendlen));
3847 		return;
3848 	}
3849 
3850 	/*
3851 	 * The received packet contains a MAC, so the transmitted packet
3852 	 * must be authenticated. For symmetric key cryptography, use
3853 	 * the predefined and trusted symmetric keys to generate the
3854 	 * cryptosum. For autokey cryptography, use the server private
3855 	 * value to generate the cookie, which is unique for every
3856 	 * source-destination-key ID combination.
3857 	 */
3858 #ifdef AUTOKEY
3859 	if (xkeyid > NTP_MAXKEY) {
3860 		keyid_t cookie;
3861 
3862 		/*
3863 		 * The only way to get here is a reply to a legitimate
3864 		 * client request message, so the mode must be
3865 		 * MODE_SERVER. If an extension field is present, there
3866 		 * can be only one and that must be a command. Do what
3867 		 * needs, but with private value of zero so the poor
3868 		 * jerk can decode it. If no extension field is present,
3869 		 * use the cookie to generate the session key.
3870 		 */
3871 		cookie = session_key(&rbufp->recv_srcadr,
3872 		    &rbufp->dstadr->sin, 0, sys_private, 0);
3873 		if ((size_t)rbufp->recv_length > sendlen + MAX_MAC_LEN) {
3874 			session_key(&rbufp->dstadr->sin,
3875 			    &rbufp->recv_srcadr, xkeyid, 0, 2);
3876 			temp32 = CRYPTO_RESP;
3877 			rpkt->exten[0] |= htonl(temp32);
3878 			sendlen += crypto_xmit(NULL, &xpkt, rbufp,
3879 			    sendlen, (struct exten *)rpkt->exten,
3880 			    cookie);
3881 		} else {
3882 			session_key(&rbufp->dstadr->sin,
3883 			    &rbufp->recv_srcadr, xkeyid, cookie, 2);
3884 		}
3885 	}
3886 #endif	/* AUTOKEY */
3887 	get_systime(&xmt_tx);
3888 	sendlen += authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen);
3889 #ifdef AUTOKEY
3890 	if (xkeyid > NTP_MAXKEY)
3891 		authtrust(xkeyid, 0);
3892 #endif	/* AUTOKEY */
3893 	sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, 0, &xpkt, sendlen);
3894 	get_systime(&xmt_ty);
3895 	L_SUB(&xmt_ty, &xmt_tx);
3896 	sys_authdelay = xmt_ty;
3897 	DPRINTF(1, ("fast_xmit: at %ld %s->%s mode %d keyid %08x len %lu\n",
3898 		    current_time, ntoa(&rbufp->dstadr->sin),
3899 		    ntoa(&rbufp->recv_srcadr), xmode, xkeyid,
3900 		    (u_long)sendlen));
3901 }
3902 
3903 
3904 /*
3905  * pool_xmit - resolve hostname or send unicast solicitation for pool.
3906  */
3907 static void
3908 pool_xmit(
3909 	struct peer *pool	/* pool solicitor association */
3910 	)
3911 {
3912 #ifdef WORKER
3913 	struct pkt		xpkt;	/* transmit packet structure */
3914 	struct addrinfo		hints;
3915 	int			rc;
3916 	struct interface *	lcladr;
3917 	sockaddr_u *		rmtadr;
3918 	int			restrict_mask;
3919 	struct peer *		p;
3920 	l_fp			xmt_tx;
3921 
3922 	if (NULL == pool->ai) {
3923 		if (pool->addrs != NULL) {
3924 			/* free() is used with copy_addrinfo_list() */
3925 			free(pool->addrs);
3926 			pool->addrs = NULL;
3927 		}
3928 		ZERO(hints);
3929 		hints.ai_family = AF(&pool->srcadr);
3930 		hints.ai_socktype = SOCK_DGRAM;
3931 		hints.ai_protocol = IPPROTO_UDP;
3932 		/* ignore getaddrinfo_sometime() errors, we will retry */
3933 		rc = getaddrinfo_sometime(
3934 			pool->hostname,
3935 			"ntp",
3936 			&hints,
3937 			0,			/* no retry */
3938 			&pool_name_resolved,
3939 			(void *)(intptr_t)pool->associd);
3940 		if (!rc)
3941 			DPRINTF(1, ("pool DNS lookup %s started\n",
3942 				pool->hostname));
3943 		else
3944 			msyslog(LOG_ERR,
3945 				"unable to start pool DNS %s: %m",
3946 				pool->hostname);
3947 		return;
3948 	}
3949 
3950 	do {
3951 		/* copy_addrinfo_list ai_addr points to a sockaddr_u */
3952 		rmtadr = (sockaddr_u *)(void *)pool->ai->ai_addr;
3953 		pool->ai = pool->ai->ai_next;
3954 		p = findexistingpeer(rmtadr, NULL, NULL, MODE_CLIENT, 0);
3955 	} while (p != NULL && pool->ai != NULL);
3956 	if (p != NULL)
3957 		return;	/* out of addresses, re-query DNS next poll */
3958 	restrict_mask = restrictions(rmtadr);
3959 	if (RES_FLAGS & restrict_mask)
3960 		restrict_source(rmtadr, 0,
3961 				current_time + POOL_SOLICIT_WINDOW + 1);
3962 	lcladr = findinterface(rmtadr);
3963 	memset(&xpkt, 0, sizeof(xpkt));
3964 	xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, pool->version,
3965 					 MODE_CLIENT);
3966 	xpkt.stratum = STRATUM_TO_PKT(sys_stratum);
3967 	xpkt.ppoll = pool->hpoll;
3968 	xpkt.precision = sys_precision;
3969 	xpkt.refid = sys_refid;
3970 	xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay));
3971 	xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp));
3972 	HTONL_FP(&sys_reftime, &xpkt.reftime);
3973 	get_systime(&xmt_tx);
3974 	pool->aorg = xmt_tx;
3975 	HTONL_FP(&xmt_tx, &xpkt.xmt);
3976 	sendpkt(rmtadr, lcladr,	sys_ttl[pool->ttl], &xpkt,
3977 		LEN_PKT_NOMAC);
3978 	pool->sent++;
3979 	pool->throttle += (1 << pool->minpoll) - 2;
3980 	DPRINTF(1, ("pool_xmit: at %ld %s->%s pool\n",
3981 		    current_time, latoa(lcladr), stoa(rmtadr)));
3982 	msyslog(LOG_INFO, "Soliciting pool server %s", stoa(rmtadr));
3983 #endif	/* WORKER */
3984 }
3985 
3986 
3987 #ifdef AUTOKEY
3988 	/*
3989 	 * group_test - test if this is the same group
3990 	 *
3991 	 * host		assoc		return		action
3992 	 * none		none		0		mobilize *
3993 	 * none		group		0		mobilize *
3994 	 * group	none		0		mobilize *
3995 	 * group	group		1		mobilize
3996 	 * group	different	1		ignore
3997 	 * * ignore if notrust
3998 	 */
3999 int
4000 group_test(
4001 	char	*grp,
4002 	char	*ident
4003 	)
4004 {
4005 	if (grp == NULL)
4006 		return (0);
4007 
4008 	if (strcmp(grp, sys_groupname) == 0)
4009 		return (0);
4010 
4011 	if (ident == NULL)
4012 		return (1);
4013 
4014 	if (strcmp(grp, ident) == 0)
4015 		return (0);
4016 
4017 	return (1);
4018 }
4019 #endif /* AUTOKEY */
4020 
4021 #ifdef WORKER
4022 void
4023 pool_name_resolved(
4024 	int			rescode,
4025 	int			gai_errno,
4026 	void *			context,
4027 	const char *		name,
4028 	const char *		service,
4029 	const struct addrinfo *	hints,
4030 	const struct addrinfo *	res
4031 	)
4032 {
4033 	struct peer *	pool;	/* pool solicitor association */
4034 	associd_t	assoc;
4035 
4036 	if (rescode) {
4037 		msyslog(LOG_ERR,
4038 			"error resolving pool %s: %s (%d)",
4039 			name, gai_strerror(rescode), rescode);
4040 		return;
4041 	}
4042 
4043 	assoc = (associd_t)(intptr_t)context;
4044 	pool = findpeerbyassoc(assoc);
4045 	if (NULL == pool) {
4046 		msyslog(LOG_ERR,
4047 			"Could not find assoc %u for pool DNS %s",
4048 			assoc, name);
4049 		return;
4050 	}
4051 	DPRINTF(1, ("pool DNS %s completed\n", name));
4052 	pool->addrs = copy_addrinfo_list(res);
4053 	pool->ai = pool->addrs;
4054 	pool_xmit(pool);
4055 
4056 }
4057 #endif	/* WORKER */
4058 
4059 
4060 #ifdef AUTOKEY
4061 /*
4062  * key_expire - purge the key list
4063  */
4064 void
4065 key_expire(
4066 	struct peer *peer	/* peer structure pointer */
4067 	)
4068 {
4069 	int i;
4070 
4071 	if (peer->keylist != NULL) {
4072 		for (i = 0; i <= peer->keynumber; i++)
4073 			authtrust(peer->keylist[i], 0);
4074 		free(peer->keylist);
4075 		peer->keylist = NULL;
4076 	}
4077 	value_free(&peer->sndval);
4078 	peer->keynumber = 0;
4079 	peer->flags &= ~FLAG_ASSOC;
4080 	DPRINTF(1, ("key_expire: at %lu associd %d\n", current_time,
4081 		    peer->associd));
4082 }
4083 #endif	/* AUTOKEY */
4084 
4085 
4086 /*
4087  * local_refid(peer) - check peer refid to avoid selecting peers
4088  *		       currently synced to this ntpd.
4089  */
4090 static int
4091 local_refid(
4092 	struct peer *	p
4093 	)
4094 {
4095 	endpt *	unicast_ep;
4096 
4097 	if (p->dstadr != NULL && !(INT_MCASTIF & p->dstadr->flags))
4098 		unicast_ep = p->dstadr;
4099 	else
4100 		unicast_ep = findinterface(&p->srcadr);
4101 
4102 	if (unicast_ep != NULL && p->refid == unicast_ep->addr_refid)
4103 		return TRUE;
4104 	else
4105 		return FALSE;
4106 }
4107 
4108 
4109 /*
4110  * Determine if the peer is unfit for synchronization
4111  *
4112  * A peer is unfit for synchronization if
4113  * > TEST10 bad leap or stratum below floor or at or above ceiling
4114  * > TEST11 root distance exceeded for remote peer
4115  * > TEST12 a direct or indirect synchronization loop would form
4116  * > TEST13 unreachable or noselect
4117  */
4118 int				/* FALSE if fit, TRUE if unfit */
4119 peer_unfit(
4120 	struct peer *peer	/* peer structure pointer */
4121 	)
4122 {
4123 	int	rval = 0;
4124 
4125 	/*
4126 	 * A stratum error occurs if (1) the server has never been
4127 	 * synchronized, (2) the server stratum is below the floor or
4128 	 * greater than or equal to the ceiling.
4129 	 */
4130 	if (   peer->leap == LEAP_NOTINSYNC
4131 	    || peer->stratum < sys_floor
4132 	    || peer->stratum >= sys_ceiling)
4133 		rval |= TEST10;		/* bad synch or stratum */
4134 
4135 	/*
4136 	 * A distance error for a remote peer occurs if the root
4137 	 * distance is greater than or equal to the distance threshold
4138 	 * plus the increment due to one host poll interval.
4139 	 */
4140 	if (   !(peer->flags & FLAG_REFCLOCK)
4141 	    && root_distance(peer) >= sys_maxdist
4142 				      + clock_phi * ULOGTOD(peer->hpoll))
4143 		rval |= TEST11;		/* distance exceeded */
4144 
4145 	/*
4146 	 * A loop error occurs if the remote peer is synchronized to the
4147 	 * local peer or if the remote peer is synchronized to the same
4148 	 * server as the local peer but only if the remote peer is
4149 	 * neither a reference clock nor an orphan.
4150 	 */
4151 	if (peer->stratum > 1 && local_refid(peer))
4152 		rval |= TEST12;		/* synchronization loop */
4153 
4154 	/*
4155 	 * An unreachable error occurs if the server is unreachable or
4156 	 * the noselect bit is set.
4157 	 */
4158 	if (!peer->reach || (peer->flags & FLAG_NOSELECT))
4159 		rval |= TEST13;		/* unreachable */
4160 
4161 	peer->flash &= ~PEER_TEST_MASK;
4162 	peer->flash |= rval;
4163 	return (rval);
4164 }
4165 
4166 
4167 /*
4168  * Find the precision of this particular machine
4169  */
4170 #define MINSTEP		20e-9	/* minimum clock increment (s) */
4171 #define MAXSTEP		1	/* maximum clock increment (s) */
4172 #define MINCHANGES	12	/* minimum number of step samples */
4173 #define MAXLOOPS	((int)(1. / MINSTEP))	/* avoid infinite loop */
4174 
4175 /*
4176  * This routine measures the system precision defined as the minimum of
4177  * a sequence of differences between successive readings of the system
4178  * clock. However, if a difference is less than MINSTEP, the clock has
4179  * been read more than once during a clock tick and the difference is
4180  * ignored. We set MINSTEP greater than zero in case something happens
4181  * like a cache miss, and to tolerate underlying system clocks which
4182  * ensure each reading is strictly greater than prior readings while
4183  * using an underlying stepping (not interpolated) clock.
4184  *
4185  * sys_tick and sys_precision represent the time to read the clock for
4186  * systems with high-precision clocks, and the tick interval or step
4187  * size for lower-precision stepping clocks.
4188  *
4189  * This routine also measures the time to read the clock on stepping
4190  * system clocks by counting the number of readings between changes of
4191  * the underlying clock.  With either type of clock, the minimum time
4192  * to read the clock is saved as sys_fuzz, and used to ensure the
4193  * get_systime() readings always increase and are fuzzed below sys_fuzz.
4194  */
4195 void
4196 measure_precision(void)
4197 {
4198 	/*
4199 	 * With sys_fuzz set to zero, get_systime() fuzzing of low bits
4200 	 * is effectively disabled.  trunc_os_clock is FALSE to disable
4201 	 * get_ostime() simulation of a low-precision system clock.
4202 	 */
4203 	set_sys_fuzz(0.);
4204 	trunc_os_clock = FALSE;
4205 	measured_tick = measure_tick_fuzz();
4206 	set_sys_tick_precision(measured_tick);
4207 	msyslog(LOG_INFO, "proto: precision = %.3f usec (%d)",
4208 		sys_tick * 1e6, sys_precision);
4209 	if (sys_fuzz < sys_tick) {
4210 		msyslog(LOG_NOTICE, "proto: fuzz beneath %.3f usec",
4211 			sys_fuzz * 1e6);
4212 	}
4213 }
4214 
4215 
4216 /*
4217  * measure_tick_fuzz()
4218  *
4219  * measures the minimum time to read the clock (stored in sys_fuzz)
4220  * and returns the tick, the larger of the minimum increment observed
4221  * between successive clock readings and the time to read the clock.
4222  */
4223 double
4224 measure_tick_fuzz(void)
4225 {
4226 	l_fp	minstep;	/* MINSTEP as l_fp */
4227 	l_fp	val;		/* current seconds fraction */
4228 	l_fp	last;		/* last seconds fraction */
4229 	l_fp	ldiff;		/* val - last */
4230 	double	tick;		/* computed tick value */
4231 	double	diff;
4232 	long	repeats;
4233 	long	max_repeats;
4234 	int	changes;
4235 	int	i;		/* log2 precision */
4236 
4237 	tick = MAXSTEP;
4238 	max_repeats = 0;
4239 	repeats = 0;
4240 	changes = 0;
4241 	DTOLFP(MINSTEP, &minstep);
4242 	get_systime(&last);
4243 	for (i = 0; i < MAXLOOPS && changes < MINCHANGES; i++) {
4244 		get_systime(&val);
4245 		ldiff = val;
4246 		L_SUB(&ldiff, &last);
4247 		last = val;
4248 		if (L_ISGT(&ldiff, &minstep)) {
4249 			max_repeats = max(repeats, max_repeats);
4250 			repeats = 0;
4251 			changes++;
4252 			LFPTOD(&ldiff, diff);
4253 			tick = min(diff, tick);
4254 		} else {
4255 			repeats++;
4256 		}
4257 	}
4258 	if (changes < MINCHANGES) {
4259 		msyslog(LOG_ERR, "Fatal error: precision could not be measured (MINSTEP too large?)");
4260 		exit(1);
4261 	}
4262 
4263 	if (0 == max_repeats) {
4264 		set_sys_fuzz(tick);
4265 	} else {
4266 		set_sys_fuzz(tick / max_repeats);
4267 	}
4268 
4269 	return tick;
4270 }
4271 
4272 
4273 void
4274 set_sys_tick_precision(
4275 	double tick
4276 	)
4277 {
4278 	int i;
4279 
4280 	if (tick > 1.) {
4281 		msyslog(LOG_ERR,
4282 			"unsupported tick %.3f > 1s ignored", tick);
4283 		return;
4284 	}
4285 	if (tick < measured_tick) {
4286 		msyslog(LOG_ERR,
4287 			"proto: tick %.3f less than measured tick %.3f, ignored",
4288 			tick, measured_tick);
4289 		return;
4290 	} else if (tick > measured_tick) {
4291 		trunc_os_clock = TRUE;
4292 		msyslog(LOG_NOTICE,
4293 			"proto: truncating system clock to multiples of %.9f",
4294 			tick);
4295 	}
4296 	sys_tick = tick;
4297 
4298 	/*
4299 	 * Find the nearest power of two.
4300 	 */
4301 	for (i = 0; tick <= 1; i--)
4302 		tick *= 2;
4303 	if (tick - 1 > 1 - tick / 2)
4304 		i++;
4305 
4306 	sys_precision = (s_char)i;
4307 }
4308 
4309 
4310 /*
4311  * init_proto - initialize the protocol module's data
4312  */
4313 void
4314 init_proto(void)
4315 {
4316 	l_fp	dummy;
4317 	int	i;
4318 
4319 	/*
4320 	 * Fill in the sys_* stuff.  Default is don't listen to
4321 	 * broadcasting, require authentication.
4322 	 */
4323 	set_sys_leap(LEAP_NOTINSYNC);
4324 	sys_stratum = STRATUM_UNSPEC;
4325 	memcpy(&sys_refid, "INIT", 4);
4326 	sys_peer = NULL;
4327 	sys_rootdelay = 0;
4328 	sys_rootdisp = 0;
4329 	L_CLR(&sys_reftime);
4330 	sys_jitter = 0;
4331 	measure_precision();
4332 	get_systime(&dummy);
4333 	sys_survivors = 0;
4334 	sys_manycastserver = 0;
4335 	sys_bclient = 0;
4336 	sys_bdelay = 0;
4337 	sys_authenticate = 1;
4338 	sys_stattime = current_time;
4339 	orphwait = current_time + sys_orphwait;
4340 	proto_clr_stats();
4341 	for (i = 0; i < MAX_TTL; i++) {
4342 		sys_ttl[i] = (u_char)((i * 256) / MAX_TTL);
4343 		sys_ttlmax = i;
4344 	}
4345 	hardpps_enable = 0;
4346 	stats_control = 1;
4347 }
4348 
4349 
4350 /*
4351  * proto_config - configure the protocol module
4352  */
4353 void
4354 proto_config(
4355 	int	item,
4356 	u_long	value,
4357 	double	dvalue,
4358 	sockaddr_u *svalue
4359 	)
4360 {
4361 	/*
4362 	 * Figure out what he wants to change, then do it
4363 	 */
4364 	DPRINTF(2, ("proto_config: code %d value %lu dvalue %lf\n",
4365 		    item, value, dvalue));
4366 
4367 	switch (item) {
4368 
4369 	/*
4370 	 * enable and disable commands - arguments are Boolean.
4371 	 */
4372 	case PROTO_AUTHENTICATE: /* authentication (auth) */
4373 		sys_authenticate = value;
4374 		break;
4375 
4376 	case PROTO_BROADCLIENT: /* broadcast client (bclient) */
4377 		sys_bclient = (int)value;
4378 		if (sys_bclient == 0)
4379 			io_unsetbclient();
4380 		else
4381 			io_setbclient();
4382 		break;
4383 
4384 #ifdef REFCLOCK
4385 	case PROTO_CAL:		/* refclock calibrate (calibrate) */
4386 		cal_enable = value;
4387 		break;
4388 #endif /* REFCLOCK */
4389 
4390 	case PROTO_KERNEL:	/* kernel discipline (kernel) */
4391 		select_loop(value);
4392 		break;
4393 
4394 	case PROTO_MONITOR:	/* monitoring (monitor) */
4395 		if (value)
4396 			mon_start(MON_ON);
4397 		else {
4398 			mon_stop(MON_ON);
4399 			if (mon_enabled)
4400 				msyslog(LOG_WARNING,
4401 					"restrict: 'monitor' cannot be disabled while 'limited' is enabled");
4402 		}
4403 		break;
4404 
4405 	case PROTO_NTP:		/* NTP discipline (ntp) */
4406 		ntp_enable = value;
4407 		break;
4408 
4409 	case PROTO_MODE7:	/* mode7 management (ntpdc) */
4410 		ntp_mode7 = value;
4411 		break;
4412 
4413 	case PROTO_PPS:		/* PPS discipline (pps) */
4414 		hardpps_enable = value;
4415 		break;
4416 
4417 	case PROTO_FILEGEN:	/* statistics (stats) */
4418 		stats_control = value;
4419 		break;
4420 
4421 	/*
4422 	 * tos command - arguments are double, sometimes cast to int
4423 	 */
4424 	case PROTO_BEACON:	/* manycast beacon (beacon) */
4425 		sys_beacon = (int)dvalue;
4426 		break;
4427 
4428 	case PROTO_BROADDELAY:	/* default broadcast delay (bdelay) */
4429 		sys_bdelay = dvalue;
4430 		break;
4431 
4432 	case PROTO_CEILING:	/* stratum ceiling (ceiling) */
4433 		sys_ceiling = (int)dvalue;
4434 		break;
4435 
4436 	case PROTO_COHORT:	/* cohort switch (cohort) */
4437 		sys_cohort = (int)dvalue;
4438 		break;
4439 
4440 	case PROTO_FLOOR:	/* stratum floor (floor) */
4441 		sys_floor = (int)dvalue;
4442 		break;
4443 
4444 	case PROTO_MAXCLOCK:	/* maximum candidates (maxclock) */
4445 		sys_maxclock = (int)dvalue;
4446 		break;
4447 
4448 	case PROTO_MAXDIST:	/* select threshold (maxdist) */
4449 		sys_maxdist = dvalue;
4450 		break;
4451 
4452 	case PROTO_CALLDELAY:	/* modem call delay (mdelay) */
4453 		break;		/* NOT USED */
4454 
4455 	case PROTO_MINCLOCK:	/* minimum candidates (minclock) */
4456 		sys_minclock = (int)dvalue;
4457 		break;
4458 
4459 	case PROTO_MINDISP:	/* minimum distance (mindist) */
4460 		sys_mindisp = dvalue;
4461 		break;
4462 
4463 	case PROTO_MINSANE:	/* minimum survivors (minsane) */
4464 		sys_minsane = (int)dvalue;
4465 		break;
4466 
4467 	case PROTO_ORPHAN:	/* orphan stratum (orphan) */
4468 		sys_orphan = (int)dvalue;
4469 		break;
4470 
4471 	case PROTO_ORPHWAIT:	/* orphan wait (orphwait) */
4472 		orphwait -= sys_orphwait;
4473 		sys_orphwait = (int)dvalue;
4474 		orphwait += sys_orphwait;
4475 		break;
4476 
4477 	/*
4478 	 * Miscellaneous commands
4479 	 */
4480 	case PROTO_MULTICAST_ADD: /* add group address */
4481 		if (svalue != NULL)
4482 			io_multicast_add(svalue);
4483 		sys_bclient = 1;
4484 		break;
4485 
4486 	case PROTO_MULTICAST_DEL: /* delete group address */
4487 		if (svalue != NULL)
4488 			io_multicast_del(svalue);
4489 		break;
4490 
4491 	/*
4492 	 * Unpeer Early policy choices
4493 	 */
4494 
4495 	case PROTO_UECRYPTO:	/* Crypto */
4496 		unpeer_crypto_early = value;
4497 		break;
4498 
4499 	case PROTO_UECRYPTONAK:	/* Crypto_NAK */
4500 		unpeer_crypto_nak_early = value;
4501 		break;
4502 
4503 	case PROTO_UEDIGEST:	/* Digest */
4504 		unpeer_digest_early = value;
4505 		break;
4506 
4507 	default:
4508 		msyslog(LOG_NOTICE,
4509 		    "proto: unsupported option %d", item);
4510 	}
4511 }
4512 
4513 
4514 /*
4515  * proto_clr_stats - clear protocol stat counters
4516  */
4517 void
4518 proto_clr_stats(void)
4519 {
4520 	sys_stattime = current_time;
4521 	sys_received = 0;
4522 	sys_processed = 0;
4523 	sys_newversion = 0;
4524 	sys_oldversion = 0;
4525 	sys_declined = 0;
4526 	sys_restricted = 0;
4527 	sys_badlength = 0;
4528 	sys_badauth = 0;
4529 	sys_limitrejected = 0;
4530 	sys_kodsent = 0;
4531 }
4532