1 /* 2 * ntp_proto.c - NTP version 4 protocol machinery 3 * 4 * ATTENTION: Get approval from Harlan on all changes to this file! 5 * (Harlan will be discussing these changes with Dave Mills.) 6 * 7 */ 8 #ifdef HAVE_CONFIG_H 9 #include <config.h> 10 #endif 11 12 #include "ntpd.h" 13 #include "ntp_stdlib.h" 14 #include "ntp_unixtime.h" 15 #include "ntp_control.h" 16 #include "ntp_string.h" 17 #include "ntp_leapsec.h" 18 #include "refidsmear.h" 19 #include "lib_strbuf.h" 20 21 #include <stdio.h> 22 #ifdef HAVE_LIBSCF_H 23 #include <libscf.h> 24 #endif 25 #ifdef HAVE_UNISTD_H 26 #include <unistd.h> 27 #endif 28 29 /* [Bug 3031] define automatic broadcastdelay cutoff preset */ 30 #ifndef BDELAY_DEFAULT 31 # define BDELAY_DEFAULT (-0.050) 32 #endif 33 34 /* 35 * This macro defines the authentication state. If x is 1 authentication 36 * is required; othewise it is optional. 37 */ 38 #define AUTH(x, y) ((x) ? (y) == AUTH_OK \ 39 : (y) == AUTH_OK || (y) == AUTH_NONE) 40 41 typedef enum 42 auth_state { 43 AUTH_UNKNOWN = -1, /* Unknown */ 44 AUTH_NONE, /* authentication not required */ 45 AUTH_OK, /* authentication OK */ 46 AUTH_ERROR, /* authentication error */ 47 AUTH_CRYPTO /* crypto_NAK */ 48 } auth_code; 49 50 /* 51 * Set up Kiss Code values 52 */ 53 54 typedef enum 55 kiss_codes { 56 NOKISS, /* No Kiss Code */ 57 RATEKISS, /* Rate limit Kiss Code */ 58 DENYKISS, /* Deny Kiss */ 59 RSTRKISS, /* Restricted Kiss */ 60 XKISS /* Experimental Kiss */ 61 } kiss_code; 62 63 typedef enum 64 nak_error_codes { 65 NONAK, /* No NAK seen */ 66 INVALIDNAK, /* NAK cannot be used */ 67 VALIDNAK /* NAK is valid */ 68 } nak_code; 69 70 /* 71 * traffic shaping parameters 72 */ 73 #define NTP_IBURST 6 /* packets in iburst */ 74 #define RESP_DELAY 1 /* refclock burst delay (s) */ 75 76 /* 77 * pool soliciting restriction duration (s) 78 */ 79 #define POOL_SOLICIT_WINDOW 8 80 81 /* 82 * peer_select groups statistics for a peer used by clock_select() and 83 * clock_cluster(). 84 */ 85 typedef struct peer_select_tag { 86 struct peer * peer; 87 double synch; /* sync distance */ 88 double error; /* jitter */ 89 double seljit; /* selection jitter */ 90 } peer_select; 91 92 /* 93 * System variables are declared here. Unless specified otherwise, all 94 * times are in seconds. 95 */ 96 u_char sys_leap; /* system leap indicator, use set_sys_leap() to change this */ 97 u_char xmt_leap; /* leap indicator sent in client requests, set up by set_sys_leap() */ 98 u_char sys_stratum; /* system stratum */ 99 s_char sys_precision; /* local clock precision (log2 s) */ 100 double sys_rootdelay; /* roundtrip delay to primary source */ 101 double sys_rootdisp; /* dispersion to primary source */ 102 u_int32 sys_refid; /* reference id (network byte order) */ 103 l_fp sys_reftime; /* last update time */ 104 struct peer *sys_peer; /* current peer */ 105 106 #ifdef LEAP_SMEAR 107 struct leap_smear_info leap_smear; 108 #endif 109 int leap_sec_in_progress; 110 111 /* 112 * Rate controls. Leaky buckets are used to throttle the packet 113 * transmission rates in order to protect busy servers such as at NIST 114 * and USNO. There is a counter for each association and another for KoD 115 * packets. The association counter decrements each second, but not 116 * below zero. Each time a packet is sent the counter is incremented by 117 * a configurable value representing the average interval between 118 * packets. A packet is delayed as long as the counter is greater than 119 * zero. Note this does not affect the time value computations. 120 */ 121 /* 122 * Nonspecified system state variables 123 */ 124 int sys_bclient; /* broadcast client enable */ 125 double sys_bdelay; /* broadcast client default delay */ 126 int sys_authenticate; /* requre authentication for config */ 127 l_fp sys_authdelay; /* authentication delay */ 128 double sys_offset; /* current local clock offset */ 129 double sys_mindisp = MINDISPERSE; /* minimum distance (s) */ 130 double sys_maxdist = MAXDISTANCE; /* selection threshold */ 131 double sys_jitter; /* system jitter */ 132 u_long sys_epoch; /* last clock update time */ 133 static double sys_clockhop; /* clockhop threshold */ 134 static int leap_vote_ins; /* leap consensus for insert */ 135 static int leap_vote_del; /* leap consensus for delete */ 136 keyid_t sys_private; /* private value for session seed */ 137 int sys_manycastserver; /* respond to manycast client pkts */ 138 int ntp_mode7; /* respond to ntpdc (mode7) */ 139 int peer_ntpdate; /* active peers in ntpdate mode */ 140 int sys_survivors; /* truest of the truechimers */ 141 char *sys_ident = NULL; /* identity scheme */ 142 143 /* 144 * TOS and multicast mapping stuff 145 */ 146 int sys_floor = 0; /* cluster stratum floor */ 147 u_char sys_bcpollbstep = 0; /* Broadcast Poll backstep gate */ 148 int sys_ceiling = STRATUM_UNSPEC - 1; /* cluster stratum ceiling */ 149 int sys_minsane = 1; /* minimum candidates */ 150 int sys_minclock = NTP_MINCLOCK; /* minimum candidates */ 151 int sys_maxclock = NTP_MAXCLOCK; /* maximum candidates */ 152 int sys_cohort = 0; /* cohort switch */ 153 int sys_orphan = STRATUM_UNSPEC + 1; /* orphan stratum */ 154 int sys_orphwait = NTP_ORPHWAIT; /* orphan wait */ 155 int sys_beacon = BEACON; /* manycast beacon interval */ 156 u_int sys_ttlmax; /* max ttl mapping vector index */ 157 u_char sys_ttl[MAX_TTL]; /* ttl mapping vector */ 158 159 /* 160 * Statistics counters - first the good, then the bad 161 */ 162 u_long sys_stattime; /* elapsed time */ 163 u_long sys_received; /* packets received */ 164 u_long sys_processed; /* packets for this host */ 165 u_long sys_newversion; /* current version */ 166 u_long sys_oldversion; /* old version */ 167 u_long sys_restricted; /* access denied */ 168 u_long sys_badlength; /* bad length or format */ 169 u_long sys_badauth; /* bad authentication */ 170 u_long sys_declined; /* declined */ 171 u_long sys_limitrejected; /* rate exceeded */ 172 u_long sys_kodsent; /* KoD sent */ 173 174 /* 175 * Mechanism knobs: how soon do we peer_clear() or unpeer()? 176 * 177 * The default way is "on-receipt". If this was a packet from a 178 * well-behaved source, on-receipt will offer the fastest recovery. 179 * If this was from a DoS attack, the default way makes it easier 180 * for a bad-guy to DoS us. So look and see what bites you harder 181 * and choose according to your environment. 182 */ 183 int peer_clear_digest_early = 1; /* bad digest (TEST5) and Autokey */ 184 int unpeer_crypto_early = 1; /* bad crypto (TEST9) */ 185 int unpeer_crypto_nak_early = 1; /* crypto_NAK (TEST5) */ 186 int unpeer_digest_early = 1; /* bad digest (TEST5) */ 187 188 int dynamic_interleave = DYNAMIC_INTERLEAVE; /* Bug 2978 mitigation */ 189 190 int kiss_code_check(u_char hisleap, u_char hisstratum, u_char hismode, u_int32 refid); 191 nak_code valid_NAK (struct peer *peer, struct recvbuf *rbufp, u_char hismode); 192 static double root_distance (struct peer *); 193 static void clock_combine (peer_select *, int, int); 194 static void peer_xmit (struct peer *); 195 static void fast_xmit (struct recvbuf *, int, keyid_t, int); 196 static void pool_xmit (struct peer *); 197 static void clock_update (struct peer *); 198 static void measure_precision(void); 199 static double measure_tick_fuzz(void); 200 static int local_refid (struct peer *); 201 static int peer_unfit (struct peer *); 202 #ifdef AUTOKEY 203 static int group_test (char *, char *); 204 #endif /* AUTOKEY */ 205 #ifdef WORKER 206 void pool_name_resolved (int, int, void *, const char *, 207 const char *, const struct addrinfo *, 208 const struct addrinfo *); 209 #endif /* WORKER */ 210 211 const char * amtoa (int am); 212 213 214 void 215 set_sys_leap( 216 u_char new_sys_leap 217 ) 218 { 219 sys_leap = new_sys_leap; 220 xmt_leap = sys_leap; 221 222 /* 223 * Under certain conditions we send faked leap bits to clients, so 224 * eventually change xmt_leap below, but never change LEAP_NOTINSYNC. 225 */ 226 if (xmt_leap != LEAP_NOTINSYNC) { 227 if (leap_sec_in_progress) { 228 /* always send "not sync" */ 229 xmt_leap = LEAP_NOTINSYNC; 230 } 231 #ifdef LEAP_SMEAR 232 else { 233 /* 234 * If leap smear is enabled in general we must 235 * never send a leap second warning to clients, 236 * so make sure we only send "in sync". 237 */ 238 if (leap_smear.enabled) 239 xmt_leap = LEAP_NOWARNING; 240 } 241 #endif /* LEAP_SMEAR */ 242 } 243 } 244 245 246 /* 247 * Kiss Code check 248 */ 249 int 250 kiss_code_check( 251 u_char hisleap, 252 u_char hisstratum, 253 u_char hismode, 254 u_int32 refid 255 ) 256 { 257 258 if ( hismode == MODE_SERVER 259 && hisleap == LEAP_NOTINSYNC 260 && hisstratum == STRATUM_UNSPEC) { 261 if(memcmp(&refid,"RATE", 4) == 0) { 262 return (RATEKISS); 263 } else if(memcmp(&refid,"DENY", 4) == 0) { 264 return (DENYKISS); 265 } else if(memcmp(&refid,"RSTR", 4) == 0) { 266 return (RSTRKISS); 267 } else if(memcmp(&refid,"X", 1) == 0) { 268 return (XKISS); 269 } 270 } 271 return (NOKISS); 272 } 273 274 275 /* 276 * Check that NAK is valid 277 */ 278 nak_code 279 valid_NAK( 280 struct peer *peer, 281 struct recvbuf *rbufp, 282 u_char hismode 283 ) 284 { 285 int base_packet_length = MIN_V4_PKT_LEN; 286 int remainder_size; 287 struct pkt * rpkt; 288 int keyid; 289 l_fp p_org; /* origin timestamp */ 290 const l_fp * myorg; /* selected peer origin */ 291 292 /* 293 * Check to see if there is something beyond the basic packet 294 */ 295 if (rbufp->recv_length == base_packet_length) { 296 return NONAK; 297 } 298 299 remainder_size = rbufp->recv_length - base_packet_length; 300 /* 301 * Is this a potential NAK? 302 */ 303 if (remainder_size != 4) { 304 return NONAK; 305 } 306 307 /* 308 * Only server responses can contain NAK's 309 */ 310 311 if (hismode != MODE_SERVER && 312 hismode != MODE_ACTIVE && 313 hismode != MODE_PASSIVE 314 ) { 315 return INVALIDNAK; 316 } 317 318 /* 319 * Make sure that the extra field in the packet is all zeros 320 */ 321 rpkt = &rbufp->recv_pkt; 322 keyid = ntohl(((u_int32 *)rpkt)[base_packet_length / 4]); 323 if (keyid != 0) { 324 return INVALIDNAK; 325 } 326 327 /* 328 * Only valid if peer uses a key 329 */ 330 if (!peer || !peer->keyid || !(peer->flags & FLAG_SKEY)) { 331 return INVALIDNAK; 332 } 333 334 /* 335 * The ORIGIN must match, or this cannot be a valid NAK, either. 336 */ 337 NTOHL_FP(&rpkt->org, &p_org); 338 if (peer->flip > 0) 339 myorg = &peer->borg; 340 else 341 myorg = &peer->aorg; 342 343 if (L_ISZERO(&p_org) || 344 L_ISZERO( myorg) || 345 !L_ISEQU(&p_org, myorg)) { 346 return INVALIDNAK; 347 } 348 349 /* If we ever passed all that checks, we should be safe. Well, 350 * as safe as we can ever be with an unauthenticated crypto-nak. 351 */ 352 return VALIDNAK; 353 } 354 355 356 /* 357 * transmit - transmit procedure called by poll timeout 358 */ 359 void 360 transmit( 361 struct peer *peer /* peer structure pointer */ 362 ) 363 { 364 u_char hpoll; 365 366 /* 367 * The polling state machine. There are two kinds of machines, 368 * those that never expect a reply (broadcast and manycast 369 * server modes) and those that do (all other modes). The dance 370 * is intricate... 371 */ 372 hpoll = peer->hpoll; 373 374 /* 375 * In broadcast mode the poll interval is never changed from 376 * minpoll. 377 */ 378 if (peer->cast_flags & (MDF_BCAST | MDF_MCAST)) { 379 peer->outdate = current_time; 380 if (sys_leap != LEAP_NOTINSYNC) 381 peer_xmit(peer); 382 poll_update(peer, hpoll); 383 return; 384 } 385 386 /* 387 * In manycast mode we start with unity ttl. The ttl is 388 * increased by one for each poll until either sys_maxclock 389 * servers have been found or the maximum ttl is reached. When 390 * sys_maxclock servers are found we stop polling until one or 391 * more servers have timed out or until less than sys_minclock 392 * associations turn up. In this case additional better servers 393 * are dragged in and preempt the existing ones. Once every 394 * sys_beacon seconds we are to transmit unconditionally, but 395 * this code is not quite right -- peer->unreach counts polls 396 * and is being compared with sys_beacon, so the beacons happen 397 * every sys_beacon polls. 398 */ 399 if (peer->cast_flags & MDF_ACAST) { 400 peer->outdate = current_time; 401 if (peer->unreach > sys_beacon) { 402 peer->unreach = 0; 403 peer->ttl = 0; 404 peer_xmit(peer); 405 } else if ( sys_survivors < sys_minclock 406 || peer_associations < sys_maxclock) { 407 if (peer->ttl < sys_ttlmax) 408 peer->ttl++; 409 peer_xmit(peer); 410 } 411 peer->unreach++; 412 poll_update(peer, hpoll); 413 return; 414 } 415 416 /* 417 * Pool associations transmit unicast solicitations when there 418 * are less than a hard limit of 2 * sys_maxclock associations, 419 * and either less than sys_minclock survivors or less than 420 * sys_maxclock associations. The hard limit prevents unbounded 421 * growth in associations if the system clock or network quality 422 * result in survivor count dipping below sys_minclock often. 423 * This was observed testing with pool, where sys_maxclock == 12 424 * resulted in 60 associations without the hard limit. A 425 * similar hard limit on manycastclient ephemeral associations 426 * may be appropriate. 427 */ 428 if (peer->cast_flags & MDF_POOL) { 429 peer->outdate = current_time; 430 if ( (peer_associations <= 2 * sys_maxclock) 431 && ( peer_associations < sys_maxclock 432 || sys_survivors < sys_minclock)) 433 pool_xmit(peer); 434 poll_update(peer, hpoll); 435 return; 436 } 437 438 /* 439 * In unicast modes the dance is much more intricate. It is 440 * designed to back off whenever possible to minimize network 441 * traffic. 442 */ 443 if (peer->burst == 0) { 444 u_char oreach; 445 446 /* 447 * Update the reachability status. If not heard for 448 * three consecutive polls, stuff infinity in the clock 449 * filter. 450 */ 451 oreach = peer->reach; 452 peer->outdate = current_time; 453 peer->unreach++; 454 peer->reach <<= 1; 455 if (!peer->reach) { 456 457 /* 458 * Here the peer is unreachable. If it was 459 * previously reachable raise a trap. Send a 460 * burst if enabled. 461 */ 462 clock_filter(peer, 0., 0., MAXDISPERSE); 463 if (oreach) { 464 peer_unfit(peer); 465 report_event(PEVNT_UNREACH, peer, NULL); 466 } 467 if ( (peer->flags & FLAG_IBURST) 468 && peer->retry == 0) 469 peer->retry = NTP_RETRY; 470 } else { 471 472 /* 473 * Here the peer is reachable. Send a burst if 474 * enabled and the peer is fit. Reset unreach 475 * for persistent and ephemeral associations. 476 * Unreach is also reset for survivors in 477 * clock_select(). 478 */ 479 hpoll = sys_poll; 480 if (!(peer->flags & FLAG_PREEMPT)) 481 peer->unreach = 0; 482 if ( (peer->flags & FLAG_BURST) 483 && peer->retry == 0 484 && !peer_unfit(peer)) 485 peer->retry = NTP_RETRY; 486 } 487 488 /* 489 * Watch for timeout. If ephemeral, toss the rascal; 490 * otherwise, bump the poll interval. Note the 491 * poll_update() routine will clamp it to maxpoll. 492 * If preemptible and we have more peers than maxclock, 493 * and this peer has the minimum score of preemptibles, 494 * demobilize. 495 */ 496 if (peer->unreach >= NTP_UNREACH) { 497 hpoll++; 498 /* ephemeral: no FLAG_CONFIG nor FLAG_PREEMPT */ 499 if (!(peer->flags & (FLAG_CONFIG | FLAG_PREEMPT))) { 500 report_event(PEVNT_RESTART, peer, "timeout"); 501 peer_clear(peer, "TIME"); 502 unpeer(peer); 503 return; 504 } 505 if ( (peer->flags & FLAG_PREEMPT) 506 && (peer_associations > sys_maxclock) 507 && score_all(peer)) { 508 report_event(PEVNT_RESTART, peer, "timeout"); 509 peer_clear(peer, "TIME"); 510 unpeer(peer); 511 return; 512 } 513 } 514 } else { 515 peer->burst--; 516 if (peer->burst == 0) { 517 518 /* 519 * If ntpdate mode and the clock has not been 520 * set and all peers have completed the burst, 521 * we declare a successful failure. 522 */ 523 if (mode_ntpdate) { 524 peer_ntpdate--; 525 if (peer_ntpdate == 0) { 526 msyslog(LOG_NOTICE, 527 "ntpd: no servers found"); 528 if (!msyslog_term) 529 printf( 530 "ntpd: no servers found\n"); 531 exit (0); 532 } 533 } 534 } 535 } 536 if (peer->retry > 0) 537 peer->retry--; 538 539 /* 540 * Do not transmit if in broadcast client mode. 541 */ 542 if (peer->hmode != MODE_BCLIENT) 543 peer_xmit(peer); 544 poll_update(peer, hpoll); 545 546 return; 547 } 548 549 550 const char * 551 amtoa( 552 int am 553 ) 554 { 555 char *bp; 556 557 switch(am) { 558 case AM_ERR: return "AM_ERR"; 559 case AM_NOMATCH: return "AM_NOMATCH"; 560 case AM_PROCPKT: return "AM_PROCPKT"; 561 case AM_BCST: return "AM_BCST"; 562 case AM_FXMIT: return "AM_FXMIT"; 563 case AM_MANYCAST: return "AM_MANYCAST"; 564 case AM_NEWPASS: return "AM_NEWPASS"; 565 case AM_NEWBCL: return "AM_NEWBCL"; 566 case AM_POSSBCL: return "AM_POSSBCL"; 567 default: 568 LIB_GETBUF(bp); 569 snprintf(bp, LIB_BUFLENGTH, "AM_#%d", am); 570 return bp; 571 } 572 } 573 574 575 /* 576 * receive - receive procedure called for each packet received 577 */ 578 void 579 receive( 580 struct recvbuf *rbufp 581 ) 582 { 583 register struct peer *peer; /* peer structure pointer */ 584 register struct pkt *pkt; /* receive packet pointer */ 585 u_char hisversion; /* packet version */ 586 u_char hisleap; /* packet leap indicator */ 587 u_char hismode; /* packet mode */ 588 u_char hisstratum; /* packet stratum */ 589 r4addr r4a; /* address restrictions */ 590 u_short restrict_mask; /* restrict bits */ 591 const char *hm_str; /* hismode string */ 592 const char *am_str; /* association match string */ 593 int kissCode = NOKISS; /* Kiss Code */ 594 int has_mac; /* length of MAC field */ 595 int authlen; /* offset of MAC field */ 596 auth_code is_authentic = AUTH_UNKNOWN; /* Was AUTH_NONE */ 597 nak_code crypto_nak_test; /* result of crypto-NAK check */ 598 int retcode = AM_NOMATCH; /* match code */ 599 keyid_t skeyid = 0; /* key IDs */ 600 u_int32 opcode = 0; /* extension field opcode */ 601 sockaddr_u *dstadr_sin; /* active runway */ 602 struct peer *peer2; /* aux peer structure pointer */ 603 endpt *match_ep; /* newpeer() local address */ 604 l_fp p_org; /* origin timestamp */ 605 l_fp p_rec; /* receive timestamp */ 606 l_fp p_xmt; /* transmit timestamp */ 607 #ifdef AUTOKEY 608 char hostname[NTP_MAXSTRLEN + 1]; 609 char *groupname = NULL; 610 struct autokey *ap; /* autokey structure pointer */ 611 int rval; /* cookie snatcher */ 612 keyid_t pkeyid = 0, tkeyid = 0; /* key IDs */ 613 #endif /* AUTOKEY */ 614 #ifdef HAVE_NTP_SIGND 615 static unsigned char zero_key[16]; 616 #endif /* HAVE_NTP_SIGND */ 617 618 /* 619 * Note that there are many places we do not call record_raw_stats(). 620 * 621 * We only want to call it *after* we've sent a response, or perhaps 622 * when we've decided to drop a packet. 623 */ 624 625 /* 626 * Monitor the packet and get restrictions. Note that the packet 627 * length for control and private mode packets must be checked 628 * by the service routines. Some restrictions have to be handled 629 * later in order to generate a kiss-o'-death packet. 630 */ 631 /* 632 * Bogus port check is before anything, since it probably 633 * reveals a clogging attack. 634 */ 635 sys_received++; 636 if (0 == SRCPORT(&rbufp->recv_srcadr)) { 637 sys_badlength++; 638 return; /* bogus port */ 639 } 640 restrictions(&rbufp->recv_srcadr, &r4a); 641 restrict_mask = r4a.rflags; 642 643 pkt = &rbufp->recv_pkt; 644 hisversion = PKT_VERSION(pkt->li_vn_mode); 645 hisleap = PKT_LEAP(pkt->li_vn_mode); 646 hismode = (int)PKT_MODE(pkt->li_vn_mode); 647 hisstratum = PKT_TO_STRATUM(pkt->stratum); 648 DPRINTF(2, ("receive: at %ld %s<-%s ippeerlimit %d mode %d iflags %s restrict %s org %#010x.%08x xmt %#010x.%08x\n", 649 current_time, stoa(&rbufp->dstadr->sin), 650 stoa(&rbufp->recv_srcadr), r4a.ippeerlimit, hismode, 651 build_iflags(rbufp->dstadr->flags), 652 build_rflags(restrict_mask), 653 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 654 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 655 656 /* See basic mode and broadcast checks, below */ 657 INSIST(0 != hisstratum); 658 659 if (restrict_mask & RES_IGNORE) { 660 DPRINTF(2, ("receive: drop: RES_IGNORE\n")); 661 sys_restricted++; 662 return; /* ignore everything */ 663 } 664 if (hismode == MODE_PRIVATE) { 665 if (!ntp_mode7 || (restrict_mask & RES_NOQUERY)) { 666 DPRINTF(2, ("receive: drop: RES_NOQUERY\n")); 667 sys_restricted++; 668 return; /* no query private */ 669 } 670 process_private(rbufp, ((restrict_mask & 671 RES_NOMODIFY) == 0)); 672 return; 673 } 674 if (hismode == MODE_CONTROL) { 675 if (restrict_mask & RES_NOQUERY) { 676 DPRINTF(2, ("receive: drop: RES_NOQUERY\n")); 677 sys_restricted++; 678 return; /* no query control */ 679 } 680 process_control(rbufp, restrict_mask); 681 return; 682 } 683 if (restrict_mask & RES_DONTSERVE) { 684 DPRINTF(2, ("receive: drop: RES_DONTSERVE\n")); 685 sys_restricted++; 686 return; /* no time serve */ 687 } 688 689 /* 690 * This is for testing. If restricted drop ten percent of 691 * surviving packets. 692 */ 693 if (restrict_mask & RES_FLAKE) { 694 if ((double)ntp_random() / 0x7fffffff < .1) { 695 DPRINTF(2, ("receive: drop: RES_FLAKE\n")); 696 sys_restricted++; 697 return; /* no flakeway */ 698 } 699 } 700 701 /* 702 ** Format Layer Checks 703 ** 704 ** Validate the packet format. The packet size, packet header, 705 ** and any extension field lengths are checked. We identify 706 ** the beginning of the MAC, to identify the upper limit of 707 ** of the hash computation. 708 ** 709 ** In case of a format layer check violation, the packet is 710 ** discarded with no further processing. 711 */ 712 713 /* 714 * Version check must be after the query packets, since they 715 * intentionally use an early version. 716 */ 717 if (hisversion == NTP_VERSION) { 718 sys_newversion++; /* new version */ 719 } else if ( !(restrict_mask & RES_VERSION) 720 && hisversion >= NTP_OLDVERSION) { 721 sys_oldversion++; /* previous version */ 722 } else { 723 DPRINTF(2, ("receive: drop: RES_VERSION\n")); 724 sys_badlength++; 725 return; /* old version */ 726 } 727 728 /* 729 * Figure out his mode and validate the packet. This has some 730 * legacy raunch that probably should be removed. In very early 731 * NTP versions mode 0 was equivalent to what later versions 732 * would interpret as client mode. 733 */ 734 if (hismode == MODE_UNSPEC) { 735 if (hisversion == NTP_OLDVERSION) { 736 hismode = MODE_CLIENT; 737 } else { 738 DPRINTF(2, ("receive: drop: MODE_UNSPEC\n")); 739 sys_badlength++; 740 return; /* invalid mode */ 741 } 742 } 743 744 /* 745 * Parse the extension field if present. We figure out whether 746 * an extension field is present by measuring the MAC size. If 747 * the number of words following the packet header is 0, no MAC 748 * is present and the packet is not authenticated. If 1, the 749 * packet is a crypto-NAK; if 3, the packet is authenticated 750 * with DES; if 5, the packet is authenticated with MD5; if 6, 751 * the packet is authenticated with SHA. If 2 or * 4, the packet 752 * is a runt and discarded forthwith. If greater than 6, an 753 * extension field is present, so we subtract the length of the 754 * field and go around again. 755 * 756 * Note the above description is lame. We should/could also check 757 * the two bytes that make up the EF type and subtype, and then 758 * check the two bytes that tell us the EF length. A legacy MAC 759 * has a 4 byte keyID, and for conforming symmetric keys its value 760 * must be <= 64k, meaning the top two bytes will always be zero. 761 * Since the EF Type of 0 is reserved/unused, there's no way a 762 * conforming legacy MAC could ever be misinterpreted as an EF. 763 * 764 * There is more, but this isn't the place to document it. 765 */ 766 767 authlen = LEN_PKT_NOMAC; 768 has_mac = rbufp->recv_length - authlen; 769 while (has_mac > 0) { 770 u_int32 len; 771 #ifdef AUTOKEY 772 u_int32 hostlen; 773 struct exten *ep; 774 #endif /*AUTOKEY */ 775 776 if (has_mac % 4 != 0 || has_mac < (int)MIN_MAC_LEN) { 777 DPRINTF(2, ("receive: drop: bad post-packet length\n")); 778 sys_badlength++; 779 return; /* bad length */ 780 } 781 /* 782 * This next test is clearly wrong - it needlessly 783 * prohibits short EFs (which don't yet exist) 784 */ 785 if (has_mac <= (int)MAX_MAC_LEN) { 786 skeyid = ntohl(((u_int32 *)pkt)[authlen / 4]); 787 break; 788 789 } else { 790 opcode = ntohl(((u_int32 *)pkt)[authlen / 4]); 791 len = opcode & 0xffff; 792 if ( len % 4 != 0 793 || len < 4 794 || (int)len + authlen > rbufp->recv_length) { 795 DPRINTF(2, ("receive: drop: bad EF length\n")); 796 sys_badlength++; 797 return; /* bad length */ 798 } 799 #ifdef AUTOKEY 800 /* 801 * Extract calling group name for later. If 802 * sys_groupname is non-NULL, there must be 803 * a group name provided to elicit a response. 804 */ 805 if ( (opcode & 0x3fff0000) == CRYPTO_ASSOC 806 && sys_groupname != NULL) { 807 ep = (struct exten *)&((u_int32 *)pkt)[authlen / 4]; 808 hostlen = ntohl(ep->vallen); 809 if ( hostlen >= sizeof(hostname) 810 || hostlen > len - 811 offsetof(struct exten, pkt)) { 812 DPRINTF(2, ("receive: drop: bad autokey hostname length\n")); 813 sys_badlength++; 814 return; /* bad length */ 815 } 816 memcpy(hostname, &ep->pkt, hostlen); 817 hostname[hostlen] = '\0'; 818 groupname = strchr(hostname, '@'); 819 if (groupname == NULL) { 820 DPRINTF(2, ("receive: drop: empty autokey groupname\n")); 821 sys_declined++; 822 return; 823 } 824 groupname++; 825 } 826 #endif /* AUTOKEY */ 827 authlen += len; 828 has_mac -= len; 829 } 830 } 831 832 /* 833 * If has_mac is < 0 we had a malformed packet. 834 */ 835 if (has_mac < 0) { 836 DPRINTF(2, ("receive: drop: post-packet under-read\n")); 837 sys_badlength++; 838 return; /* bad length */ 839 } 840 841 /* 842 ** Packet Data Verification Layer 843 ** 844 ** This layer verifies the packet data content. If 845 ** authentication is required, a MAC must be present. 846 ** If a MAC is present, it must validate. 847 ** Crypto-NAK? Look - a shiny thing! 848 ** 849 ** If authentication fails, we're done. 850 */ 851 852 /* 853 * If authentication is explicitly required, a MAC must be present. 854 */ 855 if (restrict_mask & RES_DONTTRUST && has_mac == 0) { 856 DPRINTF(2, ("receive: drop: RES_DONTTRUST\n")); 857 sys_restricted++; 858 return; /* access denied */ 859 } 860 861 /* 862 * Update the MRU list and finger the cloggers. It can be a 863 * little expensive, so turn it off for production use. 864 * RES_LIMITED and RES_KOD will be cleared in the returned 865 * restrict_mask unless one or both actions are warranted. 866 */ 867 restrict_mask = ntp_monitor(rbufp, restrict_mask); 868 if (restrict_mask & RES_LIMITED) { 869 sys_limitrejected++; 870 if ( !(restrict_mask & RES_KOD) 871 || MODE_BROADCAST == hismode 872 || MODE_SERVER == hismode) { 873 if (MODE_SERVER == hismode) { 874 DPRINTF(1, ("Possibly self-induced rate limiting of MODE_SERVER from %s\n", 875 stoa(&rbufp->recv_srcadr))); 876 } else { 877 DPRINTF(2, ("receive: drop: RES_KOD\n")); 878 } 879 return; /* rate exceeded */ 880 } 881 if (hismode == MODE_CLIENT) 882 fast_xmit(rbufp, MODE_SERVER, skeyid, 883 restrict_mask); 884 else 885 fast_xmit(rbufp, MODE_ACTIVE, skeyid, 886 restrict_mask); 887 return; /* rate exceeded */ 888 } 889 restrict_mask &= ~RES_KOD; 890 891 /* 892 * We have tossed out as many buggy packets as possible early in 893 * the game to reduce the exposure to a clogging attack. Now we 894 * have to burn some cycles to find the association and 895 * authenticate the packet if required. Note that we burn only 896 * digest cycles, again to reduce exposure. There may be no 897 * matching association and that's okay. 898 * 899 * More on the autokey mambo. Normally the local interface is 900 * found when the association was mobilized with respect to a 901 * designated remote address. We assume packets arriving from 902 * the remote address arrive via this interface and the local 903 * address used to construct the autokey is the unicast address 904 * of the interface. However, if the sender is a broadcaster, 905 * the interface broadcast address is used instead. 906 * Notwithstanding this technobabble, if the sender is a 907 * multicaster, the broadcast address is null, so we use the 908 * unicast address anyway. Don't ask. 909 */ 910 911 peer = findpeer(rbufp, hismode, &retcode); 912 dstadr_sin = &rbufp->dstadr->sin; 913 NTOHL_FP(&pkt->org, &p_org); 914 NTOHL_FP(&pkt->rec, &p_rec); 915 NTOHL_FP(&pkt->xmt, &p_xmt); 916 hm_str = modetoa(hismode); 917 am_str = amtoa(retcode); 918 919 /* 920 * Authentication is conditioned by three switches: 921 * 922 * NOPEER (RES_NOPEER) do not mobilize an association unless 923 * authenticated 924 * NOTRUST (RES_DONTTRUST) do not allow access unless 925 * authenticated (implies NOPEER) 926 * enable (sys_authenticate) master NOPEER switch, by default 927 * on 928 * 929 * The NOPEER and NOTRUST can be specified on a per-client basis 930 * using the restrict command. The enable switch if on implies 931 * NOPEER for all clients. There are four outcomes: 932 * 933 * NONE The packet has no MAC. 934 * OK the packet has a MAC and authentication succeeds 935 * ERROR the packet has a MAC and authentication fails 936 * CRYPTO crypto-NAK. The MAC has four octets only. 937 * 938 * Note: The AUTH(x, y) macro is used to filter outcomes. If x 939 * is zero, acceptable outcomes of y are NONE and OK. If x is 940 * one, the only acceptable outcome of y is OK. 941 */ 942 crypto_nak_test = valid_NAK(peer, rbufp, hismode); 943 944 /* 945 * Drop any invalid crypto-NAKs 946 */ 947 if (crypto_nak_test == INVALIDNAK) { 948 report_event(PEVNT_AUTH, peer, "Invalid_NAK"); 949 if (0 != peer) { 950 peer->badNAK++; 951 } 952 msyslog(LOG_ERR, "Invalid-NAK error at %ld %s<-%s", 953 current_time, stoa(dstadr_sin), stoa(&rbufp->recv_srcadr)); 954 return; 955 } 956 957 if (has_mac == 0) { 958 restrict_mask &= ~RES_MSSNTP; 959 is_authentic = AUTH_NONE; /* not required */ 960 DPRINTF(2, ("receive: at %ld %s<-%s mode %d/%s:%s len %d org %#010x.%08x xmt %#010x.%08x NOMAC\n", 961 current_time, stoa(dstadr_sin), 962 stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str, 963 authlen, 964 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 965 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 966 } else if (crypto_nak_test == VALIDNAK) { 967 restrict_mask &= ~RES_MSSNTP; 968 is_authentic = AUTH_CRYPTO; /* crypto-NAK */ 969 DPRINTF(2, ("receive: at %ld %s<-%s mode %d/%s:%s keyid %08x len %d auth %d org %#010x.%08x xmt %#010x.%08x MAC4\n", 970 current_time, stoa(dstadr_sin), 971 stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str, 972 skeyid, authlen + has_mac, is_authentic, 973 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 974 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 975 976 #ifdef HAVE_NTP_SIGND 977 /* 978 * If the signature is 20 bytes long, the last 16 of 979 * which are zero, then this is a Microsoft client 980 * wanting AD-style authentication of the server's 981 * reply. 982 * 983 * This is described in Microsoft's WSPP docs, in MS-SNTP: 984 * http://msdn.microsoft.com/en-us/library/cc212930.aspx 985 */ 986 } else if ( has_mac == MAX_MD5_LEN 987 && (restrict_mask & RES_MSSNTP) 988 && (retcode == AM_FXMIT || retcode == AM_NEWPASS) 989 && (memcmp(zero_key, (char *)pkt + authlen + 4, 990 MAX_MD5_LEN - 4) == 0)) { 991 is_authentic = AUTH_NONE; 992 #endif /* HAVE_NTP_SIGND */ 993 994 } else { 995 /* 996 * has_mac is not 0 997 * Not a VALID_NAK 998 * Not an MS-SNTP SIGND packet 999 * 1000 * So there is a MAC here. 1001 */ 1002 1003 restrict_mask &= ~RES_MSSNTP; 1004 #ifdef AUTOKEY 1005 /* 1006 * For autokey modes, generate the session key 1007 * and install in the key cache. Use the socket 1008 * broadcast or unicast address as appropriate. 1009 */ 1010 if (crypto_flags && skeyid > NTP_MAXKEY) { 1011 1012 /* 1013 * More on the autokey dance (AKD). A cookie is 1014 * constructed from public and private values. 1015 * For broadcast packets, the cookie is public 1016 * (zero). For packets that match no 1017 * association, the cookie is hashed from the 1018 * addresses and private value. For server 1019 * packets, the cookie was previously obtained 1020 * from the server. For symmetric modes, the 1021 * cookie was previously constructed using an 1022 * agreement protocol; however, should PKI be 1023 * unavailable, we construct a fake agreement as 1024 * the EXOR of the peer and host cookies. 1025 * 1026 * hismode ephemeral persistent 1027 * ======================================= 1028 * active 0 cookie# 1029 * passive 0% cookie# 1030 * client sys cookie 0% 1031 * server 0% sys cookie 1032 * broadcast 0 0 1033 * 1034 * # if unsync, 0 1035 * % can't happen 1036 */ 1037 if (has_mac < (int)MAX_MD5_LEN) { 1038 DPRINTF(2, ("receive: drop: MD5 digest too short\n")); 1039 sys_badauth++; 1040 return; 1041 } 1042 if (hismode == MODE_BROADCAST) { 1043 1044 /* 1045 * For broadcaster, use the interface 1046 * broadcast address when available; 1047 * otherwise, use the unicast address 1048 * found when the association was 1049 * mobilized. However, if this is from 1050 * the wildcard interface, game over. 1051 */ 1052 if ( crypto_flags 1053 && rbufp->dstadr == 1054 ANY_INTERFACE_CHOOSE(&rbufp->recv_srcadr)) { 1055 DPRINTF(2, ("receive: drop: BCAST from wildcard\n")); 1056 sys_restricted++; 1057 return; /* no wildcard */ 1058 } 1059 pkeyid = 0; 1060 if (!SOCK_UNSPEC(&rbufp->dstadr->bcast)) 1061 dstadr_sin = 1062 &rbufp->dstadr->bcast; 1063 } else if (peer == NULL) { 1064 pkeyid = session_key( 1065 &rbufp->recv_srcadr, dstadr_sin, 0, 1066 sys_private, 0); 1067 } else { 1068 pkeyid = peer->pcookie; 1069 } 1070 1071 /* 1072 * The session key includes both the public 1073 * values and cookie. In case of an extension 1074 * field, the cookie used for authentication 1075 * purposes is zero. Note the hash is saved for 1076 * use later in the autokey mambo. 1077 */ 1078 if (authlen > (int)LEN_PKT_NOMAC && pkeyid != 0) { 1079 session_key(&rbufp->recv_srcadr, 1080 dstadr_sin, skeyid, 0, 2); 1081 tkeyid = session_key( 1082 &rbufp->recv_srcadr, dstadr_sin, 1083 skeyid, pkeyid, 0); 1084 } else { 1085 tkeyid = session_key( 1086 &rbufp->recv_srcadr, dstadr_sin, 1087 skeyid, pkeyid, 2); 1088 } 1089 1090 } 1091 #endif /* AUTOKEY */ 1092 1093 /* 1094 * Compute the cryptosum. Note a clogging attack may 1095 * succeed in bloating the key cache. If an autokey, 1096 * purge it immediately, since we won't be needing it 1097 * again. If the packet is authentic, it can mobilize an 1098 * association. Note that there is no key zero. 1099 */ 1100 if (!authdecrypt(skeyid, (u_int32 *)pkt, authlen, 1101 has_mac)) 1102 is_authentic = AUTH_ERROR; 1103 else 1104 is_authentic = AUTH_OK; 1105 #ifdef AUTOKEY 1106 if (crypto_flags && skeyid > NTP_MAXKEY) 1107 authtrust(skeyid, 0); 1108 #endif /* AUTOKEY */ 1109 DPRINTF(2, ("receive: at %ld %s<-%s mode %d/%s:%s keyid %08x len %d auth %d org %#010x.%08x xmt %#010x.%08x\n", 1110 current_time, stoa(dstadr_sin), 1111 stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str, 1112 skeyid, authlen + has_mac, is_authentic, 1113 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 1114 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 1115 } 1116 1117 1118 /* 1119 * Bug 3454: 1120 * 1121 * Now come at this from a different perspective: 1122 * - If we expect a MAC and it's not there, we drop it. 1123 * - If we expect one keyID and get another, we drop it. 1124 * - If we have a MAC ahd it hasn't been validated yet, try. 1125 * - if the provided MAC doesn't validate, we drop it. 1126 * 1127 * There might be more to this. 1128 */ 1129 if (0 != peer && 0 != peer->keyid) { 1130 /* Should we msyslog() any of these? */ 1131 1132 /* 1133 * This should catch: 1134 * - no keyID where one is expected, 1135 * - different keyID than what we expect. 1136 */ 1137 if (peer->keyid != skeyid) { 1138 DPRINTF(2, ("receive: drop: Wanted keyID %d, got %d from %s\n", 1139 peer->keyid, skeyid, 1140 stoa(&rbufp->recv_srcadr))); 1141 sys_restricted++; 1142 return; /* drop: access denied */ 1143 } 1144 1145 /* 1146 * if has_mac != 0 ... 1147 * - If it has not yet been validated, do so. 1148 * (under what circumstances might that happen?) 1149 * - if missing or bad MAC, log and drop. 1150 */ 1151 if (0 != has_mac) { 1152 if (is_authentic == AUTH_UNKNOWN) { 1153 /* How can this happen? */ 1154 DPRINTF(2, ("receive: 3454 check: AUTH_UNKNOWN from %s\n", 1155 stoa(&rbufp->recv_srcadr))); 1156 if (!authdecrypt(skeyid, (u_int32 *)pkt, authlen, 1157 has_mac)) { 1158 /* MAC invalid or not found */ 1159 is_authentic = AUTH_ERROR; 1160 } else { 1161 is_authentic = AUTH_OK; 1162 } 1163 } 1164 if (is_authentic != AUTH_OK) { 1165 DPRINTF(2, ("receive: drop: missing or bad MAC from %s\n", 1166 stoa(&rbufp->recv_srcadr))); 1167 sys_restricted++; 1168 return; /* drop: access denied */ 1169 } 1170 } 1171 } 1172 /**/ 1173 1174 /* 1175 ** On-Wire Protocol Layer 1176 ** 1177 ** Verify protocol operations consistent with the on-wire protocol. 1178 ** The protocol discards bogus and duplicate packets as well as 1179 ** minimizes disruptions doe to protocol restarts and dropped 1180 ** packets. The operations are controlled by two timestamps: 1181 ** the transmit timestamp saved in the client state variables, 1182 ** and the origin timestamp in the server packet header. The 1183 ** comparison of these two timestamps is called the loopback test. 1184 ** The transmit timestamp functions as a nonce to verify that the 1185 ** response corresponds to the original request. The transmit 1186 ** timestamp also serves to discard replays of the most recent 1187 ** packet. Upon failure of either test, the packet is discarded 1188 ** with no further action. 1189 */ 1190 1191 /* 1192 * The association matching rules are implemented by a set of 1193 * routines and an association table. A packet matching an 1194 * association is processed by the peer process for that 1195 * association. If there are no errors, an ephemeral association 1196 * is mobilized: a broadcast packet mobilizes a broadcast client 1197 * aassociation; a manycast server packet mobilizes a manycast 1198 * client association; a symmetric active packet mobilizes a 1199 * symmetric passive association. 1200 */ 1201 switch (retcode) { 1202 1203 /* 1204 * This is a client mode packet not matching any association. If 1205 * an ordinary client, simply toss a server mode packet back 1206 * over the fence. If a manycast client, we have to work a 1207 * little harder. 1208 * 1209 * There are cases here where we do not call record_raw_stats(). 1210 */ 1211 case AM_FXMIT: 1212 1213 /* 1214 * If authentication OK, send a server reply; otherwise, 1215 * send a crypto-NAK. 1216 */ 1217 if (!(rbufp->dstadr->flags & INT_MCASTOPEN)) { 1218 /* HMS: would be nice to log FAST_XMIT|BADAUTH|RESTRICTED */ 1219 record_raw_stats(&rbufp->recv_srcadr, 1220 &rbufp->dstadr->sin, 1221 &p_org, &p_rec, &p_xmt, &rbufp->recv_time, 1222 PKT_LEAP(pkt->li_vn_mode), 1223 PKT_VERSION(pkt->li_vn_mode), 1224 PKT_MODE(pkt->li_vn_mode), 1225 PKT_TO_STRATUM(pkt->stratum), 1226 pkt->ppoll, 1227 pkt->precision, 1228 FPTOD(NTOHS_FP(pkt->rootdelay)), 1229 FPTOD(NTOHS_FP(pkt->rootdisp)), 1230 pkt->refid, 1231 rbufp->recv_length - MIN_V4_PKT_LEN, (u_char *)&pkt->exten); 1232 1233 if (AUTH(restrict_mask & RES_DONTTRUST, 1234 is_authentic)) { 1235 fast_xmit(rbufp, MODE_SERVER, skeyid, 1236 restrict_mask); 1237 } else if (is_authentic == AUTH_ERROR) { 1238 fast_xmit(rbufp, MODE_SERVER, 0, 1239 restrict_mask); 1240 sys_badauth++; 1241 } else { 1242 DPRINTF(2, ("receive: AM_FXMIT drop: !mcast restricted\n")); 1243 sys_restricted++; 1244 } 1245 1246 return; /* hooray */ 1247 } 1248 1249 /* 1250 * This must be manycast. Do not respond if not 1251 * configured as a manycast server. 1252 */ 1253 if (!sys_manycastserver) { 1254 DPRINTF(2, ("receive: AM_FXMIT drop: Not manycastserver\n")); 1255 sys_restricted++; 1256 return; /* not enabled */ 1257 } 1258 1259 #ifdef AUTOKEY 1260 /* 1261 * Do not respond if not the same group. 1262 */ 1263 if (group_test(groupname, NULL)) { 1264 DPRINTF(2, ("receive: AM_FXMIT drop: empty groupname\n")); 1265 sys_declined++; 1266 return; 1267 } 1268 #endif /* AUTOKEY */ 1269 1270 /* 1271 * Do not respond if we are not synchronized or our 1272 * stratum is greater than the manycaster or the 1273 * manycaster has already synchronized to us. 1274 */ 1275 if ( sys_leap == LEAP_NOTINSYNC 1276 || sys_stratum >= hisstratum 1277 || (!sys_cohort && sys_stratum == hisstratum + 1) 1278 || rbufp->dstadr->addr_refid == pkt->refid) { 1279 DPRINTF(2, ("receive: AM_FXMIT drop: LEAP_NOTINSYNC || stratum || loop\n")); 1280 sys_declined++; 1281 return; /* no help */ 1282 } 1283 1284 /* 1285 * Respond only if authentication succeeds. Don't do a 1286 * crypto-NAK, as that would not be useful. 1287 */ 1288 if (AUTH(restrict_mask & RES_DONTTRUST, is_authentic)) { 1289 record_raw_stats(&rbufp->recv_srcadr, 1290 &rbufp->dstadr->sin, 1291 &p_org, &p_rec, &p_xmt, &rbufp->recv_time, 1292 PKT_LEAP(pkt->li_vn_mode), 1293 PKT_VERSION(pkt->li_vn_mode), 1294 PKT_MODE(pkt->li_vn_mode), 1295 PKT_TO_STRATUM(pkt->stratum), 1296 pkt->ppoll, 1297 pkt->precision, 1298 FPTOD(NTOHS_FP(pkt->rootdelay)), 1299 FPTOD(NTOHS_FP(pkt->rootdisp)), 1300 pkt->refid, 1301 rbufp->recv_length - MIN_V4_PKT_LEN, (u_char *)&pkt->exten); 1302 1303 fast_xmit(rbufp, MODE_SERVER, skeyid, 1304 restrict_mask); 1305 } 1306 return; /* hooray */ 1307 1308 /* 1309 * This is a server mode packet returned in response to a client 1310 * mode packet sent to a multicast group address (for 1311 * manycastclient) or to a unicast address (for pool). The 1312 * origin timestamp is a good nonce to reliably associate the 1313 * reply with what was sent. If there is no match, that's 1314 * curious and could be an intruder attempting to clog, so we 1315 * just ignore it. 1316 * 1317 * If the packet is authentic and the manycastclient or pool 1318 * association is found, we mobilize a client association and 1319 * copy pertinent variables from the manycastclient or pool 1320 * association to the new client association. If not, just 1321 * ignore the packet. 1322 * 1323 * There is an implosion hazard at the manycast client, since 1324 * the manycast servers send the server packet immediately. If 1325 * the guy is already here, don't fire up a duplicate. 1326 * 1327 * There are cases here where we do not call record_raw_stats(). 1328 */ 1329 case AM_MANYCAST: 1330 1331 #ifdef AUTOKEY 1332 /* 1333 * Do not respond if not the same group. 1334 */ 1335 if (group_test(groupname, NULL)) { 1336 DPRINTF(2, ("receive: AM_MANYCAST drop: empty groupname\n")); 1337 sys_declined++; 1338 return; 1339 } 1340 #endif /* AUTOKEY */ 1341 if ((peer2 = findmanycastpeer(rbufp)) == NULL) { 1342 DPRINTF(2, ("receive: AM_MANYCAST drop: No manycast peer\n")); 1343 sys_restricted++; 1344 return; /* not enabled */ 1345 } 1346 if (!AUTH( (!(peer2->cast_flags & MDF_POOL) 1347 && sys_authenticate) 1348 || (restrict_mask & (RES_NOPEER | 1349 RES_DONTTRUST)), is_authentic) 1350 /* MC: RES_NOEPEER? */ 1351 ) { 1352 DPRINTF(2, ("receive: AM_MANYCAST drop: bad auth || (NOPEER|DONTTRUST)\n")); 1353 sys_restricted++; 1354 return; /* access denied */ 1355 } 1356 1357 /* 1358 * Do not respond if unsynchronized or stratum is below 1359 * the floor or at or above the ceiling. 1360 */ 1361 if ( hisleap == LEAP_NOTINSYNC 1362 || hisstratum < sys_floor 1363 || hisstratum >= sys_ceiling) { 1364 DPRINTF(2, ("receive: AM_MANYCAST drop: unsync/stratum\n")); 1365 sys_declined++; 1366 return; /* no help */ 1367 } 1368 peer = newpeer(&rbufp->recv_srcadr, NULL, rbufp->dstadr, 1369 r4a.ippeerlimit, MODE_CLIENT, hisversion, 1370 peer2->minpoll, peer2->maxpoll, 1371 FLAG_PREEMPT | (FLAG_IBURST & peer2->flags), 1372 MDF_UCAST | MDF_UCLNT, 0, skeyid, sys_ident); 1373 if (NULL == peer) { 1374 DPRINTF(2, ("receive: AM_MANYCAST drop: duplicate\n")); 1375 sys_declined++; 1376 return; /* ignore duplicate */ 1377 } 1378 1379 /* 1380 * After each ephemeral pool association is spun, 1381 * accelerate the next poll for the pool solicitor so 1382 * the pool will fill promptly. 1383 */ 1384 if (peer2->cast_flags & MDF_POOL) 1385 peer2->nextdate = current_time + 1; 1386 1387 /* 1388 * Further processing of the solicitation response would 1389 * simply detect its origin timestamp as bogus for the 1390 * brand-new association (it matches the prototype 1391 * association) and tinker with peer->nextdate delaying 1392 * first sync. 1393 */ 1394 return; /* solicitation response handled */ 1395 1396 /* 1397 * This is the first packet received from a broadcast server. If 1398 * the packet is authentic and we are enabled as broadcast 1399 * client, mobilize a broadcast client association. We don't 1400 * kiss any frogs here. 1401 * 1402 * There are cases here where we do not call record_raw_stats(). 1403 */ 1404 case AM_NEWBCL: 1405 1406 #ifdef AUTOKEY 1407 /* 1408 * Do not respond if not the same group. 1409 */ 1410 if (group_test(groupname, sys_ident)) { 1411 DPRINTF(2, ("receive: AM_NEWBCL drop: groupname mismatch\n")); 1412 sys_declined++; 1413 return; 1414 } 1415 #endif /* AUTOKEY */ 1416 if (sys_bclient == 0) { 1417 DPRINTF(2, ("receive: AM_NEWBCL drop: not a bclient\n")); 1418 sys_restricted++; 1419 return; /* not enabled */ 1420 } 1421 if (!AUTH(sys_authenticate | (restrict_mask & 1422 (RES_NOPEER | RES_DONTTRUST)), is_authentic) 1423 /* NEWBCL: RES_NOEPEER? */ 1424 ) { 1425 DPRINTF(2, ("receive: AM_NEWBCL drop: AUTH failed\n")); 1426 sys_restricted++; 1427 return; /* access denied */ 1428 } 1429 1430 /* 1431 * Do not respond if unsynchronized or stratum is below 1432 * the floor or at or above the ceiling. 1433 */ 1434 if ( hisleap == LEAP_NOTINSYNC 1435 || hisstratum < sys_floor 1436 || hisstratum >= sys_ceiling) { 1437 DPRINTF(2, ("receive: AM_NEWBCL drop: Unsync or bad stratum\n")); 1438 sys_declined++; 1439 return; /* no help */ 1440 } 1441 1442 #ifdef AUTOKEY 1443 /* 1444 * Do not respond if Autokey and the opcode is not a 1445 * CRYPTO_ASSOC response with association ID. 1446 */ 1447 if ( crypto_flags && skeyid > NTP_MAXKEY 1448 && (opcode & 0xffff0000) != (CRYPTO_ASSOC | CRYPTO_RESP)) { 1449 DPRINTF(2, ("receive: AM_NEWBCL drop: Autokey but not CRYPTO_ASSOC\n")); 1450 sys_declined++; 1451 return; /* protocol error */ 1452 } 1453 #endif /* AUTOKEY */ 1454 1455 /* 1456 * Broadcasts received via a multicast address may 1457 * arrive after a unicast volley has begun 1458 * with the same remote address. newpeer() will not 1459 * find duplicate associations on other local endpoints 1460 * if a non-NULL endpoint is supplied. multicastclient 1461 * ephemeral associations are unique across all local 1462 * endpoints. 1463 */ 1464 if (!(INT_MCASTOPEN & rbufp->dstadr->flags)) 1465 match_ep = rbufp->dstadr; 1466 else 1467 match_ep = NULL; 1468 1469 /* 1470 * Determine whether to execute the initial volley. 1471 */ 1472 if (sys_bdelay > 0.0) { 1473 #ifdef AUTOKEY 1474 /* 1475 * If a two-way exchange is not possible, 1476 * neither is Autokey. 1477 */ 1478 if (crypto_flags && skeyid > NTP_MAXKEY) { 1479 sys_restricted++; 1480 DPRINTF(2, ("receive: AM_NEWBCL drop: Autokey but not 2-way\n")); 1481 return; /* no autokey */ 1482 } 1483 #endif /* AUTOKEY */ 1484 1485 /* 1486 * Do not execute the volley. Start out in 1487 * broadcast client mode. 1488 */ 1489 peer = newpeer(&rbufp->recv_srcadr, NULL, match_ep, 1490 r4a.ippeerlimit, MODE_BCLIENT, hisversion, 1491 pkt->ppoll, pkt->ppoll, 1492 FLAG_PREEMPT, MDF_BCLNT, 0, skeyid, sys_ident); 1493 if (NULL == peer) { 1494 DPRINTF(2, ("receive: AM_NEWBCL drop: duplicate\n")); 1495 sys_restricted++; 1496 return; /* ignore duplicate */ 1497 1498 } else { 1499 peer->delay = sys_bdelay; 1500 peer->bxmt = p_xmt; 1501 } 1502 break; 1503 } 1504 1505 /* 1506 * Execute the initial volley in order to calibrate the 1507 * propagation delay and run the Autokey protocol. 1508 * 1509 * Note that the minpoll is taken from the broadcast 1510 * packet, normally 6 (64 s) and that the poll interval 1511 * is fixed at this value. 1512 */ 1513 peer = newpeer(&rbufp->recv_srcadr, NULL, match_ep, 1514 r4a.ippeerlimit, MODE_CLIENT, hisversion, 1515 pkt->ppoll, pkt->ppoll, 1516 FLAG_BC_VOL | FLAG_IBURST | FLAG_PREEMPT, MDF_BCLNT, 1517 0, skeyid, sys_ident); 1518 if (NULL == peer) { 1519 DPRINTF(2, ("receive: AM_NEWBCL drop: empty newpeer() failed\n")); 1520 sys_restricted++; 1521 return; /* ignore duplicate */ 1522 } 1523 peer->bxmt = p_xmt; 1524 #ifdef AUTOKEY 1525 if (skeyid > NTP_MAXKEY) 1526 crypto_recv(peer, rbufp); 1527 #endif /* AUTOKEY */ 1528 1529 return; /* hooray */ 1530 1531 /* 1532 * This is the first packet received from a symmetric active 1533 * peer. If the packet is authentic, the first he sent, and 1534 * RES_NOEPEER is not enabled, mobilize a passive association 1535 * If not, kiss the frog. 1536 * 1537 * There are cases here where we do not call record_raw_stats(). 1538 */ 1539 case AM_NEWPASS: 1540 1541 #ifdef AUTOKEY 1542 /* 1543 * Do not respond if not the same group. 1544 */ 1545 if (group_test(groupname, sys_ident)) { 1546 DPRINTF(2, ("receive: AM_NEWPASS drop: Autokey group mismatch\n")); 1547 sys_declined++; 1548 return; 1549 } 1550 #endif /* AUTOKEY */ 1551 if (!AUTH(sys_authenticate | (restrict_mask & 1552 (RES_NOPEER | RES_DONTTRUST)), is_authentic) 1553 ) { 1554 if (0 == (restrict_mask & RES_NOEPEER)) { 1555 /* 1556 * If authenticated but cannot mobilize an 1557 * association, send a symmetric passive 1558 * response without mobilizing an association. 1559 * This is for drat broken Windows clients. See 1560 * Microsoft KB 875424 for preferred workaround. 1561 */ 1562 if (AUTH(restrict_mask & RES_DONTTRUST, 1563 is_authentic)) { 1564 fast_xmit(rbufp, MODE_PASSIVE, skeyid, 1565 restrict_mask); 1566 return; /* hooray */ 1567 } 1568 if (is_authentic == AUTH_ERROR) { 1569 fast_xmit(rbufp, MODE_ACTIVE, 0, 1570 restrict_mask); 1571 sys_restricted++; 1572 return; 1573 } 1574 } 1575 /* [Bug 2941] 1576 * If we got here, the packet isn't part of an 1577 * existing association, either isn't correctly 1578 * authenticated or it is but we are refusing 1579 * ephemeral peer requests, and it didn't meet 1580 * either of the previous two special cases so we 1581 * should just drop it on the floor. For example, 1582 * crypto-NAKs (is_authentic == AUTH_CRYPTO) 1583 * will make it this far. This is just 1584 * debug-printed and not logged to avoid log 1585 * flooding. 1586 */ 1587 DPRINTF(2, ("receive: at %ld refusing to mobilize passive association" 1588 " with unknown peer %s mode %d/%s:%s keyid %08x len %d auth %d\n", 1589 current_time, stoa(&rbufp->recv_srcadr), 1590 hismode, hm_str, am_str, skeyid, 1591 (authlen + has_mac), is_authentic)); 1592 sys_declined++; 1593 return; 1594 } 1595 1596 /* 1597 * Do not respond if synchronized and if stratum is 1598 * below the floor or at or above the ceiling. Note, 1599 * this allows an unsynchronized peer to synchronize to 1600 * us. It would be very strange if he did and then was 1601 * nipped, but that could only happen if we were 1602 * operating at the top end of the range. It also means 1603 * we will spin an ephemeral association in response to 1604 * MODE_ACTIVE KoDs, which will time out eventually. 1605 */ 1606 if ( hisleap != LEAP_NOTINSYNC 1607 && (hisstratum < sys_floor || hisstratum >= sys_ceiling)) { 1608 DPRINTF(2, ("receive: AM_NEWPASS drop: Autokey group mismatch\n")); 1609 sys_declined++; 1610 return; /* no help */ 1611 } 1612 1613 /* 1614 * The message is correctly authenticated and allowed. 1615 * Mobilize a symmetric passive association, if we won't 1616 * exceed the ippeerlimit. 1617 */ 1618 if ((peer = newpeer(&rbufp->recv_srcadr, NULL, rbufp->dstadr, 1619 r4a.ippeerlimit, MODE_PASSIVE, hisversion, 1620 pkt->ppoll, NTP_MAXDPOLL, 0, MDF_UCAST, 0, 1621 skeyid, sys_ident)) == NULL) { 1622 DPRINTF(2, ("receive: AM_NEWPASS drop: newpeer() failed\n")); 1623 sys_declined++; 1624 return; /* ignore duplicate */ 1625 } 1626 break; 1627 1628 1629 /* 1630 * Process regular packet. Nothing special. 1631 * 1632 * There are cases here where we do not call record_raw_stats(). 1633 */ 1634 case AM_PROCPKT: 1635 1636 #ifdef AUTOKEY 1637 /* 1638 * Do not respond if not the same group. 1639 */ 1640 if (group_test(groupname, peer->ident)) { 1641 DPRINTF(2, ("receive: AM_PROCPKT drop: Autokey group mismatch\n")); 1642 sys_declined++; 1643 return; 1644 } 1645 #endif /* AUTOKEY */ 1646 1647 if (MODE_BROADCAST == hismode) { 1648 int bail = 0; 1649 l_fp tdiff; 1650 u_long deadband; 1651 1652 DPRINTF(2, ("receive: PROCPKT/BROADCAST: prev pkt %ld seconds ago, ppoll: %d, %d secs\n", 1653 (current_time - peer->timelastrec), 1654 peer->ppoll, (1 << peer->ppoll) 1655 )); 1656 /* Things we can check: 1657 * 1658 * Did the poll interval change? 1659 * Is the poll interval in the packet in-range? 1660 * Did this packet arrive too soon? 1661 * Is the timestamp in this packet monotonic 1662 * with respect to the previous packet? 1663 */ 1664 1665 /* This is noteworthy, not error-worthy */ 1666 if (pkt->ppoll != peer->ppoll) { 1667 msyslog(LOG_INFO, "receive: broadcast poll from %s changed from %u to %u", 1668 stoa(&rbufp->recv_srcadr), 1669 peer->ppoll, pkt->ppoll); 1670 } 1671 1672 /* This is error-worthy */ 1673 if (pkt->ppoll < peer->minpoll || 1674 pkt->ppoll > peer->maxpoll ) { 1675 msyslog(LOG_INFO, "receive: broadcast poll of %u from %s is out-of-range (%d to %d)!", 1676 pkt->ppoll, stoa(&rbufp->recv_srcadr), 1677 peer->minpoll, peer->maxpoll); 1678 ++bail; 1679 } 1680 1681 /* too early? worth an error, too! 1682 * 1683 * [Bug 3113] Ensure that at least one poll 1684 * interval has elapsed since the last **clean** 1685 * packet was received. We limit the check to 1686 * **clean** packets to prevent replayed packets 1687 * and incorrectly authenticated packets, which 1688 * we'll discard, from being used to create a 1689 * denial of service condition. 1690 */ 1691 deadband = (1u << pkt->ppoll); 1692 if (FLAG_BC_VOL & peer->flags) 1693 deadband -= 3; /* allow greater fuzz after volley */ 1694 if ((current_time - peer->timereceived) < deadband) { 1695 msyslog(LOG_INFO, "receive: broadcast packet from %s arrived after %lu, not %lu seconds!", 1696 stoa(&rbufp->recv_srcadr), 1697 (current_time - peer->timereceived), 1698 deadband); 1699 ++bail; 1700 } 1701 1702 /* Alert if time from the server is non-monotonic. 1703 * 1704 * [Bug 3114] is about Broadcast mode replay DoS. 1705 * 1706 * Broadcast mode *assumes* a trusted network. 1707 * Even so, it's nice to be robust in the face 1708 * of attacks. 1709 * 1710 * If we get an authenticated broadcast packet 1711 * with an "earlier" timestamp, it means one of 1712 * two things: 1713 * 1714 * - the broadcast server had a backward step. 1715 * 1716 * - somebody is trying a replay attack. 1717 * 1718 * deadband: By default, we assume the broadcast 1719 * network is trustable, so we take our accepted 1720 * broadcast packets as we receive them. But 1721 * some folks might want to take additional poll 1722 * delays before believing a backward step. 1723 */ 1724 if (sys_bcpollbstep) { 1725 /* pkt->ppoll or peer->ppoll ? */ 1726 deadband = (1u << pkt->ppoll) 1727 * sys_bcpollbstep + 2; 1728 } else { 1729 deadband = 0; 1730 } 1731 1732 if (L_ISZERO(&peer->bxmt)) { 1733 tdiff.l_ui = tdiff.l_uf = 0; 1734 } else { 1735 tdiff = p_xmt; 1736 L_SUB(&tdiff, &peer->bxmt); 1737 } 1738 if (tdiff.l_i < 0 && 1739 (current_time - peer->timereceived) < deadband) 1740 { 1741 msyslog(LOG_INFO, "receive: broadcast packet from %s contains non-monotonic timestamp: %#010x.%08x -> %#010x.%08x", 1742 stoa(&rbufp->recv_srcadr), 1743 peer->bxmt.l_ui, peer->bxmt.l_uf, 1744 p_xmt.l_ui, p_xmt.l_uf 1745 ); 1746 ++bail; 1747 } 1748 1749 if (bail) { 1750 DPRINTF(2, ("receive: AM_PROCPKT drop: bail\n")); 1751 peer->timelastrec = current_time; 1752 sys_declined++; 1753 return; 1754 } 1755 } 1756 1757 break; 1758 1759 /* 1760 * A passive packet matches a passive association. This is 1761 * usually the result of reconfiguring a client on the fly. As 1762 * this association might be legitimate and this packet an 1763 * attempt to deny service, just ignore it. 1764 */ 1765 case AM_ERR: 1766 DPRINTF(2, ("receive: AM_ERR drop.\n")); 1767 sys_declined++; 1768 return; 1769 1770 /* 1771 * For everything else there is the bit bucket. 1772 */ 1773 default: 1774 DPRINTF(2, ("receive: default drop.\n")); 1775 sys_declined++; 1776 return; 1777 } 1778 1779 #ifdef AUTOKEY 1780 /* 1781 * If the association is configured for Autokey, the packet must 1782 * have a public key ID; if not, the packet must have a 1783 * symmetric key ID. 1784 */ 1785 if ( is_authentic != AUTH_CRYPTO 1786 && ( ((peer->flags & FLAG_SKEY) && skeyid <= NTP_MAXKEY) 1787 || (!(peer->flags & FLAG_SKEY) && skeyid > NTP_MAXKEY))) { 1788 DPRINTF(2, ("receive: drop: Autokey but wrong/bad auth\n")); 1789 sys_badauth++; 1790 return; 1791 } 1792 #endif /* AUTOKEY */ 1793 1794 peer->received++; 1795 peer->flash &= ~PKT_TEST_MASK; 1796 if (peer->flags & FLAG_XBOGUS) { 1797 peer->flags &= ~FLAG_XBOGUS; 1798 peer->flash |= TEST3; 1799 } 1800 1801 /* 1802 * Next comes a rigorous schedule of timestamp checking. If the 1803 * transmit timestamp is zero, the server has not initialized in 1804 * interleaved modes or is horribly broken. 1805 * 1806 * A KoD packet we pay attention to cannot have a 0 transmit 1807 * timestamp. 1808 */ 1809 1810 kissCode = kiss_code_check(hisleap, hisstratum, hismode, pkt->refid); 1811 1812 if (L_ISZERO(&p_xmt)) { 1813 peer->flash |= TEST3; /* unsynch */ 1814 if (kissCode != NOKISS) { /* KoD packet */ 1815 peer->bogusorg++; /* for TEST2 or TEST3 */ 1816 msyslog(LOG_INFO, 1817 "receive: Unexpected zero transmit timestamp in KoD from %s", 1818 ntoa(&peer->srcadr)); 1819 return; 1820 } 1821 1822 /* 1823 * If the transmit timestamp duplicates our previous one, the 1824 * packet is a replay. This prevents the bad guys from replaying 1825 * the most recent packet, authenticated or not. 1826 */ 1827 } else if (L_ISEQU(&peer->xmt, &p_xmt)) { 1828 DPRINTF(2, ("receive: drop: Duplicate xmit\n")); 1829 peer->flash |= TEST1; /* duplicate */ 1830 peer->oldpkt++; 1831 return; 1832 1833 /* 1834 * If this is a broadcast mode packet, make sure hisstratum 1835 * is appropriate. Don't do anything else here - we wait to 1836 * see if this is an interleave broadcast packet until after 1837 * we've validated the MAC that SHOULD be provided. 1838 * 1839 * hisstratum cannot be 0 - see assertion above. 1840 * If hisstratum is 15, then we'll advertise as UNSPEC but 1841 * at least we'll be able to sync with the broadcast server. 1842 */ 1843 } else if (hismode == MODE_BROADCAST) { 1844 /* 0 is unexpected too, and impossible */ 1845 if (STRATUM_UNSPEC <= hisstratum) { 1846 /* Is this a ++sys_declined or ??? */ 1847 msyslog(LOG_INFO, 1848 "receive: Unexpected stratum (%d) in broadcast from %s", 1849 hisstratum, ntoa(&peer->srcadr)); 1850 return; 1851 } 1852 1853 /* 1854 * Basic KoD validation checking: 1855 * 1856 * KoD packets are a mixed-blessing. Forged KoD packets 1857 * are DoS attacks. There are rare situations where we might 1858 * get a valid KoD response, though. Since KoD packets are 1859 * a special case that complicate the checks we do next, we 1860 * handle the basic KoD checks here. 1861 * 1862 * Note that we expect the incoming KoD packet to have its 1863 * (nonzero) org, rec, and xmt timestamps set to the xmt timestamp 1864 * that we have previously sent out. Watch interleave mode. 1865 */ 1866 } else if (kissCode != NOKISS) { 1867 DEBUG_INSIST(!L_ISZERO(&p_xmt)); 1868 if ( L_ISZERO(&p_org) /* We checked p_xmt above */ 1869 || L_ISZERO(&p_rec)) { 1870 peer->bogusorg++; 1871 msyslog(LOG_INFO, 1872 "receive: KoD packet from %s has a zero org or rec timestamp. Ignoring.", 1873 ntoa(&peer->srcadr)); 1874 return; 1875 } 1876 1877 if ( !L_ISEQU(&p_xmt, &p_org) 1878 || !L_ISEQU(&p_xmt, &p_rec)) { 1879 peer->bogusorg++; 1880 msyslog(LOG_INFO, 1881 "receive: KoD packet from %s has inconsistent xmt/org/rec timestamps. Ignoring.", 1882 ntoa(&peer->srcadr)); 1883 return; 1884 } 1885 1886 /* Be conservative */ 1887 if (peer->flip == 0 && !L_ISEQU(&p_org, &peer->aorg)) { 1888 peer->bogusorg++; 1889 msyslog(LOG_INFO, 1890 "receive: flip 0 KoD origin timestamp %#010x.%08x from %s does not match %#010x.%08x - ignoring.", 1891 p_org.l_ui, p_org.l_uf, 1892 ntoa(&peer->srcadr), 1893 peer->aorg.l_ui, peer->aorg.l_uf); 1894 return; 1895 } else if (peer->flip == 1 && !L_ISEQU(&p_org, &peer->borg)) { 1896 peer->bogusorg++; 1897 msyslog(LOG_INFO, 1898 "receive: flip 1 KoD origin timestamp %#010x.%08x from %s does not match interleave %#010x.%08x - ignoring.", 1899 p_org.l_ui, p_org.l_uf, 1900 ntoa(&peer->srcadr), 1901 peer->borg.l_ui, peer->borg.l_uf); 1902 return; 1903 } 1904 1905 /* 1906 * Basic mode checks: 1907 * 1908 * If there is no origin timestamp, it's either an initial packet 1909 * or we've already received a response to our query. Of course, 1910 * should 'aorg' be all-zero because this really was the original 1911 * transmit timestamp, we'll ignore this reply. There is a window 1912 * of one nanosecond once every 136 years' time where this is 1913 * possible. We currently ignore this situation, as a completely 1914 * zero timestamp is (quietly?) disallowed. 1915 * 1916 * Otherwise, check for bogus packet in basic mode. 1917 * If it is bogus, switch to interleaved mode and resynchronize, 1918 * but only after confirming the packet is not bogus in 1919 * symmetric interleaved mode. 1920 * 1921 * This could also mean somebody is forging packets claiming to 1922 * be from us, attempting to cause our server to KoD us. 1923 * 1924 * We have earlier asserted that hisstratum cannot be 0. 1925 * If hisstratum is STRATUM_UNSPEC, it means he's not sync'd. 1926 */ 1927 } else if (peer->flip == 0) { 1928 if (0) { 1929 } else if (L_ISZERO(&p_org)) { 1930 const char *action; 1931 1932 #ifdef BUG3361 1933 msyslog(LOG_INFO, 1934 "receive: BUG 3361: Clearing peer->aorg "); 1935 L_CLR(&peer->aorg); 1936 #endif 1937 /**/ 1938 switch (hismode) { 1939 /* We allow 0org for: */ 1940 case UCHAR_MAX: 1941 action = "Allow"; 1942 break; 1943 /* We disallow 0org for: */ 1944 case MODE_UNSPEC: 1945 case MODE_ACTIVE: 1946 case MODE_PASSIVE: 1947 case MODE_CLIENT: 1948 case MODE_SERVER: 1949 case MODE_BROADCAST: 1950 action = "Drop"; 1951 peer->bogusorg++; 1952 peer->flash |= TEST2; /* bogus */ 1953 break; 1954 default: 1955 action = ""; /* for cranky compilers / MSVC */ 1956 INSIST(!"receive(): impossible hismode"); 1957 break; 1958 } 1959 /**/ 1960 msyslog(LOG_INFO, 1961 "receive: %s 0 origin timestamp from %s@%s xmt %#010x.%08x", 1962 action, hm_str, ntoa(&peer->srcadr), 1963 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)); 1964 } else if (!L_ISEQU(&p_org, &peer->aorg)) { 1965 /* are there cases here where we should bail? */ 1966 /* Should we set TEST2 if we decide to try xleave? */ 1967 peer->bogusorg++; 1968 peer->flash |= TEST2; /* bogus */ 1969 msyslog(LOG_INFO, 1970 "receive: Unexpected origin timestamp %#010x.%08x does not match aorg %#010x.%08x from %s@%s xmt %#010x.%08x", 1971 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 1972 peer->aorg.l_ui, peer->aorg.l_uf, 1973 hm_str, ntoa(&peer->srcadr), 1974 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)); 1975 if ( !L_ISZERO(&peer->dst) 1976 && L_ISEQU(&p_org, &peer->dst)) { 1977 /* Might be the start of an interleave */ 1978 if (dynamic_interleave) { 1979 peer->flip = 1; 1980 report_event(PEVNT_XLEAVE, peer, NULL); 1981 } else { 1982 msyslog(LOG_INFO, 1983 "receive: Dynamic interleave from %s@%s denied", 1984 hm_str, ntoa(&peer->srcadr)); 1985 } 1986 } 1987 } else { 1988 L_CLR(&peer->aorg); 1989 } 1990 1991 /* 1992 * Check for valid nonzero timestamp fields. 1993 */ 1994 } else if ( L_ISZERO(&p_org) 1995 || L_ISZERO(&p_rec) 1996 || L_ISZERO(&peer->dst)) { 1997 peer->flash |= TEST3; /* unsynch */ 1998 1999 /* 2000 * Check for bogus packet in interleaved symmetric mode. This 2001 * can happen if a packet is lost, duplicated or crossed. If 2002 * found, flip and resynchronize. 2003 */ 2004 } else if ( !L_ISZERO(&peer->dst) 2005 && !L_ISEQU(&p_org, &peer->dst)) { 2006 DPRINTF(2, ("receive: drop: Bogus packet in interleaved symmetric mode\n")); 2007 peer->bogusorg++; 2008 peer->flags |= FLAG_XBOGUS; 2009 peer->flash |= TEST2; /* bogus */ 2010 #ifdef BUG3453 2011 return; /* Bogus packet, we are done */ 2012 #endif 2013 } 2014 2015 /**/ 2016 2017 /* 2018 * If this is a crypto_NAK, the server cannot authenticate a 2019 * client packet. The server might have just changed keys. Clear 2020 * the association and restart the protocol. 2021 */ 2022 if (crypto_nak_test == VALIDNAK) { 2023 report_event(PEVNT_AUTH, peer, "crypto_NAK"); 2024 peer->flash |= TEST5; /* bad auth */ 2025 peer->badauth++; 2026 if (peer->flags & FLAG_PREEMPT) { 2027 if (unpeer_crypto_nak_early) { 2028 unpeer(peer); 2029 } 2030 DPRINTF(2, ("receive: drop: PREEMPT crypto_NAK\n")); 2031 return; 2032 } 2033 #ifdef AUTOKEY 2034 if (peer->crypto) { 2035 peer_clear(peer, "AUTH"); 2036 } 2037 #endif /* AUTOKEY */ 2038 DPRINTF(2, ("receive: drop: crypto_NAK\n")); 2039 return; 2040 2041 /* 2042 * If the digest fails or it's missing for authenticated 2043 * associations, the client cannot authenticate a server 2044 * reply to a client packet previously sent. The loopback check 2045 * is designed to avoid a bait-and-switch attack, which was 2046 * possible in past versions. If symmetric modes, return a 2047 * crypto-NAK. The peer should restart the protocol. 2048 */ 2049 } else if (!AUTH(peer->keyid || has_mac || 2050 (restrict_mask & RES_DONTTRUST), is_authentic)) { 2051 2052 if (peer->flash & PKT_TEST_MASK) { 2053 msyslog(LOG_INFO, 2054 "receive: Bad auth in packet with bad timestamps from %s denied - spoof?", 2055 ntoa(&peer->srcadr)); 2056 return; 2057 } 2058 2059 report_event(PEVNT_AUTH, peer, "digest"); 2060 peer->flash |= TEST5; /* bad auth */ 2061 peer->badauth++; 2062 if ( has_mac 2063 && ( hismode == MODE_ACTIVE 2064 || hismode == MODE_PASSIVE)) 2065 fast_xmit(rbufp, MODE_ACTIVE, 0, restrict_mask); 2066 if (peer->flags & FLAG_PREEMPT) { 2067 if (unpeer_digest_early) { 2068 unpeer(peer); 2069 } 2070 } 2071 #ifdef AUTOKEY 2072 else if (peer_clear_digest_early && peer->crypto) { 2073 peer_clear(peer, "AUTH"); 2074 } 2075 #endif /* AUTOKEY */ 2076 DPRINTF(2, ("receive: drop: Bad or missing AUTH\n")); 2077 return; 2078 } 2079 2080 /* 2081 * For broadcast packets: 2082 * 2083 * HMS: This next line never made much sense to me, even 2084 * when it was up higher: 2085 * If an initial volley, bail out now and let the 2086 * client do its stuff. 2087 * 2088 * If the packet has not failed authentication, then 2089 * - if the origin timestamp is nonzero this is an 2090 * interleaved broadcast, so restart the protocol. 2091 * - else, this is not an interleaved broadcast packet. 2092 */ 2093 if (hismode == MODE_BROADCAST) { 2094 if ( is_authentic == AUTH_OK 2095 || is_authentic == AUTH_NONE) { 2096 if (!L_ISZERO(&p_org)) { 2097 if (!(peer->flags & FLAG_XB)) { 2098 msyslog(LOG_INFO, 2099 "receive: Broadcast server at %s is in interleave mode", 2100 ntoa(&peer->srcadr)); 2101 peer->flags |= FLAG_XB; 2102 peer->aorg = p_xmt; 2103 peer->borg = rbufp->recv_time; 2104 report_event(PEVNT_XLEAVE, peer, NULL); 2105 return; 2106 } 2107 } else if (peer->flags & FLAG_XB) { 2108 msyslog(LOG_INFO, 2109 "receive: Broadcast server at %s is no longer in interleave mode", 2110 ntoa(&peer->srcadr)); 2111 peer->flags &= ~FLAG_XB; 2112 } 2113 } else { 2114 msyslog(LOG_INFO, 2115 "receive: Bad broadcast auth (%d) from %s", 2116 is_authentic, ntoa(&peer->srcadr)); 2117 } 2118 2119 /* 2120 * Now that we know the packet is correctly authenticated, 2121 * update peer->bxmt. 2122 */ 2123 peer->bxmt = p_xmt; 2124 } 2125 2126 2127 /* 2128 ** Update the state variables. 2129 */ 2130 if (peer->flip == 0) { 2131 if (hismode != MODE_BROADCAST) 2132 peer->rec = p_xmt; 2133 peer->dst = rbufp->recv_time; 2134 } 2135 peer->xmt = p_xmt; 2136 2137 /* 2138 * Set the peer ppoll to the maximum of the packet ppoll and the 2139 * peer minpoll. If a kiss-o'-death, set the peer minpoll to 2140 * this maximum and advance the headway to give the sender some 2141 * headroom. Very intricate. 2142 */ 2143 2144 /* 2145 * Check for any kiss codes. Note this is only used when a server 2146 * responds to a packet request. 2147 */ 2148 2149 /* 2150 * Check to see if this is a RATE Kiss Code 2151 * Currently this kiss code will accept whatever poll 2152 * rate that the server sends 2153 */ 2154 peer->ppoll = max(peer->minpoll, pkt->ppoll); 2155 if (kissCode == RATEKISS) { 2156 peer->selbroken++; /* Increment the KoD count */ 2157 report_event(PEVNT_RATE, peer, NULL); 2158 if (pkt->ppoll > peer->minpoll) 2159 peer->minpoll = peer->ppoll; 2160 peer->burst = peer->retry = 0; 2161 peer->throttle = (NTP_SHIFT + 1) * (1 << peer->minpoll); 2162 poll_update(peer, pkt->ppoll); 2163 return; /* kiss-o'-death */ 2164 } 2165 if (kissCode != NOKISS) { 2166 peer->selbroken++; /* Increment the KoD count */ 2167 return; /* Drop any other kiss code packets */ 2168 } 2169 2170 2171 /* 2172 * XXX 2173 */ 2174 2175 2176 /* 2177 * If: 2178 * - this is a *cast (uni-, broad-, or m-) server packet 2179 * - and it's symmetric-key authenticated 2180 * then see if the sender's IP is trusted for this keyid. 2181 * If it is, great - nothing special to do here. 2182 * Otherwise, we should report and bail. 2183 * 2184 * Autokey-authenticated packets are accepted. 2185 */ 2186 2187 switch (hismode) { 2188 case MODE_SERVER: /* server mode */ 2189 case MODE_BROADCAST: /* broadcast mode */ 2190 case MODE_ACTIVE: /* symmetric active mode */ 2191 case MODE_PASSIVE: /* symmetric passive mode */ 2192 if ( is_authentic == AUTH_OK 2193 && skeyid 2194 && skeyid <= NTP_MAXKEY 2195 && !authistrustedip(skeyid, &peer->srcadr)) { 2196 report_event(PEVNT_AUTH, peer, "authIP"); 2197 peer->badauth++; 2198 return; 2199 } 2200 break; 2201 2202 case MODE_CLIENT: /* client mode */ 2203 #if 0 /* At this point, MODE_CONTROL is overloaded by MODE_BCLIENT */ 2204 case MODE_CONTROL: /* control mode */ 2205 #endif 2206 case MODE_PRIVATE: /* private mode */ 2207 case MODE_BCLIENT: /* broadcast client mode */ 2208 break; 2209 2210 case MODE_UNSPEC: /* unspecified (old version) */ 2211 default: 2212 msyslog(LOG_INFO, 2213 "receive: Unexpected mode (%d) in packet from %s", 2214 hismode, ntoa(&peer->srcadr)); 2215 break; 2216 } 2217 2218 2219 /* 2220 * That was hard and I am sweaty, but the packet is squeaky 2221 * clean. Get on with real work. 2222 */ 2223 peer->timereceived = current_time; 2224 peer->timelastrec = current_time; 2225 if (is_authentic == AUTH_OK) 2226 peer->flags |= FLAG_AUTHENTIC; 2227 else 2228 peer->flags &= ~FLAG_AUTHENTIC; 2229 2230 #ifdef AUTOKEY 2231 /* 2232 * More autokey dance. The rules of the cha-cha are as follows: 2233 * 2234 * 1. If there is no key or the key is not auto, do nothing. 2235 * 2236 * 2. If this packet is in response to the one just previously 2237 * sent or from a broadcast server, do the extension fields. 2238 * Otherwise, assume bogosity and bail out. 2239 * 2240 * 3. If an extension field contains a verified signature, it is 2241 * self-authenticated and we sit the dance. 2242 * 2243 * 4. If this is a server reply, check only to see that the 2244 * transmitted key ID matches the received key ID. 2245 * 2246 * 5. Check to see that one or more hashes of the current key ID 2247 * matches the previous key ID or ultimate original key ID 2248 * obtained from the broadcaster or symmetric peer. If no 2249 * match, sit the dance and call for new autokey values. 2250 * 2251 * In case of crypto error, fire the orchestra, stop dancing and 2252 * restart the protocol. 2253 */ 2254 if (peer->flags & FLAG_SKEY) { 2255 /* 2256 * Decrement remaining autokey hashes. This isn't 2257 * perfect if a packet is lost, but results in no harm. 2258 */ 2259 ap = (struct autokey *)peer->recval.ptr; 2260 if (ap != NULL) { 2261 if (ap->seq > 0) 2262 ap->seq--; 2263 } 2264 peer->flash |= TEST8; 2265 rval = crypto_recv(peer, rbufp); 2266 if (rval == XEVNT_OK) { 2267 peer->unreach = 0; 2268 } else { 2269 if (rval == XEVNT_ERR) { 2270 report_event(PEVNT_RESTART, peer, 2271 "crypto error"); 2272 peer_clear(peer, "CRYP"); 2273 peer->flash |= TEST9; /* bad crypt */ 2274 if (peer->flags & FLAG_PREEMPT) { 2275 if (unpeer_crypto_early) { 2276 unpeer(peer); 2277 } 2278 } 2279 } 2280 return; 2281 } 2282 2283 /* 2284 * If server mode, verify the receive key ID matches 2285 * the transmit key ID. 2286 */ 2287 if (hismode == MODE_SERVER) { 2288 if (skeyid == peer->keyid) 2289 peer->flash &= ~TEST8; 2290 2291 /* 2292 * If an extension field is present, verify only that it 2293 * has been correctly signed. We don't need a sequence 2294 * check here, but the sequence continues. 2295 */ 2296 } else if (!(peer->flash & TEST8)) { 2297 peer->pkeyid = skeyid; 2298 2299 /* 2300 * Now the fun part. Here, skeyid is the current ID in 2301 * the packet, pkeyid is the ID in the last packet and 2302 * tkeyid is the hash of skeyid. If the autokey values 2303 * have not been received, this is an automatic error. 2304 * If so, check that the tkeyid matches pkeyid. If not, 2305 * hash tkeyid and try again. If the number of hashes 2306 * exceeds the number remaining in the sequence, declare 2307 * a successful failure and refresh the autokey values. 2308 */ 2309 } else if (ap != NULL) { 2310 int i; 2311 2312 for (i = 0; ; i++) { 2313 if ( tkeyid == peer->pkeyid 2314 || tkeyid == ap->key) { 2315 peer->flash &= ~TEST8; 2316 peer->pkeyid = skeyid; 2317 ap->seq -= i; 2318 break; 2319 } 2320 if (i > ap->seq) { 2321 peer->crypto &= 2322 ~CRYPTO_FLAG_AUTO; 2323 break; 2324 } 2325 tkeyid = session_key( 2326 &rbufp->recv_srcadr, dstadr_sin, 2327 tkeyid, pkeyid, 0); 2328 } 2329 if (peer->flash & TEST8) 2330 report_event(PEVNT_AUTH, peer, "keylist"); 2331 } 2332 if (!(peer->crypto & CRYPTO_FLAG_PROV)) /* test 9 */ 2333 peer->flash |= TEST8; /* bad autokey */ 2334 2335 /* 2336 * The maximum lifetime of the protocol is about one 2337 * week before restarting the Autokey protocol to 2338 * refresh certificates and leapseconds values. 2339 */ 2340 if (current_time > peer->refresh) { 2341 report_event(PEVNT_RESTART, peer, 2342 "crypto refresh"); 2343 peer_clear(peer, "TIME"); 2344 return; 2345 } 2346 } 2347 #endif /* AUTOKEY */ 2348 2349 /* 2350 * The dance is complete and the flash bits have been lit. Toss 2351 * the packet over the fence for processing, which may light up 2352 * more flashers. 2353 */ 2354 process_packet(peer, pkt, rbufp->recv_length); 2355 2356 /* 2357 * In interleaved mode update the state variables. Also adjust the 2358 * transmit phase to avoid crossover. 2359 */ 2360 if (peer->flip != 0) { 2361 peer->rec = p_rec; 2362 peer->dst = rbufp->recv_time; 2363 if (peer->nextdate - current_time < (1U << min(peer->ppoll, 2364 peer->hpoll)) / 2) 2365 peer->nextdate++; 2366 else 2367 peer->nextdate--; 2368 } 2369 } 2370 2371 2372 /* 2373 * process_packet - Packet Procedure, a la Section 3.4.4 of RFC-1305 2374 * Or almost, at least. If we're in here we have a reasonable 2375 * expectation that we will be having a long term 2376 * relationship with this host. 2377 */ 2378 void 2379 process_packet( 2380 register struct peer *peer, 2381 register struct pkt *pkt, 2382 u_int len 2383 ) 2384 { 2385 double t34, t21; 2386 double p_offset, p_del, p_disp; 2387 l_fp p_rec, p_xmt, p_org, p_reftime, ci; 2388 u_char pmode, pleap, pversion, pstratum; 2389 char statstr[NTP_MAXSTRLEN]; 2390 #ifdef ASSYM 2391 int itemp; 2392 double etemp, ftemp, td; 2393 #endif /* ASSYM */ 2394 2395 #if 0 2396 sys_processed++; 2397 peer->processed++; 2398 #endif 2399 p_del = FPTOD(NTOHS_FP(pkt->rootdelay)); 2400 p_offset = 0; 2401 p_disp = FPTOD(NTOHS_FP(pkt->rootdisp)); 2402 NTOHL_FP(&pkt->reftime, &p_reftime); 2403 NTOHL_FP(&pkt->org, &p_org); 2404 NTOHL_FP(&pkt->rec, &p_rec); 2405 NTOHL_FP(&pkt->xmt, &p_xmt); 2406 pmode = PKT_MODE(pkt->li_vn_mode); 2407 pleap = PKT_LEAP(pkt->li_vn_mode); 2408 pversion = PKT_VERSION(pkt->li_vn_mode); 2409 pstratum = PKT_TO_STRATUM(pkt->stratum); 2410 2411 /**/ 2412 2413 /**/ 2414 2415 /* 2416 * Verify the server is synchronized; that is, the leap bits, 2417 * stratum and root distance are valid. 2418 */ 2419 if ( pleap == LEAP_NOTINSYNC /* test 6 */ 2420 || pstratum < sys_floor || pstratum >= sys_ceiling) 2421 peer->flash |= TEST6; /* bad synch or strat */ 2422 if (p_del / 2 + p_disp >= MAXDISPERSE) /* test 7 */ 2423 peer->flash |= TEST7; /* bad header */ 2424 2425 /* 2426 * If any tests fail at this point, the packet is discarded. 2427 * Note that some flashers may have already been set in the 2428 * receive() routine. 2429 */ 2430 if (peer->flash & PKT_TEST_MASK) { 2431 peer->seldisptoolarge++; 2432 DPRINTF(1, ("packet: flash header %04x\n", 2433 peer->flash)); 2434 return; 2435 } 2436 2437 /**/ 2438 2439 #if 1 2440 sys_processed++; 2441 peer->processed++; 2442 #endif 2443 2444 /* 2445 * Capture the header values in the client/peer association.. 2446 */ 2447 record_raw_stats(&peer->srcadr, 2448 peer->dstadr ? &peer->dstadr->sin : NULL, 2449 &p_org, &p_rec, &p_xmt, &peer->dst, 2450 pleap, pversion, pmode, pstratum, pkt->ppoll, pkt->precision, 2451 p_del, p_disp, pkt->refid, 2452 len - MIN_V4_PKT_LEN, (u_char *)&pkt->exten); 2453 peer->leap = pleap; 2454 peer->stratum = min(pstratum, STRATUM_UNSPEC); 2455 peer->pmode = pmode; 2456 peer->precision = pkt->precision; 2457 peer->rootdelay = p_del; 2458 peer->rootdisp = p_disp; 2459 peer->refid = pkt->refid; /* network byte order */ 2460 peer->reftime = p_reftime; 2461 2462 /* 2463 * First, if either burst mode is armed, enable the burst. 2464 * Compute the headway for the next packet and delay if 2465 * necessary to avoid exceeding the threshold. 2466 */ 2467 if (peer->retry > 0) { 2468 peer->retry = 0; 2469 if (peer->reach) 2470 peer->burst = min(1 << (peer->hpoll - 2471 peer->minpoll), NTP_SHIFT) - 1; 2472 else 2473 peer->burst = NTP_IBURST - 1; 2474 if (peer->burst > 0) 2475 peer->nextdate = current_time; 2476 } 2477 poll_update(peer, peer->hpoll); 2478 2479 /**/ 2480 2481 /* 2482 * If the peer was previously unreachable, raise a trap. In any 2483 * case, mark it reachable. 2484 */ 2485 if (!peer->reach) { 2486 report_event(PEVNT_REACH, peer, NULL); 2487 peer->timereachable = current_time; 2488 } 2489 peer->reach |= 1; 2490 2491 /* 2492 * For a client/server association, calculate the clock offset, 2493 * roundtrip delay and dispersion. The equations are reordered 2494 * from the spec for more efficient use of temporaries. For a 2495 * broadcast association, offset the last measurement by the 2496 * computed delay during the client/server volley. Note the 2497 * computation of dispersion includes the system precision plus 2498 * that due to the frequency error since the origin time. 2499 * 2500 * It is very important to respect the hazards of overflow. The 2501 * only permitted operation on raw timestamps is subtraction, 2502 * where the result is a signed quantity spanning from 68 years 2503 * in the past to 68 years in the future. To avoid loss of 2504 * precision, these calculations are done using 64-bit integer 2505 * arithmetic. However, the offset and delay calculations are 2506 * sums and differences of these first-order differences, which 2507 * if done using 64-bit integer arithmetic, would be valid over 2508 * only half that span. Since the typical first-order 2509 * differences are usually very small, they are converted to 64- 2510 * bit doubles and all remaining calculations done in floating- 2511 * double arithmetic. This preserves the accuracy while 2512 * retaining the 68-year span. 2513 * 2514 * There are three interleaving schemes, basic, interleaved 2515 * symmetric and interleaved broadcast. The timestamps are 2516 * idioscyncratically different. See the onwire briefing/white 2517 * paper at www.eecis.udel.edu/~mills for details. 2518 * 2519 * Interleaved symmetric mode 2520 * t1 = peer->aorg/borg, t2 = peer->rec, t3 = p_xmt, 2521 * t4 = peer->dst 2522 */ 2523 if (peer->flip != 0) { 2524 ci = p_xmt; /* t3 - t4 */ 2525 L_SUB(&ci, &peer->dst); 2526 LFPTOD(&ci, t34); 2527 ci = p_rec; /* t2 - t1 */ 2528 if (peer->flip > 0) 2529 L_SUB(&ci, &peer->borg); 2530 else 2531 L_SUB(&ci, &peer->aorg); 2532 LFPTOD(&ci, t21); 2533 p_del = t21 - t34; 2534 p_offset = (t21 + t34) / 2.; 2535 if (p_del < 0 || p_del > 1.) { 2536 snprintf(statstr, sizeof(statstr), 2537 "t21 %.6f t34 %.6f", t21, t34); 2538 report_event(PEVNT_XERR, peer, statstr); 2539 return; 2540 } 2541 2542 /* 2543 * Broadcast modes 2544 */ 2545 } else if (peer->pmode == MODE_BROADCAST) { 2546 2547 /* 2548 * Interleaved broadcast mode. Use interleaved timestamps. 2549 * t1 = peer->borg, t2 = p_org, t3 = p_org, t4 = aorg 2550 */ 2551 if (peer->flags & FLAG_XB) { 2552 ci = p_org; /* delay */ 2553 L_SUB(&ci, &peer->aorg); 2554 LFPTOD(&ci, t34); 2555 ci = p_org; /* t2 - t1 */ 2556 L_SUB(&ci, &peer->borg); 2557 LFPTOD(&ci, t21); 2558 peer->aorg = p_xmt; 2559 peer->borg = peer->dst; 2560 if (t34 < 0 || t34 > 1.) { 2561 /* drop all if in the initial volley */ 2562 if (FLAG_BC_VOL & peer->flags) 2563 goto bcc_init_volley_fail; 2564 snprintf(statstr, sizeof(statstr), 2565 "offset %.6f delay %.6f", t21, t34); 2566 report_event(PEVNT_XERR, peer, statstr); 2567 return; 2568 } 2569 p_offset = t21; 2570 peer->xleave = t34; 2571 2572 /* 2573 * Basic broadcast - use direct timestamps. 2574 * t3 = p_xmt, t4 = peer->dst 2575 */ 2576 } else { 2577 ci = p_xmt; /* t3 - t4 */ 2578 L_SUB(&ci, &peer->dst); 2579 LFPTOD(&ci, t34); 2580 p_offset = t34; 2581 } 2582 2583 /* 2584 * When calibration is complete and the clock is 2585 * synchronized, the bias is calculated as the difference 2586 * between the unicast timestamp and the broadcast 2587 * timestamp. This works for both basic and interleaved 2588 * modes. 2589 * [Bug 3031] Don't keep this peer when the delay 2590 * calculation gives reason to suspect clock steps. 2591 * This is assumed for delays > 50ms. 2592 */ 2593 if (FLAG_BC_VOL & peer->flags) { 2594 peer->flags &= ~FLAG_BC_VOL; 2595 peer->delay = fabs(peer->offset - p_offset) * 2; 2596 DPRINTF(2, ("broadcast volley: initial delay=%.6f\n", 2597 peer->delay)); 2598 if (peer->delay > fabs(sys_bdelay)) { 2599 bcc_init_volley_fail: 2600 DPRINTF(2, ("%s", "broadcast volley: initial delay exceeds limit\n")); 2601 unpeer(peer); 2602 return; 2603 } 2604 } 2605 peer->nextdate = current_time + (1u << peer->ppoll) - 2u; 2606 p_del = peer->delay; 2607 p_offset += p_del / 2; 2608 2609 2610 /* 2611 * Basic mode, otherwise known as the old fashioned way. 2612 * 2613 * t1 = p_org, t2 = p_rec, t3 = p_xmt, t4 = peer->dst 2614 */ 2615 } else { 2616 ci = p_xmt; /* t3 - t4 */ 2617 L_SUB(&ci, &peer->dst); 2618 LFPTOD(&ci, t34); 2619 ci = p_rec; /* t2 - t1 */ 2620 L_SUB(&ci, &p_org); 2621 LFPTOD(&ci, t21); 2622 p_del = fabs(t21 - t34); 2623 p_offset = (t21 + t34) / 2.; 2624 } 2625 p_del = max(p_del, LOGTOD(sys_precision)); 2626 p_disp = LOGTOD(sys_precision) + LOGTOD(peer->precision) + 2627 clock_phi * p_del; 2628 2629 #if ASSYM 2630 /* 2631 * This code calculates the outbound and inbound data rates by 2632 * measuring the differences between timestamps at different 2633 * packet lengths. This is helpful in cases of large asymmetric 2634 * delays commonly experienced on deep space communication 2635 * links. 2636 */ 2637 if (peer->t21_last > 0 && peer->t34_bytes > 0) { 2638 itemp = peer->t21_bytes - peer->t21_last; 2639 if (itemp > 25) { 2640 etemp = t21 - peer->t21; 2641 if (fabs(etemp) > 1e-6) { 2642 ftemp = itemp / etemp; 2643 if (ftemp > 1000.) 2644 peer->r21 = ftemp; 2645 } 2646 } 2647 itemp = len - peer->t34_bytes; 2648 if (itemp > 25) { 2649 etemp = -t34 - peer->t34; 2650 if (fabs(etemp) > 1e-6) { 2651 ftemp = itemp / etemp; 2652 if (ftemp > 1000.) 2653 peer->r34 = ftemp; 2654 } 2655 } 2656 } 2657 2658 /* 2659 * The following section compensates for different data rates on 2660 * the outbound (d21) and inbound (t34) directions. To do this, 2661 * it finds t such that r21 * t - r34 * (d - t) = 0, where d is 2662 * the roundtrip delay. Then it calculates the correction as a 2663 * fraction of d. 2664 */ 2665 peer->t21 = t21; 2666 peer->t21_last = peer->t21_bytes; 2667 peer->t34 = -t34; 2668 peer->t34_bytes = len; 2669 DPRINTF(2, ("packet: t21 %.9lf %d t34 %.9lf %d\n", peer->t21, 2670 peer->t21_bytes, peer->t34, peer->t34_bytes)); 2671 if (peer->r21 > 0 && peer->r34 > 0 && p_del > 0) { 2672 if (peer->pmode != MODE_BROADCAST) 2673 td = (peer->r34 / (peer->r21 + peer->r34) - 2674 .5) * p_del; 2675 else 2676 td = 0; 2677 2678 /* 2679 * Unfortunately, in many cases the errors are 2680 * unacceptable, so for the present the rates are not 2681 * used. In future, we might find conditions where the 2682 * calculations are useful, so this should be considered 2683 * a work in progress. 2684 */ 2685 t21 -= td; 2686 t34 -= td; 2687 DPRINTF(2, ("packet: del %.6lf r21 %.1lf r34 %.1lf %.6lf\n", 2688 p_del, peer->r21 / 1e3, peer->r34 / 1e3, 2689 td)); 2690 } 2691 #endif /* ASSYM */ 2692 2693 /* 2694 * That was awesome. Now hand off to the clock filter. 2695 */ 2696 clock_filter(peer, p_offset + peer->bias, p_del, p_disp); 2697 2698 /* 2699 * If we are in broadcast calibrate mode, return to broadcast 2700 * client mode when the client is fit and the autokey dance is 2701 * complete. 2702 */ 2703 if ( (FLAG_BC_VOL & peer->flags) 2704 && MODE_CLIENT == peer->hmode 2705 && !(TEST11 & peer_unfit(peer))) { /* distance exceeded */ 2706 #ifdef AUTOKEY 2707 if (peer->flags & FLAG_SKEY) { 2708 if (!(~peer->crypto & CRYPTO_FLAG_ALL)) 2709 peer->hmode = MODE_BCLIENT; 2710 } else { 2711 peer->hmode = MODE_BCLIENT; 2712 } 2713 #else /* !AUTOKEY follows */ 2714 peer->hmode = MODE_BCLIENT; 2715 #endif /* !AUTOKEY */ 2716 } 2717 } 2718 2719 2720 /* 2721 * clock_update - Called at system process update intervals. 2722 */ 2723 static void 2724 clock_update( 2725 struct peer *peer /* peer structure pointer */ 2726 ) 2727 { 2728 double dtemp; 2729 l_fp now; 2730 #ifdef HAVE_LIBSCF_H 2731 char *fmri; 2732 #endif /* HAVE_LIBSCF_H */ 2733 2734 /* 2735 * Update the system state variables. We do this very carefully, 2736 * as the poll interval might need to be clamped differently. 2737 */ 2738 sys_peer = peer; 2739 sys_epoch = peer->epoch; 2740 if (sys_poll < peer->minpoll) 2741 sys_poll = peer->minpoll; 2742 if (sys_poll > peer->maxpoll) 2743 sys_poll = peer->maxpoll; 2744 poll_update(peer, sys_poll); 2745 sys_stratum = min(peer->stratum + 1, STRATUM_UNSPEC); 2746 if ( peer->stratum == STRATUM_REFCLOCK 2747 || peer->stratum == STRATUM_UNSPEC) 2748 sys_refid = peer->refid; 2749 else 2750 sys_refid = addr2refid(&peer->srcadr); 2751 /* 2752 * Root Dispersion (E) is defined (in RFC 5905) as: 2753 * 2754 * E = p.epsilon_r + p.epsilon + p.psi + PHI*(s.t - p.t) + |THETA| 2755 * 2756 * where: 2757 * p.epsilon_r is the PollProc's root dispersion 2758 * p.epsilon is the PollProc's dispersion 2759 * p.psi is the PollProc's jitter 2760 * THETA is the combined offset 2761 * 2762 * NB: Think Hard about where these numbers come from and 2763 * what they mean. When did peer->update happen? Has anything 2764 * interesting happened since then? What values are the most 2765 * defensible? Why? 2766 * 2767 * DLM thinks this equation is probably the best of all worse choices. 2768 */ 2769 dtemp = peer->rootdisp 2770 + peer->disp 2771 + sys_jitter 2772 + clock_phi * (current_time - peer->update) 2773 + fabs(sys_offset); 2774 2775 if (dtemp > sys_mindisp) 2776 sys_rootdisp = dtemp; 2777 else 2778 sys_rootdisp = sys_mindisp; 2779 sys_rootdelay = peer->delay + peer->rootdelay; 2780 sys_reftime = peer->dst; 2781 2782 DPRINTF(1, ("clock_update: at %lu sample %lu associd %d\n", 2783 current_time, peer->epoch, peer->associd)); 2784 2785 /* 2786 * Comes now the moment of truth. Crank the clock discipline and 2787 * see what comes out. 2788 */ 2789 switch (local_clock(peer, sys_offset)) { 2790 2791 /* 2792 * Clock exceeds panic threshold. Life as we know it ends. 2793 */ 2794 case -1: 2795 #ifdef HAVE_LIBSCF_H 2796 /* 2797 * For Solaris enter the maintenance mode. 2798 */ 2799 if ((fmri = getenv("SMF_FMRI")) != NULL) { 2800 if (smf_maintain_instance(fmri, 0) < 0) { 2801 printf("smf_maintain_instance: %s\n", 2802 scf_strerror(scf_error())); 2803 exit(1); 2804 } 2805 /* 2806 * Sleep until SMF kills us. 2807 */ 2808 for (;;) 2809 pause(); 2810 } 2811 #endif /* HAVE_LIBSCF_H */ 2812 exit (-1); 2813 /* not reached */ 2814 2815 /* 2816 * Clock was stepped. Flush all time values of all peers. 2817 */ 2818 case 2: 2819 clear_all(); 2820 set_sys_leap(LEAP_NOTINSYNC); 2821 sys_stratum = STRATUM_UNSPEC; 2822 memcpy(&sys_refid, "STEP", 4); 2823 sys_rootdelay = 0; 2824 sys_rootdisp = 0; 2825 L_CLR(&sys_reftime); 2826 sys_jitter = LOGTOD(sys_precision); 2827 leapsec_reset_frame(); 2828 break; 2829 2830 /* 2831 * Clock was slewed. Handle the leapsecond stuff. 2832 */ 2833 case 1: 2834 2835 /* 2836 * If this is the first time the clock is set, reset the 2837 * leap bits. If crypto, the timer will goose the setup 2838 * process. 2839 */ 2840 if (sys_leap == LEAP_NOTINSYNC) { 2841 set_sys_leap(LEAP_NOWARNING); 2842 #ifdef AUTOKEY 2843 if (crypto_flags) 2844 crypto_update(); 2845 #endif /* AUTOKEY */ 2846 /* 2847 * If our parent process is waiting for the 2848 * first clock sync, send them home satisfied. 2849 */ 2850 #ifdef HAVE_WORKING_FORK 2851 if (waitsync_fd_to_close != -1) { 2852 close(waitsync_fd_to_close); 2853 waitsync_fd_to_close = -1; 2854 DPRINTF(1, ("notified parent --wait-sync is done\n")); 2855 } 2856 #endif /* HAVE_WORKING_FORK */ 2857 2858 } 2859 2860 /* 2861 * If there is no leap second pending and the number of 2862 * survivor leap bits is greater than half the number of 2863 * survivors, try to schedule a leap for the end of the 2864 * current month. (This only works if no leap second for 2865 * that range is in the table, so doing this more than 2866 * once is mostly harmless.) 2867 */ 2868 if (leapsec == LSPROX_NOWARN) { 2869 if ( leap_vote_ins > leap_vote_del 2870 && leap_vote_ins > sys_survivors / 2) { 2871 get_systime(&now); 2872 leapsec_add_dyn(TRUE, now.l_ui, NULL); 2873 } 2874 if ( leap_vote_del > leap_vote_ins 2875 && leap_vote_del > sys_survivors / 2) { 2876 get_systime(&now); 2877 leapsec_add_dyn(FALSE, now.l_ui, NULL); 2878 } 2879 } 2880 break; 2881 2882 /* 2883 * Popcorn spike or step threshold exceeded. Pretend it never 2884 * happened. 2885 */ 2886 default: 2887 break; 2888 } 2889 } 2890 2891 2892 /* 2893 * poll_update - update peer poll interval 2894 */ 2895 void 2896 poll_update( 2897 struct peer *peer, /* peer structure pointer */ 2898 u_char mpoll 2899 ) 2900 { 2901 u_long next, utemp; 2902 u_char hpoll; 2903 2904 /* 2905 * This routine figures out when the next poll should be sent. 2906 * That turns out to be wickedly complicated. One problem is 2907 * that sometimes the time for the next poll is in the past when 2908 * the poll interval is reduced. We watch out for races here 2909 * between the receive process and the poll process. 2910 * 2911 * Clamp the poll interval between minpoll and maxpoll. 2912 */ 2913 hpoll = max(min(peer->maxpoll, mpoll), peer->minpoll); 2914 2915 #ifdef AUTOKEY 2916 /* 2917 * If during the crypto protocol the poll interval has changed, 2918 * the lifetimes in the key list are probably bogus. Purge the 2919 * the key list and regenerate it later. 2920 */ 2921 if ((peer->flags & FLAG_SKEY) && hpoll != peer->hpoll) 2922 key_expire(peer); 2923 #endif /* AUTOKEY */ 2924 peer->hpoll = hpoll; 2925 2926 /* 2927 * There are three variables important for poll scheduling, the 2928 * current time (current_time), next scheduled time (nextdate) 2929 * and the earliest time (utemp). The earliest time is 2 s 2930 * seconds, but could be more due to rate management. When 2931 * sending in a burst, use the earliest time. When not in a 2932 * burst but with a reply pending, send at the earliest time 2933 * unless the next scheduled time has not advanced. This can 2934 * only happen if multiple replies are pending in the same 2935 * response interval. Otherwise, send at the later of the next 2936 * scheduled time and the earliest time. 2937 * 2938 * Now we figure out if there is an override. If a burst is in 2939 * progress and we get called from the receive process, just 2940 * slink away. If called from the poll process, delay 1 s for a 2941 * reference clock, otherwise 2 s. 2942 */ 2943 utemp = current_time + max(peer->throttle - (NTP_SHIFT - 1) * 2944 (1 << peer->minpoll), ntp_minpkt); 2945 if (peer->burst > 0) { 2946 if (peer->nextdate > current_time) 2947 return; 2948 #ifdef REFCLOCK 2949 else if (peer->flags & FLAG_REFCLOCK) 2950 peer->nextdate = current_time + RESP_DELAY; 2951 #endif /* REFCLOCK */ 2952 else 2953 peer->nextdate = utemp; 2954 2955 #ifdef AUTOKEY 2956 /* 2957 * If a burst is not in progress and a crypto response message 2958 * is pending, delay 2 s, but only if this is a new interval. 2959 */ 2960 } else if (peer->cmmd != NULL) { 2961 if (peer->nextdate > current_time) { 2962 if (peer->nextdate + ntp_minpkt != utemp) 2963 peer->nextdate = utemp; 2964 } else { 2965 peer->nextdate = utemp; 2966 } 2967 #endif /* AUTOKEY */ 2968 2969 /* 2970 * The ordinary case. If a retry, use minpoll; if unreachable, 2971 * use host poll; otherwise, use the minimum of host and peer 2972 * polls; In other words, oversampling is okay but 2973 * understampling is evil. Use the maximum of this value and the 2974 * headway. If the average headway is greater than the headway 2975 * threshold, increase the headway by the minimum interval. 2976 */ 2977 } else { 2978 if (peer->retry > 0) 2979 hpoll = peer->minpoll; 2980 else if (!(peer->reach)) 2981 hpoll = peer->hpoll; 2982 else 2983 hpoll = min(peer->ppoll, peer->hpoll); 2984 #ifdef REFCLOCK 2985 if (peer->flags & FLAG_REFCLOCK) 2986 next = 1 << hpoll; 2987 else 2988 #endif /* REFCLOCK */ 2989 next = ((0x1000UL | (ntp_random() & 0x0ff)) << 2990 hpoll) >> 12; 2991 next += peer->outdate; 2992 if (next > utemp) 2993 peer->nextdate = next; 2994 else 2995 peer->nextdate = utemp; 2996 if (peer->throttle > (1 << peer->minpoll)) 2997 peer->nextdate += ntp_minpkt; 2998 } 2999 DPRINTF(2, ("poll_update: at %lu %s poll %d burst %d retry %d head %d early %lu next %lu\n", 3000 current_time, ntoa(&peer->srcadr), peer->hpoll, 3001 peer->burst, peer->retry, peer->throttle, 3002 utemp - current_time, peer->nextdate - 3003 current_time)); 3004 } 3005 3006 3007 /* 3008 * peer_clear - clear peer filter registers. See Section 3.4.8 of the 3009 * spec. 3010 */ 3011 void 3012 peer_clear( 3013 struct peer *peer, /* peer structure */ 3014 const char *ident /* tally lights */ 3015 ) 3016 { 3017 u_char u; 3018 l_fp bxmt = peer->bxmt; /* bcast clients retain this! */ 3019 3020 #ifdef AUTOKEY 3021 /* 3022 * If cryptographic credentials have been acquired, toss them to 3023 * Valhalla. Note that autokeys are ephemeral, in that they are 3024 * tossed immediately upon use. Therefore, the keylist can be 3025 * purged anytime without needing to preserve random keys. Note 3026 * that, if the peer is purged, the cryptographic variables are 3027 * purged, too. This makes it much harder to sneak in some 3028 * unauthenticated data in the clock filter. 3029 */ 3030 key_expire(peer); 3031 if (peer->iffval != NULL) 3032 BN_free(peer->iffval); 3033 value_free(&peer->cookval); 3034 value_free(&peer->recval); 3035 value_free(&peer->encrypt); 3036 value_free(&peer->sndval); 3037 if (peer->cmmd != NULL) 3038 free(peer->cmmd); 3039 if (peer->subject != NULL) 3040 free(peer->subject); 3041 if (peer->issuer != NULL) 3042 free(peer->issuer); 3043 #endif /* AUTOKEY */ 3044 3045 /* 3046 * Clear all values, including the optional crypto values above. 3047 */ 3048 memset(CLEAR_TO_ZERO(peer), 0, LEN_CLEAR_TO_ZERO(peer)); 3049 peer->ppoll = peer->maxpoll; 3050 peer->hpoll = peer->minpoll; 3051 peer->disp = MAXDISPERSE; 3052 peer->flash = peer_unfit(peer); 3053 peer->jitter = LOGTOD(sys_precision); 3054 3055 /* Don't throw away our broadcast replay protection */ 3056 if (peer->hmode == MODE_BCLIENT) 3057 peer->bxmt = bxmt; 3058 3059 /* 3060 * If interleave mode, initialize the alternate origin switch. 3061 */ 3062 if (peer->flags & FLAG_XLEAVE) 3063 peer->flip = 1; 3064 for (u = 0; u < NTP_SHIFT; u++) { 3065 peer->filter_order[u] = u; 3066 peer->filter_disp[u] = MAXDISPERSE; 3067 } 3068 #ifdef REFCLOCK 3069 if (!(peer->flags & FLAG_REFCLOCK)) { 3070 #endif 3071 peer->leap = LEAP_NOTINSYNC; 3072 peer->stratum = STRATUM_UNSPEC; 3073 memcpy(&peer->refid, ident, 4); 3074 #ifdef REFCLOCK 3075 } 3076 #endif 3077 3078 /* 3079 * During initialization use the association count to spread out 3080 * the polls at one-second intervals. Passive associations' 3081 * first poll is delayed by the "discard minimum" to avoid rate 3082 * limiting. Other post-startup new or cleared associations 3083 * randomize the first poll over the minimum poll interval to 3084 * avoid implosion. 3085 */ 3086 peer->nextdate = peer->update = peer->outdate = current_time; 3087 if (initializing) { 3088 peer->nextdate += peer_associations; 3089 } else if (MODE_PASSIVE == peer->hmode) { 3090 peer->nextdate += ntp_minpkt; 3091 } else { 3092 peer->nextdate += ntp_random() % peer->minpoll; 3093 } 3094 #ifdef AUTOKEY 3095 peer->refresh = current_time + (1 << NTP_REFRESH); 3096 #endif /* AUTOKEY */ 3097 DPRINTF(1, ("peer_clear: at %ld next %ld associd %d refid %s\n", 3098 current_time, peer->nextdate, peer->associd, 3099 ident)); 3100 } 3101 3102 3103 /* 3104 * clock_filter - add incoming clock sample to filter register and run 3105 * the filter procedure to find the best sample. 3106 */ 3107 void 3108 clock_filter( 3109 struct peer *peer, /* peer structure pointer */ 3110 double sample_offset, /* clock offset */ 3111 double sample_delay, /* roundtrip delay */ 3112 double sample_disp /* dispersion */ 3113 ) 3114 { 3115 double dst[NTP_SHIFT]; /* distance vector */ 3116 int ord[NTP_SHIFT]; /* index vector */ 3117 int i, j, k, m; 3118 double dtemp, etemp; 3119 char tbuf[80]; 3120 3121 /* 3122 * A sample consists of the offset, delay, dispersion and epoch 3123 * of arrival. The offset and delay are determined by the on- 3124 * wire protocol. The dispersion grows from the last outbound 3125 * packet to the arrival of this one increased by the sum of the 3126 * peer precision and the system precision as required by the 3127 * error budget. First, shift the new arrival into the shift 3128 * register discarding the oldest one. 3129 */ 3130 j = peer->filter_nextpt; 3131 peer->filter_offset[j] = sample_offset; 3132 peer->filter_delay[j] = sample_delay; 3133 peer->filter_disp[j] = sample_disp; 3134 peer->filter_epoch[j] = current_time; 3135 j = (j + 1) % NTP_SHIFT; 3136 peer->filter_nextpt = j; 3137 3138 /* 3139 * Update dispersions since the last update and at the same 3140 * time initialize the distance and index lists. Since samples 3141 * become increasingly uncorrelated beyond the Allan intercept, 3142 * only under exceptional cases will an older sample be used. 3143 * Therefore, the distance list uses a compound metric. If the 3144 * dispersion is greater than the maximum dispersion, clamp the 3145 * distance at that value. If the time since the last update is 3146 * less than the Allan intercept use the delay; otherwise, use 3147 * the sum of the delay and dispersion. 3148 */ 3149 dtemp = clock_phi * (current_time - peer->update); 3150 peer->update = current_time; 3151 for (i = NTP_SHIFT - 1; i >= 0; i--) { 3152 if (i != 0) 3153 peer->filter_disp[j] += dtemp; 3154 if (peer->filter_disp[j] >= MAXDISPERSE) { 3155 peer->filter_disp[j] = MAXDISPERSE; 3156 dst[i] = MAXDISPERSE; 3157 } else if (peer->update - peer->filter_epoch[j] > 3158 (u_long)ULOGTOD(allan_xpt)) { 3159 dst[i] = peer->filter_delay[j] + 3160 peer->filter_disp[j]; 3161 } else { 3162 dst[i] = peer->filter_delay[j]; 3163 } 3164 ord[i] = j; 3165 j = (j + 1) % NTP_SHIFT; 3166 } 3167 3168 /* 3169 * If the clock has stabilized, sort the samples by distance. 3170 */ 3171 if (freq_cnt == 0) { 3172 for (i = 1; i < NTP_SHIFT; i++) { 3173 for (j = 0; j < i; j++) { 3174 if (dst[j] > dst[i]) { 3175 k = ord[j]; 3176 ord[j] = ord[i]; 3177 ord[i] = k; 3178 etemp = dst[j]; 3179 dst[j] = dst[i]; 3180 dst[i] = etemp; 3181 } 3182 } 3183 } 3184 } 3185 3186 /* 3187 * Copy the index list to the association structure so ntpq 3188 * can see it later. Prune the distance list to leave only 3189 * samples less than the maximum dispersion, which disfavors 3190 * uncorrelated samples older than the Allan intercept. To 3191 * further improve the jitter estimate, of the remainder leave 3192 * only samples less than the maximum distance, but keep at 3193 * least two samples for jitter calculation. 3194 */ 3195 m = 0; 3196 for (i = 0; i < NTP_SHIFT; i++) { 3197 peer->filter_order[i] = (u_char) ord[i]; 3198 if ( dst[i] >= MAXDISPERSE 3199 || (m >= 2 && dst[i] >= sys_maxdist)) 3200 continue; 3201 m++; 3202 } 3203 3204 /* 3205 * Compute the dispersion and jitter. The dispersion is weighted 3206 * exponentially by NTP_FWEIGHT (0.5) so it is normalized close 3207 * to 1.0. The jitter is the RMS differences relative to the 3208 * lowest delay sample. 3209 */ 3210 peer->disp = peer->jitter = 0; 3211 k = ord[0]; 3212 for (i = NTP_SHIFT - 1; i >= 0; i--) { 3213 j = ord[i]; 3214 peer->disp = NTP_FWEIGHT * (peer->disp + 3215 peer->filter_disp[j]); 3216 if (i < m) 3217 peer->jitter += DIFF(peer->filter_offset[j], 3218 peer->filter_offset[k]); 3219 } 3220 3221 /* 3222 * If no acceptable samples remain in the shift register, 3223 * quietly tiptoe home leaving only the dispersion. Otherwise, 3224 * save the offset, delay and jitter. Note the jitter must not 3225 * be less than the precision. 3226 */ 3227 if (m == 0) { 3228 clock_select(); 3229 return; 3230 } 3231 etemp = fabs(peer->offset - peer->filter_offset[k]); 3232 peer->offset = peer->filter_offset[k]; 3233 peer->delay = peer->filter_delay[k]; 3234 if (m > 1) 3235 peer->jitter /= m - 1; 3236 peer->jitter = max(SQRT(peer->jitter), LOGTOD(sys_precision)); 3237 3238 /* 3239 * If the the new sample and the current sample are both valid 3240 * and the difference between their offsets exceeds CLOCK_SGATE 3241 * (3) times the jitter and the interval between them is less 3242 * than twice the host poll interval, consider the new sample 3243 * a popcorn spike and ignore it. 3244 */ 3245 if ( peer->disp < sys_maxdist 3246 && peer->filter_disp[k] < sys_maxdist 3247 && etemp > CLOCK_SGATE * peer->jitter 3248 && peer->filter_epoch[k] - peer->epoch 3249 < 2. * ULOGTOD(peer->hpoll)) { 3250 snprintf(tbuf, sizeof(tbuf), "%.6f s", etemp); 3251 report_event(PEVNT_POPCORN, peer, tbuf); 3252 return; 3253 } 3254 3255 /* 3256 * A new minimum sample is useful only if it is later than the 3257 * last one used. In this design the maximum lifetime of any 3258 * sample is not greater than eight times the poll interval, so 3259 * the maximum interval between minimum samples is eight 3260 * packets. 3261 */ 3262 if (peer->filter_epoch[k] <= peer->epoch) { 3263 DPRINTF(2, ("clock_filter: old sample %lu\n", current_time - 3264 peer->filter_epoch[k])); 3265 return; 3266 } 3267 peer->epoch = peer->filter_epoch[k]; 3268 3269 /* 3270 * The mitigated sample statistics are saved for later 3271 * processing. If not synchronized or not in a burst, tickle the 3272 * clock select algorithm. 3273 */ 3274 record_peer_stats(&peer->srcadr, ctlpeerstatus(peer), 3275 peer->offset, peer->delay, peer->disp, peer->jitter); 3276 DPRINTF(1, ("clock_filter: n %d off %.6f del %.6f dsp %.6f jit %.6f\n", 3277 m, peer->offset, peer->delay, peer->disp, 3278 peer->jitter)); 3279 if (peer->burst == 0 || sys_leap == LEAP_NOTINSYNC) 3280 clock_select(); 3281 } 3282 3283 3284 /* 3285 * clock_select - find the pick-of-the-litter clock 3286 * 3287 * LOCKCLOCK: (1) If the local clock is the prefer peer, it will always 3288 * be enabled, even if declared falseticker, (2) only the prefer peer 3289 * can be selected as the system peer, (3) if the external source is 3290 * down, the system leap bits are set to 11 and the stratum set to 3291 * infinity. 3292 */ 3293 void 3294 clock_select(void) 3295 { 3296 struct peer *peer; 3297 int i, j, k, n; 3298 int nlist, nl2; 3299 int allow; 3300 int speer; 3301 double d, e, f, g; 3302 double high, low; 3303 double speermet; 3304 double orphmet = 2.0 * U_INT32_MAX; /* 2x is greater than */ 3305 struct endpoint endp; 3306 struct peer *osys_peer; 3307 struct peer *sys_prefer = NULL; /* prefer peer */ 3308 struct peer *typesystem = NULL; 3309 struct peer *typeorphan = NULL; 3310 #ifdef REFCLOCK 3311 struct peer *typeacts = NULL; 3312 struct peer *typelocal = NULL; 3313 struct peer *typepps = NULL; 3314 #endif /* REFCLOCK */ 3315 static struct endpoint *endpoint = NULL; 3316 static int *indx = NULL; 3317 static peer_select *peers = NULL; 3318 static u_int endpoint_size = 0; 3319 static u_int peers_size = 0; 3320 static u_int indx_size = 0; 3321 size_t octets; 3322 3323 /* 3324 * Initialize and create endpoint, index and peer lists big 3325 * enough to handle all associations. 3326 */ 3327 osys_peer = sys_peer; 3328 sys_survivors = 0; 3329 #ifdef LOCKCLOCK 3330 set_sys_leap(LEAP_NOTINSYNC); 3331 sys_stratum = STRATUM_UNSPEC; 3332 memcpy(&sys_refid, "DOWN", 4); 3333 #endif /* LOCKCLOCK */ 3334 3335 /* 3336 * Allocate dynamic space depending on the number of 3337 * associations. 3338 */ 3339 nlist = 1; 3340 for (peer = peer_list; peer != NULL; peer = peer->p_link) 3341 nlist++; 3342 endpoint_size = ALIGNED_SIZE(nlist * 2 * sizeof(*endpoint)); 3343 peers_size = ALIGNED_SIZE(nlist * sizeof(*peers)); 3344 indx_size = ALIGNED_SIZE(nlist * 2 * sizeof(*indx)); 3345 octets = endpoint_size + peers_size + indx_size; 3346 endpoint = erealloc(endpoint, octets); 3347 peers = INC_ALIGNED_PTR(endpoint, endpoint_size); 3348 indx = INC_ALIGNED_PTR(peers, peers_size); 3349 3350 /* 3351 * Initially, we populate the island with all the rifraff peers 3352 * that happen to be lying around. Those with seriously 3353 * defective clocks are immediately booted off the island. Then, 3354 * the falsetickers are culled and put to sea. The truechimers 3355 * remaining are subject to repeated rounds where the most 3356 * unpopular at each round is kicked off. When the population 3357 * has dwindled to sys_minclock, the survivors split a million 3358 * bucks and collectively crank the chimes. 3359 */ 3360 nlist = nl2 = 0; /* none yet */ 3361 for (peer = peer_list; peer != NULL; peer = peer->p_link) { 3362 peer->new_status = CTL_PST_SEL_REJECT; 3363 3364 /* 3365 * Leave the island immediately if the peer is 3366 * unfit to synchronize. 3367 */ 3368 if (peer_unfit(peer)) { 3369 continue; 3370 } 3371 3372 /* 3373 * If this peer is an orphan parent, elect the 3374 * one with the lowest metric defined as the 3375 * IPv4 address or the first 64 bits of the 3376 * hashed IPv6 address. To ensure convergence 3377 * on the same selected orphan, consider as 3378 * well that this system may have the lowest 3379 * metric and be the orphan parent. If this 3380 * system wins, sys_peer will be NULL to trigger 3381 * orphan mode in timer(). 3382 */ 3383 if (peer->stratum == sys_orphan) { 3384 u_int32 localmet; 3385 u_int32 peermet; 3386 3387 if (peer->dstadr != NULL) 3388 localmet = ntohl(peer->dstadr->addr_refid); 3389 else 3390 localmet = U_INT32_MAX; 3391 peermet = ntohl(addr2refid(&peer->srcadr)); 3392 if (peermet < localmet && peermet < orphmet) { 3393 typeorphan = peer; 3394 orphmet = peermet; 3395 } 3396 continue; 3397 } 3398 3399 /* 3400 * If this peer could have the orphan parent 3401 * as a synchronization ancestor, exclude it 3402 * from selection to avoid forming a 3403 * synchronization loop within the orphan mesh, 3404 * triggering stratum climb to infinity 3405 * instability. Peers at stratum higher than 3406 * the orphan stratum could have the orphan 3407 * parent in ancestry so are excluded. 3408 * See http://bugs.ntp.org/2050 3409 */ 3410 if (peer->stratum > sys_orphan) { 3411 continue; 3412 } 3413 #ifdef REFCLOCK 3414 /* 3415 * The following are special cases. We deal 3416 * with them later. 3417 */ 3418 if (!(peer->flags & FLAG_PREFER)) { 3419 switch (peer->refclktype) { 3420 case REFCLK_LOCALCLOCK: 3421 if ( current_time > orphwait 3422 && typelocal == NULL) 3423 typelocal = peer; 3424 continue; 3425 3426 case REFCLK_ACTS: 3427 if ( current_time > orphwait 3428 && typeacts == NULL) 3429 typeacts = peer; 3430 continue; 3431 } 3432 } 3433 #endif /* REFCLOCK */ 3434 3435 /* 3436 * If we get this far, the peer can stay on the 3437 * island, but does not yet have the immunity 3438 * idol. 3439 */ 3440 peer->new_status = CTL_PST_SEL_SANE; 3441 f = root_distance(peer); 3442 peers[nlist].peer = peer; 3443 peers[nlist].error = peer->jitter; 3444 peers[nlist].synch = f; 3445 nlist++; 3446 3447 /* 3448 * Insert each interval endpoint on the unsorted 3449 * endpoint[] list. 3450 */ 3451 e = peer->offset; 3452 endpoint[nl2].type = -1; /* lower end */ 3453 endpoint[nl2].val = e - f; 3454 nl2++; 3455 endpoint[nl2].type = 1; /* upper end */ 3456 endpoint[nl2].val = e + f; 3457 nl2++; 3458 } 3459 /* 3460 * Construct sorted indx[] of endpoint[] indexes ordered by 3461 * offset. 3462 */ 3463 for (i = 0; i < nl2; i++) 3464 indx[i] = i; 3465 for (i = 0; i < nl2; i++) { 3466 endp = endpoint[indx[i]]; 3467 e = endp.val; 3468 k = i; 3469 for (j = i + 1; j < nl2; j++) { 3470 endp = endpoint[indx[j]]; 3471 if (endp.val < e) { 3472 e = endp.val; 3473 k = j; 3474 } 3475 } 3476 if (k != i) { 3477 j = indx[k]; 3478 indx[k] = indx[i]; 3479 indx[i] = j; 3480 } 3481 } 3482 for (i = 0; i < nl2; i++) 3483 DPRINTF(3, ("select: endpoint %2d %.6f\n", 3484 endpoint[indx[i]].type, endpoint[indx[i]].val)); 3485 3486 /* 3487 * This is the actual algorithm that cleaves the truechimers 3488 * from the falsetickers. The original algorithm was described 3489 * in Keith Marzullo's dissertation, but has been modified for 3490 * better accuracy. 3491 * 3492 * Briefly put, we first assume there are no falsetickers, then 3493 * scan the candidate list first from the low end upwards and 3494 * then from the high end downwards. The scans stop when the 3495 * number of intersections equals the number of candidates less 3496 * the number of falsetickers. If this doesn't happen for a 3497 * given number of falsetickers, we bump the number of 3498 * falsetickers and try again. If the number of falsetickers 3499 * becomes equal to or greater than half the number of 3500 * candidates, the Albanians have won the Byzantine wars and 3501 * correct synchronization is not possible. 3502 * 3503 * Here, nlist is the number of candidates and allow is the 3504 * number of falsetickers. Upon exit, the truechimers are the 3505 * survivors with offsets not less than low and not greater than 3506 * high. There may be none of them. 3507 */ 3508 low = 1e9; 3509 high = -1e9; 3510 for (allow = 0; 2 * allow < nlist; allow++) { 3511 3512 /* 3513 * Bound the interval (low, high) as the smallest 3514 * interval containing points from the most sources. 3515 */ 3516 n = 0; 3517 for (i = 0; i < nl2; i++) { 3518 low = endpoint[indx[i]].val; 3519 n -= endpoint[indx[i]].type; 3520 if (n >= nlist - allow) 3521 break; 3522 } 3523 n = 0; 3524 for (j = nl2 - 1; j >= 0; j--) { 3525 high = endpoint[indx[j]].val; 3526 n += endpoint[indx[j]].type; 3527 if (n >= nlist - allow) 3528 break; 3529 } 3530 3531 /* 3532 * If an interval containing truechimers is found, stop. 3533 * If not, increase the number of falsetickers and go 3534 * around again. 3535 */ 3536 if (high > low) 3537 break; 3538 } 3539 3540 /* 3541 * Clustering algorithm. Whittle candidate list of falsetickers, 3542 * who leave the island immediately. The TRUE peer is always a 3543 * truechimer. We must leave at least one peer to collect the 3544 * million bucks. 3545 * 3546 * We assert the correct time is contained in the interval, but 3547 * the best offset estimate for the interval might not be 3548 * contained in the interval. For this purpose, a truechimer is 3549 * defined as the midpoint of an interval that overlaps the 3550 * intersection interval. 3551 */ 3552 j = 0; 3553 for (i = 0; i < nlist; i++) { 3554 double h; 3555 3556 peer = peers[i].peer; 3557 h = peers[i].synch; 3558 if (( high <= low 3559 || peer->offset + h < low 3560 || peer->offset - h > high 3561 ) && !(peer->flags & FLAG_TRUE)) 3562 continue; 3563 3564 #ifdef REFCLOCK 3565 /* 3566 * Eligible PPS peers must survive the intersection 3567 * algorithm. Use the first one found, but don't 3568 * include any of them in the cluster population. 3569 */ 3570 if (peer->flags & FLAG_PPS) { 3571 if (typepps == NULL) 3572 typepps = peer; 3573 if (!(peer->flags & FLAG_TSTAMP_PPS)) 3574 continue; 3575 } 3576 #endif /* REFCLOCK */ 3577 3578 if (j != i) 3579 peers[j] = peers[i]; 3580 j++; 3581 } 3582 nlist = j; 3583 3584 /* 3585 * If no survivors remain at this point, check if the modem 3586 * driver, local driver or orphan parent in that order. If so, 3587 * nominate the first one found as the only survivor. 3588 * Otherwise, give up and leave the island to the rats. 3589 */ 3590 if (nlist == 0) { 3591 peers[0].error = 0; 3592 peers[0].synch = sys_mindisp; 3593 #ifdef REFCLOCK 3594 if (typeacts != NULL) { 3595 peers[0].peer = typeacts; 3596 nlist = 1; 3597 } else if (typelocal != NULL) { 3598 peers[0].peer = typelocal; 3599 nlist = 1; 3600 } else 3601 #endif /* REFCLOCK */ 3602 if (typeorphan != NULL) { 3603 peers[0].peer = typeorphan; 3604 nlist = 1; 3605 } 3606 } 3607 3608 /* 3609 * Mark the candidates at this point as truechimers. 3610 */ 3611 for (i = 0; i < nlist; i++) { 3612 peers[i].peer->new_status = CTL_PST_SEL_SELCAND; 3613 DPRINTF(2, ("select: survivor %s %f\n", 3614 stoa(&peers[i].peer->srcadr), peers[i].synch)); 3615 } 3616 3617 /* 3618 * Now, vote outliers off the island by select jitter weighted 3619 * by root distance. Continue voting as long as there are more 3620 * than sys_minclock survivors and the select jitter of the peer 3621 * with the worst metric is greater than the minimum peer 3622 * jitter. Stop if we are about to discard a TRUE or PREFER 3623 * peer, who of course have the immunity idol. 3624 */ 3625 while (1) { 3626 d = 1e9; 3627 e = -1e9; 3628 g = 0; 3629 k = 0; 3630 for (i = 0; i < nlist; i++) { 3631 if (peers[i].error < d) 3632 d = peers[i].error; 3633 peers[i].seljit = 0; 3634 if (nlist > 1) { 3635 f = 0; 3636 for (j = 0; j < nlist; j++) 3637 f += DIFF(peers[j].peer->offset, 3638 peers[i].peer->offset); 3639 peers[i].seljit = SQRT(f / (nlist - 1)); 3640 } 3641 if (peers[i].seljit * peers[i].synch > e) { 3642 g = peers[i].seljit; 3643 e = peers[i].seljit * peers[i].synch; 3644 k = i; 3645 } 3646 } 3647 g = max(g, LOGTOD(sys_precision)); 3648 if ( nlist <= max(1, sys_minclock) 3649 || g <= d 3650 || ((FLAG_TRUE | FLAG_PREFER) & peers[k].peer->flags)) 3651 break; 3652 3653 DPRINTF(3, ("select: drop %s seljit %.6f jit %.6f\n", 3654 ntoa(&peers[k].peer->srcadr), g, d)); 3655 if (nlist > sys_maxclock) 3656 peers[k].peer->new_status = CTL_PST_SEL_EXCESS; 3657 for (j = k + 1; j < nlist; j++) 3658 peers[j - 1] = peers[j]; 3659 nlist--; 3660 } 3661 3662 /* 3663 * What remains is a list usually not greater than sys_minclock 3664 * peers. Note that unsynchronized peers cannot survive this 3665 * far. Count and mark these survivors. 3666 * 3667 * While at it, count the number of leap warning bits found. 3668 * This will be used later to vote the system leap warning bit. 3669 * If a leap warning bit is found on a reference clock, the vote 3670 * is always won. 3671 * 3672 * Choose the system peer using a hybrid metric composed of the 3673 * selection jitter scaled by the root distance augmented by 3674 * stratum scaled by sys_mindisp (.001 by default). The goal of 3675 * the small stratum factor is to avoid clockhop between a 3676 * reference clock and a network peer which has a refclock and 3677 * is using an older ntpd, which does not floor sys_rootdisp at 3678 * sys_mindisp. 3679 * 3680 * In contrast, ntpd 4.2.6 and earlier used stratum primarily 3681 * in selecting the system peer, using a weight of 1 second of 3682 * additional root distance per stratum. This heavy bias is no 3683 * longer appropriate, as the scaled root distance provides a 3684 * more rational metric carrying the cumulative error budget. 3685 */ 3686 e = 1e9; 3687 speer = 0; 3688 leap_vote_ins = 0; 3689 leap_vote_del = 0; 3690 for (i = 0; i < nlist; i++) { 3691 peer = peers[i].peer; 3692 peer->unreach = 0; 3693 peer->new_status = CTL_PST_SEL_SYNCCAND; 3694 sys_survivors++; 3695 if (peer->leap == LEAP_ADDSECOND) { 3696 if (peer->flags & FLAG_REFCLOCK) 3697 leap_vote_ins = nlist; 3698 else if (leap_vote_ins < nlist) 3699 leap_vote_ins++; 3700 } 3701 if (peer->leap == LEAP_DELSECOND) { 3702 if (peer->flags & FLAG_REFCLOCK) 3703 leap_vote_del = nlist; 3704 else if (leap_vote_del < nlist) 3705 leap_vote_del++; 3706 } 3707 if (peer->flags & FLAG_PREFER) 3708 sys_prefer = peer; 3709 speermet = peers[i].seljit * peers[i].synch + 3710 peer->stratum * sys_mindisp; 3711 if (speermet < e) { 3712 e = speermet; 3713 speer = i; 3714 } 3715 } 3716 3717 /* 3718 * Unless there are at least sys_misane survivors, leave the 3719 * building dark. Otherwise, do a clockhop dance. Ordinarily, 3720 * use the selected survivor speer. However, if the current 3721 * system peer is not speer, stay with the current system peer 3722 * as long as it doesn't get too old or too ugly. 3723 */ 3724 if (nlist > 0 && nlist >= sys_minsane) { 3725 double x; 3726 3727 typesystem = peers[speer].peer; 3728 if (osys_peer == NULL || osys_peer == typesystem) { 3729 sys_clockhop = 0; 3730 } else if ((x = fabs(typesystem->offset - 3731 osys_peer->offset)) < sys_mindisp) { 3732 if (sys_clockhop == 0) 3733 sys_clockhop = sys_mindisp; 3734 else 3735 sys_clockhop *= .5; 3736 DPRINTF(1, ("select: clockhop %d %.6f %.6f\n", 3737 j, x, sys_clockhop)); 3738 if (fabs(x) < sys_clockhop) 3739 typesystem = osys_peer; 3740 else 3741 sys_clockhop = 0; 3742 } else { 3743 sys_clockhop = 0; 3744 } 3745 } 3746 3747 /* 3748 * Mitigation rules of the game. We have the pick of the 3749 * litter in typesystem if any survivors are left. If 3750 * there is a prefer peer, use its offset and jitter. 3751 * Otherwise, use the combined offset and jitter of all kitters. 3752 */ 3753 if (typesystem != NULL) { 3754 if (sys_prefer == NULL) { 3755 typesystem->new_status = CTL_PST_SEL_SYSPEER; 3756 clock_combine(peers, sys_survivors, speer); 3757 } else { 3758 typesystem = sys_prefer; 3759 sys_clockhop = 0; 3760 typesystem->new_status = CTL_PST_SEL_SYSPEER; 3761 sys_offset = typesystem->offset; 3762 sys_jitter = typesystem->jitter; 3763 } 3764 DPRINTF(1, ("select: combine offset %.9f jitter %.9f\n", 3765 sys_offset, sys_jitter)); 3766 } 3767 #ifdef REFCLOCK 3768 /* 3769 * If a PPS driver is lit and the combined offset is less than 3770 * 0.4 s, select the driver as the PPS peer and use its offset 3771 * and jitter. However, if this is the atom driver, use it only 3772 * if there is a prefer peer or there are no survivors and none 3773 * are required. 3774 */ 3775 if ( typepps != NULL 3776 && fabs(sys_offset) < 0.4 3777 && ( typepps->refclktype != REFCLK_ATOM_PPS 3778 || ( typepps->refclktype == REFCLK_ATOM_PPS 3779 && ( sys_prefer != NULL 3780 || (typesystem == NULL && sys_minsane == 0))))) { 3781 typesystem = typepps; 3782 sys_clockhop = 0; 3783 typesystem->new_status = CTL_PST_SEL_PPS; 3784 sys_offset = typesystem->offset; 3785 sys_jitter = typesystem->jitter; 3786 DPRINTF(1, ("select: pps offset %.9f jitter %.9f\n", 3787 sys_offset, sys_jitter)); 3788 } 3789 #endif /* REFCLOCK */ 3790 3791 /* 3792 * If there are no survivors at this point, there is no 3793 * system peer. If so and this is an old update, keep the 3794 * current statistics, but do not update the clock. 3795 */ 3796 if (typesystem == NULL) { 3797 if (osys_peer != NULL) { 3798 if (sys_orphwait > 0) 3799 orphwait = current_time + sys_orphwait; 3800 report_event(EVNT_NOPEER, NULL, NULL); 3801 } 3802 sys_peer = NULL; 3803 for (peer = peer_list; peer != NULL; peer = peer->p_link) 3804 peer->status = peer->new_status; 3805 return; 3806 } 3807 3808 /* 3809 * Do not use old data, as this may mess up the clock discipline 3810 * stability. 3811 */ 3812 if (typesystem->epoch <= sys_epoch) 3813 return; 3814 3815 /* 3816 * We have found the alpha male. Wind the clock. 3817 */ 3818 if (osys_peer != typesystem) 3819 report_event(PEVNT_NEWPEER, typesystem, NULL); 3820 for (peer = peer_list; peer != NULL; peer = peer->p_link) 3821 peer->status = peer->new_status; 3822 clock_update(typesystem); 3823 } 3824 3825 3826 static void 3827 clock_combine( 3828 peer_select * peers, /* survivor list */ 3829 int npeers, /* number of survivors */ 3830 int syspeer /* index of sys.peer */ 3831 ) 3832 { 3833 int i; 3834 double x, y, z, w; 3835 3836 y = z = w = 0; 3837 for (i = 0; i < npeers; i++) { 3838 x = 1. / peers[i].synch; 3839 y += x; 3840 z += x * peers[i].peer->offset; 3841 w += x * DIFF(peers[i].peer->offset, 3842 peers[syspeer].peer->offset); 3843 } 3844 sys_offset = z / y; 3845 sys_jitter = SQRT(w / y + SQUARE(peers[syspeer].seljit)); 3846 } 3847 3848 3849 /* 3850 * root_distance - compute synchronization distance from peer to root 3851 */ 3852 static double 3853 root_distance( 3854 struct peer *peer /* peer structure pointer */ 3855 ) 3856 { 3857 double dtemp; 3858 3859 /* 3860 * Root Distance (LAMBDA) is defined as: 3861 * (delta + DELTA)/2 + epsilon + EPSILON + D 3862 * 3863 * where: 3864 * delta is the round-trip delay 3865 * DELTA is the root delay 3866 * epsilon is the peer dispersion 3867 * + (15 usec each second) 3868 * EPSILON is the root dispersion 3869 * D is sys_jitter 3870 * 3871 * NB: Think hard about why we are using these values, and what 3872 * the alternatives are, and the various pros/cons. 3873 * 3874 * DLM thinks these are probably the best choices from any of the 3875 * other worse choices. 3876 */ 3877 dtemp = (peer->delay + peer->rootdelay) / 2 3878 + peer->disp 3879 + clock_phi * (current_time - peer->update) 3880 + peer->rootdisp 3881 + peer->jitter; 3882 /* 3883 * Careful squeak here. The value returned must be greater than 3884 * the minimum root dispersion in order to avoid clockhop with 3885 * highly precise reference clocks. Note that the root distance 3886 * cannot exceed the sys_maxdist, as this is the cutoff by the 3887 * selection algorithm. 3888 */ 3889 if (dtemp < sys_mindisp) 3890 dtemp = sys_mindisp; 3891 return (dtemp); 3892 } 3893 3894 3895 /* 3896 * peer_xmit - send packet for persistent association. 3897 */ 3898 static void 3899 peer_xmit( 3900 struct peer *peer /* peer structure pointer */ 3901 ) 3902 { 3903 struct pkt xpkt; /* transmit packet */ 3904 size_t sendlen, authlen; 3905 keyid_t xkeyid = 0; /* transmit key ID */ 3906 l_fp xmt_tx, xmt_ty; 3907 3908 if (!peer->dstadr) /* drop peers without interface */ 3909 return; 3910 3911 xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, peer->version, 3912 peer->hmode); 3913 xpkt.stratum = STRATUM_TO_PKT(sys_stratum); 3914 xpkt.ppoll = peer->hpoll; 3915 xpkt.precision = sys_precision; 3916 xpkt.refid = sys_refid; 3917 xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay)); 3918 xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp)); 3919 HTONL_FP(&sys_reftime, &xpkt.reftime); 3920 HTONL_FP(&peer->rec, &xpkt.org); 3921 HTONL_FP(&peer->dst, &xpkt.rec); 3922 3923 /* 3924 * If the received packet contains a MAC, the transmitted packet 3925 * is authenticated and contains a MAC. If not, the transmitted 3926 * packet is not authenticated. 3927 * 3928 * It is most important when autokey is in use that the local 3929 * interface IP address be known before the first packet is 3930 * sent. Otherwise, it is not possible to compute a correct MAC 3931 * the recipient will accept. Thus, the I/O semantics have to do 3932 * a little more work. In particular, the wildcard interface 3933 * might not be usable. 3934 */ 3935 sendlen = LEN_PKT_NOMAC; 3936 if ( 3937 #ifdef AUTOKEY 3938 !(peer->flags & FLAG_SKEY) && 3939 #endif /* !AUTOKEY */ 3940 peer->keyid == 0) { 3941 3942 /* 3943 * Transmit a-priori timestamps 3944 */ 3945 get_systime(&xmt_tx); 3946 if (peer->flip == 0) { /* basic mode */ 3947 peer->aorg = xmt_tx; 3948 HTONL_FP(&xmt_tx, &xpkt.xmt); 3949 } else { /* interleaved modes */ 3950 if (peer->hmode == MODE_BROADCAST) { /* bcst */ 3951 HTONL_FP(&xmt_tx, &xpkt.xmt); 3952 if (peer->flip > 0) 3953 HTONL_FP(&peer->borg, 3954 &xpkt.org); 3955 else 3956 HTONL_FP(&peer->aorg, 3957 &xpkt.org); 3958 } else { /* symmetric */ 3959 if (peer->flip > 0) 3960 HTONL_FP(&peer->borg, 3961 &xpkt.xmt); 3962 else 3963 HTONL_FP(&peer->aorg, 3964 &xpkt.xmt); 3965 } 3966 } 3967 peer->t21_bytes = sendlen; 3968 sendpkt(&peer->srcadr, peer->dstadr, 3969 sys_ttl[(peer->ttl >= sys_ttlmax) ? sys_ttlmax : peer->ttl], 3970 &xpkt, sendlen); 3971 peer->sent++; 3972 peer->throttle += (1 << peer->minpoll) - 2; 3973 3974 /* 3975 * Capture a-posteriori timestamps 3976 */ 3977 get_systime(&xmt_ty); 3978 if (peer->flip != 0) { /* interleaved modes */ 3979 if (peer->flip > 0) 3980 peer->aorg = xmt_ty; 3981 else 3982 peer->borg = xmt_ty; 3983 peer->flip = -peer->flip; 3984 } 3985 L_SUB(&xmt_ty, &xmt_tx); 3986 LFPTOD(&xmt_ty, peer->xleave); 3987 DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d len %zu xmt %#010x.%08x\n", 3988 current_time, 3989 peer->dstadr ? stoa(&peer->dstadr->sin) : "-", 3990 stoa(&peer->srcadr), peer->hmode, sendlen, 3991 xmt_tx.l_ui, xmt_tx.l_uf)); 3992 return; 3993 } 3994 3995 /* 3996 * Authentication is enabled, so the transmitted packet must be 3997 * authenticated. If autokey is enabled, fuss with the various 3998 * modes; otherwise, symmetric key cryptography is used. 3999 */ 4000 #ifdef AUTOKEY 4001 if (peer->flags & FLAG_SKEY) { 4002 struct exten *exten; /* extension field */ 4003 4004 /* 4005 * The Public Key Dance (PKD): Cryptographic credentials 4006 * are contained in extension fields, each including a 4007 * 4-octet length/code word followed by a 4-octet 4008 * association ID and optional additional data. Optional 4009 * data includes a 4-octet data length field followed by 4010 * the data itself. Request messages are sent from a 4011 * configured association; response messages can be sent 4012 * from a configured association or can take the fast 4013 * path without ever matching an association. Response 4014 * messages have the same code as the request, but have 4015 * a response bit and possibly an error bit set. In this 4016 * implementation, a message may contain no more than 4017 * one command and one or more responses. 4018 * 4019 * Cryptographic session keys include both a public and 4020 * a private componet. Request and response messages 4021 * using extension fields are always sent with the 4022 * private component set to zero. Packets without 4023 * extension fields indlude the private component when 4024 * the session key is generated. 4025 */ 4026 while (1) { 4027 4028 /* 4029 * Allocate and initialize a keylist if not 4030 * already done. Then, use the list in inverse 4031 * order, discarding keys once used. Keep the 4032 * latest key around until the next one, so 4033 * clients can use client/server packets to 4034 * compute propagation delay. 4035 * 4036 * Note that once a key is used from the list, 4037 * it is retained in the key cache until the 4038 * next key is used. This is to allow a client 4039 * to retrieve the encrypted session key 4040 * identifier to verify authenticity. 4041 * 4042 * If for some reason a key is no longer in the 4043 * key cache, a birthday has happened or the key 4044 * has expired, so the pseudo-random sequence is 4045 * broken. In that case, purge the keylist and 4046 * regenerate it. 4047 */ 4048 if (peer->keynumber == 0) 4049 make_keylist(peer, peer->dstadr); 4050 else 4051 peer->keynumber--; 4052 xkeyid = peer->keylist[peer->keynumber]; 4053 if (authistrusted(xkeyid)) 4054 break; 4055 else 4056 key_expire(peer); 4057 } 4058 peer->keyid = xkeyid; 4059 exten = NULL; 4060 switch (peer->hmode) { 4061 4062 /* 4063 * In broadcast server mode the autokey values are 4064 * required by the broadcast clients. Push them when a 4065 * new keylist is generated; otherwise, push the 4066 * association message so the client can request them at 4067 * other times. 4068 */ 4069 case MODE_BROADCAST: 4070 if (peer->flags & FLAG_ASSOC) 4071 exten = crypto_args(peer, CRYPTO_AUTO | 4072 CRYPTO_RESP, peer->associd, NULL); 4073 else 4074 exten = crypto_args(peer, CRYPTO_ASSOC | 4075 CRYPTO_RESP, peer->associd, NULL); 4076 break; 4077 4078 /* 4079 * In symmetric modes the parameter, certificate, 4080 * identity, cookie and autokey exchanges are 4081 * required. The leapsecond exchange is optional. But, a 4082 * peer will not believe the other peer until the other 4083 * peer has synchronized, so the certificate exchange 4084 * might loop until then. If a peer finds a broken 4085 * autokey sequence, it uses the autokey exchange to 4086 * retrieve the autokey values. In any case, if a new 4087 * keylist is generated, the autokey values are pushed. 4088 */ 4089 case MODE_ACTIVE: 4090 case MODE_PASSIVE: 4091 4092 /* 4093 * Parameter, certificate and identity. 4094 */ 4095 if (!peer->crypto) 4096 exten = crypto_args(peer, CRYPTO_ASSOC, 4097 peer->associd, hostval.ptr); 4098 else if (!(peer->crypto & CRYPTO_FLAG_CERT)) 4099 exten = crypto_args(peer, CRYPTO_CERT, 4100 peer->associd, peer->issuer); 4101 else if (!(peer->crypto & CRYPTO_FLAG_VRFY)) 4102 exten = crypto_args(peer, 4103 crypto_ident(peer), peer->associd, 4104 NULL); 4105 4106 /* 4107 * Cookie and autokey. We request the cookie 4108 * only when the this peer and the other peer 4109 * are synchronized. But, this peer needs the 4110 * autokey values when the cookie is zero. Any 4111 * time we regenerate the key list, we offer the 4112 * autokey values without being asked. If for 4113 * some reason either peer finds a broken 4114 * autokey sequence, the autokey exchange is 4115 * used to retrieve the autokey values. 4116 */ 4117 else if ( sys_leap != LEAP_NOTINSYNC 4118 && peer->leap != LEAP_NOTINSYNC 4119 && !(peer->crypto & CRYPTO_FLAG_COOK)) 4120 exten = crypto_args(peer, CRYPTO_COOK, 4121 peer->associd, NULL); 4122 else if (!(peer->crypto & CRYPTO_FLAG_AUTO)) 4123 exten = crypto_args(peer, CRYPTO_AUTO, 4124 peer->associd, NULL); 4125 else if ( peer->flags & FLAG_ASSOC 4126 && peer->crypto & CRYPTO_FLAG_SIGN) 4127 exten = crypto_args(peer, CRYPTO_AUTO | 4128 CRYPTO_RESP, peer->assoc, NULL); 4129 4130 /* 4131 * Wait for clock sync, then sign the 4132 * certificate and retrieve the leapsecond 4133 * values. 4134 */ 4135 else if (sys_leap == LEAP_NOTINSYNC) 4136 break; 4137 4138 else if (!(peer->crypto & CRYPTO_FLAG_SIGN)) 4139 exten = crypto_args(peer, CRYPTO_SIGN, 4140 peer->associd, hostval.ptr); 4141 else if (!(peer->crypto & CRYPTO_FLAG_LEAP)) 4142 exten = crypto_args(peer, CRYPTO_LEAP, 4143 peer->associd, NULL); 4144 break; 4145 4146 /* 4147 * In client mode the parameter, certificate, identity, 4148 * cookie and sign exchanges are required. The 4149 * leapsecond exchange is optional. If broadcast client 4150 * mode the same exchanges are required, except that the 4151 * autokey exchange is substitutes for the cookie 4152 * exchange, since the cookie is always zero. If the 4153 * broadcast client finds a broken autokey sequence, it 4154 * uses the autokey exchange to retrieve the autokey 4155 * values. 4156 */ 4157 case MODE_CLIENT: 4158 4159 /* 4160 * Parameter, certificate and identity. 4161 */ 4162 if (!peer->crypto) 4163 exten = crypto_args(peer, CRYPTO_ASSOC, 4164 peer->associd, hostval.ptr); 4165 else if (!(peer->crypto & CRYPTO_FLAG_CERT)) 4166 exten = crypto_args(peer, CRYPTO_CERT, 4167 peer->associd, peer->issuer); 4168 else if (!(peer->crypto & CRYPTO_FLAG_VRFY)) 4169 exten = crypto_args(peer, 4170 crypto_ident(peer), peer->associd, 4171 NULL); 4172 4173 /* 4174 * Cookie and autokey. These are requests, but 4175 * we use the peer association ID with autokey 4176 * rather than our own. 4177 */ 4178 else if (!(peer->crypto & CRYPTO_FLAG_COOK)) 4179 exten = crypto_args(peer, CRYPTO_COOK, 4180 peer->associd, NULL); 4181 else if (!(peer->crypto & CRYPTO_FLAG_AUTO)) 4182 exten = crypto_args(peer, CRYPTO_AUTO, 4183 peer->assoc, NULL); 4184 4185 /* 4186 * Wait for clock sync, then sign the 4187 * certificate and retrieve the leapsecond 4188 * values. 4189 */ 4190 else if (sys_leap == LEAP_NOTINSYNC) 4191 break; 4192 4193 else if (!(peer->crypto & CRYPTO_FLAG_SIGN)) 4194 exten = crypto_args(peer, CRYPTO_SIGN, 4195 peer->associd, hostval.ptr); 4196 else if (!(peer->crypto & CRYPTO_FLAG_LEAP)) 4197 exten = crypto_args(peer, CRYPTO_LEAP, 4198 peer->associd, NULL); 4199 break; 4200 } 4201 4202 /* 4203 * Add a queued extension field if present. This is 4204 * always a request message, so the reply ID is already 4205 * in the message. If an error occurs, the error bit is 4206 * lit in the response. 4207 */ 4208 if (peer->cmmd != NULL) { 4209 u_int32 temp32; 4210 4211 temp32 = CRYPTO_RESP; 4212 peer->cmmd->opcode |= htonl(temp32); 4213 sendlen += crypto_xmit(peer, &xpkt, NULL, 4214 sendlen, peer->cmmd, 0); 4215 free(peer->cmmd); 4216 peer->cmmd = NULL; 4217 } 4218 4219 /* 4220 * Add an extension field created above. All but the 4221 * autokey response message are request messages. 4222 */ 4223 if (exten != NULL) { 4224 if (exten->opcode != 0) 4225 sendlen += crypto_xmit(peer, &xpkt, 4226 NULL, sendlen, exten, 0); 4227 free(exten); 4228 } 4229 4230 /* 4231 * Calculate the next session key. Since extension 4232 * fields are present, the cookie value is zero. 4233 */ 4234 if (sendlen > (int)LEN_PKT_NOMAC) { 4235 session_key(&peer->dstadr->sin, &peer->srcadr, 4236 xkeyid, 0, 2); 4237 } 4238 } 4239 #endif /* AUTOKEY */ 4240 4241 /* 4242 * Transmit a-priori timestamps 4243 */ 4244 get_systime(&xmt_tx); 4245 if (peer->flip == 0) { /* basic mode */ 4246 peer->aorg = xmt_tx; 4247 HTONL_FP(&xmt_tx, &xpkt.xmt); 4248 } else { /* interleaved modes */ 4249 if (peer->hmode == MODE_BROADCAST) { /* bcst */ 4250 HTONL_FP(&xmt_tx, &xpkt.xmt); 4251 if (peer->flip > 0) 4252 HTONL_FP(&peer->borg, &xpkt.org); 4253 else 4254 HTONL_FP(&peer->aorg, &xpkt.org); 4255 } else { /* symmetric */ 4256 if (peer->flip > 0) 4257 HTONL_FP(&peer->borg, &xpkt.xmt); 4258 else 4259 HTONL_FP(&peer->aorg, &xpkt.xmt); 4260 } 4261 } 4262 xkeyid = peer->keyid; 4263 authlen = authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen); 4264 if (authlen == 0) { 4265 report_event(PEVNT_AUTH, peer, "no key"); 4266 peer->flash |= TEST5; /* auth error */ 4267 peer->badauth++; 4268 return; 4269 } 4270 sendlen += authlen; 4271 #ifdef AUTOKEY 4272 if (xkeyid > NTP_MAXKEY) 4273 authtrust(xkeyid, 0); 4274 #endif /* AUTOKEY */ 4275 if (sendlen > sizeof(xpkt)) { 4276 msyslog(LOG_ERR, "peer_xmit: buffer overflow %zu", sendlen); 4277 exit (-1); 4278 } 4279 peer->t21_bytes = sendlen; 4280 sendpkt(&peer->srcadr, peer->dstadr, 4281 sys_ttl[(peer->ttl >= sys_ttlmax) ? sys_ttlmax : peer->ttl], 4282 &xpkt, sendlen); 4283 peer->sent++; 4284 peer->throttle += (1 << peer->minpoll) - 2; 4285 4286 /* 4287 * Capture a-posteriori timestamps 4288 */ 4289 get_systime(&xmt_ty); 4290 if (peer->flip != 0) { /* interleaved modes */ 4291 if (peer->flip > 0) 4292 peer->aorg = xmt_ty; 4293 else 4294 peer->borg = xmt_ty; 4295 peer->flip = -peer->flip; 4296 } 4297 L_SUB(&xmt_ty, &xmt_tx); 4298 LFPTOD(&xmt_ty, peer->xleave); 4299 #ifdef AUTOKEY 4300 DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d keyid %08x len %zu index %d\n", 4301 current_time, latoa(peer->dstadr), 4302 ntoa(&peer->srcadr), peer->hmode, xkeyid, sendlen, 4303 peer->keynumber)); 4304 #else /* !AUTOKEY follows */ 4305 DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d keyid %08x len %zu\n", 4306 current_time, peer->dstadr ? 4307 ntoa(&peer->dstadr->sin) : "-", 4308 ntoa(&peer->srcadr), peer->hmode, xkeyid, sendlen)); 4309 #endif /* !AUTOKEY */ 4310 4311 return; 4312 } 4313 4314 4315 #ifdef LEAP_SMEAR 4316 4317 static void 4318 leap_smear_add_offs( 4319 l_fp *t, 4320 l_fp *t_recv 4321 ) 4322 { 4323 4324 L_ADD(t, &leap_smear.offset); 4325 4326 /* 4327 ** XXX: Should the smear be added to the root dispersion? 4328 */ 4329 4330 return; 4331 } 4332 4333 #endif /* LEAP_SMEAR */ 4334 4335 4336 /* 4337 * fast_xmit - Send packet for nonpersistent association. Note that 4338 * neither the source or destination can be a broadcast address. 4339 */ 4340 static void 4341 fast_xmit( 4342 struct recvbuf *rbufp, /* receive packet pointer */ 4343 int xmode, /* receive mode */ 4344 keyid_t xkeyid, /* transmit key ID */ 4345 int flags /* restrict mask */ 4346 ) 4347 { 4348 struct pkt xpkt; /* transmit packet structure */ 4349 struct pkt *rpkt; /* receive packet structure */ 4350 l_fp xmt_tx, xmt_ty; 4351 size_t sendlen; 4352 #ifdef AUTOKEY 4353 u_int32 temp32; 4354 #endif 4355 4356 /* 4357 * Initialize transmit packet header fields from the receive 4358 * buffer provided. We leave the fields intact as received, but 4359 * set the peer poll at the maximum of the receive peer poll and 4360 * the system minimum poll (ntp_minpoll). This is for KoD rate 4361 * control and not strictly specification compliant, but doesn't 4362 * break anything. 4363 * 4364 * If the gazinta was from a multicast address, the gazoutta 4365 * must go out another way. 4366 */ 4367 rpkt = &rbufp->recv_pkt; 4368 if (rbufp->dstadr->flags & INT_MCASTOPEN) 4369 rbufp->dstadr = findinterface(&rbufp->recv_srcadr); 4370 4371 /* 4372 * If this is a kiss-o'-death (KoD) packet, show leap 4373 * unsynchronized, stratum zero, reference ID the four-character 4374 * kiss code and system root delay. Note we don't reveal the 4375 * local time, so these packets can't be used for 4376 * synchronization. 4377 */ 4378 if (flags & RES_KOD) { 4379 sys_kodsent++; 4380 xpkt.li_vn_mode = PKT_LI_VN_MODE(LEAP_NOTINSYNC, 4381 PKT_VERSION(rpkt->li_vn_mode), xmode); 4382 xpkt.stratum = STRATUM_PKT_UNSPEC; 4383 xpkt.ppoll = max(rpkt->ppoll, ntp_minpoll); 4384 xpkt.precision = rpkt->precision; 4385 memcpy(&xpkt.refid, "RATE", 4); 4386 xpkt.rootdelay = rpkt->rootdelay; 4387 xpkt.rootdisp = rpkt->rootdisp; 4388 xpkt.reftime = rpkt->reftime; 4389 xpkt.org = rpkt->xmt; 4390 xpkt.rec = rpkt->xmt; 4391 xpkt.xmt = rpkt->xmt; 4392 4393 /* 4394 * This is a normal packet. Use the system variables. 4395 */ 4396 } else { 4397 #ifdef LEAP_SMEAR 4398 /* 4399 * Make copies of the variables which can be affected by smearing. 4400 */ 4401 l_fp this_ref_time; 4402 l_fp this_recv_time; 4403 #endif 4404 4405 /* 4406 * If we are inside the leap smear interval we add the current smear offset to 4407 * the packet receive time, to the packet transmit time, and eventually to the 4408 * reftime to make sure the reftime isn't later than the transmit/receive times. 4409 */ 4410 xpkt.li_vn_mode = PKT_LI_VN_MODE(xmt_leap, 4411 PKT_VERSION(rpkt->li_vn_mode), xmode); 4412 4413 xpkt.stratum = STRATUM_TO_PKT(sys_stratum); 4414 xpkt.ppoll = max(rpkt->ppoll, ntp_minpoll); 4415 xpkt.precision = sys_precision; 4416 xpkt.refid = sys_refid; 4417 xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay)); 4418 xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp)); 4419 4420 #ifdef LEAP_SMEAR 4421 this_ref_time = sys_reftime; 4422 if (leap_smear.in_progress) { 4423 leap_smear_add_offs(&this_ref_time, NULL); 4424 xpkt.refid = convertLFPToRefID(leap_smear.offset); 4425 DPRINTF(2, ("fast_xmit: leap_smear.in_progress: refid %8x, smear %s\n", 4426 ntohl(xpkt.refid), 4427 lfptoa(&leap_smear.offset, 8) 4428 )); 4429 } 4430 HTONL_FP(&this_ref_time, &xpkt.reftime); 4431 #else 4432 HTONL_FP(&sys_reftime, &xpkt.reftime); 4433 #endif 4434 4435 xpkt.org = rpkt->xmt; 4436 4437 #ifdef LEAP_SMEAR 4438 this_recv_time = rbufp->recv_time; 4439 if (leap_smear.in_progress) 4440 leap_smear_add_offs(&this_recv_time, NULL); 4441 HTONL_FP(&this_recv_time, &xpkt.rec); 4442 #else 4443 HTONL_FP(&rbufp->recv_time, &xpkt.rec); 4444 #endif 4445 4446 get_systime(&xmt_tx); 4447 #ifdef LEAP_SMEAR 4448 if (leap_smear.in_progress) 4449 leap_smear_add_offs(&xmt_tx, &this_recv_time); 4450 #endif 4451 HTONL_FP(&xmt_tx, &xpkt.xmt); 4452 } 4453 4454 #ifdef HAVE_NTP_SIGND 4455 if (flags & RES_MSSNTP) { 4456 send_via_ntp_signd(rbufp, xmode, xkeyid, flags, &xpkt); 4457 return; 4458 } 4459 #endif /* HAVE_NTP_SIGND */ 4460 4461 /* 4462 * If the received packet contains a MAC, the transmitted packet 4463 * is authenticated and contains a MAC. If not, the transmitted 4464 * packet is not authenticated. 4465 */ 4466 sendlen = LEN_PKT_NOMAC; 4467 if (rbufp->recv_length == sendlen) { 4468 sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, 0, &xpkt, 4469 sendlen); 4470 DPRINTF(1, ("fast_xmit: at %ld %s->%s mode %d len %lu\n", 4471 current_time, stoa(&rbufp->dstadr->sin), 4472 stoa(&rbufp->recv_srcadr), xmode, 4473 (u_long)sendlen)); 4474 return; 4475 } 4476 4477 /* 4478 * The received packet contains a MAC, so the transmitted packet 4479 * must be authenticated. For symmetric key cryptography, use 4480 * the predefined and trusted symmetric keys to generate the 4481 * cryptosum. For autokey cryptography, use the server private 4482 * value to generate the cookie, which is unique for every 4483 * source-destination-key ID combination. 4484 */ 4485 #ifdef AUTOKEY 4486 if (xkeyid > NTP_MAXKEY) { 4487 keyid_t cookie; 4488 4489 /* 4490 * The only way to get here is a reply to a legitimate 4491 * client request message, so the mode must be 4492 * MODE_SERVER. If an extension field is present, there 4493 * can be only one and that must be a command. Do what 4494 * needs, but with private value of zero so the poor 4495 * jerk can decode it. If no extension field is present, 4496 * use the cookie to generate the session key. 4497 */ 4498 cookie = session_key(&rbufp->recv_srcadr, 4499 &rbufp->dstadr->sin, 0, sys_private, 0); 4500 if ((size_t)rbufp->recv_length > sendlen + MAX_MAC_LEN) { 4501 session_key(&rbufp->dstadr->sin, 4502 &rbufp->recv_srcadr, xkeyid, 0, 2); 4503 temp32 = CRYPTO_RESP; 4504 rpkt->exten[0] |= htonl(temp32); 4505 sendlen += crypto_xmit(NULL, &xpkt, rbufp, 4506 sendlen, (struct exten *)rpkt->exten, 4507 cookie); 4508 } else { 4509 session_key(&rbufp->dstadr->sin, 4510 &rbufp->recv_srcadr, xkeyid, cookie, 2); 4511 } 4512 } 4513 #endif /* AUTOKEY */ 4514 get_systime(&xmt_tx); 4515 sendlen += authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen); 4516 #ifdef AUTOKEY 4517 if (xkeyid > NTP_MAXKEY) 4518 authtrust(xkeyid, 0); 4519 #endif /* AUTOKEY */ 4520 sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, 0, &xpkt, sendlen); 4521 get_systime(&xmt_ty); 4522 L_SUB(&xmt_ty, &xmt_tx); 4523 sys_authdelay = xmt_ty; 4524 DPRINTF(1, ("fast_xmit: at %ld %s->%s mode %d keyid %08x len %lu\n", 4525 current_time, ntoa(&rbufp->dstadr->sin), 4526 ntoa(&rbufp->recv_srcadr), xmode, xkeyid, 4527 (u_long)sendlen)); 4528 } 4529 4530 4531 /* 4532 * pool_xmit - resolve hostname or send unicast solicitation for pool. 4533 */ 4534 static void 4535 pool_xmit( 4536 struct peer *pool /* pool solicitor association */ 4537 ) 4538 { 4539 #ifdef WORKER 4540 struct pkt xpkt; /* transmit packet structure */ 4541 struct addrinfo hints; 4542 int rc; 4543 struct interface * lcladr; 4544 sockaddr_u * rmtadr; 4545 r4addr r4a; 4546 int restrict_mask; 4547 struct peer * p; 4548 l_fp xmt_tx; 4549 4550 if (NULL == pool->ai) { 4551 if (pool->addrs != NULL) { 4552 /* free() is used with copy_addrinfo_list() */ 4553 free(pool->addrs); 4554 pool->addrs = NULL; 4555 } 4556 ZERO(hints); 4557 hints.ai_family = AF(&pool->srcadr); 4558 hints.ai_socktype = SOCK_DGRAM; 4559 hints.ai_protocol = IPPROTO_UDP; 4560 /* ignore getaddrinfo_sometime() errors, we will retry */ 4561 rc = getaddrinfo_sometime( 4562 pool->hostname, 4563 "ntp", 4564 &hints, 4565 0, /* no retry */ 4566 &pool_name_resolved, 4567 (void *)(intptr_t)pool->associd); 4568 if (!rc) 4569 DPRINTF(1, ("pool DNS lookup %s started\n", 4570 pool->hostname)); 4571 else 4572 msyslog(LOG_ERR, 4573 "unable to start pool DNS %s: %m", 4574 pool->hostname); 4575 return; 4576 } 4577 4578 do { 4579 /* copy_addrinfo_list ai_addr points to a sockaddr_u */ 4580 rmtadr = (sockaddr_u *)(void *)pool->ai->ai_addr; 4581 pool->ai = pool->ai->ai_next; 4582 p = findexistingpeer(rmtadr, NULL, NULL, MODE_CLIENT, 0, NULL); 4583 } while (p != NULL && pool->ai != NULL); 4584 if (p != NULL) 4585 return; /* out of addresses, re-query DNS next poll */ 4586 restrictions(rmtadr, &r4a); 4587 restrict_mask = r4a.rflags; 4588 if (RES_FLAGS & restrict_mask) 4589 restrict_source(rmtadr, 0, 4590 current_time + POOL_SOLICIT_WINDOW + 1); 4591 lcladr = findinterface(rmtadr); 4592 memset(&xpkt, 0, sizeof(xpkt)); 4593 xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, pool->version, 4594 MODE_CLIENT); 4595 xpkt.stratum = STRATUM_TO_PKT(sys_stratum); 4596 xpkt.ppoll = pool->hpoll; 4597 xpkt.precision = sys_precision; 4598 xpkt.refid = sys_refid; 4599 xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay)); 4600 xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp)); 4601 HTONL_FP(&sys_reftime, &xpkt.reftime); 4602 get_systime(&xmt_tx); 4603 pool->aorg = xmt_tx; 4604 HTONL_FP(&xmt_tx, &xpkt.xmt); 4605 sendpkt(rmtadr, lcladr, 4606 sys_ttl[(pool->ttl >= sys_ttlmax) ? sys_ttlmax : pool->ttl], 4607 &xpkt, LEN_PKT_NOMAC); 4608 pool->sent++; 4609 pool->throttle += (1 << pool->minpoll) - 2; 4610 DPRINTF(1, ("pool_xmit: at %ld %s->%s pool\n", 4611 current_time, latoa(lcladr), stoa(rmtadr))); 4612 msyslog(LOG_INFO, "Soliciting pool server %s", stoa(rmtadr)); 4613 #endif /* WORKER */ 4614 } 4615 4616 4617 #ifdef AUTOKEY 4618 /* 4619 * group_test - test if this is the same group 4620 * 4621 * host assoc return action 4622 * none none 0 mobilize * 4623 * none group 0 mobilize * 4624 * group none 0 mobilize * 4625 * group group 1 mobilize 4626 * group different 1 ignore 4627 * * ignore if notrust 4628 */ 4629 int 4630 group_test( 4631 char *grp, 4632 char *ident 4633 ) 4634 { 4635 if (grp == NULL) 4636 return (0); 4637 4638 if (strcmp(grp, sys_groupname) == 0) 4639 return (0); 4640 4641 if (ident == NULL) 4642 return (1); 4643 4644 if (strcmp(grp, ident) == 0) 4645 return (0); 4646 4647 return (1); 4648 } 4649 #endif /* AUTOKEY */ 4650 4651 4652 #ifdef WORKER 4653 void 4654 pool_name_resolved( 4655 int rescode, 4656 int gai_errno, 4657 void * context, 4658 const char * name, 4659 const char * service, 4660 const struct addrinfo * hints, 4661 const struct addrinfo * res 4662 ) 4663 { 4664 struct peer * pool; /* pool solicitor association */ 4665 associd_t assoc; 4666 4667 if (rescode) { 4668 msyslog(LOG_ERR, 4669 "error resolving pool %s: %s (%d)", 4670 name, gai_strerror(rescode), rescode); 4671 return; 4672 } 4673 4674 assoc = (associd_t)(intptr_t)context; 4675 pool = findpeerbyassoc(assoc); 4676 if (NULL == pool) { 4677 msyslog(LOG_ERR, 4678 "Could not find assoc %u for pool DNS %s", 4679 assoc, name); 4680 return; 4681 } 4682 DPRINTF(1, ("pool DNS %s completed\n", name)); 4683 pool->addrs = copy_addrinfo_list(res); 4684 pool->ai = pool->addrs; 4685 pool_xmit(pool); 4686 4687 } 4688 #endif /* WORKER */ 4689 4690 4691 #ifdef AUTOKEY 4692 /* 4693 * key_expire - purge the key list 4694 */ 4695 void 4696 key_expire( 4697 struct peer *peer /* peer structure pointer */ 4698 ) 4699 { 4700 int i; 4701 4702 if (peer->keylist != NULL) { 4703 for (i = 0; i <= peer->keynumber; i++) 4704 authtrust(peer->keylist[i], 0); 4705 free(peer->keylist); 4706 peer->keylist = NULL; 4707 } 4708 value_free(&peer->sndval); 4709 peer->keynumber = 0; 4710 peer->flags &= ~FLAG_ASSOC; 4711 DPRINTF(1, ("key_expire: at %lu associd %d\n", current_time, 4712 peer->associd)); 4713 } 4714 #endif /* AUTOKEY */ 4715 4716 4717 /* 4718 * local_refid(peer) - check peer refid to avoid selecting peers 4719 * currently synced to this ntpd. 4720 */ 4721 static int 4722 local_refid( 4723 struct peer * p 4724 ) 4725 { 4726 endpt * unicast_ep; 4727 4728 if (p->dstadr != NULL && !(INT_MCASTIF & p->dstadr->flags)) 4729 unicast_ep = p->dstadr; 4730 else 4731 unicast_ep = findinterface(&p->srcadr); 4732 4733 if (unicast_ep != NULL && p->refid == unicast_ep->addr_refid) 4734 return TRUE; 4735 else 4736 return FALSE; 4737 } 4738 4739 4740 /* 4741 * Determine if the peer is unfit for synchronization 4742 * 4743 * A peer is unfit for synchronization if 4744 * > TEST10 bad leap or stratum below floor or at or above ceiling 4745 * > TEST11 root distance exceeded for remote peer 4746 * > TEST12 a direct or indirect synchronization loop would form 4747 * > TEST13 unreachable or noselect 4748 */ 4749 int /* FALSE if fit, TRUE if unfit */ 4750 peer_unfit( 4751 struct peer *peer /* peer structure pointer */ 4752 ) 4753 { 4754 int rval = 0; 4755 4756 /* 4757 * A stratum error occurs if (1) the server has never been 4758 * synchronized, (2) the server stratum is below the floor or 4759 * greater than or equal to the ceiling. 4760 */ 4761 if ( peer->leap == LEAP_NOTINSYNC 4762 || peer->stratum < sys_floor 4763 || peer->stratum >= sys_ceiling) { 4764 rval |= TEST10; /* bad synch or stratum */ 4765 } 4766 4767 /* 4768 * A distance error for a remote peer occurs if the root 4769 * distance is greater than or equal to the distance threshold 4770 * plus the increment due to one host poll interval. 4771 */ 4772 if ( !(peer->flags & FLAG_REFCLOCK) 4773 && root_distance(peer) >= sys_maxdist 4774 + clock_phi * ULOGTOD(peer->hpoll)) { 4775 rval |= TEST11; /* distance exceeded */ 4776 } 4777 4778 /* 4779 * A loop error occurs if the remote peer is synchronized to the 4780 * local peer or if the remote peer is synchronized to the same 4781 * server as the local peer but only if the remote peer is 4782 * neither a reference clock nor an orphan. 4783 */ 4784 if (peer->stratum > 1 && local_refid(peer)) { 4785 rval |= TEST12; /* synchronization loop */ 4786 } 4787 4788 /* 4789 * An unreachable error occurs if the server is unreachable or 4790 * the noselect bit is set. 4791 */ 4792 if (!peer->reach || (peer->flags & FLAG_NOSELECT)) { 4793 rval |= TEST13; /* unreachable */ 4794 } 4795 4796 peer->flash &= ~PEER_TEST_MASK; 4797 peer->flash |= rval; 4798 return (rval); 4799 } 4800 4801 4802 /* 4803 * Find the precision of this particular machine 4804 */ 4805 #define MINSTEP 20e-9 /* minimum clock increment (s) */ 4806 #define MAXSTEP 1 /* maximum clock increment (s) */ 4807 #define MINCHANGES 12 /* minimum number of step samples */ 4808 #define MAXLOOPS ((int)(1. / MINSTEP)) /* avoid infinite loop */ 4809 4810 /* 4811 * This routine measures the system precision defined as the minimum of 4812 * a sequence of differences between successive readings of the system 4813 * clock. However, if a difference is less than MINSTEP, the clock has 4814 * been read more than once during a clock tick and the difference is 4815 * ignored. We set MINSTEP greater than zero in case something happens 4816 * like a cache miss, and to tolerate underlying system clocks which 4817 * ensure each reading is strictly greater than prior readings while 4818 * using an underlying stepping (not interpolated) clock. 4819 * 4820 * sys_tick and sys_precision represent the time to read the clock for 4821 * systems with high-precision clocks, and the tick interval or step 4822 * size for lower-precision stepping clocks. 4823 * 4824 * This routine also measures the time to read the clock on stepping 4825 * system clocks by counting the number of readings between changes of 4826 * the underlying clock. With either type of clock, the minimum time 4827 * to read the clock is saved as sys_fuzz, and used to ensure the 4828 * get_systime() readings always increase and are fuzzed below sys_fuzz. 4829 */ 4830 void 4831 measure_precision(void) 4832 { 4833 /* 4834 * With sys_fuzz set to zero, get_systime() fuzzing of low bits 4835 * is effectively disabled. trunc_os_clock is FALSE to disable 4836 * get_ostime() simulation of a low-precision system clock. 4837 */ 4838 set_sys_fuzz(0.); 4839 trunc_os_clock = FALSE; 4840 measured_tick = measure_tick_fuzz(); 4841 set_sys_tick_precision(measured_tick); 4842 msyslog(LOG_INFO, "proto: precision = %.3f usec (%d)", 4843 sys_tick * 1e6, sys_precision); 4844 if (sys_fuzz < sys_tick) { 4845 msyslog(LOG_NOTICE, "proto: fuzz beneath %.3f usec", 4846 sys_fuzz * 1e6); 4847 } 4848 } 4849 4850 4851 /* 4852 * measure_tick_fuzz() 4853 * 4854 * measures the minimum time to read the clock (stored in sys_fuzz) 4855 * and returns the tick, the larger of the minimum increment observed 4856 * between successive clock readings and the time to read the clock. 4857 */ 4858 double 4859 measure_tick_fuzz(void) 4860 { 4861 l_fp minstep; /* MINSTEP as l_fp */ 4862 l_fp val; /* current seconds fraction */ 4863 l_fp last; /* last seconds fraction */ 4864 l_fp ldiff; /* val - last */ 4865 double tick; /* computed tick value */ 4866 double diff; 4867 long repeats; 4868 long max_repeats; 4869 int changes; 4870 int i; /* log2 precision */ 4871 4872 tick = MAXSTEP; 4873 max_repeats = 0; 4874 repeats = 0; 4875 changes = 0; 4876 DTOLFP(MINSTEP, &minstep); 4877 get_systime(&last); 4878 for (i = 0; i < MAXLOOPS && changes < MINCHANGES; i++) { 4879 get_systime(&val); 4880 ldiff = val; 4881 L_SUB(&ldiff, &last); 4882 last = val; 4883 if (L_ISGT(&ldiff, &minstep)) { 4884 max_repeats = max(repeats, max_repeats); 4885 repeats = 0; 4886 changes++; 4887 LFPTOD(&ldiff, diff); 4888 tick = min(diff, tick); 4889 } else { 4890 repeats++; 4891 } 4892 } 4893 if (changes < MINCHANGES) { 4894 msyslog(LOG_ERR, "Fatal error: precision could not be measured (MINSTEP too large?)"); 4895 exit(1); 4896 } 4897 4898 if (0 == max_repeats) { 4899 set_sys_fuzz(tick); 4900 } else { 4901 set_sys_fuzz(tick / max_repeats); 4902 } 4903 4904 return tick; 4905 } 4906 4907 4908 void 4909 set_sys_tick_precision( 4910 double tick 4911 ) 4912 { 4913 int i; 4914 4915 if (tick > 1.) { 4916 msyslog(LOG_ERR, 4917 "unsupported tick %.3f > 1s ignored", tick); 4918 return; 4919 } 4920 if (tick < measured_tick) { 4921 msyslog(LOG_ERR, 4922 "proto: tick %.3f less than measured tick %.3f, ignored", 4923 tick, measured_tick); 4924 return; 4925 } else if (tick > measured_tick) { 4926 trunc_os_clock = TRUE; 4927 msyslog(LOG_NOTICE, 4928 "proto: truncating system clock to multiples of %.9f", 4929 tick); 4930 } 4931 sys_tick = tick; 4932 4933 /* 4934 * Find the nearest power of two. 4935 */ 4936 for (i = 0; tick <= 1; i--) 4937 tick *= 2; 4938 if (tick - 1 > 1 - tick / 2) 4939 i++; 4940 4941 sys_precision = (s_char)i; 4942 } 4943 4944 4945 /* 4946 * init_proto - initialize the protocol module's data 4947 */ 4948 void 4949 init_proto(void) 4950 { 4951 l_fp dummy; 4952 int i; 4953 4954 /* 4955 * Fill in the sys_* stuff. Default is don't listen to 4956 * broadcasting, require authentication. 4957 */ 4958 set_sys_leap(LEAP_NOTINSYNC); 4959 sys_stratum = STRATUM_UNSPEC; 4960 memcpy(&sys_refid, "INIT", 4); 4961 sys_peer = NULL; 4962 sys_rootdelay = 0; 4963 sys_rootdisp = 0; 4964 L_CLR(&sys_reftime); 4965 sys_jitter = 0; 4966 measure_precision(); 4967 get_systime(&dummy); 4968 sys_survivors = 0; 4969 sys_manycastserver = 0; 4970 sys_bclient = 0; 4971 sys_bdelay = BDELAY_DEFAULT; /*[Bug 3031] delay cutoff */ 4972 sys_authenticate = 1; 4973 sys_stattime = current_time; 4974 orphwait = current_time + sys_orphwait; 4975 proto_clr_stats(); 4976 for (i = 0; i < MAX_TTL; ++i) 4977 sys_ttl[i] = (u_char)((i * 256) / MAX_TTL); 4978 sys_ttlmax = (MAX_TTL - 1); 4979 hardpps_enable = 0; 4980 stats_control = 1; 4981 } 4982 4983 4984 /* 4985 * proto_config - configure the protocol module 4986 */ 4987 void 4988 proto_config( 4989 int item, 4990 u_long value, 4991 double dvalue, 4992 sockaddr_u *svalue 4993 ) 4994 { 4995 /* 4996 * Figure out what he wants to change, then do it 4997 */ 4998 DPRINTF(2, ("proto_config: code %d value %lu dvalue %lf\n", 4999 item, value, dvalue)); 5000 5001 switch (item) { 5002 5003 /* 5004 * enable and disable commands - arguments are Boolean. 5005 */ 5006 case PROTO_AUTHENTICATE: /* authentication (auth) */ 5007 sys_authenticate = value; 5008 break; 5009 5010 case PROTO_BROADCLIENT: /* broadcast client (bclient) */ 5011 sys_bclient = (int)value; 5012 if (sys_bclient == 0) 5013 io_unsetbclient(); 5014 else 5015 io_setbclient(); 5016 break; 5017 5018 #ifdef REFCLOCK 5019 case PROTO_CAL: /* refclock calibrate (calibrate) */ 5020 cal_enable = value; 5021 break; 5022 #endif /* REFCLOCK */ 5023 5024 case PROTO_KERNEL: /* kernel discipline (kernel) */ 5025 select_loop(value); 5026 break; 5027 5028 case PROTO_MONITOR: /* monitoring (monitor) */ 5029 if (value) 5030 mon_start(MON_ON); 5031 else { 5032 mon_stop(MON_ON); 5033 if (mon_enabled) 5034 msyslog(LOG_WARNING, 5035 "restrict: 'monitor' cannot be disabled while 'limited' is enabled"); 5036 } 5037 break; 5038 5039 case PROTO_NTP: /* NTP discipline (ntp) */ 5040 ntp_enable = value; 5041 break; 5042 5043 case PROTO_MODE7: /* mode7 management (ntpdc) */ 5044 ntp_mode7 = value; 5045 break; 5046 5047 case PROTO_PPS: /* PPS discipline (pps) */ 5048 hardpps_enable = value; 5049 break; 5050 5051 case PROTO_FILEGEN: /* statistics (stats) */ 5052 stats_control = value; 5053 break; 5054 5055 /* 5056 * tos command - arguments are double, sometimes cast to int 5057 */ 5058 5059 case PROTO_BCPOLLBSTEP: /* Broadcast Poll Backstep gate (bcpollbstep) */ 5060 sys_bcpollbstep = (u_char)dvalue; 5061 break; 5062 5063 case PROTO_BEACON: /* manycast beacon (beacon) */ 5064 sys_beacon = (int)dvalue; 5065 break; 5066 5067 case PROTO_BROADDELAY: /* default broadcast delay (bdelay) */ 5068 sys_bdelay = (dvalue ? dvalue : BDELAY_DEFAULT); 5069 break; 5070 5071 case PROTO_CEILING: /* stratum ceiling (ceiling) */ 5072 sys_ceiling = (int)dvalue; 5073 break; 5074 5075 case PROTO_COHORT: /* cohort switch (cohort) */ 5076 sys_cohort = (int)dvalue; 5077 break; 5078 5079 case PROTO_FLOOR: /* stratum floor (floor) */ 5080 sys_floor = (int)dvalue; 5081 break; 5082 5083 case PROTO_MAXCLOCK: /* maximum candidates (maxclock) */ 5084 sys_maxclock = (int)dvalue; 5085 break; 5086 5087 case PROTO_MAXDIST: /* select threshold (maxdist) */ 5088 sys_maxdist = dvalue; 5089 break; 5090 5091 case PROTO_CALLDELAY: /* modem call delay (mdelay) */ 5092 break; /* NOT USED */ 5093 5094 case PROTO_MINCLOCK: /* minimum candidates (minclock) */ 5095 sys_minclock = (int)dvalue; 5096 break; 5097 5098 case PROTO_MINDISP: /* minimum distance (mindist) */ 5099 sys_mindisp = dvalue; 5100 break; 5101 5102 case PROTO_MINSANE: /* minimum survivors (minsane) */ 5103 sys_minsane = (int)dvalue; 5104 break; 5105 5106 case PROTO_ORPHAN: /* orphan stratum (orphan) */ 5107 sys_orphan = (int)dvalue; 5108 break; 5109 5110 case PROTO_ORPHWAIT: /* orphan wait (orphwait) */ 5111 orphwait -= sys_orphwait; 5112 sys_orphwait = (int)dvalue; 5113 orphwait += sys_orphwait; 5114 break; 5115 5116 /* 5117 * Miscellaneous commands 5118 */ 5119 case PROTO_MULTICAST_ADD: /* add group address */ 5120 if (svalue != NULL) 5121 io_multicast_add(svalue); 5122 sys_bclient = 1; 5123 break; 5124 5125 case PROTO_MULTICAST_DEL: /* delete group address */ 5126 if (svalue != NULL) 5127 io_multicast_del(svalue); 5128 break; 5129 5130 /* 5131 * Peer_clear Early policy choices 5132 */ 5133 5134 case PROTO_PCEDIGEST: /* Digest */ 5135 peer_clear_digest_early = value; 5136 break; 5137 5138 /* 5139 * Unpeer Early policy choices 5140 */ 5141 5142 case PROTO_UECRYPTO: /* Crypto */ 5143 unpeer_crypto_early = value; 5144 break; 5145 5146 case PROTO_UECRYPTONAK: /* Crypto_NAK */ 5147 unpeer_crypto_nak_early = value; 5148 break; 5149 5150 case PROTO_UEDIGEST: /* Digest */ 5151 unpeer_digest_early = value; 5152 break; 5153 5154 default: 5155 msyslog(LOG_NOTICE, 5156 "proto: unsupported option %d", item); 5157 } 5158 } 5159 5160 5161 /* 5162 * proto_clr_stats - clear protocol stat counters 5163 */ 5164 void 5165 proto_clr_stats(void) 5166 { 5167 sys_stattime = current_time; 5168 sys_received = 0; 5169 sys_processed = 0; 5170 sys_newversion = 0; 5171 sys_oldversion = 0; 5172 sys_declined = 0; 5173 sys_restricted = 0; 5174 sys_badlength = 0; 5175 sys_badauth = 0; 5176 sys_limitrejected = 0; 5177 sys_kodsent = 0; 5178 sys_lamport = 0; 5179 sys_tsrounding = 0; 5180 } 5181