1 /* 2 * ntp_proto.c - NTP version 4 protocol machinery 3 * 4 * ATTENTION: Get approval from Harlan on all changes to this file! 5 * (Harlan will be discussing these changes with Dave Mills.) 6 * 7 */ 8 #ifdef HAVE_CONFIG_H 9 #include <config.h> 10 #endif 11 12 #include "ntpd.h" 13 #include "ntp_stdlib.h" 14 #include "ntp_unixtime.h" 15 #include "ntp_control.h" 16 #include "ntp_string.h" 17 #include "ntp_leapsec.h" 18 #include "ntp_psl.h" 19 #include "refidsmear.h" 20 21 #include <stdio.h> 22 #ifdef HAVE_LIBSCF_H 23 #include <libscf.h> 24 #endif 25 #ifdef HAVE_UNISTD_H 26 #include <unistd.h> 27 #endif 28 29 /* [Bug 3031] define automatic broadcastdelay cutoff preset */ 30 #ifndef BDELAY_DEFAULT 31 # define BDELAY_DEFAULT (-0.050) 32 #endif 33 34 #define SRVFUZ_SHIFT 6 /* 64 seconds */ 35 #define SRVRSP_FUZZ(x) \ 36 do { \ 37 x.l_uf = 0; \ 38 x.l_ui &= ~((1 << SRVFUZ_SHIFT) - 1U); \ 39 } while (FALSE) 40 41 /* 42 * This macro defines the authentication state. If x is 1 authentication 43 * is required; otherwise it is optional. 44 */ 45 #define AUTH(x, y) ((x) ? (y) == AUTH_OK \ 46 : (y) == AUTH_OK || (y) == AUTH_NONE) 47 48 typedef enum 49 auth_state { 50 AUTH_UNKNOWN = -1, /* Unknown */ 51 AUTH_NONE, /* authentication not required */ 52 AUTH_OK, /* authentication OK */ 53 AUTH_ERROR, /* authentication error */ 54 AUTH_CRYPTO /* crypto_NAK */ 55 } auth_code; 56 57 /* 58 * Set up Kiss Code values 59 */ 60 61 typedef enum 62 kiss_codes { 63 NOKISS, /* No Kiss Code */ 64 RATEKISS, /* Rate limit Kiss Code */ 65 DENYKISS, /* Deny Kiss */ 66 RSTRKISS, /* Restricted Kiss */ 67 XKISS /* Experimental Kiss */ 68 } kiss_code; 69 70 typedef enum 71 nak_error_codes { 72 NONAK, /* No NAK seen */ 73 INVALIDNAK, /* NAK cannot be used */ 74 VALIDNAK /* NAK is valid */ 75 } nak_code; 76 77 /* 78 * traffic shaping parameters 79 */ 80 #define NTP_IBURST 6 /* packets in iburst */ 81 #define RESP_DELAY 1 /* refclock burst delay (s) */ 82 83 /* 84 * pool soliciting restriction duration (s) 85 */ 86 #define POOL_SOLICIT_WINDOW 8 87 88 /* 89 * flag bits propagated from pool/manycast to individual peers 90 */ 91 #define POOL_FLAG_PMASK (FLAG_IBURST | FLAG_NOSELECT) 92 93 /* 94 * peer_select groups statistics for a peer used by clock_select() and 95 * clock_cluster(). 96 */ 97 typedef struct peer_select_tag { 98 struct peer * peer; 99 double synch; /* sync distance */ 100 double error; /* jitter */ 101 double seljit; /* selection jitter */ 102 } peer_select; 103 104 /* 105 * System variables are declared here. Unless specified otherwise, all 106 * times are in seconds. 107 */ 108 u_char sys_leap; /* system leap indicator, use set_sys_leap() to change this */ 109 u_char xmt_leap; /* leap indicator sent in client requests, set up by set_sys_leap() */ 110 u_char sys_stratum; /* system stratum */ 111 s_char sys_precision; /* local clock precision (log2 s) */ 112 double sys_rootdelay; /* roundtrip delay to root (primary source) */ 113 double sys_rootdisp; /* dispersion to root (primary source) */ 114 double prev_rootdisp; /* previous root dispersion */ 115 double p2_rootdisp; /* previous previous root dispersion */ 116 u_int32 sys_refid; /* reference id (network byte order) */ 117 l_fp sys_reftime; /* last update time */ 118 l_fp prev_reftime; /* previous sys_reftime */ 119 l_fp p2_reftime; /* previous previous sys_reftime */ 120 u_long prev_time; /* "current_time" when saved prev_time */ 121 u_long p2_time; /* previous prev_time */ 122 struct peer *sys_peer; /* current peer */ 123 124 #ifdef LEAP_SMEAR 125 struct leap_smear_info leap_smear; 126 #endif 127 int leap_sec_in_progress; 128 129 /* 130 * Rate controls. Leaky buckets are used to throttle the packet 131 * transmission rates in order to protect busy servers such as at NIST 132 * and USNO. There is a counter for each association and another for KoD 133 * packets. The association counter decrements each second, but not 134 * below zero. Each time a packet is sent the counter is incremented by 135 * a configurable value representing the average interval between 136 * packets. A packet is delayed as long as the counter is greater than 137 * zero. Note this does not affect the time value computations. 138 */ 139 /* 140 * Nonspecified system state variables 141 */ 142 int sys_bclient; /* broadcast client enable */ 143 int sys_mclient; /* multicast client enable */ 144 double sys_bdelay; /* broadcast client default delay */ 145 int sys_authenticate; /* requre authentication for config */ 146 l_fp sys_authdelay; /* authentication delay */ 147 double sys_offset; /* current local clock offset */ 148 double sys_mindisp = MINDISPERSE; /* minimum distance (s) */ 149 double sys_maxdist = MAXDISTANCE; /* selection threshold */ 150 double sys_jitter; /* system jitter */ 151 u_long sys_epoch; /* last clock update time */ 152 static double sys_clockhop; /* clockhop threshold */ 153 static int leap_vote_ins; /* leap consensus for insert */ 154 static int leap_vote_del; /* leap consensus for delete */ 155 keyid_t sys_private; /* private value for session seed */ 156 int sys_manycastserver; /* respond to manycast client pkts */ 157 int ntp_mode7; /* respond to ntpdc (mode7) */ 158 int peer_ntpdate; /* active peers in ntpdate mode */ 159 int sys_survivors; /* truest of the truechimers */ 160 char *sys_ident = NULL; /* identity scheme */ 161 162 /* 163 * TOS and multicast mapping stuff 164 */ 165 int sys_floor = 0; /* cluster stratum floor */ 166 u_char sys_bcpollbstep = 0; /* Broadcast Poll backstep gate */ 167 int sys_ceiling = STRATUM_UNSPEC - 1; /* cluster stratum ceiling */ 168 int sys_minsane = 1; /* minimum candidates */ 169 int sys_minclock = NTP_MINCLOCK; /* minimum candidates */ 170 int sys_maxclock = NTP_MAXCLOCK; /* maximum candidates */ 171 int sys_cohort = 0; /* cohort switch */ 172 int sys_orphan = STRATUM_UNSPEC + 1; /* orphan stratum */ 173 int sys_orphwait = NTP_ORPHWAIT; /* orphan wait */ 174 int sys_beacon = BEACON; /* manycast beacon interval */ 175 u_int sys_ttlmax; /* max ttl mapping vector index */ 176 u_char sys_ttl[MAX_TTL]; /* ttl mapping vector */ 177 178 /* 179 * Statistics counters - first the good, then the bad 180 */ 181 u_long sys_stattime; /* elapsed time */ 182 u_long sys_received; /* packets received */ 183 u_long sys_processed; /* packets for this host */ 184 u_long sys_newversion; /* current version */ 185 u_long sys_oldversion; /* old version */ 186 u_long sys_restricted; /* access denied */ 187 u_long sys_badlength; /* bad length or format */ 188 u_long sys_badauth; /* bad authentication */ 189 u_long sys_declined; /* declined */ 190 u_long sys_limitrejected; /* rate exceeded */ 191 u_long sys_kodsent; /* KoD sent */ 192 193 /* 194 * Mechanism knobs: how soon do we peer_clear() or unpeer()? 195 * 196 * The default way is "on-receipt". If this was a packet from a 197 * well-behaved source, on-receipt will offer the fastest recovery. 198 * If this was from a DoS attack, the default way makes it easier 199 * for a bad-guy to DoS us. So look and see what bites you harder 200 * and choose according to your environment. 201 */ 202 int peer_clear_digest_early = 1; /* bad digest (TEST5) and Autokey */ 203 int unpeer_crypto_early = 1; /* bad crypto (TEST9) */ 204 int unpeer_crypto_nak_early = 1; /* crypto_NAK (TEST5) */ 205 int unpeer_digest_early = 1; /* bad digest (TEST5) */ 206 207 int dynamic_interleave = DYNAMIC_INTERLEAVE; /* Bug 2978 mitigation */ 208 209 int kiss_code_check(u_char hisleap, u_char hisstratum, u_char hismode, u_int32 refid); 210 nak_code valid_NAK (struct peer *peer, struct recvbuf *rbufp, u_char hismode); 211 static double root_distance (struct peer *); 212 static void clock_combine (peer_select *, int, int); 213 static void peer_xmit (struct peer *); 214 static void fast_xmit (struct recvbuf *, int, keyid_t, int); 215 static void pool_xmit (struct peer *); 216 static void clock_update (struct peer *); 217 static void measure_precision(void); 218 static double measure_tick_fuzz(void); 219 static int local_refid (struct peer *); 220 static int peer_unfit (struct peer *); 221 #ifdef AUTOKEY 222 static int group_test (char *, char *); 223 #endif /* AUTOKEY */ 224 #ifdef WORKER 225 void pool_name_resolved (int, int, void *, const char *, 226 const char *, const struct addrinfo *, 227 const struct addrinfo *); 228 #endif /* WORKER */ 229 230 const char * amtoa (int am); 231 232 233 void 234 set_sys_leap( 235 u_char new_sys_leap 236 ) 237 { 238 sys_leap = new_sys_leap; 239 xmt_leap = sys_leap; 240 241 /* 242 * Under certain conditions we send faked leap bits to clients, so 243 * eventually change xmt_leap below, but never change LEAP_NOTINSYNC. 244 */ 245 if (xmt_leap != LEAP_NOTINSYNC) { 246 if (leap_sec_in_progress) { 247 /* always send "not sync" */ 248 xmt_leap = LEAP_NOTINSYNC; 249 } 250 #ifdef LEAP_SMEAR 251 else { 252 /* 253 * If leap smear is enabled in general we must 254 * never send a leap second warning to clients, 255 * so make sure we only send "in sync". 256 */ 257 if (leap_smear.enabled) 258 xmt_leap = LEAP_NOWARNING; 259 } 260 #endif /* LEAP_SMEAR */ 261 } 262 } 263 264 265 /* 266 * Kiss Code check 267 */ 268 int 269 kiss_code_check( 270 u_char hisleap, 271 u_char hisstratum, 272 u_char hismode, 273 u_int32 refid 274 ) 275 { 276 277 if ( hismode == MODE_SERVER 278 && hisleap == LEAP_NOTINSYNC 279 && hisstratum == STRATUM_UNSPEC) { 280 if(memcmp(&refid,"RATE", 4) == 0) { 281 return (RATEKISS); 282 } else if(memcmp(&refid,"DENY", 4) == 0) { 283 return (DENYKISS); 284 } else if(memcmp(&refid,"RSTR", 4) == 0) { 285 return (RSTRKISS); 286 } else if(memcmp(&refid,"X", 1) == 0) { 287 return (XKISS); 288 } 289 } 290 return (NOKISS); 291 } 292 293 294 /* 295 * Check that NAK is valid 296 */ 297 nak_code 298 valid_NAK( 299 struct peer *peer, 300 struct recvbuf *rbufp, 301 u_char hismode 302 ) 303 { 304 int base_packet_length = MIN_V4_PKT_LEN; 305 int remainder_size; 306 struct pkt * rpkt; 307 int keyid; 308 l_fp p_org; /* origin timestamp */ 309 const l_fp * myorg; /* selected peer origin */ 310 311 /* 312 * Check to see if there is something beyond the basic packet 313 */ 314 if (rbufp->recv_length == base_packet_length) { 315 return NONAK; 316 } 317 318 remainder_size = rbufp->recv_length - base_packet_length; 319 /* 320 * Is this a potential NAK? 321 */ 322 if (remainder_size != 4) { 323 return NONAK; 324 } 325 326 /* 327 * Only server responses can contain NAK's 328 */ 329 330 if (hismode != MODE_SERVER && 331 hismode != MODE_ACTIVE && 332 hismode != MODE_PASSIVE 333 ) { 334 return INVALIDNAK; 335 } 336 337 /* 338 * Make sure that the extra field in the packet is all zeros 339 */ 340 rpkt = &rbufp->recv_pkt; 341 keyid = ntohl(((u_int32 *)rpkt)[base_packet_length / 4]); 342 if (keyid != 0) { 343 return INVALIDNAK; 344 } 345 346 /* 347 * During the first few packets of the autokey dance there will 348 * not (yet) be a keyid, but in this case FLAG_SKEY is set. 349 * So the NAK is invalid if either there's no peer, or 350 * if the keyid is 0 and FLAG_SKEY is not set. 351 */ 352 if (!peer || (!peer->keyid && !(peer->flags & FLAG_SKEY))) { 353 return INVALIDNAK; 354 } 355 356 /* 357 * The ORIGIN must match, or this cannot be a valid NAK, either. 358 */ 359 360 if (FLAG_LOOPNONCE & peer->flags) { 361 myorg = &peer->nonce; 362 } else { 363 if (peer->flip > 0) { 364 myorg = &peer->borg; 365 } else { 366 myorg = &peer->aorg; 367 } 368 } 369 370 NTOHL_FP(&rpkt->org, &p_org); 371 372 if (L_ISZERO(&p_org) || 373 L_ISZERO( myorg) || 374 !L_ISEQU(&p_org, myorg)) { 375 return INVALIDNAK; 376 } 377 378 /* If we ever passed all that checks, we should be safe. Well, 379 * as safe as we can ever be with an unauthenticated crypto-nak. 380 */ 381 return VALIDNAK; 382 } 383 384 385 /* 386 * transmit - transmit procedure called by poll timeout 387 */ 388 void 389 transmit( 390 struct peer *peer /* peer structure pointer */ 391 ) 392 { 393 u_char hpoll; 394 395 /* 396 * The polling state machine. There are two kinds of machines, 397 * those that never expect a reply (broadcast and manycast 398 * server modes) and those that do (all other modes). The dance 399 * is intricate... 400 */ 401 hpoll = peer->hpoll; 402 403 /* 404 * If we haven't received anything (even if unsync) since last 405 * send, reset ppoll. 406 */ 407 if (peer->outdate > peer->timelastrec && !peer->reach) 408 peer->ppoll = peer->maxpoll; 409 410 /* 411 * In broadcast mode the poll interval is never changed from 412 * minpoll. 413 */ 414 if (peer->cast_flags & (MDF_BCAST | MDF_MCAST)) { 415 peer->outdate = current_time; 416 poll_update(peer, hpoll, 0); 417 if (sys_leap != LEAP_NOTINSYNC) 418 peer_xmit(peer); 419 return; 420 } 421 422 /* 423 * In manycast mode we start with unity ttl. The ttl is 424 * increased by one for each poll until either sys_maxclock 425 * servers have been found or the maximum ttl is reached. When 426 * sys_maxclock servers are found we stop polling until one or 427 * more servers have timed out or until less than sys_minclock 428 * associations turn up. In this case additional better servers 429 * are dragged in and preempt the existing ones. Once every 430 * sys_beacon seconds we are to transmit unconditionally, but 431 * this code is not quite right -- peer->unreach counts polls 432 * and is being compared with sys_beacon, so the beacons happen 433 * every sys_beacon polls. 434 */ 435 if (peer->cast_flags & MDF_ACAST) { 436 peer->outdate = current_time; 437 poll_update(peer, hpoll, 0); 438 if (peer->unreach > sys_beacon) { 439 peer->unreach = 0; 440 peer->ttl = 0; 441 peer_xmit(peer); 442 } else if ( sys_survivors < sys_minclock 443 || peer_associations < sys_maxclock) { 444 if (peer->ttl < sys_ttlmax) 445 peer->ttl++; 446 peer_xmit(peer); 447 } 448 peer->unreach++; 449 return; 450 } 451 452 /* 453 * Pool associations transmit unicast solicitations when there 454 * are less than a hard limit of 2 * sys_maxclock associations, 455 * and either less than sys_minclock survivors or less than 456 * sys_maxclock associations. The hard limit prevents unbounded 457 * growth in associations if the system clock or network quality 458 * result in survivor count dipping below sys_minclock often. 459 * This was observed testing with pool, where sys_maxclock == 12 460 * resulted in 60 associations without the hard limit. A 461 * similar hard limit on manycastclient ephemeral associations 462 * may be appropriate. 463 */ 464 if (peer->cast_flags & MDF_POOL) { 465 peer->outdate = current_time; 466 poll_update(peer, hpoll, 0); 467 if ( (peer_associations <= 2 * sys_maxclock) 468 && ( peer_associations < sys_maxclock 469 || sys_survivors < sys_minclock)) 470 pool_xmit(peer); 471 return; 472 } 473 474 /* [Bug 3851] drop pool servers which can no longer be reached. */ 475 if (MDF_PCLNT & peer->cast_flags) { 476 if ( (IS_IPV6(&peer->srcadr) && !nonlocal_v6_addr_up) 477 || !nonlocal_v4_addr_up) { 478 unpeer(peer); 479 return; 480 } 481 } 482 483 /* 484 * In unicast modes the dance is much more intricate. It is 485 * designed to back off whenever possible to minimize network 486 * traffic. 487 */ 488 if (peer->burst == 0) { 489 u_char oreach; 490 491 /* 492 * Update the reachability status. If not heard for 493 * three consecutive polls, stuff infinity in the clock 494 * filter. 495 */ 496 oreach = peer->reach; 497 peer->outdate = current_time; 498 peer->unreach++; 499 peer->reach <<= 1; 500 if (!peer->reach) { 501 502 /* 503 * Here the peer is unreachable. If it was 504 * previously reachable raise a trap. Send a 505 * burst if enabled. 506 */ 507 clock_filter(peer, 0., 0., MAXDISPERSE); 508 if (oreach) { 509 peer_unfit(peer); 510 report_event(PEVNT_UNREACH, peer, NULL); 511 } 512 if ( (peer->flags & FLAG_IBURST) 513 && peer->retry == 0) 514 peer->retry = NTP_RETRY; 515 } else { 516 517 /* 518 * Here the peer is reachable. Send a burst if 519 * enabled and the peer is fit. Reset unreach 520 * for persistent and ephemeral associations. 521 * Unreach is also reset for survivors in 522 * clock_select(). 523 */ 524 hpoll = sys_poll; 525 if (!(peer->flags & FLAG_PREEMPT)) 526 peer->unreach = 0; 527 if ( (peer->flags & FLAG_BURST) 528 && peer->retry == 0 529 && !peer_unfit(peer)) 530 peer->retry = NTP_RETRY; 531 } 532 533 /* 534 * Watch for timeout. If ephemeral, toss the rascal; 535 * otherwise, bump the poll interval. Note the 536 * poll_update() routine will clamp it to maxpoll. 537 * If preemptible and we have more peers than maxclock, 538 * and this peer has the minimum score of preemptibles, 539 * demobilize. 540 */ 541 if (peer->unreach >= NTP_UNREACH) { 542 hpoll++; 543 /* ephemeral: no FLAG_CONFIG nor FLAG_PREEMPT */ 544 if (!(peer->flags & (FLAG_CONFIG | FLAG_PREEMPT))) { 545 report_event(PEVNT_RESTART, peer, "timeout"); 546 peer_clear(peer, "TIME"); 547 unpeer(peer); 548 return; 549 } 550 if ( (peer->flags & FLAG_PREEMPT) 551 && (peer_associations > sys_maxclock) 552 && score_all(peer)) { 553 report_event(PEVNT_RESTART, peer, "timeout"); 554 peer_clear(peer, "TIME"); 555 unpeer(peer); 556 return; 557 } 558 } 559 } else { 560 peer->burst--; 561 if (peer->burst == 0) { 562 563 /* 564 * If ntpdate mode and the clock has not been 565 * set and all peers have completed the burst, 566 * we declare a successful failure. 567 */ 568 if (mode_ntpdate) { 569 peer_ntpdate--; 570 if (peer_ntpdate == 0) { 571 msyslog(LOG_NOTICE, 572 "ntpd: no servers found"); 573 if (!msyslog_term) 574 printf( 575 "ntpd: no servers found\n"); 576 exit (0); 577 } 578 } 579 } 580 } 581 if (peer->retry > 0) 582 peer->retry--; 583 584 /* 585 * Do not transmit if in broadcast client mode. 586 */ 587 poll_update(peer, hpoll, (peer->hmode == MODE_CLIENT)); 588 if (peer->hmode != MODE_BCLIENT) 589 peer_xmit(peer); 590 591 return; 592 } 593 594 595 #ifdef DEBUG 596 const char * 597 amtoa( 598 int am 599 ) 600 { 601 char *bp; 602 603 switch(am) { 604 case AM_ERR: return "AM_ERR"; 605 case AM_NOMATCH: return "AM_NOMATCH"; 606 case AM_PROCPKT: return "AM_PROCPKT"; 607 case AM_BCST: return "AM_BCST"; 608 case AM_FXMIT: return "AM_FXMIT"; 609 case AM_MANYCAST: return "AM_MANYCAST"; 610 case AM_NEWPASS: return "AM_NEWPASS"; 611 case AM_NEWBCL: return "AM_NEWBCL"; 612 case AM_POSSBCL: return "AM_POSSBCL"; 613 default: 614 LIB_GETBUF(bp); 615 snprintf(bp, LIB_BUFLENGTH, "AM_#%d", am); 616 return bp; 617 } 618 } 619 #endif /* DEBUG */ 620 621 622 /* 623 * receive - receive procedure called for each packet received 624 */ 625 void 626 receive( 627 struct recvbuf *rbufp 628 ) 629 { 630 register struct peer *peer; /* peer structure pointer */ 631 register struct pkt *pkt; /* receive packet pointer */ 632 u_char hisversion; /* packet version */ 633 u_char hisleap; /* packet leap indicator */ 634 u_char hismode; /* packet mode */ 635 u_char hisstratum; /* packet stratum */ 636 r4addr r4a; /* address restrictions */ 637 u_short restrict_mask; /* restrict bits */ 638 const char *hm_str; /* hismode string */ 639 int kissCode = NOKISS; /* Kiss Code */ 640 int has_mac; /* length of MAC field */ 641 int authlen; /* offset of MAC field */ 642 auth_code is_authentic = AUTH_UNKNOWN; /* Was AUTH_NONE */ 643 nak_code crypto_nak_test; /* result of crypto-NAK check */ 644 int retcode = AM_NOMATCH; /* match code */ 645 keyid_t skeyid = 0; /* key IDs */ 646 u_int32 opcode = 0; /* extension field opcode */ 647 sockaddr_u *dstadr_sin; /* active runway */ 648 u_char cast_flags; /* MDF_* flags for newpeer() */ 649 struct peer *peer2; /* aux peer structure pointer */ 650 endpt *match_ep; /* newpeer() local address */ 651 l_fp p_org; /* origin timestamp */ 652 l_fp p_rec; /* receive timestamp */ 653 l_fp p_xmt; /* transmit timestamp */ 654 #ifdef DEBUG 655 const char *am_str; /* association match string */ 656 #endif 657 #ifdef AUTOKEY 658 char hostname[NTP_MAXSTRLEN + 1]; 659 char *groupname = NULL; 660 struct autokey *ap; /* autokey structure pointer */ 661 int rval; /* cookie snatcher */ 662 keyid_t pkeyid = 0, tkeyid = 0; /* key IDs */ 663 #endif /* AUTOKEY */ 664 #ifdef HAVE_NTP_SIGND 665 static unsigned char zero_key[16]; 666 #endif /* HAVE_NTP_SIGND */ 667 668 /* 669 * Note that there are many places we do not call record_raw_stats(). 670 * 671 * We only want to call it *after* we've sent a response, or perhaps 672 * when we've decided to drop a packet. 673 */ 674 675 /* 676 * Monitor the packet and get restrictions. Note that the packet 677 * length for control and private mode packets must be checked 678 * by the service routines. Some restrictions have to be handled 679 * later in order to generate a kiss-o'-death packet. 680 */ 681 /* 682 * Bogus port check is before anything, since it probably 683 * reveals a clogging attack. Likewise the mimimum packet size 684 * of 2 bytes (for mode 6/7) must be checked first. 685 */ 686 sys_received++; 687 if (0 == SRCPORT(&rbufp->recv_srcadr) || rbufp->recv_length < 2) { 688 sys_badlength++; 689 return; /* bogus port / length */ 690 } 691 restrictions(&rbufp->recv_srcadr, &r4a); 692 restrict_mask = r4a.rflags; 693 694 pkt = &rbufp->recv_pkt; 695 hisversion = PKT_VERSION(pkt->li_vn_mode); 696 hismode = (int)PKT_MODE(pkt->li_vn_mode); 697 698 if (restrict_mask & RES_IGNORE) { 699 DPRINTF(2, ("receive: drop: RES_IGNORE\n")); 700 sys_restricted++; 701 return; /* ignore everything */ 702 } 703 if (hismode == MODE_PRIVATE) { 704 if (!ntp_mode7 || (restrict_mask & RES_NOQUERY)) { 705 DPRINTF(2, ("receive: drop: !mode7 or RES_NOQUERY\n")); 706 sys_restricted++; 707 return; /* no query private */ 708 } 709 process_private(rbufp, !(RES_NOMODIFY & restrict_mask)); 710 return; 711 } 712 if (hismode == MODE_CONTROL) { 713 if (restrict_mask & RES_NOQUERY) { 714 DPRINTF(2, ("receive: drop: RES_NOQUERY\n")); 715 sys_restricted++; 716 return; /* no query control */ 717 } 718 process_control(rbufp, restrict_mask); 719 return; 720 } 721 if (restrict_mask & RES_DONTSERVE) { 722 DPRINTF(2, ("receive: drop: RES_DONTSERVE\n")); 723 sys_restricted++; 724 return; /* no time serve */ 725 } 726 727 728 /* If we arrive here, we should have a standard NTP packet. We 729 * check that the minimum size is available and fetch some more 730 * items from the packet once we can be sure they are indeed 731 * there. 732 */ 733 if (rbufp->recv_length < LEN_PKT_NOMAC) { 734 sys_badlength++; 735 return; /* bogus length */ 736 } 737 738 hisleap = PKT_LEAP(pkt->li_vn_mode); 739 hisstratum = PKT_TO_STRATUM(pkt->stratum); 740 DEBUG_INSIST(0 != hisstratum); /* paranoia check PKT_TO_STRATUM result */ 741 /* TODO: this should be in a unit test */ 742 DPRINTF(1, ("receive: at %ld %s<-%s ippeerlimit %d mode %d iflags %s " 743 "restrict %s org 0x%x.%08x xmt 0x%x.%08x\n", 744 current_time, stoa(&rbufp->dstadr->sin), 745 stoa(&rbufp->recv_srcadr), r4a.ippeerlimit, hismode, 746 iflags_str(rbufp->dstadr->flags), 747 rflags_str(restrict_mask), 748 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 749 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 750 751 /* 752 * This is for testing. If restricted drop ten percent of 753 * surviving packets. 754 */ 755 if (restrict_mask & RES_FLAKE) { 756 if (ntp_uurandom() < .1) { 757 DPRINTF(2, ("receive: drop: RES_FLAKE\n")); 758 sys_restricted++; 759 return; /* no flakeway */ 760 } 761 } 762 763 /* 764 ** Format Layer Checks 765 ** 766 ** Validate the packet format. The packet size, packet header, 767 ** and any extension field lengths are checked. We identify 768 ** the beginning of the MAC, to identify the upper limit of 769 ** of the hash computation. 770 ** 771 ** In case of a format layer check violation, the packet is 772 ** discarded with no further processing. 773 */ 774 775 /* 776 * Version check must be after the query packets, since they 777 * intentionally use an early version. 778 */ 779 if (hisversion == NTP_VERSION) { 780 sys_newversion++; /* new version */ 781 } else if ( !(restrict_mask & RES_VERSION) 782 && hisversion >= NTP_OLDVERSION) { 783 sys_oldversion++; /* previous version */ 784 } else { 785 DPRINTF(2, ("receive: drop: RES_VERSION\n")); 786 sys_badlength++; 787 return; /* old version */ 788 } 789 790 /* 791 * Figure out his mode and validate the packet. This has some 792 * legacy raunch that probably should be removed. In very early 793 * NTP versions mode 0 was equivalent to what later versions 794 * would interpret as client mode. 795 */ 796 if (hismode == MODE_UNSPEC) { 797 if (hisversion == NTP_OLDVERSION) { 798 hismode = MODE_CLIENT; 799 } else { 800 DPRINTF(2, ("receive: drop: MODE_UNSPEC\n")); 801 sys_badlength++; 802 return; /* invalid mode */ 803 } 804 } 805 806 /* 807 * Validate the poll interval in the packet. 808 * 0 probably indicates a data-minimized packet. 809 * A valid poll interval is required for RATEKISS, where 810 * a value of 0 is not allowed. We check for this below. 811 * 812 * There might be arguments against this check. If you have 813 * any of these arguments, please let us know. 814 * 815 * At this point, the packet cannot be a mode[67] packet. 816 */ 817 if ( pkt->ppoll 818 && ( (NTP_MINPOLL > pkt->ppoll) 819 || (NTP_MAXPOLL < pkt->ppoll) 820 ) 821 ) { 822 #ifdef BUG3870 823 DPRINTF(2, ("receive: drop: Invalid ppoll (%d) from %s\n", 824 pkt->ppoll, stoa(&rbufp->recv_srcadr))); 825 sys_badlength++; 826 return; /* invalid packet poll */ 827 #else 828 DPRINTF(2, ("receive: info: Invalid ppoll (%d) from %s\n", 829 pkt->ppoll, stoa(&rbufp->recv_srcadr))); 830 #endif 831 } 832 833 /* 834 * Parse the extension field if present. We figure out whether 835 * an extension field is present by measuring the MAC size. If 836 * the number of words following the packet header is 0, no MAC 837 * is present and the packet is not authenticated. If 1, the 838 * packet is a crypto-NAK; if 3, the packet is authenticated 839 * with DES; if 5, the packet is authenticated with MD5; if 6, 840 * the packet is authenticated with SHA. If 2 or * 4, the packet 841 * is a runt and discarded forthwith. If greater than 6, an 842 * extension field is present, so we subtract the length of the 843 * field and go around again. 844 * 845 * Note the above description is lame. We should/could also check 846 * the two bytes that make up the EF type and subtype, and then 847 * check the two bytes that tell us the EF length. A legacy MAC 848 * has a 4 byte keyID, and for conforming symmetric keys its value 849 * must be <= 64k, meaning the top two bytes will always be zero. 850 * Since the EF Type of 0 is reserved/unused, there's no way a 851 * conforming legacy MAC could ever be misinterpreted as an EF. 852 * 853 * There is more, but this isn't the place to document it. 854 */ 855 856 authlen = LEN_PKT_NOMAC; 857 has_mac = rbufp->recv_length - authlen; 858 while (has_mac > 0) { 859 u_int32 len; 860 #ifdef AUTOKEY 861 u_int32 hostlen; 862 struct exten *ep; 863 #endif /*AUTOKEY */ 864 865 if (has_mac % 4 != 0 || has_mac < (int)MIN_MAC_LEN) { 866 DPRINTF(2, ("receive: drop: bad post-packet length\n")); 867 sys_badlength++; 868 return; /* bad length */ 869 } 870 /* 871 * This next test is clearly wrong - it needlessly 872 * prohibits short EFs (which don't yet exist) 873 */ 874 if (has_mac <= (int)MAX_MAC_LEN) { 875 skeyid = ntohl(((u_int32 *)pkt)[authlen / 4]); 876 break; 877 878 } else { 879 opcode = ntohl(((u_int32 *)pkt)[authlen / 4]); 880 len = opcode & 0xffff; 881 if ( len % 4 != 0 882 || len < 4 883 || (int)len + authlen > rbufp->recv_length) { 884 DPRINTF(2, ("receive: drop: bad EF length\n")); 885 sys_badlength++; 886 return; /* bad length */ 887 } 888 #ifdef AUTOKEY 889 /* 890 * Extract calling group name for later. If 891 * sys_groupname is non-NULL, there must be 892 * a group name provided to elicit a response. 893 */ 894 if ( (opcode & 0x3fff0000) == CRYPTO_ASSOC 895 && sys_groupname != NULL) { 896 ep = (struct exten *)&((u_int32 *)pkt)[authlen / 4]; 897 hostlen = ntohl(ep->vallen); 898 if ( hostlen >= sizeof(hostname) 899 || hostlen > len - 900 offsetof(struct exten, pkt)) { 901 DPRINTF(2, ("receive: drop: bad autokey hostname length\n")); 902 sys_badlength++; 903 return; /* bad length */ 904 } 905 memcpy(hostname, &ep->pkt, hostlen); 906 hostname[hostlen] = '\0'; 907 groupname = strchr(hostname, '@'); 908 if (groupname == NULL) { 909 DPRINTF(2, ("receive: drop: empty autokey groupname\n")); 910 sys_declined++; 911 return; 912 } 913 groupname++; 914 } 915 #endif /* AUTOKEY */ 916 authlen += len; 917 has_mac -= len; 918 } 919 } 920 921 /* 922 * If has_mac is < 0 we had a malformed packet. 923 */ 924 if (has_mac < 0) { 925 DPRINTF(2, ("receive: drop: post-packet under-read\n")); 926 sys_badlength++; 927 return; /* bad length */ 928 } 929 930 /* 931 ** Packet Data Verification Layer 932 ** 933 ** This layer verifies the packet data content. If 934 ** authentication is required, a MAC must be present. 935 ** If a MAC is present, it must validate. 936 ** Crypto-NAK? Look - a shiny thing! 937 ** 938 ** If authentication fails, we're done. 939 */ 940 941 /* 942 * If authentication is explicitly required, a MAC must be present. 943 */ 944 if (restrict_mask & RES_DONTTRUST && has_mac == 0) { 945 DPRINTF(2, ("receive: drop: RES_DONTTRUST\n")); 946 sys_restricted++; 947 return; /* access denied */ 948 } 949 950 /* 951 * Update the MRU list and finger the cloggers. It can be a 952 * little expensive, so turn it off for production use. 953 * RES_LIMITED and RES_KOD will be cleared in the returned 954 * restrict_mask unless one or both actions are warranted. 955 */ 956 restrict_mask = ntp_monitor(rbufp, restrict_mask); 957 if (restrict_mask & RES_LIMITED) { 958 sys_limitrejected++; 959 if ( !(restrict_mask & RES_KOD) 960 || MODE_BROADCAST == hismode 961 || MODE_SERVER == hismode) { 962 if (MODE_SERVER == hismode) { 963 DPRINTF(1, ("Possibly self-induced rate limiting of MODE_SERVER from %s\n", 964 stoa(&rbufp->recv_srcadr))); 965 } else { 966 DPRINTF(2, ("receive: drop: RES_KOD\n")); 967 } 968 return; /* rate exceeded */ 969 } 970 if (hismode == MODE_CLIENT) { 971 fast_xmit(rbufp, MODE_SERVER, skeyid, 972 restrict_mask); 973 } else { 974 fast_xmit(rbufp, MODE_ACTIVE, skeyid, 975 restrict_mask); 976 } 977 return; /* rate exceeded */ 978 } 979 restrict_mask &= ~RES_KOD; 980 981 /* 982 * We have tossed out as many buggy packets as possible early in 983 * the game to reduce the exposure to a clogging attack. Now we 984 * have to burn some cycles to find the association and 985 * authenticate the packet if required. Note that we burn only 986 * digest cycles, again to reduce exposure. There may be no 987 * matching association and that's okay. 988 * 989 * More on the autokey mambo. Normally the local interface is 990 * found when the association was mobilized with respect to a 991 * designated remote address. We assume packets arriving from 992 * the remote address arrive via this interface and the local 993 * address used to construct the autokey is the unicast address 994 * of the interface. However, if the sender is a broadcaster, 995 * the interface broadcast address is used instead. 996 * Notwithstanding this technobabble, if the sender is a 997 * multicaster, the broadcast address is null, so we use the 998 * unicast address anyway. Don't ask. 999 */ 1000 1001 peer = findpeer(rbufp, hismode, &retcode); 1002 dstadr_sin = &rbufp->dstadr->sin; 1003 NTOHL_FP(&pkt->org, &p_org); 1004 NTOHL_FP(&pkt->rec, &p_rec); 1005 NTOHL_FP(&pkt->xmt, &p_xmt); 1006 hm_str = modetoa(hismode); 1007 #ifdef DEBUG 1008 am_str = amtoa(retcode); 1009 #endif 1010 1011 /* 1012 * Authentication is conditioned by three switches: 1013 * 1014 * NOPEER (RES_NOPEER) do not mobilize an association unless 1015 * authenticated 1016 * NOTRUST (RES_DONTTRUST) do not allow access unless 1017 * authenticated (implies NOPEER) 1018 * enable (sys_authenticate) master NOPEER switch, by default 1019 * on 1020 * 1021 * The NOPEER and NOTRUST can be specified on a per-client basis 1022 * using the restrict command. The enable switch if on implies 1023 * NOPEER for all clients. There are four outcomes: 1024 * 1025 * NONE The packet has no MAC. 1026 * OK the packet has a MAC and authentication succeeds 1027 * ERROR the packet has a MAC and authentication fails 1028 * CRYPTO crypto-NAK. The MAC has four octets only. 1029 * 1030 * Note: The AUTH(x, y) macro is used to filter outcomes. If x 1031 * is zero, acceptable outcomes of y are NONE and OK. If x is 1032 * one, the only acceptable outcome of y is OK. 1033 */ 1034 crypto_nak_test = valid_NAK(peer, rbufp, hismode); 1035 1036 /* 1037 * Drop any invalid crypto-NAKs 1038 */ 1039 if (crypto_nak_test == INVALIDNAK) { 1040 report_event(PEVNT_AUTH, peer, "Invalid_NAK"); 1041 if (0 != peer) { 1042 peer->badNAK++; 1043 } 1044 msyslog(LOG_ERR, "Invalid-NAK error at %ld %s<-%s", 1045 current_time, stoa(dstadr_sin), stoa(&rbufp->recv_srcadr)); 1046 return; 1047 } 1048 1049 if (has_mac == 0) { 1050 restrict_mask &= ~RES_MSSNTP; 1051 is_authentic = AUTH_NONE; /* not required */ 1052 DPRINTF(1, ("receive: at %ld %s<-%s mode %d/%s:%s len %d org 0x%x.%08x xmt 0x%x.%08x NOMAC\n", 1053 current_time, stoa(dstadr_sin), 1054 stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str, 1055 authlen, 1056 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 1057 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 1058 } else if (crypto_nak_test == VALIDNAK) { 1059 restrict_mask &= ~RES_MSSNTP; 1060 is_authentic = AUTH_CRYPTO; /* crypto-NAK */ 1061 DPRINTF(1, ("receive: at %ld %s<-%s mode %d/%s:%s keyid %08x len %d auth %d org 0x%x.%08x xmt 0x%x.%08x CRYPTONAK\n", 1062 current_time, stoa(dstadr_sin), 1063 stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str, 1064 skeyid, authlen + has_mac, is_authentic, 1065 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 1066 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 1067 1068 #ifdef HAVE_NTP_SIGND 1069 /* 1070 * If the signature is 20 bytes long, the last 16 of 1071 * which are zero, then this is a Microsoft client 1072 * wanting AD-style authentication of the server's 1073 * reply. 1074 * 1075 * This is described in Microsoft's WSPP docs, in MS-SNTP: 1076 * http://msdn.microsoft.com/en-us/library/cc212930.aspx 1077 */ 1078 } else if ( has_mac == MAX_MD5_LEN 1079 && (restrict_mask & RES_MSSNTP) 1080 && (retcode == AM_FXMIT || retcode == AM_NEWPASS) 1081 && (memcmp(zero_key, (char *)pkt + authlen + 4, 1082 MAX_MD5_LEN - 4) == 0)) { 1083 is_authentic = AUTH_NONE; 1084 DPRINTF(1, ("receive: at %ld %s<-%s mode %d/%s:%s len %d org %x.%08x xmt %x.%08x SIGND\n", 1085 current_time, stoa(dstadr_sin), 1086 stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str, 1087 authlen, 1088 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 1089 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 1090 #endif /* HAVE_NTP_SIGND */ 1091 1092 } else { 1093 /* 1094 * has_mac is not 0 1095 * Not a VALID_NAK 1096 * Not an MS-SNTP SIGND packet 1097 * 1098 * So there is a MAC here. 1099 */ 1100 1101 restrict_mask &= ~RES_MSSNTP; 1102 #ifdef AUTOKEY 1103 /* 1104 * For autokey modes, generate the session key 1105 * and install in the key cache. Use the socket 1106 * broadcast or unicast address as appropriate. 1107 */ 1108 if (crypto_flags && skeyid > NTP_MAXKEY) { 1109 1110 /* 1111 * More on the autokey dance (AKD). A cookie is 1112 * constructed from public and private values. 1113 * For broadcast packets, the cookie is public 1114 * (zero). For packets that match no 1115 * association, the cookie is hashed from the 1116 * addresses and private value. For server 1117 * packets, the cookie was previously obtained 1118 * from the server. For symmetric modes, the 1119 * cookie was previously constructed using an 1120 * agreement protocol; however, should PKI be 1121 * unavailable, we construct a fake agreement as 1122 * the EXOR of the peer and host cookies. 1123 * 1124 * hismode ephemeral persistent 1125 * ======================================= 1126 * active 0 cookie# 1127 * passive 0% cookie# 1128 * client sys cookie 0% 1129 * server 0% sys cookie 1130 * broadcast 0 0 1131 * 1132 * # if unsync, 0 1133 * % can't happen 1134 */ 1135 if (has_mac < (int)MAX_MD5_LEN) { 1136 DPRINTF(2, ("receive: drop: MD5 digest too short\n")); 1137 sys_badauth++; 1138 return; 1139 } 1140 if (hismode == MODE_BROADCAST) { 1141 1142 /* 1143 * For broadcaster, use the interface 1144 * broadcast address when available; 1145 * otherwise, use the unicast address 1146 * found when the association was 1147 * mobilized. However, if this is from 1148 * the wildcard interface, game over. 1149 */ 1150 if ( crypto_flags 1151 && rbufp->dstadr == 1152 ANY_INTERFACE_CHOOSE(&rbufp->recv_srcadr)) { 1153 DPRINTF(2, ("receive: drop: BCAST from wildcard\n")); 1154 sys_restricted++; 1155 return; /* no wildcard */ 1156 } 1157 pkeyid = 0; 1158 if (!SOCK_UNSPEC(&rbufp->dstadr->bcast)) 1159 dstadr_sin = 1160 &rbufp->dstadr->bcast; 1161 } else if (peer == NULL) { 1162 pkeyid = session_key( 1163 &rbufp->recv_srcadr, dstadr_sin, 0, 1164 sys_private, 0); 1165 } else { 1166 pkeyid = peer->pcookie; 1167 } 1168 1169 /* 1170 * The session key includes both the public 1171 * values and cookie. In case of an extension 1172 * field, the cookie used for authentication 1173 * purposes is zero. Note the hash is saved for 1174 * use later in the autokey mambo. 1175 */ 1176 if (authlen > (int)LEN_PKT_NOMAC && pkeyid != 0) { 1177 session_key(&rbufp->recv_srcadr, 1178 dstadr_sin, skeyid, 0, 2); 1179 tkeyid = session_key( 1180 &rbufp->recv_srcadr, dstadr_sin, 1181 skeyid, pkeyid, 0); 1182 } else { 1183 tkeyid = session_key( 1184 &rbufp->recv_srcadr, dstadr_sin, 1185 skeyid, pkeyid, 2); 1186 } 1187 1188 } 1189 #endif /* AUTOKEY */ 1190 1191 /* 1192 * Compute the cryptosum. Note a clogging attack may 1193 * succeed in bloating the key cache. If an autokey, 1194 * purge it immediately, since we won't be needing it 1195 * again. If the packet is authentic, it can mobilize an 1196 * association. Note that there is no key zero. 1197 */ 1198 if (!authdecrypt(skeyid, (u_int32 *)pkt, authlen, 1199 has_mac)) 1200 is_authentic = AUTH_ERROR; 1201 else 1202 is_authentic = AUTH_OK; 1203 #ifdef AUTOKEY 1204 if (crypto_flags && skeyid > NTP_MAXKEY) 1205 authtrust(skeyid, 0); 1206 #endif /* AUTOKEY */ 1207 DPRINTF(1, ("receive: at %ld %s<-%s mode %d/%s:%s keyid %08x len %d auth %d org 0x%x.%08x xmt 0x%x.%08x MAC\n", 1208 current_time, stoa(dstadr_sin), 1209 stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str, 1210 skeyid, authlen + has_mac, is_authentic, 1211 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 1212 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 1213 } 1214 1215 1216 /* 1217 * Bug 3454: 1218 * 1219 * Now come at this from a different perspective: 1220 * - If we expect a MAC and it's not there, we drop it. 1221 * - If we expect one keyID and get another, we drop it. 1222 * - If we have a MAC ahd it hasn't been validated yet, try. 1223 * - if the provided MAC doesn't validate, we drop it. 1224 * 1225 * There might be more to this. 1226 */ 1227 if (0 != peer && 0 != peer->keyid) { 1228 /* Should we msyslog() any of these? */ 1229 1230 /* 1231 * This should catch: 1232 * - no keyID where one is expected, 1233 * - different keyID than what we expect. 1234 */ 1235 if (peer->keyid != skeyid) { 1236 DPRINTF(2, ("receive: drop: Wanted keyID %d, got %d from %s\n", 1237 peer->keyid, skeyid, 1238 stoa(&rbufp->recv_srcadr))); 1239 sys_restricted++; 1240 return; /* drop: access denied */ 1241 } 1242 1243 /* 1244 * if has_mac != 0 ... 1245 * - If it has not yet been validated, do so. 1246 * (under what circumstances might that happen?) 1247 * - if missing or bad MAC, log and drop. 1248 */ 1249 if (0 != has_mac) { 1250 if (is_authentic == AUTH_UNKNOWN) { 1251 /* How can this happen? */ 1252 DPRINTF(2, ("receive: 3454 check: AUTH_UNKNOWN from %s\n", 1253 stoa(&rbufp->recv_srcadr))); 1254 if (!authdecrypt(skeyid, (u_int32 *)pkt, authlen, 1255 has_mac)) { 1256 /* MAC invalid or not found */ 1257 is_authentic = AUTH_ERROR; 1258 } else { 1259 is_authentic = AUTH_OK; 1260 } 1261 } 1262 if (is_authentic != AUTH_OK) { 1263 DPRINTF(2, ("receive: drop: missing or bad MAC from %s\n", 1264 stoa(&rbufp->recv_srcadr))); 1265 sys_restricted++; 1266 return; /* drop: access denied */ 1267 } 1268 } 1269 } 1270 /**/ 1271 1272 /* 1273 ** On-Wire Protocol Layer 1274 ** 1275 ** Verify protocol operations consistent with the on-wire protocol. 1276 ** The protocol discards bogus and duplicate packets as well as 1277 ** minimizes disruptions doe to protocol restarts and dropped 1278 ** packets. The operations are controlled by two timestamps: 1279 ** the transmit timestamp saved in the client state variables, 1280 ** and the origin timestamp in the server packet header. The 1281 ** comparison of these two timestamps is called the loopback test. 1282 ** The transmit timestamp functions as a nonce to verify that the 1283 ** response corresponds to the original request. The transmit 1284 ** timestamp also serves to discard replays of the most recent 1285 ** packet. Upon failure of either test, the packet is discarded 1286 ** with no further action. 1287 */ 1288 1289 /* 1290 * The association matching rules are implemented by a set of 1291 * routines and an association table. A packet matching an 1292 * association is processed by the peer process for that 1293 * association. If there are no errors, an ephemeral association 1294 * is mobilized: a broadcast packet mobilizes a broadcast client 1295 * aassociation; a manycast server packet mobilizes a manycast 1296 * client association; a symmetric active packet mobilizes a 1297 * symmetric passive association. 1298 */ 1299 DPRINTF(1, ("receive: MATCH_ASSOC dispatch: mode %d/%s:%s \n", 1300 hismode, hm_str, am_str)); 1301 switch (retcode) { 1302 1303 /* 1304 * This is a client mode packet not matching any association. If 1305 * an ordinary client, simply toss a server mode packet back 1306 * over the fence. If a manycast client, we have to work a 1307 * little harder. 1308 * 1309 * There are cases here where we do not call record_raw_stats(). 1310 */ 1311 case AM_FXMIT: 1312 1313 /* 1314 * If authentication OK, send a server reply; otherwise, 1315 * send a crypto-NAK. 1316 */ 1317 if (!(rbufp->dstadr->flags & INT_MCASTOPEN)) { 1318 /* HMS: would be nice to log FAST_XMIT|BADAUTH|RESTRICTED */ 1319 record_raw_stats(&rbufp->recv_srcadr, 1320 &rbufp->dstadr->sin, 1321 &p_org, &p_rec, &p_xmt, &rbufp->recv_time, 1322 PKT_LEAP(pkt->li_vn_mode), 1323 PKT_VERSION(pkt->li_vn_mode), 1324 PKT_MODE(pkt->li_vn_mode), 1325 PKT_TO_STRATUM(pkt->stratum), 1326 pkt->ppoll, 1327 pkt->precision, 1328 FPTOD(NTOHS_FP(pkt->rootdelay)), 1329 FPTOD(NTOHS_FP(pkt->rootdisp)), 1330 pkt->refid, 1331 rbufp->recv_length - MIN_V4_PKT_LEN, (u_char *)&pkt->exten); 1332 1333 if (AUTH(restrict_mask & RES_DONTTRUST, 1334 is_authentic)) { 1335 /* Bug 3596: Do we want to fuzz the reftime? */ 1336 fast_xmit(rbufp, MODE_SERVER, skeyid, 1337 restrict_mask); 1338 } else if (is_authentic == AUTH_ERROR) { 1339 /* Bug 3596: Do we want to fuzz the reftime? */ 1340 fast_xmit(rbufp, MODE_SERVER, 0, 1341 restrict_mask); 1342 sys_badauth++; 1343 } else { 1344 DPRINTF(2, ("receive: AM_FXMIT drop: !mcast restricted\n")); 1345 sys_restricted++; 1346 } 1347 1348 return; /* hooray */ 1349 } 1350 1351 /* 1352 * This must be manycast. Do not respond if not 1353 * configured as a manycast server. 1354 */ 1355 if (!sys_manycastserver) { 1356 DPRINTF(2, ("receive: AM_FXMIT drop: Not manycastserver\n")); 1357 sys_restricted++; 1358 return; /* not enabled */ 1359 } 1360 1361 #ifdef AUTOKEY 1362 /* 1363 * Do not respond if not the same group. 1364 */ 1365 if (group_test(groupname, NULL)) { 1366 DPRINTF(2, ("receive: AM_FXMIT drop: empty groupname\n")); 1367 sys_declined++; 1368 return; 1369 } 1370 #endif /* AUTOKEY */ 1371 1372 /* 1373 * Do not respond if we are not synchronized or our 1374 * stratum is greater than the manycaster or the 1375 * manycaster has already synchronized to us. 1376 */ 1377 if ( sys_leap == LEAP_NOTINSYNC 1378 || sys_stratum >= hisstratum 1379 || (!sys_cohort && sys_stratum == hisstratum + 1) 1380 || rbufp->dstadr->addr_refid == pkt->refid 1381 # ifdef WORDS_BIGENDIAN /* see local_refid() comment */ 1382 || ( IS_IPV6(&rbufp->dstadr->sin) 1383 &&rbufp->dstadr->old_refid == pkt->refid) 1384 # endif 1385 ) { 1386 DPRINTF(2, ("receive: sys leap: %0x, sys_stratum %d > hisstratum+1 %d, !sys_cohort %d && sys_stratum == hisstratum+1, loop refid %#x == pkt refid %#x\n", sys_leap, sys_stratum, hisstratum + 1, !sys_cohort, rbufp->dstadr->addr_refid, pkt->refid)); 1387 DPRINTF(2, ("receive: AM_FXMIT drop: LEAP_NOTINSYNC || stratum || loop\n")); 1388 sys_declined++; 1389 return; /* no help */ 1390 } 1391 1392 /* 1393 * Do not respond if the packet came into an IPv6 link-local 1394 * address on an interface where we also have a usable 1395 * global address, to avoid duplicate associations. 1396 */ 1397 if (INT_LL_OF_GLOB & rbufp->dstadr->flags) { 1398 DPRINTF(2, ("receive: declining manycast solicitation on link-local IPv6\n")); 1399 sys_declined++; 1400 return; 1401 } 1402 1403 /* 1404 * Respond only if authentication succeeds. Don't do a 1405 * crypto-NAK, as that would not be useful. 1406 */ 1407 if (AUTH(restrict_mask & RES_DONTTRUST, is_authentic)) { 1408 record_raw_stats(&rbufp->recv_srcadr, 1409 &rbufp->dstadr->sin, 1410 &p_org, &p_rec, &p_xmt, &rbufp->recv_time, 1411 PKT_LEAP(pkt->li_vn_mode), 1412 PKT_VERSION(pkt->li_vn_mode), 1413 PKT_MODE(pkt->li_vn_mode), 1414 PKT_TO_STRATUM(pkt->stratum), 1415 pkt->ppoll, 1416 pkt->precision, 1417 FPTOD(NTOHS_FP(pkt->rootdelay)), 1418 FPTOD(NTOHS_FP(pkt->rootdisp)), 1419 pkt->refid, 1420 rbufp->recv_length - MIN_V4_PKT_LEN, (u_char *)&pkt->exten); 1421 1422 /* Bug 3596: Do we want to fuzz the reftime? */ 1423 fast_xmit(rbufp, MODE_SERVER, skeyid, 1424 restrict_mask); 1425 } 1426 return; /* hooray */ 1427 1428 /* 1429 * This is a server mode packet returned in response to a client 1430 * mode packet sent to a multicast group address (for 1431 * manycastclient) or to a unicast address (for pool). The 1432 * origin timestamp is a good nonce to reliably associate the 1433 * reply with what was sent. If there is no match, that's 1434 * curious and could be an intruder attempting to clog, so we 1435 * just ignore it. 1436 * 1437 * If the packet is authentic and the manycastclient or pool 1438 * association is found, we mobilize a client association and 1439 * copy pertinent variables from the manycastclient or pool 1440 * association to the new client association. If not, just 1441 * ignore the packet. 1442 * 1443 * There is an implosion hazard at the manycast client, since 1444 * the manycast servers send the server packet immediately. If 1445 * the guy is already here, don't fire up a duplicate. 1446 * 1447 * There are cases here where we do not call record_raw_stats(). 1448 */ 1449 case AM_MANYCAST: 1450 1451 #ifdef AUTOKEY 1452 /* 1453 * Do not respond if not the same group. 1454 */ 1455 if (group_test(groupname, NULL)) { 1456 DPRINTF(2, ("receive: AM_MANYCAST drop: empty groupname\n")); 1457 sys_declined++; 1458 return; 1459 } 1460 #endif /* AUTOKEY */ 1461 /* Do not spin up duplicate manycast associations */ 1462 if (INT_LL_OF_GLOB & rbufp->dstadr->flags) { 1463 DPRINTF(2, ("receive: AM_MANYCAST drop: link-local server\n")); 1464 sys_declined++; 1465 return; 1466 } 1467 if ((peer2 = findmanycastpeer(rbufp)) == NULL) { 1468 DPRINTF(2, ("receive: AM_MANYCAST drop: No manycast peer\n")); 1469 sys_restricted++; 1470 return; /* not enabled */ 1471 } 1472 if (!AUTH( (!(peer2->cast_flags & MDF_POOL) 1473 && sys_authenticate) 1474 || (restrict_mask & (RES_NOPEER | 1475 RES_DONTTRUST)), is_authentic) 1476 /* MC: RES_NOEPEER? */ 1477 ) { 1478 DPRINTF(2, ("receive: AM_MANYCAST drop: bad auth || (NOPEER|DONTTRUST)\n")); 1479 sys_restricted++; 1480 return; /* access denied */ 1481 } 1482 1483 /* 1484 * Do not respond if unsynchronized or stratum is below 1485 * the floor or at or above the ceiling. 1486 */ 1487 if ( hisleap == LEAP_NOTINSYNC 1488 || hisstratum < sys_floor 1489 || hisstratum >= sys_ceiling) { 1490 DPRINTF(2, ("receive: AM_MANYCAST drop: unsync/stratum\n")); 1491 sys_declined++; 1492 return; /* no help */ 1493 } 1494 cast_flags = MDF_UCAST; 1495 if (MDF_POOL & peer2->cast_flags) { 1496 cast_flags |= MDF_PCLNT; 1497 } 1498 peer = newpeer(&rbufp->recv_srcadr, NULL, rbufp->dstadr, 1499 r4a.ippeerlimit, MODE_CLIENT, hisversion, 1500 peer2->minpoll, peer2->maxpoll, 1501 (FLAG_PREEMPT | (POOL_FLAG_PMASK & peer2->flags)), 1502 cast_flags, 0, skeyid, sys_ident); 1503 if (NULL == peer) { 1504 DPRINTF(2, ("receive: AM_MANYCAST drop: duplicate\n")); 1505 sys_declined++; 1506 return; /* ignore duplicate */ 1507 } 1508 1509 /* 1510 * After each ephemeral pool association is spun, 1511 * accelerate the next poll for the pool solicitor so 1512 * the pool will fill promptly. 1513 */ 1514 if (peer2->cast_flags & MDF_POOL) 1515 peer2->nextdate = current_time + 1; 1516 1517 /* 1518 * Further processing of the solicitation response would 1519 * simply detect its origin timestamp as bogus for the 1520 * brand-new association (it matches the prototype 1521 * association) and tinker with peer->nextdate delaying 1522 * first sync. 1523 */ 1524 return; /* solicitation response handled */ 1525 1526 /* 1527 * This is the first packet received from a broadcast server. If 1528 * the packet is authentic and we are enabled as broadcast 1529 * client, mobilize a broadcast client association. We don't 1530 * kiss any frogs here. 1531 * 1532 * There are cases here where we do not call record_raw_stats(). 1533 */ 1534 case AM_NEWBCL: 1535 1536 #ifdef AUTOKEY 1537 /* 1538 * Do not respond if not the same group. 1539 */ 1540 if (group_test(groupname, sys_ident)) { 1541 DPRINTF(2, ("receive: AM_NEWBCL drop: groupname mismatch\n")); 1542 sys_declined++; 1543 return; 1544 } 1545 #endif /* AUTOKEY */ 1546 if (!sys_bclient && !sys_mclient) { 1547 DPRINTF(2, ("receive: AM_NEWBCL drop: not a bclient/mclient\n")); 1548 sys_restricted++; 1549 return; /* not enabled */ 1550 } 1551 if (!AUTH(sys_authenticate | (restrict_mask & 1552 (RES_NOPEER | RES_DONTTRUST)), is_authentic) 1553 /* NEWBCL: RES_NOEPEER? */ 1554 ) { 1555 DPRINTF(2, ("receive: AM_NEWBCL drop: AUTH failed\n")); 1556 sys_restricted++; 1557 return; /* access denied */ 1558 } 1559 1560 /* 1561 * Do not respond if unsynchronized or stratum is below 1562 * the floor or at or above the ceiling. 1563 */ 1564 if ( hisleap == LEAP_NOTINSYNC 1565 || hisstratum < sys_floor 1566 || hisstratum >= sys_ceiling) { 1567 DPRINTF(2, ("receive: AM_NEWBCL drop: Unsync or bad stratum\n")); 1568 sys_declined++; 1569 return; /* no help */ 1570 } 1571 1572 #ifdef AUTOKEY 1573 /* 1574 * Do not respond if Autokey and the opcode is not a 1575 * CRYPTO_ASSOC response with association ID. 1576 */ 1577 if ( crypto_flags && skeyid > NTP_MAXKEY 1578 && (opcode & 0xffff0000) != (CRYPTO_ASSOC | CRYPTO_RESP)) { 1579 DPRINTF(2, ("receive: AM_NEWBCL drop: Autokey but not CRYPTO_ASSOC\n")); 1580 sys_declined++; 1581 return; /* protocol error */ 1582 } 1583 #endif /* AUTOKEY */ 1584 1585 /* 1586 * Broadcasts received via a multicast address may 1587 * arrive after a unicast volley has begun 1588 * with the same remote address. newpeer() will not 1589 * find duplicate associations on other local endpoints 1590 * if a non-NULL endpoint is supplied. multicastclient 1591 * ephemeral associations are unique across all local 1592 * endpoints. 1593 */ 1594 if (!(INT_MCASTOPEN & rbufp->dstadr->flags)) 1595 match_ep = rbufp->dstadr; 1596 else 1597 match_ep = NULL; 1598 1599 /* 1600 * Determine whether to execute the initial volley. 1601 */ 1602 if (sys_bdelay > 0.0) { 1603 #ifdef AUTOKEY 1604 /* 1605 * If a two-way exchange is not possible, 1606 * neither is Autokey. 1607 */ 1608 if (crypto_flags && skeyid > NTP_MAXKEY) { 1609 sys_restricted++; 1610 DPRINTF(2, ("receive: AM_NEWBCL drop: Autokey but not 2-way\n")); 1611 return; /* no autokey */ 1612 } 1613 #endif /* AUTOKEY */ 1614 1615 /* 1616 * Do not execute the volley. Start out in 1617 * broadcast client mode. 1618 */ 1619 peer = newpeer(&rbufp->recv_srcadr, NULL, match_ep, 1620 r4a.ippeerlimit, MODE_BCLIENT, hisversion, 1621 pkt->ppoll, pkt->ppoll, 1622 FLAG_PREEMPT, MDF_BCLNT, 0, skeyid, sys_ident); 1623 if (NULL == peer) { 1624 DPRINTF(2, ("receive: AM_NEWBCL drop: duplicate\n")); 1625 sys_restricted++; 1626 return; /* ignore duplicate */ 1627 1628 } else { 1629 peer->delay = sys_bdelay; 1630 peer->bxmt = p_xmt; 1631 } 1632 break; 1633 } 1634 1635 /* 1636 * Execute the initial volley in order to calibrate the 1637 * propagation delay and run the Autokey protocol. 1638 * 1639 * Note that the minpoll is taken from the broadcast 1640 * packet, normally 6 (64 s) and that the poll interval 1641 * is fixed at this value. 1642 */ 1643 peer = newpeer(&rbufp->recv_srcadr, NULL, match_ep, 1644 r4a.ippeerlimit, MODE_CLIENT, hisversion, 1645 pkt->ppoll, pkt->ppoll, 1646 FLAG_BC_VOL | FLAG_IBURST | FLAG_PREEMPT, MDF_BCLNT, 1647 0, skeyid, sys_ident); 1648 if (NULL == peer) { 1649 DPRINTF(2, ("receive: AM_NEWBCL drop: empty newpeer() failed\n")); 1650 sys_restricted++; 1651 return; /* ignore duplicate */ 1652 } 1653 peer->bxmt = p_xmt; 1654 #ifdef AUTOKEY 1655 if (skeyid > NTP_MAXKEY) 1656 crypto_recv(peer, rbufp); 1657 #endif /* AUTOKEY */ 1658 1659 return; /* hooray */ 1660 1661 /* 1662 * This is the first packet received from a potential ephemeral 1663 * symmetric active peer. First, deal with broken Windows clients. 1664 * Then, if NOEPEER is enabled, drop it. If the packet meets our 1665 * authenticty requirements and is the first he sent, mobilize 1666 * a passive association. 1667 * Otherwise, kiss the frog. 1668 * 1669 * There are cases here where we do not call record_raw_stats(). 1670 */ 1671 case AM_NEWPASS: 1672 1673 DEBUG_REQUIRE(MODE_ACTIVE == hismode); 1674 1675 #ifdef AUTOKEY 1676 /* 1677 * Do not respond if not the same group. 1678 */ 1679 if (group_test(groupname, sys_ident)) { 1680 DPRINTF(2, ("receive: AM_NEWPASS drop: Autokey group mismatch\n")); 1681 sys_declined++; 1682 return; 1683 } 1684 #endif /* AUTOKEY */ 1685 if (!AUTH(sys_authenticate | (restrict_mask & 1686 (RES_NOPEER | RES_DONTTRUST)), is_authentic) 1687 ) { 1688 /* 1689 * If authenticated but cannot mobilize an 1690 * association, send a symmetric passive 1691 * response without mobilizing an association. 1692 * This is for drat broken Windows clients. See 1693 * Microsoft KB 875424 for preferred workaround. 1694 */ 1695 if (AUTH(restrict_mask & RES_DONTTRUST, 1696 is_authentic)) { 1697 fast_xmit(rbufp, MODE_PASSIVE, skeyid, 1698 restrict_mask); 1699 return; /* hooray */ 1700 } 1701 /* HMS: Why is this next set of lines a feature? */ 1702 if (is_authentic == AUTH_ERROR) { 1703 fast_xmit(rbufp, MODE_PASSIVE, 0, 1704 restrict_mask); 1705 sys_restricted++; 1706 return; 1707 } 1708 1709 if (restrict_mask & RES_NOEPEER) { 1710 DPRINTF(2, ("receive: AM_NEWPASS drop: NOEPEER\n")); 1711 sys_declined++; 1712 return; 1713 } 1714 1715 /* [Bug 2941] 1716 * If we got here, the packet isn't part of an 1717 * existing association, either isn't correctly 1718 * authenticated or it is but we are refusing 1719 * ephemeral peer requests, and it didn't meet 1720 * either of the previous two special cases so we 1721 * should just drop it on the floor. For example, 1722 * crypto-NAKs (is_authentic == AUTH_CRYPTO) 1723 * will make it this far. This is just 1724 * debug-printed and not logged to avoid log 1725 * flooding. 1726 */ 1727 DPRINTF(2, ("receive: at %ld refusing to mobilize passive association" 1728 " with unknown peer %s mode %d/%s:%s keyid %08x len %d auth %d\n", 1729 current_time, stoa(&rbufp->recv_srcadr), 1730 hismode, hm_str, am_str, skeyid, 1731 (authlen + has_mac), is_authentic)); 1732 sys_declined++; 1733 return; 1734 } 1735 1736 if (restrict_mask & RES_NOEPEER) { 1737 DPRINTF(2, ("receive: AM_NEWPASS drop: NOEPEER\n")); 1738 sys_declined++; 1739 return; 1740 } 1741 1742 /* 1743 * Do not respond if synchronized and if stratum is 1744 * below the floor or at or above the ceiling. Note, 1745 * this allows an unsynchronized peer to synchronize to 1746 * us. It would be very strange if he did and then was 1747 * nipped, but that could only happen if we were 1748 * operating at the top end of the range. It also means 1749 * we will spin an ephemeral association in response to 1750 * MODE_ACTIVE KoDs, which will time out eventually. 1751 */ 1752 if ( hisleap != LEAP_NOTINSYNC 1753 && (hisstratum < sys_floor || hisstratum >= sys_ceiling)) { 1754 DPRINTF(2, ("receive: AM_NEWPASS drop: Remote stratum (%d) out of range\n", 1755 hisstratum)); 1756 sys_declined++; 1757 return; /* no help */ 1758 } 1759 1760 /* 1761 * The message is correctly authenticated and allowed. 1762 * Mobilize a symmetric passive association, if we won't 1763 * exceed the ippeerlimit. 1764 */ 1765 if ((peer = newpeer(&rbufp->recv_srcadr, NULL, rbufp->dstadr, 1766 r4a.ippeerlimit, MODE_PASSIVE, hisversion, 1767 pkt->ppoll, NTP_MAXDPOLL, 0, MDF_UCAST, 0, 1768 skeyid, sys_ident)) == NULL) { 1769 DPRINTF(2, ("receive: AM_NEWPASS drop: newpeer() failed\n")); 1770 sys_declined++; 1771 return; /* ignore duplicate */ 1772 } 1773 break; 1774 1775 1776 /* 1777 * Process regular packet. Nothing special. 1778 * 1779 * There are cases here where we do not call record_raw_stats(). 1780 */ 1781 case AM_PROCPKT: 1782 1783 #ifdef AUTOKEY 1784 /* 1785 * Do not respond if not the same group. 1786 */ 1787 if (group_test(groupname, peer->ident)) { 1788 DPRINTF(2, ("receive: AM_PROCPKT drop: Autokey group mismatch\n")); 1789 sys_declined++; 1790 return; 1791 } 1792 #endif /* AUTOKEY */ 1793 1794 if (MODE_BROADCAST == hismode) { 1795 int bail = 0; 1796 l_fp tdiff; 1797 u_long deadband; 1798 1799 DPRINTF(2, ("receive: PROCPKT/BROADCAST: prev pkt %ld seconds ago, ppoll: %d, %d secs\n", 1800 (current_time - peer->timelastrec), 1801 peer->ppoll, (1 << peer->ppoll) 1802 )); 1803 /* Things we can check: 1804 * 1805 * Did the poll interval change? 1806 * Is the poll interval in the packet in-range? 1807 * Did this packet arrive too soon? 1808 * Is the timestamp in this packet monotonic 1809 * with respect to the previous packet? 1810 */ 1811 1812 /* This is noteworthy, not error-worthy */ 1813 if (pkt->ppoll != peer->ppoll) { 1814 msyslog(LOG_INFO, "receive: broadcast poll from %s changed from %u to %u", 1815 stoa(&rbufp->recv_srcadr), 1816 peer->ppoll, pkt->ppoll); 1817 } 1818 1819 /* This is error-worthy */ 1820 if ( pkt->ppoll < peer->minpoll 1821 || pkt->ppoll > peer->maxpoll) { 1822 msyslog(LOG_INFO, "receive: broadcast poll of %u from %s is out-of-range (%d to %d)!", 1823 pkt->ppoll, stoa(&rbufp->recv_srcadr), 1824 peer->minpoll, peer->maxpoll); 1825 ++bail; 1826 } 1827 1828 /* too early? worth an error, too! 1829 * 1830 * [Bug 3113] Ensure that at least one poll 1831 * interval has elapsed since the last **clean** 1832 * packet was received. We limit the check to 1833 * **clean** packets to prevent replayed packets 1834 * and incorrectly authenticated packets, which 1835 * we'll discard, from being used to create a 1836 * denial of service condition. 1837 */ 1838 deadband = (1u << pkt->ppoll); 1839 if (FLAG_BC_VOL & peer->flags) 1840 deadband -= 3; /* allow greater fuzz after volley */ 1841 if ((current_time - peer->timereceived) < deadband) { 1842 msyslog(LOG_INFO, "receive: broadcast packet from %s arrived after %lu, not %lu seconds!", 1843 stoa(&rbufp->recv_srcadr), 1844 (current_time - peer->timereceived), 1845 deadband); 1846 ++bail; 1847 } 1848 1849 /* Alert if time from the server is non-monotonic. 1850 * 1851 * [Bug 3114] is about Broadcast mode replay DoS. 1852 * 1853 * Broadcast mode *assumes* a trusted network. 1854 * Even so, it's nice to be robust in the face 1855 * of attacks. 1856 * 1857 * If we get an authenticated broadcast packet 1858 * with an "earlier" timestamp, it means one of 1859 * two things: 1860 * 1861 * - the broadcast server had a backward step. 1862 * 1863 * - somebody is trying a replay attack. 1864 * 1865 * deadband: By default, we assume the broadcast 1866 * network is trustable, so we take our accepted 1867 * broadcast packets as we receive them. But 1868 * some folks might want to take additional poll 1869 * delays before believing a backward step. 1870 */ 1871 if (sys_bcpollbstep) { 1872 /* pkt->ppoll or peer->ppoll ? */ 1873 deadband = (1u << pkt->ppoll) 1874 * sys_bcpollbstep + 2; 1875 } else { 1876 deadband = 0; 1877 } 1878 1879 if (L_ISZERO(&peer->bxmt)) { 1880 tdiff.l_ui = tdiff.l_uf = 0; 1881 } else { 1882 tdiff = p_xmt; 1883 L_SUB(&tdiff, &peer->bxmt); 1884 } 1885 if ( tdiff.l_i < 0 1886 && (current_time - peer->timereceived) < deadband) 1887 { 1888 msyslog(LOG_INFO, "receive: broadcast packet from %s contains non-monotonic timestamp: 0x%x.%08x -> 0x%x.%08x", 1889 stoa(&rbufp->recv_srcadr), 1890 peer->bxmt.l_ui, peer->bxmt.l_uf, 1891 p_xmt.l_ui, p_xmt.l_uf 1892 ); 1893 ++bail; 1894 } 1895 1896 if (bail) { 1897 DPRINTF(2, ("receive: AM_PROCPKT drop: bail\n")); 1898 peer->timelastrec = current_time; 1899 sys_declined++; 1900 return; 1901 } 1902 } 1903 1904 break; 1905 1906 /* 1907 * A passive packet matches a passive association. This is 1908 * usually the result of reconfiguring a client on the fly. As 1909 * this association might be legitimate and this packet an 1910 * attempt to deny service, just ignore it. 1911 */ 1912 case AM_ERR: 1913 DPRINTF(2, ("receive: AM_ERR drop.\n")); 1914 sys_declined++; 1915 return; 1916 1917 /* 1918 * For everything else there is the bit bucket. 1919 */ 1920 default: 1921 DPRINTF(2, ("receive: default drop.\n")); 1922 sys_declined++; 1923 return; 1924 } 1925 1926 #ifdef AUTOKEY 1927 /* 1928 * If the association is configured for Autokey, the packet must 1929 * have a public key ID; if not, the packet must have a 1930 * symmetric key ID. 1931 */ 1932 if ( is_authentic != AUTH_CRYPTO 1933 && ( ((peer->flags & FLAG_SKEY) && skeyid <= NTP_MAXKEY) 1934 || (!(peer->flags & FLAG_SKEY) && skeyid > NTP_MAXKEY))) { 1935 DPRINTF(2, ("receive: drop: Autokey but wrong/bad auth\n")); 1936 sys_badauth++; 1937 return; 1938 } 1939 #endif /* AUTOKEY */ 1940 1941 peer->received++; 1942 peer->flash &= ~PKT_TEST_MASK; 1943 if (peer->flags & FLAG_XBOGUS) { 1944 peer->flags &= ~FLAG_XBOGUS; 1945 peer->flash |= TEST3; 1946 } 1947 1948 /* 1949 * Next comes a rigorous schedule of timestamp checking. If the 1950 * transmit timestamp is zero, the server has not initialized in 1951 * interleaved modes or is horribly broken. 1952 * 1953 * A KoD packet we pay attention to cannot have a 0 transmit 1954 * timestamp. 1955 */ 1956 1957 kissCode = kiss_code_check(hisleap, hisstratum, hismode, pkt->refid); 1958 1959 if (L_ISZERO(&p_xmt)) { 1960 peer->flash |= TEST3; /* unsynch */ 1961 if (kissCode != NOKISS) { /* KoD packet */ 1962 peer->bogusorg++; /* for TEST2 or TEST3 */ 1963 msyslog(LOG_INFO, 1964 "receive: Unexpected zero transmit timestamp in KoD from %s", 1965 ntoa(&peer->srcadr)); 1966 return; 1967 } 1968 1969 /* 1970 * If the transmit timestamp duplicates our previous one, the 1971 * packet is a replay. This prevents the bad guys from replaying 1972 * the most recent packet, authenticated or not. 1973 */ 1974 } else if ( ((FLAG_LOOPNONCE & peer->flags) && L_ISEQU(&peer->nonce, &p_xmt)) 1975 || (!(FLAG_LOOPNONCE & peer->flags) && L_ISEQU(&peer->xmt, &p_xmt)) 1976 ) { 1977 DPRINTF(2, ("receive: drop: Duplicate xmit\n")); 1978 peer->flash |= TEST1; /* duplicate */ 1979 peer->oldpkt++; 1980 return; 1981 1982 /* 1983 * If this is a broadcast mode packet, make sure hisstratum 1984 * is appropriate. Don't do anything else here - we wait to 1985 * see if this is an interleave broadcast packet until after 1986 * we've validated the MAC that SHOULD be provided. 1987 * 1988 * hisstratum cannot be 0 - see assertion above. 1989 * If hisstratum is 15, then we'll advertise as UNSPEC but 1990 * at least we'll be able to sync with the broadcast server. 1991 */ 1992 } else if (hismode == MODE_BROADCAST) { 1993 /* 0 is unexpected too, and impossible */ 1994 if (STRATUM_UNSPEC <= hisstratum) { 1995 /* Is this a ++sys_declined or ??? */ 1996 msyslog(LOG_INFO, 1997 "receive: Unexpected stratum (%d) in broadcast from %s", 1998 hisstratum, ntoa(&peer->srcadr)); 1999 return; 2000 } 2001 2002 /* 2003 * Basic KoD validation checking: 2004 * 2005 * KoD packets are a mixed-blessing. Forged KoD packets 2006 * are DoS attacks. There are rare situations where we might 2007 * get a valid KoD response, though. Since KoD packets are 2008 * a special case that complicate the checks we do next, we 2009 * handle the basic KoD checks here. 2010 * 2011 * Note that we expect the incoming KoD packet to have its 2012 * (nonzero) org, rec, and xmt timestamps set to the xmt timestamp 2013 * that we have previously sent out. Watch interleave mode. 2014 */ 2015 } else if (kissCode != NOKISS) { 2016 DEBUG_INSIST(!L_ISZERO(&p_xmt)); 2017 if ( L_ISZERO(&p_org) /* We checked p_xmt above */ 2018 || L_ISZERO(&p_rec)) { 2019 peer->bogusorg++; 2020 msyslog(LOG_INFO, 2021 "receive: KoD packet from %s has a zero org or rec timestamp. Ignoring.", 2022 ntoa(&peer->srcadr)); 2023 return; 2024 } 2025 2026 if ( !L_ISEQU(&p_xmt, &p_org) 2027 || !L_ISEQU(&p_xmt, &p_rec)) { 2028 peer->bogusorg++; 2029 msyslog(LOG_INFO, 2030 "receive: KoD packet from %s has inconsistent xmt/org/rec timestamps. Ignoring.", 2031 ntoa(&peer->srcadr)); 2032 return; 2033 } 2034 2035 /* Be conservative */ 2036 if (peer->flip == 0 && !L_ISEQU(&p_org, &peer->aorg)) { 2037 peer->bogusorg++; 2038 msyslog(LOG_INFO, 2039 "receive: flip 0 KoD origin timestamp 0x%x.%08x from %s does not match 0x%x.%08x - ignoring.", 2040 p_org.l_ui, p_org.l_uf, 2041 ntoa(&peer->srcadr), 2042 peer->aorg.l_ui, peer->aorg.l_uf); 2043 return; 2044 } else if (peer->flip == 1 && !L_ISEQU(&p_org, &peer->borg)) { 2045 peer->bogusorg++; 2046 msyslog(LOG_INFO, 2047 "receive: flip 1 KoD origin timestamp 0x%x.%08x from %s does not match interleave 0x%x.%08x - ignoring.", 2048 p_org.l_ui, p_org.l_uf, 2049 ntoa(&peer->srcadr), 2050 peer->borg.l_ui, peer->borg.l_uf); 2051 return; 2052 } 2053 2054 /* 2055 * Basic mode checks: 2056 * 2057 * If there is no origin timestamp, it's either an initial 2058 * packet or we've already received a response to our query. 2059 * Of course, should 'aorg' be all-zero because this really 2060 * was the original transmit timestamp, we'll ignore this 2061 * reply. There is a window of one nanosecond once every 2062 * 136 years' time where this is possible. We currently 2063 * ignore this situation, as a completely zero timestamp 2064 * is (quietly?) disallowed. 2065 * 2066 * Otherwise, check for bogus packet in basic mode. 2067 * If it is bogus, switch to interleaved mode and 2068 * resynchronize, but only after confirming the packet is 2069 * not bogus in symmetric interleaved mode. 2070 * 2071 * This could also mean somebody is forging packets claiming 2072 * to be from us, attempting to cause our server to KoD us. 2073 * 2074 * We have earlier asserted that hisstratum cannot be 0. 2075 * If hisstratum is STRATUM_UNSPEC, it means he's not sync'd. 2076 */ 2077 2078 /* XXX: FLAG_LOOPNONCE */ 2079 DEBUG_INSIST(0 == (FLAG_LOOPNONCE & peer->flags)); 2080 2081 if (RATEKISS == kissCode) { 2082 msyslog(LOG_INFO, "RATE KoD from %s poll %u", 2083 ntoa(&peer->srcadr), 1u << pkt->ppoll); 2084 } else { 2085 msyslog(LOG_INFO, "KoD %s from %s", 2086 refid_str(pkt->refid, -1), 2087 ntoa(&peer->srcadr)); 2088 } 2089 } else if (peer->flip == 0) { 2090 if (0) { 2091 } else if (L_ISZERO(&p_org)) { 2092 const char *action; 2093 2094 #ifdef BUG3361 2095 msyslog(LOG_INFO, 2096 "receive: BUG 3361: Clearing peer->aorg "); 2097 L_CLR(&peer->aorg); 2098 /* Clear peer->nonce, too? */ 2099 #endif 2100 /**/ 2101 switch (hismode) { 2102 /* We allow 0org for: */ 2103 case UCHAR_MAX: 2104 action = "Allow"; 2105 break; 2106 /* We disallow 0org for: */ 2107 case MODE_UNSPEC: 2108 case MODE_ACTIVE: 2109 case MODE_PASSIVE: 2110 case MODE_CLIENT: 2111 case MODE_SERVER: 2112 case MODE_BROADCAST: 2113 action = "Drop"; 2114 peer->bogusorg++; 2115 peer->flash |= TEST2; /* bogus */ 2116 break; 2117 default: 2118 action = ""; /* for cranky compilers / MSVC */ 2119 INSIST(!"receive(): impossible hismode"); 2120 break; 2121 } 2122 /**/ 2123 msyslog(LOG_INFO, 2124 "receive: %s 0 origin timestamp from %s@%s xmt 0x%x.%08x", 2125 action, hm_str, ntoa(&peer->srcadr), 2126 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)); 2127 } else if ( L_ISZERO(&peer->aorg) && MODE_CLIENT != hismode 2128 && !memcmp("STEP", &peer->refid, 4)) { 2129 /* response came in just after we stepped clock, normal */ 2130 } else if (!L_ISEQU(&p_org, &peer->aorg)) { 2131 /* are there cases here where we should bail? */ 2132 /* Should we set TEST2 if we decide to try xleave? */ 2133 peer->bogusorg++; 2134 peer->flash |= TEST2; /* bogus */ 2135 msyslog(LOG_INFO, 2136 "duplicate or replay: org 0x%x.%08x does not match 0x%x.%08x from %s@%s", 2137 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 2138 peer->aorg.l_ui, peer->aorg.l_uf, 2139 hm_str, ntoa(&peer->srcadr)); 2140 if ( !L_ISZERO(&peer->dst) 2141 && L_ISEQU(&p_org, &peer->dst)) { 2142 /* Might be the start of an interleave */ 2143 if (dynamic_interleave) { 2144 peer->flip = 1; 2145 report_event(PEVNT_XLEAVE, peer, NULL); 2146 } else { 2147 msyslog(LOG_INFO, 2148 "receive: Dynamic interleave from %s@%s denied", 2149 hm_str, ntoa(&peer->srcadr)); 2150 } 2151 } 2152 } else { 2153 L_CLR(&peer->aorg); 2154 /* XXX: FLAG_LOOPNONCE */ 2155 } 2156 2157 /* 2158 * Check for valid nonzero timestamp fields. 2159 */ 2160 } else if ( L_ISZERO(&p_org) 2161 || L_ISZERO(&p_rec) 2162 || L_ISZERO(&peer->dst)) { 2163 peer->flash |= TEST3; /* unsynch */ 2164 2165 /* 2166 * Check for bogus packet in interleaved symmetric mode. This 2167 * can happen if a packet is lost, duplicated or crossed. If 2168 * found, flip and resynchronize. 2169 */ 2170 } else if ( !L_ISZERO(&peer->dst) 2171 && !L_ISEQU(&p_org, &peer->dst)) { 2172 DPRINTF(2, ("receive: drop: Bogus packet in interleaved symmetric mode\n")); 2173 peer->bogusorg++; 2174 peer->flags |= FLAG_XBOGUS; 2175 peer->flash |= TEST2; /* bogus */ 2176 #ifdef BUG3453 2177 return; /* Bogus packet, we are done */ 2178 #endif 2179 } 2180 2181 /**/ 2182 2183 /* 2184 * If this is a crypto_NAK, the server cannot authenticate a 2185 * client packet. The server might have just changed keys. Clear 2186 * the association and restart the protocol. 2187 */ 2188 if (crypto_nak_test == VALIDNAK) { 2189 report_event(PEVNT_AUTH, peer, "crypto_NAK"); 2190 peer->flash |= TEST5; /* bad auth */ 2191 peer->badauth++; 2192 if (peer->flags & FLAG_PREEMPT) { 2193 if (unpeer_crypto_nak_early) { 2194 unpeer(peer); 2195 } 2196 DPRINTF(2, ("receive: drop: PREEMPT crypto_NAK\n")); 2197 return; 2198 } 2199 #ifdef AUTOKEY 2200 if (peer->crypto) { 2201 peer_clear(peer, "AUTH"); 2202 } 2203 #endif /* AUTOKEY */ 2204 DPRINTF(2, ("receive: drop: crypto_NAK\n")); 2205 return; 2206 2207 /* 2208 * If the digest fails or it's missing for authenticated 2209 * associations, the client cannot authenticate a server 2210 * reply to a client packet previously sent. The loopback check 2211 * is designed to avoid a bait-and-switch attack, which was 2212 * possible in past versions. If symmetric modes, return a 2213 * crypto-NAK. The peer should restart the protocol. 2214 */ 2215 } else if (!AUTH(peer->keyid || has_mac || 2216 (restrict_mask & RES_DONTTRUST), is_authentic)) { 2217 2218 if (peer->flash & PKT_TEST_MASK) { 2219 msyslog(LOG_INFO, 2220 "receive: Bad auth in packet with bad timestamps from %s denied - spoof?", 2221 ntoa(&peer->srcadr)); 2222 return; 2223 } 2224 2225 report_event(PEVNT_AUTH, peer, "digest"); 2226 peer->flash |= TEST5; /* bad auth */ 2227 peer->badauth++; 2228 if ( has_mac 2229 && ( hismode == MODE_ACTIVE 2230 || hismode == MODE_PASSIVE)) 2231 fast_xmit(rbufp, MODE_ACTIVE, 0, restrict_mask); 2232 if (peer->flags & FLAG_PREEMPT) { 2233 if (unpeer_digest_early) { 2234 unpeer(peer); 2235 } 2236 } 2237 #ifdef AUTOKEY 2238 else if (peer_clear_digest_early && peer->crypto) { 2239 peer_clear(peer, "AUTH"); 2240 } 2241 #endif /* AUTOKEY */ 2242 DPRINTF(2, ("receive: drop: Bad or missing AUTH\n")); 2243 return; 2244 } 2245 2246 /* 2247 * For broadcast packets: 2248 * 2249 * HMS: This next line never made much sense to me, even 2250 * when it was up higher: 2251 * If an initial volley, bail out now and let the 2252 * client do its stuff. 2253 * 2254 * If the packet has not failed authentication, then 2255 * - if the origin timestamp is nonzero this is an 2256 * interleaved broadcast, so restart the protocol. 2257 * - else, this is not an interleaved broadcast packet. 2258 */ 2259 if (hismode == MODE_BROADCAST) { 2260 if ( is_authentic == AUTH_OK 2261 || is_authentic == AUTH_NONE) { 2262 if (!L_ISZERO(&p_org)) { 2263 if (!(peer->flags & FLAG_XB)) { 2264 msyslog(LOG_INFO, 2265 "receive: Broadcast server at %s is in interleave mode", 2266 ntoa(&peer->srcadr)); 2267 peer->flags |= FLAG_XB; 2268 peer->aorg = p_xmt; 2269 peer->borg = rbufp->recv_time; 2270 report_event(PEVNT_XLEAVE, peer, NULL); 2271 return; 2272 } 2273 } else if (peer->flags & FLAG_XB) { 2274 msyslog(LOG_INFO, 2275 "receive: Broadcast server at %s is no longer in interleave mode", 2276 ntoa(&peer->srcadr)); 2277 peer->flags &= ~FLAG_XB; 2278 } 2279 } else { 2280 msyslog(LOG_INFO, 2281 "receive: Bad broadcast auth (%d) from %s", 2282 is_authentic, ntoa(&peer->srcadr)); 2283 } 2284 2285 /* 2286 * Now that we know the packet is correctly authenticated, 2287 * update peer->bxmt. 2288 */ 2289 peer->bxmt = p_xmt; 2290 } 2291 2292 2293 /* 2294 ** Update the state variables. 2295 */ 2296 if (peer->flip == 0) { 2297 if (hismode != MODE_BROADCAST) 2298 peer->rec = p_xmt; 2299 peer->dst = rbufp->recv_time; 2300 } 2301 peer->xmt = p_xmt; 2302 2303 /* 2304 * Set the peer ppoll to the maximum of the packet ppoll and the 2305 * peer minpoll. If a kiss-o'-death, set the peer minpoll to 2306 * this maximum and advance the headway to give the sender some 2307 * headroom. Very intricate. 2308 */ 2309 2310 /* 2311 * Check for any kiss codes. Note this is only used when a server 2312 * responds to a packet request. 2313 */ 2314 2315 /* 2316 * Check to see if this is a RATE Kiss Code 2317 * Currently this kiss code will accept whatever valid poll 2318 * rate that the server sends 2319 */ 2320 if ( (NTP_MINPOLL > pkt->ppoll) 2321 || (NTP_MAXPOLL < pkt->ppoll) 2322 ) { 2323 DPRINTF(2, ("RATEKISS: Invalid ppoll (%d) from %s\n", 2324 pkt->ppoll, stoa(&rbufp->recv_srcadr))); 2325 sys_badlength++; 2326 return; /* invalid packet poll */ 2327 } 2328 peer->ppoll = max(peer->minpoll, pkt->ppoll); 2329 if (kissCode == RATEKISS) { 2330 peer->selbroken++; /* Increment the KoD count */ 2331 report_event(PEVNT_RATE, peer, NULL); 2332 if (pkt->ppoll > peer->minpoll) 2333 peer->minpoll = peer->ppoll; 2334 peer->burst = peer->retry = 0; 2335 peer->throttle = (NTP_SHIFT + 1) * (1 << peer->minpoll); 2336 poll_update(peer, pkt->ppoll, 0); 2337 return; /* kiss-o'-death */ 2338 } 2339 if (kissCode != NOKISS) { 2340 peer->selbroken++; /* Increment the KoD count */ 2341 return; /* Drop any other kiss code packets */ 2342 } 2343 2344 2345 /* 2346 * XXX 2347 */ 2348 2349 2350 /* 2351 * If: 2352 * - this is a *cast (uni-, broad-, or m-) server packet 2353 * - and it's symmetric-key authenticated 2354 * then see if the sender's IP is trusted for this keyid. 2355 * If it is, great - nothing special to do here. 2356 * Otherwise, we should report and bail. 2357 * 2358 * Autokey-authenticated packets are accepted. 2359 */ 2360 2361 switch (hismode) { 2362 case MODE_SERVER: /* server mode */ 2363 case MODE_BROADCAST: /* broadcast mode */ 2364 case MODE_ACTIVE: /* symmetric active mode */ 2365 case MODE_PASSIVE: /* symmetric passive mode */ 2366 if ( is_authentic == AUTH_OK 2367 && skeyid 2368 && skeyid <= NTP_MAXKEY 2369 && !authistrustedip(skeyid, &peer->srcadr)) { 2370 report_event(PEVNT_AUTH, peer, "authIP"); 2371 peer->badauth++; 2372 return; 2373 } 2374 break; 2375 2376 case MODE_CLIENT: /* client mode */ 2377 #if 0 /* At this point, MODE_CONTROL is overloaded by MODE_BCLIENT */ 2378 case MODE_CONTROL: /* control mode */ 2379 #endif 2380 case MODE_PRIVATE: /* private mode */ 2381 case MODE_BCLIENT: /* broadcast client mode */ 2382 break; 2383 2384 case MODE_UNSPEC: /* unspecified (old version) */ 2385 default: 2386 msyslog(LOG_INFO, 2387 "receive: Unexpected mode (%d) in packet from %s", 2388 hismode, ntoa(&peer->srcadr)); 2389 break; 2390 } 2391 2392 2393 /* 2394 * That was hard and I am sweaty, but the packet is squeaky 2395 * clean. Get on with real work. 2396 */ 2397 peer->timereceived = current_time; 2398 peer->timelastrec = current_time; 2399 if (is_authentic == AUTH_OK) 2400 peer->flags |= FLAG_AUTHENTIC; 2401 else 2402 peer->flags &= ~FLAG_AUTHENTIC; 2403 2404 #ifdef AUTOKEY 2405 /* 2406 * More autokey dance. The rules of the cha-cha are as follows: 2407 * 2408 * 1. If there is no key or the key is not auto, do nothing. 2409 * 2410 * 2. If this packet is in response to the one just previously 2411 * sent or from a broadcast server, do the extension fields. 2412 * Otherwise, assume bogosity and bail out. 2413 * 2414 * 3. If an extension field contains a verified signature, it is 2415 * self-authenticated and we sit the dance. 2416 * 2417 * 4. If this is a server reply, check only to see that the 2418 * transmitted key ID matches the received key ID. 2419 * 2420 * 5. Check to see that one or more hashes of the current key ID 2421 * matches the previous key ID or ultimate original key ID 2422 * obtained from the broadcaster or symmetric peer. If no 2423 * match, sit the dance and call for new autokey values. 2424 * 2425 * In case of crypto error, fire the orchestra, stop dancing and 2426 * restart the protocol. 2427 */ 2428 if (peer->flags & FLAG_SKEY) { 2429 /* 2430 * Decrement remaining autokey hashes. This isn't 2431 * perfect if a packet is lost, but results in no harm. 2432 */ 2433 ap = (struct autokey *)peer->recval.ptr; 2434 if (ap != NULL) { 2435 if (ap->seq > 0) 2436 ap->seq--; 2437 } 2438 peer->flash |= TEST8; 2439 rval = crypto_recv(peer, rbufp); 2440 if (rval == XEVNT_OK) { 2441 peer->unreach = 0; 2442 } else { 2443 if (rval == XEVNT_ERR) { 2444 report_event(PEVNT_RESTART, peer, 2445 "crypto error"); 2446 peer_clear(peer, "CRYP"); 2447 peer->flash |= TEST9; /* bad crypt */ 2448 if (peer->flags & FLAG_PREEMPT) { 2449 if (unpeer_crypto_early) { 2450 unpeer(peer); 2451 } 2452 } 2453 } 2454 return; 2455 } 2456 2457 /* 2458 * If server mode, verify the receive key ID matches 2459 * the transmit key ID. 2460 */ 2461 if (hismode == MODE_SERVER) { 2462 if (skeyid == peer->keyid) 2463 peer->flash &= ~TEST8; 2464 2465 /* 2466 * If an extension field is present, verify only that it 2467 * has been correctly signed. We don't need a sequence 2468 * check here, but the sequence continues. 2469 */ 2470 } else if (!(peer->flash & TEST8)) { 2471 peer->pkeyid = skeyid; 2472 2473 /* 2474 * Now the fun part. Here, skeyid is the current ID in 2475 * the packet, pkeyid is the ID in the last packet and 2476 * tkeyid is the hash of skeyid. If the autokey values 2477 * have not been received, this is an automatic error. 2478 * If so, check that the tkeyid matches pkeyid. If not, 2479 * hash tkeyid and try again. If the number of hashes 2480 * exceeds the number remaining in the sequence, declare 2481 * a successful failure and refresh the autokey values. 2482 */ 2483 } else if (ap != NULL) { 2484 int i; 2485 2486 for (i = 0; ; i++) { 2487 if ( tkeyid == peer->pkeyid 2488 || tkeyid == ap->key) { 2489 peer->flash &= ~TEST8; 2490 peer->pkeyid = skeyid; 2491 ap->seq -= i; 2492 break; 2493 } 2494 if (i > ap->seq) { 2495 peer->crypto &= 2496 ~CRYPTO_FLAG_AUTO; 2497 break; 2498 } 2499 tkeyid = session_key( 2500 &rbufp->recv_srcadr, dstadr_sin, 2501 tkeyid, pkeyid, 0); 2502 } 2503 if (peer->flash & TEST8) 2504 report_event(PEVNT_AUTH, peer, "keylist"); 2505 } 2506 if (!(peer->crypto & CRYPTO_FLAG_PROV)) /* test 9 */ 2507 peer->flash |= TEST8; /* bad autokey */ 2508 2509 /* 2510 * The maximum lifetime of the protocol is about one 2511 * week before restarting the Autokey protocol to 2512 * refresh certificates and leapseconds values. 2513 */ 2514 if (current_time > peer->refresh) { 2515 report_event(PEVNT_RESTART, peer, 2516 "crypto refresh"); 2517 peer_clear(peer, "TIME"); 2518 return; 2519 } 2520 } 2521 #endif /* AUTOKEY */ 2522 2523 /* 2524 * The dance is complete and the flash bits have been lit. Toss 2525 * the packet over the fence for processing, which may light up 2526 * more flashers. Leave if the packet is not good. 2527 */ 2528 process_packet(peer, pkt, rbufp->recv_length); 2529 /* Bug 2734: TEST3 prevents initial interleave sync */ 2530 if ((~TEST3 & peer->flash) & PKT_TEST_MASK) { 2531 return; 2532 } 2533 2534 /* [bug 3592] Update poll. Ideally this should not happen in a 2535 * receive branch, but too much is going on here... at least we 2536 * do it only if the packet was good! 2537 */ 2538 poll_update(peer, peer->hpoll, (peer->hmode == MODE_CLIENT)); 2539 2540 /* 2541 * In interleaved mode update the state variables. Also adjust the 2542 * transmit phase to avoid crossover. 2543 */ 2544 if (peer->flip != 0) { 2545 peer->rec = p_rec; 2546 peer->dst = rbufp->recv_time; 2547 if (peer->nextdate - current_time < (1U << min(peer->ppoll, 2548 peer->hpoll)) / 2) 2549 peer->nextdate++; 2550 else 2551 peer->nextdate--; 2552 } 2553 } 2554 2555 2556 /* 2557 * process_packet - Packet Procedure, a la Section 3.4.4 of RFC-1305 2558 * Or almost, at least. If we're in here we have a reasonable 2559 * expectation that we will be having a long term 2560 * relationship with this host. 2561 */ 2562 void 2563 process_packet( 2564 register struct peer *peer, 2565 register struct pkt *pkt, 2566 u_int len 2567 ) 2568 { 2569 double t34, t21; 2570 double p_offset, p_del, p_disp; 2571 l_fp p_rec, p_xmt, p_org, p_reftime, ci; 2572 u_char pmode, pleap, pversion, pstratum; 2573 #ifdef ASSYM 2574 int itemp; 2575 double etemp, ftemp, td; 2576 #endif /* ASSYM */ 2577 2578 p_del = FPTOD(NTOHS_FP(pkt->rootdelay)); 2579 p_offset = 0; 2580 p_disp = FPTOD(NTOHS_FP(pkt->rootdisp)); 2581 NTOHL_FP(&pkt->reftime, &p_reftime); 2582 NTOHL_FP(&pkt->org, &p_org); 2583 NTOHL_FP(&pkt->rec, &p_rec); 2584 NTOHL_FP(&pkt->xmt, &p_xmt); 2585 pmode = PKT_MODE(pkt->li_vn_mode); 2586 pleap = PKT_LEAP(pkt->li_vn_mode); 2587 pversion = PKT_VERSION(pkt->li_vn_mode); 2588 pstratum = PKT_TO_STRATUM(pkt->stratum); 2589 2590 /* 2591 * Verify the server is synchronized; that is, the leap bits, 2592 * stratum and root distance are valid. 2593 */ 2594 if ( pleap == LEAP_NOTINSYNC /* test 6 */ 2595 || pstratum < sys_floor || pstratum >= sys_ceiling) 2596 peer->flash |= TEST6; /* bad synch or strat */ 2597 if (p_del / 2 + p_disp >= MAXDISPERSE) /* test 7 */ 2598 peer->flash |= TEST7; /* bad header */ 2599 2600 /* 2601 * If any tests fail at this point, the packet is discarded. 2602 * Note that some flashers may have already been set in the 2603 * receive() routine. 2604 */ 2605 if (peer->flash & PKT_TEST_MASK) { 2606 peer->seldisptoolarge++; 2607 DPRINTF(1, ("packet: flash header %04x\n", 2608 peer->flash)); 2609 /* [Bug 3592] do *not* update poll on bad packets! */ 2610 return; 2611 } 2612 2613 /* 2614 * update stats, now that we really handle this packet: 2615 */ 2616 sys_processed++; 2617 peer->processed++; 2618 2619 /* 2620 * Capture the header values in the client/peer association.. 2621 */ 2622 record_raw_stats(&peer->srcadr, 2623 peer->dstadr ? &peer->dstadr->sin : NULL, 2624 &p_org, &p_rec, &p_xmt, &peer->dst, 2625 pleap, pversion, pmode, pstratum, pkt->ppoll, pkt->precision, 2626 p_del, p_disp, pkt->refid, 2627 len - MIN_V4_PKT_LEN, (u_char *)&pkt->exten); 2628 peer->leap = pleap; 2629 peer->stratum = min(pstratum, STRATUM_UNSPEC); 2630 peer->pmode = pmode; 2631 peer->precision = pkt->precision; 2632 peer->rootdelay = p_del; 2633 peer->rootdisp = p_disp; 2634 peer->refid = pkt->refid; /* network byte order */ 2635 peer->reftime = p_reftime; 2636 2637 /* 2638 * First, if either burst mode is armed, enable the burst. 2639 * Compute the headway for the next packet and delay if 2640 * necessary to avoid exceeding the threshold. 2641 */ 2642 if (peer->retry > 0) { 2643 peer->retry = 0; 2644 if (peer->reach) 2645 peer->burst = min(1 << (peer->hpoll - 2646 peer->minpoll), NTP_SHIFT) - 1; 2647 else 2648 peer->burst = NTP_IBURST - 1; 2649 if (peer->burst > 0) 2650 peer->nextdate = current_time; 2651 } 2652 2653 /* 2654 * If the peer was previously unreachable, raise a trap. In any 2655 * case, mark it reachable. 2656 */ 2657 if (!peer->reach) { 2658 report_event(PEVNT_REACH, peer, NULL); 2659 peer->timereachable = current_time; 2660 } 2661 peer->reach |= 1; 2662 2663 /* 2664 * For a client/server association, calculate the clock offset, 2665 * roundtrip delay and dispersion. The equations are reordered 2666 * from the spec for more efficient use of temporaries. For a 2667 * broadcast association, offset the last measurement by the 2668 * computed delay during the client/server volley. Note the 2669 * computation of dispersion includes the system precision plus 2670 * that due to the frequency error since the origin time. 2671 * 2672 * It is very important to respect the hazards of overflow. The 2673 * only permitted operation on raw timestamps is subtraction, 2674 * where the result is a signed quantity spanning from 68 years 2675 * in the past to 68 years in the future. To avoid loss of 2676 * precision, these calculations are done using 64-bit integer 2677 * arithmetic. However, the offset and delay calculations are 2678 * sums and differences of these first-order differences, which 2679 * if done using 64-bit integer arithmetic, would be valid over 2680 * only half that span. Since the typical first-order 2681 * differences are usually very small, they are converted to 64- 2682 * bit doubles and all remaining calculations done in floating- 2683 * double arithmetic. This preserves the accuracy while 2684 * retaining the 68-year span. 2685 * 2686 * There are three interleaving schemes, basic, interleaved 2687 * symmetric and interleaved broadcast. The timestamps are 2688 * idioscyncratically different. See the onwire briefing/white 2689 * paper at www.eecis.udel.edu/~mills for details. 2690 * 2691 * Interleaved symmetric mode 2692 * t1 = peer->aorg/borg, t2 = peer->rec, t3 = p_xmt, 2693 * t4 = peer->dst 2694 */ 2695 if (peer->flip != 0) { 2696 ci = p_xmt; /* t3 - t4 */ 2697 L_SUB(&ci, &peer->dst); 2698 LFPTOD(&ci, t34); 2699 ci = p_rec; /* t2 - t1 */ 2700 if (peer->flip > 0) 2701 L_SUB(&ci, &peer->borg); 2702 else 2703 L_SUB(&ci, &peer->aorg); 2704 LFPTOD(&ci, t21); 2705 p_del = t21 - t34; 2706 p_offset = (t21 + t34) / 2.; 2707 if (p_del < 0 || p_del > 1.) { 2708 mprintf_event(PEVNT_XERR, peer, 2709 "t21 %.9f t34 %.9f", t21, t34); 2710 return; 2711 } 2712 2713 /* 2714 * Broadcast modes 2715 */ 2716 } else if (peer->pmode == MODE_BROADCAST) { 2717 2718 /* 2719 * Interleaved broadcast mode. Use interleaved timestamps. 2720 * t1 = peer->borg, t2 = p_org, t3 = p_org, t4 = aorg 2721 */ 2722 if (peer->flags & FLAG_XB) { 2723 ci = p_org; /* delay */ 2724 L_SUB(&ci, &peer->aorg); 2725 LFPTOD(&ci, t34); 2726 ci = p_org; /* t2 - t1 */ 2727 L_SUB(&ci, &peer->borg); 2728 LFPTOD(&ci, t21); 2729 peer->aorg = p_xmt; 2730 peer->borg = peer->dst; 2731 if (t34 < 0 || t34 > 1.) { 2732 /* drop all if in the initial volley */ 2733 if (FLAG_BC_VOL & peer->flags) 2734 goto bcc_init_volley_fail; 2735 mprintf_event(PEVNT_XERR, peer, 2736 "offset %.9f delay %.9f", 2737 t21, t34); 2738 return; 2739 } 2740 p_offset = t21; 2741 peer->xleave = t34; 2742 2743 /* 2744 * Basic broadcast - use direct timestamps. 2745 * t3 = p_xmt, t4 = peer->dst 2746 */ 2747 } else { 2748 ci = p_xmt; /* t3 - t4 */ 2749 L_SUB(&ci, &peer->dst); 2750 LFPTOD(&ci, t34); 2751 p_offset = t34; 2752 } 2753 2754 /* 2755 * When calibration is complete and the clock is 2756 * synchronized, the bias is calculated as the difference 2757 * between the unicast timestamp and the broadcast 2758 * timestamp. This works for both basic and interleaved 2759 * modes. 2760 * [Bug 3031] Don't keep this peer when the delay 2761 * calculation gives reason to suspect clock steps. 2762 * This is assumed for delays > 50ms. 2763 */ 2764 if (FLAG_BC_VOL & peer->flags) { 2765 peer->flags &= ~FLAG_BC_VOL; 2766 peer->delay = fabs(peer->offset - p_offset) * 2; 2767 DPRINTF(2, ("broadcast volley: initial delay=%.6f\n", 2768 peer->delay)); 2769 if (peer->delay > fabs(sys_bdelay)) { 2770 bcc_init_volley_fail: 2771 DPRINTF(2, ("%s", "broadcast volley: initial delay exceeds limit\n")); 2772 unpeer(peer); 2773 return; 2774 } 2775 } 2776 peer->nextdate = current_time + (1u << peer->ppoll) - 2u; 2777 p_del = peer->delay; 2778 p_offset += p_del / 2; 2779 2780 2781 /* 2782 * Basic mode, otherwise known as the old fashioned way. 2783 * 2784 * t1 = p_org, t2 = p_rec, t3 = p_xmt, t4 = peer->dst 2785 */ 2786 } else { 2787 ci = p_xmt; /* t3 - t4 */ 2788 L_SUB(&ci, &peer->dst); 2789 LFPTOD(&ci, t34); 2790 ci = p_rec; /* t2 - t1 */ 2791 L_SUB(&ci, &p_org); 2792 LFPTOD(&ci, t21); 2793 p_del = fabs(t21 - t34); 2794 p_offset = (t21 + t34) / 2.; 2795 } 2796 p_del = max(p_del, LOGTOD(sys_precision)); 2797 p_disp = LOGTOD(sys_precision) + LOGTOD(peer->precision) + 2798 clock_phi * p_del; 2799 2800 #if ASSYM 2801 /* 2802 * This code calculates the outbound and inbound data rates by 2803 * measuring the differences between timestamps at different 2804 * packet lengths. This is helpful in cases of large asymmetric 2805 * delays commonly experienced on deep space communication 2806 * links. 2807 */ 2808 if (peer->t21_last > 0 && peer->t34_bytes > 0) { 2809 itemp = peer->t21_bytes - peer->t21_last; 2810 if (itemp > 25) { 2811 etemp = t21 - peer->t21; 2812 if (fabs(etemp) > 1e-6) { 2813 ftemp = itemp / etemp; 2814 if (ftemp > 1000.) 2815 peer->r21 = ftemp; 2816 } 2817 } 2818 itemp = len - peer->t34_bytes; 2819 if (itemp > 25) { 2820 etemp = -t34 - peer->t34; 2821 if (fabs(etemp) > 1e-6) { 2822 ftemp = itemp / etemp; 2823 if (ftemp > 1000.) 2824 peer->r34 = ftemp; 2825 } 2826 } 2827 } 2828 2829 /* 2830 * The following section compensates for different data rates on 2831 * the outbound (d21) and inbound (t34) directions. To do this, 2832 * it finds t such that r21 * t - r34 * (d - t) = 0, where d is 2833 * the roundtrip delay. Then it calculates the correction as a 2834 * fraction of d. 2835 */ 2836 peer->t21 = t21; 2837 peer->t21_last = peer->t21_bytes; 2838 peer->t34 = -t34; 2839 peer->t34_bytes = len; 2840 DPRINTF(2, ("packet: t21 %.9lf %d t34 %.9lf %d\n", peer->t21, 2841 peer->t21_bytes, peer->t34, peer->t34_bytes)); 2842 if (peer->r21 > 0 && peer->r34 > 0 && p_del > 0) { 2843 if (peer->pmode != MODE_BROADCAST) 2844 td = (peer->r34 / (peer->r21 + peer->r34) - 2845 .5) * p_del; 2846 else 2847 td = 0; 2848 2849 /* 2850 * Unfortunately, in many cases the errors are 2851 * unacceptable, so for the present the rates are not 2852 * used. In future, we might find conditions where the 2853 * calculations are useful, so this should be considered 2854 * a work in progress. 2855 */ 2856 t21 -= td; 2857 t34 -= td; 2858 DPRINTF(2, ("packet: del %.6lf r21 %.1lf r34 %.1lf %.6lf\n", 2859 p_del, peer->r21 / 1e3, peer->r34 / 1e3, 2860 td)); 2861 } 2862 #endif /* ASSYM */ 2863 2864 /* 2865 * That was awesome. Now hand off to the clock filter. 2866 */ 2867 clock_filter(peer, p_offset + peer->bias, p_del, p_disp); 2868 2869 /* 2870 * If we are in broadcast calibrate mode, return to broadcast 2871 * client mode when the client is fit and the autokey dance is 2872 * complete. 2873 */ 2874 if ( (FLAG_BC_VOL & peer->flags) 2875 && MODE_CLIENT == peer->hmode 2876 && !(TEST11 & peer_unfit(peer))) { /* distance exceeded */ 2877 #ifdef AUTOKEY 2878 if (peer->flags & FLAG_SKEY) { 2879 if (!(~peer->crypto & CRYPTO_FLAG_ALL)) 2880 peer->hmode = MODE_BCLIENT; 2881 } else { 2882 peer->hmode = MODE_BCLIENT; 2883 } 2884 #else /* !AUTOKEY follows */ 2885 peer->hmode = MODE_BCLIENT; 2886 #endif /* !AUTOKEY */ 2887 } 2888 } 2889 2890 2891 /* 2892 * clock_update - Called at system process update intervals. 2893 */ 2894 static void 2895 clock_update( 2896 struct peer *peer /* peer structure pointer */ 2897 ) 2898 { 2899 double dtemp; 2900 l_fp now; 2901 #ifdef HAVE_LIBSCF_H 2902 char *fmri; 2903 #endif /* HAVE_LIBSCF_H */ 2904 2905 /* 2906 * Update the system state variables. We do this very carefully, 2907 * as the poll interval might need to be clamped differently. 2908 */ 2909 sys_peer = peer; 2910 sys_epoch = peer->epoch; 2911 if (sys_poll < peer->minpoll) 2912 sys_poll = peer->minpoll; 2913 if (sys_poll > peer->maxpoll) 2914 sys_poll = peer->maxpoll; 2915 poll_update(peer, sys_poll, 0); 2916 sys_stratum = min(peer->stratum + 1, STRATUM_UNSPEC); 2917 if ( peer->stratum == STRATUM_REFCLOCK 2918 || peer->stratum == STRATUM_UNSPEC) 2919 sys_refid = peer->refid; 2920 else 2921 sys_refid = addr2refid(&peer->srcadr); 2922 /* 2923 * Root Dispersion (E) is defined (in RFC 5905) as: 2924 * 2925 * E = p.epsilon_r + p.epsilon + p.psi + PHI*(s.t - p.t) + |THETA| 2926 * 2927 * where: 2928 * p.epsilon_r is the PollProc's root dispersion 2929 * p.epsilon is the PollProc's dispersion 2930 * p.psi is the PollProc's jitter 2931 * THETA is the combined offset 2932 * 2933 * NB: Think Hard about where these numbers come from and 2934 * what they mean. When did peer->update happen? Has anything 2935 * interesting happened since then? What values are the most 2936 * defensible? Why? 2937 * 2938 * DLM thinks this equation is probably the best of all worse choices. 2939 */ 2940 dtemp = peer->rootdisp 2941 + peer->disp 2942 + sys_jitter 2943 + clock_phi * (current_time - peer->update) 2944 + fabs(sys_offset); 2945 2946 p2_rootdisp = prev_rootdisp; 2947 prev_rootdisp = sys_rootdisp; 2948 if (dtemp > sys_mindisp) 2949 sys_rootdisp = dtemp; 2950 else 2951 sys_rootdisp = sys_mindisp; 2952 2953 sys_rootdelay = peer->delay + peer->rootdelay; 2954 2955 p2_reftime = prev_reftime; 2956 p2_time = prev_time; 2957 2958 prev_reftime = sys_reftime; 2959 prev_time = current_time + 64 + (rand() & 0x3f); /* 64-127 s */ 2960 2961 sys_reftime = peer->dst; 2962 2963 DPRINTF(1, ("clock_update: at %lu sample %lu associd %d\n", 2964 current_time, peer->epoch, peer->associd)); 2965 2966 /* 2967 * Comes now the moment of truth. Crank the clock discipline and 2968 * see what comes out. 2969 */ 2970 switch (local_clock(peer, sys_offset)) { 2971 2972 /* 2973 * Clock exceeds panic threshold. Life as we know it ends. 2974 */ 2975 case -1: 2976 msyslog(LOG_ERR, "Clock offset exceeds panic threshold."); 2977 #ifdef HAVE_LIBSCF_H 2978 /* 2979 * For Solaris enter the maintenance mode. 2980 */ 2981 if ((fmri = getenv("SMF_FMRI")) != NULL) { 2982 if (smf_maintain_instance(fmri, 0) < 0) { 2983 msyslog(LOG_ERR, "smf_maintain_instance: %s", 2984 scf_strerror(scf_error())); 2985 exit(1); 2986 } 2987 /* 2988 * Sleep until SMF kills us. 2989 */ 2990 msyslog(LOG_ERR, "%s placed into maintenance. " 2991 "Set system clock by hand before clearing.", 2992 fmri); 2993 for (;;) 2994 pause(); 2995 } 2996 #endif /* HAVE_LIBSCF_H */ 2997 msyslog(LOG_ERR, "Set system clock by hand."); 2998 exit (-1); 2999 /* not reached */ 3000 3001 /* 3002 * Clock was stepped. Flush all time values of all peers. 3003 */ 3004 case 2: 3005 clear_all(); 3006 set_sys_leap(LEAP_NOTINSYNC); 3007 sys_stratum = STRATUM_UNSPEC; 3008 memcpy(&sys_refid, "STEP", 4); 3009 sys_rootdelay = 0; 3010 p2_rootdisp = 0; 3011 prev_rootdisp = 0; 3012 sys_rootdisp = 0; 3013 L_CLR(&p2_reftime); /* Should we clear p2_reftime? */ 3014 L_CLR(&prev_reftime); /* Should we clear prev_reftime? */ 3015 L_CLR(&sys_reftime); 3016 sys_jitter = LOGTOD(sys_precision); 3017 leapsec_reset_frame(); 3018 break; 3019 3020 /* 3021 * Clock was slewed. Handle the leapsecond stuff. 3022 */ 3023 case 1: 3024 3025 /* 3026 * If this is the first time the clock is set, reset the 3027 * leap bits. If crypto, the timer will goose the setup 3028 * process. 3029 */ 3030 if (sys_leap == LEAP_NOTINSYNC) { 3031 set_sys_leap(LEAP_NOWARNING); 3032 #ifdef AUTOKEY 3033 if (crypto_flags) 3034 crypto_update(); 3035 #endif /* AUTOKEY */ 3036 3037 } 3038 3039 /* 3040 * If there is no leap second pending and the number of 3041 * survivor leap bits is greater than half the number of 3042 * survivors, try to schedule a leap for the end of the 3043 * current month. (This only works if no leap second for 3044 * that range is in the table, so doing this more than 3045 * once is mostly harmless.) 3046 */ 3047 if (leapsec == LSPROX_NOWARN) { 3048 if ( leap_vote_ins > leap_vote_del 3049 && leap_vote_ins > sys_survivors / 2) { 3050 get_systime(&now); 3051 leapsec_add_dyn(TRUE, now.l_ui, NULL); 3052 } 3053 if ( leap_vote_del > leap_vote_ins 3054 && leap_vote_del > sys_survivors / 2) { 3055 get_systime(&now); 3056 leapsec_add_dyn(FALSE, now.l_ui, NULL); 3057 } 3058 } 3059 break; 3060 3061 /* 3062 * Popcorn spike or step threshold exceeded. Pretend it never 3063 * happened. 3064 */ 3065 default: 3066 break; 3067 } 3068 } 3069 3070 3071 /* 3072 * poll_update - update peer poll interval 3073 */ 3074 void 3075 poll_update( 3076 struct peer *peer, /* peer structure pointer */ 3077 u_char mpoll, 3078 u_char skewpoll 3079 ) 3080 { 3081 u_long next, utemp, limit; 3082 u_char hpoll; 3083 3084 /* 3085 * This routine figures out when the next poll should be sent. 3086 * That turns out to be wickedly complicated. One problem is 3087 * that sometimes the time for the next poll is in the past when 3088 * the poll interval is reduced. We watch out for races here 3089 * between the receive process and the poll process. 3090 * 3091 * Clamp the poll interval between minpoll and maxpoll. 3092 */ 3093 hpoll = max(min(peer->maxpoll, mpoll), peer->minpoll); 3094 3095 #ifdef AUTOKEY 3096 /* 3097 * If during the crypto protocol the poll interval has changed, 3098 * the lifetimes in the key list are probably bogus. Purge the 3099 * the key list and regenerate it later. 3100 */ 3101 if ((peer->flags & FLAG_SKEY) && hpoll != peer->hpoll) 3102 key_expire(peer); 3103 #endif /* AUTOKEY */ 3104 peer->hpoll = hpoll; 3105 3106 /* 3107 * There are three variables important for poll scheduling, the 3108 * current time (current_time), next scheduled time (nextdate) 3109 * and the earliest time (utemp). The earliest time is 2 s 3110 * seconds, but could be more due to rate management. When 3111 * sending in a burst, use the earliest time. When not in a 3112 * burst but with a reply pending, send at the earliest time 3113 * unless the next scheduled time has not advanced. This can 3114 * only happen if multiple replies are pending in the same 3115 * response interval. Otherwise, send at the later of the next 3116 * scheduled time and the earliest time. 3117 * 3118 * Now we figure out if there is an override. If a burst is in 3119 * progress and we get called from the receive process, just 3120 * slink away. If called from the poll process, delay 1 s for a 3121 * reference clock, otherwise 2 s. 3122 */ 3123 utemp = current_time + max(peer->throttle - (NTP_SHIFT - 1) * 3124 (1 << peer->minpoll), ntp_minpkt); 3125 3126 /*[Bug 3592] avoid unlimited postpone of next poll */ 3127 limit = (2u << hpoll); 3128 if (limit > 64) 3129 limit -= (limit >> 2); 3130 limit += peer->outdate; 3131 if (limit < current_time) 3132 limit = current_time; 3133 3134 if (peer->burst > 0) { 3135 if (peer->nextdate > current_time) 3136 return; 3137 #ifdef REFCLOCK 3138 else if (peer->flags & FLAG_REFCLOCK) 3139 peer->nextdate = current_time + RESP_DELAY; 3140 #endif /* REFCLOCK */ 3141 else 3142 peer->nextdate = utemp; 3143 3144 #ifdef AUTOKEY 3145 /* 3146 * If a burst is not in progress and a crypto response message 3147 * is pending, delay 2 s, but only if this is a new interval. 3148 */ 3149 } else if (peer->cmmd != NULL) { 3150 if (peer->nextdate > current_time) { 3151 if (peer->nextdate + ntp_minpkt != utemp) 3152 peer->nextdate = utemp; 3153 } else { 3154 peer->nextdate = utemp; 3155 } 3156 #endif /* AUTOKEY */ 3157 3158 /* 3159 * The ordinary case. If a retry, use minpoll; if unreachable, 3160 * use host poll; otherwise, use the minimum of host and peer 3161 * polls; In other words, oversampling is okay but 3162 * understampling is evil. Use the maximum of this value and the 3163 * headway. If the average headway is greater than the headway 3164 * threshold, increase the headway by the minimum interval. 3165 */ 3166 } else { 3167 if (peer->retry > 0) 3168 hpoll = peer->minpoll; 3169 else 3170 hpoll = min(peer->ppoll, peer->hpoll); 3171 #ifdef REFCLOCK 3172 if (peer->flags & FLAG_REFCLOCK) 3173 next = 1 << hpoll; 3174 else 3175 #endif /* REFCLOCK */ 3176 next = ((0x1000UL | (ntp_random() & 0x0ff)) << 3177 hpoll) >> 12; 3178 next += peer->outdate; 3179 /* XXX: bug3596: Deal with poll skew list? */ 3180 if (skewpoll) { 3181 psl_item psi; 3182 3183 if (0 == get_pollskew(hpoll, &psi)) { 3184 int sub = psi.sub; 3185 int qty = psi.qty; 3186 int msk = psi.msk; 3187 int val; 3188 3189 if ( 0 != sub 3190 || 0 != qty) { 3191 do { 3192 val = ntp_random() & msk; 3193 } while (val > qty); 3194 3195 next -= sub; 3196 next += val; 3197 } 3198 } else { 3199 /* get_pollskew() already logged this */ 3200 } 3201 } 3202 if (next > utemp) 3203 peer->nextdate = next; 3204 else 3205 peer->nextdate = utemp; 3206 if (peer->throttle > (1 << peer->minpoll)) 3207 peer->nextdate += ntp_minpkt; 3208 } 3209 3210 /*[Bug 3592] avoid unlimited postpone of next poll */ 3211 if (peer->nextdate > limit) { 3212 DPRINTF(1, ("poll_update: clamp reached; limit %lu next %lu\n", 3213 limit, peer->nextdate)); 3214 peer->nextdate = limit; 3215 } 3216 DPRINTF(2, ("poll_update: at %lu %s poll %d burst %d retry %d head %d early %lu next %lu\n", 3217 current_time, ntoa(&peer->srcadr), peer->hpoll, 3218 peer->burst, peer->retry, peer->throttle, 3219 utemp - current_time, peer->nextdate - 3220 current_time)); 3221 } 3222 3223 3224 /* 3225 * peer_clear - clear peer filter registers. See Section 3.4.8 of the 3226 * spec. 3227 */ 3228 void 3229 peer_clear( 3230 struct peer *peer, /* peer structure */ 3231 const char *ident /* tally lights */ 3232 ) 3233 { 3234 static u_long earliest; 3235 u_char u; 3236 l_fp bxmt = peer->bxmt; /* bcast clients retain this! */ 3237 3238 #ifdef AUTOKEY 3239 /* 3240 * If cryptographic credentials have been acquired, toss them to 3241 * Valhalla. Note that autokeys are ephemeral, in that they are 3242 * tossed immediately upon use. Therefore, the keylist can be 3243 * purged anytime without needing to preserve random keys. Note 3244 * that, if the peer is purged, the cryptographic variables are 3245 * purged, too. This makes it much harder to sneak in some 3246 * unauthenticated data in the clock filter. 3247 */ 3248 key_expire(peer); 3249 if (peer->iffval != NULL) 3250 BN_free(peer->iffval); 3251 value_free(&peer->cookval); 3252 value_free(&peer->recval); 3253 value_free(&peer->encrypt); 3254 value_free(&peer->sndval); 3255 if (peer->cmmd != NULL) 3256 free(peer->cmmd); 3257 if (peer->subject != NULL) 3258 free(peer->subject); 3259 if (peer->issuer != NULL) 3260 free(peer->issuer); 3261 #endif /* AUTOKEY */ 3262 3263 /* 3264 * Clear all values, including the optional crypto values above. 3265 */ 3266 memset(CLEAR_TO_ZERO(peer), 0, LEN_CLEAR_TO_ZERO(peer)); 3267 peer->ppoll = peer->maxpoll; 3268 peer->hpoll = peer->minpoll; 3269 peer->disp = MAXDISPERSE; 3270 peer->flash = peer_unfit(peer); 3271 peer->jitter = LOGTOD(sys_precision); 3272 3273 /* Don't throw away our broadcast replay protection */ 3274 if (peer->hmode == MODE_BCLIENT) 3275 peer->bxmt = bxmt; 3276 3277 /* 3278 * If interleave mode, initialize the alternate origin switch. 3279 */ 3280 if (peer->flags & FLAG_XLEAVE) 3281 peer->flip = 1; 3282 for (u = 0; u < NTP_SHIFT; u++) { 3283 peer->filter_order[u] = u; 3284 peer->filter_disp[u] = MAXDISPERSE; 3285 } 3286 #ifdef REFCLOCK 3287 if (!(peer->flags & FLAG_REFCLOCK)) { 3288 #endif 3289 peer->leap = LEAP_NOTINSYNC; 3290 peer->stratum = STRATUM_UNSPEC; 3291 memcpy(&peer->refid, ident, 4); 3292 #ifdef REFCLOCK 3293 } else { 3294 /* Clear refclock sample filter */ 3295 peer->procptr->codeproc = 0; 3296 peer->procptr->coderecv = 0; 3297 } 3298 #endif 3299 3300 /* 3301 * During initialization use the association count to spread out 3302 * the polls at one-second intervals. Unconfigured associations' 3303 * first poll is delayed by the "discard minimum" plus 1 to avoid 3304 * rate limiting. Other post-startup new or cleared associations 3305 * randomize the first poll over the minimum poll interval to 3306 * avoid implosion. 3307 */ 3308 peer->nextdate = peer->update = peer->outdate = current_time; 3309 if (initializing) { 3310 peer->nextdate += peer_associations; 3311 } else if (!(FLAG_CONFIG & peer->flags)) { 3312 peer->nextdate += ntp_minpkt + 1; 3313 /* space out manycastclient first polls */ 3314 if (peer->nextdate < earliest) { 3315 peer->nextdate = earliest; 3316 } 3317 earliest = peer->nextdate + 1; 3318 } else { 3319 peer->nextdate += ntp_random() % (1 << peer->minpoll); 3320 } 3321 #ifdef AUTOKEY 3322 peer->refresh = current_time + (1 << NTP_REFRESH); 3323 #endif /* AUTOKEY */ 3324 DPRINTF(1, ("peer_clear: at %ld next %ld associd %d refid %s\n", 3325 current_time, peer->nextdate, peer->associd, 3326 ident)); 3327 } 3328 3329 3330 /* 3331 * clock_filter - add incoming clock sample to filter register and run 3332 * the filter procedure to find the best sample. 3333 */ 3334 void 3335 clock_filter( 3336 struct peer *peer, /* peer structure pointer */ 3337 double sample_offset, /* clock offset */ 3338 double sample_delay, /* roundtrip delay */ 3339 double sample_disp /* dispersion */ 3340 ) 3341 { 3342 double dst[NTP_SHIFT]; /* distance vector */ 3343 u_char ord[NTP_SHIFT]; /* index vector */ 3344 short i, j; 3345 u_char k, m; 3346 double dtemp, etemp; 3347 3348 /* 3349 * A sample consists of the offset, delay, dispersion and epoch 3350 * of arrival. The offset and delay are determined by the on- 3351 * wire protocol. The dispersion grows from the last outbound 3352 * packet to the arrival of this one increased by the sum of the 3353 * peer precision and the system precision as required by the 3354 * error budget. First, shift the new arrival into the shift 3355 * register discarding the oldest one. 3356 */ 3357 j = peer->filter_nextpt; 3358 peer->filter_offset[j] = sample_offset; 3359 peer->filter_delay[j] = sample_delay; 3360 peer->filter_disp[j] = sample_disp; 3361 peer->filter_epoch[j] = current_time; 3362 j = (j + 1) % NTP_SHIFT; 3363 peer->filter_nextpt = (u_char)j; 3364 3365 /* 3366 * Update dispersions since the last update and at the same 3367 * time initialize the distance and index lists. Since samples 3368 * become increasingly uncorrelated beyond the Allan intercept, 3369 * only under exceptional cases will an older sample be used. 3370 * Therefore, the distance list uses a compound metric. If the 3371 * dispersion is greater than the maximum dispersion, clamp the 3372 * distance at that value. If the time since the last update is 3373 * less than the Allan intercept use the delay; otherwise, use 3374 * the sum of the delay and dispersion. 3375 */ 3376 dtemp = clock_phi * (current_time - peer->update); 3377 peer->update = current_time; 3378 for (i = NTP_SHIFT - 1; i >= 0; i--) { 3379 if (i != 0) 3380 peer->filter_disp[j] += dtemp; 3381 if (peer->filter_disp[j] >= MAXDISPERSE) { 3382 peer->filter_disp[j] = MAXDISPERSE; 3383 dst[i] = MAXDISPERSE; 3384 } else if (peer->update - peer->filter_epoch[j] > 3385 (u_long)ULOGTOD(allan_xpt)) { 3386 dst[i] = peer->filter_delay[j] + 3387 peer->filter_disp[j]; 3388 } else { 3389 dst[i] = peer->filter_delay[j]; 3390 } 3391 ord[i] = (u_char)j; 3392 j = (j + 1) % NTP_SHIFT; 3393 } 3394 3395 /* 3396 * If the clock has stabilized, sort the samples by distance. 3397 */ 3398 if (freq_cnt == 0) { 3399 for (i = 1; i < NTP_SHIFT; i++) { 3400 for (j = 0; j < i; j++) { 3401 if (dst[j] > dst[i]) { 3402 k = ord[j]; 3403 ord[j] = ord[i]; 3404 ord[i] = k; 3405 etemp = dst[j]; 3406 dst[j] = dst[i]; 3407 dst[i] = etemp; 3408 } 3409 } 3410 } 3411 } 3412 3413 /* 3414 * Copy the index list to the association structure so ntpq 3415 * can see it later. Prune the distance list to leave only 3416 * samples less than the maximum dispersion, which disfavors 3417 * uncorrelated samples older than the Allan intercept. To 3418 * further improve the jitter estimate, of the remainder leave 3419 * only samples less than the maximum distance, but keep at 3420 * least two samples for jitter calculation. 3421 */ 3422 m = 0; 3423 for (i = 0; i < NTP_SHIFT; i++) { 3424 peer->filter_order[i] = ord[i]; 3425 if ( dst[i] >= MAXDISPERSE 3426 || (m >= 2 && dst[i] >= sys_maxdist)) 3427 continue; 3428 m++; 3429 } 3430 3431 /* 3432 * Compute the dispersion and jitter. The dispersion is weighted 3433 * exponentially by NTP_FWEIGHT (0.5) so it is normalized close 3434 * to 1.0. The jitter is the RMS differences relative to the 3435 * lowest delay sample. 3436 */ 3437 peer->disp = peer->jitter = 0; 3438 k = ord[0]; 3439 for (i = NTP_SHIFT - 1; i >= 0; i--) { 3440 j = ord[i]; 3441 peer->disp = NTP_FWEIGHT * ( peer->disp 3442 + peer->filter_disp[j]); 3443 if (i < m) { 3444 peer->jitter += DIFF(peer->filter_offset[j], 3445 peer->filter_offset[k]); 3446 } 3447 } 3448 3449 /* 3450 * If no acceptable samples remain in the shift register, 3451 * quietly tiptoe home leaving only the dispersion. Otherwise, 3452 * save the offset, delay and jitter. Note the jitter must not 3453 * be less than the precision. 3454 */ 3455 if (0 == m) { 3456 clock_select(); 3457 return; 3458 } 3459 etemp = fabs(peer->offset - peer->filter_offset[k]); 3460 peer->offset = peer->filter_offset[k]; 3461 peer->delay = peer->filter_delay[k]; 3462 if (m > 1) { 3463 peer->jitter /= m - 1; 3464 } 3465 peer->jitter = max(SQRT(peer->jitter), LOGTOD(sys_precision)); 3466 3467 /* 3468 * If the the new sample and the current sample are both valid 3469 * and the difference between their offsets exceeds CLOCK_SGATE 3470 * (3) times the jitter and the interval between them is less 3471 * than twice the host poll interval, consider the new sample 3472 * a popcorn spike and ignore it. 3473 */ 3474 if ( peer->disp < sys_maxdist 3475 && peer->filter_disp[k] < sys_maxdist 3476 && etemp > CLOCK_SGATE * peer->jitter 3477 && peer->filter_epoch[k] - peer->epoch 3478 < 2. * ULOGTOD(peer->hpoll)) { 3479 mprintf_event(PEVNT_POPCORN, peer, "%.9f s", etemp); 3480 return; 3481 } 3482 3483 /* 3484 * A new minimum sample is useful only if it is later than the 3485 * last one used. In this design the maximum lifetime of any 3486 * sample is not greater than NTP_SHIFT (8) times the poll 3487 * interval, so the maximum interval between minimum samples is 3488 * NTP_SHIFT packets. 3489 */ 3490 if (peer->filter_epoch[k] <= peer->epoch) { 3491 DPRINTF(2, ("clock_filter: old sample %lu s\n", 3492 current_time - peer->filter_epoch[k])); 3493 return; 3494 } 3495 peer->epoch = peer->filter_epoch[k]; 3496 3497 /* 3498 * The mitigated sample statistics are saved for later 3499 * processing. If not synchronized or not in a burst, tickle the 3500 * clock select algorithm. 3501 */ 3502 record_peer_stats(&peer->srcadr, ctlpeerstatus(peer), peer->offset, 3503 peer->delay, peer->disp, peer->jitter); 3504 DPRINTF(1, ("clock_filter: n %hu off %.9f del %.9f dsp %.9f jit %.9f\n", 3505 (u_short)m, peer->offset, peer->delay, peer->disp, 3506 peer->jitter)); 3507 if (0 == peer->burst || LEAP_NOTINSYNC == sys_leap) { 3508 clock_select(); 3509 } 3510 } 3511 3512 3513 /* 3514 * clock_select - find the pick-of-the-litter clock 3515 * 3516 * LOCKCLOCK: (1) If the local clock is the prefer peer, it will always 3517 * be enabled, even if declared falseticker, (2) only the prefer peer 3518 * can be selected as the system peer, (3) if the external source is 3519 * down, the system leap bits are set to 11 and the stratum set to 3520 * infinity. 3521 */ 3522 void 3523 clock_select(void) 3524 { 3525 struct peer *peer; 3526 int i, j, k, n; 3527 int nlist, nl2; 3528 int allow; 3529 int speer; 3530 double d, e, f, g; 3531 double high, low; 3532 double speermet; 3533 double lastresort_dist = MAXDISPERSE; 3534 double orphmet = 2.0 * U_INT32_MAX; /* 2x is greater than */ 3535 struct endpoint endp; 3536 struct peer *osys_peer; 3537 struct peer *sys_prefer = NULL; /* prefer peer */ 3538 struct peer *typesystem = NULL; 3539 struct peer *typelastresort = NULL; 3540 struct peer *typeorphan = NULL; 3541 #ifdef REFCLOCK 3542 struct peer *typeacts = NULL; 3543 struct peer *typelocal = NULL; 3544 struct peer *typepps = NULL; 3545 #endif /* REFCLOCK */ 3546 static struct endpoint *endpoint = NULL; 3547 static int *indx = NULL; 3548 static peer_select *peers = NULL; 3549 static u_int endpoint_size = 0; 3550 static u_int peers_size = 0; 3551 static u_int indx_size = 0; 3552 size_t octets; 3553 3554 /* 3555 * Initialize and create endpoint, index and peer lists big 3556 * enough to handle all associations. 3557 */ 3558 osys_peer = sys_peer; 3559 sys_survivors = 0; 3560 #ifdef LOCKCLOCK 3561 set_sys_leap(LEAP_NOTINSYNC); 3562 sys_stratum = STRATUM_UNSPEC; 3563 memcpy(&sys_refid, "DOWN", 4); 3564 #endif /* LOCKCLOCK */ 3565 3566 /* 3567 * Allocate dynamic space depending on the number of 3568 * associations. 3569 */ 3570 nlist = 1; 3571 for (peer = peer_list; peer != NULL; peer = peer->p_link) 3572 nlist++; 3573 endpoint_size = ALIGNED_SIZE(nlist * 2 * sizeof(*endpoint)); 3574 peers_size = ALIGNED_SIZE(nlist * sizeof(*peers)); 3575 indx_size = ALIGNED_SIZE(nlist * 2 * sizeof(*indx)); 3576 octets = endpoint_size + peers_size + indx_size; 3577 endpoint = erealloc(endpoint, octets); 3578 peers = INC_ALIGNED_PTR(endpoint, endpoint_size); 3579 indx = INC_ALIGNED_PTR(peers, peers_size); 3580 3581 /* 3582 * Initially, we populate the island with all the rifraff peers 3583 * that happen to be lying around. Those with seriously 3584 * defective clocks are immediately booted off the island. Then, 3585 * the falsetickers are culled and put to sea. The truechimers 3586 * remaining are subject to repeated rounds where the most 3587 * unpopular at each round is kicked off. When the population 3588 * has dwindled to sys_minclock, the survivors split a million 3589 * bucks and collectively crank the chimes. 3590 */ 3591 nlist = nl2 = 0; /* none yet */ 3592 for (peer = peer_list; peer != NULL; peer = peer->p_link) { 3593 peer->new_status = CTL_PST_SEL_REJECT; 3594 3595 /* 3596 * Leave the island immediately if the peer is 3597 * unfit to synchronize. 3598 */ 3599 if (peer_unfit(peer)) { 3600 continue; 3601 } 3602 3603 /* 3604 * If we have never been synchronised, look for any peer 3605 * which has ever been synchronised and pick the one which 3606 * has the lowest root distance. This can be used as a last 3607 * resort if all else fails. Once we get an initial sync 3608 * with this peer, sys_reftime gets set and so this 3609 * function becomes disabled. 3610 */ 3611 if (L_ISZERO(&sys_reftime)) { 3612 d = root_distance(peer); 3613 if (!L_ISZERO(&peer->reftime) && d < lastresort_dist) { 3614 typelastresort = peer; 3615 lastresort_dist = d; 3616 } 3617 } 3618 3619 /* 3620 * If this peer is an orphan parent, elect the 3621 * one with the lowest metric defined as the 3622 * IPv4 address or the first 64 bits of the 3623 * hashed IPv6 address. To ensure convergence 3624 * on the same selected orphan, consider as 3625 * well that this system may have the lowest 3626 * metric and be the orphan parent. If this 3627 * system wins, sys_peer will be NULL to trigger 3628 * orphan mode in timer(). 3629 */ 3630 if (peer->stratum == sys_orphan) { 3631 u_int32 localmet; 3632 u_int32 peermet; 3633 3634 if (peer->dstadr != NULL) 3635 localmet = ntohl(peer->dstadr->addr_refid); 3636 else 3637 localmet = U_INT32_MAX; 3638 peermet = ntohl(addr2refid(&peer->srcadr)); 3639 if (peermet < localmet && peermet < orphmet) { 3640 typeorphan = peer; 3641 orphmet = peermet; 3642 } 3643 continue; 3644 } 3645 3646 /* 3647 * If this peer could have the orphan parent 3648 * as a synchronization ancestor, exclude it 3649 * from selection to avoid forming a 3650 * synchronization loop within the orphan mesh, 3651 * triggering stratum climb to infinity 3652 * instability. Peers at stratum higher than 3653 * the orphan stratum could have the orphan 3654 * parent in ancestry so are excluded. 3655 * See http://bugs.ntp.org/2050 3656 */ 3657 if (peer->stratum > sys_orphan) { 3658 continue; 3659 } 3660 #ifdef REFCLOCK 3661 /* 3662 * The following are special cases. We deal 3663 * with them later. 3664 */ 3665 if (!(peer->flags & FLAG_PREFER)) { 3666 switch (peer->refclktype) { 3667 case REFCLK_LOCALCLOCK: 3668 if ( current_time > orphwait 3669 && typelocal == NULL) 3670 typelocal = peer; 3671 continue; 3672 3673 case REFCLK_ACTS: 3674 if ( current_time > orphwait 3675 && typeacts == NULL) 3676 typeacts = peer; 3677 continue; 3678 } 3679 } 3680 #endif /* REFCLOCK */ 3681 3682 /* 3683 * If we get this far, the peer can stay on the 3684 * island, but does not yet have the immunity 3685 * idol. 3686 */ 3687 peer->new_status = CTL_PST_SEL_SANE; 3688 f = root_distance(peer); 3689 peers[nlist].peer = peer; 3690 peers[nlist].error = peer->jitter; 3691 peers[nlist].synch = f; 3692 nlist++; 3693 3694 /* 3695 * Insert each interval endpoint on the unsorted 3696 * endpoint[] list. 3697 */ 3698 e = peer->offset; 3699 endpoint[nl2].type = -1; /* lower end */ 3700 endpoint[nl2].val = e - f; 3701 nl2++; 3702 endpoint[nl2].type = 1; /* upper end */ 3703 endpoint[nl2].val = e + f; 3704 nl2++; 3705 } 3706 /* 3707 * Construct sorted indx[] of endpoint[] indexes ordered by 3708 * offset. 3709 */ 3710 for (i = 0; i < nl2; i++) 3711 indx[i] = i; 3712 for (i = 0; i < nl2; i++) { 3713 endp = endpoint[indx[i]]; 3714 e = endp.val; 3715 k = i; 3716 for (j = i + 1; j < nl2; j++) { 3717 endp = endpoint[indx[j]]; 3718 if (endp.val < e) { 3719 e = endp.val; 3720 k = j; 3721 } 3722 } 3723 if (k != i) { 3724 j = indx[k]; 3725 indx[k] = indx[i]; 3726 indx[i] = j; 3727 } 3728 } 3729 for (i = 0; i < nl2; i++) 3730 DPRINTF(3, ("select: endpoint %2d %.6f\n", 3731 endpoint[indx[i]].type, endpoint[indx[i]].val)); 3732 3733 /* 3734 * This is the actual algorithm that cleaves the truechimers 3735 * from the falsetickers. The original algorithm was described 3736 * in Keith Marzullo's dissertation, but has been modified for 3737 * better accuracy. 3738 * 3739 * Briefly put, we first assume there are no falsetickers, then 3740 * scan the candidate list first from the low end upwards and 3741 * then from the high end downwards. The scans stop when the 3742 * number of intersections equals the number of candidates less 3743 * the number of falsetickers. If this doesn't happen for a 3744 * given number of falsetickers, we bump the number of 3745 * falsetickers and try again. If the number of falsetickers 3746 * becomes equal to or greater than half the number of 3747 * candidates, the Albanians have won the Byzantine wars and 3748 * correct synchronization is not possible. 3749 * 3750 * Here, nlist is the number of candidates and allow is the 3751 * number of falsetickers. Upon exit, the truechimers are the 3752 * survivors with offsets not less than low and not greater than 3753 * high. There may be none of them. 3754 */ 3755 low = 1e9; 3756 high = -1e9; 3757 for (allow = 0; 2 * allow < nlist; allow++) { 3758 3759 /* 3760 * Bound the interval (low, high) as the smallest 3761 * interval containing points from the most sources. 3762 */ 3763 n = 0; 3764 for (i = 0; i < nl2; i++) { 3765 low = endpoint[indx[i]].val; 3766 n -= endpoint[indx[i]].type; 3767 if (n >= nlist - allow) 3768 break; 3769 } 3770 n = 0; 3771 for (j = nl2 - 1; j >= 0; j--) { 3772 high = endpoint[indx[j]].val; 3773 n += endpoint[indx[j]].type; 3774 if (n >= nlist - allow) 3775 break; 3776 } 3777 3778 /* 3779 * If an interval containing truechimers is found, stop. 3780 * If not, increase the number of falsetickers and go 3781 * around again. 3782 */ 3783 if (high > low) 3784 break; 3785 } 3786 3787 /* 3788 * Clustering algorithm. Whittle candidate list of falsetickers, 3789 * who leave the island immediately. The TRUE peer is always a 3790 * truechimer. We must leave at least one peer to collect the 3791 * million bucks. 3792 * 3793 * We assert the correct time is contained in the interval, but 3794 * the best offset estimate for the interval might not be 3795 * contained in the interval. For this purpose, a truechimer is 3796 * defined as the midpoint of an interval that overlaps the 3797 * intersection interval. 3798 */ 3799 j = 0; 3800 for (i = 0; i < nlist; i++) { 3801 double h; 3802 3803 peer = peers[i].peer; 3804 h = peers[i].synch; 3805 if (( high <= low 3806 || peer->offset + h < low 3807 || peer->offset - h > high 3808 ) && !(peer->flags & FLAG_TRUE)) 3809 continue; 3810 3811 #ifdef REFCLOCK 3812 /* 3813 * Eligible PPS peers must survive the intersection 3814 * algorithm. Use the first one found, but don't 3815 * include any of them in the cluster population. 3816 */ 3817 if (peer->flags & FLAG_PPS) { 3818 if (typepps == NULL) 3819 typepps = peer; 3820 if (!(peer->flags & FLAG_TSTAMP_PPS)) 3821 continue; 3822 } 3823 #endif /* REFCLOCK */ 3824 3825 if (j != i) 3826 peers[j] = peers[i]; 3827 j++; 3828 } 3829 nlist = j; 3830 3831 /* 3832 * If no survivors remain at this point, check if the modem 3833 * driver, local driver or orphan parent in that order. If so, 3834 * nominate the first one found as the only survivor. 3835 * Otherwise, give up and leave the island to the rats. 3836 */ 3837 if (nlist == 0) { 3838 peers[0].error = 0; 3839 peers[0].synch = sys_mindisp; 3840 #ifdef REFCLOCK 3841 if (typeacts != NULL) { 3842 peers[0].peer = typeacts; 3843 nlist = 1; 3844 } else if (typelocal != NULL) { 3845 peers[0].peer = typelocal; 3846 nlist = 1; 3847 } else 3848 #endif /* REFCLOCK */ 3849 if (typeorphan != NULL) { 3850 peers[0].peer = typeorphan; 3851 nlist = 1; 3852 } else if (typelastresort != NULL) { 3853 peers[0].peer = typelastresort; 3854 nlist = 1; 3855 } 3856 } 3857 3858 /* 3859 * Mark the candidates at this point as truechimers. 3860 */ 3861 for (i = 0; i < nlist; i++) { 3862 peers[i].peer->new_status = CTL_PST_SEL_SELCAND; 3863 DPRINTF(2, ("select: survivor %s %f\n", 3864 stoa(&peers[i].peer->srcadr), peers[i].synch)); 3865 } 3866 3867 /* 3868 * Now, vote outliers off the island by select jitter weighted 3869 * by root distance. Continue voting as long as there are more 3870 * than sys_minclock survivors and the select jitter of the peer 3871 * with the worst metric is greater than the minimum peer 3872 * jitter. Stop if we are about to discard a TRUE or PREFER 3873 * peer, who of course have the immunity idol. 3874 */ 3875 while (1) { 3876 d = 1e9; 3877 e = -1e9; 3878 g = 0; 3879 k = 0; 3880 for (i = 0; i < nlist; i++) { 3881 if (peers[i].error < d) 3882 d = peers[i].error; 3883 peers[i].seljit = 0; 3884 if (nlist > 1) { 3885 f = 0; 3886 for (j = 0; j < nlist; j++) 3887 f += DIFF(peers[j].peer->offset, 3888 peers[i].peer->offset); 3889 peers[i].seljit = SQRT(f / (nlist - 1)); 3890 } 3891 if (peers[i].seljit * peers[i].synch > e) { 3892 g = peers[i].seljit; 3893 e = peers[i].seljit * peers[i].synch; 3894 k = i; 3895 } 3896 } 3897 g = max(g, LOGTOD(sys_precision)); 3898 if ( nlist <= max(1, sys_minclock) 3899 || g <= d 3900 || ((FLAG_TRUE | FLAG_PREFER) & peers[k].peer->flags)) 3901 break; 3902 3903 DPRINTF(3, ("select: drop %s seljit %.9f jit %.9f\n", 3904 ntoa(&peers[k].peer->srcadr), g, d)); 3905 if (nlist > sys_maxclock) 3906 peers[k].peer->new_status = CTL_PST_SEL_EXCESS; 3907 for (j = k + 1; j < nlist; j++) 3908 peers[j - 1] = peers[j]; 3909 nlist--; 3910 } 3911 3912 /* 3913 * What remains is a list usually not greater than sys_minclock 3914 * peers. Note that unsynchronized peers cannot survive this 3915 * far. Count and mark these survivors. 3916 * 3917 * While at it, count the number of leap warning bits found. 3918 * This will be used later to vote the system leap warning bit. 3919 * If a leap warning bit is found on a reference clock, the vote 3920 * is always won. 3921 * 3922 * Choose the system peer using a hybrid metric composed of the 3923 * selection jitter scaled by the root distance augmented by 3924 * stratum scaled by sys_mindisp (.001 by default). The goal of 3925 * the small stratum factor is to avoid clockhop between a 3926 * reference clock and a network peer which has a refclock and 3927 * is using an older ntpd, which does not floor sys_rootdisp at 3928 * sys_mindisp. 3929 * 3930 * In contrast, ntpd 4.2.6 and earlier used stratum primarily 3931 * in selecting the system peer, using a weight of 1 second of 3932 * additional root distance per stratum. This heavy bias is no 3933 * longer appropriate, as the scaled root distance provides a 3934 * more rational metric carrying the cumulative error budget. 3935 */ 3936 e = 1e9; 3937 speer = 0; 3938 leap_vote_ins = 0; 3939 leap_vote_del = 0; 3940 for (i = 0; i < nlist; i++) { 3941 peer = peers[i].peer; 3942 peer->unreach = 0; 3943 peer->new_status = CTL_PST_SEL_SYNCCAND; 3944 sys_survivors++; 3945 if (peer->leap == LEAP_ADDSECOND) { 3946 if (peer->flags & FLAG_REFCLOCK) 3947 leap_vote_ins = nlist; 3948 else if (leap_vote_ins < nlist) 3949 leap_vote_ins++; 3950 } 3951 if (peer->leap == LEAP_DELSECOND) { 3952 if (peer->flags & FLAG_REFCLOCK) 3953 leap_vote_del = nlist; 3954 else if (leap_vote_del < nlist) 3955 leap_vote_del++; 3956 } 3957 if (peer->flags & FLAG_PREFER) 3958 sys_prefer = peer; 3959 speermet = peers[i].seljit * peers[i].synch + 3960 peer->stratum * sys_mindisp; 3961 if (speermet < e) { 3962 e = speermet; 3963 speer = i; 3964 } 3965 } 3966 3967 /* 3968 * Unless there are at least sys_misane survivors, leave the 3969 * building dark. Otherwise, do a clockhop dance. Ordinarily, 3970 * use the selected survivor speer. However, if the current 3971 * system peer is not speer, stay with the current system peer 3972 * as long as it doesn't get too old or too ugly. 3973 */ 3974 if (nlist > 0 && nlist >= sys_minsane) { 3975 double x; 3976 3977 typesystem = peers[speer].peer; 3978 if (osys_peer == NULL || osys_peer == typesystem) { 3979 sys_clockhop = 0; 3980 } else if ((x = fabs(typesystem->offset - 3981 osys_peer->offset)) < sys_mindisp) { 3982 if (0 == sys_clockhop) 3983 sys_clockhop = sys_mindisp; 3984 else 3985 sys_clockhop *= .5; 3986 DPRINTF(1, ("select: clockhop %d %.9f %.9f\n", 3987 j, x, sys_clockhop)); 3988 if (x < sys_clockhop) 3989 typesystem = osys_peer; 3990 else 3991 sys_clockhop = 0; 3992 } else { 3993 sys_clockhop = 0; 3994 } 3995 } 3996 3997 /* 3998 * Mitigation rules of the game. We have the pick of the 3999 * litter in typesystem if any survivors are left. If 4000 * there is a prefer peer, use its offset and jitter. 4001 * Otherwise, use the combined offset and jitter of all kitters. 4002 */ 4003 if (typesystem != NULL) { 4004 if (sys_prefer == NULL) { 4005 typesystem->new_status = CTL_PST_SEL_SYSPEER; 4006 clock_combine(peers, sys_survivors, speer); 4007 } else { 4008 typesystem = sys_prefer; 4009 sys_clockhop = 0; 4010 typesystem->new_status = CTL_PST_SEL_SYSPEER; 4011 sys_offset = typesystem->offset; 4012 sys_jitter = typesystem->jitter; 4013 } 4014 DPRINTF(1, ("select: combine offset %.9f jitter %.9f\n", 4015 sys_offset, sys_jitter)); 4016 } 4017 #ifdef REFCLOCK 4018 /* 4019 * If a PPS driver is lit and the combined offset is less than 4020 * 0.4 s, select the driver as the PPS peer and use its offset 4021 * and jitter. However, if this is the atom driver, use it only 4022 * if there is a prefer peer or there are no survivors and none 4023 * are required. 4024 */ 4025 if ( typepps != NULL 4026 && fabs(sys_offset) < 0.4 4027 && ( typepps->refclktype != REFCLK_ATOM_PPS 4028 || ( typepps->refclktype == REFCLK_ATOM_PPS 4029 && ( sys_prefer != NULL 4030 || (typesystem == NULL && sys_minsane == 0))))) { 4031 typesystem = typepps; 4032 sys_clockhop = 0; 4033 typesystem->new_status = CTL_PST_SEL_PPS; 4034 sys_offset = typesystem->offset; 4035 sys_jitter = typesystem->jitter; 4036 DPRINTF(1, ("select: pps offset %.9f jitter %.9f\n", 4037 sys_offset, sys_jitter)); 4038 } 4039 #endif /* REFCLOCK */ 4040 4041 /* 4042 * If there are no survivors at this point, there is no 4043 * system peer. If so and this is an old update, keep the 4044 * current statistics, but do not update the clock. 4045 */ 4046 if (typesystem == NULL) { 4047 if (osys_peer != NULL) { 4048 orphwait = current_time + sys_orphwait; 4049 report_event(EVNT_NOPEER, NULL, NULL); 4050 } 4051 sys_peer = NULL; 4052 for (peer = peer_list; peer != NULL; peer = peer->p_link) 4053 peer->status = peer->new_status; 4054 return; 4055 } 4056 4057 /* 4058 * Do not use old data, as this may mess up the clock discipline 4059 * stability. 4060 */ 4061 if (typesystem->epoch <= sys_epoch) 4062 return; 4063 4064 /* 4065 * We have found the alpha male. Wind the clock. 4066 */ 4067 if (osys_peer != typesystem) 4068 report_event(PEVNT_NEWPEER, typesystem, NULL); 4069 for (peer = peer_list; peer != NULL; peer = peer->p_link) 4070 peer->status = peer->new_status; 4071 clock_update(typesystem); 4072 } 4073 4074 4075 static void 4076 clock_combine( 4077 peer_select * peers, /* survivor list */ 4078 int npeers, /* number of survivors */ 4079 int syspeer /* index of sys.peer */ 4080 ) 4081 { 4082 int i; 4083 double x, y, z, w; 4084 4085 y = z = w = 0; 4086 for (i = 0; i < npeers; i++) { 4087 x = 1. / peers[i].synch; 4088 y += x; 4089 z += x * peers[i].peer->offset; 4090 w += x * DIFF(peers[i].peer->offset, 4091 peers[syspeer].peer->offset); 4092 } 4093 sys_offset = z / y; 4094 sys_jitter = SQRT(w / y + SQUARE(peers[syspeer].seljit)); 4095 } 4096 4097 4098 /* 4099 * root_distance - compute synchronization distance from peer to root 4100 */ 4101 static double 4102 root_distance( 4103 struct peer *peer /* peer structure pointer */ 4104 ) 4105 { 4106 double dtemp; 4107 4108 /* 4109 * Root Distance (LAMBDA) is defined as: 4110 * (delta + DELTA)/2 + epsilon + EPSILON + D 4111 * 4112 * where: 4113 * delta is the round-trip delay 4114 * DELTA is the root delay 4115 * epsilon is the peer dispersion 4116 * + (15 usec each second) 4117 * EPSILON is the root dispersion 4118 * D is sys_jitter 4119 * 4120 * NB: Think hard about why we are using these values, and what 4121 * the alternatives are, and the various pros/cons. 4122 * 4123 * DLM thinks these are probably the best choices from any of the 4124 * other worse choices. 4125 */ 4126 dtemp = (peer->delay + peer->rootdelay) / 2 4127 + peer->disp 4128 + clock_phi * (current_time - peer->update) 4129 + peer->rootdisp 4130 + peer->jitter; 4131 /* 4132 * Careful squeak here. The value returned must be greater than 4133 * the minimum root dispersion in order to avoid clockhop with 4134 * highly precise reference clocks. Note that the root distance 4135 * cannot exceed the sys_maxdist, as this is the cutoff by the 4136 * selection algorithm. 4137 */ 4138 if (dtemp < sys_mindisp) 4139 dtemp = sys_mindisp; 4140 return (dtemp); 4141 } 4142 4143 4144 /* 4145 * peer_xmit - send packet for persistent association. 4146 */ 4147 static void 4148 peer_xmit( 4149 struct peer *peer /* peer structure pointer */ 4150 ) 4151 { 4152 struct pkt xpkt; /* transmit packet */ 4153 size_t sendlen, authlen; 4154 keyid_t xkeyid = 0; /* transmit key ID */ 4155 l_fp xmt_tx, xmt_ty; 4156 4157 if (!peer->dstadr) { /* can't send */ 4158 return; 4159 } 4160 xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, peer->version, 4161 peer->hmode); 4162 xpkt.stratum = STRATUM_TO_PKT(sys_stratum); 4163 xpkt.ppoll = peer->hpoll; 4164 xpkt.precision = sys_precision; 4165 xpkt.refid = sys_refid; 4166 xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay)); 4167 xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp)); 4168 /* Use sys_reftime for peer exchanges */ 4169 HTONL_FP(&sys_reftime, &xpkt.reftime); 4170 HTONL_FP(&peer->rec, &xpkt.org); 4171 HTONL_FP(&peer->dst, &xpkt.rec); 4172 4173 /* 4174 * If the received packet contains a MAC, the transmitted packet 4175 * is authenticated and contains a MAC. If not, the transmitted 4176 * packet is not authenticated. 4177 * 4178 * It is most important when autokey is in use that the local 4179 * interface IP address be known before the first packet is 4180 * sent. Otherwise, it is not possible to compute a correct MAC 4181 * the recipient will accept. Thus, the I/O semantics have to do 4182 * a little more work. In particular, the wildcard interface 4183 * might not be usable. 4184 */ 4185 sendlen = LEN_PKT_NOMAC; 4186 if ( 4187 #ifdef AUTOKEY 4188 !(peer->flags & FLAG_SKEY) && 4189 #endif /* !AUTOKEY */ 4190 peer->keyid == 0) { 4191 4192 /* 4193 * Transmit a-priori timestamps 4194 */ 4195 get_systime(&xmt_tx); 4196 if (peer->flip == 0) { /* basic mode */ 4197 peer->aorg = xmt_tx; 4198 HTONL_FP(&xmt_tx, &xpkt.xmt); 4199 } else { /* interleaved modes */ 4200 if (peer->hmode == MODE_BROADCAST) { /* bcst */ 4201 HTONL_FP(&xmt_tx, &xpkt.xmt); 4202 if (peer->flip > 0) 4203 HTONL_FP(&peer->borg, 4204 &xpkt.org); 4205 else 4206 HTONL_FP(&peer->aorg, 4207 &xpkt.org); 4208 } else { /* symmetric */ 4209 if (peer->flip > 0) 4210 HTONL_FP(&peer->borg, 4211 &xpkt.xmt); 4212 else 4213 HTONL_FP(&peer->aorg, 4214 &xpkt.xmt); 4215 } 4216 } 4217 peer->t21_bytes = sendlen; 4218 sendpkt(&peer->srcadr, peer->dstadr, 4219 sys_ttl[(peer->ttl >= sys_ttlmax) ? sys_ttlmax : peer->ttl], 4220 &xpkt, sendlen); 4221 peer->sent++; 4222 peer->throttle += (1 << peer->minpoll) - 2; 4223 4224 /* 4225 * Capture a-posteriori timestamps 4226 */ 4227 get_systime(&xmt_ty); 4228 if (peer->flip != 0) { /* interleaved modes */ 4229 if (peer->flip > 0) 4230 peer->aorg = xmt_ty; 4231 else 4232 peer->borg = xmt_ty; 4233 peer->flip = -peer->flip; 4234 } 4235 L_SUB(&xmt_ty, &xmt_tx); 4236 LFPTOD(&xmt_ty, peer->xleave); 4237 DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d len %zu xmt 0x%x.%08x\n", 4238 current_time, latoa(peer->dstadr), 4239 stoa(&peer->srcadr), peer->hmode, sendlen, 4240 xmt_tx.l_ui, xmt_tx.l_uf)); 4241 return; 4242 } 4243 4244 /* 4245 * Authentication is enabled, so the transmitted packet must be 4246 * authenticated. If autokey is enabled, fuss with the various 4247 * modes; otherwise, symmetric key cryptography is used. 4248 */ 4249 #ifdef AUTOKEY 4250 if (peer->flags & FLAG_SKEY) { 4251 struct exten *exten; /* extension field */ 4252 4253 /* 4254 * The Public Key Dance (PKD): Cryptographic credentials 4255 * are contained in extension fields, each including a 4256 * 4-octet length/code word followed by a 4-octet 4257 * association ID and optional additional data. Optional 4258 * data includes a 4-octet data length field followed by 4259 * the data itself. Request messages are sent from a 4260 * configured association; response messages can be sent 4261 * from a configured association or can take the fast 4262 * path without ever matching an association. Response 4263 * messages have the same code as the request, but have 4264 * a response bit and possibly an error bit set. In this 4265 * implementation, a message may contain no more than 4266 * one command and one or more responses. 4267 * 4268 * Cryptographic session keys include both a public and 4269 * a private componet. Request and response messages 4270 * using extension fields are always sent with the 4271 * private component set to zero. Packets without 4272 * extension fields indlude the private component when 4273 * the session key is generated. 4274 */ 4275 while (1) { 4276 4277 /* 4278 * Allocate and initialize a keylist if not 4279 * already done. Then, use the list in inverse 4280 * order, discarding keys once used. Keep the 4281 * latest key around until the next one, so 4282 * clients can use client/server packets to 4283 * compute propagation delay. 4284 * 4285 * Note that once a key is used from the list, 4286 * it is retained in the key cache until the 4287 * next key is used. This is to allow a client 4288 * to retrieve the encrypted session key 4289 * identifier to verify authenticity. 4290 * 4291 * If for some reason a key is no longer in the 4292 * key cache, a birthday has happened or the key 4293 * has expired, so the pseudo-random sequence is 4294 * broken. In that case, purge the keylist and 4295 * regenerate it. 4296 */ 4297 if (peer->keynumber == 0) 4298 make_keylist(peer, peer->dstadr); 4299 else 4300 peer->keynumber--; 4301 xkeyid = peer->keylist[peer->keynumber]; 4302 if (authistrusted(xkeyid)) 4303 break; 4304 else 4305 key_expire(peer); 4306 } 4307 peer->keyid = xkeyid; 4308 exten = NULL; 4309 switch (peer->hmode) { 4310 4311 /* 4312 * In broadcast server mode the autokey values are 4313 * required by the broadcast clients. Push them when a 4314 * new keylist is generated; otherwise, push the 4315 * association message so the client can request them at 4316 * other times. 4317 */ 4318 case MODE_BROADCAST: 4319 if (peer->flags & FLAG_ASSOC) 4320 exten = crypto_args(peer, CRYPTO_AUTO | 4321 CRYPTO_RESP, peer->associd, NULL); 4322 else 4323 exten = crypto_args(peer, CRYPTO_ASSOC | 4324 CRYPTO_RESP, peer->associd, NULL); 4325 break; 4326 4327 /* 4328 * In symmetric modes the parameter, certificate, 4329 * identity, cookie and autokey exchanges are 4330 * required. The leapsecond exchange is optional. But, a 4331 * peer will not believe the other peer until the other 4332 * peer has synchronized, so the certificate exchange 4333 * might loop until then. If a peer finds a broken 4334 * autokey sequence, it uses the autokey exchange to 4335 * retrieve the autokey values. In any case, if a new 4336 * keylist is generated, the autokey values are pushed. 4337 */ 4338 case MODE_ACTIVE: 4339 case MODE_PASSIVE: 4340 4341 /* 4342 * Parameter, certificate and identity. 4343 */ 4344 if (!peer->crypto) 4345 exten = crypto_args(peer, CRYPTO_ASSOC, 4346 peer->associd, hostval.ptr); 4347 else if (!(peer->crypto & CRYPTO_FLAG_CERT)) 4348 exten = crypto_args(peer, CRYPTO_CERT, 4349 peer->associd, peer->issuer); 4350 else if (!(peer->crypto & CRYPTO_FLAG_VRFY)) 4351 exten = crypto_args(peer, 4352 crypto_ident(peer), peer->associd, 4353 NULL); 4354 4355 /* 4356 * Cookie and autokey. We request the cookie 4357 * only when the this peer and the other peer 4358 * are synchronized. But, this peer needs the 4359 * autokey values when the cookie is zero. Any 4360 * time we regenerate the key list, we offer the 4361 * autokey values without being asked. If for 4362 * some reason either peer finds a broken 4363 * autokey sequence, the autokey exchange is 4364 * used to retrieve the autokey values. 4365 */ 4366 else if ( sys_leap != LEAP_NOTINSYNC 4367 && peer->leap != LEAP_NOTINSYNC 4368 && !(peer->crypto & CRYPTO_FLAG_COOK)) 4369 exten = crypto_args(peer, CRYPTO_COOK, 4370 peer->associd, NULL); 4371 else if (!(peer->crypto & CRYPTO_FLAG_AUTO)) 4372 exten = crypto_args(peer, CRYPTO_AUTO, 4373 peer->associd, NULL); 4374 else if ( peer->flags & FLAG_ASSOC 4375 && peer->crypto & CRYPTO_FLAG_SIGN) 4376 exten = crypto_args(peer, CRYPTO_AUTO | 4377 CRYPTO_RESP, peer->assoc, NULL); 4378 4379 /* 4380 * Wait for clock sync, then sign the 4381 * certificate and retrieve the leapsecond 4382 * values. 4383 */ 4384 else if (sys_leap == LEAP_NOTINSYNC) 4385 break; 4386 4387 else if (!(peer->crypto & CRYPTO_FLAG_SIGN)) 4388 exten = crypto_args(peer, CRYPTO_SIGN, 4389 peer->associd, hostval.ptr); 4390 else if (!(peer->crypto & CRYPTO_FLAG_LEAP)) 4391 exten = crypto_args(peer, CRYPTO_LEAP, 4392 peer->associd, NULL); 4393 break; 4394 4395 /* 4396 * In client mode the parameter, certificate, identity, 4397 * cookie and sign exchanges are required. The 4398 * leapsecond exchange is optional. If broadcast client 4399 * mode the same exchanges are required, except that the 4400 * autokey exchange is substitutes for the cookie 4401 * exchange, since the cookie is always zero. If the 4402 * broadcast client finds a broken autokey sequence, it 4403 * uses the autokey exchange to retrieve the autokey 4404 * values. 4405 */ 4406 case MODE_CLIENT: 4407 4408 /* 4409 * Parameter, certificate and identity. 4410 */ 4411 if (!peer->crypto) 4412 exten = crypto_args(peer, CRYPTO_ASSOC, 4413 peer->associd, hostval.ptr); 4414 else if (!(peer->crypto & CRYPTO_FLAG_CERT)) 4415 exten = crypto_args(peer, CRYPTO_CERT, 4416 peer->associd, peer->issuer); 4417 else if (!(peer->crypto & CRYPTO_FLAG_VRFY)) 4418 exten = crypto_args(peer, 4419 crypto_ident(peer), peer->associd, 4420 NULL); 4421 4422 /* 4423 * Cookie and autokey. These are requests, but 4424 * we use the peer association ID with autokey 4425 * rather than our own. 4426 */ 4427 else if (!(peer->crypto & CRYPTO_FLAG_COOK)) 4428 exten = crypto_args(peer, CRYPTO_COOK, 4429 peer->associd, NULL); 4430 else if (!(peer->crypto & CRYPTO_FLAG_AUTO)) 4431 exten = crypto_args(peer, CRYPTO_AUTO, 4432 peer->assoc, NULL); 4433 4434 /* 4435 * Wait for clock sync, then sign the 4436 * certificate and retrieve the leapsecond 4437 * values. 4438 */ 4439 else if (sys_leap == LEAP_NOTINSYNC) 4440 break; 4441 4442 else if (!(peer->crypto & CRYPTO_FLAG_SIGN)) 4443 exten = crypto_args(peer, CRYPTO_SIGN, 4444 peer->associd, hostval.ptr); 4445 else if (!(peer->crypto & CRYPTO_FLAG_LEAP)) 4446 exten = crypto_args(peer, CRYPTO_LEAP, 4447 peer->associd, NULL); 4448 break; 4449 } 4450 4451 /* 4452 * Add a queued extension field if present. This is 4453 * always a request message, so the reply ID is already 4454 * in the message. If an error occurs, the error bit is 4455 * lit in the response. 4456 */ 4457 if (peer->cmmd != NULL) { 4458 u_int32 temp32; 4459 4460 temp32 = CRYPTO_RESP; 4461 peer->cmmd->opcode |= htonl(temp32); 4462 sendlen += crypto_xmit(peer, &xpkt, NULL, 4463 sendlen, peer->cmmd, 0); 4464 free(peer->cmmd); 4465 peer->cmmd = NULL; 4466 } 4467 4468 /* 4469 * Add an extension field created above. All but the 4470 * autokey response message are request messages. 4471 */ 4472 if (exten != NULL) { 4473 if (exten->opcode != 0) 4474 sendlen += crypto_xmit(peer, &xpkt, 4475 NULL, sendlen, exten, 0); 4476 free(exten); 4477 } 4478 4479 /* 4480 * Calculate the next session key. Since extension 4481 * fields are present, the cookie value is zero. 4482 */ 4483 if (sendlen > (int)LEN_PKT_NOMAC) { 4484 session_key(&peer->dstadr->sin, &peer->srcadr, 4485 xkeyid, 0, 2); 4486 } 4487 } 4488 #endif /* AUTOKEY */ 4489 4490 /* 4491 * Transmit a-priori timestamps 4492 */ 4493 get_systime(&xmt_tx); 4494 if (peer->flip == 0) { /* basic mode */ 4495 peer->aorg = xmt_tx; 4496 HTONL_FP(&xmt_tx, &xpkt.xmt); 4497 } else { /* interleaved modes */ 4498 if (peer->hmode == MODE_BROADCAST) { /* bcst */ 4499 HTONL_FP(&xmt_tx, &xpkt.xmt); 4500 if (peer->flip > 0) 4501 HTONL_FP(&peer->borg, &xpkt.org); 4502 else 4503 HTONL_FP(&peer->aorg, &xpkt.org); 4504 } else { /* symmetric */ 4505 if (peer->flip > 0) 4506 HTONL_FP(&peer->borg, &xpkt.xmt); 4507 else 4508 HTONL_FP(&peer->aorg, &xpkt.xmt); 4509 } 4510 } 4511 xkeyid = peer->keyid; 4512 authlen = authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen); 4513 if (authlen == 0) { 4514 report_event(PEVNT_AUTH, peer, "no key"); 4515 peer->flash |= TEST5; /* auth error */ 4516 peer->badauth++; 4517 return; 4518 } 4519 sendlen += authlen; 4520 #ifdef AUTOKEY 4521 if (xkeyid > NTP_MAXKEY) 4522 authtrust(xkeyid, 0); 4523 #endif /* AUTOKEY */ 4524 if (sendlen > sizeof(xpkt)) { 4525 msyslog(LOG_ERR, "peer_xmit: buffer overflow %u", (u_int)sendlen); 4526 exit(EX_SOFTWARE); 4527 } 4528 peer->t21_bytes = sendlen; 4529 sendpkt(&peer->srcadr, peer->dstadr, 4530 sys_ttl[(peer->ttl >= sys_ttlmax) ? sys_ttlmax : peer->ttl], 4531 &xpkt, sendlen); 4532 peer->sent++; 4533 peer->throttle += (1 << peer->minpoll) - 2; 4534 4535 /* 4536 * Capture a-posteriori timestamps 4537 */ 4538 get_systime(&xmt_ty); 4539 if (peer->flip != 0) { /* interleaved modes */ 4540 if (peer->flip > 0) 4541 peer->aorg = xmt_ty; 4542 else 4543 peer->borg = xmt_ty; 4544 peer->flip = -peer->flip; 4545 } 4546 L_SUB(&xmt_ty, &xmt_tx); 4547 LFPTOD(&xmt_ty, peer->xleave); 4548 #ifdef AUTOKEY 4549 DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d keyid %08x len %zu index %d\n", 4550 current_time, latoa(peer->dstadr), stoa(&peer->srcadr), 4551 peer->hmode, xkeyid, sendlen, peer->keynumber)); 4552 #else /* !AUTOKEY follows */ 4553 DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d keyid %08x len %zu\n", 4554 current_time, peer->dstadr ? 4555 ntoa(&peer->dstadr->sin) : "-", 4556 ntoa(&peer->srcadr), peer->hmode, xkeyid, sendlen)); 4557 #endif /* !AUTOKEY */ 4558 4559 return; 4560 } 4561 4562 4563 #ifdef LEAP_SMEAR 4564 4565 static void 4566 leap_smear_add_offs( 4567 l_fp *t, 4568 l_fp *t_recv 4569 ) 4570 { 4571 4572 L_ADD(t, &leap_smear.offset); 4573 4574 /* 4575 ** XXX: Should the smear be added to the root dispersion? 4576 */ 4577 4578 return; 4579 } 4580 4581 #endif /* LEAP_SMEAR */ 4582 4583 4584 /* 4585 * fast_xmit - Send packet for nonpersistent association. Note that 4586 * neither the source or destination can be a broadcast address. 4587 */ 4588 static void 4589 fast_xmit( 4590 struct recvbuf* rbufp, /* receive packet pointer */ 4591 int xmode, /* receive mode */ /* XXX: HMS: really? */ 4592 keyid_t xkeyid, /* transmit key ID */ 4593 int flags /* restrict mask */ 4594 ) 4595 { 4596 struct pkt xpkt; /* transmit packet structure */ 4597 struct pkt* rpkt; /* receive packet structure */ 4598 l_fp xmt_tx, xmt_ty; 4599 size_t sendlen; 4600 #ifdef AUTOKEY 4601 u_int32 temp32; 4602 #endif 4603 4604 /* 4605 * Initialize transmit packet header fields from the receive 4606 * buffer provided. We leave the fields intact as received, but 4607 * set the peer poll at the maximum of the receive peer poll and 4608 * the system minimum poll (ntp_minpoll). This is for KoD rate 4609 * control and not strictly specification compliant, but doesn't 4610 * break anything. 4611 */ 4612 rpkt = &rbufp->recv_pkt; 4613 /* 4614 * If the packet was received on an endpoint open only on 4615 * a multicast address, the response needs to go out from 4616 * a unicast endpoint. 4617 */ 4618 #ifndef MULTICAST_NONEWSOCKET 4619 if (rbufp->dstadr->flags & INT_MCASTOPEN) { 4620 rbufp->dstadr = findinterface(&rbufp->recv_srcadr); 4621 if (NULL == rbufp->dstadr || 4622 ANY_INTERFACE_CHOOSE(&rbufp->recv_srcadr) /* wildcard */ 4623 == rbufp->dstadr) { 4624 DPRINTF(2, ("No unicast local address found for" 4625 " reply to %s mcast.", 4626 stoa(&rbufp->recv_srcadr))); 4627 return; 4628 } 4629 } 4630 #endif 4631 4632 /* 4633 * If this is a kiss-o'-death (KoD) packet, show leap 4634 * unsynchronized, stratum zero, reference ID the four-character 4635 * kiss code and (???) system root delay. Note we don't reveal 4636 * the local time, so these packets can't be used for 4637 * synchronization. 4638 */ 4639 if (flags & RES_KOD) { 4640 sys_kodsent++; 4641 xpkt.li_vn_mode = PKT_LI_VN_MODE(LEAP_NOTINSYNC, 4642 PKT_VERSION(rpkt->li_vn_mode), xmode); 4643 xpkt.stratum = STRATUM_PKT_UNSPEC; 4644 xpkt.ppoll = max(rpkt->ppoll, ntp_minpoll); 4645 xpkt.precision = rpkt->precision; 4646 memcpy(&xpkt.refid, "RATE", 4); 4647 xpkt.rootdelay = rpkt->rootdelay; 4648 xpkt.rootdisp = rpkt->rootdisp; 4649 xpkt.reftime = rpkt->reftime; 4650 xpkt.org = rpkt->xmt; 4651 xpkt.rec = rpkt->xmt; 4652 xpkt.xmt = rpkt->xmt; 4653 4654 /* 4655 * This is a normal packet. Use the system variables. 4656 */ 4657 } else { 4658 double this_rootdisp; 4659 l_fp this_ref_time; 4660 4661 #ifdef LEAP_SMEAR 4662 /* 4663 * Make copies of the variables which can be affected by smearing. 4664 */ 4665 l_fp this_recv_time; 4666 #endif 4667 4668 /* 4669 * If we are inside the leap smear interval we add 4670 * the current smear offset to: 4671 * - the packet receive time, 4672 * - the packet transmit time, 4673 * - and eventually to the reftime to make sure the 4674 * reftime isn't later than the transmit/receive times. 4675 */ 4676 xpkt.li_vn_mode = PKT_LI_VN_MODE(xmt_leap, 4677 PKT_VERSION(rpkt->li_vn_mode), xmode); 4678 4679 xpkt.stratum = STRATUM_TO_PKT(sys_stratum); 4680 xpkt.ppoll = max(rpkt->ppoll, ntp_minpoll); 4681 xpkt.precision = sys_precision; 4682 xpkt.refid = sys_refid; 4683 xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay)); 4684 4685 /* 4686 ** Server Response Fuzzing 4687 ** 4688 ** Which values do we want to use for reftime and rootdisp? 4689 */ 4690 4691 if ( MODE_SERVER == xmode 4692 && RES_SRVRSPFUZ & flags) { 4693 if (current_time < p2_time) { 4694 this_ref_time = p2_reftime; 4695 this_rootdisp = p2_rootdisp; 4696 } else if (current_time < prev_time) { 4697 this_ref_time = prev_reftime; 4698 this_rootdisp = prev_rootdisp; 4699 } else { 4700 this_ref_time = sys_reftime; 4701 this_rootdisp = sys_rootdisp; 4702 } 4703 4704 SRVRSP_FUZZ(this_ref_time); 4705 } else { 4706 this_ref_time = sys_reftime; 4707 this_rootdisp = sys_rootdisp; 4708 } 4709 4710 /* 4711 ** ROOT DISPERSION 4712 */ 4713 4714 xpkt.rootdisp = HTONS_FP(DTOUFP(this_rootdisp)); 4715 4716 /* 4717 ** REFTIME 4718 */ 4719 4720 #ifdef LEAP_SMEAR 4721 if (leap_smear.in_progress) { 4722 /* adjust the reftime by the same amount as the 4723 * leap smear, as we don't want to risk the 4724 * reftime being later than the transmit time. 4725 */ 4726 leap_smear_add_offs(&this_ref_time, NULL); 4727 } 4728 #endif 4729 4730 HTONL_FP(&this_ref_time, &xpkt.reftime); 4731 4732 /* 4733 ** REFID 4734 */ 4735 4736 #ifdef LEAP_SMEAR 4737 if (leap_smear.in_progress) { 4738 xpkt.refid = convertLFPToRefID(leap_smear.offset); 4739 DPRINTF(2, ("fast_xmit: leap_smear.in_progress: refid %8x, smear %s\n", 4740 ntohl(xpkt.refid), 4741 lfptoa(&leap_smear.offset, 8) 4742 )); 4743 } 4744 #endif 4745 4746 /* 4747 ** ORIGIN 4748 */ 4749 4750 xpkt.org = rpkt->xmt; 4751 4752 /* 4753 ** RECEIVE 4754 */ 4755 #ifdef LEAP_SMEAR 4756 this_recv_time = rbufp->recv_time; 4757 if (leap_smear.in_progress) 4758 leap_smear_add_offs(&this_recv_time, NULL); 4759 HTONL_FP(&this_recv_time, &xpkt.rec); 4760 #else 4761 HTONL_FP(&rbufp->recv_time, &xpkt.rec); 4762 #endif 4763 4764 /* 4765 ** TRANSMIT 4766 */ 4767 4768 get_systime(&xmt_tx); 4769 #ifdef LEAP_SMEAR 4770 if (leap_smear.in_progress) 4771 leap_smear_add_offs(&xmt_tx, &this_recv_time); 4772 #endif 4773 HTONL_FP(&xmt_tx, &xpkt.xmt); 4774 } 4775 4776 #ifdef HAVE_NTP_SIGND 4777 if (flags & RES_MSSNTP) { 4778 send_via_ntp_signd(rbufp, xmode, xkeyid, flags, &xpkt); 4779 return; 4780 } 4781 #endif /* HAVE_NTP_SIGND */ 4782 4783 /* 4784 * If the received packet contains a MAC, the transmitted packet 4785 * is authenticated and contains a MAC. If not, the transmitted 4786 * packet is not authenticated. 4787 */ 4788 sendlen = LEN_PKT_NOMAC; 4789 if (rbufp->recv_length == sendlen) { 4790 sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, 0, &xpkt, 4791 sendlen); 4792 DPRINTF(1, ("fast_xmit: at %ld %s->%s mode %d len %lu\n", 4793 current_time, stoa(&rbufp->dstadr->sin), 4794 stoa(&rbufp->recv_srcadr), xmode, 4795 (u_long)sendlen)); 4796 return; 4797 } 4798 4799 /* 4800 * The received packet contains a MAC, so the transmitted packet 4801 * must be authenticated. For symmetric key cryptography, use 4802 * the predefined and trusted symmetric keys to generate the 4803 * cryptosum. For autokey cryptography, use the server private 4804 * value to generate the cookie, which is unique for every 4805 * source-destination-key ID combination. 4806 */ 4807 #ifdef AUTOKEY 4808 if (xkeyid > NTP_MAXKEY) { 4809 keyid_t cookie; 4810 4811 /* 4812 * The only way to get here is a reply to a legitimate 4813 * client request message, so the mode must be 4814 * MODE_SERVER. If an extension field is present, there 4815 * can be only one and that must be a command. Do what 4816 * needs, but with private value of zero so the poor 4817 * jerk can decode it. If no extension field is present, 4818 * use the cookie to generate the session key. 4819 */ 4820 cookie = session_key(&rbufp->recv_srcadr, 4821 &rbufp->dstadr->sin, 0, sys_private, 0); 4822 if ((size_t)rbufp->recv_length > sendlen + MAX_MAC_LEN) { 4823 session_key(&rbufp->dstadr->sin, 4824 &rbufp->recv_srcadr, xkeyid, 0, 2); 4825 temp32 = CRYPTO_RESP; 4826 rpkt->exten[0] |= htonl(temp32); 4827 sendlen += crypto_xmit(NULL, &xpkt, rbufp, 4828 sendlen, (struct exten *)rpkt->exten, 4829 cookie); 4830 } else { 4831 session_key(&rbufp->dstadr->sin, 4832 &rbufp->recv_srcadr, xkeyid, cookie, 2); 4833 } 4834 } 4835 #endif /* AUTOKEY */ 4836 get_systime(&xmt_tx); 4837 sendlen += authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen); 4838 #ifdef AUTOKEY 4839 if (xkeyid > NTP_MAXKEY) 4840 authtrust(xkeyid, 0); 4841 #endif /* AUTOKEY */ 4842 sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, 0, &xpkt, sendlen); 4843 get_systime(&xmt_ty); 4844 L_SUB(&xmt_ty, &xmt_tx); 4845 sys_authdelay = xmt_ty; 4846 DPRINTF(1, ("fast_xmit: at %ld %s->%s mode %d keyid %08x len %lu\n", 4847 current_time, ntoa(&rbufp->dstadr->sin), 4848 ntoa(&rbufp->recv_srcadr), xmode, xkeyid, 4849 (u_long)sendlen)); 4850 } 4851 4852 4853 /* 4854 * pool_xmit - resolve hostname or send unicast solicitation for pool. 4855 */ 4856 static void 4857 pool_xmit( 4858 struct peer *pool /* pool solicitor association */ 4859 ) 4860 { 4861 #ifdef WORKER 4862 struct pkt xpkt; /* transmit packet structure */ 4863 struct addrinfo hints; 4864 int rc; 4865 endpt * lcladr; 4866 sockaddr_u * rmtadr; 4867 u_short af; 4868 struct peer * p; 4869 l_fp xmt_tx; 4870 4871 DEBUG_REQUIRE(pool); 4872 if (NULL == pool->ai) { 4873 if (pool->addrs != NULL) { 4874 /* free() is used with copy_addrinfo_list() */ 4875 free(pool->addrs); 4876 pool->addrs = NULL; 4877 } 4878 af = AF(&pool->srcadr); 4879 if ( (AF_INET == af && !nonlocal_v4_addr_up) 4880 || (AF_INET6 == af && !nonlocal_v6_addr_up) 4881 || ( AF_UNSPEC == af 4882 && !nonlocal_v4_addr_up 4883 && !nonlocal_v6_addr_up)) { 4884 4885 /* POOL DNS query would be useless [Bug 3845] */ 4886 return; 4887 } 4888 ZERO(hints); 4889 hints.ai_family = AF(&pool->srcadr); 4890 hints.ai_socktype = SOCK_DGRAM; 4891 hints.ai_protocol = IPPROTO_UDP; 4892 /* ignore getaddrinfo_sometime() errors, we will retry */ 4893 rc = getaddrinfo_sometime( 4894 pool->hostname, 4895 "ntp", 4896 &hints, 4897 0, /* no retry */ 4898 &pool_name_resolved, 4899 (void *)(intptr_t)pool->associd); 4900 if (!rc) 4901 DPRINTF(1, ("pool DNS lookup %s started\n", 4902 pool->hostname)); 4903 else 4904 msyslog(LOG_ERR, 4905 "unable to start pool DNS %s: %m", 4906 pool->hostname); 4907 return; 4908 } 4909 4910 do { 4911 /* copy_addrinfo_list ai_addr points to a sockaddr_u */ 4912 rmtadr = (sockaddr_u *)(void *)pool->ai->ai_addr; 4913 pool->ai = pool->ai->ai_next; 4914 /* do not solicit when hopeless [Bug 3845] */ 4915 if ( (IS_IPV4(rmtadr) && !nonlocal_v4_addr_up) 4916 || (IS_IPV6(rmtadr) && !nonlocal_v6_addr_up)) { 4917 continue; 4918 } 4919 p = findexistingpeer(rmtadr, NULL, NULL, MODE_CLIENT, 0, NULL); 4920 } while (p != NULL && pool->ai != NULL); 4921 if (p != NULL) { 4922 return; /* out of addresses, re-query DNS next poll */ 4923 } 4924 restrict_source(rmtadr, FALSE, 1 + POOL_SOLICIT_WINDOW); 4925 lcladr = findinterface(rmtadr); 4926 memset(&xpkt, 0, sizeof(xpkt)); 4927 xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, pool->version, 4928 MODE_CLIENT); 4929 xpkt.stratum = STRATUM_TO_PKT(sys_stratum); 4930 xpkt.ppoll = pool->hpoll; 4931 xpkt.precision = sys_precision; 4932 xpkt.refid = sys_refid; 4933 xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay)); 4934 xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp)); 4935 /* Bug 3596: What are the pros/cons of using sys_reftime here? */ 4936 HTONL_FP(&sys_reftime, &xpkt.reftime); 4937 4938 get_systime(&xmt_tx); 4939 pool->aorg = xmt_tx; 4940 4941 if (FLAG_LOOPNONCE & pool->flags) { 4942 l_fp nonce; 4943 4944 do { 4945 nonce.l_ui = ntp_random(); 4946 } while (0 == nonce.l_ui); 4947 do { 4948 nonce.l_uf = ntp_random(); 4949 } while (0 == nonce.l_uf); 4950 pool->nonce = nonce; 4951 HTONL_FP(&nonce, &xpkt.xmt); 4952 } else { 4953 L_CLR(&pool->nonce); 4954 HTONL_FP(&xmt_tx, &xpkt.xmt); 4955 } 4956 pool->sent++; 4957 pool->throttle += (1 << pool->minpoll) - 2; 4958 DPRINTF(1, ("pool_xmit: at %ld %s->%s pool\n", 4959 current_time, latoa(lcladr), stoa(rmtadr))); 4960 msyslog(LOG_INFO, "Soliciting pool server %s", stoa(rmtadr)); 4961 sendpkt(rmtadr, lcladr, 4962 sys_ttl[(pool->ttl >= sys_ttlmax) ? sys_ttlmax : pool->ttl], 4963 &xpkt, LEN_PKT_NOMAC); 4964 #endif /* WORKER */ 4965 } 4966 4967 4968 #ifdef AUTOKEY 4969 /* 4970 * group_test - test if this is the same group 4971 * 4972 * host assoc return action 4973 * none none 0 mobilize * 4974 * none group 0 mobilize * 4975 * group none 0 mobilize * 4976 * group group 1 mobilize 4977 * group different 1 ignore 4978 * * ignore if notrust 4979 */ 4980 int 4981 group_test( 4982 char *grp, 4983 char *ident 4984 ) 4985 { 4986 if (grp == NULL) 4987 return (0); 4988 4989 if (strcmp(grp, sys_groupname) == 0) 4990 return (0); 4991 4992 if (ident == NULL) 4993 return (1); 4994 4995 if (strcmp(grp, ident) == 0) 4996 return (0); 4997 4998 return (1); 4999 } 5000 #endif /* AUTOKEY */ 5001 5002 5003 #ifdef WORKER 5004 void 5005 pool_name_resolved( 5006 int rescode, 5007 int gai_errno, 5008 void * context, 5009 const char * name, 5010 const char * service, 5011 const struct addrinfo * hints, 5012 const struct addrinfo * res 5013 ) 5014 { 5015 struct peer * pool; /* pool solicitor association */ 5016 associd_t assoc; 5017 5018 if (rescode) { 5019 msyslog(LOG_ERR, 5020 "error resolving pool %s: %s (%d)", 5021 name, gai_strerror(rescode), rescode); 5022 return; 5023 } 5024 5025 assoc = (associd_t)(intptr_t)context; 5026 pool = findpeerbyassoc(assoc); 5027 if (NULL == pool) { 5028 msyslog(LOG_ERR, 5029 "Could not find assoc %u for pool DNS %s", 5030 assoc, name); 5031 return; 5032 } 5033 DPRINTF(1, ("pool DNS %s completed\n", name)); 5034 pool->addrs = copy_addrinfo_list(res); 5035 pool->ai = pool->addrs; 5036 pool_xmit(pool); 5037 5038 } 5039 #endif /* WORKER */ 5040 5041 5042 #ifdef AUTOKEY 5043 /* 5044 * key_expire - purge the key list 5045 */ 5046 void 5047 key_expire( 5048 struct peer *peer /* peer structure pointer */ 5049 ) 5050 { 5051 int i; 5052 5053 if (peer->keylist != NULL) { 5054 for (i = 0; i <= peer->keynumber; i++) 5055 authtrust(peer->keylist[i], 0); 5056 free(peer->keylist); 5057 peer->keylist = NULL; 5058 } 5059 value_free(&peer->sndval); 5060 peer->keynumber = 0; 5061 peer->flags &= ~FLAG_ASSOC; 5062 DPRINTF(1, ("key_expire: at %lu associd %d\n", current_time, 5063 peer->associd)); 5064 } 5065 #endif /* AUTOKEY */ 5066 5067 5068 /* 5069 * local_refid(peer) - Check peer refid to avoid selecting peers 5070 * currently synced to this ntpd. 5071 * Note that until 4.2.8p18 and 4.3.1XX ntpd calculated the IPv6 5072 * refid differently on different-endian systems. It now calculates 5073 * the refid the same on both, the same way it did on little-endian 5074 * in the past. On big-endian systems, ntpd also calculates a 5075 * byte-swapped version of each of its IPv6 local addresses' refids, 5076 * as endpt.old_refid and also detects a loop when seeing it. This 5077 * ensures new BE ntpd will detect loops interoperating with older 5078 * BE ntpd, and keeps the more-common LE old ntpd code detecting 5079 * loops with IPv6 refids correctly. Thanks to Hal Murray for 5080 * the byte-swapping idea. 5081 */ 5082 static int 5083 local_refid( 5084 struct peer * p 5085 ) 5086 { 5087 endpt * unicast_ep; 5088 5089 if (p->dstadr != NULL && !(INT_MCASTIF & p->dstadr->flags)) 5090 unicast_ep = p->dstadr; 5091 else 5092 unicast_ep = findinterface(&p->srcadr); 5093 5094 if (unicast_ep != NULL 5095 && ( p->refid == unicast_ep->addr_refid 5096 #ifdef WORDS_BIGENDIAN 5097 || ( IS_IPV6(&unicast_ep->sin) 5098 && p->refid == unicast_ep->old_refid) 5099 #endif 5100 )) { 5101 return TRUE; 5102 } else { 5103 return FALSE; 5104 } 5105 } 5106 5107 5108 /* 5109 * Determine if the peer is unfit for synchronization 5110 * 5111 * A peer is unfit for synchronization if 5112 * > TEST10 bad leap or stratum below floor or at or above ceiling 5113 * > TEST11 root distance exceeded for remote peer 5114 * > TEST12 a direct or indirect synchronization loop would form 5115 * > TEST13 unreachable or noselect 5116 */ 5117 int /* FALSE if fit, TRUE if unfit */ 5118 peer_unfit( 5119 struct peer *peer /* peer structure pointer */ 5120 ) 5121 { 5122 int rval = 0; 5123 5124 /* 5125 * A stratum error occurs if (1) the server has never been 5126 * synchronized, (2) the server stratum is below the floor or 5127 * greater than or equal to the ceiling. 5128 */ 5129 if ( peer->leap == LEAP_NOTINSYNC 5130 || peer->stratum < sys_floor 5131 || peer->stratum >= sys_ceiling) { 5132 rval |= TEST10; /* bad synch or stratum */ 5133 } 5134 5135 /* 5136 * A distance error for a remote peer occurs if the root 5137 * distance is greater than or equal to the distance threshold 5138 * plus the increment due to one host poll interval. 5139 */ 5140 if ( !(peer->flags & FLAG_REFCLOCK) 5141 && root_distance(peer) >= sys_maxdist 5142 + clock_phi * ULOGTOD(peer->hpoll)) { 5143 rval |= TEST11; /* distance exceeded */ 5144 } 5145 5146 /* 5147 * A loop error occurs if the remote peer is synchronized to the 5148 * local peer or if the remote peer is synchronized to the same 5149 * server as the local peer but only if the remote peer is 5150 * neither a reference clock nor an orphan. 5151 */ 5152 if (peer->stratum > 1 && local_refid(peer)) { 5153 rval |= TEST12; /* synchronization loop */ 5154 } 5155 5156 /* 5157 * An unreachable error occurs if the server is unreachable or 5158 * the noselect bit is set. 5159 */ 5160 if (!peer->reach || (peer->flags & FLAG_NOSELECT)) { 5161 rval |= TEST13; /* unreachable */ 5162 } 5163 5164 peer->flash &= ~PEER_TEST_MASK; 5165 peer->flash |= rval; 5166 return (rval); 5167 } 5168 5169 5170 /* 5171 * Find the precision of this particular machine 5172 */ 5173 #define MINSTEP 20e-9 /* minimum clock increment (s) */ 5174 #define MAXSTEP 1 /* maximum clock increment (s) */ 5175 #define MINCHANGES 12 /* minimum number of step samples */ 5176 #define MAXLOOPS ((int)(1. / MINSTEP)) /* avoid infinite loop */ 5177 5178 /* 5179 * This routine measures the system precision defined as the minimum of 5180 * a sequence of differences between successive readings of the system 5181 * clock. However, if a difference is less than MINSTEP, the clock has 5182 * been read more than once during a clock tick and the difference is 5183 * ignored. We set MINSTEP greater than zero in case something happens 5184 * like a cache miss, and to tolerate underlying system clocks which 5185 * ensure each reading is strictly greater than prior readings while 5186 * using an underlying stepping (not interpolated) clock. 5187 * 5188 * sys_tick and sys_precision represent the time to read the clock for 5189 * systems with high-precision clocks, and the tick interval or step 5190 * size for lower-precision stepping clocks. 5191 * 5192 * This routine also measures the time to read the clock on stepping 5193 * system clocks by counting the number of readings between changes of 5194 * the underlying clock. With either type of clock, the minimum time 5195 * to read the clock is saved as sys_fuzz, and used to ensure the 5196 * get_systime() readings always increase and are fuzzed below sys_fuzz. 5197 */ 5198 void 5199 measure_precision(void) 5200 { 5201 /* 5202 * With sys_fuzz set to zero, get_systime() fuzzing of low bits 5203 * is effectively disabled. trunc_os_clock is FALSE to disable 5204 * get_ostime() simulation of a low-precision system clock. 5205 */ 5206 set_sys_fuzz(0.); 5207 trunc_os_clock = FALSE; 5208 measured_tick = measure_tick_fuzz(); 5209 set_sys_tick_precision(measured_tick); 5210 msyslog(LOG_INFO, "proto: precision = %.3f usec (%d)", 5211 sys_tick * 1e6, sys_precision); 5212 if (sys_fuzz < sys_tick) { 5213 msyslog(LOG_NOTICE, "proto: fuzz beneath %.3f usec", 5214 sys_fuzz * 1e6); 5215 } 5216 } 5217 5218 5219 /* 5220 * measure_tick_fuzz() 5221 * 5222 * measures the minimum time to read the clock (stored in sys_fuzz) 5223 * and returns the tick, the larger of the minimum increment observed 5224 * between successive clock readings and the time to read the clock. 5225 */ 5226 double 5227 measure_tick_fuzz(void) 5228 { 5229 l_fp minstep; /* MINSTEP as l_fp */ 5230 l_fp val; /* current seconds fraction */ 5231 l_fp last; /* last seconds fraction */ 5232 l_fp ldiff; /* val - last */ 5233 double tick; /* computed tick value */ 5234 double diff; 5235 long repeats; 5236 long max_repeats; 5237 int changes; 5238 int i; /* log2 precision */ 5239 5240 tick = MAXSTEP; 5241 max_repeats = 0; 5242 repeats = 0; 5243 changes = 0; 5244 DTOLFP(MINSTEP, &minstep); 5245 get_systime(&last); 5246 for (i = 0; i < MAXLOOPS && changes < MINCHANGES; i++) { 5247 get_systime(&val); 5248 ldiff = val; 5249 L_SUB(&ldiff, &last); 5250 last = val; 5251 if (L_ISGT(&ldiff, &minstep)) { 5252 max_repeats = max(repeats, max_repeats); 5253 repeats = 0; 5254 changes++; 5255 LFPTOD(&ldiff, diff); 5256 tick = min(diff, tick); 5257 } else { 5258 repeats++; 5259 } 5260 } 5261 if (changes < MINCHANGES) { 5262 msyslog(LOG_ERR, "Fatal error: precision could not be measured (MINSTEP too large?)"); 5263 exit(1); 5264 } 5265 5266 if (0 == max_repeats) { 5267 set_sys_fuzz(tick); 5268 } else { 5269 set_sys_fuzz(tick / max_repeats); 5270 } 5271 5272 return tick; 5273 } 5274 5275 5276 void 5277 set_sys_tick_precision( 5278 double tick 5279 ) 5280 { 5281 int i; 5282 5283 if (tick > 1.) { 5284 msyslog(LOG_ERR, 5285 "unsupported tick %.3f > 1s ignored", tick); 5286 return; 5287 } 5288 if (tick < measured_tick) { 5289 msyslog(LOG_ERR, 5290 "proto: tick %.3f less than measured tick %.3f, ignored", 5291 tick, measured_tick); 5292 return; 5293 } else if (tick > measured_tick) { 5294 trunc_os_clock = TRUE; 5295 msyslog(LOG_NOTICE, 5296 "proto: truncating system clock to multiples of %.9f", 5297 tick); 5298 } 5299 sys_tick = tick; 5300 5301 /* 5302 * Find the nearest power of two. 5303 */ 5304 for (i = 0; tick <= 1; i--) 5305 tick *= 2; 5306 if (tick - 1 > 1 - tick / 2) 5307 i++; 5308 5309 sys_precision = (s_char)i; 5310 } 5311 5312 5313 /* 5314 * init_proto - initialize the protocol module's data 5315 */ 5316 void 5317 init_proto(void) 5318 { 5319 l_fp dummy; 5320 int i; 5321 5322 /* 5323 * Fill in the sys_* stuff. Default is don't listen to 5324 * broadcasting, require authentication. 5325 */ 5326 set_sys_leap(LEAP_NOTINSYNC); 5327 sys_stratum = STRATUM_UNSPEC; 5328 memcpy(&sys_refid, "INIT", 4); 5329 sys_peer = NULL; 5330 sys_rootdelay = 0; 5331 sys_rootdisp = 0; 5332 L_CLR(&sys_reftime); 5333 sys_jitter = 0; 5334 measure_precision(); 5335 get_systime(&dummy); 5336 sys_survivors = 0; 5337 sys_manycastserver = 0; 5338 sys_bclient = 0; 5339 sys_mclient = 0; 5340 sys_bdelay = BDELAY_DEFAULT; /*[Bug 3031] delay cutoff */ 5341 sys_authenticate = 1; 5342 sys_stattime = current_time; 5343 orphwait = current_time + sys_orphwait; 5344 proto_clr_stats(); 5345 for (i = 0; i < MAX_TTL; ++i) 5346 sys_ttl[i] = (u_char)((i * 256) / MAX_TTL); 5347 sys_ttlmax = (MAX_TTL - 1); 5348 hardpps_enable = 0; 5349 stats_control = 1; 5350 } 5351 5352 5353 /* 5354 * proto_config - configure the protocol module 5355 */ 5356 void 5357 proto_config( 5358 int item, 5359 u_long value, 5360 double dvalue, 5361 sockaddr_u *svalue 5362 ) 5363 { 5364 /* 5365 * Figure out what he wants to change, then do it 5366 */ 5367 DPRINTF(2, ("proto_config: code %d value %lu dvalue %lf\n", 5368 item, value, dvalue)); 5369 5370 switch (item) { 5371 5372 /* 5373 * enable and disable commands - arguments are Boolean. 5374 */ 5375 case PROTO_AUTHENTICATE: /* authentication (auth) */ 5376 sys_authenticate = value; 5377 break; 5378 5379 case PROTO_BROADCLIENT: /* broadcast client (bclient) */ 5380 sys_bclient = (int)value; 5381 if (!sys_bclient) 5382 io_unsetbclient(); 5383 else 5384 io_setbclient(); 5385 break; 5386 5387 #ifdef REFCLOCK 5388 case PROTO_CAL: /* refclock calibrate (calibrate) */ 5389 cal_enable = value; 5390 break; 5391 #endif /* REFCLOCK */ 5392 5393 case PROTO_KERNEL: /* kernel discipline (kernel) */ 5394 select_loop(value); 5395 break; 5396 5397 case PROTO_MONITOR: /* monitoring (monitor) */ 5398 if (value) 5399 mon_start(MON_ON); 5400 else { 5401 mon_stop(MON_ON); 5402 if (mon_enabled) 5403 msyslog(LOG_WARNING, 5404 "restrict: 'monitor' cannot be disabled while 'limited' is enabled"); 5405 } 5406 break; 5407 5408 case PROTO_NTP: /* NTP discipline (ntp) */ 5409 ntp_enable = value; 5410 break; 5411 5412 case PROTO_MODE7: /* mode7 management (ntpdc) */ 5413 ntp_mode7 = value; 5414 break; 5415 5416 case PROTO_PPS: /* PPS discipline (pps) */ 5417 hardpps_enable = value; 5418 break; 5419 5420 case PROTO_FILEGEN: /* statistics (stats) */ 5421 stats_control = value; 5422 break; 5423 5424 /* 5425 * tos command - arguments are double, sometimes cast to int 5426 */ 5427 5428 case PROTO_BCPOLLBSTEP: /* Broadcast Poll Backstep gate (bcpollbstep) */ 5429 sys_bcpollbstep = (u_char)dvalue; 5430 break; 5431 5432 case PROTO_BEACON: /* manycast beacon (beacon) */ 5433 sys_beacon = (int)dvalue; 5434 break; 5435 5436 case PROTO_BROADDELAY: /* default broadcast delay (bdelay) */ 5437 sys_bdelay = (dvalue ? dvalue : BDELAY_DEFAULT); 5438 break; 5439 5440 case PROTO_CEILING: /* stratum ceiling (ceiling) */ 5441 sys_ceiling = (int)dvalue; 5442 break; 5443 5444 case PROTO_COHORT: /* cohort switch (cohort) */ 5445 sys_cohort = (int)dvalue; 5446 break; 5447 5448 case PROTO_FLOOR: /* stratum floor (floor) */ 5449 sys_floor = (int)dvalue; 5450 break; 5451 5452 case PROTO_MAXCLOCK: /* maximum candidates (maxclock) */ 5453 sys_maxclock = (int)dvalue; 5454 break; 5455 5456 case PROTO_MAXDIST: /* select threshold (maxdist) */ 5457 sys_maxdist = dvalue; 5458 break; 5459 5460 case PROTO_CALLDELAY: /* modem call delay (mdelay) */ 5461 break; /* NOT USED */ 5462 5463 case PROTO_MINCLOCK: /* minimum candidates (minclock) */ 5464 sys_minclock = (int)dvalue; 5465 break; 5466 5467 case PROTO_MINDISP: /* minimum distance (mindist) */ 5468 sys_mindisp = dvalue; 5469 break; 5470 5471 case PROTO_MINSANE: /* minimum survivors (minsane) */ 5472 sys_minsane = (int)dvalue; 5473 break; 5474 5475 case PROTO_ORPHAN: /* orphan stratum (orphan) */ 5476 sys_orphan = (int)dvalue; 5477 break; 5478 5479 case PROTO_ORPHWAIT: /* orphan wait (orphwait) */ 5480 orphwait -= sys_orphwait; 5481 sys_orphwait = (dvalue >= 1) ? (int)dvalue : NTP_ORPHWAIT; 5482 orphwait += sys_orphwait; 5483 break; 5484 5485 /* 5486 * Miscellaneous commands 5487 */ 5488 case PROTO_MULTICAST_ADD: /* add group address */ 5489 if (svalue != NULL) 5490 io_multicast_add(svalue); 5491 sys_mclient = 1; 5492 break; 5493 5494 case PROTO_MULTICAST_DEL: /* delete group address */ 5495 if (svalue != NULL) 5496 io_multicast_del(svalue); 5497 break; 5498 5499 /* 5500 * Peer_clear Early policy choices 5501 */ 5502 5503 case PROTO_PCEDIGEST: /* Digest */ 5504 peer_clear_digest_early = value; 5505 break; 5506 5507 /* 5508 * Unpeer Early policy choices 5509 */ 5510 5511 case PROTO_UECRYPTO: /* Crypto */ 5512 unpeer_crypto_early = value; 5513 break; 5514 5515 case PROTO_UECRYPTONAK: /* Crypto_NAK */ 5516 unpeer_crypto_nak_early = value; 5517 break; 5518 5519 case PROTO_UEDIGEST: /* Digest */ 5520 unpeer_digest_early = value; 5521 break; 5522 5523 default: 5524 msyslog(LOG_NOTICE, 5525 "proto: unsupported option %d", item); 5526 } 5527 } 5528 5529 5530 /* 5531 * proto_clr_stats - clear protocol stat counters 5532 */ 5533 void 5534 proto_clr_stats(void) 5535 { 5536 sys_stattime = current_time; 5537 sys_received = 0; 5538 sys_processed = 0; 5539 sys_newversion = 0; 5540 sys_oldversion = 0; 5541 sys_declined = 0; 5542 sys_restricted = 0; 5543 sys_badlength = 0; 5544 sys_badauth = 0; 5545 sys_limitrejected = 0; 5546 sys_kodsent = 0; 5547 sys_lamport = 0; 5548 sys_tsrounding = 0; 5549 } 5550