xref: /freebsd/contrib/ntp/ntpd/ntp_crypto.c (revision ea906c4152774dff300bb26fbfc1e4188351c89a)
1 /*
2  * ntp_crypto.c - NTP version 4 public key routines
3  */
4 #ifdef HAVE_CONFIG_H
5 #include <config.h>
6 #endif
7 
8 #ifdef OPENSSL
9 #include <stdio.h>
10 #include <sys/types.h>
11 #include <sys/param.h>
12 #include <unistd.h>
13 #include <fcntl.h>
14 
15 #include "ntpd.h"
16 #include "ntp_stdlib.h"
17 #include "ntp_unixtime.h"
18 #include "ntp_string.h"
19 #include <ntp_random.h>
20 
21 #include "openssl/asn1_mac.h"
22 #include "openssl/bn.h"
23 #include "openssl/err.h"
24 #include "openssl/evp.h"
25 #include "openssl/pem.h"
26 #include "openssl/rand.h"
27 #include "openssl/x509v3.h"
28 
29 #ifdef KERNEL_PLL
30 #include "ntp_syscall.h"
31 #endif /* KERNEL_PLL */
32 
33 /*
34  * Extension field message format
35  *
36  * These are always signed and saved before sending in network byte
37  * order. They must be converted to and from host byte order for
38  * processing.
39  *
40  * +-------+-------+
41  * |   op  |  len  | <- extension pointer
42  * +-------+-------+
43  * |    assocID    |
44  * +---------------+
45  * |   timestamp   | <- value pointer
46  * +---------------+
47  * |   filestamp   |
48  * +---------------+
49  * |   value len   |
50  * +---------------+
51  * |               |
52  * =     value     =
53  * |               |
54  * +---------------+
55  * | signature len |
56  * +---------------+
57  * |               |
58  * =   signature   =
59  * |               |
60  * +---------------+
61  *
62  * The CRYPTO_RESP bit is set to 0 for requests, 1 for responses.
63  * Requests carry the association ID of the receiver; responses carry
64  * the association ID of the sender. Some messages include only the
65  * operation/length and association ID words and so have length 8
66  * octets. Ohers include the value structure and associated value and
67  * signature fields. These messages include the timestamp, filestamp,
68  * value and signature words and so have length at least 24 octets. The
69  * signature and/or value fields can be empty, in which case the
70  * respective length words are zero. An empty value with nonempty
71  * signature is syntactically valid, but semantically questionable.
72  *
73  * The filestamp represents the time when a cryptographic data file such
74  * as a public/private key pair is created. It follows every reference
75  * depending on that file and serves as a means to obsolete earlier data
76  * of the same type. The timestamp represents the time when the
77  * cryptographic data of the message were last signed. Creation of a
78  * cryptographic data file or signing a message can occur only when the
79  * creator or signor is synchronized to an authoritative source and
80  * proventicated to a trusted authority.
81  *
82  * Note there are four conditions required for server trust. First, the
83  * public key on the certificate must be verified, which involves a
84  * number of format, content and consistency checks. Next, the server
85  * identity must be confirmed by one of four schemes: private
86  * certificate, IFF scheme, GQ scheme or certificate trail hike to a
87  * self signed trusted certificate. Finally, the server signature must
88  * be verified.
89  */
90 /*
91  * Cryptodefines
92  */
93 #define TAI_1972	10	/* initial TAI offset (s) */
94 #define MAX_LEAP	100	/* max UTC leapseconds (s) */
95 #define VALUE_LEN	(6 * 4) /* min response field length */
96 #define YEAR		(60 * 60 * 24 * 365) /* seconds in year */
97 
98 /*
99  * Global cryptodata in host byte order
100  */
101 u_int32	crypto_flags = 0x0;	/* status word */
102 
103 /*
104  * Global cryptodata in network byte order
105  */
106 struct cert_info *cinfo = NULL;	/* certificate info/value */
107 struct value hostval;		/* host value */
108 struct value pubkey;		/* public key */
109 struct value tai_leap;		/* leapseconds table */
110 EVP_PKEY *iffpar_pkey = NULL;	/* IFF parameters */
111 EVP_PKEY *gqpar_pkey = NULL;	/* GQ parameters */
112 EVP_PKEY *mvpar_pkey = NULL;	/* MV parameters */
113 char	*iffpar_file = NULL; /* IFF parameters file */
114 char	*gqpar_file = NULL;	/* GQ parameters file */
115 char	*mvpar_file = NULL;	/* MV parameters file */
116 
117 /*
118  * Private cryptodata in host byte order
119  */
120 static char *passwd = NULL;	/* private key password */
121 static EVP_PKEY *host_pkey = NULL; /* host key */
122 static EVP_PKEY *sign_pkey = NULL; /* sign key */
123 static const EVP_MD *sign_digest = NULL; /* sign digest */
124 static u_int sign_siglen;	/* sign key length */
125 static char *rand_file = NULL;	/* random seed file */
126 static char *host_file = NULL;	/* host key file */
127 static char *sign_file = NULL;	/* sign key file */
128 static char *cert_file = NULL;	/* certificate file */
129 static char *leap_file = NULL;	/* leapseconds file */
130 static tstamp_t if_fstamp = 0;	/* IFF filestamp */
131 static tstamp_t gq_fstamp = 0;	/* GQ file stamp */
132 static tstamp_t mv_fstamp = 0;	/* MV filestamp */
133 static u_int ident_scheme = 0;	/* server identity scheme */
134 
135 /*
136  * Cryptotypes
137  */
138 static	int	crypto_verify	P((struct exten *, struct value *,
139 				    struct peer *));
140 static	int	crypto_encrypt	P((struct exten *, struct value *,
141 				    keyid_t *));
142 static	int	crypto_alice	P((struct peer *, struct value *));
143 static	int	crypto_alice2	P((struct peer *, struct value *));
144 static	int	crypto_alice3	P((struct peer *, struct value *));
145 static	int	crypto_bob	P((struct exten *, struct value *));
146 static	int	crypto_bob2	P((struct exten *, struct value *));
147 static	int	crypto_bob3	P((struct exten *, struct value *));
148 static	int	crypto_iff	P((struct exten *, struct peer *));
149 static	int	crypto_gq	P((struct exten *, struct peer *));
150 static	int	crypto_mv	P((struct exten *, struct peer *));
151 static	u_int	crypto_send	P((struct exten *, struct value *));
152 static	tstamp_t crypto_time	P((void));
153 static	u_long	asn2ntp		P((ASN1_TIME *));
154 static	struct cert_info *cert_parse P((u_char *, u_int, tstamp_t));
155 static	int	cert_sign	P((struct exten *, struct value *));
156 static	int	cert_valid	P((struct cert_info *, EVP_PKEY *));
157 static	int	cert_install	P((struct exten *, struct peer *));
158 static	void	cert_free	P((struct cert_info *));
159 static	EVP_PKEY *crypto_key	P((char *, tstamp_t *));
160 static	int	bighash		P((BIGNUM *, BIGNUM *));
161 static	struct cert_info *crypto_cert P((char *));
162 static	void	crypto_tai	P((char *));
163 
164 #ifdef SYS_WINNT
165 int
166 readlink(char * link, char * file, int len) {
167 	return (-1);
168 }
169 #endif
170 
171 /*
172  * session_key - generate session key
173  *
174  * This routine generates a session key from the source address,
175  * destination address, key ID and private value. The value of the
176  * session key is the MD5 hash of these values, while the next key ID is
177  * the first four octets of the hash.
178  *
179  * Returns the next key ID
180  */
181 keyid_t
182 session_key(
183 	struct sockaddr_storage *srcadr, /* source address */
184 	struct sockaddr_storage *dstadr, /* destination address */
185 	keyid_t	keyno,		/* key ID */
186 	keyid_t	private,	/* private value */
187 	u_long	lifetime 	/* key lifetime */
188 	)
189 {
190 	EVP_MD_CTX ctx;		/* message digest context */
191 	u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */
192 	keyid_t	keyid;		/* key identifer */
193 	u_int32	header[10];	/* data in network byte order */
194 	u_int	hdlen, len;
195 
196 	if (!dstadr)
197 		return 0;
198 
199 	/*
200 	 * Generate the session key and key ID. If the lifetime is
201 	 * greater than zero, install the key and call it trusted.
202 	 */
203 	hdlen = 0;
204 	switch(srcadr->ss_family) {
205 	case AF_INET:
206 		header[0] = ((struct sockaddr_in *)srcadr)->sin_addr.s_addr;
207 		header[1] = ((struct sockaddr_in *)dstadr)->sin_addr.s_addr;
208 		header[2] = htonl(keyno);
209 		header[3] = htonl(private);
210 		hdlen = 4 * sizeof(u_int32);
211 		break;
212 
213 	case AF_INET6:
214 		memcpy(&header[0], &GET_INADDR6(*srcadr),
215 		    sizeof(struct in6_addr));
216 		memcpy(&header[4], &GET_INADDR6(*dstadr),
217 		    sizeof(struct in6_addr));
218 		header[8] = htonl(keyno);
219 		header[9] = htonl(private);
220 		hdlen = 10 * sizeof(u_int32);
221 		break;
222 	}
223 	EVP_DigestInit(&ctx, EVP_md5());
224 	EVP_DigestUpdate(&ctx, (u_char *)header, hdlen);
225 	EVP_DigestFinal(&ctx, dgst, &len);
226 	memcpy(&keyid, dgst, 4);
227 	keyid = ntohl(keyid);
228 	if (lifetime != 0) {
229 		MD5auth_setkey(keyno, dgst, len);
230 		authtrust(keyno, lifetime);
231 	}
232 #ifdef DEBUG
233 	if (debug > 1)
234 		printf(
235 		    "session_key: %s > %s %08x %08x hash %08x life %lu\n",
236 		    stoa(srcadr), stoa(dstadr), keyno,
237 		    private, keyid, lifetime);
238 #endif
239 	return (keyid);
240 }
241 
242 
243 /*
244  * make_keylist - generate key list
245  *
246  * Returns
247  * XEVNT_OK	success
248  * XEVNT_PER	host certificate expired
249  *
250  * This routine constructs a pseudo-random sequence by repeatedly
251  * hashing the session key starting from a given source address,
252  * destination address, private value and the next key ID of the
253  * preceeding session key. The last entry on the list is saved along
254  * with its sequence number and public signature.
255  */
256 int
257 make_keylist(
258 	struct peer *peer,	/* peer structure pointer */
259 	struct interface *dstadr /* interface */
260 	)
261 {
262 	EVP_MD_CTX ctx;		/* signature context */
263 	tstamp_t tstamp;	/* NTP timestamp */
264 	struct autokey *ap;	/* autokey pointer */
265 	struct value *vp;	/* value pointer */
266 	keyid_t	keyid = 0;	/* next key ID */
267 	keyid_t	cookie;		/* private value */
268 	u_long	lifetime;
269 	u_int	len, mpoll;
270 	int	i;
271 
272 	if (!dstadr)
273 		return XEVNT_OK;
274 
275 	/*
276 	 * Allocate the key list if necessary.
277 	 */
278 	tstamp = crypto_time();
279 	if (peer->keylist == NULL)
280 		peer->keylist = emalloc(sizeof(keyid_t) *
281 		    NTP_MAXSESSION);
282 
283 	/*
284 	 * Generate an initial key ID which is unique and greater than
285 	 * NTP_MAXKEY.
286 	 */
287 	while (1) {
288 		keyid = (ntp_random() + NTP_MAXKEY + 1) & ((1 <<
289 		    sizeof(keyid_t)) - 1);
290 		if (authhavekey(keyid))
291 			continue;
292 		break;
293 	}
294 
295 	/*
296 	 * Generate up to NTP_MAXSESSION session keys. Stop if the
297 	 * next one would not be unique or not a session key ID or if
298 	 * it would expire before the next poll. The private value
299 	 * included in the hash is zero if broadcast mode, the peer
300 	 * cookie if client mode or the host cookie if symmetric modes.
301 	 */
302 	mpoll = 1 << min(peer->ppoll, peer->hpoll);
303 	lifetime = min(sys_automax, NTP_MAXSESSION * mpoll);
304 	if (peer->hmode == MODE_BROADCAST)
305 		cookie = 0;
306 	else
307 		cookie = peer->pcookie;
308 	for (i = 0; i < NTP_MAXSESSION; i++) {
309 		peer->keylist[i] = keyid;
310 		peer->keynumber = i;
311 		keyid = session_key(&dstadr->sin, &peer->srcadr, keyid,
312 		    cookie, lifetime);
313 		lifetime -= mpoll;
314 		if (auth_havekey(keyid) || keyid <= NTP_MAXKEY ||
315 		    lifetime <= mpoll)
316 			break;
317 	}
318 
319 	/*
320 	 * Save the last session key ID, sequence number and timestamp,
321 	 * then sign these values for later retrieval by the clients. Be
322 	 * careful not to use invalid key media. Use the public values
323 	 * timestamp as filestamp.
324 	 */
325 	vp = &peer->sndval;
326 	if (vp->ptr == NULL)
327 		vp->ptr = emalloc(sizeof(struct autokey));
328 	ap = (struct autokey *)vp->ptr;
329 	ap->seq = htonl(peer->keynumber);
330 	ap->key = htonl(keyid);
331 	vp->tstamp = htonl(tstamp);
332 	vp->fstamp = hostval.tstamp;
333 	vp->vallen = htonl(sizeof(struct autokey));
334 	vp->siglen = 0;
335 	if (tstamp != 0) {
336 		if (tstamp < cinfo->first || tstamp > cinfo->last)
337 			return (XEVNT_PER);
338 
339 		if (vp->sig == NULL)
340 			vp->sig = emalloc(sign_siglen);
341 		EVP_SignInit(&ctx, sign_digest);
342 		EVP_SignUpdate(&ctx, (u_char *)vp, 12);
343 		EVP_SignUpdate(&ctx, vp->ptr, sizeof(struct autokey));
344 		if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
345 			vp->siglen = htonl(len);
346 		else
347 			msyslog(LOG_ERR, "make_keys %s\n",
348 			    ERR_error_string(ERR_get_error(), NULL));
349 		peer->flags |= FLAG_ASSOC;
350 	}
351 #ifdef DEBUG
352 	if (debug)
353 		printf("make_keys: %d %08x %08x ts %u fs %u poll %d\n",
354 		    ntohl(ap->seq), ntohl(ap->key), cookie,
355 		    ntohl(vp->tstamp), ntohl(vp->fstamp), peer->hpoll);
356 #endif
357 	return (XEVNT_OK);
358 }
359 
360 
361 /*
362  * crypto_recv - parse extension fields
363  *
364  * This routine is called when the packet has been matched to an
365  * association and passed sanity, format and MAC checks. We believe the
366  * extension field values only if the field has proper format and
367  * length, the timestamp and filestamp are valid and the signature has
368  * valid length and is verified. There are a few cases where some values
369  * are believed even if the signature fails, but only if the proventic
370  * bit is not set.
371  */
372 int
373 crypto_recv(
374 	struct peer *peer,	/* peer structure pointer */
375 	struct recvbuf *rbufp	/* packet buffer pointer */
376 	)
377 {
378 	const EVP_MD *dp;	/* message digest algorithm */
379 	u_int32	*pkt;		/* receive packet pointer */
380 	struct autokey *ap, *bp; /* autokey pointer */
381 	struct exten *ep, *fp;	/* extension pointers */
382 	int	has_mac;	/* length of MAC field */
383 	int	authlen;	/* offset of MAC field */
384 	associd_t associd;	/* association ID */
385 	tstamp_t tstamp = 0;	/* timestamp */
386 	tstamp_t fstamp = 0;	/* filestamp */
387 	u_int	len;		/* extension field length */
388 	u_int	code;		/* extension field opcode */
389 	u_int	vallen = 0;	/* value length */
390 	X509	*cert;		/* X509 certificate */
391 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
392 	keyid_t	cookie;		/* crumbles */
393 	int	hismode;	/* packet mode */
394 	int	rval = XEVNT_OK;
395 	u_char	*ptr;
396 	u_int32 temp32;
397 
398 	/*
399 	 * Initialize. Note that the packet has already been checked for
400 	 * valid format and extension field lengths. First extract the
401 	 * field length, command code and association ID in host byte
402 	 * order. These are used with all commands and modes. Then check
403 	 * the version number, which must be 2, and length, which must
404 	 * be at least 8 for requests and VALUE_LEN (24) for responses.
405 	 * Packets that fail either test sink without a trace. The
406 	 * association ID is saved only if nonzero.
407 	 */
408 	authlen = LEN_PKT_NOMAC;
409 	hismode = (int)PKT_MODE((&rbufp->recv_pkt)->li_vn_mode);
410 	while ((has_mac = rbufp->recv_length - authlen) > MAX_MAC_LEN) {
411 		pkt = (u_int32 *)&rbufp->recv_pkt + authlen / 4;
412 		ep = (struct exten *)pkt;
413 		code = ntohl(ep->opcode) & 0xffff0000;
414 		len = ntohl(ep->opcode) & 0x0000ffff;
415 		associd = (associd_t) ntohl(pkt[1]);
416 		rval = XEVNT_OK;
417 #ifdef DEBUG
418 		if (debug)
419 			printf(
420 			    "crypto_recv: flags 0x%x ext offset %d len %u code 0x%x assocID %d\n",
421 			    peer->crypto, authlen, len, code >> 16,
422 			    associd);
423 #endif
424 
425 		/*
426 		 * Check version number and field length. If bad,
427 		 * quietly ignore the packet.
428 		 */
429 		if (((code >> 24) & 0x3f) != CRYPTO_VN || len < 8) {
430 			sys_unknownversion++;
431 			code |= CRYPTO_ERROR;
432 		}
433 
434 		/*
435 		 * Little vulnerability bandage here. If a perp tosses a
436 		 * fake association ID over the fence, we better toss it
437 		 * out. Only the first one counts.
438 		 */
439 		if (code & CRYPTO_RESP) {
440 			if (peer->assoc == 0)
441 				peer->assoc = associd;
442 			else if (peer->assoc != associd)
443 				code |= CRYPTO_ERROR;
444 		}
445 		if (len >= VALUE_LEN) {
446 			tstamp = ntohl(ep->tstamp);
447 			fstamp = ntohl(ep->fstamp);
448 			vallen = ntohl(ep->vallen);
449 		}
450 		switch (code) {
451 
452 		/*
453 		 * Install status word, host name, signature scheme and
454 		 * association ID. In OpenSSL the signature algorithm is
455 		 * bound to the digest algorithm, so the NID completely
456 		 * defines the signature scheme. Note the request and
457 		 * response are identical, but neither is validated by
458 		 * signature. The request is processed here only in
459 		 * symmetric modes. The server name field might be
460 		 * useful to implement access controls in future.
461 		 */
462 		case CRYPTO_ASSOC:
463 
464 			/*
465 			 * If the machine is running when this message
466 			 * arrives, the other fellow has reset and so
467 			 * must we. Otherwise, pass the extension field
468 			 * to the transmit side.
469 			 */
470 			if (peer->crypto) {
471 				rval = XEVNT_ERR;
472 				break;
473 			}
474 			fp = emalloc(len);
475 			memcpy(fp, ep, len);
476 			temp32 = CRYPTO_RESP;
477 			fp->opcode |= htonl(temp32);
478 			peer->cmmd = fp;
479 			/* fall through */
480 
481 		case CRYPTO_ASSOC | CRYPTO_RESP:
482 
483 			/*
484 			 * Discard the message if it has already been
485 			 * stored or the message has been amputated.
486 			 */
487 			if (peer->crypto)
488 				break;
489 
490 			if (vallen == 0 || vallen > MAXHOSTNAME ||
491 			    len < VALUE_LEN + vallen) {
492 				rval = XEVNT_LEN;
493 				break;
494 			}
495 
496 			/*
497 			 * Check the identity schemes are compatible. If
498 			 * the client has PC, the server must have PC,
499 			 * in which case the server public key and
500 			 * identity are presumed valid, so we skip the
501 			 * certificate and identity exchanges and move
502 			 * immediately to the cookie exchange which
503 			 * confirms the server signature.
504 			 */
505 #ifdef DEBUG
506 			if (debug)
507 				printf(
508 				    "crypto_recv: ident host 0x%x server 0x%x\n",
509 				    crypto_flags, fstamp);
510 #endif
511 			temp32 = (crypto_flags | ident_scheme) &
512 			    fstamp & CRYPTO_FLAG_MASK;
513 			if (crypto_flags & CRYPTO_FLAG_PRIV) {
514 				if (!(fstamp & CRYPTO_FLAG_PRIV)) {
515 					rval = XEVNT_KEY;
516 					break;
517 
518 				} else {
519 					fstamp |= CRYPTO_FLAG_VALID |
520 					    CRYPTO_FLAG_VRFY |
521 					    CRYPTO_FLAG_SIGN;
522 				}
523 			/*
524 			 * In symmetric modes it is an error if either
525 			 * peer requests identity and the other peer
526 			 * does not support it.
527 			 */
528 			} else if ((hismode == MODE_ACTIVE || hismode ==
529 			    MODE_PASSIVE) && ((crypto_flags | fstamp) &
530 			    CRYPTO_FLAG_MASK) && !temp32) {
531 				rval = XEVNT_KEY;
532 				break;
533 			/*
534 			 * It is an error if the client requests
535 			 * identity and the server does not support it.
536 			 */
537 			} else if (hismode == MODE_CLIENT && (fstamp &
538 			    CRYPTO_FLAG_MASK) && !temp32) {
539 				rval = XEVNT_KEY;
540 				break;
541 			}
542 
543 			/*
544 			 * Otherwise, the identity scheme(s) are those
545 			 * that both client and server support.
546 			 */
547 			fstamp = temp32 | (fstamp & ~CRYPTO_FLAG_MASK);
548 
549 			/*
550 			 * Discard the message if the signature digest
551 			 * NID is not supported.
552 			 */
553 			temp32 = (fstamp >> 16) & 0xffff;
554 			dp =
555 			    (const EVP_MD *)EVP_get_digestbynid(temp32);
556 			if (dp == NULL) {
557 				rval = XEVNT_MD;
558 				break;
559 			}
560 
561 			/*
562 			 * Save status word, host name and message
563 			 * digest/signature type.
564 			 */
565 			peer->crypto = fstamp;
566 			peer->digest = dp;
567 			peer->subject = emalloc(vallen + 1);
568 			memcpy(peer->subject, ep->pkt, vallen);
569 			peer->subject[vallen] = '\0';
570 			peer->issuer = emalloc(vallen + 1);
571 			strcpy(peer->issuer, peer->subject);
572 			temp32 = (fstamp >> 16) & 0xffff;
573 			sprintf(statstr,
574 			    "flags 0x%x host %s signature %s", fstamp,
575 			    peer->subject, OBJ_nid2ln(temp32));
576 			record_crypto_stats(&peer->srcadr, statstr);
577 #ifdef DEBUG
578 			if (debug)
579 				printf("crypto_recv: %s\n", statstr);
580 #endif
581 			break;
582 
583 		/*
584 		 * Decode X509 certificate in ASN.1 format and extract
585 		 * the data containing, among other things, subject
586 		 * name and public key. In the default identification
587 		 * scheme, the certificate trail is followed to a self
588 		 * signed trusted certificate.
589 		 */
590 		case CRYPTO_CERT | CRYPTO_RESP:
591 
592 			/*
593 			 * Discard the message if invalid.
594 			 */
595 			if ((rval = crypto_verify(ep, NULL, peer)) !=
596 			    XEVNT_OK)
597 				break;
598 
599 			/*
600 			 * Scan the certificate list to delete old
601 			 * versions and link the newest version first on
602 			 * the list.
603 			 */
604 			if ((rval = cert_install(ep, peer)) != XEVNT_OK)
605 				break;
606 
607 			/*
608 			 * If we snatch the certificate before the
609 			 * server certificate has been signed by its
610 			 * server, it will be self signed. When it is,
611 			 * we chase the certificate issuer, which the
612 			 * server has, and keep going until a self
613 			 * signed trusted certificate is found. Be sure
614 			 * to update the issuer field, since it may
615 			 * change.
616 			 */
617 			if (peer->issuer != NULL)
618 				free(peer->issuer);
619 			peer->issuer = emalloc(strlen(cinfo->issuer) +
620 			    1);
621 			strcpy(peer->issuer, cinfo->issuer);
622 
623 			/*
624 			 * We plug in the public key and lifetime from
625 			 * the first certificate received. However, note
626 			 * that this certificate might not be signed by
627 			 * the server, so we can't check the
628 			 * signature/digest NID.
629 			 */
630 			if (peer->pkey == NULL) {
631 				ptr = (u_char *)cinfo->cert.ptr;
632 				cert = d2i_X509(NULL, &ptr,
633 				    ntohl(cinfo->cert.vallen));
634 				peer->pkey = X509_get_pubkey(cert);
635 				X509_free(cert);
636 			}
637 			peer->flash &= ~TEST8;
638 			temp32 = cinfo->nid;
639 			sprintf(statstr, "cert %s 0x%x %s (%u) fs %u",
640 			    cinfo->subject, cinfo->flags,
641 			    OBJ_nid2ln(temp32), temp32,
642 			    ntohl(ep->fstamp));
643 			record_crypto_stats(&peer->srcadr, statstr);
644 #ifdef DEBUG
645 			if (debug)
646 				printf("crypto_recv: %s\n", statstr);
647 #endif
648 			break;
649 
650 		/*
651 		 * Schnorr (IFF)identity scheme. This scheme is designed
652 		 * for use with shared secret group keys and where the
653 		 * certificate may be generated by a third party. The
654 		 * client sends a challenge to the server, which
655 		 * performs a calculation and returns the result. A
656 		 * positive result is possible only if both client and
657 		 * server contain the same secret group key.
658 		 */
659 		case CRYPTO_IFF | CRYPTO_RESP:
660 
661 			/*
662 			 * Discard the message if invalid or certificate
663 			 * trail not trusted.
664 			 */
665 			if (!(peer->crypto & CRYPTO_FLAG_VALID)) {
666 				rval = XEVNT_ERR;
667 				break;
668 			}
669 			if ((rval = crypto_verify(ep, NULL, peer)) !=
670 			    XEVNT_OK)
671 				break;
672 
673 			/*
674 			 * If the the challenge matches the response,
675 			 * the certificate public key, as well as the
676 			 * server public key, signatyre and identity are
677 			 * all verified at the same time. The server is
678 			 * declared trusted, so we skip further
679 			 * certificate stages and move immediately to
680 			 * the cookie stage.
681 			 */
682 			if ((rval = crypto_iff(ep, peer)) != XEVNT_OK)
683 				break;
684 
685 			peer->crypto |= CRYPTO_FLAG_VRFY |
686 			    CRYPTO_FLAG_PROV;
687 			peer->flash &= ~TEST8;
688 			sprintf(statstr, "iff fs %u",
689 			    ntohl(ep->fstamp));
690 			record_crypto_stats(&peer->srcadr, statstr);
691 #ifdef DEBUG
692 			if (debug)
693 				printf("crypto_recv: %s\n", statstr);
694 #endif
695 			break;
696 
697 		/*
698 		 * Guillou-Quisquater (GQ) identity scheme. This scheme
699 		 * is designed for use with public certificates carrying
700 		 * the GQ public key in an extension field. The client
701 		 * sends a challenge to the server, which performs a
702 		 * calculation and returns the result. A positive result
703 		 * is possible only if both client and server contain
704 		 * the same group key and the server has the matching GQ
705 		 * private key.
706 		 */
707 		case CRYPTO_GQ | CRYPTO_RESP:
708 
709 			/*
710 			 * Discard the message if invalid or certificate
711 			 * trail not trusted.
712 			 */
713 			if (!(peer->crypto & CRYPTO_FLAG_VALID)) {
714 				rval = XEVNT_ERR;
715 				break;
716 			}
717 			if ((rval = crypto_verify(ep, NULL, peer)) !=
718 			    XEVNT_OK)
719 				break;
720 
721 			/*
722 			 * If the the challenge matches the response,
723 			 * the certificate public key, as well as the
724 			 * server public key, signatyre and identity are
725 			 * all verified at the same time. The server is
726 			 * declared trusted, so we skip further
727 			 * certificate stages and move immediately to
728 			 * the cookie stage.
729 			 */
730 			if ((rval = crypto_gq(ep, peer)) != XEVNT_OK)
731 				break;
732 
733 			peer->crypto |= CRYPTO_FLAG_VRFY |
734 			    CRYPTO_FLAG_PROV;
735 			peer->flash &= ~TEST8;
736 			sprintf(statstr, "gq fs %u",
737 			    ntohl(ep->fstamp));
738 			record_crypto_stats(&peer->srcadr, statstr);
739 #ifdef DEBUG
740 			if (debug)
741 				printf("crypto_recv: %s\n", statstr);
742 #endif
743 			break;
744 
745 		/*
746 		 * MV
747 		 */
748 		case CRYPTO_MV | CRYPTO_RESP:
749 
750 			/*
751 			 * Discard the message if invalid or certificate
752 			 * trail not trusted.
753 			 */
754 			if (!(peer->crypto & CRYPTO_FLAG_VALID)) {
755 				rval = XEVNT_ERR;
756 				break;
757 			}
758 			if ((rval = crypto_verify(ep, NULL, peer)) !=
759 			    XEVNT_OK)
760 				break;
761 
762 			/*
763 			 * If the the challenge matches the response,
764 			 * the certificate public key, as well as the
765 			 * server public key, signatyre and identity are
766 			 * all verified at the same time. The server is
767 			 * declared trusted, so we skip further
768 			 * certificate stages and move immediately to
769 			 * the cookie stage.
770 			 */
771 			if ((rval = crypto_mv(ep, peer)) != XEVNT_OK)
772 				break;
773 
774 			peer->crypto |= CRYPTO_FLAG_VRFY |
775 			    CRYPTO_FLAG_PROV;
776 			peer->flash &= ~TEST8;
777 			sprintf(statstr, "mv fs %u",
778 			    ntohl(ep->fstamp));
779 			record_crypto_stats(&peer->srcadr, statstr);
780 #ifdef DEBUG
781 			if (debug)
782 				printf("crypto_recv: %s\n", statstr);
783 #endif
784 			break;
785 
786 		/*
787 		 * Cookie request in symmetric modes. Roll a random
788 		 * cookie and install in symmetric mode. Encrypt for the
789 		 * response, which is transmitted later.
790 		 */
791 		case CRYPTO_COOK:
792 
793 			/*
794 			 * Discard the message if invalid or certificate
795 			 * trail not trusted.
796 			 */
797 			if (!(peer->crypto & CRYPTO_FLAG_VALID)) {
798 				rval = XEVNT_ERR;
799 				break;
800 			}
801 			if ((rval = crypto_verify(ep, NULL, peer)) !=
802 			    XEVNT_OK)
803 				break;
804 
805 			/*
806 			 * Pass the extension field to the transmit
807 			 * side. If already agreed, walk away.
808 			 */
809 			fp = emalloc(len);
810 			memcpy(fp, ep, len);
811 			temp32 = CRYPTO_RESP;
812 			fp->opcode |= htonl(temp32);
813 			peer->cmmd = fp;
814 			if (peer->crypto & CRYPTO_FLAG_AGREE) {
815 				peer->flash &= ~TEST8;
816 				break;
817 			}
818 
819 			/*
820 			 * Install cookie values and light the cookie
821 			 * bit. The transmit side will pick up and
822 			 * encrypt it for the response.
823 			 */
824 			key_expire(peer);
825 			peer->cookval.tstamp = ep->tstamp;
826 			peer->cookval.fstamp = ep->fstamp;
827 			RAND_bytes((u_char *)&peer->pcookie, 4);
828 			peer->crypto &= ~CRYPTO_FLAG_AUTO;
829 			peer->crypto |= CRYPTO_FLAG_AGREE;
830 			peer->flash &= ~TEST8;
831 			sprintf(statstr, "cook %x ts %u fs %u",
832 			    peer->pcookie, ntohl(ep->tstamp),
833 			    ntohl(ep->fstamp));
834 			record_crypto_stats(&peer->srcadr, statstr);
835 #ifdef DEBUG
836 			if (debug)
837 				printf("crypto_recv: %s\n", statstr);
838 #endif
839 			break;
840 
841 		/*
842 		 * Cookie response in client and symmetric modes. If the
843 		 * cookie bit is set, the working cookie is the EXOR of
844 		 * the current and new values.
845 		 */
846 		case CRYPTO_COOK | CRYPTO_RESP:
847 
848 			/*
849 			 * Discard the message if invalid or identity
850 			 * not confirmed or signature not verified with
851 			 * respect to the cookie values.
852 			 */
853 			if (!(peer->crypto & CRYPTO_FLAG_VRFY)) {
854 				rval = XEVNT_ERR;
855 				break;
856 			}
857 			if ((rval = crypto_verify(ep, &peer->cookval,
858 			    peer)) != XEVNT_OK)
859 				break;
860 
861 			/*
862 			 * Decrypt the cookie, hunting all the time for
863 			 * errors.
864 			 */
865 			if (vallen == (u_int) EVP_PKEY_size(host_pkey)) {
866 				RSA_private_decrypt(vallen,
867 				    (u_char *)ep->pkt,
868 				    (u_char *)&temp32,
869 				    host_pkey->pkey.rsa,
870 				    RSA_PKCS1_OAEP_PADDING);
871 				cookie = ntohl(temp32);
872 			} else {
873 				rval = XEVNT_CKY;
874 				break;
875 			}
876 
877 			/*
878 			 * Install cookie values and light the cookie
879 			 * bit. If this is not broadcast client mode, we
880 			 * are done here.
881 			 */
882 			key_expire(peer);
883 			peer->cookval.tstamp = ep->tstamp;
884 			peer->cookval.fstamp = ep->fstamp;
885 			if (peer->crypto & CRYPTO_FLAG_AGREE)
886 				peer->pcookie ^= cookie;
887 			else
888 				peer->pcookie = cookie;
889 			if (peer->hmode == MODE_CLIENT &&
890 			    !(peer->cast_flags & MDF_BCLNT))
891 				peer->crypto |= CRYPTO_FLAG_AUTO;
892 			else
893 				peer->crypto &= ~CRYPTO_FLAG_AUTO;
894 			peer->crypto |= CRYPTO_FLAG_AGREE;
895 			peer->flash &= ~TEST8;
896 			sprintf(statstr, "cook %x ts %u fs %u",
897 			    peer->pcookie, ntohl(ep->tstamp),
898 			    ntohl(ep->fstamp));
899 			record_crypto_stats(&peer->srcadr, statstr);
900 #ifdef DEBUG
901 			if (debug)
902 				printf("crypto_recv: %s\n", statstr);
903 #endif
904 			break;
905 
906 		/*
907 		 * Install autokey values in broadcast client and
908 		 * symmetric modes. We have to do this every time the
909 		 * sever/peer cookie changes or a new keylist is
910 		 * rolled. Ordinarily, this is automatic as this message
911 		 * is piggybacked on the first NTP packet sent upon
912 		 * either of these events. Note that a broadcast client
913 		 * or symmetric peer can receive this response without a
914 		 * matching request.
915 		 */
916 		case CRYPTO_AUTO | CRYPTO_RESP:
917 
918 			/*
919 			 * Discard the message if invalid or identity
920 			 * not confirmed or signature not verified with
921 			 * respect to the receive autokey values.
922 			 */
923 			if (!(peer->crypto & CRYPTO_FLAG_VRFY)) {
924 				rval = XEVNT_ERR;
925 				break;
926 			}
927 			if ((rval = crypto_verify(ep, &peer->recval,
928 			    peer)) != XEVNT_OK)
929 				break;
930 
931 			/*
932 			 * Install autokey values and light the
933 			 * autokey bit. This is not hard.
934 			 */
935 			if (peer->recval.ptr == NULL)
936 				peer->recval.ptr =
937 				    emalloc(sizeof(struct autokey));
938 			bp = (struct autokey *)peer->recval.ptr;
939 			peer->recval.tstamp = ep->tstamp;
940 			peer->recval.fstamp = ep->fstamp;
941 			ap = (struct autokey *)ep->pkt;
942 			bp->seq = ntohl(ap->seq);
943 			bp->key = ntohl(ap->key);
944 			peer->pkeyid = bp->key;
945 			peer->crypto |= CRYPTO_FLAG_AUTO;
946 			peer->flash &= ~TEST8;
947 			sprintf(statstr,
948 			    "auto seq %d key %x ts %u fs %u", bp->seq,
949 			    bp->key, ntohl(ep->tstamp),
950 			    ntohl(ep->fstamp));
951 			record_crypto_stats(&peer->srcadr, statstr);
952 #ifdef DEBUG
953 			if (debug)
954 				printf("crypto_recv: %s\n", statstr);
955 #endif
956 			break;
957 
958 		/*
959 		 * X509 certificate sign response. Validate the
960 		 * certificate signed by the server and install. Later
961 		 * this can be provided to clients of this server in
962 		 * lieu of the self signed certificate in order to
963 		 * validate the public key.
964 		 */
965 		case CRYPTO_SIGN | CRYPTO_RESP:
966 
967 			/*
968 			 * Discard the message if invalid or not
969 			 * proventic.
970 			 */
971 			if (!(peer->crypto & CRYPTO_FLAG_PROV)) {
972 				rval = XEVNT_ERR;
973 				break;
974 			}
975 			if ((rval = crypto_verify(ep, NULL, peer)) !=
976 			    XEVNT_OK)
977 				break;
978 
979 			/*
980 			 * Scan the certificate list to delete old
981 			 * versions and link the newest version first on
982 			 * the list.
983 			 */
984 			if ((rval = cert_install(ep, peer)) != XEVNT_OK)
985 				break;
986 
987 			peer->crypto |= CRYPTO_FLAG_SIGN;
988 			peer->flash &= ~TEST8;
989 			temp32 = cinfo->nid;
990 			sprintf(statstr, "sign %s 0x%x %s (%u) fs %u",
991 			    cinfo->issuer, cinfo->flags,
992 			    OBJ_nid2ln(temp32), temp32,
993 			    ntohl(ep->fstamp));
994 			record_crypto_stats(&peer->srcadr, statstr);
995 #ifdef DEBUG
996 			if (debug)
997 				printf("crypto_recv: %s\n", statstr);
998 #endif
999 			break;
1000 
1001 		/*
1002 		 * Install leapseconds table in symmetric modes. This
1003 		 * table is proventicated to the NIST primary servers,
1004 		 * either by copying the file containing the table from
1005 		 * a NIST server to a trusted server or directly using
1006 		 * this protocol. While the entire table is installed at
1007 		 * the server, presently only the current TAI offset is
1008 		 * provided via the kernel to other applications.
1009 		 */
1010 		case CRYPTO_TAI:
1011 
1012 			/*
1013 			 * Discard the message if invalid.
1014 			 */
1015 			if ((rval = crypto_verify(ep, NULL, peer)) !=
1016 			    XEVNT_OK)
1017 				break;
1018 
1019 			/*
1020 			 * Pass the extension field to the transmit
1021 			 * side. Continue below if a leapseconds table
1022 			 * accompanies the message.
1023 			 */
1024 			fp = emalloc(len);
1025 			memcpy(fp, ep, len);
1026 			temp32 = CRYPTO_RESP;
1027 			fp->opcode |= htonl(temp32);
1028 			peer->cmmd = fp;
1029 			if (len <= VALUE_LEN) {
1030 				peer->flash &= ~TEST8;
1031 				break;
1032 			}
1033 			/* fall through */
1034 
1035 		case CRYPTO_TAI | CRYPTO_RESP:
1036 
1037 			/*
1038 			 * If this is a response, discard the message if
1039 			 * signature not verified with respect to the
1040 			 * leapsecond table values.
1041 			 */
1042 			if (peer->cmmd == NULL) {
1043 				if ((rval = crypto_verify(ep,
1044 				    &peer->tai_leap, peer)) != XEVNT_OK)
1045 					break;
1046 			}
1047 
1048 			/*
1049 			 * Initialize peer variables with latest update.
1050 			 */
1051 			peer->tai_leap.tstamp = ep->tstamp;
1052 			peer->tai_leap.fstamp = ep->fstamp;
1053 			peer->tai_leap.vallen = ep->vallen;
1054 
1055 			/*
1056 			 * Install the new table if there is no stored
1057 			 * table or the new table is more recent than
1058 			 * the stored table. Since a filestamp may have
1059 			 * changed, recompute the signatures.
1060 			 */
1061 			if (ntohl(peer->tai_leap.fstamp) >
1062 			    ntohl(tai_leap.fstamp)) {
1063 				tai_leap.fstamp = ep->fstamp;
1064 				tai_leap.vallen = ep->vallen;
1065 				if (tai_leap.ptr != NULL)
1066 					free(tai_leap.ptr);
1067 				tai_leap.ptr = emalloc(vallen);
1068 				memcpy(tai_leap.ptr, ep->pkt, vallen);
1069 				crypto_update();
1070 			}
1071 			crypto_flags |= CRYPTO_FLAG_TAI;
1072 			peer->crypto |= CRYPTO_FLAG_LEAP;
1073 			peer->flash &= ~TEST8;
1074 			sprintf(statstr, "leap %u ts %u fs %u", vallen,
1075 			    ntohl(ep->tstamp), ntohl(ep->fstamp));
1076 			record_crypto_stats(&peer->srcadr, statstr);
1077 #ifdef DEBUG
1078 			if (debug)
1079 				printf("crypto_recv: %s\n", statstr);
1080 #endif
1081 			break;
1082 
1083 		/*
1084 		 * We come here in symmetric modes for miscellaneous
1085 		 * commands that have value fields but are processed on
1086 		 * the transmit side. All we need do here is check for
1087 		 * valid field length. Remaining checks are below and on
1088 		 * the transmit side.
1089 		 */
1090 		case CRYPTO_CERT:
1091 		case CRYPTO_IFF:
1092 		case CRYPTO_GQ:
1093 		case CRYPTO_MV:
1094 		case CRYPTO_SIGN:
1095 			if (len < VALUE_LEN) {
1096 				rval = XEVNT_LEN;
1097 				break;
1098 			}
1099 			/* fall through */
1100 
1101 		/*
1102 		 * We come here for miscellaneous requests and unknown
1103 		 * requests and responses. If an unknown response or
1104 		 * error, forget it. If a request, save the extension
1105 		 * field for later. Unknown requests will be caught on
1106 		 * the transmit side.
1107 		 */
1108 		default:
1109 			if (code & (CRYPTO_RESP | CRYPTO_ERROR)) {
1110 				rval = XEVNT_ERR;
1111 			} else if ((rval = crypto_verify(ep, NULL,
1112 			    peer)) == XEVNT_OK) {
1113 				fp = emalloc(len);
1114 				memcpy(fp, ep, len);
1115 				temp32 = CRYPTO_RESP;
1116 				fp->opcode |= htonl(temp32);
1117 				peer->cmmd = fp;
1118 			}
1119 		}
1120 
1121 		/*
1122 		 * We don't log length/format/timestamp errors and
1123 		 * duplicates, which are log clogging vulnerabilities.
1124 		 * The first error found terminates the extension field
1125 		 * scan and we return the laundry to the caller. A
1126 		 * length/format/timestamp error on transmit is
1127 		 * cheerfully ignored, as the message is not sent.
1128 		 */
1129 		if (rval > XEVNT_TSP) {
1130 			sprintf(statstr,
1131 			    "error %x opcode %x ts %u fs %u", rval,
1132 			    code, tstamp, fstamp);
1133 			record_crypto_stats(&peer->srcadr, statstr);
1134 			report_event(rval, peer);
1135 #ifdef DEBUG
1136 			if (debug)
1137 				printf("crypto_recv: %s\n", statstr);
1138 #endif
1139 			break;
1140 
1141 		} else if (rval > XEVNT_OK && (code & CRYPTO_RESP)) {
1142 			rval = XEVNT_OK;
1143 		}
1144 		authlen += len;
1145 	}
1146 	return (rval);
1147 }
1148 
1149 
1150 /*
1151  * crypto_xmit - construct extension fields
1152  *
1153  * This routine is called both when an association is configured and
1154  * when one is not. The only case where this matters is to retrieve the
1155  * autokey information, in which case the caller has to provide the
1156  * association ID to match the association.
1157  *
1158  * Returns length of extension field.
1159  */
1160 int
1161 crypto_xmit(
1162 	struct pkt *xpkt,	/* transmit packet pointer */
1163 	struct sockaddr_storage *srcadr_sin,	/* active runway */
1164 	int	start,		/* offset to extension field */
1165 	struct exten *ep,	/* extension pointer */
1166 	keyid_t cookie		/* session cookie */
1167 	)
1168 {
1169 	u_int32	*pkt;		/* packet pointer */
1170 	struct peer *peer;	/* peer structure pointer */
1171 	u_int	opcode;		/* extension field opcode */
1172 	struct exten *fp;	/* extension pointers */
1173 	struct cert_info *cp, *xp; /* certificate info/value pointer */
1174 	char	certname[MAXHOSTNAME + 1]; /* subject name buffer */
1175 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
1176 	tstamp_t tstamp;
1177 	u_int	vallen;
1178 	u_int	len;
1179 	struct value vtemp;
1180 	associd_t associd;
1181 	int	rval;
1182 	keyid_t tcookie;
1183 
1184 	/*
1185 	 * Generate the requested extension field request code, length
1186 	 * and association ID. If this is a response and the host is not
1187 	 * synchronized, light the error bit and go home.
1188 	 */
1189 	pkt = (u_int32 *)xpkt + start / 4;
1190 	fp = (struct exten *)pkt;
1191 	opcode = ntohl(ep->opcode);
1192 	associd = (associd_t) ntohl(ep->associd);
1193 	fp->associd = htonl(associd);
1194 	len = 8;
1195 	rval = XEVNT_OK;
1196 	tstamp = crypto_time();
1197 	switch (opcode & 0xffff0000) {
1198 
1199 	/*
1200 	 * Send association request and response with status word and
1201 	 * host name. Note, this message is not signed and the filestamp
1202 	 * contains only the status word.
1203 	 */
1204 	case CRYPTO_ASSOC | CRYPTO_RESP:
1205 		len += crypto_send(fp, &hostval);
1206 		fp->fstamp = htonl(crypto_flags);
1207 		break;
1208 
1209 	case CRYPTO_ASSOC:
1210 		len += crypto_send(fp, &hostval);
1211 		fp->fstamp = htonl(crypto_flags | ident_scheme);
1212 		break;
1213 
1214 	/*
1215 	 * Send certificate request. Use the values from the extension
1216 	 * field.
1217 	 */
1218 	case CRYPTO_CERT:
1219 		memset(&vtemp, 0, sizeof(vtemp));
1220 		vtemp.tstamp = ep->tstamp;
1221 		vtemp.fstamp = ep->fstamp;
1222 		vtemp.vallen = ep->vallen;
1223 		vtemp.ptr = (u_char *)ep->pkt;
1224 		len += crypto_send(fp, &vtemp);
1225 		break;
1226 
1227 	/*
1228 	 * Send certificate response or sign request. Use the values
1229 	 * from the certificate cache. If the request contains no
1230 	 * subject name, assume the name of this host. This is for
1231 	 * backwards compatibility. Private certificates are never sent.
1232 	 */
1233 	case CRYPTO_SIGN:
1234 	case CRYPTO_CERT | CRYPTO_RESP:
1235 		vallen = ntohl(ep->vallen);
1236 		if (vallen == 8) {
1237 			strcpy(certname, sys_hostname);
1238 		} else if (vallen == 0 || vallen > MAXHOSTNAME) {
1239 			rval = XEVNT_LEN;
1240 			break;
1241 
1242 		} else {
1243 			memcpy(certname, ep->pkt, vallen);
1244 			certname[vallen] = '\0';
1245 		}
1246 
1247 		/*
1248 		 * Find all certificates with matching subject. If a
1249 		 * self-signed, trusted certificate is found, use that.
1250 		 * If not, use the first one with matching subject. A
1251 		 * private certificate is never divulged or signed.
1252 		 */
1253 		xp = NULL;
1254 		for (cp = cinfo; cp != NULL; cp = cp->link) {
1255 			if (cp->flags & CERT_PRIV)
1256 				continue;
1257 
1258 			if (strcmp(certname, cp->subject) == 0) {
1259 				if (xp == NULL)
1260 					xp = cp;
1261 				if (strcmp(certname, cp->issuer) ==
1262 				    0 && cp->flags & CERT_TRUST) {
1263 					xp = cp;
1264 					break;
1265 				}
1266 			}
1267 		}
1268 
1269 		/*
1270 		 * Be careful who you trust. If not yet synchronized,
1271 		 * give back an empty response. If certificate not found
1272 		 * or beyond the lifetime, return an error. This is to
1273 		 * avoid a bad dude trying to get an expired certificate
1274 		 * re-signed. Otherwise, send it.
1275 		 *
1276 		 * Note the timestamp and filestamp are taken from the
1277 		 * certificate value structure. For all certificates the
1278 		 * timestamp is the latest signature update time. For
1279 		 * host and imported certificates the filestamp is the
1280 		 * creation epoch. For signed certificates the filestamp
1281 		 * is the creation epoch of the trusted certificate at
1282 		 * the base of the certificate trail. In principle, this
1283 		 * allows strong checking for signature masquerade.
1284 		 */
1285 		if (tstamp == 0)
1286 			break;
1287 
1288 		if (xp == NULL)
1289 			rval = XEVNT_CRT;
1290 		else if (tstamp < xp->first || tstamp > xp->last)
1291 			rval = XEVNT_SRV;
1292 		else
1293 			len += crypto_send(fp, &xp->cert);
1294 		break;
1295 
1296 	/*
1297 	 * Send challenge in Schnorr (IFF) identity scheme.
1298 	 */
1299 	case CRYPTO_IFF:
1300 		if ((peer = findpeerbyassoc(ep->pkt[0])) == NULL) {
1301 			rval = XEVNT_ERR;
1302 			break;
1303 		}
1304 		if ((rval = crypto_alice(peer, &vtemp)) == XEVNT_OK) {
1305 			len += crypto_send(fp, &vtemp);
1306 			value_free(&vtemp);
1307 		}
1308 		break;
1309 
1310 	/*
1311 	 * Send response in Schnorr (IFF) identity scheme.
1312 	 */
1313 	case CRYPTO_IFF | CRYPTO_RESP:
1314 		if ((rval = crypto_bob(ep, &vtemp)) == XEVNT_OK) {
1315 			len += crypto_send(fp, &vtemp);
1316 			value_free(&vtemp);
1317 		}
1318 		break;
1319 
1320 	/*
1321 	 * Send challenge in Guillou-Quisquater (GQ) identity scheme.
1322 	 */
1323 	case CRYPTO_GQ:
1324 		if ((peer = findpeerbyassoc(ep->pkt[0])) == NULL) {
1325 			rval = XEVNT_ERR;
1326 			break;
1327 		}
1328 		if ((rval = crypto_alice2(peer, &vtemp)) == XEVNT_OK) {
1329 			len += crypto_send(fp, &vtemp);
1330 			value_free(&vtemp);
1331 		}
1332 		break;
1333 
1334 	/*
1335 	 * Send response in Guillou-Quisquater (GQ) identity scheme.
1336 	 */
1337 	case CRYPTO_GQ | CRYPTO_RESP:
1338 		if ((rval = crypto_bob2(ep, &vtemp)) == XEVNT_OK) {
1339 			len += crypto_send(fp, &vtemp);
1340 			value_free(&vtemp);
1341 		}
1342 		break;
1343 
1344 	/*
1345 	 * Send challenge in MV identity scheme.
1346 	 */
1347 	case CRYPTO_MV:
1348 		if ((peer = findpeerbyassoc(ep->pkt[0])) == NULL) {
1349 			rval = XEVNT_ERR;
1350 			break;
1351 		}
1352 		if ((rval = crypto_alice3(peer, &vtemp)) == XEVNT_OK) {
1353 			len += crypto_send(fp, &vtemp);
1354 			value_free(&vtemp);
1355 		}
1356 		break;
1357 
1358 	/*
1359 	 * Send response in MV identity scheme.
1360 	 */
1361 	case CRYPTO_MV | CRYPTO_RESP:
1362 		if ((rval = crypto_bob3(ep, &vtemp)) == XEVNT_OK) {
1363 			len += crypto_send(fp, &vtemp);
1364 			value_free(&vtemp);
1365 		}
1366 		break;
1367 
1368 	/*
1369 	 * Send certificate sign response. The integrity of the request
1370 	 * certificate has already been verified on the receive side.
1371 	 * Sign the response using the local server key. Use the
1372 	 * filestamp from the request and use the timestamp as the
1373 	 * current time. Light the error bit if the certificate is
1374 	 * invalid or contains an unverified signature.
1375 	 */
1376 	case CRYPTO_SIGN | CRYPTO_RESP:
1377 		if ((rval = cert_sign(ep, &vtemp)) == XEVNT_OK)
1378 			len += crypto_send(fp, &vtemp);
1379 		value_free(&vtemp);
1380 		break;
1381 
1382 	/*
1383 	 * Send public key and signature. Use the values from the public
1384 	 * key.
1385 	 */
1386 	case CRYPTO_COOK:
1387 		len += crypto_send(fp, &pubkey);
1388 		break;
1389 
1390 	/*
1391 	 * Encrypt and send cookie and signature. Light the error bit if
1392 	 * anything goes wrong.
1393 	 */
1394 	case CRYPTO_COOK | CRYPTO_RESP:
1395 		if ((opcode & 0xffff) < VALUE_LEN) {
1396 			rval = XEVNT_LEN;
1397 			break;
1398 		}
1399 		if (PKT_MODE(xpkt->li_vn_mode) == MODE_SERVER) {
1400 			tcookie = cookie;
1401 		} else {
1402 			if ((peer = findpeerbyassoc(associd)) == NULL) {
1403 				rval = XEVNT_ERR;
1404 				break;
1405 			}
1406 			tcookie = peer->pcookie;
1407 		}
1408 		if ((rval = crypto_encrypt(ep, &vtemp, &tcookie)) ==
1409 		    XEVNT_OK)
1410 			len += crypto_send(fp, &vtemp);
1411 		value_free(&vtemp);
1412 		break;
1413 
1414 	/*
1415 	 * Find peer and send autokey data and signature in broadcast
1416 	 * server and symmetric modes. Use the values in the autokey
1417 	 * structure. If no association is found, either the server has
1418 	 * restarted with new associations or some perp has replayed an
1419 	 * old message, in which case light the error bit.
1420 	 */
1421 	case CRYPTO_AUTO | CRYPTO_RESP:
1422 		if ((peer = findpeerbyassoc(associd)) == NULL) {
1423 			rval = XEVNT_ERR;
1424 			break;
1425 		}
1426 		peer->flags &= ~FLAG_ASSOC;
1427 		len += crypto_send(fp, &peer->sndval);
1428 		break;
1429 
1430 	/*
1431 	 * Send leapseconds table and signature. Use the values from the
1432 	 * tai structure. If no table has been loaded, just send an
1433 	 * empty request.
1434 	 */
1435 	case CRYPTO_TAI:
1436 	case CRYPTO_TAI | CRYPTO_RESP:
1437 		if (crypto_flags & CRYPTO_FLAG_TAI)
1438 			len += crypto_send(fp, &tai_leap);
1439 		break;
1440 
1441 	/*
1442 	 * Default - Fall through for requests; for unknown responses,
1443 	 * flag as error.
1444 	 */
1445 	default:
1446 		if (opcode & CRYPTO_RESP)
1447 			rval = XEVNT_ERR;
1448 	}
1449 
1450 	/*
1451 	 * In case of error, flame the log. If a request, toss the
1452 	 * puppy; if a response, return so the sender can flame, too.
1453 	 */
1454 	if (rval != XEVNT_OK) {
1455 		opcode |= CRYPTO_ERROR;
1456 		sprintf(statstr, "error %x opcode %x", rval, opcode);
1457 		record_crypto_stats(srcadr_sin, statstr);
1458 		report_event(rval, NULL);
1459 #ifdef DEBUG
1460 		if (debug)
1461 			printf("crypto_xmit: %s\n", statstr);
1462 #endif
1463 		if (!(opcode & CRYPTO_RESP))
1464 			return (0);
1465 	}
1466 
1467 	/*
1468 	 * Round up the field length to a multiple of 8 bytes and save
1469 	 * the request code and length.
1470 	 */
1471 	len = ((len + 7) / 8) * 8;
1472 	fp->opcode = htonl((opcode & 0xffff0000) | len);
1473 #ifdef DEBUG
1474 	if (debug)
1475 		printf(
1476 		    "crypto_xmit: flags 0x%x ext offset %d len %u code 0x%x assocID %d\n",
1477 		    crypto_flags, start, len, opcode >> 16, associd);
1478 #endif
1479 	return (len);
1480 }
1481 
1482 
1483 /*
1484  * crypto_verify - parse and verify the extension field and value
1485  *
1486  * Returns
1487  * XEVNT_OK	success
1488  * XEVNT_LEN	bad field format or length
1489  * XEVNT_TSP	bad timestamp
1490  * XEVNT_FSP	bad filestamp
1491  * XEVNT_PUB	bad or missing public key
1492  * XEVNT_SGL	bad signature length
1493  * XEVNT_SIG	signature not verified
1494  * XEVNT_ERR	protocol error
1495  */
1496 static int
1497 crypto_verify(
1498 	struct exten *ep,	/* extension pointer */
1499 	struct value *vp,	/* value pointer */
1500 	struct peer *peer	/* peer structure pointer */
1501 	)
1502 {
1503 	EVP_PKEY *pkey;		/* server public key */
1504 	EVP_MD_CTX ctx;		/* signature context */
1505 	tstamp_t tstamp, tstamp1 = 0; /* timestamp */
1506 	tstamp_t fstamp, fstamp1 = 0; /* filestamp */
1507 	u_int	vallen;		/* value length */
1508 	u_int	siglen;		/* signature length */
1509 	u_int	opcode, len;
1510 	int	i;
1511 
1512 	/*
1513 	 * We require valid opcode and field lengths, timestamp,
1514 	 * filestamp, public key, digest, signature length and
1515 	 * signature, where relevant. Note that preliminary length
1516 	 * checks are done in the main loop.
1517 	 */
1518 	len = ntohl(ep->opcode) & 0x0000ffff;
1519 	opcode = ntohl(ep->opcode) & 0xffff0000;
1520 
1521 	/*
1522 	 * Check for valid operation code and protocol. The opcode must
1523 	 * not have the error bit set. If a response, it must have a
1524 	 * value header. If a request and does not contain a value
1525 	 * header, no need for further checking.
1526 	 */
1527 	if (opcode & CRYPTO_ERROR)
1528 		return (XEVNT_ERR);
1529 
1530  	if (opcode & CRYPTO_RESP) {
1531  		if (len < VALUE_LEN)
1532 			return (XEVNT_LEN);
1533 	} else {
1534  		if (len < VALUE_LEN)
1535 			return (XEVNT_OK);
1536 	}
1537 
1538 	/*
1539 	 * We have a value header. Check for valid field lengths. The
1540 	 * field length must be long enough to contain the value header,
1541 	 * value and signature. Note both the value and signature fields
1542 	 * are rounded up to the next word.
1543 	 */
1544 	vallen = ntohl(ep->vallen);
1545 	i = (vallen + 3) / 4;
1546 	siglen = ntohl(ep->pkt[i++]);
1547 	if (len < VALUE_LEN + ((vallen + 3) / 4) * 4 + ((siglen + 3) /
1548 	    4) * 4)
1549 		return (XEVNT_LEN);
1550 
1551 	/*
1552 	 * Punt if this is a response with no data. Punt if this is a
1553 	 * request and a previous response is pending.
1554 	 */
1555 	if (opcode & CRYPTO_RESP) {
1556 		if (vallen == 0)
1557 			return (XEVNT_LEN);
1558 	} else {
1559 		if (peer->cmmd != NULL)
1560 			return (XEVNT_LEN);
1561 	}
1562 
1563 	/*
1564 	 * Check for valid timestamp and filestamp. If the timestamp is
1565 	 * zero, the sender is not synchronized and signatures are
1566 	 * disregarded. If not, the timestamp must not precede the
1567 	 * filestamp. The timestamp and filestamp must not precede the
1568 	 * corresponding values in the value structure, if present. Once
1569 	 * the autokey values have been installed, the timestamp must
1570 	 * always be later than the corresponding value in the value
1571 	 * structure. Duplicate timestamps are illegal once the cookie
1572 	 * has been validated.
1573 	 */
1574 	tstamp = ntohl(ep->tstamp);
1575 	fstamp = ntohl(ep->fstamp);
1576 	if (tstamp == 0)
1577 		return (XEVNT_OK);
1578 
1579 	if (tstamp < fstamp)
1580 		return (XEVNT_TSP);
1581 
1582 	if (vp != NULL) {
1583 		tstamp1 = ntohl(vp->tstamp);
1584 		fstamp1 = ntohl(vp->fstamp);
1585 		if ((tstamp < tstamp1 || (tstamp == tstamp1 &&
1586 		    (peer->crypto & CRYPTO_FLAG_AUTO))))
1587 			return (XEVNT_TSP);
1588 
1589 		if ((tstamp < fstamp1 || fstamp < fstamp1))
1590 			return (XEVNT_FSP);
1591 	}
1592 
1593 	/*
1594 	 * Check for valid signature length, public key and digest
1595 	 * algorithm.
1596 	 */
1597 	if (crypto_flags & peer->crypto & CRYPTO_FLAG_PRIV)
1598 		pkey = sign_pkey;
1599 	else
1600 		pkey = peer->pkey;
1601 	if (siglen == 0 || pkey == NULL || peer->digest == NULL)
1602 		return (XEVNT_OK);
1603 
1604 	if (siglen != (u_int)EVP_PKEY_size(pkey))
1605 		return (XEVNT_SGL);
1606 
1607 	/*
1608 	 * Darn, I thought we would never get here. Verify the
1609 	 * signature. If the identity exchange is verified, light the
1610 	 * proventic bit. If no client identity scheme is specified,
1611 	 * avoid doing the sign exchange.
1612 	 */
1613 	EVP_VerifyInit(&ctx, peer->digest);
1614 	EVP_VerifyUpdate(&ctx, (u_char *)&ep->tstamp, vallen + 12);
1615 	if (!EVP_VerifyFinal(&ctx, (u_char *)&ep->pkt[i], siglen, pkey))
1616 		return (XEVNT_SIG);
1617 
1618 	if (peer->crypto & CRYPTO_FLAG_VRFY) {
1619 		peer->crypto |= CRYPTO_FLAG_PROV;
1620 		if (!(crypto_flags & CRYPTO_FLAG_MASK))
1621 			peer->crypto |= CRYPTO_FLAG_SIGN;
1622 	}
1623 	return (XEVNT_OK);
1624 }
1625 
1626 
1627 /*
1628  * crypto_encrypt - construct encrypted cookie and signature from
1629  * extension field and cookie
1630  *
1631  * Returns
1632  * XEVNT_OK	success
1633  * XEVNT_PUB	bad or missing public key
1634  * XEVNT_CKY	bad or missing cookie
1635  * XEVNT_PER	host certificate expired
1636  */
1637 static int
1638 crypto_encrypt(
1639 	struct exten *ep,	/* extension pointer */
1640 	struct value *vp,	/* value pointer */
1641 	keyid_t	*cookie		/* server cookie */
1642 	)
1643 {
1644 	EVP_PKEY *pkey;		/* public key */
1645 	EVP_MD_CTX ctx;		/* signature context */
1646 	tstamp_t tstamp;	/* NTP timestamp */
1647 	u_int32	temp32;
1648 	u_int	len;
1649 	u_char	*ptr;
1650 
1651 	/*
1652 	 * Extract the public key from the request.
1653 	 */
1654 	len = ntohl(ep->vallen);
1655 	ptr = (u_char *)ep->pkt;
1656 	pkey = d2i_PublicKey(EVP_PKEY_RSA, NULL, &ptr, len);
1657 	if (pkey == NULL) {
1658 		msyslog(LOG_ERR, "crypto_encrypt %s\n",
1659 		    ERR_error_string(ERR_get_error(), NULL));
1660 		return (XEVNT_PUB);
1661 	}
1662 
1663 	/*
1664 	 * Encrypt the cookie, encode in ASN.1 and sign.
1665 	 */
1666 	tstamp = crypto_time();
1667 	memset(vp, 0, sizeof(struct value));
1668 	vp->tstamp = htonl(tstamp);
1669 	vp->fstamp = hostval.tstamp;
1670 	len = EVP_PKEY_size(pkey);
1671 	vp->vallen = htonl(len);
1672 	vp->ptr = emalloc(len);
1673 	temp32 = htonl(*cookie);
1674 	if (!RSA_public_encrypt(4, (u_char *)&temp32, vp->ptr,
1675 	    pkey->pkey.rsa, RSA_PKCS1_OAEP_PADDING)) {
1676 		msyslog(LOG_ERR, "crypto_encrypt %s\n",
1677 		    ERR_error_string(ERR_get_error(), NULL));
1678 		EVP_PKEY_free(pkey);
1679 		return (XEVNT_CKY);
1680 	}
1681 	EVP_PKEY_free(pkey);
1682 	vp->siglen = 0;
1683 	if (tstamp == 0)
1684 		return (XEVNT_OK);
1685 
1686 	if (tstamp < cinfo->first || tstamp > cinfo->last)
1687 		return (XEVNT_PER);
1688 
1689 	vp->sig = emalloc(sign_siglen);
1690 	EVP_SignInit(&ctx, sign_digest);
1691 	EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
1692 	EVP_SignUpdate(&ctx, vp->ptr, len);
1693 	if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
1694 		vp->siglen = htonl(len);
1695 	return (XEVNT_OK);
1696 }
1697 
1698 
1699 /*
1700  * crypto_ident - construct extension field for identity scheme
1701  *
1702  * This routine determines which identity scheme is in use and
1703  * constructs an extension field for that scheme.
1704  */
1705 u_int
1706 crypto_ident(
1707 	struct peer *peer	/* peer structure pointer */
1708 	)
1709 {
1710 	char	filename[MAXFILENAME + 1];
1711 
1712 	/*
1713 	 * If the server identity has already been verified, no further
1714 	 * action is necessary. Otherwise, try to load the identity file
1715 	 * of the certificate issuer. If the issuer file is not found,
1716 	 * try the host file. If nothing found, declare a cryptobust.
1717 	 * Note we can't get here unless the trusted certificate has
1718 	 * been found and the CRYPTO_FLAG_VALID bit is set, so the
1719 	 * certificate issuer is valid.
1720 	 */
1721 	if (peer->ident_pkey != NULL)
1722 		EVP_PKEY_free(peer->ident_pkey);
1723 	if (peer->crypto & CRYPTO_FLAG_GQ) {
1724 		snprintf(filename, MAXFILENAME, "ntpkey_gq_%s",
1725 		    peer->issuer);
1726 		peer->ident_pkey = crypto_key(filename, &peer->fstamp);
1727 		if (peer->ident_pkey != NULL)
1728 			return (CRYPTO_GQ);
1729 
1730 		snprintf(filename, MAXFILENAME, "ntpkey_gq_%s",
1731 		    sys_hostname);
1732 		peer->ident_pkey = crypto_key(filename, &peer->fstamp);
1733 		if (peer->ident_pkey != NULL)
1734 			return (CRYPTO_GQ);
1735 	}
1736 	if (peer->crypto & CRYPTO_FLAG_IFF) {
1737 		snprintf(filename, MAXFILENAME, "ntpkey_iff_%s",
1738 		    peer->issuer);
1739 		peer->ident_pkey = crypto_key(filename, &peer->fstamp);
1740 		if (peer->ident_pkey != NULL)
1741 			return (CRYPTO_IFF);
1742 
1743 		snprintf(filename, MAXFILENAME, "ntpkey_iff_%s",
1744 		    sys_hostname);
1745 		peer->ident_pkey = crypto_key(filename, &peer->fstamp);
1746 		if (peer->ident_pkey != NULL)
1747 			return (CRYPTO_IFF);
1748 	}
1749 	if (peer->crypto & CRYPTO_FLAG_MV) {
1750 		snprintf(filename, MAXFILENAME, "ntpkey_mv_%s",
1751 		    peer->issuer);
1752 		peer->ident_pkey = crypto_key(filename, &peer->fstamp);
1753 		if (peer->ident_pkey != NULL)
1754 			return (CRYPTO_MV);
1755 
1756 		snprintf(filename, MAXFILENAME, "ntpkey_mv_%s",
1757 		    sys_hostname);
1758 		peer->ident_pkey = crypto_key(filename, &peer->fstamp);
1759 		if (peer->ident_pkey != NULL)
1760 			return (CRYPTO_MV);
1761 	}
1762 
1763 	/*
1764 	 * No compatible identity scheme is available. Life is hard.
1765 	 */
1766 	msyslog(LOG_INFO,
1767 	    "crypto_ident: no compatible identity scheme found");
1768 	return (0);
1769 }
1770 
1771 
1772 /*
1773  * crypto_args - construct extension field from arguments
1774  *
1775  * This routine creates an extension field with current timestamps and
1776  * specified opcode, association ID and optional string. Note that the
1777  * extension field is created here, but freed after the crypto_xmit()
1778  * call in the protocol module.
1779  *
1780  * Returns extension field pointer (no errors).
1781  */
1782 struct exten *
1783 crypto_args(
1784 	struct peer *peer,	/* peer structure pointer */
1785 	u_int	opcode,		/* operation code */
1786 	char	*str		/* argument string */
1787 	)
1788 {
1789 	tstamp_t tstamp;	/* NTP timestamp */
1790 	struct exten *ep;	/* extension field pointer */
1791 	u_int	len;		/* extension field length */
1792 
1793 	tstamp = crypto_time();
1794 	len = sizeof(struct exten);
1795 	if (str != NULL)
1796 		len += strlen(str);
1797 	ep = emalloc(len);
1798 	memset(ep, 0, len);
1799 	if (opcode == 0)
1800 		return (ep);
1801 
1802 	ep->opcode = htonl(opcode + len);
1803 
1804 	/*
1805 	 * If a response, send our ID; if a request, send the
1806 	 * responder's ID.
1807 	 */
1808 	if (opcode & CRYPTO_RESP)
1809 		ep->associd = htonl(peer->associd);
1810 	else
1811 		ep->associd = htonl(peer->assoc);
1812 	ep->tstamp = htonl(tstamp);
1813 	ep->fstamp = hostval.tstamp;
1814 	ep->vallen = 0;
1815 	if (str != NULL) {
1816 		ep->vallen = htonl(strlen(str));
1817 		memcpy((char *)ep->pkt, str, strlen(str));
1818 	} else {
1819 		ep->pkt[0] = peer->associd;
1820 	}
1821 	return (ep);
1822 }
1823 
1824 
1825 /*
1826  * crypto_send - construct extension field from value components
1827  *
1828  * Returns extension field length. Note: it is not polite to send a
1829  * nonempty signature with zero timestamp or a nonzero timestamp with
1830  * empty signature, but these rules are not enforced here.
1831  */
1832 u_int
1833 crypto_send(
1834 	struct exten *ep,	/* extension field pointer */
1835 	struct value *vp	/* value pointer */
1836 	)
1837 {
1838 	u_int	len, temp32;
1839 	int	i;
1840 
1841 	/*
1842 	 * Copy data. If the data field is empty or zero length, encode
1843 	 * an empty value with length zero.
1844 	 */
1845 	ep->tstamp = vp->tstamp;
1846 	ep->fstamp = vp->fstamp;
1847 	ep->vallen = vp->vallen;
1848 	len = 12;
1849 	temp32 = ntohl(vp->vallen);
1850 	if (temp32 > 0 && vp->ptr != NULL)
1851 		memcpy(ep->pkt, vp->ptr, temp32);
1852 
1853 	/*
1854 	 * Copy signature. If the signature field is empty or zero
1855 	 * length, encode an empty signature with length zero.
1856 	 */
1857 	i = (temp32 + 3) / 4;
1858 	len += i * 4 + 4;
1859 	ep->pkt[i++] = vp->siglen;
1860 	temp32 = ntohl(vp->siglen);
1861 	if (temp32 > 0 && vp->sig != NULL)
1862 		memcpy(&ep->pkt[i], vp->sig, temp32);
1863 	len += temp32;
1864 	return (len);
1865 }
1866 
1867 
1868 /*
1869  * crypto_update - compute new public value and sign extension fields
1870  *
1871  * This routine runs periodically, like once a day, and when something
1872  * changes. It updates the timestamps on three value structures and one
1873  * value structure list, then signs all the structures:
1874  *
1875  * hostval	host name (not signed)
1876  * pubkey	public key
1877  * cinfo	certificate info/value list
1878  * tai_leap	leapseconds file
1879  *
1880  * Filestamps are proventicated data, so this routine is run only when
1881  * the host has been synchronized to a proventicated source. Thus, the
1882  * timestamp is proventicated, too, and can be used to deflect
1883  * clogging attacks and even cook breakfast.
1884  *
1885  * Returns void (no errors)
1886  */
1887 void
1888 crypto_update(void)
1889 {
1890 	EVP_MD_CTX ctx;		/* message digest context */
1891 	struct cert_info *cp, *cpn; /* certificate info/value */
1892 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
1893 	tstamp_t tstamp;	/* NTP timestamp */
1894 	u_int	len;
1895 
1896 	if ((tstamp = crypto_time()) == 0)
1897 		return;
1898 
1899 	hostval.tstamp = htonl(tstamp);
1900 
1901 	/*
1902 	 * Sign public key and timestamps. The filestamp is derived from
1903 	 * the host key file extension from wherever the file was
1904 	 * generated.
1905 	 */
1906 	if (pubkey.vallen != 0) {
1907 		pubkey.tstamp = hostval.tstamp;
1908 		pubkey.siglen = 0;
1909 		if (pubkey.sig == NULL)
1910 			pubkey.sig = emalloc(sign_siglen);
1911 		EVP_SignInit(&ctx, sign_digest);
1912 		EVP_SignUpdate(&ctx, (u_char *)&pubkey, 12);
1913 		EVP_SignUpdate(&ctx, pubkey.ptr, ntohl(pubkey.vallen));
1914 		if (EVP_SignFinal(&ctx, pubkey.sig, &len, sign_pkey))
1915 			pubkey.siglen = htonl(len);
1916 	}
1917 
1918 	/*
1919 	 * Sign certificates and timestamps. The filestamp is derived
1920 	 * from the certificate file extension from wherever the file
1921 	 * was generated. Note we do not throw expired certificates
1922 	 * away; they may have signed younger ones.
1923 	 */
1924 	for (cp = cinfo; cp != NULL; cp = cpn) {
1925 		cpn = cp->link;
1926 		cp->cert.tstamp = hostval.tstamp;
1927 		cp->cert.siglen = 0;
1928 		if (cp->cert.sig == NULL)
1929 			cp->cert.sig = emalloc(sign_siglen);
1930 		EVP_SignInit(&ctx, sign_digest);
1931 		EVP_SignUpdate(&ctx, (u_char *)&cp->cert, 12);
1932 		EVP_SignUpdate(&ctx, cp->cert.ptr,
1933 		    ntohl(cp->cert.vallen));
1934 		if (EVP_SignFinal(&ctx, cp->cert.sig, &len, sign_pkey))
1935 			cp->cert.siglen = htonl(len);
1936 	}
1937 
1938 	/*
1939 	 * Sign leapseconds table and timestamps. The filestamp is
1940 	 * derived from the leapsecond file extension from wherever the
1941 	 * file was generated.
1942 	 */
1943 	if (tai_leap.vallen != 0) {
1944 		tai_leap.tstamp = hostval.tstamp;
1945 		tai_leap.siglen = 0;
1946 		if (tai_leap.sig == NULL)
1947 			tai_leap.sig = emalloc(sign_siglen);
1948 		EVP_SignInit(&ctx, sign_digest);
1949 		EVP_SignUpdate(&ctx, (u_char *)&tai_leap, 12);
1950 		EVP_SignUpdate(&ctx, tai_leap.ptr,
1951 		    ntohl(tai_leap.vallen));
1952 		if (EVP_SignFinal(&ctx, tai_leap.sig, &len, sign_pkey))
1953 			tai_leap.siglen = htonl(len);
1954 	}
1955 	sprintf(statstr, "update ts %u", ntohl(hostval.tstamp));
1956 	record_crypto_stats(NULL, statstr);
1957 #ifdef DEBUG
1958 	if (debug)
1959 		printf("crypto_update: %s\n", statstr);
1960 #endif
1961 }
1962 
1963 
1964 /*
1965  * value_free - free value structure components.
1966  *
1967  * Returns void (no errors)
1968  */
1969 void
1970 value_free(
1971 	struct value *vp	/* value structure */
1972 	)
1973 {
1974 	if (vp->ptr != NULL)
1975 		free(vp->ptr);
1976 	if (vp->sig != NULL)
1977 		free(vp->sig);
1978 	memset(vp, 0, sizeof(struct value));
1979 }
1980 
1981 
1982 /*
1983  * crypto_time - returns current NTP time in seconds.
1984  */
1985 tstamp_t
1986 crypto_time()
1987 {
1988 	l_fp	tstamp;		/* NTP time */	L_CLR(&tstamp);
1989 
1990 	L_CLR(&tstamp);
1991 	if (sys_leap != LEAP_NOTINSYNC)
1992 		get_systime(&tstamp);
1993 	return (tstamp.l_ui);
1994 }
1995 
1996 
1997 /*
1998  * asn2ntp - convert ASN1_TIME time structure to NTP time in seconds.
1999  */
2000 u_long
2001 asn2ntp	(
2002 	ASN1_TIME *asn1time	/* pointer to ASN1_TIME structure */
2003 	)
2004 {
2005 	char	*v;		/* pointer to ASN1_TIME string */
2006 	struct	tm tm;		/* used to convert to NTP time */
2007 
2008 	/*
2009 	 * Extract time string YYMMDDHHMMSSZ from ASN1 time structure.
2010 	 * Note that the YY, MM, DD fields start with one, the HH, MM,
2011 	 * SS fiels start with zero and the Z character should be 'Z'
2012 	 * for UTC. Also note that years less than 50 map to years
2013 	 * greater than 100. Dontcha love ASN.1? Better than MIL-188.
2014 	 */
2015 	if (asn1time->length > 13)
2016 		return ((u_long)(~0));	/* We can't use -1 here. It's invalid */
2017 
2018 	v = (char *)asn1time->data;
2019 	tm.tm_year = (v[0] - '0') * 10 + v[1] - '0';
2020 	if (tm.tm_year < 50)
2021 		tm.tm_year += 100;
2022 	tm.tm_mon = (v[2] - '0') * 10 + v[3] - '0' - 1;
2023 	tm.tm_mday = (v[4] - '0') * 10 + v[5] - '0';
2024 	tm.tm_hour = (v[6] - '0') * 10 + v[7] - '0';
2025 	tm.tm_min = (v[8] - '0') * 10 + v[9] - '0';
2026 	tm.tm_sec = (v[10] - '0') * 10 + v[11] - '0';
2027 	tm.tm_wday = 0;
2028 	tm.tm_yday = 0;
2029 	tm.tm_isdst = 0;
2030 	return (timegm(&tm) + JAN_1970);
2031 }
2032 
2033 
2034 /*
2035  * bigdig() - compute a BIGNUM MD5 hash of a BIGNUM number.
2036  */
2037 static int
2038 bighash(
2039 	BIGNUM	*bn,		/* BIGNUM * from */
2040 	BIGNUM	*bk		/* BIGNUM * to */
2041 	)
2042 {
2043 	EVP_MD_CTX ctx;		/* message digest context */
2044 	u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */
2045 	u_char	*ptr;		/* a BIGNUM as binary string */
2046 	u_int	len;
2047 
2048 	len = BN_num_bytes(bn);
2049 	ptr = emalloc(len);
2050 	BN_bn2bin(bn, ptr);
2051 	EVP_DigestInit(&ctx, EVP_md5());
2052 	EVP_DigestUpdate(&ctx, ptr, len);
2053 	EVP_DigestFinal(&ctx, dgst, &len);
2054 	BN_bin2bn(dgst, len, bk);
2055 
2056 	/* XXX MEMLEAK? free ptr? */
2057 
2058 	return (1);
2059 }
2060 
2061 
2062 /*
2063  ***********************************************************************
2064  *								       *
2065  * The following routines implement the Schnorr (IFF) identity scheme  *
2066  *								       *
2067  ***********************************************************************
2068  *
2069  * The Schnorr (IFF) identity scheme is intended for use when
2070  * the ntp-genkeys program does not generate the certificates used in
2071  * the protocol and the group key cannot be conveyed in the certificate
2072  * itself. For this purpose, new generations of IFF values must be
2073  * securely transmitted to all members of the group before use. The
2074  * scheme is self contained and independent of new generations of host
2075  * keys, sign keys and certificates.
2076  *
2077  * The IFF identity scheme is based on DSA cryptography and algorithms
2078  * described in Stinson p. 285. The IFF values hide in a DSA cuckoo
2079  * structure, but only the primes and generator are used. The p is a
2080  * 512-bit prime, q a 160-bit prime that divides p - 1 and is a qth root
2081  * of 1 mod p; that is, g^q = 1 mod p. The TA rolls primvate random
2082  * group key b disguised as a DSA structure member, then computes public
2083  * key g^(q - b). These values are shared only among group members and
2084  * never revealed in messages. Alice challenges Bob to confirm identity
2085  * using the protocol described below.
2086  *
2087  * How it works
2088  *
2089  * The scheme goes like this. Both Alice and Bob have the public primes
2090  * p, q and generator g. The TA gives private key b to Bob and public
2091  * key v = g^(q - a) mod p to Alice.
2092  *
2093  * Alice rolls new random challenge r and sends to Bob in the IFF
2094  * request message. Bob rolls new random k, then computes y = k + b r
2095  * mod q and x = g^k mod p and sends (y, hash(x)) to Alice in the
2096  * response message. Besides making the response shorter, the hash makes
2097  * it effectivey impossible for an intruder to solve for b by observing
2098  * a number of these messages.
2099  *
2100  * Alice receives the response and computes g^y v^r mod p. After a bit
2101  * of algebra, this simplifies to g^k. If the hash of this result
2102  * matches hash(x), Alice knows that Bob has the group key b. The signed
2103  * response binds this knowledge to Bob's private key and the public key
2104  * previously received in his certificate.
2105  *
2106  * crypto_alice - construct Alice's challenge in IFF scheme
2107  *
2108  * Returns
2109  * XEVNT_OK	success
2110  * XEVNT_PUB	bad or missing public key
2111  * XEVNT_ID	bad or missing group key
2112  */
2113 static int
2114 crypto_alice(
2115 	struct peer *peer,	/* peer pointer */
2116 	struct value *vp	/* value pointer */
2117 	)
2118 {
2119 	DSA	*dsa;		/* IFF parameters */
2120 	BN_CTX	*bctx;		/* BIGNUM context */
2121 	EVP_MD_CTX ctx;		/* signature context */
2122 	tstamp_t tstamp;
2123 	u_int	len;
2124 
2125 	/*
2126 	 * The identity parameters must have correct format and content.
2127 	 */
2128 	if (peer->ident_pkey == NULL)
2129 		return (XEVNT_ID);
2130 
2131 	if ((dsa = peer->ident_pkey->pkey.dsa) == NULL) {
2132 		msyslog(LOG_INFO, "crypto_alice: defective key");
2133 		return (XEVNT_PUB);
2134 	}
2135 
2136 	/*
2137 	 * Roll new random r (0 < r < q). The OpenSSL library has a bug
2138 	 * omitting BN_rand_range, so we have to do it the hard way.
2139 	 */
2140 	bctx = BN_CTX_new();
2141 	len = BN_num_bytes(dsa->q);
2142 	if (peer->iffval != NULL)
2143 		BN_free(peer->iffval);
2144 	peer->iffval = BN_new();
2145 	BN_rand(peer->iffval, len * 8, -1, 1);	/* r */
2146 	BN_mod(peer->iffval, peer->iffval, dsa->q, bctx);
2147 	BN_CTX_free(bctx);
2148 
2149 	/*
2150 	 * Sign and send to Bob. The filestamp is from the local file.
2151 	 */
2152 	tstamp = crypto_time();
2153 	memset(vp, 0, sizeof(struct value));
2154 	vp->tstamp = htonl(tstamp);
2155 	vp->fstamp = htonl(peer->fstamp);
2156 	vp->vallen = htonl(len);
2157 	vp->ptr = emalloc(len);
2158 	BN_bn2bin(peer->iffval, vp->ptr);
2159 	vp->siglen = 0;
2160 	if (tstamp == 0)
2161 		return (XEVNT_OK);
2162 
2163 	if (tstamp < cinfo->first || tstamp > cinfo->last)
2164 		return (XEVNT_PER);
2165 
2166 	vp->sig = emalloc(sign_siglen);
2167 	EVP_SignInit(&ctx, sign_digest);
2168 	EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
2169 	EVP_SignUpdate(&ctx, vp->ptr, len);
2170 	if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
2171 		vp->siglen = htonl(len);
2172 	return (XEVNT_OK);
2173 }
2174 
2175 
2176 /*
2177  * crypto_bob - construct Bob's response to Alice's challenge
2178  *
2179  * Returns
2180  * XEVNT_OK	success
2181  * XEVNT_ID	bad or missing group key
2182  * XEVNT_ERR	protocol error
2183  * XEVNT_PER	host expired certificate
2184  */
2185 static int
2186 crypto_bob(
2187 	struct exten *ep,	/* extension pointer */
2188 	struct value *vp	/* value pointer */
2189 	)
2190 {
2191 	DSA	*dsa;		/* IFF parameters */
2192 	DSA_SIG	*sdsa;		/* DSA signature context fake */
2193 	BN_CTX	*bctx;		/* BIGNUM context */
2194 	EVP_MD_CTX ctx;		/* signature context */
2195 	tstamp_t tstamp;	/* NTP timestamp */
2196 	BIGNUM	*bn, *bk, *r;
2197 	u_char	*ptr;
2198 	u_int	len;
2199 
2200 	/*
2201 	 * If the IFF parameters are not valid, something awful
2202 	 * happened or we are being tormented.
2203 	 */
2204 	if (iffpar_pkey == NULL) {
2205 		msyslog(LOG_INFO, "crypto_bob: scheme unavailable");
2206 		return (XEVNT_ID);
2207 	}
2208 	dsa = iffpar_pkey->pkey.dsa;
2209 
2210 	/*
2211 	 * Extract r from the challenge.
2212 	 */
2213 	len = ntohl(ep->vallen);
2214 	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2215 		msyslog(LOG_ERR, "crypto_bob %s\n",
2216 		    ERR_error_string(ERR_get_error(), NULL));
2217 		return (XEVNT_ERR);
2218 	}
2219 
2220 	/*
2221 	 * Bob rolls random k (0 < k < q), computes y = k + b r mod q
2222 	 * and x = g^k mod p, then sends (y, hash(x)) to Alice.
2223 	 */
2224 	bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new();
2225 	sdsa = DSA_SIG_new();
2226 	BN_rand(bk, len * 8, -1, 1);		/* k */
2227 	BN_mod_mul(bn, dsa->priv_key, r, dsa->q, bctx); /* b r mod q */
2228 	BN_add(bn, bn, bk);
2229 	BN_mod(bn, bn, dsa->q, bctx);		/* k + b r mod q */
2230 	sdsa->r = BN_dup(bn);
2231 	BN_mod_exp(bk, dsa->g, bk, dsa->p, bctx); /* g^k mod p */
2232 	bighash(bk, bk);
2233 	sdsa->s = BN_dup(bk);
2234 	BN_CTX_free(bctx);
2235 	BN_free(r); BN_free(bn); BN_free(bk);
2236 
2237 	/*
2238 	 * Encode the values in ASN.1 and sign.
2239 	 */
2240 	tstamp = crypto_time();
2241 	memset(vp, 0, sizeof(struct value));
2242 	vp->tstamp = htonl(tstamp);
2243 	vp->fstamp = htonl(if_fstamp);
2244 	len = i2d_DSA_SIG(sdsa, NULL);
2245 	if (len <= 0) {
2246 		msyslog(LOG_ERR, "crypto_bob %s\n",
2247 		    ERR_error_string(ERR_get_error(), NULL));
2248 		DSA_SIG_free(sdsa);
2249 		return (XEVNT_ERR);
2250 	}
2251 	vp->vallen = htonl(len);
2252 	ptr = emalloc(len);
2253 	vp->ptr = ptr;
2254 	i2d_DSA_SIG(sdsa, &ptr);
2255 	DSA_SIG_free(sdsa);
2256 	vp->siglen = 0;
2257 	if (tstamp == 0)
2258 		return (XEVNT_OK);
2259 
2260 	if (tstamp < cinfo->first || tstamp > cinfo->last)
2261 		return (XEVNT_PER);
2262 
2263 	vp->sig = emalloc(sign_siglen);
2264 	EVP_SignInit(&ctx, sign_digest);
2265 	EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
2266 	EVP_SignUpdate(&ctx, vp->ptr, len);
2267 	if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
2268 		vp->siglen = htonl(len);
2269 	return (XEVNT_OK);
2270 }
2271 
2272 
2273 /*
2274  * crypto_iff - verify Bob's response to Alice's challenge
2275  *
2276  * Returns
2277  * XEVNT_OK	success
2278  * XEVNT_PUB	bad or missing public key
2279  * XEVNT_ID	bad or missing group key
2280  * XEVNT_FSP	bad filestamp
2281  */
2282 int
2283 crypto_iff(
2284 	struct exten *ep,	/* extension pointer */
2285 	struct peer *peer	/* peer structure pointer */
2286 	)
2287 {
2288 	DSA	*dsa;		/* IFF parameters */
2289 	BN_CTX	*bctx;		/* BIGNUM context */
2290 	DSA_SIG	*sdsa;		/* DSA parameters */
2291 	BIGNUM	*bn, *bk;
2292 	u_int	len;
2293 	const u_char	*ptr;
2294 	int	temp;
2295 
2296 	/*
2297 	 * If the IFF parameters are not valid or no challenge was sent,
2298 	 * something awful happened or we are being tormented.
2299 	 */
2300 	if (peer->ident_pkey == NULL) {
2301 		msyslog(LOG_INFO, "crypto_iff: scheme unavailable");
2302 		return (XEVNT_ID);
2303 	}
2304 	if (ntohl(ep->fstamp) != peer->fstamp) {
2305 		msyslog(LOG_INFO, "crypto_iff: invalid filestamp %u",
2306 		    ntohl(ep->fstamp));
2307 		return (XEVNT_FSP);
2308 	}
2309 	if ((dsa = peer->ident_pkey->pkey.dsa) == NULL) {
2310 		msyslog(LOG_INFO, "crypto_iff: defective key");
2311 		return (XEVNT_PUB);
2312 	}
2313 	if (peer->iffval == NULL) {
2314 		msyslog(LOG_INFO, "crypto_iff: missing challenge");
2315 		return (XEVNT_ID);
2316 	}
2317 
2318 	/*
2319 	 * Extract the k + b r and g^k values from the response.
2320 	 */
2321 	bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new();
2322 	len = ntohl(ep->vallen);
2323 	ptr = (const u_char *)ep->pkt;
2324 	if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) {
2325 		msyslog(LOG_ERR, "crypto_iff %s\n",
2326 		    ERR_error_string(ERR_get_error(), NULL));
2327 		return (XEVNT_ERR);
2328 	}
2329 
2330 	/*
2331 	 * Compute g^(k + b r) g^(q - b)r mod p.
2332 	 */
2333 	BN_mod_exp(bn, dsa->pub_key, peer->iffval, dsa->p, bctx);
2334 	BN_mod_exp(bk, dsa->g, sdsa->r, dsa->p, bctx);
2335 	BN_mod_mul(bn, bn, bk, dsa->p, bctx);
2336 
2337 	/*
2338 	 * Verify the hash of the result matches hash(x).
2339 	 */
2340 	bighash(bn, bn);
2341 	temp = BN_cmp(bn, sdsa->s);
2342 	BN_free(bn); BN_free(bk); BN_CTX_free(bctx);
2343 	BN_free(peer->iffval);
2344 	peer->iffval = NULL;
2345 	DSA_SIG_free(sdsa);
2346 	if (temp == 0)
2347 		return (XEVNT_OK);
2348 
2349 	else
2350 		return (XEVNT_ID);
2351 }
2352 
2353 
2354 /*
2355  ***********************************************************************
2356  *								       *
2357  * The following routines implement the Guillou-Quisquater (GQ)        *
2358  * identity scheme                                                     *
2359  *								       *
2360  ***********************************************************************
2361  *
2362  * The Guillou-Quisquater (GQ) identity scheme is intended for use when
2363  * the ntp-genkeys program generates the certificates used in the
2364  * protocol and the group key can be conveyed in a certificate extension
2365  * field. The scheme is self contained and independent of new
2366  * generations of host keys, sign keys and certificates.
2367  *
2368  * The GQ identity scheme is based on RSA cryptography and algorithms
2369  * described in Stinson p. 300 (with errors). The GQ values hide in a
2370  * RSA cuckoo structure, but only the modulus is used. The 512-bit
2371  * public modulus is n = p q, where p and q are secret large primes. The
2372  * TA rolls random group key b disguised as a RSA structure member.
2373  * Except for the public key, these values are shared only among group
2374  * members and never revealed in messages.
2375  *
2376  * When rolling new certificates, Bob recomputes the private and
2377  * public keys. The private key u is a random roll, while the public key
2378  * is the inverse obscured by the group key v = (u^-1)^b. These values
2379  * replace the private and public keys normally generated by the RSA
2380  * scheme. Alice challenges Bob to confirm identity using the protocol
2381  * described below.
2382  *
2383  * How it works
2384  *
2385  * The scheme goes like this. Both Alice and Bob have the same modulus n
2386  * and some random b as the group key. These values are computed and
2387  * distributed in advance via secret means, although only the group key
2388  * b is truly secret. Each has a private random private key u and public
2389  * key (u^-1)^b, although not necessarily the same ones. Bob and Alice
2390  * can regenerate the key pair from time to time without affecting
2391  * operations. The public key is conveyed on the certificate in an
2392  * extension field; the private key is never revealed.
2393  *
2394  * Alice rolls new random challenge r and sends to Bob in the GQ
2395  * request message. Bob rolls new random k, then computes y = k u^r mod
2396  * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response
2397  * message. Besides making the response shorter, the hash makes it
2398  * effectivey impossible for an intruder to solve for b by observing
2399  * a number of these messages.
2400  *
2401  * Alice receives the response and computes y^b v^r mod n. After a bit
2402  * of algebra, this simplifies to k^b. If the hash of this result
2403  * matches hash(x), Alice knows that Bob has the group key b. The signed
2404  * response binds this knowledge to Bob's private key and the public key
2405  * previously received in his certificate.
2406  *
2407  * crypto_alice2 - construct Alice's challenge in GQ scheme
2408  *
2409  * Returns
2410  * XEVNT_OK	success
2411  * XEVNT_PUB	bad or missing public key
2412  * XEVNT_ID	bad or missing group key
2413  * XEVNT_PER	host certificate expired
2414  */
2415 static int
2416 crypto_alice2(
2417 	struct peer *peer,	/* peer pointer */
2418 	struct value *vp	/* value pointer */
2419 	)
2420 {
2421 	RSA	*rsa;		/* GQ parameters */
2422 	BN_CTX	*bctx;		/* BIGNUM context */
2423 	EVP_MD_CTX ctx;		/* signature context */
2424 	tstamp_t tstamp;
2425 	u_int	len;
2426 
2427 	/*
2428 	 * The identity parameters must have correct format and content.
2429 	 */
2430 	if (peer->ident_pkey == NULL)
2431 		return (XEVNT_ID);
2432 
2433 	if ((rsa = peer->ident_pkey->pkey.rsa) == NULL) {
2434 		msyslog(LOG_INFO, "crypto_alice2: defective key");
2435 		return (XEVNT_PUB);
2436 	}
2437 
2438 	/*
2439 	 * Roll new random r (0 < r < n). The OpenSSL library has a bug
2440 	 * omitting BN_rand_range, so we have to do it the hard way.
2441 	 */
2442 	bctx = BN_CTX_new();
2443 	len = BN_num_bytes(rsa->n);
2444 	if (peer->iffval != NULL)
2445 		BN_free(peer->iffval);
2446 	peer->iffval = BN_new();
2447 	BN_rand(peer->iffval, len * 8, -1, 1);	/* r mod n */
2448 	BN_mod(peer->iffval, peer->iffval, rsa->n, bctx);
2449 	BN_CTX_free(bctx);
2450 
2451 	/*
2452 	 * Sign and send to Bob. The filestamp is from the local file.
2453 	 */
2454 	tstamp = crypto_time();
2455 	memset(vp, 0, sizeof(struct value));
2456 	vp->tstamp = htonl(tstamp);
2457 	vp->fstamp = htonl(peer->fstamp);
2458 	vp->vallen = htonl(len);
2459 	vp->ptr = emalloc(len);
2460 	BN_bn2bin(peer->iffval, vp->ptr);
2461 	vp->siglen = 0;
2462 	if (tstamp == 0)
2463 		return (XEVNT_OK);
2464 
2465 	if (tstamp < cinfo->first || tstamp > cinfo->last)
2466 		return (XEVNT_PER);
2467 
2468 	vp->sig = emalloc(sign_siglen);
2469 	EVP_SignInit(&ctx, sign_digest);
2470 	EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
2471 	EVP_SignUpdate(&ctx, vp->ptr, len);
2472 	if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
2473 		vp->siglen = htonl(len);
2474 	return (XEVNT_OK);
2475 }
2476 
2477 
2478 /*
2479  * crypto_bob2 - construct Bob's response to Alice's challenge
2480  *
2481  * Returns
2482  * XEVNT_OK	success
2483  * XEVNT_ID	bad or missing group key
2484  * XEVNT_ERR	protocol error
2485  * XEVNT_PER	host certificate expired
2486  */
2487 static int
2488 crypto_bob2(
2489 	struct exten *ep,	/* extension pointer */
2490 	struct value *vp	/* value pointer */
2491 	)
2492 {
2493 	RSA	*rsa;		/* GQ parameters */
2494 	DSA_SIG	*sdsa;		/* DSA parameters */
2495 	BN_CTX	*bctx;		/* BIGNUM context */
2496 	EVP_MD_CTX ctx;		/* signature context */
2497 	tstamp_t tstamp;	/* NTP timestamp */
2498 	BIGNUM	*r, *k, *g, *y;
2499 	u_char	*ptr;
2500 	u_int	len;
2501 
2502 	/*
2503 	 * If the GQ parameters are not valid, something awful
2504 	 * happened or we are being tormented.
2505 	 */
2506 	if (gqpar_pkey == NULL) {
2507 		msyslog(LOG_INFO, "crypto_bob2: scheme unavailable");
2508 		return (XEVNT_ID);
2509 	}
2510 	rsa = gqpar_pkey->pkey.rsa;
2511 
2512 	/*
2513 	 * Extract r from the challenge.
2514 	 */
2515 	len = ntohl(ep->vallen);
2516 	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2517 		msyslog(LOG_ERR, "crypto_bob2 %s\n",
2518 		    ERR_error_string(ERR_get_error(), NULL));
2519 		return (XEVNT_ERR);
2520 	}
2521 
2522 	/*
2523 	 * Bob rolls random k (0 < k < n), computes y = k u^r mod n and
2524 	 * x = k^b mod n, then sends (y, hash(x)) to Alice.
2525 	 */
2526 	bctx = BN_CTX_new(); k = BN_new(); g = BN_new(); y = BN_new();
2527 	sdsa = DSA_SIG_new();
2528 	BN_rand(k, len * 8, -1, 1);		/* k */
2529 	BN_mod(k, k, rsa->n, bctx);
2530 	BN_mod_exp(y, rsa->p, r, rsa->n, bctx); /* u^r mod n */
2531 	BN_mod_mul(y, k, y, rsa->n, bctx);	/* k u^r mod n */
2532 	sdsa->r = BN_dup(y);
2533 	BN_mod_exp(g, k, rsa->e, rsa->n, bctx); /* k^b mod n */
2534 	bighash(g, g);
2535 	sdsa->s = BN_dup(g);
2536 	BN_CTX_free(bctx);
2537 	BN_free(r); BN_free(k); BN_free(g); BN_free(y);
2538 
2539 	/*
2540 	 * Encode the values in ASN.1 and sign.
2541 	 */
2542 	tstamp = crypto_time();
2543 	memset(vp, 0, sizeof(struct value));
2544 	vp->tstamp = htonl(tstamp);
2545 	vp->fstamp = htonl(gq_fstamp);
2546 	len = i2d_DSA_SIG(sdsa, NULL);
2547 	if (len <= 0) {
2548 		msyslog(LOG_ERR, "crypto_bob2 %s\n",
2549 		    ERR_error_string(ERR_get_error(), NULL));
2550 		DSA_SIG_free(sdsa);
2551 		return (XEVNT_ERR);
2552 	}
2553 	vp->vallen = htonl(len);
2554 	ptr = emalloc(len);
2555 	vp->ptr = ptr;
2556 	i2d_DSA_SIG(sdsa, &ptr);
2557 	DSA_SIG_free(sdsa);
2558 	vp->siglen = 0;
2559 	if (tstamp == 0)
2560 		return (XEVNT_OK);
2561 
2562 	if (tstamp < cinfo->first || tstamp > cinfo->last)
2563 		return (XEVNT_PER);
2564 
2565 	vp->sig = emalloc(sign_siglen);
2566 	EVP_SignInit(&ctx, sign_digest);
2567 	EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
2568 	EVP_SignUpdate(&ctx, vp->ptr, len);
2569 	if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
2570 		vp->siglen = htonl(len);
2571 	return (XEVNT_OK);
2572 }
2573 
2574 
2575 /*
2576  * crypto_gq - verify Bob's response to Alice's challenge
2577  *
2578  * Returns
2579  * XEVNT_OK	success
2580  * XEVNT_PUB	bad or missing public key
2581  * XEVNT_ID	bad or missing group keys
2582  * XEVNT_ERR	protocol error
2583  * XEVNT_FSP	bad filestamp
2584  */
2585 int
2586 crypto_gq(
2587 	struct exten *ep,	/* extension pointer */
2588 	struct peer *peer	/* peer structure pointer */
2589 	)
2590 {
2591 	RSA	*rsa;		/* GQ parameters */
2592 	BN_CTX	*bctx;		/* BIGNUM context */
2593 	DSA_SIG	*sdsa;		/* RSA signature context fake */
2594 	BIGNUM	*y, *v;
2595 	const u_char	*ptr;
2596 	u_int	len;
2597 	int	temp;
2598 
2599 	/*
2600 	 * If the GQ parameters are not valid or no challenge was sent,
2601 	 * something awful happened or we are being tormented.
2602 	 */
2603 	if (peer->ident_pkey == NULL) {
2604 		msyslog(LOG_INFO, "crypto_gq: scheme unavailable");
2605 		return (XEVNT_ID);
2606 	}
2607 	if (ntohl(ep->fstamp) != peer->fstamp) {
2608 		msyslog(LOG_INFO, "crypto_gq: invalid filestamp %u",
2609 		    ntohl(ep->fstamp));
2610 		return (XEVNT_FSP);
2611 	}
2612 	if ((rsa = peer->ident_pkey->pkey.rsa) == NULL) {
2613 		msyslog(LOG_INFO, "crypto_gq: defective key");
2614 		return (XEVNT_PUB);
2615 	}
2616 	if (peer->iffval == NULL) {
2617 		msyslog(LOG_INFO, "crypto_gq: missing challenge");
2618 		return (XEVNT_ID);
2619 	}
2620 
2621 	/*
2622 	 * Extract the y = k u^r and hash(x = k^b) values from the
2623 	 * response.
2624 	 */
2625 	bctx = BN_CTX_new(); y = BN_new(); v = BN_new();
2626 	len = ntohl(ep->vallen);
2627 	ptr = (const u_char *)ep->pkt;
2628 	if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) {
2629 		msyslog(LOG_ERR, "crypto_gq %s\n",
2630 		    ERR_error_string(ERR_get_error(), NULL));
2631 		return (XEVNT_ERR);
2632 	}
2633 
2634 	/*
2635 	 * Compute v^r y^b mod n.
2636 	 */
2637 	BN_mod_exp(v, peer->grpkey, peer->iffval, rsa->n, bctx);
2638 						/* v^r mod n */
2639 	BN_mod_exp(y, sdsa->r, rsa->e, rsa->n, bctx); /* y^b mod n */
2640 	BN_mod_mul(y, v, y, rsa->n, bctx);	/* v^r y^b mod n */
2641 
2642 	/*
2643 	 * Verify the hash of the result matches hash(x).
2644 	 */
2645 	bighash(y, y);
2646 	temp = BN_cmp(y, sdsa->s);
2647 	BN_CTX_free(bctx); BN_free(y); BN_free(v);
2648 	BN_free(peer->iffval);
2649 	peer->iffval = NULL;
2650 	DSA_SIG_free(sdsa);
2651 	if (temp == 0)
2652 		return (XEVNT_OK);
2653 
2654 	else
2655 		return (XEVNT_ID);
2656 }
2657 
2658 
2659 /*
2660  ***********************************************************************
2661  *								       *
2662  * The following routines implement the Mu-Varadharajan (MV) identity  *
2663  * scheme                                                              *
2664  *								       *
2665  ***********************************************************************
2666  */
2667 /*
2668  * The Mu-Varadharajan (MV) cryptosystem was originally intended when
2669  * servers broadcast messages to clients, but clients never send
2670  * messages to servers. There is one encryption key for the server and a
2671  * separate decryption key for each client. It operated something like a
2672  * pay-per-view satellite broadcasting system where the session key is
2673  * encrypted by the broadcaster and the decryption keys are held in a
2674  * tamperproof set-top box.
2675  *
2676  * The MV parameters and private encryption key hide in a DSA cuckoo
2677  * structure which uses the same parameters, but generated in a
2678  * different way. The values are used in an encryption scheme similar to
2679  * El Gamal cryptography and a polynomial formed from the expansion of
2680  * product terms (x - x[j]), as described in Mu, Y., and V.
2681  * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001,
2682  * 223-231. The paper has significant errors and serious omissions.
2683  *
2684  * Let q be the product of n distinct primes s'[j] (j = 1...n), where
2685  * each s'[j] has m significant bits. Let p be a prime p = 2 * q + 1, so
2686  * that q and each s'[j] divide p - 1 and p has M = n * m + 1
2687  * significant bits. The elements x mod q of Zq with the elements 2 and
2688  * the primes removed form a field Zq* valid for polynomial arithetic.
2689  * Let g be a generator of Zp; that is, gcd(g, p - 1) = 1 and g^q = 1
2690  * mod p. We expect M to be in the 500-bit range and n relatively small,
2691  * like 25, so the likelihood of a randomly generated element of x mod q
2692  * of Zq colliding with a factor of p - 1 is very small and can be
2693  * avoided. Associated with each s'[j] is an element s[j] such that s[j]
2694  * s'[j] = s'[j] mod q. We find s[j] as the quotient (q + s'[j]) /
2695  * s'[j]. These are the parameters of the scheme and they are expensive
2696  * to compute.
2697  *
2698  * We set up an instance of the scheme as follows. A set of random
2699  * values x[j] mod q (j = 1...n), are generated as the zeros of a
2700  * polynomial of order n. The product terms (x - x[j]) are expanded to
2701  * form coefficients a[i] mod q (i = 0...n) in powers of x. These are
2702  * used as exponents of the generator g mod p to generate the private
2703  * encryption key A. The pair (gbar, ghat) of public server keys and the
2704  * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used
2705  * to construct the decryption keys. The devil is in the details.
2706  *
2707  * The distinguishing characteristic of this scheme is the capability to
2708  * revoke keys. Included in the calculation of E, gbar and ghat is the
2709  * product s = prod(s'[j]) (j = 1...n) above. If the factor s'[j] is
2710  * subsequently removed from the product and E, gbar and ghat
2711  * recomputed, the jth client will no longer be able to compute E^-1 and
2712  * thus unable to decrypt the block.
2713  *
2714  * How it works
2715  *
2716  * The scheme goes like this. Bob has the server values (p, A, q, gbar,
2717  * ghat) and Alice the client values (p, xbar, xhat).
2718  *
2719  * Alice rolls new random challenge r (0 < r < p) and sends to Bob in
2720  * the MV request message. Bob rolls new random k (0 < k < q), encrypts
2721  * y = A^k mod p (a permutation) and sends (hash(y), gbar^k, ghat^k) to
2722  * Alice.
2723  *
2724  * Alice receives the response and computes the decryption key (the
2725  * inverse permutation) from previously obtained (xbar, xhat) and
2726  * (gbar^k, ghat^k) in the message. She computes the inverse, which is
2727  * unique by reasons explained in the ntp-keygen.c program sources. If
2728  * the hash of this result matches hash(y), Alice knows that Bob has the
2729  * group key b. The signed response binds this knowledge to Bob's
2730  * private key and the public key previously received in his
2731  * certificate.
2732  *
2733  * crypto_alice3 - construct Alice's challenge in MV scheme
2734  *
2735  * Returns
2736  * XEVNT_OK	success
2737  * XEVNT_PUB	bad or missing public key
2738  * XEVNT_ID	bad or missing group key
2739  * XEVNT_PER	host certificate expired
2740  */
2741 static int
2742 crypto_alice3(
2743 	struct peer *peer,	/* peer pointer */
2744 	struct value *vp	/* value pointer */
2745 	)
2746 {
2747 	DSA	*dsa;		/* MV parameters */
2748 	BN_CTX	*bctx;		/* BIGNUM context */
2749 	EVP_MD_CTX ctx;		/* signature context */
2750 	tstamp_t tstamp;
2751 	u_int	len;
2752 
2753 	/*
2754 	 * The identity parameters must have correct format and content.
2755 	 */
2756 	if (peer->ident_pkey == NULL)
2757 		return (XEVNT_ID);
2758 
2759 	if ((dsa = peer->ident_pkey->pkey.dsa) == NULL) {
2760 		msyslog(LOG_INFO, "crypto_alice3: defective key");
2761 		return (XEVNT_PUB);
2762 	}
2763 
2764 	/*
2765 	 * Roll new random r (0 < r < q). The OpenSSL library has a bug
2766 	 * omitting BN_rand_range, so we have to do it the hard way.
2767 	 */
2768 	bctx = BN_CTX_new();
2769 	len = BN_num_bytes(dsa->p);
2770 	if (peer->iffval != NULL)
2771 		BN_free(peer->iffval);
2772 	peer->iffval = BN_new();
2773 	BN_rand(peer->iffval, len * 8, -1, 1);	/* r */
2774 	BN_mod(peer->iffval, peer->iffval, dsa->p, bctx);
2775 	BN_CTX_free(bctx);
2776 
2777 	/*
2778 	 * Sign and send to Bob. The filestamp is from the local file.
2779 	 */
2780 	tstamp = crypto_time();
2781 	memset(vp, 0, sizeof(struct value));
2782 	vp->tstamp = htonl(tstamp);
2783 	vp->fstamp = htonl(peer->fstamp);
2784 	vp->vallen = htonl(len);
2785 	vp->ptr = emalloc(len);
2786 	BN_bn2bin(peer->iffval, vp->ptr);
2787 	vp->siglen = 0;
2788 	if (tstamp == 0)
2789 		return (XEVNT_OK);
2790 
2791 	if (tstamp < cinfo->first || tstamp > cinfo->last)
2792 		return (XEVNT_PER);
2793 
2794 	vp->sig = emalloc(sign_siglen);
2795 	EVP_SignInit(&ctx, sign_digest);
2796 	EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
2797 	EVP_SignUpdate(&ctx, vp->ptr, len);
2798 	if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
2799 		vp->siglen = htonl(len);
2800 	return (XEVNT_OK);
2801 }
2802 
2803 
2804 /*
2805  * crypto_bob3 - construct Bob's response to Alice's challenge
2806  *
2807  * Returns
2808  * XEVNT_OK	success
2809  * XEVNT_ERR	protocol error
2810  * XEVNT_PER	host certificate expired
2811  */
2812 static int
2813 crypto_bob3(
2814 	struct exten *ep,	/* extension pointer */
2815 	struct value *vp	/* value pointer */
2816 	)
2817 {
2818 	DSA	*dsa;		/* MV parameters */
2819 	DSA	*sdsa;		/* DSA signature context fake */
2820 	BN_CTX	*bctx;		/* BIGNUM context */
2821 	EVP_MD_CTX ctx;		/* signature context */
2822 	tstamp_t tstamp;	/* NTP timestamp */
2823 	BIGNUM	*r, *k, *u;
2824 	u_char	*ptr;
2825 	u_int	len;
2826 
2827 	/*
2828 	 * If the MV parameters are not valid, something awful
2829 	 * happened or we are being tormented.
2830 	 */
2831 	if (mvpar_pkey == NULL) {
2832 		msyslog(LOG_INFO, "crypto_bob3: scheme unavailable");
2833 		return (XEVNT_ID);
2834 	}
2835 	dsa = mvpar_pkey->pkey.dsa;
2836 
2837 	/*
2838 	 * Extract r from the challenge.
2839 	 */
2840 	len = ntohl(ep->vallen);
2841 	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2842 		msyslog(LOG_ERR, "crypto_bob3 %s\n",
2843 		    ERR_error_string(ERR_get_error(), NULL));
2844 		return (XEVNT_ERR);
2845 	}
2846 
2847 	/*
2848 	 * Bob rolls random k (0 < k < q), making sure it is not a
2849 	 * factor of q. He then computes y = A^k r and sends (hash(y),
2850 	 * gbar^k, ghat^k) to Alice.
2851 	 */
2852 	bctx = BN_CTX_new(); k = BN_new(); u = BN_new();
2853 	sdsa = DSA_new();
2854 	sdsa->p = BN_new(); sdsa->q = BN_new(); sdsa->g = BN_new();
2855 	while (1) {
2856 		BN_rand(k, BN_num_bits(dsa->q), 0, 0);
2857 		BN_mod(k, k, dsa->q, bctx);
2858 		BN_gcd(u, k, dsa->q, bctx);
2859 		if (BN_is_one(u))
2860 			break;
2861 	}
2862 	BN_mod_exp(u, dsa->g, k, dsa->p, bctx); /* A r */
2863 	BN_mod_mul(u, u, r, dsa->p, bctx);
2864 	bighash(u, sdsa->p);
2865 	BN_mod_exp(sdsa->q, dsa->priv_key, k, dsa->p, bctx); /* gbar */
2866 	BN_mod_exp(sdsa->g, dsa->pub_key, k, dsa->p, bctx); /* ghat */
2867 	BN_CTX_free(bctx); BN_free(k); BN_free(r); BN_free(u);
2868 
2869 	/*
2870 	 * Encode the values in ASN.1 and sign.
2871 	 */
2872 	tstamp = crypto_time();
2873 	memset(vp, 0, sizeof(struct value));
2874 	vp->tstamp = htonl(tstamp);
2875 	vp->fstamp = htonl(mv_fstamp);
2876 	len = i2d_DSAparams(sdsa, NULL);
2877 	if (len <= 0) {
2878 		msyslog(LOG_ERR, "crypto_bob3 %s\n",
2879 		    ERR_error_string(ERR_get_error(), NULL));
2880 		DSA_free(sdsa);
2881 		return (XEVNT_ERR);
2882 	}
2883 	vp->vallen = htonl(len);
2884 	ptr = emalloc(len);
2885 	vp->ptr = ptr;
2886 	i2d_DSAparams(sdsa, &ptr);
2887 	DSA_free(sdsa);
2888 	vp->siglen = 0;
2889 	if (tstamp == 0)
2890 		return (XEVNT_OK);
2891 
2892 	if (tstamp < cinfo->first || tstamp > cinfo->last)
2893 		return (XEVNT_PER);
2894 
2895 	vp->sig = emalloc(sign_siglen);
2896 	EVP_SignInit(&ctx, sign_digest);
2897 	EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
2898 	EVP_SignUpdate(&ctx, vp->ptr, len);
2899 	if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
2900 		vp->siglen = htonl(len);
2901 	return (XEVNT_OK);
2902 }
2903 
2904 
2905 /*
2906  * crypto_mv - verify Bob's response to Alice's challenge
2907  *
2908  * Returns
2909  * XEVNT_OK	success
2910  * XEVNT_PUB	bad or missing public key
2911  * XEVNT_ID	bad or missing group key
2912  * XEVNT_ERR	protocol error
2913  * XEVNT_FSP	bad filestamp
2914  */
2915 int
2916 crypto_mv(
2917 	struct exten *ep,	/* extension pointer */
2918 	struct peer *peer	/* peer structure pointer */
2919 	)
2920 {
2921 	DSA	*dsa;		/* MV parameters */
2922 	DSA	*sdsa;		/* DSA parameters */
2923 	BN_CTX	*bctx;		/* BIGNUM context */
2924 	BIGNUM	*k, *u, *v;
2925 	u_int	len;
2926 	const u_char	*ptr;
2927 	int	temp;
2928 
2929 	/*
2930 	 * If the MV parameters are not valid or no challenge was sent,
2931 	 * something awful happened or we are being tormented.
2932 	 */
2933 	if (peer->ident_pkey == NULL) {
2934 		msyslog(LOG_INFO, "crypto_mv: scheme unavailable");
2935 		return (XEVNT_ID);
2936 	}
2937 	if (ntohl(ep->fstamp) != peer->fstamp) {
2938 		msyslog(LOG_INFO, "crypto_mv: invalid filestamp %u",
2939 		    ntohl(ep->fstamp));
2940 		return (XEVNT_FSP);
2941 	}
2942 	if ((dsa = peer->ident_pkey->pkey.dsa) == NULL) {
2943 		msyslog(LOG_INFO, "crypto_mv: defective key");
2944 		return (XEVNT_PUB);
2945 	}
2946 	if (peer->iffval == NULL) {
2947 		msyslog(LOG_INFO, "crypto_mv: missing challenge");
2948 		return (XEVNT_ID);
2949 	}
2950 
2951 	/*
2952 	 * Extract the (hash(y), gbar, ghat) values from the response.
2953 	 */
2954 	bctx = BN_CTX_new(); k = BN_new(); u = BN_new(); v = BN_new();
2955 	len = ntohl(ep->vallen);
2956 	ptr = (const u_char *)ep->pkt;
2957 	if ((sdsa = d2i_DSAparams(NULL, &ptr, len)) == NULL) {
2958 		msyslog(LOG_ERR, "crypto_mv %s\n",
2959 		    ERR_error_string(ERR_get_error(), NULL));
2960 		return (XEVNT_ERR);
2961 	}
2962 
2963 	/*
2964 	 * Compute (gbar^xhat ghat^xbar)^-1 mod p.
2965 	 */
2966 	BN_mod_exp(u, sdsa->q, dsa->pub_key, dsa->p, bctx);
2967 	BN_mod_exp(v, sdsa->g, dsa->priv_key, dsa->p, bctx);
2968 	BN_mod_mul(u, u, v, dsa->p, bctx);
2969 	BN_mod_inverse(u, u, dsa->p, bctx);
2970 	BN_mod_mul(v, u, peer->iffval, dsa->p, bctx);
2971 
2972 	/*
2973 	 * The result should match the hash of r mod p.
2974 	 */
2975 	bighash(v, v);
2976 	temp = BN_cmp(v, sdsa->p);
2977 	BN_CTX_free(bctx); BN_free(k); BN_free(u); BN_free(v);
2978 	BN_free(peer->iffval);
2979 	peer->iffval = NULL;
2980 	DSA_free(sdsa);
2981 	if (temp == 0)
2982 		return (XEVNT_OK);
2983 
2984 	else
2985 		return (XEVNT_ID);
2986 }
2987 
2988 
2989 /*
2990  ***********************************************************************
2991  *								       *
2992  * The following routines are used to manipulate certificates          *
2993  *								       *
2994  ***********************************************************************
2995  */
2996 /*
2997  * cert_parse - parse x509 certificate and create info/value structures.
2998  *
2999  * The server certificate includes the version number, issuer name,
3000  * subject name, public key and valid date interval. If the issuer name
3001  * is the same as the subject name, the certificate is self signed and
3002  * valid only if the server is configured as trustable. If the names are
3003  * different, another issuer has signed the server certificate and
3004  * vouched for it. In this case the server certificate is valid if
3005  * verified by the issuer public key.
3006  *
3007  * Returns certificate info/value pointer if valid, NULL if not.
3008  */
3009 struct cert_info *		/* certificate information structure */
3010 cert_parse(
3011 	u_char	*asn1cert,	/* X509 certificate */
3012 	u_int	len,		/* certificate length */
3013 	tstamp_t fstamp		/* filestamp */
3014 	)
3015 {
3016 	X509	*cert;		/* X509 certificate */
3017 	X509_EXTENSION *ext;	/* X509v3 extension */
3018 	struct cert_info *ret;	/* certificate info/value */
3019 	BIO	*bp;
3020 	X509V3_EXT_METHOD *method;
3021 	char	pathbuf[MAXFILENAME];
3022 	u_char	*uptr;
3023 	char	*ptr;
3024 	int	temp, cnt, i;
3025 
3026 	/*
3027 	 * Decode ASN.1 objects and construct certificate structure.
3028 	 */
3029 	uptr = asn1cert;
3030 	if ((cert = d2i_X509(NULL, &uptr, len)) == NULL) {
3031 		msyslog(LOG_ERR, "cert_parse %s\n",
3032 		    ERR_error_string(ERR_get_error(), NULL));
3033 		return (NULL);
3034 	}
3035 
3036 	/*
3037 	 * Extract version, subject name and public key.
3038 	 */
3039 	ret = emalloc(sizeof(struct cert_info));
3040 	memset(ret, 0, sizeof(struct cert_info));
3041 	if ((ret->pkey = X509_get_pubkey(cert)) == NULL) {
3042 		msyslog(LOG_ERR, "cert_parse %s\n",
3043 		    ERR_error_string(ERR_get_error(), NULL));
3044 		cert_free(ret);
3045 		X509_free(cert);
3046 		return (NULL);
3047 	}
3048 	ret->version = X509_get_version(cert);
3049 	X509_NAME_oneline(X509_get_subject_name(cert), pathbuf,
3050 	    MAXFILENAME - 1);
3051 	ptr = strstr(pathbuf, "CN=");
3052 	if (ptr == NULL) {
3053 		msyslog(LOG_INFO, "cert_parse: invalid subject %s",
3054 		    pathbuf);
3055 		cert_free(ret);
3056 		X509_free(cert);
3057 		return (NULL);
3058 	}
3059 	ret->subject = emalloc(strlen(ptr) + 1);
3060 	strcpy(ret->subject, ptr + 3);
3061 
3062 	/*
3063 	 * Extract remaining objects. Note that the NTP serial number is
3064 	 * the NTP seconds at the time of signing, but this might not be
3065 	 * the case for other authority. We don't bother to check the
3066 	 * objects at this time, since the real crunch can happen only
3067 	 * when the time is valid but not yet certificated.
3068 	 */
3069 	ret->nid = OBJ_obj2nid(cert->cert_info->signature->algorithm);
3070 	ret->digest = (const EVP_MD *)EVP_get_digestbynid(ret->nid);
3071 	ret->serial =
3072 	    (u_long)ASN1_INTEGER_get(X509_get_serialNumber(cert));
3073 	X509_NAME_oneline(X509_get_issuer_name(cert), pathbuf,
3074 	    MAXFILENAME);
3075 	if ((ptr = strstr(pathbuf, "CN=")) == NULL) {
3076 		msyslog(LOG_INFO, "cert_parse: invalid issuer %s",
3077 		    pathbuf);
3078 		cert_free(ret);
3079 		X509_free(cert);
3080 		return (NULL);
3081 	}
3082 	ret->issuer = emalloc(strlen(ptr) + 1);
3083 	strcpy(ret->issuer, ptr + 3);
3084 	ret->first = asn2ntp(X509_get_notBefore(cert));
3085 	ret->last = asn2ntp(X509_get_notAfter(cert));
3086 
3087 	/*
3088 	 * Extract extension fields. These are ad hoc ripoffs of
3089 	 * currently assigned functions and will certainly be changed
3090 	 * before prime time.
3091 	 */
3092 	cnt = X509_get_ext_count(cert);
3093 	for (i = 0; i < cnt; i++) {
3094 		ext = X509_get_ext(cert, i);
3095 		method = X509V3_EXT_get(ext);
3096 		temp = OBJ_obj2nid(ext->object);
3097 		switch (temp) {
3098 
3099 		/*
3100 		 * If a key_usage field is present, we decode whether
3101 		 * this is a trusted or private certificate. This is
3102 		 * dorky; all we want is to compare NIDs, but OpenSSL
3103 		 * insists on BIO text strings.
3104 		 */
3105 		case NID_ext_key_usage:
3106 			bp = BIO_new(BIO_s_mem());
3107 			X509V3_EXT_print(bp, ext, 0, 0);
3108 			BIO_gets(bp, pathbuf, MAXFILENAME);
3109 			BIO_free(bp);
3110 #if DEBUG
3111 			if (debug)
3112 				printf("cert_parse: %s: %s\n",
3113 				    OBJ_nid2ln(temp), pathbuf);
3114 #endif
3115 			if (strcmp(pathbuf, "Trust Root") == 0)
3116 				ret->flags |= CERT_TRUST;
3117 			else if (strcmp(pathbuf, "Private") == 0)
3118 				ret->flags |= CERT_PRIV;
3119 			break;
3120 
3121 		/*
3122 		 * If a NID_subject_key_identifier field is present, it
3123 		 * contains the GQ public key.
3124 		 */
3125 		case NID_subject_key_identifier:
3126 			ret->grplen = ext->value->length - 2;
3127 			ret->grpkey = emalloc(ret->grplen);
3128 			memcpy(ret->grpkey, &ext->value->data[2],
3129 			    ret->grplen);
3130 			break;
3131 		}
3132 	}
3133 
3134 	/*
3135 	 * If certificate is self signed, verify signature.
3136 	 */
3137 	if (strcmp(ret->subject, ret->issuer) == 0) {
3138 		if (!X509_verify(cert, ret->pkey)) {
3139 			msyslog(LOG_INFO,
3140 			    "cert_parse: signature not verified %s",
3141 			    pathbuf);
3142 			cert_free(ret);
3143 			X509_free(cert);
3144 			return (NULL);
3145 		}
3146 	}
3147 
3148 	/*
3149 	 * Verify certificate valid times. Note that certificates cannot
3150 	 * be retroactive.
3151 	 */
3152 	if (ret->first > ret->last || ret->first < fstamp) {
3153 		msyslog(LOG_INFO,
3154 		    "cert_parse: invalid certificate %s first %u last %u fstamp %u",
3155 		    ret->subject, ret->first, ret->last, fstamp);
3156 		cert_free(ret);
3157 		X509_free(cert);
3158 		return (NULL);
3159 	}
3160 
3161 	/*
3162 	 * Build the value structure to sign and send later.
3163 	 */
3164 	ret->cert.fstamp = htonl(fstamp);
3165 	ret->cert.vallen = htonl(len);
3166 	ret->cert.ptr = emalloc(len);
3167 	memcpy(ret->cert.ptr, asn1cert, len);
3168 #ifdef DEBUG
3169 	if (debug > 1)
3170 		X509_print_fp(stdout, cert);
3171 #endif
3172 	X509_free(cert);
3173 	return (ret);
3174 }
3175 
3176 
3177 /*
3178  * cert_sign - sign x509 certificate equest and update value structure.
3179  *
3180  * The certificate request includes a copy of the host certificate,
3181  * which includes the version number, subject name and public key of the
3182  * host. The resulting certificate includes these values plus the
3183  * serial number, issuer name and valid interval of the server. The
3184  * valid interval extends from the current time to the same time one
3185  * year hence. This may extend the life of the signed certificate beyond
3186  * that of the signer certificate.
3187  *
3188  * It is convenient to use the NTP seconds of the current time as the
3189  * serial number. In the value structure the timestamp is the current
3190  * time and the filestamp is taken from the extension field. Note this
3191  * routine is called only when the client clock is synchronized to a
3192  * proventic source, so timestamp comparisons are valid.
3193  *
3194  * The host certificate is valid from the time it was generated for a
3195  * period of one year. A signed certificate is valid from the time of
3196  * signature for a period of one year, but only the host certificate (or
3197  * sign certificate if used) is actually used to encrypt and decrypt
3198  * signatures. The signature trail is built from the client via the
3199  * intermediate servers to the trusted server. Each signature on the
3200  * trail must be valid at the time of signature, but it could happen
3201  * that a signer certificate expire before the signed certificate, which
3202  * remains valid until its expiration.
3203  *
3204  * Returns
3205  * XEVNT_OK	success
3206  * XEVNT_PUB	bad or missing public key
3207  * XEVNT_CRT	bad or missing certificate
3208  * XEVNT_VFY	certificate not verified
3209  * XEVNT_PER	host certificate expired
3210  */
3211 static int
3212 cert_sign(
3213 	struct exten *ep,	/* extension field pointer */
3214 	struct value *vp	/* value pointer */
3215 	)
3216 {
3217 	X509	*req;		/* X509 certificate request */
3218 	X509	*cert;		/* X509 certificate */
3219 	X509_EXTENSION *ext;	/* certificate extension */
3220 	ASN1_INTEGER *serial;	/* serial number */
3221 	X509_NAME *subj;	/* distinguished (common) name */
3222 	EVP_PKEY *pkey;		/* public key */
3223 	EVP_MD_CTX ctx;		/* message digest context */
3224 	tstamp_t tstamp;	/* NTP timestamp */
3225 	u_int	len;
3226 	u_char	*ptr;
3227 	int	i, temp;
3228 
3229 	/*
3230 	 * Decode ASN.1 objects and construct certificate structure.
3231 	 * Make sure the system clock is synchronized to a proventic
3232 	 * source.
3233 	 */
3234 	tstamp = crypto_time();
3235 	if (tstamp == 0)
3236 		return (XEVNT_TSP);
3237 
3238 	if (tstamp < cinfo->first || tstamp > cinfo->last)
3239 		return (XEVNT_PER);
3240 
3241 	ptr = (u_char *)ep->pkt;
3242 	if ((req = d2i_X509(NULL, &ptr, ntohl(ep->vallen))) == NULL) {
3243 		msyslog(LOG_ERR, "cert_sign %s\n",
3244 		    ERR_error_string(ERR_get_error(), NULL));
3245 		return (XEVNT_CRT);
3246 	}
3247 	/*
3248 	 * Extract public key and check for errors.
3249 	 */
3250 	if ((pkey = X509_get_pubkey(req)) == NULL) {
3251 		msyslog(LOG_ERR, "cert_sign %s\n",
3252 		    ERR_error_string(ERR_get_error(), NULL));
3253 		X509_free(req);
3254 		return (XEVNT_PUB);
3255 	}
3256 
3257 	/*
3258 	 * Generate X509 certificate signed by this server. For this
3259 	 * purpose the issuer name is the server name. Also copy any
3260 	 * extensions that might be present.
3261 	 */
3262 	cert = X509_new();
3263 	X509_set_version(cert, X509_get_version(req));
3264 	serial = ASN1_INTEGER_new();
3265 	ASN1_INTEGER_set(serial, tstamp);
3266 	X509_set_serialNumber(cert, serial);
3267 	X509_gmtime_adj(X509_get_notBefore(cert), 0L);
3268 	X509_gmtime_adj(X509_get_notAfter(cert), YEAR);
3269 	subj = X509_get_issuer_name(cert);
3270 	X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
3271 	    (u_char *)sys_hostname, strlen(sys_hostname), -1, 0);
3272 	subj = X509_get_subject_name(req);
3273 	X509_set_subject_name(cert, subj);
3274 	X509_set_pubkey(cert, pkey);
3275 	ext = X509_get_ext(req, 0);
3276 	temp = X509_get_ext_count(req);
3277 	for (i = 0; i < temp; i++) {
3278 		ext = X509_get_ext(req, i);
3279 		X509_add_ext(cert, ext, -1);
3280 	}
3281 	X509_free(req);
3282 
3283 	/*
3284 	 * Sign and verify the certificate.
3285 	 */
3286 	X509_sign(cert, sign_pkey, sign_digest);
3287 	if (!X509_verify(cert, sign_pkey)) {
3288 		printf("cert_sign\n%s\n",
3289 		    ERR_error_string(ERR_get_error(), NULL));
3290 		X509_free(cert);
3291 		return (XEVNT_VFY);
3292 	}
3293 	len = i2d_X509(cert, NULL);
3294 
3295 	/*
3296 	 * Build and sign the value structure. We have to sign it here,
3297 	 * since the response has to be returned right away. This is a
3298 	 * clogging hazard.
3299 	 */
3300 	memset(vp, 0, sizeof(struct value));
3301 	vp->tstamp = htonl(tstamp);
3302 	vp->fstamp = ep->fstamp;
3303 	vp->vallen = htonl(len);
3304 	vp->ptr = emalloc(len);
3305 	ptr = vp->ptr;
3306 	i2d_X509(cert, &ptr);
3307 	vp->siglen = 0;
3308 	vp->sig = emalloc(sign_siglen);
3309 	EVP_SignInit(&ctx, sign_digest);
3310 	EVP_SignUpdate(&ctx, (u_char *)vp, 12);
3311 	EVP_SignUpdate(&ctx, vp->ptr, len);
3312 	if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
3313 		vp->siglen = htonl(len);
3314 #ifdef DEBUG
3315 	if (debug > 1)
3316 		X509_print_fp(stdout, cert);
3317 #endif
3318 	X509_free(cert);
3319 	return (XEVNT_OK);
3320 }
3321 
3322 
3323 /*
3324  * cert_valid - verify certificate with given public key
3325  *
3326  * This is pretty ugly, as the certificate has to be verified in the
3327  * OpenSSL X509 structure, not in the DER format in the info/value
3328  * structure.
3329  *
3330  * Returns
3331  * XEVNT_OK	success
3332  * XEVNT_VFY	certificate not verified
3333  */
3334 int
3335 cert_valid(
3336 	struct cert_info *cinf,	/* certificate information structure */
3337 	EVP_PKEY *pkey		/* public key */
3338 	)
3339 {
3340 	X509	*cert;		/* X509 certificate */
3341 	u_char	*ptr;
3342 
3343 	if (cinf->flags & CERT_SIGN)
3344 		return (XEVNT_OK);
3345 
3346 	ptr = (u_char *)cinf->cert.ptr;
3347 	cert = d2i_X509(NULL, &ptr, ntohl(cinf->cert.vallen));
3348 	if (cert == NULL || !X509_verify(cert, pkey))
3349 		return (XEVNT_VFY);
3350 
3351 	X509_free(cert);
3352 	return (XEVNT_OK);
3353 }
3354 
3355 
3356 /*
3357  * cert - install certificate in certificate list
3358  *
3359  * This routine encodes an extension field into a certificate info/value
3360  * structure. It searches the certificate list for duplicates and
3361  * expunges whichever is older. It then searches the list for other
3362  * certificates that might be verified by this latest one. Finally, it
3363  * inserts this certificate first on the list.
3364  *
3365  * Returns
3366  * XEVNT_OK	success
3367  * XEVNT_FSP	bad or missing filestamp
3368  * XEVNT_CRT	bad or missing certificate
3369  */
3370 int
3371 cert_install(
3372 	struct exten *ep,	/* cert info/value */
3373 	struct peer *peer	/* peer structure */
3374 	)
3375 {
3376 	struct cert_info *cp, *xp, *yp, **zp;
3377 
3378 	/*
3379 	 * Parse and validate the signed certificate. If valid,
3380 	 * construct the info/value structure; otherwise, scamper home.
3381 	 */
3382 	if ((cp = cert_parse((u_char *)ep->pkt, ntohl(ep->vallen),
3383 	    ntohl(ep->fstamp))) == NULL)
3384 		return (XEVNT_CRT);
3385 
3386 	/*
3387 	 * Scan certificate list looking for another certificate with
3388 	 * the same subject and issuer. If another is found with the
3389 	 * same or older filestamp, unlink it and return the goodies to
3390 	 * the heap. If another is found with a later filestamp, discard
3391 	 * the new one and leave the building.
3392 	 *
3393 	 * Make a note to study this issue again. An earlier certificate
3394 	 * with a long lifetime might be overtaken by a later
3395 	 * certificate with a short lifetime, thus invalidating the
3396 	 * earlier signature. However, we gotta find a way to leak old
3397 	 * stuff from the cache, so we do it anyway.
3398 	 */
3399 	yp = cp;
3400 	zp = &cinfo;
3401 	for (xp = cinfo; xp != NULL; xp = xp->link) {
3402 		if (strcmp(cp->subject, xp->subject) == 0 &&
3403 		    strcmp(cp->issuer, xp->issuer) == 0) {
3404 			if (ntohl(cp->cert.fstamp) <=
3405 			    ntohl(xp->cert.fstamp)) {
3406 				*zp = xp->link;;
3407 				cert_free(xp);
3408 			} else {
3409 				cert_free(cp);
3410 				return (XEVNT_FSP);
3411 			}
3412 			break;
3413 		}
3414 		zp = &xp->link;
3415 	}
3416 	yp->link = cinfo;
3417 	cinfo = yp;
3418 
3419 	/*
3420 	 * Scan the certificate list to see if Y is signed by X. This is
3421 	 * independent of order.
3422 	 */
3423 	for (yp = cinfo; yp != NULL; yp = yp->link) {
3424 		for (xp = cinfo; xp != NULL; xp = xp->link) {
3425 
3426 			/*
3427 			 * If the issuer of certificate Y matches the
3428 			 * subject of certificate X, verify the
3429 			 * signature of Y using the public key of X. If
3430 			 * so, X signs Y.
3431 			 */
3432 			if (strcmp(yp->issuer, xp->subject) != 0 ||
3433 				xp->flags & CERT_ERROR)
3434 				continue;
3435 
3436 			if (cert_valid(yp, xp->pkey) != XEVNT_OK) {
3437 				yp->flags |= CERT_ERROR;
3438 				continue;
3439 			}
3440 
3441 			/*
3442 			 * The signature Y is valid only if it begins
3443 			 * during the lifetime of X; however, it is not
3444 			 * necessarily an error, since some other
3445 			 * certificate might sign Y.
3446 			 */
3447 			if (yp->first < xp->first || yp->first >
3448 			    xp->last)
3449 				continue;
3450 
3451 			yp->flags |= CERT_SIGN;
3452 
3453 			/*
3454 			 * If X is trusted, then Y is trusted. Note that
3455 			 * we might stumble over a self-signed
3456 			 * certificate that is not trusted, at least
3457 			 * temporarily. This can happen when a dude
3458 			 * first comes up, but has not synchronized the
3459 			 * clock and had its certificate signed by its
3460 			 * server. In case of broken certificate trail,
3461 			 * this might result in a loop that could
3462 			 * persist until timeout.
3463 			 */
3464 			if (!(xp->flags & (CERT_TRUST | CERT_VALID)))
3465 				continue;
3466 
3467 			yp->flags |= CERT_VALID;
3468 
3469 			/*
3470 			 * If subject Y matches the server subject name,
3471 			 * then Y has completed the certificate trail.
3472 			 * Save the group key and light the valid bit.
3473 			 */
3474 			if (strcmp(yp->subject, peer->subject) != 0)
3475 				continue;
3476 
3477 			if (yp->grpkey != NULL) {
3478 				if (peer->grpkey != NULL)
3479 					BN_free(peer->grpkey);
3480 				peer->grpkey = BN_bin2bn(yp->grpkey,
3481 				     yp->grplen, NULL);
3482 			}
3483 			peer->crypto |= CRYPTO_FLAG_VALID;
3484 
3485 			/*
3486 			 * If the server has an an identity scheme,
3487 			 * fetch the identity credentials. If not, the
3488 			 * identity is verified only by the trusted
3489 			 * certificate. The next signature will set the
3490 			 * server proventic.
3491 			 */
3492 			if (peer->crypto & (CRYPTO_FLAG_GQ |
3493 			    CRYPTO_FLAG_IFF | CRYPTO_FLAG_MV))
3494 				continue;
3495 
3496 			peer->crypto |= CRYPTO_FLAG_VRFY;
3497 		}
3498 	}
3499 
3500 	/*
3501 	 * That was awesome. Now update the timestamps and signatures.
3502 	 */
3503 	crypto_update();
3504 	return (XEVNT_OK);
3505 }
3506 
3507 
3508 /*
3509  * cert_free - free certificate information structure
3510  */
3511 void
3512 cert_free(
3513 	struct cert_info *cinf	/* certificate info/value structure */
3514 	)
3515 {
3516 	if (cinf->pkey != NULL)
3517 		EVP_PKEY_free(cinf->pkey);
3518 	if (cinf->subject != NULL)
3519 		free(cinf->subject);
3520 	if (cinf->issuer != NULL)
3521 		free(cinf->issuer);
3522 	if (cinf->grpkey != NULL)
3523 		free(cinf->grpkey);
3524 	value_free(&cinf->cert);
3525 	free(cinf);
3526 }
3527 
3528 
3529 /*
3530  ***********************************************************************
3531  *								       *
3532  * The following routines are used only at initialization time         *
3533  *								       *
3534  ***********************************************************************
3535  */
3536 /*
3537  * crypto_key - load cryptographic parameters and keys from files
3538  *
3539  * This routine loads a PEM-encoded public/private key pair and extracts
3540  * the filestamp from the file name.
3541  *
3542  * Returns public key pointer if valid, NULL if not. Side effect updates
3543  * the filestamp if valid.
3544  */
3545 static EVP_PKEY *
3546 crypto_key(
3547 	char	*cp,		/* file name */
3548 	tstamp_t *fstamp	/* filestamp */
3549 	)
3550 {
3551 	FILE	*str;		/* file handle */
3552 	EVP_PKEY *pkey = NULL;	/* public/private key */
3553 	char	filename[MAXFILENAME]; /* name of key file */
3554 	char	linkname[MAXFILENAME]; /* filestamp buffer) */
3555 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3556 	char	*ptr;
3557 
3558 	/*
3559 	 * Open the key file. If the first character of the file name is
3560 	 * not '/', prepend the keys directory string. If something goes
3561 	 * wrong, abandon ship.
3562 	 */
3563 	if (*cp == '/')
3564 		strcpy(filename, cp);
3565 	else
3566 		snprintf(filename, MAXFILENAME, "%s/%s", keysdir, cp);
3567 	str = fopen(filename, "r");
3568 	if (str == NULL)
3569 		return (NULL);
3570 
3571 	/*
3572 	 * Read the filestamp, which is contained in the first line.
3573 	 */
3574 	if ((ptr = fgets(linkname, MAXFILENAME, str)) == NULL) {
3575 		msyslog(LOG_ERR, "crypto_key: no data %s\n",
3576 		    filename);
3577 		(void)fclose(str);
3578 		return (NULL);
3579 	}
3580 	if ((ptr = strrchr(ptr, '.')) == NULL) {
3581 		msyslog(LOG_ERR, "crypto_key: no filestamp %s\n",
3582 		    filename);
3583 		(void)fclose(str);
3584 		return (NULL);
3585 	}
3586 	if (sscanf(++ptr, "%u", fstamp) != 1) {
3587 		msyslog(LOG_ERR, "crypto_key: invalid timestamp %s\n",
3588 		    filename);
3589 		(void)fclose(str);
3590 		return (NULL);
3591 	}
3592 
3593 	/*
3594 	 * Read and decrypt PEM-encoded private key.
3595 	 */
3596 	pkey = PEM_read_PrivateKey(str, NULL, NULL, passwd);
3597 	fclose(str);
3598 	if (pkey == NULL) {
3599 		msyslog(LOG_ERR, "crypto_key %s\n",
3600 		    ERR_error_string(ERR_get_error(), NULL));
3601 		return (NULL);
3602 	}
3603 
3604 	/*
3605 	 * Leave tracks in the cryptostats.
3606 	 */
3607 	if ((ptr = strrchr(linkname, '\n')) != NULL)
3608 		*ptr = '\0';
3609 	sprintf(statstr, "%s mod %d", &linkname[2],
3610 	    EVP_PKEY_size(pkey) * 8);
3611 	record_crypto_stats(NULL, statstr);
3612 #ifdef DEBUG
3613 	if (debug)
3614 		printf("crypto_key: %s\n", statstr);
3615 	if (debug > 1) {
3616 		if (EVP_MD_type(pkey) == EVP_PKEY_DSA)
3617 			DSA_print_fp(stdout, pkey->pkey.dsa, 0);
3618 		else
3619 			RSA_print_fp(stdout, pkey->pkey.rsa, 0);
3620 	}
3621 #endif
3622 	return (pkey);
3623 }
3624 
3625 
3626 /*
3627  * crypto_cert - load certificate from file
3628  *
3629  * This routine loads a X.509 RSA or DSA certificate from a file and
3630  * constructs a info/cert value structure for this machine. The
3631  * structure includes a filestamp extracted from the file name. Later
3632  * the certificate can be sent to another machine by request.
3633  *
3634  * Returns certificate info/value pointer if valid, NULL if not.
3635  */
3636 static struct cert_info *	/* certificate information */
3637 crypto_cert(
3638 	char	*cp		/* file name */
3639 	)
3640 {
3641 	struct cert_info *ret; /* certificate information */
3642 	FILE	*str;		/* file handle */
3643 	char	filename[MAXFILENAME]; /* name of certificate file */
3644 	char	linkname[MAXFILENAME]; /* filestamp buffer */
3645 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3646 	tstamp_t fstamp;	/* filestamp */
3647 	long	len;
3648 	char	*ptr;
3649 	char	*name, *header;
3650 	u_char	*data;
3651 
3652 	/*
3653 	 * Open the certificate file. If the first character of the file
3654 	 * name is not '/', prepend the keys directory string. If
3655 	 * something goes wrong, abandon ship.
3656 	 */
3657 	if (*cp == '/')
3658 		strcpy(filename, cp);
3659 	else
3660 		snprintf(filename, MAXFILENAME, "%s/%s", keysdir, cp);
3661 	str = fopen(filename, "r");
3662 	if (str == NULL)
3663 		return (NULL);
3664 
3665 	/*
3666 	 * Read the filestamp, which is contained in the first line.
3667 	 */
3668 	if ((ptr = fgets(linkname, MAXFILENAME, str)) == NULL) {
3669 		msyslog(LOG_ERR, "crypto_cert: no data %s\n",
3670 		    filename);
3671 		(void)fclose(str);
3672 		return (NULL);
3673 	}
3674 	if ((ptr = strrchr(ptr, '.')) == NULL) {
3675 		msyslog(LOG_ERR, "crypto_cert: no filestamp %s\n",
3676 		    filename);
3677 		(void)fclose(str);
3678 		return (NULL);
3679 	}
3680 	if (sscanf(++ptr, "%u", &fstamp) != 1) {
3681 		msyslog(LOG_ERR, "crypto_cert: invalid filestamp %s\n",
3682 		    filename);
3683 		(void)fclose(str);
3684 		return (NULL);
3685 	}
3686 
3687 	/*
3688 	 * Read PEM-encoded certificate and install.
3689 	 */
3690 	if (!PEM_read(str, &name, &header, &data, &len)) {
3691 		msyslog(LOG_ERR, "crypto_cert %s\n",
3692 		    ERR_error_string(ERR_get_error(), NULL));
3693 		(void)fclose(str);
3694 		return (NULL);
3695 	}
3696 	free(header);
3697 	if (strcmp(name, "CERTIFICATE") !=0) {
3698 		msyslog(LOG_INFO, "crypto_cert: wrong PEM type %s",
3699 		    name);
3700 		free(name);
3701 		free(data);
3702 		(void)fclose(str);
3703 		return (NULL);
3704 	}
3705 	free(name);
3706 
3707 	/*
3708 	 * Parse certificate and generate info/value structure.
3709 	 */
3710 	ret = cert_parse(data, len, fstamp);
3711 	free(data);
3712 	(void)fclose(str);
3713 	if (ret == NULL)
3714 		return (NULL);
3715 
3716 	if ((ptr = strrchr(linkname, '\n')) != NULL)
3717 		*ptr = '\0';
3718 	sprintf(statstr, "%s 0x%x len %lu", &linkname[2], ret->flags,
3719 	    len);
3720 	record_crypto_stats(NULL, statstr);
3721 #ifdef DEBUG
3722 	if (debug)
3723 		printf("crypto_cert: %s\n", statstr);
3724 #endif
3725 	return (ret);
3726 }
3727 
3728 
3729 /*
3730  * crypto_tai - load leapseconds table from file
3731  *
3732  * This routine loads the ERTS leapsecond file in NIST text format,
3733  * converts to a value structure and extracts a filestamp from the file
3734  * name. The data are used to establish the TAI offset from UTC, which
3735  * is provided to the kernel if supported. Later the data can be sent to
3736  * another machine on request.
3737  */
3738 static void
3739 crypto_tai(
3740 	char	*cp		/* file name */
3741 	)
3742 {
3743 	FILE	*str;		/* file handle */
3744 	char	buf[NTP_MAXSTRLEN];	/* file line buffer */
3745 	u_int32	leapsec[MAX_LEAP]; /* NTP time at leaps */
3746 	int	offset;		/* offset at leap (s) */
3747 	char	filename[MAXFILENAME]; /* name of leapseconds file */
3748 	char	linkname[MAXFILENAME]; /* file link (for filestamp) */
3749 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3750 	tstamp_t fstamp;	/* filestamp */
3751 	u_int	len;
3752 	u_int32	*ptr;
3753 	char	*dp;
3754 	int	rval, i, j;
3755 
3756 	/*
3757 	 * Open the file and discard comment lines. If the first
3758 	 * character of the file name is not '/', prepend the keys
3759 	 * directory string. If the file is not found, not to worry; it
3760 	 * can be retrieved over the net. But, if it is found with
3761 	 * errors, we crash and burn.
3762 	 */
3763 	if (*cp == '/')
3764 		strcpy(filename, cp);
3765 	else
3766 		snprintf(filename, MAXFILENAME, "%s/%s", keysdir, cp);
3767 	if ((str = fopen(filename, "r")) == NULL)
3768 		return;
3769 
3770 	/*
3771 	 * Extract filestamp if present.
3772 	 */
3773 	rval = readlink(filename, linkname, MAXFILENAME - 1);
3774 	if (rval > 0) {
3775 		linkname[rval] = '\0';
3776 		dp = strrchr(linkname, '.');
3777 	} else {
3778 		dp = strrchr(filename, '.');
3779 	}
3780 	if (dp != NULL)
3781 		sscanf(++dp, "%u", &fstamp);
3782 	else
3783 		fstamp = 0;
3784 	tai_leap.fstamp = htonl(fstamp);
3785 
3786 	/*
3787 	 * We are rather paranoid here, since an intruder might cause a
3788 	 * coredump by infiltrating naughty values. Empty lines and
3789 	 * comments are ignored. Other lines must begin with two
3790 	 * integers followed by junk or comments. The first integer is
3791 	 * the NTP seconds of leap insertion, the second is the offset
3792 	 * of TAI relative to UTC after that insertion. The second word
3793 	 * must equal the initial insertion of ten seconds on 1 January
3794 	 * 1972 plus one second for each succeeding insertion.
3795 	 */
3796 	i = 0;
3797 	while (i < MAX_LEAP) {
3798 		dp = fgets(buf, NTP_MAXSTRLEN - 1, str);
3799 		if (dp == NULL)
3800 			break;
3801 
3802 		if (strlen(buf) < 1)
3803 			continue;
3804 
3805 		if (*buf == '#')
3806 			continue;
3807 
3808 		if (sscanf(buf, "%u %d", &leapsec[i], &offset) != 2)
3809 			continue;
3810 
3811 		if (i != offset - TAI_1972)
3812 			break;
3813 
3814 		i++;
3815 	}
3816 	fclose(str);
3817 	if (dp != NULL) {
3818 		msyslog(LOG_INFO,
3819 		    "crypto_tai: leapseconds file %s error %d", cp,
3820 		    rval);
3821 		exit (-1);
3822 	}
3823 
3824 	/*
3825 	 * The extension field table entries consists of the NTP seconds
3826 	 * of leap insertion in network byte order.
3827 	 */
3828 	len = i * sizeof(u_int32);
3829 	tai_leap.vallen = htonl(len);
3830 	ptr = emalloc(len);
3831 	tai_leap.ptr = (u_char *)ptr;
3832 	for (j = 0; j < i; j++)
3833 		*ptr++ = htonl(leapsec[j]);
3834 	crypto_flags |= CRYPTO_FLAG_TAI;
3835 	sprintf(statstr, "%s fs %u leap %u len %u", cp, fstamp,
3836 	   leapsec[--j], len);
3837 	record_crypto_stats(NULL, statstr);
3838 #ifdef DEBUG
3839 	if (debug)
3840 		printf("crypto_tai: %s\n", statstr);
3841 #endif
3842 }
3843 
3844 
3845 /*
3846  * crypto_setup - load keys, certificate and leapseconds table
3847  *
3848  * This routine loads the public/private host key and certificate. If
3849  * available, it loads the public/private sign key, which defaults to
3850  * the host key, and leapseconds table. The host key must be RSA, but
3851  * the sign key can be either RSA or DSA. In either case, the public key
3852  * on the certificate must agree with the sign key.
3853  */
3854 void
3855 crypto_setup(void)
3856 {
3857 	EVP_PKEY *pkey;		/* private/public key pair */
3858 	char	filename[MAXFILENAME]; /* file name buffer */
3859 	l_fp	seed;		/* crypto PRNG seed as NTP timestamp */
3860 	tstamp_t fstamp;	/* filestamp */
3861 	tstamp_t sstamp;	/* sign filestamp */
3862 	u_int	len, bytes;
3863 	u_char	*ptr;
3864 
3865 	/*
3866 	 * Initialize structures.
3867 	 */
3868 	if (!crypto_flags)
3869 		return;
3870 
3871 	gethostname(filename, MAXFILENAME);
3872 	bytes = strlen(filename) + 1;
3873 	sys_hostname = emalloc(bytes);
3874 	memcpy(sys_hostname, filename, bytes);
3875 	if (passwd == NULL)
3876 		passwd = sys_hostname;
3877 	memset(&hostval, 0, sizeof(hostval));
3878 	memset(&pubkey, 0, sizeof(pubkey));
3879 	memset(&tai_leap, 0, sizeof(tai_leap));
3880 
3881 	/*
3882 	 * Load required random seed file and seed the random number
3883 	 * generator. Be default, it is found in the user home
3884 	 * directory. The root home directory may be / or /root,
3885 	 * depending on the system. Wiggle the contents a bit and write
3886 	 * it back so the sequence does not repeat when we next restart.
3887 	 */
3888 	ERR_load_crypto_strings();
3889 	if (rand_file == NULL) {
3890 		if ((RAND_file_name(filename, MAXFILENAME)) != NULL) {
3891 			rand_file = emalloc(strlen(filename) + 1);
3892 			strcpy(rand_file, filename);
3893 		}
3894 	} else if (*rand_file != '/') {
3895 		snprintf(filename, MAXFILENAME, "%s/%s", keysdir,
3896 		    rand_file);
3897 		free(rand_file);
3898 		rand_file = emalloc(strlen(filename) + 1);
3899 		strcpy(rand_file, filename);
3900 	}
3901 	if (rand_file == NULL) {
3902 		msyslog(LOG_ERR,
3903 		    "crypto_setup: random seed file not specified");
3904 		exit (-1);
3905 	}
3906 	if ((bytes = RAND_load_file(rand_file, -1)) == 0) {
3907 		msyslog(LOG_ERR,
3908 		    "crypto_setup: random seed file %s not found\n",
3909 		    rand_file);
3910 		exit (-1);
3911 	}
3912 	get_systime(&seed);
3913 	RAND_seed(&seed, sizeof(l_fp));
3914 	RAND_write_file(rand_file);
3915 	OpenSSL_add_all_algorithms();
3916 #ifdef DEBUG
3917 	if (debug)
3918 		printf(
3919 		    "crypto_setup: OpenSSL version %lx random seed file %s bytes read %d\n",
3920 		    SSLeay(), rand_file, bytes);
3921 #endif
3922 
3923 	/*
3924 	 * Load required host key from file "ntpkey_host_<hostname>". It
3925 	 * also becomes the default sign key.
3926 	 */
3927 	if (host_file == NULL) {
3928 		snprintf(filename, MAXFILENAME, "ntpkey_host_%s",
3929 		    sys_hostname);
3930 		host_file = emalloc(strlen(filename) + 1);
3931 		strcpy(host_file, filename);
3932 	}
3933 	pkey = crypto_key(host_file, &fstamp);
3934 	if (pkey == NULL) {
3935 		msyslog(LOG_ERR,
3936 		    "crypto_setup: host key file %s not found or corrupt",
3937 		    host_file);
3938 		exit (-1);
3939 	}
3940 	host_pkey = pkey;
3941 	sign_pkey = pkey;
3942 	sstamp = fstamp;
3943 	hostval.fstamp = htonl(fstamp);
3944 	if (EVP_MD_type(host_pkey) != EVP_PKEY_RSA) {
3945 		msyslog(LOG_ERR,
3946 		    "crypto_setup: host key is not RSA key type");
3947 		exit (-1);
3948 	}
3949 	hostval.vallen = htonl(strlen(sys_hostname));
3950 	hostval.ptr = (u_char *)sys_hostname;
3951 
3952 	/*
3953 	 * Construct public key extension field for agreement scheme.
3954 	 */
3955 	len = i2d_PublicKey(host_pkey, NULL);
3956 	ptr = emalloc(len);
3957 	pubkey.ptr = ptr;
3958 	i2d_PublicKey(host_pkey, &ptr);
3959 	pubkey.vallen = htonl(len);
3960 	pubkey.fstamp = hostval.fstamp;
3961 
3962 	/*
3963 	 * Load optional sign key from file "ntpkey_sign_<hostname>". If
3964 	 * loaded, it becomes the sign key.
3965 	 */
3966 	if (sign_file == NULL) {
3967 		snprintf(filename, MAXFILENAME, "ntpkey_sign_%s",
3968 		    sys_hostname);
3969 		sign_file = emalloc(strlen(filename) + 1);
3970 		strcpy(sign_file, filename);
3971 	}
3972 	pkey = crypto_key(sign_file, &fstamp);
3973 	if (pkey != NULL) {
3974 		sign_pkey = pkey;
3975 		sstamp = fstamp;
3976 	}
3977 	sign_siglen = EVP_PKEY_size(sign_pkey);
3978 
3979 	/*
3980 	 * Load optional IFF parameters from file
3981 	 * "ntpkey_iff_<hostname>".
3982 	 */
3983 	if (iffpar_file == NULL) {
3984 		snprintf(filename, MAXFILENAME, "ntpkey_iff_%s",
3985 		    sys_hostname);
3986 		iffpar_file = emalloc(strlen(filename) + 1);
3987 		strcpy(iffpar_file, filename);
3988 	}
3989 	iffpar_pkey = crypto_key(iffpar_file, &if_fstamp);
3990 	if (iffpar_pkey != NULL)
3991 		crypto_flags |= CRYPTO_FLAG_IFF;
3992 
3993 	/*
3994 	 * Load optional GQ parameters from file "ntpkey_gq_<hostname>".
3995 	 */
3996 	if (gqpar_file == NULL) {
3997 		snprintf(filename, MAXFILENAME, "ntpkey_gq_%s",
3998 		    sys_hostname);
3999 		gqpar_file = emalloc(strlen(filename) + 1);
4000 		strcpy(gqpar_file, filename);
4001 	}
4002 	gqpar_pkey = crypto_key(gqpar_file, &gq_fstamp);
4003 	if (gqpar_pkey != NULL)
4004 		crypto_flags |= CRYPTO_FLAG_GQ;
4005 
4006 	/*
4007 	 * Load optional MV parameters from file "ntpkey_mv_<hostname>".
4008 	 */
4009 	if (mvpar_file == NULL) {
4010 		snprintf(filename, MAXFILENAME, "ntpkey_mv_%s",
4011 		    sys_hostname);
4012 		mvpar_file = emalloc(strlen(filename) + 1);
4013 		strcpy(mvpar_file, filename);
4014 	}
4015 	mvpar_pkey = crypto_key(mvpar_file, &mv_fstamp);
4016 	if (mvpar_pkey != NULL)
4017 		crypto_flags |= CRYPTO_FLAG_MV;
4018 
4019 	/*
4020 	 * Load required certificate from file "ntpkey_cert_<hostname>".
4021 	 */
4022 	if (cert_file == NULL) {
4023 		snprintf(filename, MAXFILENAME, "ntpkey_cert_%s",
4024 		    sys_hostname);
4025 		cert_file = emalloc(strlen(filename) + 1);
4026 		strcpy(cert_file, filename);
4027 	}
4028 	if ((cinfo = crypto_cert(cert_file)) == NULL) {
4029 		msyslog(LOG_ERR,
4030 		    "certificate file %s not found or corrupt",
4031 		    cert_file);
4032 		exit (-1);
4033 	}
4034 
4035 	/*
4036 	 * The subject name must be the same as the host name, unless
4037 	 * the certificate is private, in which case it may have come
4038 	 * from another host.
4039 	 */
4040 	if (!(cinfo->flags & CERT_PRIV) && strcmp(cinfo->subject,
4041 	    sys_hostname) != 0) {
4042 		msyslog(LOG_ERR,
4043 		    "crypto_setup: certificate %s not for this host",
4044 		    cert_file);
4045 		cert_free(cinfo);
4046 		exit (-1);
4047 	}
4048 
4049 	/*
4050 	 * It the certificate is trusted, the subject must be the same
4051 	 * as the issuer, in other words it must be self signed.
4052 	 */
4053 	if (cinfo->flags & CERT_TRUST && strcmp(cinfo->subject,
4054 	    cinfo->issuer) != 0) {
4055 		if (cert_valid(cinfo, sign_pkey) != XEVNT_OK) {
4056 			msyslog(LOG_ERR,
4057 			    "crypto_setup: certificate %s is trusted, but not self signed.",
4058 			    cert_file);
4059 			cert_free(cinfo);
4060 			exit (-1);
4061 		}
4062 	}
4063 	sign_digest = cinfo->digest;
4064 	if (cinfo->flags & CERT_PRIV)
4065 		crypto_flags |= CRYPTO_FLAG_PRIV;
4066 	crypto_flags |= cinfo->nid << 16;
4067 
4068 	/*
4069 	 * Load optional leapseconds table from file "ntpkey_leap". If
4070 	 * the file is missing or defective, the values can later be
4071 	 * retrieved from a server.
4072 	 */
4073 	if (leap_file == NULL)
4074 		leap_file = "ntpkey_leap";
4075 	crypto_tai(leap_file);
4076 #ifdef DEBUG
4077 	if (debug)
4078 		printf(
4079 		    "crypto_setup: flags 0x%x host %s signature %s\n",
4080 		    crypto_flags, sys_hostname, OBJ_nid2ln(cinfo->nid));
4081 #endif
4082 }
4083 
4084 
4085 /*
4086  * crypto_config - configure data from crypto configuration command.
4087  */
4088 void
4089 crypto_config(
4090 	int	item,		/* configuration item */
4091 	char	*cp		/* file name */
4092 	)
4093 {
4094 	switch (item) {
4095 
4096 	/*
4097 	 * Set random seed file name.
4098 	 */
4099 	case CRYPTO_CONF_RAND:
4100 		rand_file = emalloc(strlen(cp) + 1);
4101 		strcpy(rand_file, cp);
4102 		break;
4103 
4104 	/*
4105 	 * Set private key password.
4106 	 */
4107 	case CRYPTO_CONF_PW:
4108 		passwd = emalloc(strlen(cp) + 1);
4109 		strcpy(passwd, cp);
4110 		break;
4111 
4112 	/*
4113 	 * Set host file name.
4114 	 */
4115 	case CRYPTO_CONF_PRIV:
4116 		host_file = emalloc(strlen(cp) + 1);
4117 		strcpy(host_file, cp);
4118 		break;
4119 
4120 	/*
4121 	 * Set sign key file name.
4122 	 */
4123 	case CRYPTO_CONF_SIGN:
4124 		sign_file = emalloc(strlen(cp) + 1);
4125 		strcpy(sign_file, cp);
4126 		break;
4127 
4128 	/*
4129 	 * Set iff parameters file name.
4130 	 */
4131 	case CRYPTO_CONF_IFFPAR:
4132 		iffpar_file = emalloc(strlen(cp) + 1);
4133 		strcpy(iffpar_file, cp);
4134 		break;
4135 
4136 	/*
4137 	 * Set gq parameters file name.
4138 	 */
4139 	case CRYPTO_CONF_GQPAR:
4140 		gqpar_file = emalloc(strlen(cp) + 1);
4141 		strcpy(gqpar_file, cp);
4142 		break;
4143 
4144 	/*
4145 	 * Set mv parameters file name.
4146 	 */
4147 	case CRYPTO_CONF_MVPAR:
4148 		mvpar_file = emalloc(strlen(cp) + 1);
4149 		strcpy(mvpar_file, cp);
4150 		break;
4151 
4152 	/*
4153 	 * Set identity scheme.
4154 	 */
4155 	case CRYPTO_CONF_IDENT:
4156 		if (!strcasecmp(cp, "iff"))
4157 			ident_scheme |= CRYPTO_FLAG_IFF;
4158 		else if (!strcasecmp(cp, "gq"))
4159 			ident_scheme |= CRYPTO_FLAG_GQ;
4160 		else if (!strcasecmp(cp, "mv"))
4161 			ident_scheme |= CRYPTO_FLAG_MV;
4162 		break;
4163 
4164 	/*
4165 	 * Set certificate file name.
4166 	 */
4167 	case CRYPTO_CONF_CERT:
4168 		cert_file = emalloc(strlen(cp) + 1);
4169 		strcpy(cert_file, cp);
4170 		break;
4171 
4172 	/*
4173 	 * Set leapseconds file name.
4174 	 */
4175 	case CRYPTO_CONF_LEAP:
4176 		leap_file = emalloc(strlen(cp) + 1);
4177 		strcpy(leap_file, cp);
4178 		break;
4179 	}
4180 	crypto_flags |= CRYPTO_FLAG_ENAB;
4181 }
4182 # else
4183 int ntp_crypto_bs_pubkey;
4184 # endif /* OPENSSL */
4185