xref: /freebsd/contrib/ntp/ntpd/ntp_crypto.c (revision b08fc26cbdd00df6852e71e1be58fa9cc92019f0)
1 /*
2  * ntp_crypto.c - NTP version 4 public key routines
3  */
4 #ifdef HAVE_CONFIG_H
5 #include <config.h>
6 #endif
7 
8 #ifdef AUTOKEY
9 #include <stdio.h>
10 #include <stdlib.h>	/* strtoul */
11 #include <sys/types.h>
12 #include <sys/param.h>
13 #include <unistd.h>
14 #include <fcntl.h>
15 
16 #include "ntpd.h"
17 #include "ntp_stdlib.h"
18 #include "ntp_unixtime.h"
19 #include "ntp_string.h"
20 #include "ntp_random.h"
21 #include "ntp_assert.h"
22 #include "ntp_calendar.h"
23 #include "ntp_leapsec.h"
24 
25 #include "openssl/bn.h"
26 #include "openssl/err.h"
27 #include "openssl/evp.h"
28 #include "openssl/pem.h"
29 #include "openssl/rand.h"
30 #include "openssl/x509v3.h"
31 #include "libssl_compat.h"
32 
33 #ifdef KERNEL_PLL
34 #include "ntp_syscall.h"
35 #endif /* KERNEL_PLL */
36 
37 /*
38  * calcomp - compare two calendar structures, ignoring yearday and weekday; like strcmp
39  * No, it's not a plotter.  If you don't understand that, you're too young.
40  */
41 static int calcomp(struct calendar *pjd1, struct calendar *pjd2)
42 {
43 	int32_t diff;	/* large enough to hold the signed difference between two uint16_t values */
44 
45 	diff = pjd1->year - pjd2->year;
46 	if (diff < 0) return -1; else if (diff > 0) return 1;
47 	/* same year; compare months */
48 	diff = pjd1->month - pjd2->month;
49 	if (diff < 0) return -1; else if (diff > 0) return 1;
50 	/* same year and month; compare monthday */
51 	diff = pjd1->monthday - pjd2->monthday;
52 	if (diff < 0) return -1; else if (diff > 0) return 1;
53 	/* same year and month and monthday; compare time */
54 	diff = pjd1->hour - pjd2->hour;
55 	if (diff < 0) return -1; else if (diff > 0) return 1;
56 	diff = pjd1->minute - pjd2->minute;
57 	if (diff < 0) return -1; else if (diff > 0) return 1;
58 	diff = pjd1->second - pjd2->second;
59 	if (diff < 0) return -1; else if (diff > 0) return 1;
60 	/* identical */
61 	return 0;
62 }
63 
64 /*
65  * Extension field message format
66  *
67  * These are always signed and saved before sending in network byte
68  * order. They must be converted to and from host byte order for
69  * processing.
70  *
71  * +-------+-------+
72  * |   op  |  len  | <- extension pointer
73  * +-------+-------+
74  * |    associd    |
75  * +---------------+
76  * |   timestamp   | <- value pointer
77  * +---------------+
78  * |   filestamp   |
79  * +---------------+
80  * |   value len   |
81  * +---------------+
82  * |               |
83  * =     value     =
84  * |               |
85  * +---------------+
86  * | signature len |
87  * +---------------+
88  * |               |
89  * =   signature   =
90  * |               |
91  * +---------------+
92  *
93  * The CRYPTO_RESP bit is set to 0 for requests, 1 for responses.
94  * Requests carry the association ID of the receiver; responses carry
95  * the association ID of the sender. Some messages include only the
96  * operation/length and association ID words and so have length 8
97  * octets. Ohers include the value structure and associated value and
98  * signature fields. These messages include the timestamp, filestamp,
99  * value and signature words and so have length at least 24 octets. The
100  * signature and/or value fields can be empty, in which case the
101  * respective length words are zero. An empty value with nonempty
102  * signature is syntactically valid, but semantically questionable.
103  *
104  * The filestamp represents the time when a cryptographic data file such
105  * as a public/private key pair is created. It follows every reference
106  * depending on that file and serves as a means to obsolete earlier data
107  * of the same type. The timestamp represents the time when the
108  * cryptographic data of the message were last signed. Creation of a
109  * cryptographic data file or signing a message can occur only when the
110  * creator or signor is synchronized to an authoritative source and
111  * proventicated to a trusted authority.
112  *
113  * Note there are several conditions required for server trust. First,
114  * the public key on the server certificate must be verified, which can
115  * involve a hike along the certificate trail to a trusted host. Next,
116  * the server trust must be confirmed by one of several identity
117  * schemes. Valid cryptographic values are signed with attached
118  * timestamp and filestamp. Individual packet trust is confirmed
119  * relative to these values by a message digest with keys generated by a
120  * reverse-order pseudorandom hash.
121  *
122  * State decomposition. These flags are lit in the order given. They are
123  * dim only when the association is demobilized.
124  *
125  * CRYPTO_FLAG_ENAB	Lit upon acceptance of a CRYPTO_ASSOC message
126  * CRYPTO_FLAG_CERT	Lit when a self-digned trusted certificate is
127  *			accepted.
128  * CRYPTO_FLAG_VRFY	Lit when identity is confirmed.
129  * CRYPTO_FLAG_PROV	Lit when the first signature is verified.
130  * CRYPTO_FLAG_COOK	Lit when a valid cookie is accepted.
131  * CRYPTO_FLAG_AUTO	Lit when valid autokey values are accepted.
132  * CRYPTO_FLAG_SIGN	Lit when the server signed certificate is
133  *			accepted.
134  * CRYPTO_FLAG_LEAP	Lit when the leapsecond values are accepted.
135  */
136 /*
137  * Cryptodefines
138  */
139 #define TAI_1972	10	/* initial TAI offset (s) */
140 #define MAX_LEAP	100	/* max UTC leapseconds (s) */
141 #define VALUE_LEN	(6 * 4) /* min response field length */
142 #define MAX_VALLEN	(65535 - VALUE_LEN)
143 #define YEAR		(60 * 60 * 24 * 365) /* seconds in year */
144 
145 /*
146  * Global cryptodata in host byte order
147  */
148 u_int32	crypto_flags = 0x0;	/* status word */
149 int	crypto_nid = KEY_TYPE_MD5; /* digest nid */
150 char	*sys_hostname = NULL;
151 char	*sys_groupname = NULL;
152 static char *host_filename = NULL;	/* host file name */
153 static char *ident_filename = NULL;	/* group file name */
154 
155 /*
156  * Global cryptodata in network byte order
157  */
158 struct cert_info *cinfo = NULL;	/* certificate info/value cache */
159 struct cert_info *cert_host = NULL; /* host certificate */
160 struct pkey_info *pkinfo = NULL; /* key info/value cache */
161 struct value hostval;		/* host value */
162 struct value pubkey;		/* public key */
163 struct value tai_leap;		/* leapseconds values */
164 struct pkey_info *iffkey_info = NULL; /* IFF keys */
165 struct pkey_info *gqkey_info = NULL; /* GQ keys */
166 struct pkey_info *mvkey_info = NULL; /* MV keys */
167 
168 /*
169  * Private cryptodata in host byte order
170  */
171 static char *passwd = NULL;	/* private key password */
172 static EVP_PKEY *host_pkey = NULL; /* host key */
173 static EVP_PKEY *sign_pkey = NULL; /* sign key */
174 static const EVP_MD *sign_digest = NULL; /* sign digest */
175 static u_int sign_siglen;	/* sign key length */
176 static char *rand_file = NULL;	/* random seed file */
177 
178 /*
179  * Cryptotypes
180  */
181 static	int	crypto_verify	(struct exten *, struct value *,
182 				    struct peer *);
183 static	int	crypto_encrypt	(const u_char *, u_int, keyid_t *,
184 				    struct value *);
185 static	int	crypto_alice	(struct peer *, struct value *);
186 static	int	crypto_alice2	(struct peer *, struct value *);
187 static	int	crypto_alice3	(struct peer *, struct value *);
188 static	int	crypto_bob	(struct exten *, struct value *);
189 static	int	crypto_bob2	(struct exten *, struct value *);
190 static	int	crypto_bob3	(struct exten *, struct value *);
191 static	int	crypto_iff	(struct exten *, struct peer *);
192 static	int	crypto_gq	(struct exten *, struct peer *);
193 static	int	crypto_mv	(struct exten *, struct peer *);
194 static	int	crypto_send	(struct exten *, struct value *, int);
195 static	tstamp_t crypto_time	(void);
196 static	void	asn_to_calendar		(ASN1_TIME *, struct calendar*);
197 static	struct cert_info *cert_parse (const u_char *, long, tstamp_t);
198 static	int	cert_sign	(struct exten *, struct value *);
199 static	struct cert_info *cert_install (struct exten *, struct peer *);
200 static	int	cert_hike	(struct peer *, struct cert_info *);
201 static	void	cert_free	(struct cert_info *);
202 static	struct pkey_info *crypto_key (char *, char *, sockaddr_u *);
203 static	void	bighash		(BIGNUM *, BIGNUM *);
204 static	struct cert_info *crypto_cert (char *);
205 static	u_int	exten_payload_size(const struct exten *);
206 
207 #ifdef SYS_WINNT
208 int
209 readlink(char * link, char * file, int len) {
210 	return (-1);
211 }
212 #endif
213 
214 /*
215  * session_key - generate session key
216  *
217  * This routine generates a session key from the source address,
218  * destination address, key ID and private value. The value of the
219  * session key is the MD5 hash of these values, while the next key ID is
220  * the first four octets of the hash.
221  *
222  * Returns the next key ID or 0 if there is no destination address.
223  */
224 keyid_t
225 session_key(
226 	sockaddr_u *srcadr, 	/* source address */
227 	sockaddr_u *dstadr, 	/* destination address */
228 	keyid_t	keyno,		/* key ID */
229 	keyid_t	private,	/* private value */
230 	u_long	lifetime 	/* key lifetime */
231 	)
232 {
233 	EVP_MD_CTX *ctx;	/* message digest context */
234 	u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */
235 	keyid_t	keyid;		/* key identifer */
236 	u_int32	header[10];	/* data in network byte order */
237 	u_int	hdlen, len;
238 
239 	if (!dstadr)
240 		return 0;
241 
242 	/*
243 	 * Generate the session key and key ID. If the lifetime is
244 	 * greater than zero, install the key and call it trusted.
245 	 */
246 	hdlen = 0;
247 	switch(AF(srcadr)) {
248 	case AF_INET:
249 		header[0] = NSRCADR(srcadr);
250 		header[1] = NSRCADR(dstadr);
251 		header[2] = htonl(keyno);
252 		header[3] = htonl(private);
253 		hdlen = 4 * sizeof(u_int32);
254 		break;
255 
256 	case AF_INET6:
257 		memcpy(&header[0], PSOCK_ADDR6(srcadr),
258 		    sizeof(struct in6_addr));
259 		memcpy(&header[4], PSOCK_ADDR6(dstadr),
260 		    sizeof(struct in6_addr));
261 		header[8] = htonl(keyno);
262 		header[9] = htonl(private);
263 		hdlen = 10 * sizeof(u_int32);
264 		break;
265 	}
266 	ctx = EVP_MD_CTX_new();
267 	EVP_DigestInit(ctx, EVP_get_digestbynid(crypto_nid));
268 	EVP_DigestUpdate(ctx, (u_char *)header, hdlen);
269 	EVP_DigestFinal(ctx, dgst, &len);
270 	EVP_MD_CTX_free(ctx);
271 	memcpy(&keyid, dgst, 4);
272 	keyid = ntohl(keyid);
273 	if (lifetime != 0) {
274 		MD5auth_setkey(keyno, crypto_nid, dgst, len, NULL);
275 		authtrust(keyno, lifetime);
276 	}
277 	DPRINTF(2, ("session_key: %s > %s %08x %08x hash %08x life %lu\n",
278 		    stoa(srcadr), stoa(dstadr), keyno,
279 		    private, keyid, lifetime));
280 
281 	return (keyid);
282 }
283 
284 
285 /*
286  * make_keylist - generate key list
287  *
288  * Returns
289  * XEVNT_OK	success
290  * XEVNT_ERR	protocol error
291  *
292  * This routine constructs a pseudo-random sequence by repeatedly
293  * hashing the session key starting from a given source address,
294  * destination address, private value and the next key ID of the
295  * preceeding session key. The last entry on the list is saved along
296  * with its sequence number and public signature.
297  */
298 int
299 make_keylist(
300 	struct peer *peer,	/* peer structure pointer */
301 	struct interface *dstadr /* interface */
302 	)
303 {
304 	EVP_MD_CTX *ctx;	/* signature context */
305 	tstamp_t tstamp;	/* NTP timestamp */
306 	struct autokey *ap;	/* autokey pointer */
307 	struct value *vp;	/* value pointer */
308 	keyid_t	keyid = 0;	/* next key ID */
309 	keyid_t	cookie;		/* private value */
310 	long	lifetime;
311 	u_int	len, mpoll;
312 	int	i;
313 
314 	if (!dstadr)
315 		return XEVNT_ERR;
316 
317 	/*
318 	 * Allocate the key list if necessary.
319 	 */
320 	tstamp = crypto_time();
321 	if (peer->keylist == NULL)
322 		peer->keylist = eallocarray(NTP_MAXSESSION,
323 					    sizeof(keyid_t));
324 
325 	/*
326 	 * Generate an initial key ID which is unique and greater than
327 	 * NTP_MAXKEY.
328 	 */
329 	while (1) {
330 		keyid = ntp_random() & 0xffffffff;
331 		if (keyid <= NTP_MAXKEY)
332 			continue;
333 
334 		if (authhavekey(keyid))
335 			continue;
336 		break;
337 	}
338 
339 	/*
340 	 * Generate up to NTP_MAXSESSION session keys. Stop if the
341 	 * next one would not be unique or not a session key ID or if
342 	 * it would expire before the next poll. The private value
343 	 * included in the hash is zero if broadcast mode, the peer
344 	 * cookie if client mode or the host cookie if symmetric modes.
345 	 */
346 	mpoll = 1 << min(peer->ppoll, peer->hpoll);
347 	lifetime = min(1U << sys_automax, NTP_MAXSESSION * mpoll);
348 	if (peer->hmode == MODE_BROADCAST)
349 		cookie = 0;
350 	else
351 		cookie = peer->pcookie;
352 	for (i = 0; i < NTP_MAXSESSION; i++) {
353 		peer->keylist[i] = keyid;
354 		peer->keynumber = i;
355 		keyid = session_key(&dstadr->sin, &peer->srcadr, keyid,
356 		    cookie, lifetime + mpoll);
357 		lifetime -= mpoll;
358 		if (auth_havekey(keyid) || keyid <= NTP_MAXKEY ||
359 		    lifetime < 0 || tstamp == 0)
360 			break;
361 	}
362 
363 	/*
364 	 * Save the last session key ID, sequence number and timestamp,
365 	 * then sign these values for later retrieval by the clients. Be
366 	 * careful not to use invalid key media. Use the public values
367 	 * timestamp as filestamp.
368 	 */
369 	vp = &peer->sndval;
370 	if (vp->ptr == NULL)
371 		vp->ptr = emalloc(sizeof(struct autokey));
372 	ap = (struct autokey *)vp->ptr;
373 	ap->seq = htonl(peer->keynumber);
374 	ap->key = htonl(keyid);
375 	vp->tstamp = htonl(tstamp);
376 	vp->fstamp = hostval.tstamp;
377 	vp->vallen = htonl(sizeof(struct autokey));
378 	vp->siglen = 0;
379 	if (tstamp != 0) {
380 		if (vp->sig == NULL)
381 			vp->sig = emalloc(sign_siglen);
382 		ctx = EVP_MD_CTX_new();
383 		EVP_SignInit(ctx, sign_digest);
384 		EVP_SignUpdate(ctx, (u_char *)vp, 12);
385 		EVP_SignUpdate(ctx, vp->ptr, sizeof(struct autokey));
386 		if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
387 			INSIST(len <= sign_siglen);
388 			vp->siglen = htonl(len);
389 			peer->flags |= FLAG_ASSOC;
390 		}
391 		EVP_MD_CTX_free(ctx);
392 	}
393 	DPRINTF(1, ("make_keys: %d %08x %08x ts %u fs %u poll %d\n",
394 		    peer->keynumber, keyid, cookie, ntohl(vp->tstamp),
395 		    ntohl(vp->fstamp), peer->hpoll));
396 	return (XEVNT_OK);
397 }
398 
399 
400 /*
401  * crypto_recv - parse extension fields
402  *
403  * This routine is called when the packet has been matched to an
404  * association and passed sanity, format and MAC checks. We believe the
405  * extension field values only if the field has proper format and
406  * length, the timestamp and filestamp are valid and the signature has
407  * valid length and is verified. There are a few cases where some values
408  * are believed even if the signature fails, but only if the proventic
409  * bit is not set.
410  *
411  * Returns
412  * XEVNT_OK	success
413  * XEVNT_ERR	protocol error
414  * XEVNT_LEN	bad field format or length
415  */
416 int
417 crypto_recv(
418 	struct peer *peer,	/* peer structure pointer */
419 	struct recvbuf *rbufp	/* packet buffer pointer */
420 	)
421 {
422 	const EVP_MD *dp;	/* message digest algorithm */
423 	u_int32	*pkt;		/* receive packet pointer */
424 	struct autokey *ap, *bp; /* autokey pointer */
425 	struct exten *ep, *fp;	/* extension pointers */
426 	struct cert_info *xinfo; /* certificate info pointer */
427 	int	macbytes;	/* length of MAC field, signed by intention */
428 	int	authlen;	/* offset of MAC field */
429 	associd_t associd;	/* association ID */
430 	tstamp_t fstamp = 0;	/* filestamp */
431 	u_int	len;		/* extension field length */
432 	u_int	code;		/* extension field opcode */
433 	u_int	vallen = 0;	/* value length */
434 	X509	*cert;		/* X509 certificate */
435 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
436 	keyid_t	cookie;		/* crumbles */
437 	int	hismode;	/* packet mode */
438 	int	rval = XEVNT_OK;
439 	const u_char *puch;
440 	u_int32 temp32;
441 
442 	/*
443 	 * Initialize. Note that the packet has already been checked for
444 	 * valid format and extension field lengths. First extract the
445 	 * field length, command code and association ID in host byte
446 	 * order. These are used with all commands and modes. Then check
447 	 * the version number, which must be 2, and length, which must
448 	 * be at least 8 for requests and VALUE_LEN (24) for responses.
449 	 * Packets that fail either test sink without a trace. The
450 	 * association ID is saved only if nonzero.
451 	 */
452 	authlen = LEN_PKT_NOMAC;
453 	hismode = (int)PKT_MODE((&rbufp->recv_pkt)->li_vn_mode);
454 	while ((macbytes = rbufp->recv_length - authlen) > (int)MAX_MAC_LEN) {
455 		/* We can be reasonably sure that we can read at least
456 		 * the opcode and the size field here. More stringent
457 		 * checks follow up shortly.
458 		 */
459 		pkt = (u_int32 *)&rbufp->recv_pkt + authlen / 4;
460 		ep = (struct exten *)pkt;
461 		code = ntohl(ep->opcode) & 0xffff0000;
462 		len = ntohl(ep->opcode) & 0x0000ffff;
463 		// HMS: Why pkt[1] instead of ep->associd ?
464 		associd = (associd_t)ntohl(pkt[1]);
465 		rval = XEVNT_OK;
466 		DPRINTF(1, ("crypto_recv: flags 0x%x ext offset %d len %u code 0x%x associd %d\n",
467 			    peer->crypto, authlen, len, code >> 16,
468 			    associd));
469 
470 		/*
471 		 * Check version number and field length. If bad,
472 		 * quietly ignore the packet.
473 		 */
474 		if (((code >> 24) & 0x3f) != CRYPTO_VN || len < 8) {
475 			sys_badlength++;
476 			code |= CRYPTO_ERROR;
477 		}
478 
479 		/* Check if the declared size fits into the remaining
480 		 * buffer. We *know* 'macbytes' > 0 here!
481 		 */
482 		if (len > (u_int)macbytes) {
483 			DPRINTF(1, ("crypto_recv: possible attack detected, associd %d\n",
484 				    associd));
485 			return XEVNT_LEN;
486 		}
487 
488 		/* Check if the paylod of the extension fits into the
489 		 * declared frame.
490 		 */
491 		if (len >= VALUE_LEN) {
492 			fstamp = ntohl(ep->fstamp);
493 			vallen = ntohl(ep->vallen);
494 			/*
495 			 * Bug 2761: I hope this isn't too early...
496 			 */
497 			if (   vallen == 0
498 			    || len - VALUE_LEN < vallen)
499 				return XEVNT_LEN;
500 		}
501 		switch (code) {
502 
503 		/*
504 		 * Install status word, host name, signature scheme and
505 		 * association ID. In OpenSSL the signature algorithm is
506 		 * bound to the digest algorithm, so the NID completely
507 		 * defines the signature scheme. Note the request and
508 		 * response are identical, but neither is validated by
509 		 * signature. The request is processed here only in
510 		 * symmetric modes. The server name field might be
511 		 * useful to implement access controls in future.
512 		 */
513 		case CRYPTO_ASSOC:
514 
515 			/*
516 			 * If our state machine is running when this
517 			 * message arrives, the other fellow might have
518 			 * restarted. However, this could be an
519 			 * intruder, so just clamp the poll interval and
520 			 * find out for ourselves. Otherwise, pass the
521 			 * extension field to the transmit side.
522 			 */
523 			if (peer->crypto & CRYPTO_FLAG_CERT) {
524 				rval = XEVNT_ERR;
525 				break;
526 			}
527 			if (peer->cmmd) {
528 				if (peer->assoc != associd) {
529 					rval = XEVNT_ERR;
530 					break;
531 				}
532 				free(peer->cmmd); /* will be set again! */
533 			}
534 			fp = emalloc(len);
535 			memcpy(fp, ep, len);
536 			fp->associd = htonl(peer->associd);
537 			peer->cmmd = fp;
538 			/* fall through */
539 
540 		case CRYPTO_ASSOC | CRYPTO_RESP:
541 
542 			/*
543 			 * Discard the message if it has already been
544 			 * stored or the message has been amputated.
545 			 */
546 			if (peer->crypto) {
547 				if (peer->assoc != associd)
548 					rval = XEVNT_ERR;
549 				break;
550 			}
551 			INSIST(len >= VALUE_LEN);
552 			if (vallen == 0 || vallen > MAXHOSTNAME ||
553 			    len - VALUE_LEN < vallen) {
554 				rval = XEVNT_LEN;
555 				break;
556 			}
557 			DPRINTF(1, ("crypto_recv: ident host 0x%x %d server 0x%x %d\n",
558 				    crypto_flags, peer->associd, fstamp,
559 				    peer->assoc));
560 			temp32 = crypto_flags & CRYPTO_FLAG_MASK;
561 
562 			/*
563 			 * If the client scheme is PC, the server scheme
564 			 * must be PC. The public key and identity are
565 			 * presumed valid, so we skip the certificate
566 			 * and identity exchanges and move immediately
567 			 * to the cookie exchange which confirms the
568 			 * server signature.
569 			 */
570 			if (crypto_flags & CRYPTO_FLAG_PRIV) {
571 				if (!(fstamp & CRYPTO_FLAG_PRIV)) {
572 					rval = XEVNT_KEY;
573 					break;
574 				}
575 				fstamp |= CRYPTO_FLAG_CERT |
576 				    CRYPTO_FLAG_VRFY | CRYPTO_FLAG_SIGN;
577 
578 			/*
579 			 * It is an error if either peer supports
580 			 * identity, but the other does not.
581 			 */
582 			} else if (hismode == MODE_ACTIVE || hismode ==
583 			    MODE_PASSIVE) {
584 				if ((temp32 && !(fstamp &
585 				    CRYPTO_FLAG_MASK)) ||
586 				    (!temp32 && (fstamp &
587 				    CRYPTO_FLAG_MASK))) {
588 					rval = XEVNT_KEY;
589 					break;
590 				}
591 			}
592 
593 			/*
594 			 * Discard the message if the signature digest
595 			 * NID is not supported.
596 			 */
597 			temp32 = (fstamp >> 16) & 0xffff;
598 			dp =
599 			    (const EVP_MD *)EVP_get_digestbynid(temp32);
600 			if (dp == NULL) {
601 				rval = XEVNT_MD;
602 				break;
603 			}
604 
605 			/*
606 			 * Save status word, host name and message
607 			 * digest/signature type. If this is from a
608 			 * broadcast and the association ID has changed,
609 			 * request the autokey values.
610 			 */
611 			peer->assoc = associd;
612 			if (hismode == MODE_SERVER)
613 				fstamp |= CRYPTO_FLAG_AUTO;
614 			if (!(fstamp & CRYPTO_FLAG_TAI))
615 				fstamp |= CRYPTO_FLAG_LEAP;
616 			RAND_bytes((u_char *)&peer->hcookie, 4);
617 			peer->crypto = fstamp;
618 			peer->digest = dp;
619 			if (peer->subject != NULL)
620 				free(peer->subject);
621 			peer->subject = emalloc(vallen + 1);
622 			memcpy(peer->subject, ep->pkt, vallen);
623 			peer->subject[vallen] = '\0';
624 			if (peer->issuer != NULL)
625 				free(peer->issuer);
626 			peer->issuer = estrdup(peer->subject);
627 			snprintf(statstr, sizeof(statstr),
628 			    "assoc %d %d host %s %s", peer->associd,
629 			    peer->assoc, peer->subject,
630 			    OBJ_nid2ln(temp32));
631 			record_crypto_stats(&peer->srcadr, statstr);
632 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
633 			break;
634 
635 		/*
636 		 * Decode X509 certificate in ASN.1 format and extract
637 		 * the data containing, among other things, subject
638 		 * name and public key. In the default identification
639 		 * scheme, the certificate trail is followed to a self
640 		 * signed trusted certificate.
641 		 */
642 		case CRYPTO_CERT | CRYPTO_RESP:
643 
644 			/*
645 			 * Discard the message if empty or invalid.
646 			 */
647 			if (len < VALUE_LEN)
648 				break;
649 
650 			if ((rval = crypto_verify(ep, NULL, peer)) !=
651 			    XEVNT_OK)
652 				break;
653 
654 			/*
655 			 * Scan the certificate list to delete old
656 			 * versions and link the newest version first on
657 			 * the list. Then, verify the signature. If the
658 			 * certificate is bad or missing, just ignore
659 			 * it.
660 			 */
661 			if ((xinfo = cert_install(ep, peer)) == NULL) {
662 				rval = XEVNT_CRT;
663 				break;
664 			}
665 			if ((rval = cert_hike(peer, xinfo)) != XEVNT_OK)
666 				break;
667 
668 			/*
669 			 * We plug in the public key and lifetime from
670 			 * the first certificate received. However, note
671 			 * that this certificate might not be signed by
672 			 * the server, so we can't check the
673 			 * signature/digest NID.
674 			 */
675 			if (peer->pkey == NULL) {
676 				puch = xinfo->cert.ptr;
677 				cert = d2i_X509(NULL, &puch,
678 				    ntohl(xinfo->cert.vallen));
679 				peer->pkey = X509_get_pubkey(cert);
680 				X509_free(cert);
681 			}
682 			peer->flash &= ~TEST8;
683 			temp32 = xinfo->nid;
684 			snprintf(statstr, sizeof(statstr),
685 			    "cert %s %s 0x%x %s (%u) fs %u",
686 			    xinfo->subject, xinfo->issuer, xinfo->flags,
687 			    OBJ_nid2ln(temp32), temp32,
688 			    ntohl(ep->fstamp));
689 			record_crypto_stats(&peer->srcadr, statstr);
690 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
691 			break;
692 
693 		/*
694 		 * Schnorr (IFF) identity scheme. This scheme is
695 		 * designed for use with shared secret server group keys
696 		 * and where the certificate may be generated by a third
697 		 * party. The client sends a challenge to the server,
698 		 * which performs a calculation and returns the result.
699 		 * A positive result is possible only if both client and
700 		 * server contain the same secret group key.
701 		 */
702 		case CRYPTO_IFF | CRYPTO_RESP:
703 
704 			/*
705 			 * Discard the message if invalid.
706 			 */
707 			if ((rval = crypto_verify(ep, NULL, peer)) !=
708 			    XEVNT_OK)
709 				break;
710 
711 			/*
712 			 * If the challenge matches the response, the
713 			 * server public key, signature and identity are
714 			 * all verified at the same time. The server is
715 			 * declared trusted, so we skip further
716 			 * certificate exchanges and move immediately to
717 			 * the cookie exchange.
718 			 */
719 			if ((rval = crypto_iff(ep, peer)) != XEVNT_OK)
720 				break;
721 
722 			peer->crypto |= CRYPTO_FLAG_VRFY;
723 			peer->flash &= ~TEST8;
724 			snprintf(statstr, sizeof(statstr), "iff %s fs %u",
725 			    peer->issuer, ntohl(ep->fstamp));
726 			record_crypto_stats(&peer->srcadr, statstr);
727 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
728 			break;
729 
730 		/*
731 		 * Guillou-Quisquater (GQ) identity scheme. This scheme
732 		 * is designed for use with public certificates carrying
733 		 * the GQ public key in an extension field. The client
734 		 * sends a challenge to the server, which performs a
735 		 * calculation and returns the result. A positive result
736 		 * is possible only if both client and server contain
737 		 * the same group key and the server has the matching GQ
738 		 * private key.
739 		 */
740 		case CRYPTO_GQ | CRYPTO_RESP:
741 
742 			/*
743 			 * Discard the message if invalid
744 			 */
745 			if ((rval = crypto_verify(ep, NULL, peer)) !=
746 			    XEVNT_OK)
747 				break;
748 
749 			/*
750 			 * If the challenge matches the response, the
751 			 * server public key, signature and identity are
752 			 * all verified at the same time. The server is
753 			 * declared trusted, so we skip further
754 			 * certificate exchanges and move immediately to
755 			 * the cookie exchange.
756 			 */
757 			if ((rval = crypto_gq(ep, peer)) != XEVNT_OK)
758 				break;
759 
760 			peer->crypto |= CRYPTO_FLAG_VRFY;
761 			peer->flash &= ~TEST8;
762 			snprintf(statstr, sizeof(statstr), "gq %s fs %u",
763 			    peer->issuer, ntohl(ep->fstamp));
764 			record_crypto_stats(&peer->srcadr, statstr);
765 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
766 			break;
767 
768 		/*
769 		 * Mu-Varadharajan (MV) identity scheme. This scheme is
770 		 * designed for use with three levels of trust, trusted
771 		 * host, server and client. The trusted host key is
772 		 * opaque to servers and clients; the server keys are
773 		 * opaque to clients and each client key is different.
774 		 * Client keys can be revoked without requiring new key
775 		 * generations.
776 		 */
777 		case CRYPTO_MV | CRYPTO_RESP:
778 
779 			/*
780 			 * Discard the message if invalid.
781 			 */
782 			if ((rval = crypto_verify(ep, NULL, peer)) !=
783 			    XEVNT_OK)
784 				break;
785 
786 			/*
787 			 * If the challenge matches the response, the
788 			 * server public key, signature and identity are
789 			 * all verified at the same time. The server is
790 			 * declared trusted, so we skip further
791 			 * certificate exchanges and move immediately to
792 			 * the cookie exchange.
793 			 */
794 			if ((rval = crypto_mv(ep, peer)) != XEVNT_OK)
795 				break;
796 
797 			peer->crypto |= CRYPTO_FLAG_VRFY;
798 			peer->flash &= ~TEST8;
799 			snprintf(statstr, sizeof(statstr), "mv %s fs %u",
800 			    peer->issuer, ntohl(ep->fstamp));
801 			record_crypto_stats(&peer->srcadr, statstr);
802 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
803 			break;
804 
805 
806 		/*
807 		 * Cookie response in client and symmetric modes. If the
808 		 * cookie bit is set, the working cookie is the EXOR of
809 		 * the current and new values.
810 		 */
811 		case CRYPTO_COOK | CRYPTO_RESP:
812 
813 			/*
814 			 * Discard the message if invalid or signature
815 			 * not verified with respect to the cookie
816 			 * values.
817 			 */
818 			if ((rval = crypto_verify(ep, &peer->cookval,
819 			    peer)) != XEVNT_OK)
820 				break;
821 
822 			/*
823 			 * Decrypt the cookie, hunting all the time for
824 			 * errors.
825 			 */
826 			if (vallen == (u_int)EVP_PKEY_size(host_pkey)) {
827 				RSA *rsa = EVP_PKEY_get0_RSA(host_pkey);
828 				u_int32 *cookiebuf = malloc(RSA_size(rsa));
829 				if (!cookiebuf) {
830 					rval = XEVNT_CKY;
831 					break;
832 				}
833 
834 				if (RSA_private_decrypt(vallen,
835 				    (u_char *)ep->pkt,
836 				    (u_char *)cookiebuf,
837 				    rsa,
838 				    RSA_PKCS1_OAEP_PADDING) != 4) {
839 					rval = XEVNT_CKY;
840 					free(cookiebuf);
841 					break;
842 				} else {
843 					cookie = ntohl(*cookiebuf);
844 					free(cookiebuf);
845 				}
846 			} else {
847 				rval = XEVNT_CKY;
848 				break;
849 			}
850 
851 			/*
852 			 * Install cookie values and light the cookie
853 			 * bit. If this is not broadcast client mode, we
854 			 * are done here.
855 			 */
856 			key_expire(peer);
857 			if (hismode == MODE_ACTIVE || hismode ==
858 			    MODE_PASSIVE)
859 				peer->pcookie = peer->hcookie ^ cookie;
860 			else
861 				peer->pcookie = cookie;
862 			peer->crypto |= CRYPTO_FLAG_COOK;
863 			peer->flash &= ~TEST8;
864 			snprintf(statstr, sizeof(statstr),
865 			    "cook %x ts %u fs %u", peer->pcookie,
866 			    ntohl(ep->tstamp), ntohl(ep->fstamp));
867 			record_crypto_stats(&peer->srcadr, statstr);
868 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
869 			break;
870 
871 		/*
872 		 * Install autokey values in broadcast client and
873 		 * symmetric modes. We have to do this every time the
874 		 * sever/peer cookie changes or a new keylist is
875 		 * rolled. Ordinarily, this is automatic as this message
876 		 * is piggybacked on the first NTP packet sent upon
877 		 * either of these events. Note that a broadcast client
878 		 * or symmetric peer can receive this response without a
879 		 * matching request.
880 		 */
881 		case CRYPTO_AUTO | CRYPTO_RESP:
882 
883 			/*
884 			 * Discard the message if invalid or signature
885 			 * not verified with respect to the receive
886 			 * autokey values.
887 			 */
888 			if ((rval = crypto_verify(ep, &peer->recval,
889 			    peer)) != XEVNT_OK)
890 				break;
891 
892 			/*
893 			 * Discard the message if a broadcast client and
894 			 * the association ID does not match. This might
895 			 * happen if a broacast server restarts the
896 			 * protocol. A protocol restart will occur at
897 			 * the next ASSOC message.
898 			 */
899 			if ((peer->cast_flags & MDF_BCLNT) &&
900 			    peer->assoc != associd)
901 				break;
902 
903 			/*
904 			 * Install autokey values and light the
905 			 * autokey bit. This is not hard.
906 			 */
907 			if (ep->tstamp == 0)
908 				break;
909 
910 			if (peer->recval.ptr == NULL)
911 				peer->recval.ptr =
912 				    emalloc(sizeof(struct autokey));
913 			bp = (struct autokey *)peer->recval.ptr;
914 			peer->recval.tstamp = ep->tstamp;
915 			peer->recval.fstamp = ep->fstamp;
916 			ap = (struct autokey *)ep->pkt;
917 			bp->seq = ntohl(ap->seq);
918 			bp->key = ntohl(ap->key);
919 			peer->pkeyid = bp->key;
920 			peer->crypto |= CRYPTO_FLAG_AUTO;
921 			peer->flash &= ~TEST8;
922 			snprintf(statstr, sizeof(statstr),
923 			    "auto seq %d key %x ts %u fs %u", bp->seq,
924 			    bp->key, ntohl(ep->tstamp),
925 			    ntohl(ep->fstamp));
926 			record_crypto_stats(&peer->srcadr, statstr);
927 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
928 			break;
929 
930 		/*
931 		 * X509 certificate sign response. Validate the
932 		 * certificate signed by the server and install. Later
933 		 * this can be provided to clients of this server in
934 		 * lieu of the self signed certificate in order to
935 		 * validate the public key.
936 		 */
937 		case CRYPTO_SIGN | CRYPTO_RESP:
938 
939 			/*
940 			 * Discard the message if invalid.
941 			 */
942 			if ((rval = crypto_verify(ep, NULL, peer)) !=
943 			    XEVNT_OK)
944 				break;
945 
946 			/*
947 			 * Scan the certificate list to delete old
948 			 * versions and link the newest version first on
949 			 * the list.
950 			 */
951 			if ((xinfo = cert_install(ep, peer)) == NULL) {
952 				rval = XEVNT_CRT;
953 				break;
954 			}
955 			peer->crypto |= CRYPTO_FLAG_SIGN;
956 			peer->flash &= ~TEST8;
957 			temp32 = xinfo->nid;
958 			snprintf(statstr, sizeof(statstr),
959 			    "sign %s %s 0x%x %s (%u) fs %u",
960 			    xinfo->subject, xinfo->issuer, xinfo->flags,
961 			    OBJ_nid2ln(temp32), temp32,
962 			    ntohl(ep->fstamp));
963 			record_crypto_stats(&peer->srcadr, statstr);
964 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
965 			break;
966 
967 		/*
968 		 * Install leapseconds values. While the leapsecond
969 		 * values epoch, TAI offset and values expiration epoch
970 		 * are retained, only the current TAI offset is provided
971 		 * via the kernel to other applications.
972 		 */
973 		case CRYPTO_LEAP | CRYPTO_RESP:
974 			/*
975 			 * Discard the message if invalid. We can't
976 			 * compare the value timestamps here, as they
977 			 * can be updated by different servers.
978 			 */
979 			rval = crypto_verify(ep, NULL, peer);
980 			if ((rval   != XEVNT_OK          ) ||
981 			    (vallen != 3*sizeof(uint32_t))  )
982 				break;
983 
984 			/* Check if we can update the basic TAI offset
985 			 * for our current leap frame. This is a hack
986 			 * and ignores the time stamps in the autokey
987 			 * message.
988 			 */
989 			if (sys_leap != LEAP_NOTINSYNC)
990 				leapsec_autokey_tai(ntohl(ep->pkt[0]),
991 						    rbufp->recv_time.l_ui, NULL);
992 			tai_leap.tstamp = ep->tstamp;
993 			tai_leap.fstamp = ep->fstamp;
994 			crypto_update();
995 			mprintf_event(EVNT_TAI, peer,
996 				      "%d seconds", ntohl(ep->pkt[0]));
997 			peer->crypto |= CRYPTO_FLAG_LEAP;
998 			peer->flash &= ~TEST8;
999 			snprintf(statstr, sizeof(statstr),
1000 				 "leap TAI offset %d at %u expire %u fs %u",
1001 				 ntohl(ep->pkt[0]), ntohl(ep->pkt[1]),
1002 				 ntohl(ep->pkt[2]), ntohl(ep->fstamp));
1003 			record_crypto_stats(&peer->srcadr, statstr);
1004 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
1005 			break;
1006 
1007 		/*
1008 		 * We come here in symmetric modes for miscellaneous
1009 		 * commands that have value fields but are processed on
1010 		 * the transmit side. All we need do here is check for
1011 		 * valid field length. Note that ASSOC is handled
1012 		 * separately.
1013 		 */
1014 		case CRYPTO_CERT:
1015 		case CRYPTO_IFF:
1016 		case CRYPTO_GQ:
1017 		case CRYPTO_MV:
1018 		case CRYPTO_COOK:
1019 		case CRYPTO_SIGN:
1020 			if (len < VALUE_LEN) {
1021 				rval = XEVNT_LEN;
1022 				break;
1023 			}
1024 			/* fall through */
1025 
1026 		/*
1027 		 * We come here in symmetric modes for requests
1028 		 * requiring a response (above plus AUTO and LEAP) and
1029 		 * for responses. If a request, save the extension field
1030 		 * for later; invalid requests will be caught on the
1031 		 * transmit side. If an error or invalid response,
1032 		 * declare a protocol error.
1033 		 */
1034 		default:
1035 			if (code & (CRYPTO_RESP | CRYPTO_ERROR)) {
1036 				rval = XEVNT_ERR;
1037 			} else if (peer->cmmd == NULL) {
1038 				fp = emalloc(len);
1039 				memcpy(fp, ep, len);
1040 				peer->cmmd = fp;
1041 			}
1042 		}
1043 
1044 		/*
1045 		 * The first error found terminates the extension field
1046 		 * scan and we return the laundry to the caller.
1047 		 */
1048 		if (rval != XEVNT_OK) {
1049 			snprintf(statstr, sizeof(statstr),
1050 			    "%04x %d %02x %s", htonl(ep->opcode),
1051 			    associd, rval, eventstr(rval));
1052 			record_crypto_stats(&peer->srcadr, statstr);
1053 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
1054 			return (rval);
1055 		}
1056 		authlen += (len + 3) / 4 * 4;
1057 	}
1058 	return (rval);
1059 }
1060 
1061 
1062 /*
1063  * crypto_xmit - construct extension fields
1064  *
1065  * This routine is called both when an association is configured and
1066  * when one is not. The only case where this matters is to retrieve the
1067  * autokey information, in which case the caller has to provide the
1068  * association ID to match the association.
1069  *
1070  * Side effect: update the packet offset.
1071  *
1072  * Errors
1073  * XEVNT_OK	success
1074  * XEVNT_CRT	bad or missing certificate
1075  * XEVNT_ERR	protocol error
1076  * XEVNT_LEN	bad field format or length
1077  * XEVNT_PER	host certificate expired
1078  */
1079 int
1080 crypto_xmit(
1081 	struct peer *peer,	/* peer structure pointer */
1082 	struct pkt *xpkt,	/* transmit packet pointer */
1083 	struct recvbuf *rbufp,	/* receive buffer pointer */
1084 	int	start,		/* offset to extension field */
1085 	struct exten *ep,	/* extension pointer */
1086 	keyid_t cookie		/* session cookie */
1087 	)
1088 {
1089 	struct exten *fp;	/* extension pointers */
1090 	struct cert_info *cp, *xp, *yp; /* cert info/value pointer */
1091 	sockaddr_u *srcadr_sin; /* source address */
1092 	u_int32	*pkt;		/* packet pointer */
1093 	u_int	opcode;		/* extension field opcode */
1094 	char	certname[MAXHOSTNAME + 1]; /* subject name buffer */
1095 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
1096 	tstamp_t tstamp;
1097 	struct calendar tscal;
1098 	u_int	vallen;
1099 	struct value vtemp;
1100 	associd_t associd;
1101 	int	rval;
1102 	int	len;
1103 	keyid_t tcookie;
1104 
1105 	/*
1106 	 * Generate the requested extension field request code, length
1107 	 * and association ID. If this is a response and the host is not
1108 	 * synchronized, light the error bit and go home.
1109 	 */
1110 	pkt = (u_int32 *)xpkt + start / 4;
1111 	fp = (struct exten *)pkt;
1112 	opcode = ntohl(ep->opcode);
1113 	if (peer != NULL) {
1114 		srcadr_sin = &peer->srcadr;
1115 		if (!(opcode & CRYPTO_RESP))
1116 			peer->opcode = ep->opcode;
1117 	} else {
1118 		srcadr_sin = &rbufp->recv_srcadr;
1119 	}
1120 	associd = (associd_t) ntohl(ep->associd);
1121 	len = 8;
1122 	fp->opcode = htonl((opcode & 0xffff0000) | len);
1123 	fp->associd = ep->associd;
1124 	rval = XEVNT_OK;
1125 	tstamp = crypto_time();
1126 	switch (opcode & 0xffff0000) {
1127 
1128 	/*
1129 	 * Send association request and response with status word and
1130 	 * host name. Note, this message is not signed and the filestamp
1131 	 * contains only the status word.
1132 	 */
1133 	case CRYPTO_ASSOC:
1134 	case CRYPTO_ASSOC | CRYPTO_RESP:
1135 		len = crypto_send(fp, &hostval, start);
1136 		fp->fstamp = htonl(crypto_flags);
1137 		break;
1138 
1139 	/*
1140 	 * Send certificate request. Use the values from the extension
1141 	 * field.
1142 	 */
1143 	case CRYPTO_CERT:
1144 		memset(&vtemp, 0, sizeof(vtemp));
1145 		vtemp.tstamp = ep->tstamp;
1146 		vtemp.fstamp = ep->fstamp;
1147 		vtemp.vallen = ep->vallen;
1148 		vtemp.ptr = (u_char *)ep->pkt;
1149 		len = crypto_send(fp, &vtemp, start);
1150 		break;
1151 
1152 	/*
1153 	 * Send sign request. Use the host certificate, which is self-
1154 	 * signed and may or may not be trusted.
1155 	 */
1156 	case CRYPTO_SIGN:
1157 		(void)ntpcal_ntp_to_date(&tscal, tstamp, NULL);
1158 		if ((calcomp(&tscal, &(cert_host->first)) < 0)
1159 		|| (calcomp(&tscal, &(cert_host->last)) > 0))
1160 			rval = XEVNT_PER;
1161 		else
1162 			len = crypto_send(fp, &cert_host->cert, start);
1163 		break;
1164 
1165 	/*
1166 	 * Send certificate response. Use the name in the extension
1167 	 * field to find the certificate in the cache. If the request
1168 	 * contains no subject name, assume the name of this host. This
1169 	 * is for backwards compatibility. Private certificates are
1170 	 * never sent.
1171 	 *
1172 	 * There may be several certificates matching the request. First
1173 	 * choice is a self-signed trusted certificate; second choice is
1174 	 * any certificate signed by another host. There is no third
1175 	 * choice.
1176 	 */
1177 	case CRYPTO_CERT | CRYPTO_RESP:
1178 		vallen = exten_payload_size(ep); /* Must be <64k */
1179 		if (vallen == 0 || vallen >= sizeof(certname) ) {
1180 			rval = XEVNT_LEN;
1181 			break;
1182 		}
1183 
1184 		/*
1185 		 * Find all public valid certificates with matching
1186 		 * subject. If a self-signed, trusted certificate is
1187 		 * found, use that certificate. If not, use the last non
1188 		 * self-signed certificate.
1189 		 */
1190 		memcpy(certname, ep->pkt, vallen);
1191 		certname[vallen] = '\0';
1192 		xp = yp = NULL;
1193 		for (cp = cinfo; cp != NULL; cp = cp->link) {
1194 			if (cp->flags & (CERT_PRIV | CERT_ERROR))
1195 				continue;
1196 
1197 			if (strcmp(certname, cp->subject) != 0)
1198 				continue;
1199 
1200 			if (strcmp(certname, cp->issuer) != 0)
1201 				yp = cp;
1202 			else if (cp ->flags & CERT_TRUST)
1203 				xp = cp;
1204 			continue;
1205 		}
1206 
1207 		/*
1208 		 * Be careful who you trust. If the certificate is not
1209 		 * found, return an empty response. Note that we dont
1210 		 * enforce lifetimes here.
1211 		 *
1212 		 * The timestamp and filestamp are taken from the
1213 		 * certificate value structure. For all certificates the
1214 		 * timestamp is the latest signature update time. For
1215 		 * host and imported certificates the filestamp is the
1216 		 * creation epoch. For signed certificates the filestamp
1217 		 * is the creation epoch of the trusted certificate at
1218 		 * the root of the certificate trail. In principle, this
1219 		 * allows strong checking for signature masquerade.
1220 		 */
1221 		if (xp == NULL)
1222 			xp = yp;
1223 		if (xp == NULL)
1224 			break;
1225 
1226 		if (tstamp == 0)
1227 			break;
1228 
1229 		len = crypto_send(fp, &xp->cert, start);
1230 		break;
1231 
1232 	/*
1233 	 * Send challenge in Schnorr (IFF) identity scheme.
1234 	 */
1235 	case CRYPTO_IFF:
1236 		if (peer == NULL)
1237 			break;		/* hack attack */
1238 
1239 		if ((rval = crypto_alice(peer, &vtemp)) == XEVNT_OK) {
1240 			len = crypto_send(fp, &vtemp, start);
1241 			value_free(&vtemp);
1242 		}
1243 		break;
1244 
1245 	/*
1246 	 * Send response in Schnorr (IFF) identity scheme.
1247 	 */
1248 	case CRYPTO_IFF | CRYPTO_RESP:
1249 		if ((rval = crypto_bob(ep, &vtemp)) == XEVNT_OK) {
1250 			len = crypto_send(fp, &vtemp, start);
1251 			value_free(&vtemp);
1252 		}
1253 		break;
1254 
1255 	/*
1256 	 * Send challenge in Guillou-Quisquater (GQ) identity scheme.
1257 	 */
1258 	case CRYPTO_GQ:
1259 		if (peer == NULL)
1260 			break;		/* hack attack */
1261 
1262 		if ((rval = crypto_alice2(peer, &vtemp)) == XEVNT_OK) {
1263 			len = crypto_send(fp, &vtemp, start);
1264 			value_free(&vtemp);
1265 		}
1266 		break;
1267 
1268 	/*
1269 	 * Send response in Guillou-Quisquater (GQ) identity scheme.
1270 	 */
1271 	case CRYPTO_GQ | CRYPTO_RESP:
1272 		if ((rval = crypto_bob2(ep, &vtemp)) == XEVNT_OK) {
1273 			len = crypto_send(fp, &vtemp, start);
1274 			value_free(&vtemp);
1275 		}
1276 		break;
1277 
1278 	/*
1279 	 * Send challenge in MV identity scheme.
1280 	 */
1281 	case CRYPTO_MV:
1282 		if (peer == NULL)
1283 			break;		/* hack attack */
1284 
1285 		if ((rval = crypto_alice3(peer, &vtemp)) == XEVNT_OK) {
1286 			len = crypto_send(fp, &vtemp, start);
1287 			value_free(&vtemp);
1288 		}
1289 		break;
1290 
1291 	/*
1292 	 * Send response in MV identity scheme.
1293 	 */
1294 	case CRYPTO_MV | CRYPTO_RESP:
1295 		if ((rval = crypto_bob3(ep, &vtemp)) == XEVNT_OK) {
1296 			len = crypto_send(fp, &vtemp, start);
1297 			value_free(&vtemp);
1298 		}
1299 		break;
1300 
1301 	/*
1302 	 * Send certificate sign response. The integrity of the request
1303 	 * certificate has already been verified on the receive side.
1304 	 * Sign the response using the local server key. Use the
1305 	 * filestamp from the request and use the timestamp as the
1306 	 * current time. Light the error bit if the certificate is
1307 	 * invalid or contains an unverified signature.
1308 	 */
1309 	case CRYPTO_SIGN | CRYPTO_RESP:
1310 		if ((rval = cert_sign(ep, &vtemp)) == XEVNT_OK) {
1311 			len = crypto_send(fp, &vtemp, start);
1312 			value_free(&vtemp);
1313 		}
1314 		break;
1315 
1316 	/*
1317 	 * Send public key and signature. Use the values from the public
1318 	 * key.
1319 	 */
1320 	case CRYPTO_COOK:
1321 		len = crypto_send(fp, &pubkey, start);
1322 		break;
1323 
1324 	/*
1325 	 * Encrypt and send cookie and signature. Light the error bit if
1326 	 * anything goes wrong.
1327 	 */
1328 	case CRYPTO_COOK | CRYPTO_RESP:
1329 		vallen = ntohl(ep->vallen);	/* Must be <64k */
1330 		if (   vallen == 0
1331 		    || (vallen >= MAX_VALLEN)
1332 		    || (opcode & 0x0000ffff)  < VALUE_LEN + vallen) {
1333 			rval = XEVNT_LEN;
1334 			break;
1335 		}
1336 		if (peer == NULL)
1337 			tcookie = cookie;
1338 		else
1339 			tcookie = peer->hcookie;
1340 		if ((rval = crypto_encrypt((const u_char *)ep->pkt, vallen, &tcookie, &vtemp))
1341 		    == XEVNT_OK) {
1342 			len = crypto_send(fp, &vtemp, start);
1343 			value_free(&vtemp);
1344 		}
1345 		break;
1346 
1347 	/*
1348 	 * Find peer and send autokey data and signature in broadcast
1349 	 * server and symmetric modes. Use the values in the autokey
1350 	 * structure. If no association is found, either the server has
1351 	 * restarted with new associations or some perp has replayed an
1352 	 * old message, in which case light the error bit.
1353 	 */
1354 	case CRYPTO_AUTO | CRYPTO_RESP:
1355 		if (peer == NULL) {
1356 			if ((peer = findpeerbyassoc(associd)) == NULL) {
1357 				rval = XEVNT_ERR;
1358 				break;
1359 			}
1360 		}
1361 		peer->flags &= ~FLAG_ASSOC;
1362 		len = crypto_send(fp, &peer->sndval, start);
1363 		break;
1364 
1365 	/*
1366 	 * Send leapseconds values and signature. Use the values from
1367 	 * the tai structure. If no table has been loaded, just send an
1368 	 * empty request.
1369 	 */
1370 	case CRYPTO_LEAP | CRYPTO_RESP:
1371 		len = crypto_send(fp, &tai_leap, start);
1372 		break;
1373 
1374 	/*
1375 	 * Default - Send a valid command for unknown requests; send
1376 	 * an error response for unknown resonses.
1377 	 */
1378 	default:
1379 		if (opcode & CRYPTO_RESP)
1380 			rval = XEVNT_ERR;
1381 	}
1382 
1383 	/*
1384 	 * In case of error, flame the log. If a request, toss the
1385 	 * puppy; if a response, return so the sender can flame, too.
1386 	 */
1387 	if (rval != XEVNT_OK) {
1388 		u_int32	uint32;
1389 
1390 		uint32 = CRYPTO_ERROR;
1391 		opcode |= uint32;
1392 		fp->opcode |= htonl(uint32);
1393 		snprintf(statstr, sizeof(statstr),
1394 		    "%04x %d %02x %s", opcode, associd, rval,
1395 		    eventstr(rval));
1396 		record_crypto_stats(srcadr_sin, statstr);
1397 		DPRINTF(1, ("crypto_xmit: %s\n", statstr));
1398 		if (!(opcode & CRYPTO_RESP))
1399 			return (0);
1400 	}
1401 	DPRINTF(1, ("crypto_xmit: flags 0x%x offset %d len %d code 0x%x associd %d\n",
1402 		    crypto_flags, start, len, opcode >> 16, associd));
1403 	return (len);
1404 }
1405 
1406 
1407 /*
1408  * crypto_verify - verify the extension field value and signature
1409  *
1410  * Returns
1411  * XEVNT_OK	success
1412  * XEVNT_ERR	protocol error
1413  * XEVNT_FSP	bad filestamp
1414  * XEVNT_LEN	bad field format or length
1415  * XEVNT_PUB	bad or missing public key
1416  * XEVNT_SGL	bad signature length
1417  * XEVNT_SIG	signature not verified
1418  * XEVNT_TSP	bad timestamp
1419  */
1420 static int
1421 crypto_verify(
1422 	struct exten *ep,	/* extension pointer */
1423 	struct value *vp,	/* value pointer */
1424 	struct peer *peer	/* peer structure pointer */
1425 	)
1426 {
1427 	EVP_PKEY *pkey;		/* server public key */
1428 	EVP_MD_CTX *ctx;	/* signature context */
1429 	tstamp_t tstamp, tstamp1 = 0; /* timestamp */
1430 	tstamp_t fstamp, fstamp1 = 0; /* filestamp */
1431 	u_int	vallen;		/* value length */
1432 	u_int	siglen;		/* signature length */
1433 	u_int	opcode, len;
1434 	int	i;
1435 
1436 	/*
1437 	 * We are extremely parannoyed. We require valid opcode, length,
1438 	 * association ID, timestamp, filestamp, public key, digest,
1439 	 * signature length and signature, where relevant. Note that
1440 	 * preliminary length checks are done in the main loop.
1441 	 */
1442 	len = ntohl(ep->opcode) & 0x0000ffff;
1443 	opcode = ntohl(ep->opcode) & 0xffff0000;
1444 
1445 	/*
1446 	 * Check for valid value header, association ID and extension
1447 	 * field length. Remember, it is not an error to receive an
1448 	 * unsolicited response; however, the response ID must match
1449 	 * the association ID.
1450 	 */
1451 	if (opcode & CRYPTO_ERROR)
1452 		return (XEVNT_ERR);
1453 
1454  	if (len < VALUE_LEN)
1455 		return (XEVNT_LEN);
1456 
1457 	if (opcode == (CRYPTO_AUTO | CRYPTO_RESP) && (peer->pmode ==
1458 	    MODE_BROADCAST || (peer->cast_flags & MDF_BCLNT))) {
1459 		if (ntohl(ep->associd) != peer->assoc)
1460 			return (XEVNT_ERR);
1461 	} else {
1462 		if (ntohl(ep->associd) != peer->associd)
1463 			return (XEVNT_ERR);
1464 	}
1465 
1466 	/*
1467 	 * We have a valid value header. Check for valid value and
1468 	 * signature field lengths. The extension field length must be
1469 	 * long enough to contain the value header, value and signature.
1470 	 * Note both the value and signature field lengths are rounded
1471 	 * up to the next word (4 octets).
1472 	 */
1473 	vallen = ntohl(ep->vallen);
1474 	if (   vallen == 0
1475 	    || vallen > MAX_VALLEN)
1476 		return (XEVNT_LEN);
1477 
1478 	i = (vallen + 3) / 4;
1479 	siglen = ntohl(ep->pkt[i++]);
1480 	if (   siglen > MAX_VALLEN
1481 	    || len - VALUE_LEN < ((vallen + 3) / 4) * 4
1482 	    || len - VALUE_LEN - ((vallen + 3) / 4) * 4
1483 	      < ((siglen + 3) / 4) * 4)
1484 		return (XEVNT_LEN);
1485 
1486 	/*
1487 	 * Check for valid timestamp and filestamp. If the timestamp is
1488 	 * zero, the sender is not synchronized and signatures are
1489 	 * not possible. If nonzero the timestamp must not precede the
1490 	 * filestamp. The timestamp and filestamp must not precede the
1491 	 * corresponding values in the value structure, if present.
1492  	 */
1493 	tstamp = ntohl(ep->tstamp);
1494 	fstamp = ntohl(ep->fstamp);
1495 	if (tstamp == 0)
1496 		return (XEVNT_TSP);
1497 
1498 	if (tstamp < fstamp)
1499 		return (XEVNT_TSP);
1500 
1501 	if (vp != NULL) {
1502 		tstamp1 = ntohl(vp->tstamp);
1503 		fstamp1 = ntohl(vp->fstamp);
1504 		if (tstamp1 != 0 && fstamp1 != 0) {
1505 			if (tstamp < tstamp1)
1506 				return (XEVNT_TSP);
1507 
1508 			if ((tstamp < fstamp1 || fstamp < fstamp1))
1509 				return (XEVNT_FSP);
1510 		}
1511 	}
1512 
1513 	/*
1514 	 * At the time the certificate message is validated, the public
1515 	 * key in the message is not available. Thus, don't try to
1516 	 * verify the signature.
1517 	 */
1518 	if (opcode == (CRYPTO_CERT | CRYPTO_RESP))
1519 		return (XEVNT_OK);
1520 
1521 	/*
1522 	 * Check for valid signature length, public key and digest
1523 	 * algorithm.
1524 	 */
1525 	if (crypto_flags & peer->crypto & CRYPTO_FLAG_PRIV)
1526 		pkey = sign_pkey;
1527 	else
1528 		pkey = peer->pkey;
1529 	if (siglen == 0 || pkey == NULL || peer->digest == NULL)
1530 		return (XEVNT_ERR);
1531 
1532 	if (siglen != (u_int)EVP_PKEY_size(pkey))
1533 		return (XEVNT_SGL);
1534 
1535 	/*
1536 	 * Darn, I thought we would never get here. Verify the
1537 	 * signature. If the identity exchange is verified, light the
1538 	 * proventic bit. What a relief.
1539 	 */
1540 	ctx = EVP_MD_CTX_new();
1541 	EVP_VerifyInit(ctx, peer->digest);
1542 	/* XXX: the "+ 12" needs to be at least documented... */
1543 	EVP_VerifyUpdate(ctx, (u_char *)&ep->tstamp, vallen + 12);
1544 	if (EVP_VerifyFinal(ctx, (u_char *)&ep->pkt[i], siglen,
1545 	    pkey) <= 0) {
1546 		EVP_MD_CTX_free(ctx);
1547 		return (XEVNT_SIG);
1548 	}
1549 	EVP_MD_CTX_free(ctx);
1550 
1551 	if (peer->crypto & CRYPTO_FLAG_VRFY)
1552 		peer->crypto |= CRYPTO_FLAG_PROV;
1553 	return (XEVNT_OK);
1554 }
1555 
1556 
1557 /*
1558  * crypto_encrypt - construct vp (encrypted cookie and signature) from
1559  * the public key and cookie.
1560  *
1561  * Returns:
1562  * XEVNT_OK	success
1563  * XEVNT_CKY	bad or missing cookie
1564  * XEVNT_PUB	bad or missing public key
1565  */
1566 static int
1567 crypto_encrypt(
1568 	const u_char *ptr,	/* Public Key */
1569 	u_int	vallen,		/* Length of Public Key */
1570 	keyid_t	*cookie,	/* server cookie */
1571 	struct value *vp	/* value pointer */
1572 	)
1573 {
1574 	EVP_PKEY *pkey;		/* public key */
1575 	EVP_MD_CTX *ctx;	/* signature context */
1576 	tstamp_t tstamp;	/* NTP timestamp */
1577 	u_int32	temp32;
1578 	u_char *puch;
1579 
1580 	/*
1581 	 * Extract the public key from the request.
1582 	 */
1583 	pkey = d2i_PublicKey(EVP_PKEY_RSA, NULL, &ptr, vallen);
1584 	if (pkey == NULL) {
1585 		msyslog(LOG_ERR, "crypto_encrypt: %s",
1586 		    ERR_error_string(ERR_get_error(), NULL));
1587 		return (XEVNT_PUB);
1588 	}
1589 
1590 	/*
1591 	 * Encrypt the cookie, encode in ASN.1 and sign.
1592 	 */
1593 	memset(vp, 0, sizeof(struct value));
1594 	tstamp = crypto_time();
1595 	vp->tstamp = htonl(tstamp);
1596 	vp->fstamp = hostval.tstamp;
1597 	vallen = EVP_PKEY_size(pkey);
1598 	vp->vallen = htonl(vallen);
1599 	vp->ptr = emalloc(vallen);
1600 	puch = vp->ptr;
1601 	temp32 = htonl(*cookie);
1602 	if (RSA_public_encrypt(4, (u_char *)&temp32, puch,
1603 	    EVP_PKEY_get0_RSA(pkey), RSA_PKCS1_OAEP_PADDING) <= 0) {
1604 		msyslog(LOG_ERR, "crypto_encrypt: %s",
1605 		    ERR_error_string(ERR_get_error(), NULL));
1606 		free(vp->ptr);
1607 		EVP_PKEY_free(pkey);
1608 		return (XEVNT_CKY);
1609 	}
1610 	EVP_PKEY_free(pkey);
1611 	if (tstamp == 0)
1612 		return (XEVNT_OK);
1613 
1614 	vp->sig = emalloc(sign_siglen);
1615 	ctx = EVP_MD_CTX_new();
1616 	EVP_SignInit(ctx, sign_digest);
1617 	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
1618 	EVP_SignUpdate(ctx, vp->ptr, vallen);
1619 	if (EVP_SignFinal(ctx, vp->sig, &vallen, sign_pkey)) {
1620 		INSIST(vallen <= sign_siglen);
1621 		vp->siglen = htonl(vallen);
1622 	}
1623 	EVP_MD_CTX_free(ctx);
1624 	return (XEVNT_OK);
1625 }
1626 
1627 
1628 /*
1629  * crypto_ident - construct extension field for identity scheme
1630  *
1631  * This routine determines which identity scheme is in use and
1632  * constructs an extension field for that scheme.
1633  *
1634  * Returns
1635  * CRYTPO_IFF	IFF scheme
1636  * CRYPTO_GQ	GQ scheme
1637  * CRYPTO_MV	MV scheme
1638  * CRYPTO_NULL	no available scheme
1639  */
1640 u_int
1641 crypto_ident(
1642 	struct peer *peer	/* peer structure pointer */
1643 	)
1644 {
1645 	char		filename[MAXFILENAME];
1646 	const char *	scheme_name;
1647 	u_int		scheme_id;
1648 
1649 	/*
1650 	 * We come here after the group trusted host has been found; its
1651 	 * name defines the group name. Search the key cache for all
1652 	 * keys matching the same group name in order IFF, GQ and MV.
1653 	 * Use the first one available.
1654 	 */
1655 	scheme_name = NULL;
1656 	if (peer->crypto & CRYPTO_FLAG_IFF) {
1657 		scheme_name = "iff";
1658 		scheme_id = CRYPTO_IFF;
1659 	} else if (peer->crypto & CRYPTO_FLAG_GQ) {
1660 		scheme_name = "gq";
1661 		scheme_id = CRYPTO_GQ;
1662 	} else if (peer->crypto & CRYPTO_FLAG_MV) {
1663 		scheme_name = "mv";
1664 		scheme_id = CRYPTO_MV;
1665 	}
1666 
1667 	if (scheme_name != NULL) {
1668 		snprintf(filename, sizeof(filename), "ntpkey_%spar_%s",
1669 		    scheme_name, peer->ident);
1670 		peer->ident_pkey = crypto_key(filename, NULL,
1671 		    &peer->srcadr);
1672 		if (peer->ident_pkey != NULL)
1673 			return scheme_id;
1674 	}
1675 
1676 	msyslog(LOG_NOTICE,
1677 	    "crypto_ident: no identity parameters found for group %s",
1678 	    peer->ident);
1679 
1680 	return CRYPTO_NULL;
1681 }
1682 
1683 
1684 /*
1685  * crypto_args - construct extension field from arguments
1686  *
1687  * This routine creates an extension field with current timestamps and
1688  * specified opcode, association ID and optional string. Note that the
1689  * extension field is created here, but freed after the crypto_xmit()
1690  * call in the protocol module.
1691  *
1692  * Returns extension field pointer (no errors)
1693  *
1694  * XXX: opcode and len should really be 32-bit quantities and
1695  * we should make sure that str is not too big.
1696  */
1697 struct exten *
1698 crypto_args(
1699 	struct peer *peer,	/* peer structure pointer */
1700 	u_int	opcode,		/* operation code */
1701 	associd_t associd,	/* association ID */
1702 	char	*str		/* argument string */
1703 	)
1704 {
1705 	tstamp_t tstamp;	/* NTP timestamp */
1706 	struct exten *ep;	/* extension field pointer */
1707 	u_int	len;		/* extension field length */
1708 	size_t	slen = 0;
1709 
1710 	tstamp = crypto_time();
1711 	len = sizeof(struct exten);
1712 	if (str != NULL) {
1713 		slen = strlen(str);
1714 		INSIST(slen < MAX_VALLEN);
1715 		len += slen;
1716 	}
1717 	ep = emalloc_zero(len);
1718 	if (opcode == 0)
1719 		return (ep);
1720 
1721 	REQUIRE(0 == (len    & ~0x0000ffff));
1722 	REQUIRE(0 == (opcode & ~0xffff0000));
1723 
1724 	ep->opcode = htonl(opcode + len);
1725 	ep->associd = htonl(associd);
1726 	ep->tstamp = htonl(tstamp);
1727 	ep->fstamp = hostval.tstamp;
1728 	ep->vallen = 0;
1729 	if (str != NULL) {
1730 		ep->vallen = htonl(slen);
1731 		memcpy((char *)ep->pkt, str, slen);
1732 	}
1733 	return (ep);
1734 }
1735 
1736 
1737 /*
1738  * crypto_send - construct extension field from value components
1739  *
1740  * The value and signature fields are zero-padded to a word boundary.
1741  * Note: it is not polite to send a nonempty signature with zero
1742  * timestamp or a nonzero timestamp with an empty signature, but those
1743  * rules are not enforced here.
1744  *
1745  * XXX This code won't work on a box with 16-bit ints.
1746  */
1747 int
1748 crypto_send(
1749 	struct exten *ep,	/* extension field pointer */
1750 	struct value *vp,	/* value pointer */
1751 	int	start		/* buffer offset */
1752 	)
1753 {
1754 	u_int	len, vallen, siglen, opcode;
1755 	u_int	i, j;
1756 
1757 	/*
1758 	 * Calculate extension field length and check for buffer
1759 	 * overflow. Leave room for the MAC.
1760 	 */
1761 	len = 16;				/* XXX Document! */
1762 	vallen = ntohl(vp->vallen);
1763 	INSIST(vallen <= MAX_VALLEN);
1764 	len += ((vallen + 3) / 4 + 1) * 4;
1765 	siglen = ntohl(vp->siglen);
1766 	len += ((siglen + 3) / 4 + 1) * 4;
1767 	if (start + len > sizeof(struct pkt) - MAX_MAC_LEN)
1768 		return (0);
1769 
1770 	/*
1771 	 * Copy timestamps.
1772 	 */
1773 	ep->tstamp = vp->tstamp;
1774 	ep->fstamp = vp->fstamp;
1775 	ep->vallen = vp->vallen;
1776 
1777 	/*
1778 	 * Copy value. If the data field is empty or zero length,
1779 	 * encode an empty value with length zero.
1780 	 */
1781 	i = 0;
1782 	if (vallen > 0 && vp->ptr != NULL) {
1783 		j = vallen / 4;
1784 		if (j * 4 < vallen)
1785 			ep->pkt[i + j++] = 0;
1786 		memcpy(&ep->pkt[i], vp->ptr, vallen);
1787 		i += j;
1788 	}
1789 
1790 	/*
1791 	 * Copy signature. If the signature field is empty or zero
1792 	 * length, encode an empty signature with length zero.
1793 	 */
1794 	ep->pkt[i++] = vp->siglen;
1795 	if (siglen > 0 && vp->sig != NULL) {
1796 		j = siglen / 4;
1797 		if (j * 4 < siglen)
1798 			ep->pkt[i + j++] = 0;
1799 		memcpy(&ep->pkt[i], vp->sig, siglen);
1800 		/* i += j; */	/* We don't use i after this */
1801 	}
1802 	opcode = ntohl(ep->opcode);
1803 	ep->opcode = htonl((opcode & 0xffff0000) | len);
1804 	ENSURE(len <= MAX_VALLEN);
1805 	return (len);
1806 }
1807 
1808 
1809 /*
1810  * crypto_update - compute new public value and sign extension fields
1811  *
1812  * This routine runs periodically, like once a day, and when something
1813  * changes. It updates the timestamps on three value structures and one
1814  * value structure list, then signs all the structures:
1815  *
1816  * hostval	host name (not signed)
1817  * pubkey	public key
1818  * cinfo	certificate info/value list
1819  * tai_leap	leap values
1820  *
1821  * Filestamps are proventic data, so this routine runs only when the
1822  * host is synchronized to a proventicated source. Thus, the timestamp
1823  * is proventic and can be used to deflect clogging attacks.
1824  *
1825  * Returns void (no errors)
1826  */
1827 void
1828 crypto_update(void)
1829 {
1830 	EVP_MD_CTX *ctx;	/* message digest context */
1831 	struct cert_info *cp;	/* certificate info/value */
1832 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
1833 	u_int32	*ptr;
1834 	u_int	len;
1835 	leap_result_t leap_data;
1836 
1837 	hostval.tstamp = htonl(crypto_time());
1838 	if (hostval.tstamp == 0)
1839 		return;
1840 
1841 	ctx = EVP_MD_CTX_new();
1842 
1843 	/*
1844 	 * Sign public key and timestamps. The filestamp is derived from
1845 	 * the host key file extension from wherever the file was
1846 	 * generated.
1847 	 */
1848 	if (pubkey.vallen != 0) {
1849 		pubkey.tstamp = hostval.tstamp;
1850 		pubkey.siglen = 0;
1851 		if (pubkey.sig == NULL)
1852 			pubkey.sig = emalloc(sign_siglen);
1853 		EVP_SignInit(ctx, sign_digest);
1854 		EVP_SignUpdate(ctx, (u_char *)&pubkey, 12);
1855 		EVP_SignUpdate(ctx, pubkey.ptr, ntohl(pubkey.vallen));
1856 		if (EVP_SignFinal(ctx, pubkey.sig, &len, sign_pkey)) {
1857 			INSIST(len <= sign_siglen);
1858 			pubkey.siglen = htonl(len);
1859 		}
1860 	}
1861 
1862 	/*
1863 	 * Sign certificates and timestamps. The filestamp is derived
1864 	 * from the certificate file extension from wherever the file
1865 	 * was generated. Note we do not throw expired certificates
1866 	 * away; they may have signed younger ones.
1867 	 */
1868 	for (cp = cinfo; cp != NULL; cp = cp->link) {
1869 		cp->cert.tstamp = hostval.tstamp;
1870 		cp->cert.siglen = 0;
1871 		if (cp->cert.sig == NULL)
1872 			cp->cert.sig = emalloc(sign_siglen);
1873 		EVP_SignInit(ctx, sign_digest);
1874 		EVP_SignUpdate(ctx, (u_char *)&cp->cert, 12);
1875 		EVP_SignUpdate(ctx, cp->cert.ptr,
1876 		    ntohl(cp->cert.vallen));
1877 		if (EVP_SignFinal(ctx, cp->cert.sig, &len, sign_pkey)) {
1878 			INSIST(len <= sign_siglen);
1879 			cp->cert.siglen = htonl(len);
1880 		}
1881 	}
1882 
1883 	/*
1884 	 * Sign leapseconds values and timestamps. Note it is not an
1885 	 * error to return null values.
1886 	 */
1887 	tai_leap.tstamp = hostval.tstamp;
1888 	tai_leap.fstamp = hostval.fstamp;
1889 
1890 	/* Get the leap second era. We might need a full lookup early
1891 	 * after start, when the cache is not yet loaded.
1892 	 */
1893 	leapsec_frame(&leap_data);
1894 	if ( ! memcmp(&leap_data.ebase, &leap_data.ttime, sizeof(vint64))) {
1895 		time_t   now    = time(NULL);
1896 		uint32_t nowntp = (uint32_t)now + JAN_1970;
1897 		leapsec_query(&leap_data, nowntp, &now);
1898 	}
1899 
1900 	/* Create the data block. The protocol does not work without. */
1901 	len = 3 * sizeof(u_int32);
1902 	if (tai_leap.ptr == NULL || ntohl(tai_leap.vallen) != len) {
1903 		free(tai_leap.ptr);
1904 		tai_leap.ptr = emalloc(len);
1905 		tai_leap.vallen = htonl(len);
1906 	}
1907 	ptr = (u_int32 *)tai_leap.ptr;
1908 	if (leap_data.tai_offs > 10) {
1909 		/* create a TAI / leap era block. The end time is a
1910 		 * fake -- maybe we can do better.
1911 		 */
1912 		ptr[0] = htonl(leap_data.tai_offs);
1913 		ptr[1] = htonl(leap_data.ebase.d_s.lo);
1914 		if (leap_data.ttime.d_s.hi >= 0)
1915 			ptr[2] = htonl(leap_data.ttime.D_s.lo +  7*86400);
1916 		else
1917 			ptr[2] = htonl(leap_data.ebase.D_s.lo + 25*86400);
1918 	} else {
1919 		/* no leap era available */
1920 		memset(ptr, 0, len);
1921 	}
1922 	if (tai_leap.sig == NULL)
1923 		tai_leap.sig = emalloc(sign_siglen);
1924 	EVP_SignInit(ctx, sign_digest);
1925 	EVP_SignUpdate(ctx, (u_char *)&tai_leap, 12);
1926 	EVP_SignUpdate(ctx, tai_leap.ptr, len);
1927 	if (EVP_SignFinal(ctx, tai_leap.sig, &len, sign_pkey)) {
1928 		INSIST(len <= sign_siglen);
1929 		tai_leap.siglen = htonl(len);
1930 	}
1931 	crypto_flags |= CRYPTO_FLAG_TAI;
1932 
1933 	snprintf(statstr, sizeof(statstr), "signature update ts %u",
1934 	    ntohl(hostval.tstamp));
1935 	record_crypto_stats(NULL, statstr);
1936 	DPRINTF(1, ("crypto_update: %s\n", statstr));
1937 	EVP_MD_CTX_free(ctx);
1938 }
1939 
1940 /*
1941  * crypto_update_taichange - eventually trigger crypto_update
1942  *
1943  * This is called when a change in 'sys_tai' is detected. This will
1944  * happen shortly after a leap second is detected, but unhappily also
1945  * early after system start; also, the crypto stuff might be unused and
1946  * an unguarded call to crypto_update() causes a crash.
1947  *
1948  * This function makes sure that there already *is* a valid crypto block
1949  * for the use with autokey, and only calls 'crypto_update()' if it can
1950  * succeed.
1951  *
1952  * Returns void (no errors)
1953  */
1954 void
1955 crypto_update_taichange(void)
1956 {
1957 	static const u_int len = 3 * sizeof(u_int32);
1958 
1959 	/* check if the signing digest algo is available */
1960 	if (sign_digest == NULL || sign_pkey == NULL)
1961 		return;
1962 
1963 	/* check size of TAI extension block */
1964 	if (tai_leap.ptr == NULL || ntohl(tai_leap.vallen) != len)
1965 		return;
1966 
1967 	/* crypto_update should at least not crash here! */
1968 	crypto_update();
1969 }
1970 
1971 /*
1972  * value_free - free value structure components.
1973  *
1974  * Returns void (no errors)
1975  */
1976 void
1977 value_free(
1978 	struct value *vp	/* value structure */
1979 	)
1980 {
1981 	if (vp->ptr != NULL)
1982 		free(vp->ptr);
1983 	if (vp->sig != NULL)
1984 		free(vp->sig);
1985 	memset(vp, 0, sizeof(struct value));
1986 }
1987 
1988 
1989 /*
1990  * crypto_time - returns current NTP time.
1991  *
1992  * Returns NTP seconds if in synch, 0 otherwise
1993  */
1994 tstamp_t
1995 crypto_time()
1996 {
1997 	l_fp	tstamp;		/* NTP time */
1998 
1999 	L_CLR(&tstamp);
2000 	if (sys_leap != LEAP_NOTINSYNC)
2001 		get_systime(&tstamp);
2002 	return (tstamp.l_ui);
2003 }
2004 
2005 
2006 /*
2007  * asn_to_calendar - convert ASN1_TIME time structure to struct calendar.
2008  *
2009  */
2010 static
2011 void
2012 asn_to_calendar	(
2013 	ASN1_TIME *asn1time,	/* pointer to ASN1_TIME structure */
2014 	struct calendar *pjd	/* pointer to result */
2015 	)
2016 {
2017 	size_t	len;		/* length of ASN1_TIME string */
2018 	char	v[24];		/* writable copy of ASN1_TIME string */
2019 	unsigned long	temp;	/* result from strtoul */
2020 
2021 	/*
2022 	 * Extract time string YYMMDDHHMMSSZ from ASN1 time structure.
2023 	 * Or YYYYMMDDHHMMSSZ.
2024 	 * Note that the YY, MM, DD fields start with one, the HH, MM,
2025 	 * SS fields start with zero and the Z character is ignored.
2026 	 * Also note that two-digit years less than 50 map to years greater than
2027 	 * 100. Dontcha love ASN.1? Better than MIL-188.
2028 	 */
2029 	len = asn1time->length;
2030 	REQUIRE(len < sizeof(v));
2031 	(void)strncpy(v, (char *)(asn1time->data), len);
2032 	REQUIRE(len >= 13);
2033 	temp = strtoul(v+len-3, NULL, 10);
2034 	pjd->second = temp;
2035 	v[len-3] = '\0';
2036 
2037 	temp = strtoul(v+len-5, NULL, 10);
2038 	pjd->minute = temp;
2039 	v[len-5] = '\0';
2040 
2041 	temp = strtoul(v+len-7, NULL, 10);
2042 	pjd->hour = temp;
2043 	v[len-7] = '\0';
2044 
2045 	temp = strtoul(v+len-9, NULL, 10);
2046 	pjd->monthday = temp;
2047 	v[len-9] = '\0';
2048 
2049 	temp = strtoul(v+len-11, NULL, 10);
2050 	pjd->month = temp;
2051 	v[len-11] = '\0';
2052 
2053 	temp = strtoul(v, NULL, 10);
2054 	/* handle two-digit years */
2055 	if (temp < 50UL)
2056 	    temp += 100UL;
2057 	if (temp < 150UL)
2058 	    temp += 1900UL;
2059 	pjd->year = temp;
2060 
2061 	pjd->yearday = pjd->weekday = 0;
2062 	return;
2063 }
2064 
2065 
2066 /*
2067  * bigdig() - compute a BIGNUM MD5 hash of a BIGNUM number.
2068  *
2069  * Returns void (no errors)
2070  */
2071 static void
2072 bighash(
2073 	BIGNUM	*bn,		/* BIGNUM * from */
2074 	BIGNUM	*bk		/* BIGNUM * to */
2075 	)
2076 {
2077 	EVP_MD_CTX *ctx;	/* message digest context */
2078 	u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */
2079 	u_char	*ptr;		/* a BIGNUM as binary string */
2080 	u_int	len;
2081 
2082 	len = BN_num_bytes(bn);
2083 	ptr = emalloc(len);
2084 	BN_bn2bin(bn, ptr);
2085 	ctx = EVP_MD_CTX_new();
2086 	EVP_DigestInit(ctx, EVP_md5());
2087 	EVP_DigestUpdate(ctx, ptr, len);
2088 	EVP_DigestFinal(ctx, dgst, &len);
2089 	EVP_MD_CTX_free(ctx);
2090 	BN_bin2bn(dgst, len, bk);
2091 	free(ptr);
2092 }
2093 
2094 
2095 /*
2096  ***********************************************************************
2097  *								       *
2098  * The following routines implement the Schnorr (IFF) identity scheme  *
2099  *								       *
2100  ***********************************************************************
2101  *
2102  * The Schnorr (IFF) identity scheme is intended for use when
2103  * certificates are generated by some other trusted certificate
2104  * authority and the certificate cannot be used to convey public
2105  * parameters. There are two kinds of files: encrypted server files that
2106  * contain private and public values and nonencrypted client files that
2107  * contain only public values. New generations of server files must be
2108  * securely transmitted to all servers of the group; client files can be
2109  * distributed by any means. The scheme is self contained and
2110  * independent of new generations of host keys, sign keys and
2111  * certificates.
2112  *
2113  * The IFF values hide in a DSA cuckoo structure which uses the same
2114  * parameters. The values are used by an identity scheme based on DSA
2115  * cryptography and described in Stimson p. 285. The p is a 512-bit
2116  * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1
2117  * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a
2118  * private random group key b (0 < b < q) and public key v = g^b, then
2119  * sends (p, q, g, b) to the servers and (p, q, g, v) to the clients.
2120  * Alice challenges Bob to confirm identity using the protocol described
2121  * below.
2122  *
2123  * How it works
2124  *
2125  * The scheme goes like this. Both Alice and Bob have the public primes
2126  * p, q and generator g. The TA gives private key b to Bob and public
2127  * key v to Alice.
2128  *
2129  * Alice rolls new random challenge r (o < r < q) and sends to Bob in
2130  * the IFF request message. Bob rolls new random k (0 < k < q), then
2131  * computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x))
2132  * to Alice in the response message. Besides making the response
2133  * shorter, the hash makes it effectivey impossible for an intruder to
2134  * solve for b by observing a number of these messages.
2135  *
2136  * Alice receives the response and computes g^y v^r mod p. After a bit
2137  * of algebra, this simplifies to g^k. If the hash of this result
2138  * matches hash(x), Alice knows that Bob has the group key b. The signed
2139  * response binds this knowledge to Bob's private key and the public key
2140  * previously received in his certificate.
2141  *
2142  * crypto_alice - construct Alice's challenge in IFF scheme
2143  *
2144  * Returns
2145  * XEVNT_OK	success
2146  * XEVNT_ID	bad or missing group key
2147  * XEVNT_PUB	bad or missing public key
2148  */
2149 static int
2150 crypto_alice(
2151 	struct peer *peer,	/* peer pointer */
2152 	struct value *vp	/* value pointer */
2153 	)
2154 {
2155 	DSA	*dsa;		/* IFF parameters */
2156 	BN_CTX	*bctx;		/* BIGNUM context */
2157 	EVP_MD_CTX *ctx;	/* signature context */
2158 	tstamp_t tstamp;
2159 	u_int	len;
2160 	const BIGNUM *q;
2161 
2162 	/*
2163 	 * The identity parameters must have correct format and content.
2164 	 */
2165 	if (peer->ident_pkey == NULL) {
2166 		msyslog(LOG_NOTICE, "crypto_alice: scheme unavailable");
2167 		return (XEVNT_ID);
2168 	}
2169 
2170 	if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) {
2171 		msyslog(LOG_NOTICE, "crypto_alice: defective key");
2172 		return (XEVNT_PUB);
2173 	}
2174 
2175 	/*
2176 	 * Roll new random r (0 < r < q).
2177 	 */
2178 	if (peer->iffval != NULL)
2179 		BN_free(peer->iffval);
2180 	peer->iffval = BN_new();
2181 	DSA_get0_pqg(dsa, NULL, &q, NULL);
2182 	len = BN_num_bytes(q);
2183 	BN_rand(peer->iffval, len * 8, -1, 1);	/* r mod q*/
2184 	bctx = BN_CTX_new();
2185 	BN_mod(peer->iffval, peer->iffval, q, bctx);
2186 	BN_CTX_free(bctx);
2187 
2188 	/*
2189 	 * Sign and send to Bob. The filestamp is from the local file.
2190 	 */
2191 	memset(vp, 0, sizeof(struct value));
2192 	tstamp = crypto_time();
2193 	vp->tstamp = htonl(tstamp);
2194 	vp->fstamp = htonl(peer->ident_pkey->fstamp);
2195 	vp->vallen = htonl(len);
2196 	vp->ptr = emalloc(len);
2197 	BN_bn2bin(peer->iffval, vp->ptr);
2198 	if (tstamp == 0)
2199 		return (XEVNT_OK);
2200 
2201 	vp->sig = emalloc(sign_siglen);
2202 	ctx = EVP_MD_CTX_new();
2203 	EVP_SignInit(ctx, sign_digest);
2204 	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2205 	EVP_SignUpdate(ctx, vp->ptr, len);
2206 	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2207 		INSIST(len <= sign_siglen);
2208 		vp->siglen = htonl(len);
2209 	}
2210 	EVP_MD_CTX_free(ctx);
2211 	return (XEVNT_OK);
2212 }
2213 
2214 
2215 /*
2216  * crypto_bob - construct Bob's response to Alice's challenge
2217  *
2218  * Returns
2219  * XEVNT_OK	success
2220  * XEVNT_ERR	protocol error
2221  * XEVNT_ID	bad or missing group key
2222  */
2223 static int
2224 crypto_bob(
2225 	struct exten *ep,	/* extension pointer */
2226 	struct value *vp	/* value pointer */
2227 	)
2228 {
2229 	DSA	*dsa;		/* IFF parameters */
2230 	DSA_SIG	*sdsa;		/* DSA signature context fake */
2231 	BN_CTX	*bctx;		/* BIGNUM context */
2232 	EVP_MD_CTX *ctx;	/* signature context */
2233 	tstamp_t tstamp;	/* NTP timestamp */
2234 	BIGNUM	*bn, *bk, *r;
2235 	u_char	*ptr;
2236 	u_int	len;		/* extension field value length */
2237 	const BIGNUM *p, *q, *g;
2238 	const BIGNUM *priv_key;
2239 
2240 	/*
2241 	 * If the IFF parameters are not valid, something awful
2242 	 * happened or we are being tormented.
2243 	 */
2244 	if (iffkey_info == NULL) {
2245 		msyslog(LOG_NOTICE, "crypto_bob: scheme unavailable");
2246 		return (XEVNT_ID);
2247 	}
2248 	dsa = EVP_PKEY_get0_DSA(iffkey_info->pkey);
2249 	DSA_get0_pqg(dsa, &p, &q, &g);
2250 	DSA_get0_key(dsa, NULL, &priv_key);
2251 
2252 	/*
2253 	 * Extract r from the challenge.
2254 	 */
2255 	len = exten_payload_size(ep);
2256 	if (len == 0 || len > MAX_VALLEN)
2257 		return (XEVNT_LEN);
2258 	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2259 		msyslog(LOG_ERR, "crypto_bob: %s",
2260 		    ERR_error_string(ERR_get_error(), NULL));
2261 		return (XEVNT_ERR);
2262 	}
2263 
2264 	/*
2265 	 * Bob rolls random k (0 < k < q), computes y = k + b r mod q
2266 	 * and x = g^k mod p, then sends (y, hash(x)) to Alice.
2267 	 */
2268 	bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new();
2269 	sdsa = DSA_SIG_new();
2270 	BN_rand(bk, len * 8, -1, 1);		/* k */
2271 	BN_mod_mul(bn, priv_key, r, q, bctx); /* b r mod q */
2272 	BN_add(bn, bn, bk);
2273 	BN_mod(bn, bn, q, bctx);		/* k + b r mod q */
2274 	BN_mod_exp(bk, g, bk, p, bctx); /* g^k mod p */
2275 	bighash(bk, bk);
2276 	DSA_SIG_set0(sdsa, bn, bk);
2277 	BN_CTX_free(bctx);
2278 	BN_free(r);
2279 #ifdef DEBUG
2280 	if (debug > 1)
2281 		DSA_print_fp(stdout, dsa, 0);
2282 #endif
2283 
2284 	/*
2285 	 * Encode the values in ASN.1 and sign. The filestamp is from
2286 	 * the local file.
2287 	 */
2288 	len = i2d_DSA_SIG(sdsa, NULL);
2289 	if (len == 0) {
2290 		msyslog(LOG_ERR, "crypto_bob: %s",
2291 		    ERR_error_string(ERR_get_error(), NULL));
2292 		DSA_SIG_free(sdsa);
2293 		return (XEVNT_ERR);
2294 	}
2295 	if (len > MAX_VALLEN) {
2296 		msyslog(LOG_ERR, "crypto_bob: signature is too big: %u",
2297 		    len);
2298 		DSA_SIG_free(sdsa);
2299 		return (XEVNT_LEN);
2300 	}
2301 	memset(vp, 0, sizeof(struct value));
2302 	tstamp = crypto_time();
2303 	vp->tstamp = htonl(tstamp);
2304 	vp->fstamp = htonl(iffkey_info->fstamp);
2305 	vp->vallen = htonl(len);
2306 	ptr = emalloc(len);
2307 	vp->ptr = ptr;
2308 	i2d_DSA_SIG(sdsa, &ptr);
2309 	DSA_SIG_free(sdsa);
2310 	if (tstamp == 0)
2311 		return (XEVNT_OK);
2312 
2313 	/* XXX: more validation to make sure the sign fits... */
2314 	vp->sig = emalloc(sign_siglen);
2315 	ctx = EVP_MD_CTX_new();
2316 	EVP_SignInit(ctx, sign_digest);
2317 	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2318 	EVP_SignUpdate(ctx, vp->ptr, len);
2319 	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2320 		INSIST(len <= sign_siglen);
2321 		vp->siglen = htonl(len);
2322 	}
2323 	EVP_MD_CTX_free(ctx);
2324 	return (XEVNT_OK);
2325 }
2326 
2327 
2328 /*
2329  * crypto_iff - verify Bob's response to Alice's challenge
2330  *
2331  * Returns
2332  * XEVNT_OK	success
2333  * XEVNT_FSP	bad filestamp
2334  * XEVNT_ID	bad or missing group key
2335  * XEVNT_PUB	bad or missing public key
2336  */
2337 int
2338 crypto_iff(
2339 	struct exten *ep,	/* extension pointer */
2340 	struct peer *peer	/* peer structure pointer */
2341 	)
2342 {
2343 	DSA	*dsa;		/* IFF parameters */
2344 	BN_CTX	*bctx;		/* BIGNUM context */
2345 	DSA_SIG	*sdsa;		/* DSA parameters */
2346 	BIGNUM	*bn, *bk;
2347 	u_int	len;
2348 	const u_char *ptr;
2349 	int	temp;
2350 	const BIGNUM *p, *g;
2351 	const BIGNUM *r, *s;
2352 	const BIGNUM *pub_key;
2353 
2354 	/*
2355 	 * If the IFF parameters are not valid or no challenge was sent,
2356 	 * something awful happened or we are being tormented.
2357 	 */
2358 	if (peer->ident_pkey == NULL) {
2359 		msyslog(LOG_NOTICE, "crypto_iff: scheme unavailable");
2360 		return (XEVNT_ID);
2361 	}
2362 	if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) {
2363 		msyslog(LOG_NOTICE, "crypto_iff: invalid filestamp %u",
2364 		    ntohl(ep->fstamp));
2365 		return (XEVNT_FSP);
2366 	}
2367 	if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) {
2368 		msyslog(LOG_NOTICE, "crypto_iff: defective key");
2369 		return (XEVNT_PUB);
2370 	}
2371 	if (peer->iffval == NULL) {
2372 		msyslog(LOG_NOTICE, "crypto_iff: missing challenge");
2373 		return (XEVNT_ID);
2374 	}
2375 
2376 	/*
2377 	 * Extract the k + b r and g^k values from the response.
2378 	 */
2379 	bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new();
2380 	len = ntohl(ep->vallen);
2381 	ptr = (u_char *)ep->pkt;
2382 	if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) {
2383 		BN_free(bn); BN_free(bk); BN_CTX_free(bctx);
2384 		msyslog(LOG_ERR, "crypto_iff: %s",
2385 		    ERR_error_string(ERR_get_error(), NULL));
2386 		return (XEVNT_ERR);
2387 	}
2388 
2389 	/*
2390 	 * Compute g^(k + b r) g^(q - b)r mod p.
2391 	 */
2392 	DSA_get0_key(dsa, &pub_key, NULL);
2393 	DSA_get0_pqg(dsa, &p, NULL, &g);
2394 	DSA_SIG_get0(sdsa, &r, &s);
2395 	BN_mod_exp(bn, pub_key, peer->iffval, p, bctx);
2396 	BN_mod_exp(bk, g, r, p, bctx);
2397 	BN_mod_mul(bn, bn, bk, p, bctx);
2398 
2399 	/*
2400 	 * Verify the hash of the result matches hash(x).
2401 	 */
2402 	bighash(bn, bn);
2403 	temp = BN_cmp(bn, s);
2404 	BN_free(bn); BN_free(bk); BN_CTX_free(bctx);
2405 	BN_free(peer->iffval);
2406 	peer->iffval = NULL;
2407 	DSA_SIG_free(sdsa);
2408 	if (temp == 0)
2409 		return (XEVNT_OK);
2410 
2411 	msyslog(LOG_NOTICE, "crypto_iff: identity not verified");
2412 	return (XEVNT_ID);
2413 }
2414 
2415 
2416 /*
2417  ***********************************************************************
2418  *								       *
2419  * The following routines implement the Guillou-Quisquater (GQ)        *
2420  * identity scheme                                                     *
2421  *								       *
2422  ***********************************************************************
2423  *
2424  * The Guillou-Quisquater (GQ) identity scheme is intended for use when
2425  * the certificate can be used to convey public parameters. The scheme
2426  * uses a X509v3 certificate extension field do convey the public key of
2427  * a private key known only to servers. There are two kinds of files:
2428  * encrypted server files that contain private and public values and
2429  * nonencrypted client files that contain only public values. New
2430  * generations of server files must be securely transmitted to all
2431  * servers of the group; client files can be distributed by any means.
2432  * The scheme is self contained and independent of new generations of
2433  * host keys and sign keys. The scheme is self contained and independent
2434  * of new generations of host keys and sign keys.
2435  *
2436  * The GQ parameters hide in a RSA cuckoo structure which uses the same
2437  * parameters. The values are used by an identity scheme based on RSA
2438  * cryptography and described in Stimson p. 300 (with errors). The 512-
2439  * bit public modulus is n = p q, where p and q are secret large primes.
2440  * The TA rolls private random group key b as RSA exponent. These values
2441  * are known to all group members.
2442  *
2443  * When rolling new certificates, a server recomputes the private and
2444  * public keys. The private key u is a random roll, while the public key
2445  * is the inverse obscured by the group key v = (u^-1)^b. These values
2446  * replace the private and public keys normally generated by the RSA
2447  * scheme. Alice challenges Bob to confirm identity using the protocol
2448  * described below.
2449  *
2450  * How it works
2451  *
2452  * The scheme goes like this. Both Alice and Bob have the same modulus n
2453  * and some random b as the group key. These values are computed and
2454  * distributed in advance via secret means, although only the group key
2455  * b is truly secret. Each has a private random private key u and public
2456  * key (u^-1)^b, although not necessarily the same ones. Bob and Alice
2457  * can regenerate the key pair from time to time without affecting
2458  * operations. The public key is conveyed on the certificate in an
2459  * extension field; the private key is never revealed.
2460  *
2461  * Alice rolls new random challenge r and sends to Bob in the GQ
2462  * request message. Bob rolls new random k, then computes y = k u^r mod
2463  * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response
2464  * message. Besides making the response shorter, the hash makes it
2465  * effectivey impossible for an intruder to solve for b by observing
2466  * a number of these messages.
2467  *
2468  * Alice receives the response and computes y^b v^r mod n. After a bit
2469  * of algebra, this simplifies to k^b. If the hash of this result
2470  * matches hash(x), Alice knows that Bob has the group key b. The signed
2471  * response binds this knowledge to Bob's private key and the public key
2472  * previously received in his certificate.
2473  *
2474  * crypto_alice2 - construct Alice's challenge in GQ scheme
2475  *
2476  * Returns
2477  * XEVNT_OK	success
2478  * XEVNT_ID	bad or missing group key
2479  * XEVNT_PUB	bad or missing public key
2480  */
2481 static int
2482 crypto_alice2(
2483 	struct peer *peer,	/* peer pointer */
2484 	struct value *vp	/* value pointer */
2485 	)
2486 {
2487 	RSA	*rsa;		/* GQ parameters */
2488 	BN_CTX	*bctx;		/* BIGNUM context */
2489 	EVP_MD_CTX *ctx;	/* signature context */
2490 	tstamp_t tstamp;
2491 	u_int	len;
2492 	const BIGNUM *n;
2493 
2494 	/*
2495 	 * The identity parameters must have correct format and content.
2496 	 */
2497 	if (peer->ident_pkey == NULL)
2498 		return (XEVNT_ID);
2499 
2500 	if ((rsa = EVP_PKEY_get0_RSA(peer->ident_pkey->pkey)) == NULL) {
2501 		msyslog(LOG_NOTICE, "crypto_alice2: defective key");
2502 		return (XEVNT_PUB);
2503 	}
2504 
2505 	/*
2506 	 * Roll new random r (0 < r < n).
2507 	 */
2508 	if (peer->iffval != NULL)
2509 		BN_free(peer->iffval);
2510 	peer->iffval = BN_new();
2511 	RSA_get0_key(rsa, &n, NULL, NULL);
2512 	len = BN_num_bytes(n);
2513 	BN_rand(peer->iffval, len * 8, -1, 1);	/* r mod n */
2514 	bctx = BN_CTX_new();
2515 	BN_mod(peer->iffval, peer->iffval, n, bctx);
2516 	BN_CTX_free(bctx);
2517 
2518 	/*
2519 	 * Sign and send to Bob. The filestamp is from the local file.
2520 	 */
2521 	memset(vp, 0, sizeof(struct value));
2522 	tstamp = crypto_time();
2523 	vp->tstamp = htonl(tstamp);
2524 	vp->fstamp = htonl(peer->ident_pkey->fstamp);
2525 	vp->vallen = htonl(len);
2526 	vp->ptr = emalloc(len);
2527 	BN_bn2bin(peer->iffval, vp->ptr);
2528 	if (tstamp == 0)
2529 		return (XEVNT_OK);
2530 
2531 	vp->sig = emalloc(sign_siglen);
2532 	ctx = EVP_MD_CTX_new();
2533 	EVP_SignInit(ctx, sign_digest);
2534 	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2535 	EVP_SignUpdate(ctx, vp->ptr, len);
2536 	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2537 		INSIST(len <= sign_siglen);
2538 		vp->siglen = htonl(len);
2539 	}
2540 	EVP_MD_CTX_free(ctx);
2541 	return (XEVNT_OK);
2542 }
2543 
2544 
2545 /*
2546  * crypto_bob2 - construct Bob's response to Alice's challenge
2547  *
2548  * Returns
2549  * XEVNT_OK	success
2550  * XEVNT_ERR	protocol error
2551  * XEVNT_ID	bad or missing group key
2552  */
2553 static int
2554 crypto_bob2(
2555 	struct exten *ep,	/* extension pointer */
2556 	struct value *vp	/* value pointer */
2557 	)
2558 {
2559 	RSA	*rsa;		/* GQ parameters */
2560 	DSA_SIG	*sdsa;		/* DSA parameters */
2561 	BN_CTX	*bctx;		/* BIGNUM context */
2562 	EVP_MD_CTX *ctx;	/* signature context */
2563 	tstamp_t tstamp;	/* NTP timestamp */
2564 	BIGNUM	*r, *k, *g, *y;
2565 	u_char	*ptr;
2566 	u_int	len;
2567 	int	s_len;
2568 	const BIGNUM *n, *p, *e;
2569 
2570 	/*
2571 	 * If the GQ parameters are not valid, something awful
2572 	 * happened or we are being tormented.
2573 	 */
2574 	if (gqkey_info == NULL) {
2575 		msyslog(LOG_NOTICE, "crypto_bob2: scheme unavailable");
2576 		return (XEVNT_ID);
2577 	}
2578 	rsa = EVP_PKEY_get0_RSA(gqkey_info->pkey);
2579 	RSA_get0_key(rsa, &n, &p, &e);
2580 
2581 	/*
2582 	 * Extract r from the challenge.
2583 	 */
2584 	len = exten_payload_size(ep);
2585 	if (len == 0 || len > MAX_VALLEN)
2586 		return (XEVNT_LEN);
2587 	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2588 		msyslog(LOG_ERR, "crypto_bob2: %s",
2589 		    ERR_error_string(ERR_get_error(), NULL));
2590 		return (XEVNT_ERR);
2591 	}
2592 
2593 	/*
2594 	 * Bob rolls random k (0 < k < n), computes y = k u^r mod n and
2595 	 * x = k^b mod n, then sends (y, hash(x)) to Alice.
2596 	 */
2597 	bctx = BN_CTX_new(); k = BN_new(); g = BN_new(); y = BN_new();
2598 	sdsa = DSA_SIG_new();
2599 	BN_rand(k, len * 8, -1, 1);		/* k */
2600 	BN_mod(k, k, n, bctx);
2601 	BN_mod_exp(y, p, r, n, bctx); /* u^r mod n */
2602 	BN_mod_mul(y, k, y, n, bctx);	/* k u^r mod n */
2603 	BN_mod_exp(g, k, e, n, bctx); /* k^b mod n */
2604 	bighash(g, g);
2605 	DSA_SIG_set0(sdsa, y, g);
2606 	BN_CTX_free(bctx);
2607 	BN_free(r); BN_free(k);
2608 #ifdef DEBUG
2609 	if (debug > 1)
2610 		RSA_print_fp(stdout, rsa, 0);
2611 #endif
2612 
2613 	/*
2614 	 * Encode the values in ASN.1 and sign. The filestamp is from
2615 	 * the local file.
2616 	 */
2617 	len = s_len = i2d_DSA_SIG(sdsa, NULL);
2618 	if (s_len <= 0) {
2619 		msyslog(LOG_ERR, "crypto_bob2: %s",
2620 		    ERR_error_string(ERR_get_error(), NULL));
2621 		DSA_SIG_free(sdsa);
2622 		return (XEVNT_ERR);
2623 	}
2624 	memset(vp, 0, sizeof(struct value));
2625 	tstamp = crypto_time();
2626 	vp->tstamp = htonl(tstamp);
2627 	vp->fstamp = htonl(gqkey_info->fstamp);
2628 	vp->vallen = htonl(len);
2629 	ptr = emalloc(len);
2630 	vp->ptr = ptr;
2631 	i2d_DSA_SIG(sdsa, &ptr);
2632 	DSA_SIG_free(sdsa);
2633 	if (tstamp == 0)
2634 		return (XEVNT_OK);
2635 
2636 	vp->sig = emalloc(sign_siglen);
2637 	ctx = EVP_MD_CTX_new();
2638 	EVP_SignInit(ctx, sign_digest);
2639 	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2640 	EVP_SignUpdate(ctx, vp->ptr, len);
2641 	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2642 		INSIST(len <= sign_siglen);
2643 		vp->siglen = htonl(len);
2644 	}
2645 	EVP_MD_CTX_free(ctx);
2646 	return (XEVNT_OK);
2647 }
2648 
2649 
2650 /*
2651  * crypto_gq - verify Bob's response to Alice's challenge
2652  *
2653  * Returns
2654  * XEVNT_OK	success
2655  * XEVNT_ERR	protocol error
2656  * XEVNT_FSP	bad filestamp
2657  * XEVNT_ID	bad or missing group keys
2658  * XEVNT_PUB	bad or missing public key
2659  */
2660 int
2661 crypto_gq(
2662 	struct exten *ep,	/* extension pointer */
2663 	struct peer *peer	/* peer structure pointer */
2664 	)
2665 {
2666 	RSA	*rsa;		/* GQ parameters */
2667 	BN_CTX	*bctx;		/* BIGNUM context */
2668 	DSA_SIG	*sdsa;		/* RSA signature context fake */
2669 	BIGNUM	*y, *v;
2670 	const u_char *ptr;
2671 	long	len;
2672 	u_int	temp;
2673 	const BIGNUM *n, *e;
2674 	const BIGNUM *r, *s;
2675 
2676 	/*
2677 	 * If the GQ parameters are not valid or no challenge was sent,
2678 	 * something awful happened or we are being tormented. Note that
2679 	 * the filestamp on the local key file can be greater than on
2680 	 * the remote parameter file if the keys have been refreshed.
2681 	 */
2682 	if (peer->ident_pkey == NULL) {
2683 		msyslog(LOG_NOTICE, "crypto_gq: scheme unavailable");
2684 		return (XEVNT_ID);
2685 	}
2686 	if (ntohl(ep->fstamp) < peer->ident_pkey->fstamp) {
2687 		msyslog(LOG_NOTICE, "crypto_gq: invalid filestamp %u",
2688 		    ntohl(ep->fstamp));
2689 		return (XEVNT_FSP);
2690 	}
2691 	if ((rsa = EVP_PKEY_get0_RSA(peer->ident_pkey->pkey)) == NULL) {
2692 		msyslog(LOG_NOTICE, "crypto_gq: defective key");
2693 		return (XEVNT_PUB);
2694 	}
2695 	RSA_get0_key(rsa, &n, NULL, &e);
2696 	if (peer->iffval == NULL) {
2697 		msyslog(LOG_NOTICE, "crypto_gq: missing challenge");
2698 		return (XEVNT_ID);
2699 	}
2700 
2701 	/*
2702 	 * Extract the y = k u^r and hash(x = k^b) values from the
2703 	 * response.
2704 	 */
2705 	bctx = BN_CTX_new(); y = BN_new(); v = BN_new();
2706 	len = ntohl(ep->vallen);
2707 	ptr = (u_char *)ep->pkt;
2708 	if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) {
2709 		BN_CTX_free(bctx); BN_free(y); BN_free(v);
2710 		msyslog(LOG_ERR, "crypto_gq: %s",
2711 		    ERR_error_string(ERR_get_error(), NULL));
2712 		return (XEVNT_ERR);
2713 	}
2714 	DSA_SIG_get0(sdsa, &r, &s);
2715 
2716 	/*
2717 	 * Compute v^r y^b mod n.
2718 	 */
2719 	if (peer->grpkey == NULL) {
2720 		msyslog(LOG_NOTICE, "crypto_gq: missing group key");
2721 		return (XEVNT_ID);
2722 	}
2723 	BN_mod_exp(v, peer->grpkey, peer->iffval, n, bctx);
2724 						/* v^r mod n */
2725 	BN_mod_exp(y, r, e, n, bctx); /* y^b mod n */
2726 	BN_mod_mul(y, v, y, n, bctx);	/* v^r y^b mod n */
2727 
2728 	/*
2729 	 * Verify the hash of the result matches hash(x).
2730 	 */
2731 	bighash(y, y);
2732 	temp = BN_cmp(y, s);
2733 	BN_CTX_free(bctx); BN_free(y); BN_free(v);
2734 	BN_free(peer->iffval);
2735 	peer->iffval = NULL;
2736 	DSA_SIG_free(sdsa);
2737 	if (temp == 0)
2738 		return (XEVNT_OK);
2739 
2740 	msyslog(LOG_NOTICE, "crypto_gq: identity not verified");
2741 	return (XEVNT_ID);
2742 }
2743 
2744 
2745 /*
2746  ***********************************************************************
2747  *								       *
2748  * The following routines implement the Mu-Varadharajan (MV) identity  *
2749  * scheme                                                              *
2750  *								       *
2751  ***********************************************************************
2752  *
2753  * The Mu-Varadharajan (MV) cryptosystem was originally intended when
2754  * servers broadcast messages to clients, but clients never send
2755  * messages to servers. There is one encryption key for the server and a
2756  * separate decryption key for each client. It operated something like a
2757  * pay-per-view satellite broadcasting system where the session key is
2758  * encrypted by the broadcaster and the decryption keys are held in a
2759  * tamperproof set-top box.
2760  *
2761  * The MV parameters and private encryption key hide in a DSA cuckoo
2762  * structure which uses the same parameters, but generated in a
2763  * different way. The values are used in an encryption scheme similar to
2764  * El Gamal cryptography and a polynomial formed from the expansion of
2765  * product terms (x - x[j]), as described in Mu, Y., and V.
2766  * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001,
2767  * 223-231. The paper has significant errors and serious omissions.
2768  *
2769  * Let q be the product of n distinct primes s1[j] (j = 1...n), where
2770  * each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so
2771  * that q and each s1[j] divide p - 1 and p has M = n * m + 1
2772  * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1)
2773  * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then
2774  * project into Zp* as exponents of g. Sometimes we have to compute an
2775  * inverse b^-1 of random b in Zq, but for that purpose we require
2776  * gcd(b, q) = 1. We expect M to be in the 500-bit range and n
2777  * relatively small, like 30. These are the parameters of the scheme and
2778  * they are expensive to compute.
2779  *
2780  * We set up an instance of the scheme as follows. A set of random
2781  * values x[j] mod q (j = 1...n), are generated as the zeros of a
2782  * polynomial of order n. The product terms (x - x[j]) are expanded to
2783  * form coefficients a[i] mod q (i = 0...n) in powers of x. These are
2784  * used as exponents of the generator g mod p to generate the private
2785  * encryption key A. The pair (gbar, ghat) of public server keys and the
2786  * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used
2787  * to construct the decryption keys. The devil is in the details.
2788  *
2789  * This routine generates a private server encryption file including the
2790  * private encryption key E and partial decryption keys gbar and ghat.
2791  * It then generates public client decryption files including the public
2792  * keys xbar[j] and xhat[j] for each client j. The partial decryption
2793  * files are used to compute the inverse of E. These values are suitably
2794  * blinded so secrets are not revealed.
2795  *
2796  * The distinguishing characteristic of this scheme is the capability to
2797  * revoke keys. Included in the calculation of E, gbar and ghat is the
2798  * product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is
2799  * subsequently removed from the product and E, gbar and ghat
2800  * recomputed, the jth client will no longer be able to compute E^-1 and
2801  * thus unable to decrypt the messageblock.
2802  *
2803  * How it works
2804  *
2805  * The scheme goes like this. Bob has the server values (p, E, q, gbar,
2806  * ghat) and Alice has the client values (p, xbar, xhat).
2807  *
2808  * Alice rolls new random nonce r mod p and sends to Bob in the MV
2809  * request message. Bob rolls random nonce k mod q, encrypts y = r E^k
2810  * mod p and sends (y, gbar^k, ghat^k) to Alice.
2811  *
2812  * Alice receives the response and computes the inverse (E^k)^-1 from
2813  * the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then
2814  * decrypts y and verifies it matches the original r. The signed
2815  * response binds this knowledge to Bob's private key and the public key
2816  * previously received in his certificate.
2817  *
2818  * crypto_alice3 - construct Alice's challenge in MV scheme
2819  *
2820  * Returns
2821  * XEVNT_OK	success
2822  * XEVNT_ID	bad or missing group key
2823  * XEVNT_PUB	bad or missing public key
2824  */
2825 static int
2826 crypto_alice3(
2827 	struct peer *peer,	/* peer pointer */
2828 	struct value *vp	/* value pointer */
2829 	)
2830 {
2831 	DSA	*dsa;		/* MV parameters */
2832 	BN_CTX	*bctx;		/* BIGNUM context */
2833 	EVP_MD_CTX *ctx;	/* signature context */
2834 	tstamp_t tstamp;
2835 	u_int	len;
2836 	const BIGNUM *p;
2837 
2838 	/*
2839 	 * The identity parameters must have correct format and content.
2840 	 */
2841 	if (peer->ident_pkey == NULL)
2842 		return (XEVNT_ID);
2843 
2844 	if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) {
2845 		msyslog(LOG_NOTICE, "crypto_alice3: defective key");
2846 		return (XEVNT_PUB);
2847 	}
2848 	DSA_get0_pqg(dsa, &p, NULL, NULL);
2849 
2850 	/*
2851 	 * Roll new random r (0 < r < q).
2852 	 */
2853 	if (peer->iffval != NULL)
2854 		BN_free(peer->iffval);
2855 	peer->iffval = BN_new();
2856 	len = BN_num_bytes(p);
2857 	BN_rand(peer->iffval, len * 8, -1, 1);	/* r mod p */
2858 	bctx = BN_CTX_new();
2859 	BN_mod(peer->iffval, peer->iffval, p, bctx);
2860 	BN_CTX_free(bctx);
2861 
2862 	/*
2863 	 * Sign and send to Bob. The filestamp is from the local file.
2864 	 */
2865 	memset(vp, 0, sizeof(struct value));
2866 	tstamp = crypto_time();
2867 	vp->tstamp = htonl(tstamp);
2868 	vp->fstamp = htonl(peer->ident_pkey->fstamp);
2869 	vp->vallen = htonl(len);
2870 	vp->ptr = emalloc(len);
2871 	BN_bn2bin(peer->iffval, vp->ptr);
2872 	if (tstamp == 0)
2873 		return (XEVNT_OK);
2874 
2875 	vp->sig = emalloc(sign_siglen);
2876 	ctx = EVP_MD_CTX_new();
2877 	EVP_SignInit(ctx, sign_digest);
2878 	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2879 	EVP_SignUpdate(ctx, vp->ptr, len);
2880 	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2881 		INSIST(len <= sign_siglen);
2882 		vp->siglen = htonl(len);
2883 	}
2884 	EVP_MD_CTX_free(ctx);
2885 	return (XEVNT_OK);
2886 }
2887 
2888 
2889 /*
2890  * crypto_bob3 - construct Bob's response to Alice's challenge
2891  *
2892  * Returns
2893  * XEVNT_OK	success
2894  * XEVNT_ERR	protocol error
2895  */
2896 static int
2897 crypto_bob3(
2898 	struct exten *ep,	/* extension pointer */
2899 	struct value *vp	/* value pointer */
2900 	)
2901 {
2902 	DSA	*dsa;		/* MV parameters */
2903 	DSA	*sdsa;		/* DSA signature context fake */
2904 	BN_CTX	*bctx;		/* BIGNUM context */
2905 	EVP_MD_CTX *ctx;	/* signature context */
2906 	tstamp_t tstamp;	/* NTP timestamp */
2907 	BIGNUM	*r, *k, *u;
2908 	u_char	*ptr;
2909 	u_int	len;
2910 	const BIGNUM *p, *q, *g;
2911 	const BIGNUM *pub_key, *priv_key;
2912 	BIGNUM *sp, *sq, *sg;
2913 
2914 	/*
2915 	 * If the MV parameters are not valid, something awful
2916 	 * happened or we are being tormented.
2917 	 */
2918 	if (mvkey_info == NULL) {
2919 		msyslog(LOG_NOTICE, "crypto_bob3: scheme unavailable");
2920 		return (XEVNT_ID);
2921 	}
2922 	dsa = EVP_PKEY_get0_DSA(mvkey_info->pkey);
2923 	DSA_get0_pqg(dsa, &p, &q, &g);
2924 	DSA_get0_key(dsa, &pub_key, &priv_key);
2925 
2926 	/*
2927 	 * Extract r from the challenge.
2928 	 */
2929 	len = exten_payload_size(ep);
2930 	if (len == 0 || len > MAX_VALLEN)
2931 		return (XEVNT_LEN);
2932 	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2933 		msyslog(LOG_ERR, "crypto_bob3: %s",
2934 		    ERR_error_string(ERR_get_error(), NULL));
2935 		return (XEVNT_ERR);
2936 	}
2937 
2938 	/*
2939 	 * Bob rolls random k (0 < k < q), making sure it is not a
2940 	 * factor of q. He then computes y = r A^k and sends (y, gbar^k,
2941 	 * and ghat^k) to Alice.
2942 	 */
2943 	bctx = BN_CTX_new(); k = BN_new(); u = BN_new();
2944 	sdsa = DSA_new();
2945 	sp = BN_new(); sq = BN_new(); sg = BN_new();
2946 	while (1) {
2947 		BN_rand(k, BN_num_bits(q), 0, 0);
2948 		BN_mod(k, k, q, bctx);
2949 		BN_gcd(u, k, q, bctx);
2950 		if (BN_is_one(u))
2951 			break;
2952 	}
2953 	BN_mod_exp(u, g, k, p, bctx); /* A^k r */
2954 	BN_mod_mul(sp, u, r, p, bctx);
2955 	BN_mod_exp(sq, priv_key, k, p, bctx); /* gbar */
2956 	BN_mod_exp(sg, pub_key, k, p, bctx); /* ghat */
2957 	DSA_set0_key(sdsa, BN_dup(pub_key), NULL);
2958 	DSA_set0_pqg(sdsa, sp, sq, sg);
2959 	BN_CTX_free(bctx); BN_free(k); BN_free(r); BN_free(u);
2960 #ifdef DEBUG
2961 	if (debug > 1)
2962 		DSA_print_fp(stdout, sdsa, 0);
2963 #endif
2964 
2965 	/*
2966 	 * Encode the values in ASN.1 and sign. The filestamp is from
2967 	 * the local file.
2968 	 */
2969 	memset(vp, 0, sizeof(struct value));
2970 	tstamp = crypto_time();
2971 	vp->tstamp = htonl(tstamp);
2972 	vp->fstamp = htonl(mvkey_info->fstamp);
2973 	len = i2d_DSAparams(sdsa, NULL);
2974 	if (len == 0) {
2975 		msyslog(LOG_ERR, "crypto_bob3: %s",
2976 		    ERR_error_string(ERR_get_error(), NULL));
2977 		DSA_free(sdsa);
2978 		return (XEVNT_ERR);
2979 	}
2980 	vp->vallen = htonl(len);
2981 	ptr = emalloc(len);
2982 	vp->ptr = ptr;
2983 	i2d_DSAparams(sdsa, &ptr);
2984 	DSA_free(sdsa);
2985 	if (tstamp == 0)
2986 		return (XEVNT_OK);
2987 
2988 	vp->sig = emalloc(sign_siglen);
2989 	ctx = EVP_MD_CTX_new();
2990 	EVP_SignInit(ctx, sign_digest);
2991 	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2992 	EVP_SignUpdate(ctx, vp->ptr, len);
2993 	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2994 		INSIST(len <= sign_siglen);
2995 		vp->siglen = htonl(len);
2996 	}
2997 	EVP_MD_CTX_free(ctx);
2998 	return (XEVNT_OK);
2999 }
3000 
3001 
3002 /*
3003  * crypto_mv - verify Bob's response to Alice's challenge
3004  *
3005  * Returns
3006  * XEVNT_OK	success
3007  * XEVNT_ERR	protocol error
3008  * XEVNT_FSP	bad filestamp
3009  * XEVNT_ID	bad or missing group key
3010  * XEVNT_PUB	bad or missing public key
3011  */
3012 int
3013 crypto_mv(
3014 	struct exten *ep,	/* extension pointer */
3015 	struct peer *peer	/* peer structure pointer */
3016 	)
3017 {
3018 	DSA	*dsa;		/* MV parameters */
3019 	DSA	*sdsa;		/* DSA parameters */
3020 	BN_CTX	*bctx;		/* BIGNUM context */
3021 	BIGNUM	*k, *u, *v;
3022 	u_int	len;
3023 	const u_char *ptr;
3024 	int	temp;
3025 	const BIGNUM *p;
3026 	const BIGNUM *pub_key, *priv_key;
3027 	const BIGNUM *sp, *sq, *sg;
3028 
3029 	/*
3030 	 * If the MV parameters are not valid or no challenge was sent,
3031 	 * something awful happened or we are being tormented.
3032 	 */
3033 	if (peer->ident_pkey == NULL) {
3034 		msyslog(LOG_NOTICE, "crypto_mv: scheme unavailable");
3035 		return (XEVNT_ID);
3036 	}
3037 	if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) {
3038 		msyslog(LOG_NOTICE, "crypto_mv: invalid filestamp %u",
3039 		    ntohl(ep->fstamp));
3040 		return (XEVNT_FSP);
3041 	}
3042 	if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) {
3043 		msyslog(LOG_NOTICE, "crypto_mv: defective key");
3044 		return (XEVNT_PUB);
3045 	}
3046 	DSA_get0_pqg(dsa, &p, NULL, NULL);
3047 	DSA_get0_key(dsa, &pub_key, &priv_key);
3048 	if (peer->iffval == NULL) {
3049 		msyslog(LOG_NOTICE, "crypto_mv: missing challenge");
3050 		return (XEVNT_ID);
3051 	}
3052 
3053 	/*
3054 	 * Extract the y, gbar and ghat values from the response.
3055 	 */
3056 	bctx = BN_CTX_new(); k = BN_new(); u = BN_new(); v = BN_new();
3057 	len = ntohl(ep->vallen);
3058 	ptr = (u_char *)ep->pkt;
3059 	if ((sdsa = d2i_DSAparams(NULL, &ptr, len)) == NULL) {
3060 		msyslog(LOG_ERR, "crypto_mv: %s",
3061 		    ERR_error_string(ERR_get_error(), NULL));
3062 		return (XEVNT_ERR);
3063 	}
3064 	DSA_get0_pqg(sdsa, &sp, &sq, &sg);
3065 
3066 	/*
3067 	 * Compute (gbar^xhat ghat^xbar) mod p.
3068 	 */
3069 	BN_mod_exp(u, sq, pub_key, p, bctx);
3070 	BN_mod_exp(v, sg, priv_key, p, bctx);
3071 	BN_mod_mul(u, u, v, p, bctx);
3072 	BN_mod_mul(u, u, sp, p, bctx);
3073 
3074 	/*
3075 	 * The result should match r.
3076 	 */
3077 	temp = BN_cmp(u, peer->iffval);
3078 	BN_CTX_free(bctx); BN_free(k); BN_free(u); BN_free(v);
3079 	BN_free(peer->iffval);
3080 	peer->iffval = NULL;
3081 	DSA_free(sdsa);
3082 	if (temp == 0)
3083 		return (XEVNT_OK);
3084 
3085 	msyslog(LOG_NOTICE, "crypto_mv: identity not verified");
3086 	return (XEVNT_ID);
3087 }
3088 
3089 
3090 /*
3091  ***********************************************************************
3092  *								       *
3093  * The following routines are used to manipulate certificates          *
3094  *								       *
3095  ***********************************************************************
3096  */
3097 /*
3098  * cert_sign - sign x509 certificate equest and update value structure.
3099  *
3100  * The certificate request includes a copy of the host certificate,
3101  * which includes the version number, subject name and public key of the
3102  * host. The resulting certificate includes these values plus the
3103  * serial number, issuer name and valid interval of the server. The
3104  * valid interval extends from the current time to the same time one
3105  * year hence. This may extend the life of the signed certificate beyond
3106  * that of the signer certificate.
3107  *
3108  * It is convenient to use the NTP seconds of the current time as the
3109  * serial number. In the value structure the timestamp is the current
3110  * time and the filestamp is taken from the extension field. Note this
3111  * routine is called only when the client clock is synchronized to a
3112  * proventic source, so timestamp comparisons are valid.
3113  *
3114  * The host certificate is valid from the time it was generated for a
3115  * period of one year. A signed certificate is valid from the time of
3116  * signature for a period of one year, but only the host certificate (or
3117  * sign certificate if used) is actually used to encrypt and decrypt
3118  * signatures. The signature trail is built from the client via the
3119  * intermediate servers to the trusted server. Each signature on the
3120  * trail must be valid at the time of signature, but it could happen
3121  * that a signer certificate expire before the signed certificate, which
3122  * remains valid until its expiration.
3123  *
3124  * Returns
3125  * XEVNT_OK	success
3126  * XEVNT_CRT	bad or missing certificate
3127  * XEVNT_PER	host certificate expired
3128  * XEVNT_PUB	bad or missing public key
3129  * XEVNT_VFY	certificate not verified
3130  */
3131 static int
3132 cert_sign(
3133 	struct exten *ep,	/* extension field pointer */
3134 	struct value *vp	/* value pointer */
3135 	)
3136 {
3137 	X509	*req;		/* X509 certificate request */
3138 	X509	*cert;		/* X509 certificate */
3139 	X509_EXTENSION *ext;	/* certificate extension */
3140 	ASN1_INTEGER *serial;	/* serial number */
3141 	X509_NAME *subj;	/* distinguished (common) name */
3142 	EVP_PKEY *pkey;		/* public key */
3143 	EVP_MD_CTX *ctx;	/* message digest context */
3144 	tstamp_t tstamp;	/* NTP timestamp */
3145 	struct calendar tscal;
3146 	u_int	len;
3147 	const u_char *cptr;
3148 	u_char *ptr;
3149 	int	i, temp;
3150 
3151 	/*
3152 	 * Decode ASN.1 objects and construct certificate structure.
3153 	 * Make sure the system clock is synchronized to a proventic
3154 	 * source.
3155 	 */
3156 	tstamp = crypto_time();
3157 	if (tstamp == 0)
3158 		return (XEVNT_TSP);
3159 
3160 	len = exten_payload_size(ep);
3161 	if (len == 0 || len > MAX_VALLEN)
3162 		return (XEVNT_LEN);
3163 	cptr = (void *)ep->pkt;
3164 	if ((req = d2i_X509(NULL, &cptr, len)) == NULL) {
3165 		msyslog(LOG_ERR, "cert_sign: %s",
3166 		    ERR_error_string(ERR_get_error(), NULL));
3167 		return (XEVNT_CRT);
3168 	}
3169 	/*
3170 	 * Extract public key and check for errors.
3171 	 */
3172 	if ((pkey = X509_get_pubkey(req)) == NULL) {
3173 		msyslog(LOG_ERR, "cert_sign: %s",
3174 		    ERR_error_string(ERR_get_error(), NULL));
3175 		X509_free(req);
3176 		return (XEVNT_PUB);
3177 	}
3178 
3179 	/*
3180 	 * Generate X509 certificate signed by this server. If this is a
3181 	 * trusted host, the issuer name is the group name; otherwise,
3182 	 * it is the host name. Also copy any extensions that might be
3183 	 * present.
3184 	 */
3185 	cert = X509_new();
3186 	X509_set_version(cert, X509_get_version(req));
3187 	serial = ASN1_INTEGER_new();
3188 	ASN1_INTEGER_set(serial, tstamp);
3189 	X509_set_serialNumber(cert, serial);
3190 	X509_gmtime_adj(X509_get_notBefore(cert), 0L);
3191 	X509_gmtime_adj(X509_get_notAfter(cert), YEAR);
3192 	subj = X509_get_issuer_name(cert);
3193 	X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
3194 	    hostval.ptr, strlen((const char *)hostval.ptr), -1, 0);
3195 	subj = X509_get_subject_name(req);
3196 	X509_set_subject_name(cert, subj);
3197 	X509_set_pubkey(cert, pkey);
3198 	temp = X509_get_ext_count(req);
3199 	for (i = 0; i < temp; i++) {
3200 		ext = X509_get_ext(req, i);
3201 		INSIST(X509_add_ext(cert, ext, -1));
3202 	}
3203 	X509_free(req);
3204 
3205 	/*
3206 	 * Sign and verify the client certificate, but only if the host
3207 	 * certificate has not expired.
3208 	 */
3209 	(void)ntpcal_ntp_to_date(&tscal, tstamp, NULL);
3210 	if ((calcomp(&tscal, &(cert_host->first)) < 0)
3211 	|| (calcomp(&tscal, &(cert_host->last)) > 0)) {
3212 		X509_free(cert);
3213 		return (XEVNT_PER);
3214 	}
3215 	X509_sign(cert, sign_pkey, sign_digest);
3216 	if (X509_verify(cert, sign_pkey) <= 0) {
3217 		msyslog(LOG_ERR, "cert_sign: %s",
3218 		    ERR_error_string(ERR_get_error(), NULL));
3219 		X509_free(cert);
3220 		return (XEVNT_VFY);
3221 	}
3222 	len = i2d_X509(cert, NULL);
3223 
3224 	/*
3225 	 * Build and sign the value structure. We have to sign it here,
3226 	 * since the response has to be returned right away. This is a
3227 	 * clogging hazard.
3228 	 */
3229 	memset(vp, 0, sizeof(struct value));
3230 	vp->tstamp = htonl(tstamp);
3231 	vp->fstamp = ep->fstamp;
3232 	vp->vallen = htonl(len);
3233 	vp->ptr = emalloc(len);
3234 	ptr = vp->ptr;
3235 	i2d_X509(cert, (unsigned char **)(intptr_t)&ptr);
3236 	vp->siglen = 0;
3237 	if (tstamp != 0) {
3238 		vp->sig = emalloc(sign_siglen);
3239 		ctx = EVP_MD_CTX_new();
3240 		EVP_SignInit(ctx, sign_digest);
3241 		EVP_SignUpdate(ctx, (u_char *)vp, 12);
3242 		EVP_SignUpdate(ctx, vp->ptr, len);
3243 		if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
3244 			INSIST(len <= sign_siglen);
3245 			vp->siglen = htonl(len);
3246 		}
3247 		EVP_MD_CTX_free(ctx);
3248 	}
3249 #ifdef DEBUG
3250 	if (debug > 1)
3251 		X509_print_fp(stdout, cert);
3252 #endif
3253 	X509_free(cert);
3254 	return (XEVNT_OK);
3255 }
3256 
3257 
3258 /*
3259  * cert_install - install certificate in certificate cache
3260  *
3261  * This routine encodes an extension field into a certificate info/value
3262  * structure. It searches the certificate list for duplicates and
3263  * expunges whichever is older. Finally, it inserts this certificate
3264  * first on the list.
3265  *
3266  * Returns certificate info pointer if valid, NULL if not.
3267  */
3268 struct cert_info *
3269 cert_install(
3270 	struct exten *ep,	/* cert info/value */
3271 	struct peer *peer	/* peer structure */
3272 	)
3273 {
3274 	struct cert_info *cp, *xp, **zp;
3275 
3276 	/*
3277 	 * Parse and validate the signed certificate. If valid,
3278 	 * construct the info/value structure; otherwise, scamper home
3279 	 * empty handed.
3280 	 */
3281 	if ((cp = cert_parse((u_char *)ep->pkt, (long)ntohl(ep->vallen),
3282 	    (tstamp_t)ntohl(ep->fstamp))) == NULL)
3283 		return (NULL);
3284 
3285 	/*
3286 	 * Scan certificate list looking for another certificate with
3287 	 * the same subject and issuer. If another is found with the
3288 	 * same or older filestamp, unlink it and return the goodies to
3289 	 * the heap. If another is found with a later filestamp, discard
3290 	 * the new one and leave the building with the old one.
3291 	 *
3292 	 * Make a note to study this issue again. An earlier certificate
3293 	 * with a long lifetime might be overtaken by a later
3294 	 * certificate with a short lifetime, thus invalidating the
3295 	 * earlier signature. However, we gotta find a way to leak old
3296 	 * stuff from the cache, so we do it anyway.
3297 	 */
3298 	zp = &cinfo;
3299 	for (xp = cinfo; xp != NULL; xp = xp->link) {
3300 		if (strcmp(cp->subject, xp->subject) == 0 &&
3301 		    strcmp(cp->issuer, xp->issuer) == 0) {
3302 			if (ntohl(cp->cert.fstamp) <=
3303 			    ntohl(xp->cert.fstamp)) {
3304 				cert_free(cp);
3305 				cp = xp;
3306 			} else {
3307 				*zp = xp->link;
3308 				cert_free(xp);
3309 				xp = NULL;
3310 			}
3311 			break;
3312 		}
3313 		zp = &xp->link;
3314 	}
3315 	if (xp == NULL) {
3316 		cp->link = cinfo;
3317 		cinfo = cp;
3318 	}
3319 	cp->flags |= CERT_VALID;
3320 	crypto_update();
3321 	return (cp);
3322 }
3323 
3324 
3325 /*
3326  * cert_hike - verify the signature using the issuer public key
3327  *
3328  * Returns
3329  * XEVNT_OK	success
3330  * XEVNT_CRT	bad or missing certificate
3331  * XEVNT_PER	host certificate expired
3332  * XEVNT_VFY	certificate not verified
3333  */
3334 int
3335 cert_hike(
3336 	struct peer *peer,	/* peer structure pointer */
3337 	struct cert_info *yp	/* issuer certificate */
3338 	)
3339 {
3340 	struct cert_info *xp;	/* subject certificate */
3341 	X509	*cert;		/* X509 certificate */
3342 	const u_char *ptr;
3343 
3344 	/*
3345 	 * Save the issuer on the new certificate, but remember the old
3346 	 * one.
3347 	 */
3348 	if (peer->issuer != NULL)
3349 		free(peer->issuer);
3350 	peer->issuer = estrdup(yp->issuer);
3351 	xp = peer->xinfo;
3352 	peer->xinfo = yp;
3353 
3354 	/*
3355 	 * If subject Y matches issuer Y, then the certificate trail is
3356 	 * complete. If Y is not trusted, the server certificate has yet
3357 	 * been signed, so keep trying. Otherwise, save the group key
3358 	 * and light the valid bit. If the host certificate is trusted,
3359 	 * do not execute a sign exchange. If no identity scheme is in
3360 	 * use, light the identity and proventic bits.
3361 	 */
3362 	if (strcmp(yp->subject, yp->issuer) == 0) {
3363 		if (!(yp->flags & CERT_TRUST))
3364 			return (XEVNT_OK);
3365 
3366 		/*
3367 		 * If the server has an an identity scheme, fetch the
3368 		 * identity credentials. If not, the identity is
3369 		 * verified only by the trusted certificate. The next
3370 		 * signature will set the server proventic.
3371 		 */
3372 		peer->crypto |= CRYPTO_FLAG_CERT;
3373 		peer->grpkey = yp->grpkey;
3374 		if (peer->ident == NULL || !(peer->crypto &
3375 		    CRYPTO_FLAG_MASK))
3376 			peer->crypto |= CRYPTO_FLAG_VRFY;
3377 	}
3378 
3379 	/*
3380 	 * If X exists, verify signature X using public key Y.
3381 	 */
3382 	if (xp == NULL)
3383 		return (XEVNT_OK);
3384 
3385 	ptr = (u_char *)xp->cert.ptr;
3386 	cert = d2i_X509(NULL, &ptr, ntohl(xp->cert.vallen));
3387 	if (cert == NULL) {
3388 		xp->flags |= CERT_ERROR;
3389 		return (XEVNT_CRT);
3390 	}
3391 	if (X509_verify(cert, yp->pkey) <= 0) {
3392 		X509_free(cert);
3393 		xp->flags |= CERT_ERROR;
3394 		return (XEVNT_VFY);
3395 	}
3396 	X509_free(cert);
3397 
3398 	/*
3399 	 * Signature X is valid only if it begins during the
3400 	 * lifetime of Y.
3401 	 */
3402 	if ((calcomp(&(xp->first), &(yp->first)) < 0)
3403 	|| (calcomp(&(xp->first), &(yp->last)) > 0)) {
3404 		xp->flags |= CERT_ERROR;
3405 		return (XEVNT_PER);
3406 	}
3407 	xp->flags |= CERT_SIGN;
3408 	return (XEVNT_OK);
3409 }
3410 
3411 
3412 /*
3413  * cert_parse - parse x509 certificate and create info/value structures.
3414  *
3415  * The server certificate includes the version number, issuer name,
3416  * subject name, public key and valid date interval. If the issuer name
3417  * is the same as the subject name, the certificate is self signed and
3418  * valid only if the server is configured as trustable. If the names are
3419  * different, another issuer has signed the server certificate and
3420  * vouched for it. In this case the server certificate is valid if
3421  * verified by the issuer public key.
3422  *
3423  * Returns certificate info/value pointer if valid, NULL if not.
3424  */
3425 struct cert_info *		/* certificate information structure */
3426 cert_parse(
3427 	const u_char *asn1cert,	/* X509 certificate */
3428 	long	len,		/* certificate length */
3429 	tstamp_t fstamp		/* filestamp */
3430 	)
3431 {
3432 	X509	*cert;		/* X509 certificate */
3433 	struct cert_info *ret;	/* certificate info/value */
3434 	BIO	*bp;
3435 	char	pathbuf[MAXFILENAME];
3436 	const u_char *ptr;
3437 	char	*pch;
3438 	int	cnt, i;
3439 	struct calendar fscal;
3440 
3441 	/*
3442 	 * Decode ASN.1 objects and construct certificate structure.
3443 	 */
3444 	ptr = asn1cert;
3445 	if ((cert = d2i_X509(NULL, &ptr, len)) == NULL) {
3446 		msyslog(LOG_ERR, "cert_parse: %s",
3447 		    ERR_error_string(ERR_get_error(), NULL));
3448 		return (NULL);
3449 	}
3450 #ifdef DEBUG
3451 	if (debug > 1)
3452 		X509_print_fp(stdout, cert);
3453 #endif
3454 
3455 	/*
3456 	 * Extract version, subject name and public key.
3457 	 */
3458 	ret = emalloc_zero(sizeof(*ret));
3459 	if ((ret->pkey = X509_get_pubkey(cert)) == NULL) {
3460 		msyslog(LOG_ERR, "cert_parse: %s",
3461 		    ERR_error_string(ERR_get_error(), NULL));
3462 		cert_free(ret);
3463 		X509_free(cert);
3464 		return (NULL);
3465 	}
3466 	ret->version = X509_get_version(cert);
3467 	X509_NAME_oneline(X509_get_subject_name(cert), pathbuf,
3468 	    sizeof(pathbuf));
3469 	pch = strstr(pathbuf, "CN=");
3470 	if (NULL == pch) {
3471 		msyslog(LOG_NOTICE, "cert_parse: invalid subject %s",
3472 		    pathbuf);
3473 		cert_free(ret);
3474 		X509_free(cert);
3475 		return (NULL);
3476 	}
3477 	ret->subject = estrdup(pch + 3);
3478 
3479 	/*
3480 	 * Extract remaining objects. Note that the NTP serial number is
3481 	 * the NTP seconds at the time of signing, but this might not be
3482 	 * the case for other authority. We don't bother to check the
3483 	 * objects at this time, since the real crunch can happen only
3484 	 * when the time is valid but not yet certificated.
3485 	 */
3486 	ret->nid = X509_get_signature_nid(cert);
3487 	ret->digest = (const EVP_MD *)EVP_get_digestbynid(ret->nid);
3488 	ret->serial =
3489 	    (u_long)ASN1_INTEGER_get(X509_get_serialNumber(cert));
3490 	X509_NAME_oneline(X509_get_issuer_name(cert), pathbuf,
3491 	    sizeof(pathbuf));
3492 	if ((pch = strstr(pathbuf, "CN=")) == NULL) {
3493 		msyslog(LOG_NOTICE, "cert_parse: invalid issuer %s",
3494 		    pathbuf);
3495 		cert_free(ret);
3496 		X509_free(cert);
3497 		return (NULL);
3498 	}
3499 	ret->issuer = estrdup(pch + 3);
3500 	asn_to_calendar(X509_get_notBefore(cert), &(ret->first));
3501 	asn_to_calendar(X509_get_notAfter(cert), &(ret->last));
3502 
3503 	/*
3504 	 * Extract extension fields. These are ad hoc ripoffs of
3505 	 * currently assigned functions and will certainly be changed
3506 	 * before prime time.
3507 	 */
3508 	cnt = X509_get_ext_count(cert);
3509 	for (i = 0; i < cnt; i++) {
3510 		X509_EXTENSION *ext;
3511 		ASN1_OBJECT *obj;
3512 		int nid;
3513 		ASN1_OCTET_STRING *data;
3514 
3515 		ext = X509_get_ext(cert, i);
3516 		obj = X509_EXTENSION_get_object(ext);
3517 		nid = OBJ_obj2nid(obj);
3518 
3519 		switch (nid) {
3520 
3521 		/*
3522 		 * If a key_usage field is present, we decode whether
3523 		 * this is a trusted or private certificate. This is
3524 		 * dorky; all we want is to compare NIDs, but OpenSSL
3525 		 * insists on BIO text strings.
3526 		 */
3527 		case NID_ext_key_usage:
3528 			bp = BIO_new(BIO_s_mem());
3529 			X509V3_EXT_print(bp, ext, 0, 0);
3530 			BIO_gets(bp, pathbuf, sizeof(pathbuf));
3531 			BIO_free(bp);
3532 			if (strcmp(pathbuf, "Trust Root") == 0)
3533 				ret->flags |= CERT_TRUST;
3534 			else if (strcmp(pathbuf, "Private") == 0)
3535 				ret->flags |= CERT_PRIV;
3536 			DPRINTF(1, ("cert_parse: %s: %s\n",
3537 				    OBJ_nid2ln(nid), pathbuf));
3538 			break;
3539 
3540 		/*
3541 		 * If a NID_subject_key_identifier field is present, it
3542 		 * contains the GQ public key.
3543 		 */
3544 		case NID_subject_key_identifier:
3545 			data = X509_EXTENSION_get_data(ext);
3546 			ret->grpkey = BN_bin2bn(&data->data[2],
3547 			    data->length - 2, NULL);
3548 			/* fall through */
3549 		default:
3550 			DPRINTF(1, ("cert_parse: %s\n",
3551 				    OBJ_nid2ln(nid)));
3552 			break;
3553 		}
3554 	}
3555 	if (strcmp(ret->subject, ret->issuer) == 0) {
3556 
3557 		/*
3558 		 * If certificate is self signed, verify signature.
3559 		 */
3560 		if (X509_verify(cert, ret->pkey) <= 0) {
3561 			msyslog(LOG_NOTICE,
3562 			    "cert_parse: signature not verified %s",
3563 			    ret->subject);
3564 			cert_free(ret);
3565 			X509_free(cert);
3566 			return (NULL);
3567 		}
3568 	} else {
3569 
3570 		/*
3571 		 * Check for a certificate loop.
3572 		 */
3573 		if (strcmp((const char *)hostval.ptr, ret->issuer) == 0) {
3574 			msyslog(LOG_NOTICE,
3575 			    "cert_parse: certificate trail loop %s",
3576 			    ret->subject);
3577 			cert_free(ret);
3578 			X509_free(cert);
3579 			return (NULL);
3580 		}
3581 	}
3582 
3583 	/*
3584 	 * Verify certificate valid times. Note that certificates cannot
3585 	 * be retroactive.
3586 	 */
3587 	(void)ntpcal_ntp_to_date(&fscal, fstamp, NULL);
3588 	if ((calcomp(&(ret->first), &(ret->last)) > 0)
3589 	|| (calcomp(&(ret->first), &fscal) < 0)) {
3590 		msyslog(LOG_NOTICE,
3591 		    "cert_parse: invalid times %s first %u-%02u-%02uT%02u:%02u:%02u last %u-%02u-%02uT%02u:%02u:%02u fstamp %u-%02u-%02uT%02u:%02u:%02u",
3592 		    ret->subject,
3593 		    ret->first.year, ret->first.month, ret->first.monthday,
3594 		    ret->first.hour, ret->first.minute, ret->first.second,
3595 		    ret->last.year, ret->last.month, ret->last.monthday,
3596 		    ret->last.hour, ret->last.minute, ret->last.second,
3597 		    fscal.year, fscal.month, fscal.monthday,
3598 		    fscal.hour, fscal.minute, fscal.second);
3599 		cert_free(ret);
3600 		X509_free(cert);
3601 		return (NULL);
3602 	}
3603 
3604 	/*
3605 	 * Build the value structure to sign and send later.
3606 	 */
3607 	ret->cert.fstamp = htonl(fstamp);
3608 	ret->cert.vallen = htonl(len);
3609 	ret->cert.ptr = emalloc(len);
3610 	memcpy(ret->cert.ptr, asn1cert, len);
3611 	X509_free(cert);
3612 	return (ret);
3613 }
3614 
3615 
3616 /*
3617  * cert_free - free certificate information structure
3618  */
3619 void
3620 cert_free(
3621 	struct cert_info *cinf	/* certificate info/value structure */
3622 	)
3623 {
3624 	if (cinf->pkey != NULL)
3625 		EVP_PKEY_free(cinf->pkey);
3626 	if (cinf->subject != NULL)
3627 		free(cinf->subject);
3628 	if (cinf->issuer != NULL)
3629 		free(cinf->issuer);
3630 	if (cinf->grpkey != NULL)
3631 		BN_free(cinf->grpkey);
3632 	value_free(&cinf->cert);
3633 	free(cinf);
3634 }
3635 
3636 
3637 /*
3638  * crypto_key - load cryptographic parameters and keys
3639  *
3640  * This routine searches the key cache for matching name in the form
3641  * ntpkey_<key>_<name>, where <key> is one of host, sign, iff, gq, mv,
3642  * and <name> is the host/group name. If not found, it tries to load a
3643  * PEM-encoded file of the same name and extracts the filestamp from
3644  * the first line of the file name. It returns the key pointer if valid,
3645  * NULL if not.
3646  */
3647 static struct pkey_info *
3648 crypto_key(
3649 	char	*cp,		/* file name */
3650 	char	*passwd1,	/* password */
3651 	sockaddr_u *addr 	/* IP address */
3652 	)
3653 {
3654 	FILE	*str;		/* file handle */
3655 	struct pkey_info *pkp;	/* generic key */
3656 	EVP_PKEY *pkey = NULL;	/* public/private key */
3657 	tstamp_t fstamp;
3658 	char	filename[MAXFILENAME]; /* name of key file */
3659 	char	linkname[MAXFILENAME]; /* filestamp buffer) */
3660 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3661 	char	*ptr;
3662 
3663 	/*
3664 	 * Search the key cache for matching key and name.
3665 	 */
3666 	for (pkp = pkinfo; pkp != NULL; pkp = pkp->link) {
3667 		if (strcmp(cp, pkp->name) == 0)
3668 			return (pkp);
3669 	}
3670 
3671 	/*
3672 	 * Open the key file. If the first character of the file name is
3673 	 * not '/', prepend the keys directory string. If something goes
3674 	 * wrong, abandon ship.
3675 	 */
3676 	if (*cp == '/')
3677 		strlcpy(filename, cp, sizeof(filename));
3678 	else
3679 		snprintf(filename, sizeof(filename), "%s/%s", keysdir,
3680 		    cp);
3681 	str = fopen(filename, "r");
3682 	if (str == NULL)
3683 		return (NULL);
3684 
3685 	/*
3686 	 * Read the filestamp, which is contained in the first line.
3687 	 */
3688 	if ((ptr = fgets(linkname, sizeof(linkname), str)) == NULL) {
3689 		msyslog(LOG_ERR, "crypto_key: empty file %s",
3690 		    filename);
3691 		fclose(str);
3692 		return (NULL);
3693 	}
3694 	if ((ptr = strrchr(ptr, '.')) == NULL) {
3695 		msyslog(LOG_ERR, "crypto_key: no filestamp %s",
3696 		    filename);
3697 		fclose(str);
3698 		return (NULL);
3699 	}
3700 	if (sscanf(++ptr, "%u", &fstamp) != 1) {
3701 		msyslog(LOG_ERR, "crypto_key: invalid filestamp %s",
3702 		    filename);
3703 		fclose(str);
3704 		return (NULL);
3705 	}
3706 
3707 	/*
3708 	 * Read and decrypt PEM-encoded private key. If it fails to
3709 	 * decrypt, game over.
3710 	 */
3711 	pkey = PEM_read_PrivateKey(str, NULL, NULL, passwd1);
3712 	fclose(str);
3713 	if (pkey == NULL) {
3714 		msyslog(LOG_ERR, "crypto_key: %s",
3715 		    ERR_error_string(ERR_get_error(), NULL));
3716 		exit (-1);
3717 	}
3718 
3719 	/*
3720 	 * Make a new entry in the key cache.
3721 	 */
3722 	pkp = emalloc(sizeof(struct pkey_info));
3723 	pkp->link = pkinfo;
3724 	pkinfo = pkp;
3725 	pkp->pkey = pkey;
3726 	pkp->name = estrdup(cp);
3727 	pkp->fstamp = fstamp;
3728 
3729 	/*
3730 	 * Leave tracks in the cryptostats.
3731 	 */
3732 	if ((ptr = strrchr(linkname, '\n')) != NULL)
3733 		*ptr = '\0';
3734 	snprintf(statstr, sizeof(statstr), "%s mod %d", &linkname[2],
3735 	    EVP_PKEY_size(pkey) * 8);
3736 	record_crypto_stats(addr, statstr);
3737 
3738 	DPRINTF(1, ("crypto_key: %s\n", statstr));
3739 #ifdef DEBUG
3740 	if (debug > 1) {
3741 		if (EVP_PKEY_base_id(pkey) == EVP_PKEY_DSA)
3742 			DSA_print_fp(stdout, EVP_PKEY_get0_DSA(pkey), 0);
3743 		else if (EVP_PKEY_base_id(pkey) == EVP_PKEY_RSA)
3744 			RSA_print_fp(stdout, EVP_PKEY_get0_RSA(pkey), 0);
3745 	}
3746 #endif
3747 	return (pkp);
3748 }
3749 
3750 
3751 /*
3752  ***********************************************************************
3753  *								       *
3754  * The following routines are used only at initialization time         *
3755  *								       *
3756  ***********************************************************************
3757  */
3758 /*
3759  * crypto_cert - load certificate from file
3760  *
3761  * This routine loads an X.509 RSA or DSA certificate from a file and
3762  * constructs a info/cert value structure for this machine. The
3763  * structure includes a filestamp extracted from the file name. Later
3764  * the certificate can be sent to another machine on request.
3765  *
3766  * Returns certificate info/value pointer if valid, NULL if not.
3767  */
3768 static struct cert_info *	/* certificate information */
3769 crypto_cert(
3770 	char	*cp		/* file name */
3771 	)
3772 {
3773 	struct cert_info *ret; /* certificate information */
3774 	FILE	*str;		/* file handle */
3775 	char	filename[MAXFILENAME]; /* name of certificate file */
3776 	char	linkname[MAXFILENAME]; /* filestamp buffer */
3777 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3778 	tstamp_t fstamp;	/* filestamp */
3779 	long	len;
3780 	char	*ptr;
3781 	char	*name, *header;
3782 	u_char	*data;
3783 
3784 	/*
3785 	 * Open the certificate file. If the first character of the file
3786 	 * name is not '/', prepend the keys directory string. If
3787 	 * something goes wrong, abandon ship.
3788 	 */
3789 	if (*cp == '/')
3790 		strlcpy(filename, cp, sizeof(filename));
3791 	else
3792 		snprintf(filename, sizeof(filename), "%s/%s", keysdir,
3793 		    cp);
3794 	str = fopen(filename, "r");
3795 	if (str == NULL)
3796 		return (NULL);
3797 
3798 	/*
3799 	 * Read the filestamp, which is contained in the first line.
3800 	 */
3801 	if ((ptr = fgets(linkname, sizeof(linkname), str)) == NULL) {
3802 		msyslog(LOG_ERR, "crypto_cert: empty file %s",
3803 		    filename);
3804 		fclose(str);
3805 		return (NULL);
3806 	}
3807 	if ((ptr = strrchr(ptr, '.')) == NULL) {
3808 		msyslog(LOG_ERR, "crypto_cert: no filestamp %s",
3809 		    filename);
3810 		fclose(str);
3811 		return (NULL);
3812 	}
3813 	if (sscanf(++ptr, "%u", &fstamp) != 1) {
3814 		msyslog(LOG_ERR, "crypto_cert: invalid filestamp %s",
3815 		    filename);
3816 		fclose(str);
3817 		return (NULL);
3818 	}
3819 
3820 	/*
3821 	 * Read PEM-encoded certificate and install.
3822 	 */
3823 	if (!PEM_read(str, &name, &header, &data, &len)) {
3824 		msyslog(LOG_ERR, "crypto_cert: %s",
3825 		    ERR_error_string(ERR_get_error(), NULL));
3826 		fclose(str);
3827 		return (NULL);
3828 	}
3829 	fclose(str);
3830 	free(header);
3831 	if (strcmp(name, "CERTIFICATE") != 0) {
3832 		msyslog(LOG_NOTICE, "crypto_cert: wrong PEM type %s",
3833 		    name);
3834 		free(name);
3835 		free(data);
3836 		return (NULL);
3837 	}
3838 	free(name);
3839 
3840 	/*
3841 	 * Parse certificate and generate info/value structure. The
3842 	 * pointer and copy nonsense is due something broken in Solaris.
3843 	 */
3844 	ret = cert_parse(data, len, fstamp);
3845 	free(data);
3846 	if (ret == NULL)
3847 		return (NULL);
3848 
3849 	if ((ptr = strrchr(linkname, '\n')) != NULL)
3850 		*ptr = '\0';
3851 	snprintf(statstr, sizeof(statstr), "%s 0x%x len %lu",
3852 	    &linkname[2], ret->flags, len);
3853 	record_crypto_stats(NULL, statstr);
3854 	DPRINTF(1, ("crypto_cert: %s\n", statstr));
3855 	return (ret);
3856 }
3857 
3858 
3859 /*
3860  * crypto_setup - load keys, certificate and identity parameters
3861  *
3862  * This routine loads the public/private host key and certificate. If
3863  * available, it loads the public/private sign key, which defaults to
3864  * the host key. The host key must be RSA, but the sign key can be
3865  * either RSA or DSA. If a trusted certificate, it loads the identity
3866  * parameters. In either case, the public key on the certificate must
3867  * agree with the sign key.
3868  *
3869  * Required but missing files and inconsistent data and errors are
3870  * fatal. Allowing configuration to continue would be hazardous and
3871  * require really messy error checks.
3872  */
3873 void
3874 crypto_setup(void)
3875 {
3876 	struct pkey_info *pinfo; /* private/public key */
3877 	char	filename[MAXFILENAME]; /* file name buffer */
3878 	char	hostname[MAXFILENAME]; /* host name buffer */
3879 	char	*randfile;
3880 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3881 	l_fp	seed;		/* crypto PRNG seed as NTP timestamp */
3882 	u_int	len;
3883 	int	bytes;
3884 	u_char	*ptr;
3885 
3886 	/*
3887 	 * Check for correct OpenSSL version and avoid initialization in
3888 	 * the case of multiple crypto commands.
3889 	 */
3890 	if (crypto_flags & CRYPTO_FLAG_ENAB) {
3891 		msyslog(LOG_NOTICE,
3892 		    "crypto_setup: spurious crypto command");
3893 		return;
3894 	}
3895 	ssl_check_version();
3896 
3897 	/*
3898 	 * Load required random seed file and seed the random number
3899 	 * generator. Be default, it is found as .rnd in the user home
3900 	 * directory. The root home directory may be / or /root,
3901 	 * depending on the system. Wiggle the contents a bit and write
3902 	 * it back so the sequence does not repeat when we next restart.
3903 	 */
3904 	if (!RAND_status()) {
3905 		if (rand_file == NULL) {
3906 			RAND_file_name(filename, sizeof(filename));
3907 			randfile = filename;
3908 		} else if (*rand_file != '/') {
3909 			snprintf(filename, sizeof(filename), "%s/%s",
3910 			    keysdir, rand_file);
3911 			randfile = filename;
3912 		} else
3913 			randfile = rand_file;
3914 
3915 		if ((bytes = RAND_load_file(randfile, -1)) == 0) {
3916 			msyslog(LOG_ERR,
3917 			    "crypto_setup: random seed file %s missing",
3918 			    randfile);
3919 			exit (-1);
3920 		}
3921 		arc4random_buf(&seed, sizeof(l_fp));
3922 		RAND_seed(&seed, sizeof(l_fp));
3923 		RAND_write_file(randfile);
3924 		DPRINTF(1, ("crypto_setup: OpenSSL version %lx random seed file %s bytes read %d\n",
3925 			    SSLeay(), randfile, bytes));
3926 	}
3927 
3928 	/*
3929 	 * Initialize structures.
3930 	 */
3931 	gethostname(hostname, sizeof(hostname));
3932 	if (host_filename != NULL)
3933 		strlcpy(hostname, host_filename, sizeof(hostname));
3934 	if (passwd == NULL)
3935 		passwd = estrdup(hostname);
3936 	memset(&hostval, 0, sizeof(hostval));
3937 	memset(&pubkey, 0, sizeof(pubkey));
3938 	memset(&tai_leap, 0, sizeof(tai_leap));
3939 
3940 	/*
3941 	 * Load required host key from file "ntpkey_host_<hostname>". If
3942 	 * no host key file is not found or has invalid password, life
3943 	 * as we know it ends. The host key also becomes the default
3944 	 * sign key.
3945 	 */
3946 	snprintf(filename, sizeof(filename), "ntpkey_host_%s", hostname);
3947 	pinfo = crypto_key(filename, passwd, NULL);
3948 	if (pinfo == NULL) {
3949 		msyslog(LOG_ERR,
3950 		    "crypto_setup: host key file %s not found or corrupt",
3951 		    filename);
3952 		exit (-1);
3953 	}
3954 	if (EVP_PKEY_base_id(pinfo->pkey) != EVP_PKEY_RSA) {
3955 		msyslog(LOG_ERR,
3956 		    "crypto_setup: host key is not RSA key type");
3957 		exit (-1);
3958 	}
3959 	host_pkey = pinfo->pkey;
3960 	sign_pkey = host_pkey;
3961 	hostval.fstamp = htonl(pinfo->fstamp);
3962 
3963 	/*
3964 	 * Construct public key extension field for agreement scheme.
3965 	 */
3966 	len = i2d_PublicKey(host_pkey, NULL);
3967 	ptr = emalloc(len);
3968 	pubkey.ptr = ptr;
3969 	i2d_PublicKey(host_pkey, &ptr);
3970 	pubkey.fstamp = hostval.fstamp;
3971 	pubkey.vallen = htonl(len);
3972 
3973 	/*
3974 	 * Load optional sign key from file "ntpkey_sign_<hostname>". If
3975 	 * available, it becomes the sign key.
3976 	 */
3977 	snprintf(filename, sizeof(filename), "ntpkey_sign_%s", hostname);
3978 	pinfo = crypto_key(filename, passwd, NULL);
3979 	if (pinfo != NULL)
3980 		sign_pkey = pinfo->pkey;
3981 
3982 	/*
3983 	 * Load required certificate from file "ntpkey_cert_<hostname>".
3984 	 */
3985 	snprintf(filename, sizeof(filename), "ntpkey_cert_%s", hostname);
3986 	cinfo = crypto_cert(filename);
3987 	if (cinfo == NULL) {
3988 		msyslog(LOG_ERR,
3989 		    "crypto_setup: certificate file %s not found or corrupt",
3990 		    filename);
3991 		exit (-1);
3992 	}
3993 	cert_host = cinfo;
3994 	sign_digest = cinfo->digest;
3995 	sign_siglen = EVP_PKEY_size(sign_pkey);
3996 	if (cinfo->flags & CERT_PRIV)
3997 		crypto_flags |= CRYPTO_FLAG_PRIV;
3998 
3999 	/*
4000 	 * The certificate must be self-signed.
4001 	 */
4002 	if (strcmp(cinfo->subject, cinfo->issuer) != 0) {
4003 		msyslog(LOG_ERR,
4004 		    "crypto_setup: certificate %s is not self-signed",
4005 		    filename);
4006 		exit (-1);
4007 	}
4008 	hostval.ptr = estrdup(cinfo->subject);
4009 	hostval.vallen = htonl(strlen(cinfo->subject));
4010 	sys_hostname = hostval.ptr;
4011 	ptr = (u_char *)strchr(sys_hostname, '@');
4012 	if (ptr != NULL)
4013 		sys_groupname = estrdup((char *)++ptr);
4014 	if (ident_filename != NULL)
4015 		strlcpy(hostname, ident_filename, sizeof(hostname));
4016 
4017 	/*
4018 	 * Load optional IFF parameters from file
4019 	 * "ntpkey_iffkey_<hostname>".
4020 	 */
4021 	snprintf(filename, sizeof(filename), "ntpkey_iffkey_%s",
4022 	    hostname);
4023 	iffkey_info = crypto_key(filename, passwd, NULL);
4024 	if (iffkey_info != NULL)
4025 		crypto_flags |= CRYPTO_FLAG_IFF;
4026 
4027 	/*
4028 	 * Load optional GQ parameters from file
4029 	 * "ntpkey_gqkey_<hostname>".
4030 	 */
4031 	snprintf(filename, sizeof(filename), "ntpkey_gqkey_%s",
4032 	    hostname);
4033 	gqkey_info = crypto_key(filename, passwd, NULL);
4034 	if (gqkey_info != NULL)
4035 		crypto_flags |= CRYPTO_FLAG_GQ;
4036 
4037 	/*
4038 	 * Load optional MV parameters from file
4039 	 * "ntpkey_mvkey_<hostname>".
4040 	 */
4041 	snprintf(filename, sizeof(filename), "ntpkey_mvkey_%s",
4042 	    hostname);
4043 	mvkey_info = crypto_key(filename, passwd, NULL);
4044 	if (mvkey_info != NULL)
4045 		crypto_flags |= CRYPTO_FLAG_MV;
4046 
4047 	/*
4048 	 * We met the enemy and he is us. Now strike up the dance.
4049 	 */
4050 	crypto_flags |= CRYPTO_FLAG_ENAB | (cinfo->nid << 16);
4051 	snprintf(statstr, sizeof(statstr), "setup 0x%x host %s %s",
4052 	    crypto_flags, hostname, OBJ_nid2ln(cinfo->nid));
4053 	record_crypto_stats(NULL, statstr);
4054 	DPRINTF(1, ("crypto_setup: %s\n", statstr));
4055 }
4056 
4057 
4058 /*
4059  * crypto_config - configure data from the crypto command.
4060  */
4061 void
4062 crypto_config(
4063 	int	item,		/* configuration item */
4064 	char	*cp		/* item name */
4065 	)
4066 {
4067 	int	nid;
4068 
4069 	DPRINTF(1, ("crypto_config: item %d %s\n", item, cp));
4070 
4071 	switch (item) {
4072 
4073 	/*
4074 	 * Set host name (host).
4075 	 */
4076 	case CRYPTO_CONF_PRIV:
4077 		if (NULL != host_filename)
4078 			free(host_filename);
4079 		host_filename = estrdup(cp);
4080 		break;
4081 
4082 	/*
4083 	 * Set group name (ident).
4084 	 */
4085 	case CRYPTO_CONF_IDENT:
4086 		if (NULL != ident_filename)
4087 			free(ident_filename);
4088 		ident_filename = estrdup(cp);
4089 		break;
4090 
4091 	/*
4092 	 * Set private key password (pw).
4093 	 */
4094 	case CRYPTO_CONF_PW:
4095 		if (NULL != passwd)
4096 			free(passwd);
4097 		passwd = estrdup(cp);
4098 		break;
4099 
4100 	/*
4101 	 * Set random seed file name (randfile).
4102 	 */
4103 	case CRYPTO_CONF_RAND:
4104 		if (NULL != rand_file)
4105 			free(rand_file);
4106 		rand_file = estrdup(cp);
4107 		break;
4108 
4109 	/*
4110 	 * Set message digest NID.
4111 	 */
4112 	case CRYPTO_CONF_NID:
4113 		nid = OBJ_sn2nid(cp);
4114 		if (nid == 0)
4115 			msyslog(LOG_ERR,
4116 			    "crypto_config: invalid digest name %s", cp);
4117 		else
4118 			crypto_nid = nid;
4119 		break;
4120 	}
4121 }
4122 
4123 /*
4124  * Get the  payload size (internal value length) of an extension packet.
4125  * If the inner value size does not match the outer packet size (that
4126  * is, the value would end behind the frame given by the opcode/size
4127  * field) the function will effectively return UINT_MAX. If the frame is
4128  * too short to hold a variable-sized value, the return value is zero.
4129  */
4130 static u_int
4131 exten_payload_size(
4132 	const struct exten * ep)
4133 {
4134 	typedef const u_char *BPTR;
4135 
4136 	size_t extn_size;
4137 	size_t data_size;
4138 	size_t head_size;
4139 
4140 	data_size = 0;
4141 	if (NULL != ep) {
4142 		head_size = (BPTR)(&ep->vallen + 1) - (BPTR)ep;
4143 		extn_size = (uint16_t)(ntohl(ep->opcode) & 0x0000ffff);
4144 		if (extn_size >= head_size) {
4145 			data_size = (uint32_t)ntohl(ep->vallen);
4146 			if (data_size > extn_size - head_size)
4147 				data_size = ~(size_t)0u;
4148 		}
4149 	}
4150 	return (u_int)data_size;
4151 }
4152 # else	/* !AUTOKEY follows */
4153 int ntp_crypto_bs_pubkey;
4154 # endif	/* !AUTOKEY */
4155