xref: /freebsd/contrib/ntp/ntpd/ntp_crypto.c (revision 7d0873ebb83b19ba1e8a89e679470d885efe12e3)
1 /*
2  * ntp_crypto.c - NTP version 4 public key routines
3  */
4 #ifdef HAVE_CONFIG_H
5 #include <config.h>
6 #endif
7 
8 #ifdef AUTOKEY
9 #include <stdio.h>
10 #include <stdlib.h>	/* strtoul */
11 #include <sys/types.h>
12 #include <sys/param.h>
13 #include <unistd.h>
14 #include <fcntl.h>
15 
16 #include "ntpd.h"
17 #include "ntp_stdlib.h"
18 #include "ntp_unixtime.h"
19 #include "ntp_string.h"
20 #include "ntp_random.h"
21 #include "ntp_assert.h"
22 #include "ntp_calendar.h"
23 #include "ntp_leapsec.h"
24 
25 #include "openssl/asn1.h"
26 #include "openssl/bn.h"
27 #include "openssl/crypto.h"
28 #include "openssl/err.h"
29 #include "openssl/evp.h"
30 #include "openssl/opensslv.h"
31 #include "openssl/pem.h"
32 #include "openssl/rand.h"
33 #include "openssl/x509.h"
34 #include "openssl/x509v3.h"
35 #include "libssl_compat.h"
36 
37 #ifdef KERNEL_PLL
38 #include "ntp_syscall.h"
39 #endif /* KERNEL_PLL */
40 
41 /*
42  * calcomp - compare two calendar structures, ignoring yearday and weekday; like strcmp
43  * No, it's not a plotter.  If you don't understand that, you're too young.
44  */
45 static int calcomp(struct calendar *pjd1, struct calendar *pjd2)
46 {
47 	int32_t diff;	/* large enough to hold the signed difference between two uint16_t values */
48 
49 	diff = pjd1->year - pjd2->year;
50 	if (diff < 0) return -1; else if (diff > 0) return 1;
51 	/* same year; compare months */
52 	diff = pjd1->month - pjd2->month;
53 	if (diff < 0) return -1; else if (diff > 0) return 1;
54 	/* same year and month; compare monthday */
55 	diff = pjd1->monthday - pjd2->monthday;
56 	if (diff < 0) return -1; else if (diff > 0) return 1;
57 	/* same year and month and monthday; compare time */
58 	diff = pjd1->hour - pjd2->hour;
59 	if (diff < 0) return -1; else if (diff > 0) return 1;
60 	diff = pjd1->minute - pjd2->minute;
61 	if (diff < 0) return -1; else if (diff > 0) return 1;
62 	diff = pjd1->second - pjd2->second;
63 	if (diff < 0) return -1; else if (diff > 0) return 1;
64 	/* identical */
65 	return 0;
66 }
67 
68 /*
69  * Extension field message format
70  *
71  * These are always signed and saved before sending in network byte
72  * order. They must be converted to and from host byte order for
73  * processing.
74  *
75  * +-------+-------+
76  * |   op  |  len  | <- extension pointer
77  * +-------+-------+
78  * |    associd    |
79  * +---------------+
80  * |   timestamp   | <- value pointer
81  * +---------------+
82  * |   filestamp   |
83  * +---------------+
84  * |   value len   |
85  * +---------------+
86  * |               |
87  * =     value     =
88  * |               |
89  * +---------------+
90  * | signature len |
91  * +---------------+
92  * |               |
93  * =   signature   =
94  * |               |
95  * +---------------+
96  *
97  * The CRYPTO_RESP bit is set to 0 for requests, 1 for responses.
98  * Requests carry the association ID of the receiver; responses carry
99  * the association ID of the sender. Some messages include only the
100  * operation/length and association ID words and so have length 8
101  * octets. Ohers include the value structure and associated value and
102  * signature fields. These messages include the timestamp, filestamp,
103  * value and signature words and so have length at least 24 octets. The
104  * signature and/or value fields can be empty, in which case the
105  * respective length words are zero. An empty value with nonempty
106  * signature is syntactically valid, but semantically questionable.
107  *
108  * The filestamp represents the time when a cryptographic data file such
109  * as a public/private key pair is created. It follows every reference
110  * depending on that file and serves as a means to obsolete earlier data
111  * of the same type. The timestamp represents the time when the
112  * cryptographic data of the message were last signed. Creation of a
113  * cryptographic data file or signing a message can occur only when the
114  * creator or signor is synchronized to an authoritative source and
115  * proventicated to a trusted authority.
116  *
117  * Note there are several conditions required for server trust. First,
118  * the public key on the server certificate must be verified, which can
119  * involve a hike along the certificate trail to a trusted host. Next,
120  * the server trust must be confirmed by one of several identity
121  * schemes. Valid cryptographic values are signed with attached
122  * timestamp and filestamp. Individual packet trust is confirmed
123  * relative to these values by a message digest with keys generated by a
124  * reverse-order pseudorandom hash.
125  *
126  * State decomposition. These flags are lit in the order given. They are
127  * dim only when the association is demobilized.
128  *
129  * CRYPTO_FLAG_ENAB	Lit upon acceptance of a CRYPTO_ASSOC message
130  * CRYPTO_FLAG_CERT	Lit when a self-digned trusted certificate is
131  *			accepted.
132  * CRYPTO_FLAG_VRFY	Lit when identity is confirmed.
133  * CRYPTO_FLAG_PROV	Lit when the first signature is verified.
134  * CRYPTO_FLAG_COOK	Lit when a valid cookie is accepted.
135  * CRYPTO_FLAG_AUTO	Lit when valid autokey values are accepted.
136  * CRYPTO_FLAG_SIGN	Lit when the server signed certificate is
137  *			accepted.
138  * CRYPTO_FLAG_LEAP	Lit when the leapsecond values are accepted.
139  */
140 /*
141  * Cryptodefines
142  */
143 #define TAI_1972	10	/* initial TAI offset (s) */
144 #define MAX_LEAP	100	/* max UTC leapseconds (s) */
145 #define VALUE_LEN	(6 * 4) /* min response field length */
146 #define MAX_VALLEN	(65535 - VALUE_LEN)
147 #define YEAR		(60 * 60 * 24 * 365) /* seconds in year */
148 
149 /*
150  * Global cryptodata in host byte order
151  */
152 u_int32	crypto_flags = 0x0;	/* status word */
153 int	crypto_nid = KEY_TYPE_MD5; /* digest nid */
154 char	*sys_hostname = NULL;
155 char	*sys_groupname = NULL;
156 static char *host_filename = NULL;	/* host file name */
157 static char *ident_filename = NULL;	/* group file name */
158 
159 /*
160  * Global cryptodata in network byte order
161  */
162 struct cert_info *cinfo = NULL;	/* certificate info/value cache */
163 struct cert_info *cert_host = NULL; /* host certificate */
164 struct pkey_info *pkinfo = NULL; /* key info/value cache */
165 struct value hostval;		/* host value */
166 struct value pubkey;		/* public key */
167 struct value tai_leap;		/* leapseconds values */
168 struct pkey_info *iffkey_info = NULL; /* IFF keys */
169 struct pkey_info *gqkey_info = NULL; /* GQ keys */
170 struct pkey_info *mvkey_info = NULL; /* MV keys */
171 
172 /*
173  * Private cryptodata in host byte order
174  */
175 static char *passwd = NULL;	/* private key password */
176 static EVP_PKEY *host_pkey = NULL; /* host key */
177 static EVP_PKEY *sign_pkey = NULL; /* sign key */
178 static const EVP_MD *sign_digest = NULL; /* sign digest */
179 static u_int sign_siglen;	/* sign key length */
180 static char *rand_file = NULL;	/* random seed file */
181 
182 /*
183  * Cryptotypes
184  */
185 static	int	crypto_verify	(struct exten *, struct value *,
186 				    struct peer *);
187 static	int	crypto_encrypt	(const u_char *, u_int, keyid_t *,
188 				    struct value *);
189 static	int	crypto_alice	(struct peer *, struct value *);
190 static	int	crypto_alice2	(struct peer *, struct value *);
191 static	int	crypto_alice3	(struct peer *, struct value *);
192 static	int	crypto_bob	(struct exten *, struct value *);
193 static	int	crypto_bob2	(struct exten *, struct value *);
194 static	int	crypto_bob3	(struct exten *, struct value *);
195 static	int	crypto_iff	(struct exten *, struct peer *);
196 static	int	crypto_gq	(struct exten *, struct peer *);
197 static	int	crypto_mv	(struct exten *, struct peer *);
198 static	int	crypto_send	(struct exten *, struct value *, int);
199 static	tstamp_t crypto_time	(void);
200 static	void	asn_to_calendar		(const ASN1_TIME *, struct calendar*);
201 static	struct cert_info *cert_parse (const u_char *, long, tstamp_t);
202 static	int	cert_sign	(struct exten *, struct value *);
203 static	struct cert_info *cert_install (struct exten *, struct peer *);
204 static	int	cert_hike	(struct peer *, struct cert_info *);
205 static	void	cert_free	(struct cert_info *);
206 static	struct pkey_info *crypto_key (char *, char *, sockaddr_u *);
207 static	void	bighash		(BIGNUM *, BIGNUM *);
208 static	struct cert_info *crypto_cert (char *);
209 static	u_int	exten_payload_size(const struct exten *);
210 
211 #ifdef SYS_WINNT
212 int
213 readlink(char * link, char * file, int len) {
214 	return (-1);
215 }
216 #endif
217 
218 /*
219  * session_key - generate session key
220  *
221  * This routine generates a session key from the source address,
222  * destination address, key ID and private value. The value of the
223  * session key is the MD5 hash of these values, while the next key ID is
224  * the first four octets of the hash.
225  *
226  * Returns the next key ID or 0 if there is no destination address.
227  */
228 keyid_t
229 session_key(
230 	sockaddr_u *srcadr, 	/* source address */
231 	sockaddr_u *dstadr, 	/* destination address */
232 	keyid_t	keyno,		/* key ID */
233 	keyid_t	private,	/* private value */
234 	u_long	lifetime 	/* key lifetime */
235 	)
236 {
237 	EVP_MD_CTX *ctx;	/* message digest context */
238 	u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */
239 	keyid_t	keyid;		/* key identifer */
240 	u_int32	header[10];	/* data in network byte order */
241 	u_int	hdlen, len;
242 
243 	if (!dstadr)
244 		return 0;
245 
246 	/*
247 	 * Generate the session key and key ID. If the lifetime is
248 	 * greater than zero, install the key and call it trusted.
249 	 */
250 	hdlen = 0;
251 	switch(AF(srcadr)) {
252 	case AF_INET:
253 		header[0] = NSRCADR(srcadr);
254 		header[1] = NSRCADR(dstadr);
255 		header[2] = htonl(keyno);
256 		header[3] = htonl(private);
257 		hdlen = 4 * sizeof(u_int32);
258 		break;
259 
260 	case AF_INET6:
261 		memcpy(&header[0], PSOCK_ADDR6(srcadr),
262 		    sizeof(struct in6_addr));
263 		memcpy(&header[4], PSOCK_ADDR6(dstadr),
264 		    sizeof(struct in6_addr));
265 		header[8] = htonl(keyno);
266 		header[9] = htonl(private);
267 		hdlen = 10 * sizeof(u_int32);
268 		break;
269 	}
270 	ctx = digest_ctx;
271 	EVP_DigestInit(ctx, EVP_get_digestbynid(crypto_nid));
272 	EVP_DigestUpdate(ctx, (u_char *)header, hdlen);
273 	EVP_DigestFinal(ctx, dgst, &len);
274 	memcpy(&keyid, dgst, 4);
275 	keyid = ntohl(keyid);
276 	if (lifetime != 0) {
277 		MD5auth_setkey(keyno, crypto_nid, dgst, len, NULL);
278 		authtrust(keyno, lifetime);
279 	}
280 	DPRINTF(2, ("session_key: %s > %s %08x %08x hash %08x life %lu\n",
281 		    stoa(srcadr), stoa(dstadr), keyno,
282 		    private, keyid, lifetime));
283 
284 	return (keyid);
285 }
286 
287 
288 /*
289  * make_keylist - generate key list
290  *
291  * Returns
292  * XEVNT_OK	success
293  * XEVNT_ERR	protocol error
294  *
295  * This routine constructs a pseudo-random sequence by repeatedly
296  * hashing the session key starting from a given source address,
297  * destination address, private value and the next key ID of the
298  * preceeding session key. The last entry on the list is saved along
299  * with its sequence number and public signature.
300  */
301 int
302 make_keylist(
303 	struct peer *peer,	/* peer structure pointer */
304 	endpt *dstadr		/* interface */
305 	)
306 {
307 	EVP_MD_CTX *ctx;	/* signature context */
308 	tstamp_t tstamp;	/* NTP timestamp */
309 	struct autokey *ap;	/* autokey pointer */
310 	struct value *vp;	/* value pointer */
311 	keyid_t	keyid = 0;	/* next key ID */
312 	keyid_t	cookie;		/* private value */
313 	long	lifetime;
314 	u_int	len, mpoll;
315 	int	i;
316 
317 	if (!dstadr)
318 		return XEVNT_ERR;
319 
320 	/*
321 	 * Allocate the key list if necessary.
322 	 */
323 	tstamp = crypto_time();
324 	if (peer->keylist == NULL)
325 		peer->keylist = eallocarray(NTP_MAXSESSION,
326 					    sizeof(keyid_t));
327 
328 	/*
329 	 * Generate an initial key ID which is unique and greater than
330 	 * NTP_MAXKEY.
331 	 */
332 	while (1) {
333 		keyid = ntp_random() & 0xffffffff;
334 		if (keyid <= NTP_MAXKEY)
335 			continue;
336 
337 		if (authhavekey(keyid))
338 			continue;
339 		break;
340 	}
341 
342 	/*
343 	 * Generate up to NTP_MAXSESSION session keys. Stop if the
344 	 * next one would not be unique or not a session key ID or if
345 	 * it would expire before the next poll. The private value
346 	 * included in the hash is zero if broadcast mode, the peer
347 	 * cookie if client mode or the host cookie if symmetric modes.
348 	 */
349 	mpoll = 1U << min(peer->ppoll, peer->hpoll);
350 	lifetime = min((1UL << sys_automax), NTP_MAXSESSION * mpoll);
351 	if (peer->hmode == MODE_BROADCAST)
352 		cookie = 0;
353 	else
354 		cookie = peer->pcookie;
355 	for (i = 0; i < NTP_MAXSESSION; i++) {
356 		peer->keylist[i] = keyid;
357 		peer->keynumber = i;
358 		keyid = session_key(&dstadr->sin, &peer->srcadr, keyid,
359 		    cookie, lifetime + mpoll);
360 		lifetime -= mpoll;
361 		if (auth_havekey(keyid) || keyid <= NTP_MAXKEY ||
362 		    lifetime < 0 || tstamp == 0)
363 			break;
364 	}
365 
366 	/*
367 	 * Save the last session key ID, sequence number and timestamp,
368 	 * then sign these values for later retrieval by the clients. Be
369 	 * careful not to use invalid key media. Use the public values
370 	 * timestamp as filestamp.
371 	 */
372 	vp = &peer->sndval;
373 	if (vp->ptr == NULL)
374 		vp->ptr = emalloc(sizeof(struct autokey));
375 	ap = (struct autokey *)vp->ptr;
376 	ap->seq = htonl(peer->keynumber);
377 	ap->key = htonl(keyid);
378 	vp->tstamp = htonl(tstamp);
379 	vp->fstamp = hostval.tstamp;
380 	vp->vallen = htonl(sizeof(struct autokey));
381 	vp->siglen = 0;
382 	if (tstamp != 0) {
383 		if (vp->sig == NULL)
384 			vp->sig = emalloc(sign_siglen);
385 		ctx = digest_ctx;
386 		EVP_SignInit(ctx, sign_digest);
387 		EVP_SignUpdate(ctx, (u_char *)vp, 12);
388 		EVP_SignUpdate(ctx, vp->ptr, sizeof(struct autokey));
389 		if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
390 			INSIST(len <= sign_siglen);
391 			vp->siglen = htonl(len);
392 			peer->flags |= FLAG_ASSOC;
393 		}
394 	}
395 	DPRINTF(1, ("make_keys: %d %08x %08x ts %u fs %u poll %d\n",
396 		    peer->keynumber, keyid, cookie, ntohl(vp->tstamp),
397 		    ntohl(vp->fstamp), peer->hpoll));
398 	return (XEVNT_OK);
399 }
400 
401 
402 /*
403  * crypto_recv - parse extension fields
404  *
405  * This routine is called when the packet has been matched to an
406  * association and passed sanity, format and MAC checks. We believe the
407  * extension field values only if the field has proper format and
408  * length, the timestamp and filestamp are valid and the signature has
409  * valid length and is verified. There are a few cases where some values
410  * are believed even if the signature fails, but only if the proventic
411  * bit is not set.
412  *
413  * Returns
414  * XEVNT_OK	success
415  * XEVNT_ERR	protocol error
416  * XEVNT_LEN	bad field format or length
417  */
418 int
419 crypto_recv(
420 	struct peer *peer,	/* peer structure pointer */
421 	struct recvbuf *rbufp	/* packet buffer pointer */
422 	)
423 {
424 	const EVP_MD *dp;	/* message digest algorithm */
425 	u_int32	*pkt;		/* receive packet pointer */
426 	struct autokey *ap, *bp; /* autokey pointer */
427 	struct exten *ep, *fp;	/* extension pointers */
428 	struct cert_info *xinfo; /* certificate info pointer */
429 	int	macbytes;	/* length of MAC field, signed by intention */
430 	int	authlen;	/* offset of MAC field */
431 	associd_t associd;	/* association ID */
432 	tstamp_t fstamp = 0;	/* filestamp */
433 	u_int	len;		/* extension field length */
434 	u_int	code;		/* extension field opcode */
435 	u_int	vallen = 0;	/* value length */
436 	X509	*cert;		/* X509 certificate */
437 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
438 	keyid_t	cookie;		/* crumbles */
439 	int	hismode;	/* packet mode */
440 	int	rval = XEVNT_OK;
441 	const u_char *puch;
442 	u_int32 temp32;
443 
444 	/*
445 	 * Initialize. Note that the packet has already been checked for
446 	 * valid format and extension field lengths. First extract the
447 	 * field length, command code and association ID in host byte
448 	 * order. These are used with all commands and modes. Then check
449 	 * the version number, which must be 2, and length, which must
450 	 * be at least 8 for requests and VALUE_LEN (24) for responses.
451 	 * Packets that fail either test sink without a trace. The
452 	 * association ID is saved only if nonzero.
453 	 */
454 	authlen = LEN_PKT_NOMAC;
455 	hismode = (int)PKT_MODE((&rbufp->recv_pkt)->li_vn_mode);
456 	while ((macbytes = rbufp->recv_length - authlen) > (int)MAX_MAC_LEN) {
457 		/* We can be reasonably sure that we can read at least
458 		 * the opcode and the size field here. More stringent
459 		 * checks follow up shortly.
460 		 */
461 		pkt = (u_int32 *)&rbufp->recv_pkt + authlen / 4;
462 		ep = (struct exten *)pkt;
463 		code = ntohl(ep->opcode) & 0xffff0000;
464 		len = ntohl(ep->opcode) & 0x0000ffff;
465 		// HMS: Why pkt[1] instead of ep->associd ?
466 		associd = (associd_t)ntohl(pkt[1]);
467 		rval = XEVNT_OK;
468 		DPRINTF(1, ("crypto_recv: flags 0x%x ext offset %d len %u code 0x%x associd %d\n",
469 			    peer->crypto, authlen, len, code >> 16,
470 			    associd));
471 
472 		/*
473 		 * Check version number and field length. If bad,
474 		 * quietly ignore the packet.
475 		 */
476 		if (((code >> 24) & 0x3f) != CRYPTO_VN || len < 8) {
477 			sys_badlength++;
478 			code |= CRYPTO_ERROR;
479 		}
480 
481 		/* Check if the declared size fits into the remaining
482 		 * buffer. We *know* 'macbytes' > 0 here!
483 		 */
484 		if (len > (u_int)macbytes) {
485 			DPRINTF(1, ("crypto_recv: possible attack detected, associd %d\n",
486 				    associd));
487 			return XEVNT_LEN;
488 		}
489 
490 		/* Check if the paylod of the extension fits into the
491 		 * declared frame.
492 		 */
493 		if (len >= VALUE_LEN) {
494 			fstamp = ntohl(ep->fstamp);
495 			vallen = ntohl(ep->vallen);
496 			/*
497 			 * Bug 2761: I hope this isn't too early...
498 			 */
499 			if (   vallen == 0
500 			    || len - VALUE_LEN < vallen)
501 				return XEVNT_LEN;
502 		}
503 		switch (code) {
504 
505 		/*
506 		 * Install status word, host name, signature scheme and
507 		 * association ID. In OpenSSL the signature algorithm is
508 		 * bound to the digest algorithm, so the NID completely
509 		 * defines the signature scheme. Note the request and
510 		 * response are identical, but neither is validated by
511 		 * signature. The request is processed here only in
512 		 * symmetric modes. The server name field might be
513 		 * useful to implement access controls in future.
514 		 */
515 		case CRYPTO_ASSOC:
516 
517 			/*
518 			 * If our state machine is running when this
519 			 * message arrives, the other fellow might have
520 			 * restarted. However, this could be an
521 			 * intruder, so just clamp the poll interval and
522 			 * find out for ourselves. Otherwise, pass the
523 			 * extension field to the transmit side.
524 			 */
525 			if (peer->crypto & CRYPTO_FLAG_CERT) {
526 				rval = XEVNT_ERR;
527 				break;
528 			}
529 			if (peer->cmmd) {
530 				if (peer->assoc != associd) {
531 					rval = XEVNT_ERR;
532 					break;
533 				}
534 				free(peer->cmmd); /* will be set again! */
535 			}
536 			fp = emalloc(len);
537 			memcpy(fp, ep, len);
538 			fp->associd = htonl(peer->associd);
539 			peer->cmmd = fp;
540 			/* fall through */
541 
542 		case CRYPTO_ASSOC | CRYPTO_RESP:
543 
544 			/*
545 			 * Discard the message if it has already been
546 			 * stored or the message has been amputated.
547 			 */
548 			if (peer->crypto) {
549 				if (peer->assoc != associd)
550 					rval = XEVNT_ERR;
551 				break;
552 			}
553 			INSIST(len >= VALUE_LEN);
554 			if (vallen == 0 || vallen > MAXHOSTNAME ||
555 			    len - VALUE_LEN < vallen) {
556 				rval = XEVNT_LEN;
557 				break;
558 			}
559 			DPRINTF(1, ("crypto_recv: ident host 0x%x %d server 0x%x %d\n",
560 				    crypto_flags, peer->associd, fstamp,
561 				    peer->assoc));
562 			temp32 = crypto_flags & CRYPTO_FLAG_MASK;
563 
564 			/*
565 			 * If the client scheme is PC, the server scheme
566 			 * must be PC. The public key and identity are
567 			 * presumed valid, so we skip the certificate
568 			 * and identity exchanges and move immediately
569 			 * to the cookie exchange which confirms the
570 			 * server signature.
571 			 */
572 			if (crypto_flags & CRYPTO_FLAG_PRIV) {
573 				if (!(fstamp & CRYPTO_FLAG_PRIV)) {
574 					rval = XEVNT_KEY;
575 					break;
576 				}
577 				fstamp |= CRYPTO_FLAG_CERT |
578 				    CRYPTO_FLAG_VRFY | CRYPTO_FLAG_SIGN;
579 
580 			/*
581 			 * It is an error if either peer supports
582 			 * identity, but the other does not.
583 			 */
584 			} else if (hismode == MODE_ACTIVE || hismode ==
585 			    MODE_PASSIVE) {
586 				if ((temp32 && !(fstamp &
587 				    CRYPTO_FLAG_MASK)) ||
588 				    (!temp32 && (fstamp &
589 				    CRYPTO_FLAG_MASK))) {
590 					rval = XEVNT_KEY;
591 					break;
592 				}
593 			}
594 
595 			/*
596 			 * Discard the message if the signature digest
597 			 * NID is not supported.
598 			 */
599 			temp32 = (fstamp >> 16) & 0xffff;
600 			dp =
601 			    (const EVP_MD *)EVP_get_digestbynid(temp32);
602 			if (dp == NULL) {
603 				rval = XEVNT_MD;
604 				break;
605 			}
606 
607 			/*
608 			 * Save status word, host name and message
609 			 * digest/signature type. If this is from a
610 			 * broadcast and the association ID has changed,
611 			 * request the autokey values.
612 			 */
613 			peer->assoc = associd;
614 			if (hismode == MODE_SERVER)
615 				fstamp |= CRYPTO_FLAG_AUTO;
616 			if (!(fstamp & CRYPTO_FLAG_TAI))
617 				fstamp |= CRYPTO_FLAG_LEAP;
618 			RAND_bytes((u_char *)&peer->hcookie, 4);
619 			peer->crypto = fstamp;
620 			peer->digest = dp;
621 			if (peer->subject != NULL)
622 				free(peer->subject);
623 			peer->subject = emalloc(vallen + 1);
624 			memcpy(peer->subject, ep->pkt, vallen);
625 			peer->subject[vallen] = '\0';
626 			if (peer->issuer != NULL)
627 				free(peer->issuer);
628 			peer->issuer = estrdup(peer->subject);
629 			snprintf(statstr, sizeof(statstr),
630 			    "assoc %d %d host %s %s", peer->associd,
631 			    peer->assoc, peer->subject,
632 			    OBJ_nid2ln(temp32));
633 			record_crypto_stats(&peer->srcadr, statstr);
634 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
635 			break;
636 
637 		/*
638 		 * Decode X509 certificate in ASN.1 format and extract
639 		 * the data containing, among other things, subject
640 		 * name and public key. In the default identification
641 		 * scheme, the certificate trail is followed to a self
642 		 * signed trusted certificate.
643 		 */
644 		case CRYPTO_CERT | CRYPTO_RESP:
645 
646 			/*
647 			 * Discard the message if empty or invalid.
648 			 */
649 			if (len < VALUE_LEN)
650 				break;
651 
652 			if ((rval = crypto_verify(ep, NULL, peer)) !=
653 			    XEVNT_OK)
654 				break;
655 
656 			/*
657 			 * Scan the certificate list to delete old
658 			 * versions and link the newest version first on
659 			 * the list. Then, verify the signature. If the
660 			 * certificate is bad or missing, just ignore
661 			 * it.
662 			 */
663 			if ((xinfo = cert_install(ep, peer)) == NULL) {
664 				rval = XEVNT_CRT;
665 				break;
666 			}
667 			if ((rval = cert_hike(peer, xinfo)) != XEVNT_OK)
668 				break;
669 
670 			/*
671 			 * We plug in the public key and lifetime from
672 			 * the first certificate received. However, note
673 			 * that this certificate might not be signed by
674 			 * the server, so we can't check the
675 			 * signature/digest NID.
676 			 */
677 			if (peer->pkey == NULL) {
678 				puch = xinfo->cert.ptr;
679 				cert = d2i_X509(NULL, &puch,
680 				    ntohl(xinfo->cert.vallen));
681 				peer->pkey = X509_get_pubkey(cert);
682 				X509_free(cert);
683 			}
684 			peer->flash &= ~TEST8;
685 			temp32 = xinfo->nid;
686 			snprintf(statstr, sizeof(statstr),
687 			    "cert %s %s 0x%x %s (%u) fs %u",
688 			    xinfo->subject, xinfo->issuer, xinfo->flags,
689 			    OBJ_nid2ln(temp32), temp32,
690 			    ntohl(ep->fstamp));
691 			record_crypto_stats(&peer->srcadr, statstr);
692 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
693 			break;
694 
695 		/*
696 		 * Schnorr (IFF) identity scheme. This scheme is
697 		 * designed for use with shared secret server group keys
698 		 * and where the certificate may be generated by a third
699 		 * party. The client sends a challenge to the server,
700 		 * which performs a calculation and returns the result.
701 		 * A positive result is possible only if both client and
702 		 * server contain the same secret group key.
703 		 */
704 		case CRYPTO_IFF | CRYPTO_RESP:
705 
706 			/*
707 			 * Discard the message if invalid.
708 			 */
709 			if ((rval = crypto_verify(ep, NULL, peer)) !=
710 			    XEVNT_OK)
711 				break;
712 
713 			/*
714 			 * If the challenge matches the response, the
715 			 * server public key, signature and identity are
716 			 * all verified at the same time. The server is
717 			 * declared trusted, so we skip further
718 			 * certificate exchanges and move immediately to
719 			 * the cookie exchange.
720 			 */
721 			if ((rval = crypto_iff(ep, peer)) != XEVNT_OK)
722 				break;
723 
724 			peer->crypto |= CRYPTO_FLAG_VRFY;
725 			peer->flash &= ~TEST8;
726 			snprintf(statstr, sizeof(statstr), "iff %s fs %u",
727 			    peer->issuer, ntohl(ep->fstamp));
728 			record_crypto_stats(&peer->srcadr, statstr);
729 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
730 			break;
731 
732 		/*
733 		 * Guillou-Quisquater (GQ) identity scheme. This scheme
734 		 * is designed for use with public certificates carrying
735 		 * the GQ public key in an extension field. The client
736 		 * sends a challenge to the server, which performs a
737 		 * calculation and returns the result. A positive result
738 		 * is possible only if both client and server contain
739 		 * the same group key and the server has the matching GQ
740 		 * private key.
741 		 */
742 		case CRYPTO_GQ | CRYPTO_RESP:
743 
744 			/*
745 			 * Discard the message if invalid
746 			 */
747 			if ((rval = crypto_verify(ep, NULL, peer)) !=
748 			    XEVNT_OK)
749 				break;
750 
751 			/*
752 			 * If the challenge matches the response, the
753 			 * server public key, signature and identity are
754 			 * all verified at the same time. The server is
755 			 * declared trusted, so we skip further
756 			 * certificate exchanges and move immediately to
757 			 * the cookie exchange.
758 			 */
759 			if ((rval = crypto_gq(ep, peer)) != XEVNT_OK)
760 				break;
761 
762 			peer->crypto |= CRYPTO_FLAG_VRFY;
763 			peer->flash &= ~TEST8;
764 			snprintf(statstr, sizeof(statstr), "gq %s fs %u",
765 			    peer->issuer, ntohl(ep->fstamp));
766 			record_crypto_stats(&peer->srcadr, statstr);
767 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
768 			break;
769 
770 		/*
771 		 * Mu-Varadharajan (MV) identity scheme. This scheme is
772 		 * designed for use with three levels of trust, trusted
773 		 * host, server and client. The trusted host key is
774 		 * opaque to servers and clients; the server keys are
775 		 * opaque to clients and each client key is different.
776 		 * Client keys can be revoked without requiring new key
777 		 * generations.
778 		 */
779 		case CRYPTO_MV | CRYPTO_RESP:
780 
781 			/*
782 			 * Discard the message if invalid.
783 			 */
784 			if ((rval = crypto_verify(ep, NULL, peer)) !=
785 			    XEVNT_OK)
786 				break;
787 
788 			/*
789 			 * If the challenge matches the response, the
790 			 * server public key, signature and identity are
791 			 * all verified at the same time. The server is
792 			 * declared trusted, so we skip further
793 			 * certificate exchanges and move immediately to
794 			 * the cookie exchange.
795 			 */
796 			if ((rval = crypto_mv(ep, peer)) != XEVNT_OK)
797 				break;
798 
799 			peer->crypto |= CRYPTO_FLAG_VRFY;
800 			peer->flash &= ~TEST8;
801 			snprintf(statstr, sizeof(statstr), "mv %s fs %u",
802 			    peer->issuer, ntohl(ep->fstamp));
803 			record_crypto_stats(&peer->srcadr, statstr);
804 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
805 			break;
806 
807 
808 		/*
809 		 * Cookie response in client and symmetric modes. If the
810 		 * cookie bit is set, the working cookie is the EXOR of
811 		 * the current and new values.
812 		 */
813 		case CRYPTO_COOK | CRYPTO_RESP:
814 
815 			/*
816 			 * Discard the message if invalid or signature
817 			 * not verified with respect to the cookie
818 			 * values.
819 			 */
820 			if ((rval = crypto_verify(ep, &peer->cookval,
821 			    peer)) != XEVNT_OK)
822 				break;
823 
824 			/*
825 			 * Decrypt the cookie, hunting all the time for
826 			 * errors.
827 			 */
828 			if (vallen == (u_int)EVP_PKEY_size(host_pkey)) {
829 				RSA *rsa = EVP_PKEY_get1_RSA(host_pkey);
830 				u_int32 *cookiebuf = malloc(RSA_size(rsa));
831 				if (!cookiebuf) {
832 					rval = XEVNT_CKY;
833 					break;
834 				}
835 
836 				if (RSA_private_decrypt(vallen,
837 				    (u_char *)ep->pkt,
838 				    (u_char *)cookiebuf,
839 				    rsa,
840 				    RSA_PKCS1_OAEP_PADDING) != 4) {
841 					rval = XEVNT_CKY;
842 					free(cookiebuf);
843 					break;
844 				} else {
845 					cookie = ntohl(*cookiebuf);
846 					free(cookiebuf);
847 				}
848 				RSA_free(rsa);
849 			} else {
850 				rval = XEVNT_CKY;
851 				break;
852 			}
853 
854 			/*
855 			 * Install cookie values and light the cookie
856 			 * bit. If this is not broadcast client mode, we
857 			 * are done here.
858 			 */
859 			key_expire(peer);
860 			if (hismode == MODE_ACTIVE || hismode ==
861 			    MODE_PASSIVE)
862 				peer->pcookie = peer->hcookie ^ cookie;
863 			else
864 				peer->pcookie = cookie;
865 			peer->crypto |= CRYPTO_FLAG_COOK;
866 			peer->flash &= ~TEST8;
867 			snprintf(statstr, sizeof(statstr),
868 			    "cook %x ts %u fs %u", peer->pcookie,
869 			    ntohl(ep->tstamp), ntohl(ep->fstamp));
870 			record_crypto_stats(&peer->srcadr, statstr);
871 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
872 			break;
873 
874 		/*
875 		 * Install autokey values in broadcast client and
876 		 * symmetric modes. We have to do this every time the
877 		 * sever/peer cookie changes or a new keylist is
878 		 * rolled. Ordinarily, this is automatic as this message
879 		 * is piggybacked on the first NTP packet sent upon
880 		 * either of these events. Note that a broadcast client
881 		 * or symmetric peer can receive this response without a
882 		 * matching request.
883 		 */
884 		case CRYPTO_AUTO | CRYPTO_RESP:
885 
886 			/*
887 			 * Discard the message if invalid or signature
888 			 * not verified with respect to the receive
889 			 * autokey values.
890 			 */
891 			if ((rval = crypto_verify(ep, &peer->recval,
892 			    peer)) != XEVNT_OK)
893 				break;
894 
895 			/*
896 			 * Discard the message if a broadcast client and
897 			 * the association ID does not match. This might
898 			 * happen if a broacast server restarts the
899 			 * protocol. A protocol restart will occur at
900 			 * the next ASSOC message.
901 			 */
902 			if ((peer->cast_flags & MDF_BCLNT) &&
903 			    peer->assoc != associd)
904 				break;
905 
906 			/*
907 			 * Install autokey values and light the
908 			 * autokey bit. This is not hard.
909 			 */
910 			if (ep->tstamp == 0)
911 				break;
912 
913 			if (peer->recval.ptr == NULL)
914 				peer->recval.ptr =
915 				    emalloc(sizeof(struct autokey));
916 			bp = (struct autokey *)peer->recval.ptr;
917 			peer->recval.tstamp = ep->tstamp;
918 			peer->recval.fstamp = ep->fstamp;
919 			ap = (struct autokey *)ep->pkt;
920 			bp->seq = ntohl(ap->seq);
921 			bp->key = ntohl(ap->key);
922 			peer->pkeyid = bp->key;
923 			peer->crypto |= CRYPTO_FLAG_AUTO;
924 			peer->flash &= ~TEST8;
925 			snprintf(statstr, sizeof(statstr),
926 			    "auto seq %d key %x ts %u fs %u", bp->seq,
927 			    bp->key, ntohl(ep->tstamp),
928 			    ntohl(ep->fstamp));
929 			record_crypto_stats(&peer->srcadr, statstr);
930 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
931 			break;
932 
933 		/*
934 		 * X509 certificate sign response. Validate the
935 		 * certificate signed by the server and install. Later
936 		 * this can be provided to clients of this server in
937 		 * lieu of the self signed certificate in order to
938 		 * validate the public key.
939 		 */
940 		case CRYPTO_SIGN | CRYPTO_RESP:
941 
942 			/*
943 			 * Discard the message if invalid.
944 			 */
945 			if ((rval = crypto_verify(ep, NULL, peer)) !=
946 			    XEVNT_OK)
947 				break;
948 
949 			/*
950 			 * Scan the certificate list to delete old
951 			 * versions and link the newest version first on
952 			 * the list.
953 			 */
954 			if ((xinfo = cert_install(ep, peer)) == NULL) {
955 				rval = XEVNT_CRT;
956 				break;
957 			}
958 			peer->crypto |= CRYPTO_FLAG_SIGN;
959 			peer->flash &= ~TEST8;
960 			temp32 = xinfo->nid;
961 			snprintf(statstr, sizeof(statstr),
962 			    "sign %s %s 0x%x %s (%u) fs %u",
963 			    xinfo->subject, xinfo->issuer, xinfo->flags,
964 			    OBJ_nid2ln(temp32), temp32,
965 			    ntohl(ep->fstamp));
966 			record_crypto_stats(&peer->srcadr, statstr);
967 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
968 			break;
969 
970 		/*
971 		 * Install leapseconds values. While the leapsecond
972 		 * values epoch, TAI offset and values expiration epoch
973 		 * are retained, only the current TAI offset is provided
974 		 * via the kernel to other applications.
975 		 */
976 		case CRYPTO_LEAP | CRYPTO_RESP:
977 			/*
978 			 * Discard the message if invalid. We can't
979 			 * compare the value timestamps here, as they
980 			 * can be updated by different servers.
981 			 */
982 			rval = crypto_verify(ep, NULL, peer);
983 			if ((rval   != XEVNT_OK          ) ||
984 			    (vallen != 3*sizeof(uint32_t))  )
985 				break;
986 
987 			/* Check if we can update the basic TAI offset
988 			 * for our current leap frame. This is a hack
989 			 * and ignores the time stamps in the autokey
990 			 * message.
991 			 */
992 			if (sys_leap != LEAP_NOTINSYNC)
993 				leapsec_autokey_tai(ntohl(ep->pkt[0]),
994 						    rbufp->recv_time.l_ui, NULL);
995 			tai_leap.tstamp = ep->tstamp;
996 			tai_leap.fstamp = ep->fstamp;
997 			crypto_update();
998 			mprintf_event(EVNT_TAI, peer,
999 				      "%d seconds", ntohl(ep->pkt[0]));
1000 			peer->crypto |= CRYPTO_FLAG_LEAP;
1001 			peer->flash &= ~TEST8;
1002 			snprintf(statstr, sizeof(statstr),
1003 				 "leap TAI offset %d at %u expire %u fs %u",
1004 				 ntohl(ep->pkt[0]), ntohl(ep->pkt[1]),
1005 				 ntohl(ep->pkt[2]), ntohl(ep->fstamp));
1006 			record_crypto_stats(&peer->srcadr, statstr);
1007 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
1008 			break;
1009 
1010 		/*
1011 		 * We come here in symmetric modes for miscellaneous
1012 		 * commands that have value fields but are processed on
1013 		 * the transmit side. All we need do here is check for
1014 		 * valid field length. Note that ASSOC is handled
1015 		 * separately.
1016 		 */
1017 		case CRYPTO_CERT:
1018 		case CRYPTO_IFF:
1019 		case CRYPTO_GQ:
1020 		case CRYPTO_MV:
1021 		case CRYPTO_COOK:
1022 		case CRYPTO_SIGN:
1023 			if (len < VALUE_LEN) {
1024 				rval = XEVNT_LEN;
1025 				break;
1026 			}
1027 			/* fall through */
1028 
1029 		/*
1030 		 * We come here in symmetric modes for requests
1031 		 * requiring a response (above plus AUTO and LEAP) and
1032 		 * for responses. If a request, save the extension field
1033 		 * for later; invalid requests will be caught on the
1034 		 * transmit side. If an error or invalid response,
1035 		 * declare a protocol error.
1036 		 */
1037 		default:
1038 			if (code & (CRYPTO_RESP | CRYPTO_ERROR)) {
1039 				rval = XEVNT_ERR;
1040 			} else if (peer->cmmd == NULL) {
1041 				fp = emalloc(len);
1042 				memcpy(fp, ep, len);
1043 				peer->cmmd = fp;
1044 			}
1045 		}
1046 
1047 		/*
1048 		 * The first error found terminates the extension field
1049 		 * scan and we return the laundry to the caller.
1050 		 */
1051 		if (rval != XEVNT_OK) {
1052 			snprintf(statstr, sizeof(statstr),
1053 			    "%04x %d %02x %s", htonl(ep->opcode),
1054 			    associd, rval, eventstr(rval));
1055 			record_crypto_stats(&peer->srcadr, statstr);
1056 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
1057 			return (rval);
1058 		}
1059 		authlen += (len + 3) / 4 * 4;
1060 	}
1061 	return (rval);
1062 }
1063 
1064 
1065 /*
1066  * crypto_xmit - construct extension fields
1067  *
1068  * This routine is called both when an association is configured and
1069  * when one is not. The only case where this matters is to retrieve the
1070  * autokey information, in which case the caller has to provide the
1071  * association ID to match the association.
1072  *
1073  * Side effect: update the packet offset.
1074  *
1075  * Errors
1076  * XEVNT_OK	success
1077  * XEVNT_CRT	bad or missing certificate
1078  * XEVNT_ERR	protocol error
1079  * XEVNT_LEN	bad field format or length
1080  * XEVNT_PER	host certificate expired
1081  */
1082 int
1083 crypto_xmit(
1084 	struct peer *peer,	/* peer structure pointer */
1085 	struct pkt *xpkt,	/* transmit packet pointer */
1086 	struct recvbuf *rbufp,	/* receive buffer pointer */
1087 	int	start,		/* offset to extension field */
1088 	struct exten *ep,	/* extension pointer */
1089 	keyid_t cookie		/* session cookie */
1090 	)
1091 {
1092 	struct exten *fp;	/* extension pointers */
1093 	struct cert_info *cp, *xp, *yp; /* cert info/value pointer */
1094 	sockaddr_u *srcadr_sin; /* source address */
1095 	u_int32	*pkt;		/* packet pointer */
1096 	u_int	opcode;		/* extension field opcode */
1097 	char	certname[MAXHOSTNAME + 1]; /* subject name buffer */
1098 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
1099 	tstamp_t tstamp;
1100 	struct calendar tscal;
1101 	u_int	vallen;
1102 	struct value vtemp;
1103 	associd_t associd;
1104 	int	rval;
1105 	int	len;
1106 	keyid_t tcookie;
1107 
1108 	/*
1109 	 * Generate the requested extension field request code, length
1110 	 * and association ID. If this is a response and the host is not
1111 	 * synchronized, light the error bit and go home.
1112 	 */
1113 	pkt = (u_int32 *)xpkt + start / 4;
1114 	fp = (struct exten *)pkt;
1115 	opcode = ntohl(ep->opcode);
1116 	if (peer != NULL) {
1117 		srcadr_sin = &peer->srcadr;
1118 		if (!(opcode & CRYPTO_RESP))
1119 			peer->opcode = ep->opcode;
1120 	} else {
1121 		srcadr_sin = &rbufp->recv_srcadr;
1122 	}
1123 	associd = (associd_t) ntohl(ep->associd);
1124 	len = 8;
1125 	fp->opcode = htonl((opcode & 0xffff0000) | len);
1126 	fp->associd = ep->associd;
1127 	rval = XEVNT_OK;
1128 	tstamp = crypto_time();
1129 	switch (opcode & 0xffff0000) {
1130 
1131 	/*
1132 	 * Send association request and response with status word and
1133 	 * host name. Note, this message is not signed and the filestamp
1134 	 * contains only the status word.
1135 	 */
1136 	case CRYPTO_ASSOC:
1137 	case CRYPTO_ASSOC | CRYPTO_RESP:
1138 		len = crypto_send(fp, &hostval, start);
1139 		fp->fstamp = htonl(crypto_flags);
1140 		break;
1141 
1142 	/*
1143 	 * Send certificate request. Use the values from the extension
1144 	 * field.
1145 	 */
1146 	case CRYPTO_CERT:
1147 		memset(&vtemp, 0, sizeof(vtemp));
1148 		vtemp.tstamp = ep->tstamp;
1149 		vtemp.fstamp = ep->fstamp;
1150 		vtemp.vallen = ep->vallen;
1151 		vtemp.ptr = (u_char *)ep->pkt;
1152 		len = crypto_send(fp, &vtemp, start);
1153 		break;
1154 
1155 	/*
1156 	 * Send sign request. Use the host certificate, which is self-
1157 	 * signed and may or may not be trusted.
1158 	 */
1159 	case CRYPTO_SIGN:
1160 		(void)ntpcal_ntp_to_date(&tscal, tstamp, NULL);
1161 		if ((calcomp(&tscal, &(cert_host->first)) < 0)
1162 		|| (calcomp(&tscal, &(cert_host->last)) > 0))
1163 			rval = XEVNT_PER;
1164 		else
1165 			len = crypto_send(fp, &cert_host->cert, start);
1166 		break;
1167 
1168 	/*
1169 	 * Send certificate response. Use the name in the extension
1170 	 * field to find the certificate in the cache. If the request
1171 	 * contains no subject name, assume the name of this host. This
1172 	 * is for backwards compatibility. Private certificates are
1173 	 * never sent.
1174 	 *
1175 	 * There may be several certificates matching the request. First
1176 	 * choice is a self-signed trusted certificate; second choice is
1177 	 * any certificate signed by another host. There is no third
1178 	 * choice.
1179 	 */
1180 	case CRYPTO_CERT | CRYPTO_RESP:
1181 		vallen = exten_payload_size(ep); /* Must be <64k */
1182 		if (vallen == 0 || vallen >= sizeof(certname) ) {
1183 			rval = XEVNT_LEN;
1184 			break;
1185 		}
1186 
1187 		/*
1188 		 * Find all public valid certificates with matching
1189 		 * subject. If a self-signed, trusted certificate is
1190 		 * found, use that certificate. If not, use the last non
1191 		 * self-signed certificate.
1192 		 */
1193 		memcpy(certname, ep->pkt, vallen);
1194 		certname[vallen] = '\0';
1195 		xp = yp = NULL;
1196 		for (cp = cinfo; cp != NULL; cp = cp->link) {
1197 			if (cp->flags & (CERT_PRIV | CERT_ERROR))
1198 				continue;
1199 
1200 			if (strcmp(certname, cp->subject) != 0)
1201 				continue;
1202 
1203 			if (strcmp(certname, cp->issuer) != 0)
1204 				yp = cp;
1205 			else if (cp ->flags & CERT_TRUST)
1206 				xp = cp;
1207 			continue;
1208 		}
1209 
1210 		/*
1211 		 * Be careful who you trust. If the certificate is not
1212 		 * found, return an empty response. Note that we dont
1213 		 * enforce lifetimes here.
1214 		 *
1215 		 * The timestamp and filestamp are taken from the
1216 		 * certificate value structure. For all certificates the
1217 		 * timestamp is the latest signature update time. For
1218 		 * host and imported certificates the filestamp is the
1219 		 * creation epoch. For signed certificates the filestamp
1220 		 * is the creation epoch of the trusted certificate at
1221 		 * the root of the certificate trail. In principle, this
1222 		 * allows strong checking for signature masquerade.
1223 		 */
1224 		if (xp == NULL)
1225 			xp = yp;
1226 		if (xp == NULL)
1227 			break;
1228 
1229 		if (tstamp == 0)
1230 			break;
1231 
1232 		len = crypto_send(fp, &xp->cert, start);
1233 		break;
1234 
1235 	/*
1236 	 * Send challenge in Schnorr (IFF) identity scheme.
1237 	 */
1238 	case CRYPTO_IFF:
1239 		if (peer == NULL)
1240 			break;		/* hack attack */
1241 
1242 		if ((rval = crypto_alice(peer, &vtemp)) == XEVNT_OK) {
1243 			len = crypto_send(fp, &vtemp, start);
1244 			value_free(&vtemp);
1245 		}
1246 		break;
1247 
1248 	/*
1249 	 * Send response in Schnorr (IFF) identity scheme.
1250 	 */
1251 	case CRYPTO_IFF | CRYPTO_RESP:
1252 		if ((rval = crypto_bob(ep, &vtemp)) == XEVNT_OK) {
1253 			len = crypto_send(fp, &vtemp, start);
1254 			value_free(&vtemp);
1255 		}
1256 		break;
1257 
1258 	/*
1259 	 * Send challenge in Guillou-Quisquater (GQ) identity scheme.
1260 	 */
1261 	case CRYPTO_GQ:
1262 		if (peer == NULL)
1263 			break;		/* hack attack */
1264 
1265 		if ((rval = crypto_alice2(peer, &vtemp)) == XEVNT_OK) {
1266 			len = crypto_send(fp, &vtemp, start);
1267 			value_free(&vtemp);
1268 		}
1269 		break;
1270 
1271 	/*
1272 	 * Send response in Guillou-Quisquater (GQ) identity scheme.
1273 	 */
1274 	case CRYPTO_GQ | CRYPTO_RESP:
1275 		if ((rval = crypto_bob2(ep, &vtemp)) == XEVNT_OK) {
1276 			len = crypto_send(fp, &vtemp, start);
1277 			value_free(&vtemp);
1278 		}
1279 		break;
1280 
1281 	/*
1282 	 * Send challenge in MV identity scheme.
1283 	 */
1284 	case CRYPTO_MV:
1285 		if (peer == NULL)
1286 			break;		/* hack attack */
1287 
1288 		if ((rval = crypto_alice3(peer, &vtemp)) == XEVNT_OK) {
1289 			len = crypto_send(fp, &vtemp, start);
1290 			value_free(&vtemp);
1291 		}
1292 		break;
1293 
1294 	/*
1295 	 * Send response in MV identity scheme.
1296 	 */
1297 	case CRYPTO_MV | CRYPTO_RESP:
1298 		if ((rval = crypto_bob3(ep, &vtemp)) == XEVNT_OK) {
1299 			len = crypto_send(fp, &vtemp, start);
1300 			value_free(&vtemp);
1301 		}
1302 		break;
1303 
1304 	/*
1305 	 * Send certificate sign response. The integrity of the request
1306 	 * certificate has already been verified on the receive side.
1307 	 * Sign the response using the local server key. Use the
1308 	 * filestamp from the request and use the timestamp as the
1309 	 * current time. Light the error bit if the certificate is
1310 	 * invalid or contains an unverified signature.
1311 	 */
1312 	case CRYPTO_SIGN | CRYPTO_RESP:
1313 		if ((rval = cert_sign(ep, &vtemp)) == XEVNT_OK) {
1314 			len = crypto_send(fp, &vtemp, start);
1315 			value_free(&vtemp);
1316 		}
1317 		break;
1318 
1319 	/*
1320 	 * Send public key and signature. Use the values from the public
1321 	 * key.
1322 	 */
1323 	case CRYPTO_COOK:
1324 		len = crypto_send(fp, &pubkey, start);
1325 		break;
1326 
1327 	/*
1328 	 * Encrypt and send cookie and signature. Light the error bit if
1329 	 * anything goes wrong.
1330 	 */
1331 	case CRYPTO_COOK | CRYPTO_RESP:
1332 		vallen = ntohl(ep->vallen);	/* Must be <64k */
1333 		if (   vallen == 0
1334 		    || (vallen >= MAX_VALLEN)
1335 		    || (opcode & 0x0000ffff)  < VALUE_LEN + vallen) {
1336 			rval = XEVNT_LEN;
1337 			break;
1338 		}
1339 		if (peer == NULL)
1340 			tcookie = cookie;
1341 		else
1342 			tcookie = peer->hcookie;
1343 		if ((rval = crypto_encrypt((const u_char *)ep->pkt, vallen, &tcookie, &vtemp))
1344 		    == XEVNT_OK) {
1345 			len = crypto_send(fp, &vtemp, start);
1346 			value_free(&vtemp);
1347 		}
1348 		break;
1349 
1350 	/*
1351 	 * Find peer and send autokey data and signature in broadcast
1352 	 * server and symmetric modes. Use the values in the autokey
1353 	 * structure. If no association is found, either the server has
1354 	 * restarted with new associations or some perp has replayed an
1355 	 * old message, in which case light the error bit.
1356 	 */
1357 	case CRYPTO_AUTO | CRYPTO_RESP:
1358 		if (peer == NULL) {
1359 			if ((peer = findpeerbyassoc(associd)) == NULL) {
1360 				rval = XEVNT_ERR;
1361 				break;
1362 			}
1363 		}
1364 		peer->flags &= ~FLAG_ASSOC;
1365 		len = crypto_send(fp, &peer->sndval, start);
1366 		break;
1367 
1368 	/*
1369 	 * Send leapseconds values and signature. Use the values from
1370 	 * the tai structure. If no table has been loaded, just send an
1371 	 * empty request.
1372 	 */
1373 	case CRYPTO_LEAP | CRYPTO_RESP:
1374 		len = crypto_send(fp, &tai_leap, start);
1375 		break;
1376 
1377 	/*
1378 	 * Default - Send a valid command for unknown requests; send
1379 	 * an error response for unknown resonses.
1380 	 */
1381 	default:
1382 		if (opcode & CRYPTO_RESP)
1383 			rval = XEVNT_ERR;
1384 	}
1385 
1386 	/*
1387 	 * In case of error, flame the log. If a request, toss the
1388 	 * puppy; if a response, return so the sender can flame, too.
1389 	 */
1390 	if (rval != XEVNT_OK) {
1391 		u_int32	opcode_bits;
1392 
1393 		opcode_bits = CRYPTO_ERROR;
1394 		opcode |= opcode_bits;
1395 		fp->opcode |= htonl(opcode_bits);
1396 		snprintf(statstr, sizeof(statstr),
1397 		    "%04x %d %02x %s", opcode, associd, rval,
1398 		    eventstr(rval));
1399 		record_crypto_stats(srcadr_sin, statstr);
1400 		DPRINTF(1, ("crypto_xmit: %s\n", statstr));
1401 		if (!(opcode & CRYPTO_RESP))
1402 			return (0);
1403 	}
1404 	DPRINTF(1, ("crypto_xmit: flags 0x%x offset %d len %d code 0x%x associd %d\n",
1405 		    crypto_flags, start, len, opcode >> 16, associd));
1406 	return (len);
1407 }
1408 
1409 
1410 /*
1411  * crypto_verify - verify the extension field value and signature
1412  *
1413  * Returns
1414  * XEVNT_OK	success
1415  * XEVNT_ERR	protocol error
1416  * XEVNT_FSP	bad filestamp
1417  * XEVNT_LEN	bad field format or length
1418  * XEVNT_PUB	bad or missing public key
1419  * XEVNT_SGL	bad signature length
1420  * XEVNT_SIG	signature not verified
1421  * XEVNT_TSP	bad timestamp
1422  */
1423 static int
1424 crypto_verify(
1425 	struct exten *ep,	/* extension pointer */
1426 	struct value *vp,	/* value pointer */
1427 	struct peer *peer	/* peer structure pointer */
1428 	)
1429 {
1430 	EVP_PKEY *pkey;		/* server public key */
1431 	EVP_MD_CTX *ctx;	/* signature context */
1432 	tstamp_t tstamp, tstamp1 = 0; /* timestamp */
1433 	tstamp_t fstamp, fstamp1 = 0; /* filestamp */
1434 	u_int	vallen;		/* value length */
1435 	u_int	siglen;		/* signature length */
1436 	u_int	opcode, len;
1437 	int	i;
1438 
1439 	/*
1440 	 * We are extremely parannoyed. We require valid opcode, length,
1441 	 * association ID, timestamp, filestamp, public key, digest,
1442 	 * signature length and signature, where relevant. Note that
1443 	 * preliminary length checks are done in the main loop.
1444 	 */
1445 	len = ntohl(ep->opcode) & 0x0000ffff;
1446 	opcode = ntohl(ep->opcode) & 0xffff0000;
1447 
1448 	/*
1449 	 * Check for valid value header, association ID and extension
1450 	 * field length. Remember, it is not an error to receive an
1451 	 * unsolicited response; however, the response ID must match
1452 	 * the association ID.
1453 	 */
1454 	if (opcode & CRYPTO_ERROR)
1455 		return (XEVNT_ERR);
1456 
1457  	if (len < VALUE_LEN)
1458 		return (XEVNT_LEN);
1459 
1460 	if (opcode == (CRYPTO_AUTO | CRYPTO_RESP) && (peer->pmode ==
1461 	    MODE_BROADCAST || (peer->cast_flags & MDF_BCLNT))) {
1462 		if (ntohl(ep->associd) != peer->assoc)
1463 			return (XEVNT_ERR);
1464 	} else {
1465 		if (ntohl(ep->associd) != peer->associd)
1466 			return (XEVNT_ERR);
1467 	}
1468 
1469 	/*
1470 	 * We have a valid value header. Check for valid value and
1471 	 * signature field lengths. The extension field length must be
1472 	 * long enough to contain the value header, value and signature.
1473 	 * Note both the value and signature field lengths are rounded
1474 	 * up to the next word (4 octets).
1475 	 */
1476 	vallen = ntohl(ep->vallen);
1477 	if (   vallen == 0
1478 	    || vallen > MAX_VALLEN)
1479 		return (XEVNT_LEN);
1480 
1481 	i = (vallen + 3) / 4;
1482 	siglen = ntohl(ep->pkt[i]);
1483 	++i;
1484 	if (   siglen > MAX_VALLEN
1485 	    || len - VALUE_LEN < ((vallen + 3) / 4) * 4
1486 	    || len - VALUE_LEN - ((vallen + 3) / 4) * 4
1487 	      < ((siglen + 3) / 4) * 4)
1488 		return (XEVNT_LEN);
1489 
1490 	/*
1491 	 * Check for valid timestamp and filestamp. If the timestamp is
1492 	 * zero, the sender is not synchronized and signatures are
1493 	 * not possible. If nonzero the timestamp must not precede the
1494 	 * filestamp. The timestamp and filestamp must not precede the
1495 	 * corresponding values in the value structure, if present.
1496  	 */
1497 	tstamp = ntohl(ep->tstamp);
1498 	fstamp = ntohl(ep->fstamp);
1499 	if (tstamp == 0)
1500 		return (XEVNT_TSP);
1501 
1502 	if (tstamp < fstamp)
1503 		return (XEVNT_TSP);
1504 
1505 	if (vp != NULL) {
1506 		tstamp1 = ntohl(vp->tstamp);
1507 		fstamp1 = ntohl(vp->fstamp);
1508 		if (tstamp1 != 0 && fstamp1 != 0) {
1509 			if (tstamp < tstamp1)
1510 				return (XEVNT_TSP);
1511 
1512 			if ((tstamp < fstamp1 || fstamp < fstamp1))
1513 				return (XEVNT_FSP);
1514 		}
1515 	}
1516 
1517 	/*
1518 	 * At the time the certificate message is validated, the public
1519 	 * key in the message is not available. Thus, don't try to
1520 	 * verify the signature.
1521 	 */
1522 	if (opcode == (CRYPTO_CERT | CRYPTO_RESP))
1523 		return (XEVNT_OK);
1524 
1525 	/*
1526 	 * Check for valid signature length, public key and digest
1527 	 * algorithm.
1528 	 */
1529 	if (crypto_flags & peer->crypto & CRYPTO_FLAG_PRIV)
1530 		pkey = sign_pkey;
1531 	else
1532 		pkey = peer->pkey;
1533 	if (siglen == 0 || pkey == NULL || peer->digest == NULL)
1534 		return (XEVNT_ERR);
1535 
1536 	if (siglen != (u_int)EVP_PKEY_size(pkey))
1537 		return (XEVNT_SGL);
1538 
1539 	/*
1540 	 * Darn, I thought we would never get here. Verify the
1541 	 * signature. If the identity exchange is verified, light the
1542 	 * proventic bit. What a relief.
1543 	 */
1544 	ctx = digest_ctx;
1545 	EVP_VerifyInit(ctx, peer->digest);
1546 	EVP_VerifyUpdate(ctx, (u_char *)&ep->tstamp, vallen +
1547 			 sizeof(ep->tstamp) + sizeof(ep->fstamp) +
1548 			 sizeof(ep->vallen));
1549 	if (EVP_VerifyFinal(ctx, (u_char *)&ep->pkt[i], siglen,
1550 	    pkey) <= 0) {
1551 		return (XEVNT_SIG);
1552 	}
1553 
1554 	if (peer->crypto & CRYPTO_FLAG_VRFY)
1555 		peer->crypto |= CRYPTO_FLAG_PROV;
1556 	return (XEVNT_OK);
1557 }
1558 
1559 
1560 /*
1561  * crypto_encrypt - construct vp (encrypted cookie and signature) from
1562  * the public key and cookie.
1563  *
1564  * Returns:
1565  * XEVNT_OK	success
1566  * XEVNT_CKY	bad or missing cookie
1567  * XEVNT_PUB	bad or missing public key
1568  */
1569 static int
1570 crypto_encrypt(
1571 	const u_char *ptr,	/* Public Key */
1572 	u_int	vallen,		/* Length of Public Key */
1573 	keyid_t	*cookie,	/* server cookie */
1574 	struct value *vp	/* value pointer */
1575 	)
1576 {
1577 	EVP_PKEY *pkey;		/* public key */
1578 	RSA* rsa;		/* public key */
1579 	EVP_MD_CTX *ctx;	/* signature context */
1580 	tstamp_t tstamp;	/* NTP timestamp */
1581 	u_int32	temp32;
1582 	u_char *puch;
1583 
1584 	/*
1585 	 * Extract the public key from the request.
1586 	 */
1587 	pkey = d2i_PublicKey(EVP_PKEY_RSA, NULL, &ptr, vallen);
1588 	if (pkey == NULL) {
1589 		msyslog(LOG_ERR, "crypto_encrypt: %s",
1590 		    ERR_error_string(ERR_get_error(), NULL));
1591 		return (XEVNT_PUB);
1592 	}
1593 
1594 	/*
1595 	 * Encrypt the cookie, encode in ASN.1 and sign.
1596 	 */
1597 	memset(vp, 0, sizeof(struct value));
1598 	tstamp = crypto_time();
1599 	vp->tstamp = htonl(tstamp);
1600 	vp->fstamp = hostval.tstamp;
1601 	vallen = EVP_PKEY_size(pkey);
1602 	vp->vallen = htonl(vallen);
1603 	vp->ptr = emalloc(vallen);
1604 	puch = vp->ptr;
1605 	temp32 = htonl(*cookie);
1606 	rsa = EVP_PKEY_get1_RSA(pkey);
1607 	if (RSA_public_encrypt(4, (u_char *)&temp32, puch, rsa,
1608 	    RSA_PKCS1_OAEP_PADDING) <= 0) {
1609 		msyslog(LOG_ERR, "crypto_encrypt: %s",
1610 		    ERR_error_string(ERR_get_error(), NULL));
1611 		free(vp->ptr);
1612 		EVP_PKEY_free(pkey);
1613 		return (XEVNT_CKY);
1614 	}
1615 	EVP_PKEY_free(pkey);
1616 	pkey = NULL;
1617 	RSA_free(rsa);
1618 	rsa = NULL;
1619 	if (tstamp == 0)
1620 		return (XEVNT_OK);
1621 
1622 	vp->sig = emalloc(sign_siglen);
1623 	ctx = digest_ctx;
1624 	EVP_SignInit(ctx, sign_digest);
1625 	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
1626 	EVP_SignUpdate(ctx, vp->ptr, vallen);
1627 	if (EVP_SignFinal(ctx, vp->sig, &vallen, sign_pkey)) {
1628 		INSIST(vallen <= sign_siglen);
1629 		vp->siglen = htonl(vallen);
1630 	}
1631 	return (XEVNT_OK);
1632 }
1633 
1634 
1635 /*
1636  * crypto_ident - construct extension field for identity scheme
1637  *
1638  * This routine determines which identity scheme is in use and
1639  * constructs an extension field for that scheme.
1640  *
1641  * Returns
1642  * CRYTPO_IFF	IFF scheme
1643  * CRYPTO_GQ	GQ scheme
1644  * CRYPTO_MV	MV scheme
1645  * CRYPTO_NULL	no available scheme
1646  */
1647 u_int
1648 crypto_ident(
1649 	struct peer *peer	/* peer structure pointer */
1650 	)
1651 {
1652 	char		filename[MAXFILENAME];
1653 	const char *	scheme_name;
1654 	u_int		scheme_id;
1655 
1656 	/*
1657 	 * We come here after the group trusted host has been found; its
1658 	 * name defines the group name. Search the key cache for all
1659 	 * keys matching the same group name in order IFF, GQ and MV.
1660 	 * Use the first one available.
1661 	 */
1662 	scheme_name = NULL;
1663 	if (peer->crypto & CRYPTO_FLAG_IFF) {
1664 		scheme_name = "iff";
1665 		scheme_id = CRYPTO_IFF;
1666 	} else if (peer->crypto & CRYPTO_FLAG_GQ) {
1667 		scheme_name = "gq";
1668 		scheme_id = CRYPTO_GQ;
1669 	} else if (peer->crypto & CRYPTO_FLAG_MV) {
1670 		scheme_name = "mv";
1671 		scheme_id = CRYPTO_MV;
1672 	}
1673 
1674 	if (scheme_name != NULL) {
1675 		snprintf(filename, sizeof(filename), "ntpkey_%spar_%s",
1676 		    scheme_name, peer->ident);
1677 		peer->ident_pkey = crypto_key(filename, NULL,
1678 		    &peer->srcadr);
1679 		if (peer->ident_pkey != NULL)
1680 			return scheme_id;
1681 	}
1682 
1683 	msyslog(LOG_NOTICE,
1684 	    "crypto_ident: no identity parameters found for group %s",
1685 	    peer->ident);
1686 
1687 	return CRYPTO_NULL;
1688 }
1689 
1690 
1691 /*
1692  * crypto_args - construct extension field from arguments
1693  *
1694  * This routine creates an extension field with current timestamps and
1695  * specified opcode, association ID and optional string. Note that the
1696  * extension field is created here, but freed after the crypto_xmit()
1697  * call in the protocol module.
1698  *
1699  * Returns extension field pointer (no errors)
1700  *
1701  * XXX: opcode and len should really be 32-bit quantities and
1702  * we should make sure that str is not too big.
1703  */
1704 struct exten *
1705 crypto_args(
1706 	struct peer *peer,	/* peer structure pointer */
1707 	u_int	opcode,		/* operation code */
1708 	associd_t associd,	/* association ID */
1709 	char	*str		/* argument string */
1710 	)
1711 {
1712 	tstamp_t tstamp;	/* NTP timestamp */
1713 	struct exten *ep;	/* extension field pointer */
1714 	u_int	len;		/* extension field length */
1715 	size_t	slen = 0;
1716 
1717 	tstamp = crypto_time();
1718 	len = sizeof(struct exten);
1719 	if (str != NULL) {
1720 		slen = strlen(str);
1721 		INSIST(slen < MAX_VALLEN);
1722 		len += slen;
1723 	}
1724 	ep = emalloc_zero(len);
1725 	if (opcode == 0)
1726 		return (ep);
1727 
1728 	REQUIRE(0 == (len    & ~0x0000ffff));
1729 	REQUIRE(0 == (opcode & ~0xffff0000));
1730 
1731 	ep->opcode = htonl(opcode + len);
1732 	ep->associd = htonl(associd);
1733 	ep->tstamp = htonl(tstamp);
1734 	ep->fstamp = hostval.tstamp;
1735 	ep->vallen = 0;
1736 	if (str != NULL) {
1737 		ep->vallen = htonl(slen);
1738 		memcpy((char *)ep->pkt, str, slen);
1739 	}
1740 	return (ep);
1741 }
1742 
1743 
1744 /*
1745  * crypto_send - construct extension field from value components
1746  *
1747  * The value and signature fields are zero-padded to a word boundary.
1748  * Note: it is not polite to send a nonempty signature with zero
1749  * timestamp or a nonzero timestamp with an empty signature, but those
1750  * rules are not enforced here.
1751  *
1752  * XXX This code won't work on a box with 16-bit ints.
1753  */
1754 int
1755 crypto_send(
1756 	struct exten *ep,	/* extension field pointer */
1757 	struct value *vp,	/* value pointer */
1758 	int	start		/* buffer offset */
1759 	)
1760 {
1761 	u_int	len, vallen, siglen, opcode;
1762 	u_int	i, j;
1763 
1764 	/*
1765 	 * Calculate extension field length and check for buffer
1766 	 * overflow. Leave room for the MAC.
1767 	 */
1768 	len = 16;				/* XXX Document! */
1769 	vallen = ntohl(vp->vallen);
1770 	INSIST(vallen <= MAX_VALLEN);
1771 	len += ((vallen + 3) / 4 + 1) * 4;
1772 	siglen = ntohl(vp->siglen);
1773 	len += ((siglen + 3) / 4 + 1) * 4;
1774 	if (start + len > sizeof(struct pkt) - MAX_MAC_LEN)
1775 		return (0);
1776 
1777 	/*
1778 	 * Copy timestamps.
1779 	 */
1780 	ep->tstamp = vp->tstamp;
1781 	ep->fstamp = vp->fstamp;
1782 	ep->vallen = vp->vallen;
1783 
1784 	/*
1785 	 * Copy value. If the data field is empty or zero length,
1786 	 * encode an empty value with length zero.
1787 	 */
1788 	i = 0;
1789 	if (vallen > 0 && vp->ptr != NULL) {
1790 		j = vallen / 4;
1791 		if (j * 4 < vallen)
1792 			ep->pkt[i + j++] = 0;
1793 		memcpy(&ep->pkt[i], vp->ptr, vallen);
1794 		i += j;
1795 	}
1796 
1797 	/*
1798 	 * Copy signature. If the signature field is empty or zero
1799 	 * length, encode an empty signature with length zero.
1800 	 */
1801 	ep->pkt[i++] = vp->siglen;
1802 	if (siglen > 0 && vp->sig != NULL) {
1803 		j = siglen / 4;
1804 		if (j * 4 < siglen)
1805 			ep->pkt[i + j++] = 0;
1806 		memcpy(&ep->pkt[i], vp->sig, siglen);
1807 		/* i += j; */	/* We don't use i after this */
1808 	}
1809 	opcode = ntohl(ep->opcode);
1810 	ep->opcode = htonl((opcode & 0xffff0000) | len);
1811 	ENSURE(len <= MAX_VALLEN);
1812 	return (len);
1813 }
1814 
1815 
1816 /*
1817  * crypto_update - compute new public value and sign extension fields
1818  *
1819  * This routine runs periodically, like once a day, and when something
1820  * changes. It updates the timestamps on three value structures and one
1821  * value structure list, then signs all the structures:
1822  *
1823  * hostval	host name (not signed)
1824  * pubkey	public key
1825  * cinfo	certificate info/value list
1826  * tai_leap	leap values
1827  *
1828  * Filestamps are proventic data, so this routine runs only when the
1829  * host is synchronized to a proventicated source. Thus, the timestamp
1830  * is proventic and can be used to deflect clogging attacks.
1831  *
1832  * Returns void (no errors)
1833  */
1834 void
1835 crypto_update(void)
1836 {
1837 	EVP_MD_CTX *ctx;	/* message digest context */
1838 	struct cert_info *cp;	/* certificate info/value */
1839 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
1840 	u_int32	*ptr;
1841 	u_int	len;
1842 	leap_result_t leap_data;
1843 
1844 	hostval.tstamp = htonl(crypto_time());
1845 	if (hostval.tstamp == 0)
1846 		return;
1847 
1848 	ctx = digest_ctx;
1849 
1850 	/*
1851 	 * Sign public key and timestamps. The filestamp is derived from
1852 	 * the host key file extension from wherever the file was
1853 	 * generated.
1854 	 */
1855 	if (pubkey.vallen != 0) {
1856 		pubkey.tstamp = hostval.tstamp;
1857 		pubkey.siglen = 0;
1858 		if (pubkey.sig == NULL)
1859 			pubkey.sig = emalloc(sign_siglen);
1860 		EVP_SignInit(ctx, sign_digest);
1861 		EVP_SignUpdate(ctx, (u_char *)&pubkey, 12);
1862 		EVP_SignUpdate(ctx, pubkey.ptr, ntohl(pubkey.vallen));
1863 		if (EVP_SignFinal(ctx, pubkey.sig, &len, sign_pkey)) {
1864 			INSIST(len <= sign_siglen);
1865 			pubkey.siglen = htonl(len);
1866 		}
1867 	}
1868 
1869 	/*
1870 	 * Sign certificates and timestamps. The filestamp is derived
1871 	 * from the certificate file extension from wherever the file
1872 	 * was generated. Note we do not throw expired certificates
1873 	 * away; they may have signed younger ones.
1874 	 */
1875 	for (cp = cinfo; cp != NULL; cp = cp->link) {
1876 		cp->cert.tstamp = hostval.tstamp;
1877 		cp->cert.siglen = 0;
1878 		if (cp->cert.sig == NULL)
1879 			cp->cert.sig = emalloc(sign_siglen);
1880 		EVP_SignInit(ctx, sign_digest);
1881 		EVP_SignUpdate(ctx, (u_char *)&cp->cert, 12);
1882 		EVP_SignUpdate(ctx, cp->cert.ptr,
1883 		    ntohl(cp->cert.vallen));
1884 		if (EVP_SignFinal(ctx, cp->cert.sig, &len, sign_pkey)) {
1885 			INSIST(len <= sign_siglen);
1886 			cp->cert.siglen = htonl(len);
1887 		}
1888 	}
1889 
1890 	/*
1891 	 * Sign leapseconds values and timestamps. Note it is not an
1892 	 * error to return null values.
1893 	 */
1894 	tai_leap.tstamp = hostval.tstamp;
1895 	tai_leap.fstamp = hostval.fstamp;
1896 
1897 	/* Get the leap second era. We might need a full lookup early
1898 	 * after start, when the cache is not yet loaded.
1899 	 */
1900 	leapsec_frame(&leap_data);
1901 	if ( ! memcmp(&leap_data.ebase, &leap_data.ttime, sizeof(vint64))) {
1902 		time_t   now    = time(NULL);
1903 		uint32_t nowntp = (uint32_t)now + JAN_1970;
1904 		leapsec_query(&leap_data, nowntp, &now);
1905 	}
1906 
1907 	/* Create the data block. The protocol does not work without. */
1908 	len = 3 * sizeof(u_int32);
1909 	if (tai_leap.ptr == NULL || ntohl(tai_leap.vallen) != len) {
1910 		free(tai_leap.ptr);
1911 		tai_leap.ptr = emalloc(len);
1912 		tai_leap.vallen = htonl(len);
1913 	}
1914 	ptr = (u_int32 *)tai_leap.ptr;
1915 	if (leap_data.tai_offs > 10) {
1916 		/* create a TAI / leap era block. The end time is a
1917 		 * fake -- maybe we can do better.
1918 		 */
1919 		ptr[0] = htonl(leap_data.tai_offs);
1920 		ptr[1] = htonl(leap_data.ebase.d_s.lo);
1921 		if (leap_data.ttime.d_s.hi >= 0)
1922 			ptr[2] = htonl(leap_data.ttime.D_s.lo +  7*86400);
1923 		else
1924 			ptr[2] = htonl(leap_data.ebase.D_s.lo + 25*86400);
1925 	} else {
1926 		/* no leap era available */
1927 		memset(ptr, 0, len);
1928 	}
1929 	if (tai_leap.sig == NULL)
1930 		tai_leap.sig = emalloc(sign_siglen);
1931 	EVP_SignInit(ctx, sign_digest);
1932 	EVP_SignUpdate(ctx, (u_char *)&tai_leap, 12);
1933 	EVP_SignUpdate(ctx, tai_leap.ptr, len);
1934 	if (EVP_SignFinal(ctx, tai_leap.sig, &len, sign_pkey)) {
1935 		INSIST(len <= sign_siglen);
1936 		tai_leap.siglen = htonl(len);
1937 	}
1938 	crypto_flags |= CRYPTO_FLAG_TAI;
1939 
1940 	snprintf(statstr, sizeof(statstr), "signature update ts %u",
1941 	    ntohl(hostval.tstamp));
1942 	record_crypto_stats(NULL, statstr);
1943 	DPRINTF(1, ("crypto_update: %s\n", statstr));
1944 }
1945 
1946 /*
1947  * crypto_update_taichange - eventually trigger crypto_update
1948  *
1949  * This is called when a change in 'sys_tai' is detected. This will
1950  * happen shortly after a leap second is detected, but unhappily also
1951  * early after system start; also, the crypto stuff might be unused and
1952  * an unguarded call to crypto_update() causes a crash.
1953  *
1954  * This function makes sure that there already *is* a valid crypto block
1955  * for the use with autokey, and only calls 'crypto_update()' if it can
1956  * succeed.
1957  *
1958  * Returns void (no errors)
1959  */
1960 void
1961 crypto_update_taichange(void)
1962 {
1963 	static const u_int len = 3 * sizeof(u_int32);
1964 
1965 	/* check if the signing digest algo is available */
1966 	if (sign_digest == NULL || sign_pkey == NULL)
1967 		return;
1968 
1969 	/* check size of TAI extension block */
1970 	if (tai_leap.ptr == NULL || ntohl(tai_leap.vallen) != len)
1971 		return;
1972 
1973 	/* crypto_update should at least not crash here! */
1974 	crypto_update();
1975 }
1976 
1977 /*
1978  * value_free - free value structure components.
1979  *
1980  * Returns void (no errors)
1981  */
1982 void
1983 value_free(
1984 	struct value *vp	/* value structure */
1985 	)
1986 {
1987 	if (vp->ptr != NULL)
1988 		free(vp->ptr);
1989 	if (vp->sig != NULL)
1990 		free(vp->sig);
1991 	memset(vp, 0, sizeof(struct value));
1992 }
1993 
1994 
1995 /*
1996  * crypto_time - returns current NTP time.
1997  *
1998  * Returns NTP seconds if in synch, 0 otherwise
1999  */
2000 tstamp_t
2001 crypto_time(void)
2002 {
2003 	l_fp	tstamp;		/* NTP time */
2004 
2005 	L_CLR(&tstamp);
2006 	if (sys_leap != LEAP_NOTINSYNC)
2007 		get_systime(&tstamp);
2008 	return (tstamp.l_ui);
2009 }
2010 
2011 
2012 /*
2013  * asn_to_calendar - convert ASN1_TIME time structure to struct calendar.
2014  *
2015  */
2016 static
2017 void
2018 asn_to_calendar	(
2019 	const ASN1_TIME *asn1time,	/* pointer to ASN1_TIME structure */
2020 	struct calendar *pjd	/* pointer to result */
2021 	)
2022 {
2023 	size_t	len;		/* length of ASN1_TIME string */
2024 	char	v[24];		/* writable copy of ASN1_TIME string */
2025 	unsigned long	temp;	/* result from strtoul */
2026 
2027 	/*
2028 	 * Extract time string YYMMDDHHMMSSZ from ASN1 time structure.
2029 	 * Or YYYYMMDDHHMMSSZ.
2030 	 * Note that the YY, MM, DD fields start with one, the HH, MM,
2031 	 * SS fields start with zero and the Z character is ignored.
2032 	 * Also note that two-digit years less than 50 map to years greater than
2033 	 * 100. Dontcha love ASN.1? Better than MIL-188.
2034 	 */
2035 	len = asn1time->length;
2036 	REQUIRE(len < sizeof(v));
2037 	(void)strncpy(v, (char *)(asn1time->data), len);
2038 	REQUIRE(len >= 13);
2039 	temp = strtoul(v+len-3, NULL, 10);
2040 	pjd->second = temp;
2041 	v[len-3] = '\0';
2042 
2043 	temp = strtoul(v+len-5, NULL, 10);
2044 	pjd->minute = temp;
2045 	v[len-5] = '\0';
2046 
2047 	temp = strtoul(v+len-7, NULL, 10);
2048 	pjd->hour = temp;
2049 	v[len-7] = '\0';
2050 
2051 	temp = strtoul(v+len-9, NULL, 10);
2052 	pjd->monthday = temp;
2053 	v[len-9] = '\0';
2054 
2055 	temp = strtoul(v+len-11, NULL, 10);
2056 	pjd->month = temp;
2057 	v[len-11] = '\0';
2058 
2059 	temp = strtoul(v, NULL, 10);
2060 	/* handle two-digit years */
2061 	if (temp < 50UL)
2062 	    temp += 100UL;
2063 	if (temp < 150UL)
2064 	    temp += 1900UL;
2065 	pjd->year = temp;
2066 
2067 	pjd->yearday = pjd->weekday = 0;
2068 	return;
2069 }
2070 
2071 
2072 /*
2073  * bighash() - compute a BIGNUM MD5 hash of a BIGNUM number.
2074  *
2075  * Returns void (no errors)
2076  */
2077 static void
2078 bighash(
2079 	BIGNUM	*bn,		/* BIGNUM * from */
2080 	BIGNUM	*bk		/* BIGNUM * to */
2081 	)
2082 {
2083 	EVP_MD_CTX *ctx;	/* message digest context */
2084 	u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */
2085 	u_char	*ptr;		/* a BIGNUM as binary string */
2086 	u_int	len;
2087 
2088 	len = BN_num_bytes(bn);
2089 	ptr = emalloc(len);
2090 	BN_bn2bin(bn, ptr);
2091 	ctx = digest_ctx;
2092 	EVP_DigestInit(ctx, EVP_md5());
2093 	EVP_DigestUpdate(ctx, ptr, len);
2094 	EVP_DigestFinal(ctx, dgst, &len);
2095 	BN_bin2bn(dgst, len, bk);
2096 	free(ptr);
2097 }
2098 
2099 
2100 /*
2101  ***********************************************************************
2102  *								       *
2103  * The following routines implement the Schnorr (IFF) identity scheme  *
2104  *								       *
2105  ***********************************************************************
2106  *
2107  * The Schnorr (IFF) identity scheme is intended for use when
2108  * certificates are generated by some other trusted certificate
2109  * authority and the certificate cannot be used to convey public
2110  * parameters. There are two kinds of files: encrypted server files that
2111  * contain private and public values and nonencrypted client files that
2112  * contain only public values. New generations of server files must be
2113  * securely transmitted to all servers of the group; client files can be
2114  * distributed by any means. The scheme is self contained and
2115  * independent of new generations of host keys, sign keys and
2116  * certificates.
2117  *
2118  * The IFF values hide in a DSA cuckoo structure which uses the same
2119  * parameters. The values are used by an identity scheme based on DSA
2120  * cryptography and described in Stimson p. 285. The p is a 512-bit
2121  * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1
2122  * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a
2123  * private random group key b (0 < b < q) and public key v = g^b, then
2124  * sends (p, q, g, b) to the servers and (p, q, g, v) to the clients.
2125  * Alice challenges Bob to confirm identity using the protocol described
2126  * below.
2127  *
2128  * How it works
2129  *
2130  * The scheme goes like this. Both Alice and Bob have the public primes
2131  * p, q and generator g. The TA gives private key b to Bob and public
2132  * key v to Alice.
2133  *
2134  * Alice rolls new random challenge r (o < r < q) and sends to Bob in
2135  * the IFF request message. Bob rolls new random k (0 < k < q), then
2136  * computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x))
2137  * to Alice in the response message. Besides making the response
2138  * shorter, the hash makes it effectivey impossible for an intruder to
2139  * solve for b by observing a number of these messages.
2140  *
2141  * Alice receives the response and computes g^y v^r mod p. After a bit
2142  * of algebra, this simplifies to g^k. If the hash of this result
2143  * matches hash(x), Alice knows that Bob has the group key b. The signed
2144  * response binds this knowledge to Bob's private key and the public key
2145  * previously received in his certificate.
2146  *
2147  * crypto_alice - construct Alice's challenge in IFF scheme
2148  *
2149  * Returns
2150  * XEVNT_OK	success
2151  * XEVNT_ID	bad or missing group key
2152  * XEVNT_PUB	bad or missing public key
2153  */
2154 static int
2155 crypto_alice(
2156 	struct peer *peer,	/* peer pointer */
2157 	struct value *vp	/* value pointer */
2158 	)
2159 {
2160 	const DSA	*dsa;		/* IFF parameters */
2161 	BN_CTX		*bctx;		/* BIGNUM context */
2162 	EVP_MD_CTX	*ctx;	/* signature context */
2163 	tstamp_t	tstamp;
2164 	u_int		len;
2165 	const BIGNUM	*q;
2166 
2167 	/*
2168 	 * The identity parameters must have correct format and content.
2169 	 */
2170 	if (peer->ident_pkey == NULL) {
2171 		msyslog(LOG_NOTICE, "crypto_alice: scheme unavailable");
2172 		return (XEVNT_ID);
2173 	}
2174 
2175 	if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) {
2176 		msyslog(LOG_NOTICE, "crypto_alice: defective key");
2177 		return (XEVNT_PUB);
2178 	}
2179 
2180 	/*
2181 	 * Roll new random r (0 < r < q).
2182 	 */
2183 	if (peer->iffval != NULL)
2184 		BN_free(peer->iffval);
2185 	peer->iffval = BN_new();
2186 	DSA_get0_pqg(dsa, NULL, &q, NULL);
2187 	len = BN_num_bytes(q);
2188 	BN_rand(peer->iffval, len * 8, -1, 1);	/* r mod q*/
2189 	bctx = BN_CTX_new();
2190 	BN_mod(peer->iffval, peer->iffval, q, bctx);
2191 	BN_CTX_free(bctx);
2192 
2193 	/*
2194 	 * Sign and send to Bob. The filestamp is from the local file.
2195 	 */
2196 	memset(vp, 0, sizeof(struct value));
2197 	tstamp = crypto_time();
2198 	vp->tstamp = htonl(tstamp);
2199 	vp->fstamp = htonl(peer->ident_pkey->fstamp);
2200 	vp->vallen = htonl(len);
2201 	vp->ptr = emalloc(len);
2202 	BN_bn2bin(peer->iffval, vp->ptr);
2203 	if (tstamp == 0)
2204 		return (XEVNT_OK);
2205 
2206 	vp->sig = emalloc(sign_siglen);
2207 	ctx = digest_ctx;
2208 	EVP_SignInit(ctx, sign_digest);
2209 	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2210 	EVP_SignUpdate(ctx, vp->ptr, len);
2211 	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2212 		INSIST(len <= sign_siglen);
2213 		vp->siglen = htonl(len);
2214 	}
2215 	return (XEVNT_OK);
2216 }
2217 
2218 
2219 /*
2220  * crypto_bob - construct Bob's response to Alice's challenge
2221  *
2222  * Returns
2223  * XEVNT_OK	success
2224  * XEVNT_ERR	protocol error
2225  * XEVNT_ID	bad or missing group key
2226  */
2227 static int
2228 crypto_bob(
2229 	struct exten *ep,	/* extension pointer */
2230 	struct value *vp	/* value pointer */
2231 	)
2232 {
2233 	int	retv;		/* return value */
2234 	const DSA *dsa;		/* IFF parameters */
2235 	DSA_SIG	*sdsa;		/* DSA signature context fake */
2236 	BN_CTX	*bctx;		/* BIGNUM context */
2237 	EVP_MD_CTX *ctx;	/* signature context */
2238 	tstamp_t tstamp;	/* NTP timestamp */
2239 	BIGNUM	*bn, *bk, *r;
2240 	u_char	*ptr;
2241 	u_int	len;		/* extension field value length */
2242 	const BIGNUM *p, *q, *g;
2243 	const BIGNUM *priv_key;
2244 
2245 	/*
2246 	 * If the IFF parameters are not valid, something awful
2247 	 * happened or we are being tormented.
2248 	 */
2249 	if (iffkey_info == NULL) {
2250 		msyslog(LOG_NOTICE, "crypto_bob: scheme unavailable");
2251 		return (XEVNT_ID);
2252 	}
2253 
2254 	/* Initialize pointers that may need freeing in cleanup. */
2255 	sdsa = NULL;
2256 
2257 	dsa = EVP_PKEY_get0_DSA(iffkey_info->pkey);
2258 	DSA_get0_pqg(dsa, &p, &q, &g);
2259 	DSA_get0_key(dsa, NULL, &priv_key);
2260 
2261 	/*
2262 	 * Extract r from the challenge.
2263 	 */
2264 	len = exten_payload_size(ep);
2265 	if (len == 0 || len > MAX_VALLEN)
2266 		return (XEVNT_LEN);
2267 	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2268 		msyslog(LOG_ERR, "crypto_bob: %s",
2269 		    ERR_error_string(ERR_get_error(), NULL));
2270 		return (XEVNT_ERR);
2271 	}
2272 
2273 	/*
2274 	 * Bob rolls random k (0 < k < q), computes y = k + b r mod q
2275 	 * and x = g^k mod p, then sends (y, hash(x)) to Alice.
2276 	 */
2277 	bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new();
2278 	sdsa = DSA_SIG_new();
2279 	BN_rand(bk, len * 8, -1, 1);		/* k */
2280 	BN_mod_mul(bn, priv_key, r, q, bctx); /* b r mod q */
2281 	BN_add(bn, bn, bk);
2282 	BN_mod(bn, bn, q, bctx);		/* k + b r mod q */
2283 	BN_mod_exp(bk, g, bk, p, bctx); /* g^k mod p */
2284 	bighash(bk, bk);
2285 	DSA_SIG_set0(sdsa, bn, bk);
2286 	BN_CTX_free(bctx);
2287 	BN_free(r);
2288 #ifdef DEBUG
2289 	if (debug > 1)
2290 		DSA_print_fp(stdout, dsa, 0);
2291 #endif
2292 
2293 	/*
2294 	 * Encode the values in ASN.1 and sign. The filestamp is from
2295 	 * the local file.
2296 	 */
2297 	len = i2d_DSA_SIG(sdsa, NULL);
2298 	if (len == 0) {
2299 		msyslog(LOG_ERR, "crypto_bob: %s",
2300 		    ERR_error_string(ERR_get_error(), NULL));
2301 		retv = XEVNT_ERR;
2302 		goto cleanup;
2303 	}
2304 	if (len > MAX_VALLEN) {
2305 		msyslog(LOG_ERR, "crypto_bob: signature is too big: %u",
2306 		    len);
2307 		retv = XEVNT_ERR;
2308 		goto cleanup;
2309 	}
2310 	ZERO(*vp);
2311 	tstamp = crypto_time();
2312 	vp->tstamp = htonl(tstamp);
2313 	vp->fstamp = htonl(iffkey_info->fstamp);
2314 	vp->vallen = htonl(len);
2315 	ptr = emalloc(len);
2316 	vp->ptr = ptr;
2317 	i2d_DSA_SIG(sdsa, &ptr);
2318 	if (0 == tstamp) {
2319 		retv = XEVNT_OK;
2320 		goto cleanup;
2321 	}
2322 
2323 	/* XXX: more validation to make sure the sign fits... */
2324 	vp->sig = emalloc(sign_siglen);
2325 	ctx = digest_ctx;
2326 	EVP_SignInit(ctx, sign_digest);
2327 	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2328 	EVP_SignUpdate(ctx, vp->ptr, len);
2329 	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2330 		INSIST(len <= sign_siglen);
2331 		vp->siglen = htonl(len);
2332 	}
2333 	retv = XEVNT_OK;
2334 
2335     cleanup:
2336 	DSA_SIG_free(sdsa);
2337 	return retv;
2338 }
2339 
2340 
2341 /*
2342  * crypto_iff - verify Bob's response to Alice's challenge
2343  *
2344  * Returns
2345  * XEVNT_OK	success
2346  * XEVNT_FSP	bad filestamp
2347  * XEVNT_ID	bad or missing group key
2348  * XEVNT_PUB	bad or missing public key
2349  */
2350 int
2351 crypto_iff(
2352 	struct exten *ep,	/* extension pointer */
2353 	struct peer *peer	/* peer structure pointer */
2354 	)
2355 {
2356 	const DSA *dsa;		/* IFF parameters */
2357 	BN_CTX	*bctx;		/* BIGNUM context */
2358 	DSA_SIG	*sdsa;		/* DSA parameters */
2359 	BIGNUM	*bn, *bk;
2360 	u_int	len;
2361 	const u_char *ptr;
2362 	int	temp;
2363 	const BIGNUM *p, *g;
2364 	const BIGNUM *r, *s;
2365 	const BIGNUM *pub_key;
2366 
2367 	/*
2368 	 * If the IFF parameters are not valid or no challenge was sent,
2369 	 * something awful happened or we are being tormented.
2370 	 */
2371 	if (peer->ident_pkey == NULL) {
2372 		msyslog(LOG_NOTICE, "crypto_iff: scheme unavailable");
2373 		return (XEVNT_ID);
2374 	}
2375 	if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) {
2376 		msyslog(LOG_NOTICE, "crypto_iff: invalid filestamp %u",
2377 		    ntohl(ep->fstamp));
2378 		return (XEVNT_FSP);
2379 	}
2380 	if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) {
2381 		msyslog(LOG_NOTICE, "crypto_iff: defective key");
2382 		return (XEVNT_PUB);
2383 	}
2384 	if (peer->iffval == NULL) {
2385 		msyslog(LOG_NOTICE, "crypto_iff: missing challenge");
2386 		return (XEVNT_ID);
2387 	}
2388 
2389 	/*
2390 	 * Extract the k + b r and g^k values from the response.
2391 	 */
2392 	bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new();
2393 	len = ntohl(ep->vallen);
2394 	ptr = (u_char *)ep->pkt;
2395 	if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) {
2396 		BN_free(bn); BN_free(bk); BN_CTX_free(bctx);
2397 		msyslog(LOG_ERR, "crypto_iff: %s",
2398 		    ERR_error_string(ERR_get_error(), NULL));
2399 		return (XEVNT_ERR);
2400 	}
2401 
2402 	/*
2403 	 * Compute g^(k + b r) g^(q - b)r mod p.
2404 	 */
2405 	DSA_get0_key(dsa, &pub_key, NULL);
2406 	DSA_get0_pqg(dsa, &p, NULL, &g);
2407 	DSA_SIG_get0(sdsa, &r, &s);
2408 	BN_mod_exp(bn, pub_key, peer->iffval, p, bctx);
2409 	BN_mod_exp(bk, g, r, p, bctx);
2410 	BN_mod_mul(bn, bn, bk, p, bctx);
2411 
2412 	/*
2413 	 * Verify the hash of the result matches hash(x).
2414 	 */
2415 	bighash(bn, bn);
2416 	temp = BN_cmp(bn, s);
2417 	BN_free(bn); BN_free(bk); BN_CTX_free(bctx);
2418 	BN_free(peer->iffval);
2419 	peer->iffval = NULL;
2420 	DSA_SIG_free(sdsa);
2421 	if (temp == 0)
2422 		return (XEVNT_OK);
2423 
2424 	msyslog(LOG_NOTICE, "crypto_iff: identity not verified");
2425 	return (XEVNT_ID);
2426 }
2427 
2428 
2429 /*
2430  ***********************************************************************
2431  *								       *
2432  * The following routines implement the Guillou-Quisquater (GQ)        *
2433  * identity scheme                                                     *
2434  *								       *
2435  ***********************************************************************
2436  *
2437  * The Guillou-Quisquater (GQ) identity scheme is intended for use when
2438  * the certificate can be used to convey public parameters. The scheme
2439  * uses a X509v3 certificate extension field do convey the public key of
2440  * a private key known only to servers. There are two kinds of files:
2441  * encrypted server files that contain private and public values and
2442  * nonencrypted client files that contain only public values. New
2443  * generations of server files must be securely transmitted to all
2444  * servers of the group; client files can be distributed by any means.
2445  * The scheme is self contained and independent of new generations of
2446  * host keys and sign keys. The scheme is self contained and independent
2447  * of new generations of host keys and sign keys.
2448  *
2449  * The GQ parameters hide in a RSA cuckoo structure which uses the same
2450  * parameters. The values are used by an identity scheme based on RSA
2451  * cryptography and described in Stimson p. 300 (with errors). The 512-
2452  * bit public modulus is n = p q, where p and q are secret large primes.
2453  * The TA rolls private random group key b as RSA exponent. These values
2454  * are known to all group members.
2455  *
2456  * When rolling new certificates, a server recomputes the private and
2457  * public keys. The private key u is a random roll, while the public key
2458  * is the inverse obscured by the group key v = (u^-1)^b. These values
2459  * replace the private and public keys normally generated by the RSA
2460  * scheme. Alice challenges Bob to confirm identity using the protocol
2461  * described below.
2462  *
2463  * How it works
2464  *
2465  * The scheme goes like this. Both Alice and Bob have the same modulus n
2466  * and some random b as the group key. These values are computed and
2467  * distributed in advance via secret means, although only the group key
2468  * b is truly secret. Each has a private random private key u and public
2469  * key (u^-1)^b, although not necessarily the same ones. Bob and Alice
2470  * can regenerate the key pair from time to time without affecting
2471  * operations. The public key is conveyed on the certificate in an
2472  * extension field; the private key is never revealed.
2473  *
2474  * Alice rolls new random challenge r and sends to Bob in the GQ
2475  * request message. Bob rolls new random k, then computes y = k u^r mod
2476  * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response
2477  * message. Besides making the response shorter, the hash makes it
2478  * effectivey impossible for an intruder to solve for b by observing
2479  * a number of these messages.
2480  *
2481  * Alice receives the response and computes y^b v^r mod n. After a bit
2482  * of algebra, this simplifies to k^b. If the hash of this result
2483  * matches hash(x), Alice knows that Bob has the group key b. The signed
2484  * response binds this knowledge to Bob's private key and the public key
2485  * previously received in his certificate.
2486  *
2487  * crypto_alice2 - construct Alice's challenge in GQ scheme
2488  *
2489  * Returns
2490  * XEVNT_OK	success
2491  * XEVNT_ID	bad or missing group key
2492  * XEVNT_PUB	bad or missing public key
2493  */
2494 static int
2495 crypto_alice2(
2496 	struct peer *peer,	/* peer pointer */
2497 	struct value *vp	/* value pointer */
2498 	)
2499 {
2500 	const RSA *rsa;	/* GQ parameters */
2501 	BN_CTX	*bctx;		/* BIGNUM context */
2502 	EVP_MD_CTX *ctx;	/* signature context */
2503 	tstamp_t tstamp;
2504 	u_int	len;
2505 	const BIGNUM *n;
2506 
2507 	/*
2508 	 * The identity parameters must have correct format and content.
2509 	 */
2510 	if (peer->ident_pkey == NULL)
2511 		return (XEVNT_ID);
2512 
2513 	if ((rsa = EVP_PKEY_get0_RSA(peer->ident_pkey->pkey)) == NULL) {
2514 		msyslog(LOG_NOTICE, "crypto_alice2: defective key");
2515 		return (XEVNT_PUB);
2516 	}
2517 
2518 	/*
2519 	 * Roll new random r (0 < r < n).
2520 	 */
2521 	if (peer->iffval != NULL)
2522 		BN_free(peer->iffval);
2523 	peer->iffval = BN_new();
2524 	RSA_get0_key(rsa, &n, NULL, NULL);
2525 	len = BN_num_bytes(n);
2526 	BN_rand(peer->iffval, len * 8, -1, 1);	/* r mod n */
2527 	bctx = BN_CTX_new();
2528 	BN_mod(peer->iffval, peer->iffval, n, bctx);
2529 	BN_CTX_free(bctx);
2530 
2531 	/*
2532 	 * Sign and send to Bob. The filestamp is from the local file.
2533 	 */
2534 	memset(vp, 0, sizeof(struct value));
2535 	tstamp = crypto_time();
2536 	vp->tstamp = htonl(tstamp);
2537 	vp->fstamp = htonl(peer->ident_pkey->fstamp);
2538 	vp->vallen = htonl(len);
2539 	vp->ptr = emalloc(len);
2540 	BN_bn2bin(peer->iffval, vp->ptr);
2541 	if (tstamp == 0)
2542 		return (XEVNT_OK);
2543 
2544 	vp->sig = emalloc(sign_siglen);
2545 	ctx = digest_ctx;
2546 	EVP_SignInit(ctx, sign_digest);
2547 	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2548 	EVP_SignUpdate(ctx, vp->ptr, len);
2549 	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2550 		INSIST(len <= sign_siglen);
2551 		vp->siglen = htonl(len);
2552 	}
2553 	return (XEVNT_OK);
2554 }
2555 
2556 
2557 /*
2558  * crypto_bob2 - construct Bob's response to Alice's challenge
2559  *
2560  * Returns
2561  * XEVNT_OK	success
2562  * XEVNT_ERR	protocol error
2563  * XEVNT_ID	bad or missing group key
2564  */
2565 static int
2566 crypto_bob2(
2567 	struct exten *ep,	/* extension pointer */
2568 	struct value *vp	/* value pointer */
2569 	)
2570 {
2571 	const RSA *rsa;		/* GQ parameters */
2572 	DSA_SIG	*sdsa;		/* DSA parameters */
2573 	BN_CTX	*bctx;		/* BIGNUM context */
2574 	EVP_MD_CTX *ctx;	/* signature context */
2575 	tstamp_t tstamp;	/* NTP timestamp */
2576 	BIGNUM	*r, *k, *g, *y;
2577 	u_char	*ptr;
2578 	u_int	len;
2579 	int	s_len;
2580 	const BIGNUM *n, *p, *e;
2581 
2582 	/*
2583 	 * If the GQ parameters are not valid, something awful
2584 	 * happened or we are being tormented.
2585 	 */
2586 	if (gqkey_info == NULL) {
2587 		msyslog(LOG_NOTICE, "crypto_bob2: scheme unavailable");
2588 		return (XEVNT_ID);
2589 	}
2590 	rsa = EVP_PKEY_get0_RSA(gqkey_info->pkey);
2591 	RSA_get0_key(rsa, &n, &p, &e);
2592 
2593 	/*
2594 	 * Extract r from the challenge.
2595 	 */
2596 	len = exten_payload_size(ep);
2597 	if (len == 0 || len > MAX_VALLEN)
2598 		return (XEVNT_LEN);
2599 	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2600 		msyslog(LOG_ERR, "crypto_bob2: %s",
2601 		    ERR_error_string(ERR_get_error(), NULL));
2602 		return (XEVNT_ERR);
2603 	}
2604 
2605 	/*
2606 	 * Bob rolls random k (0 < k < n), computes y = k u^r mod n and
2607 	 * x = k^b mod n, then sends (y, hash(x)) to Alice.
2608 	 */
2609 	bctx = BN_CTX_new(); k = BN_new(); g = BN_new(); y = BN_new();
2610 	sdsa = DSA_SIG_new();
2611 	BN_rand(k, len * 8, -1, 1);		/* k */
2612 	BN_mod(k, k, n, bctx);
2613 	BN_mod_exp(y, p, r, n, bctx); /* u^r mod n */
2614 	BN_mod_mul(y, k, y, n, bctx);	/* k u^r mod n */
2615 	BN_mod_exp(g, k, e, n, bctx); /* k^b mod n */
2616 	bighash(g, g);
2617 	DSA_SIG_set0(sdsa, y, g);
2618 	BN_CTX_free(bctx);
2619 	BN_free(r); BN_free(k);
2620 #ifdef DEBUG
2621 	if (debug > 1)
2622 		RSA_print_fp(stdout, rsa, 0);
2623 #endif
2624 
2625 	/*
2626 	 * Encode the values in ASN.1 and sign. The filestamp is from
2627 	 * the local file.
2628 	 */
2629 	len = s_len = i2d_DSA_SIG(sdsa, NULL);
2630 	if (s_len <= 0) {
2631 		msyslog(LOG_ERR, "crypto_bob2: %s",
2632 		    ERR_error_string(ERR_get_error(), NULL));
2633 		DSA_SIG_free(sdsa);
2634 		return (XEVNT_ERR);
2635 	}
2636 	memset(vp, 0, sizeof(struct value));
2637 	tstamp = crypto_time();
2638 	vp->tstamp = htonl(tstamp);
2639 	vp->fstamp = htonl(gqkey_info->fstamp);
2640 	vp->vallen = htonl(len);
2641 	ptr = emalloc(len);
2642 	vp->ptr = ptr;
2643 	i2d_DSA_SIG(sdsa, &ptr);
2644 	DSA_SIG_free(sdsa);
2645 	if (tstamp == 0)
2646 		return (XEVNT_OK);
2647 
2648 	vp->sig = emalloc(sign_siglen);
2649 	ctx = digest_ctx;
2650 	EVP_SignInit(ctx, sign_digest);
2651 	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2652 	EVP_SignUpdate(ctx, vp->ptr, len);
2653 	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2654 		INSIST(len <= sign_siglen);
2655 		vp->siglen = htonl(len);
2656 	}
2657 	return (XEVNT_OK);
2658 }
2659 
2660 
2661 /*
2662  * crypto_gq - verify Bob's response to Alice's challenge
2663  *
2664  * Returns
2665  * XEVNT_OK	success
2666  * XEVNT_ERR	protocol error
2667  * XEVNT_FSP	bad filestamp
2668  * XEVNT_ID	bad or missing group keys
2669  * XEVNT_PUB	bad or missing public key
2670  */
2671 int
2672 crypto_gq(
2673 	struct exten *ep,	/* extension pointer */
2674 	struct peer *peer	/* peer structure pointer */
2675 	)
2676 {
2677 	const RSA *rsa;		/* GQ parameters */
2678 	BN_CTX	*bctx;		/* BIGNUM context */
2679 	DSA_SIG	*sdsa;		/* RSA signature context fake */
2680 	BIGNUM	*y, *v;
2681 	const u_char *ptr;
2682 	long	len;
2683 	u_int	temp;
2684 	const BIGNUM *n, *e;
2685 	const BIGNUM *r, *s;
2686 
2687 	/*
2688 	 * If the GQ parameters are not valid or no challenge was sent,
2689 	 * something awful happened or we are being tormented. Note that
2690 	 * the filestamp on the local key file can be greater than on
2691 	 * the remote parameter file if the keys have been refreshed.
2692 	 */
2693 	if (peer->ident_pkey == NULL) {
2694 		msyslog(LOG_NOTICE, "crypto_gq: scheme unavailable");
2695 		return (XEVNT_ID);
2696 	}
2697 	if (ntohl(ep->fstamp) < peer->ident_pkey->fstamp) {
2698 		msyslog(LOG_NOTICE, "crypto_gq: invalid filestamp %u",
2699 		    ntohl(ep->fstamp));
2700 		return (XEVNT_FSP);
2701 	}
2702 	if ((rsa = EVP_PKEY_get0_RSA(peer->ident_pkey->pkey)) == NULL) {
2703 		msyslog(LOG_NOTICE, "crypto_gq: defective key");
2704 		return (XEVNT_PUB);
2705 	}
2706 	RSA_get0_key(rsa, &n, NULL, &e);
2707 	if (peer->iffval == NULL) {
2708 		msyslog(LOG_NOTICE, "crypto_gq: missing challenge");
2709 		return (XEVNT_ID);
2710 	}
2711 
2712 	/*
2713 	 * Extract the y = k u^r and hash(x = k^b) values from the
2714 	 * response.
2715 	 */
2716 	bctx = BN_CTX_new(); y = BN_new(); v = BN_new();
2717 	len = ntohl(ep->vallen);
2718 	ptr = (u_char *)ep->pkt;
2719 	if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) {
2720 		BN_CTX_free(bctx); BN_free(y); BN_free(v);
2721 		msyslog(LOG_ERR, "crypto_gq: %s",
2722 		    ERR_error_string(ERR_get_error(), NULL));
2723 		return (XEVNT_ERR);
2724 	}
2725 	DSA_SIG_get0(sdsa, &r, &s);
2726 
2727 	/*
2728 	 * Compute v^r y^b mod n.
2729 	 */
2730 	if (peer->grpkey == NULL) {
2731 		msyslog(LOG_NOTICE, "crypto_gq: missing group key");
2732 		return (XEVNT_ID);
2733 	}
2734 	BN_mod_exp(v, peer->grpkey, peer->iffval, n, bctx);
2735 						/* v^r mod n */
2736 	BN_mod_exp(y, r, e, n, bctx); /* y^b mod n */
2737 	BN_mod_mul(y, v, y, n, bctx);	/* v^r y^b mod n */
2738 
2739 	/*
2740 	 * Verify the hash of the result matches hash(x).
2741 	 */
2742 	bighash(y, y);
2743 	temp = BN_cmp(y, s);
2744 	BN_CTX_free(bctx); BN_free(y); BN_free(v);
2745 	BN_free(peer->iffval);
2746 	peer->iffval = NULL;
2747 	DSA_SIG_free(sdsa);
2748 	if (temp == 0)
2749 		return (XEVNT_OK);
2750 
2751 	msyslog(LOG_NOTICE, "crypto_gq: identity not verified");
2752 	return (XEVNT_ID);
2753 }
2754 
2755 
2756 /*
2757  ***********************************************************************
2758  *								       *
2759  * The following routines implement the Mu-Varadharajan (MV) identity  *
2760  * scheme                                                              *
2761  *								       *
2762  ***********************************************************************
2763  *
2764  * The Mu-Varadharajan (MV) cryptosystem was originally intended when
2765  * servers broadcast messages to clients, but clients never send
2766  * messages to servers. There is one encryption key for the server and a
2767  * separate decryption key for each client. It operated something like a
2768  * pay-per-view satellite broadcasting system where the session key is
2769  * encrypted by the broadcaster and the decryption keys are held in a
2770  * tamperproof set-top box.
2771  *
2772  * The MV parameters and private encryption key hide in a DSA cuckoo
2773  * structure which uses the same parameters, but generated in a
2774  * different way. The values are used in an encryption scheme similar to
2775  * El Gamal cryptography and a polynomial formed from the expansion of
2776  * product terms (x - x[j]), as described in Mu, Y., and V.
2777  * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001,
2778  * 223-231. The paper has significant errors and serious omissions.
2779  *
2780  * Let q be the product of n distinct primes s1[j] (j = 1...n), where
2781  * each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so
2782  * that q and each s1[j] divide p - 1 and p has M = n * m + 1
2783  * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1)
2784  * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then
2785  * project into Zp* as exponents of g. Sometimes we have to compute an
2786  * inverse b^-1 of random b in Zq, but for that purpose we require
2787  * gcd(b, q) = 1. We expect M to be in the 500-bit range and n
2788  * relatively small, like 30. These are the parameters of the scheme and
2789  * they are expensive to compute.
2790  *
2791  * We set up an instance of the scheme as follows. A set of random
2792  * values x[j] mod q (j = 1...n), are generated as the zeros of a
2793  * polynomial of order n. The product terms (x - x[j]) are expanded to
2794  * form coefficients a[i] mod q (i = 0...n) in powers of x. These are
2795  * used as exponents of the generator g mod p to generate the private
2796  * encryption key A. The pair (gbar, ghat) of public server keys and the
2797  * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used
2798  * to construct the decryption keys. The devil is in the details.
2799  *
2800  * This routine generates a private server encryption file including the
2801  * private encryption key E and partial decryption keys gbar and ghat.
2802  * It then generates public client decryption files including the public
2803  * keys xbar[j] and xhat[j] for each client j. The partial decryption
2804  * files are used to compute the inverse of E. These values are suitably
2805  * blinded so secrets are not revealed.
2806  *
2807  * The distinguishing characteristic of this scheme is the capability to
2808  * revoke keys. Included in the calculation of E, gbar and ghat is the
2809  * product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is
2810  * subsequently removed from the product and E, gbar and ghat
2811  * recomputed, the jth client will no longer be able to compute E^-1 and
2812  * thus unable to decrypt the messageblock.
2813  *
2814  * How it works
2815  *
2816  * The scheme goes like this. Bob has the server values (p, E, q, gbar,
2817  * ghat) and Alice has the client values (p, xbar, xhat).
2818  *
2819  * Alice rolls new random nonce r mod p and sends to Bob in the MV
2820  * request message. Bob rolls random nonce k mod q, encrypts y = r E^k
2821  * mod p and sends (y, gbar^k, ghat^k) to Alice.
2822  *
2823  * Alice receives the response and computes the inverse (E^k)^-1 from
2824  * the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then
2825  * decrypts y and verifies it matches the original r. The signed
2826  * response binds this knowledge to Bob's private key and the public key
2827  * previously received in his certificate.
2828  *
2829  * crypto_alice3 - construct Alice's challenge in MV scheme
2830  *
2831  * Returns
2832  * XEVNT_OK	success
2833  * XEVNT_ID	bad or missing group key
2834  * XEVNT_PUB	bad or missing public key
2835  */
2836 static int
2837 crypto_alice3(
2838 	struct peer *peer,	/* peer pointer */
2839 	struct value *vp	/* value pointer */
2840 	)
2841 {
2842 	const DSA *dsa;		/* MV parameters */
2843 	BN_CTX	*bctx;		/* BIGNUM context */
2844 	EVP_MD_CTX *ctx;	/* signature context */
2845 	tstamp_t tstamp;
2846 	u_int	len;
2847 	const BIGNUM *p;
2848 
2849 	/*
2850 	 * The identity parameters must have correct format and content.
2851 	 */
2852 	if (peer->ident_pkey == NULL)
2853 		return (XEVNT_ID);
2854 
2855 	if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) {
2856 		msyslog(LOG_NOTICE, "crypto_alice3: defective key");
2857 		return (XEVNT_PUB);
2858 	}
2859 	DSA_get0_pqg(dsa, &p, NULL, NULL);
2860 
2861 	/*
2862 	 * Roll new random r (0 < r < q).
2863 	 */
2864 	if (peer->iffval != NULL)
2865 		BN_free(peer->iffval);
2866 	peer->iffval = BN_new();
2867 	len = BN_num_bytes(p);
2868 	BN_rand(peer->iffval, len * 8, -1, 1);	/* r mod p */
2869 	bctx = BN_CTX_new();
2870 	BN_mod(peer->iffval, peer->iffval, p, bctx);
2871 	BN_CTX_free(bctx);
2872 
2873 	/*
2874 	 * Sign and send to Bob. The filestamp is from the local file.
2875 	 */
2876 	memset(vp, 0, sizeof(struct value));
2877 	tstamp = crypto_time();
2878 	vp->tstamp = htonl(tstamp);
2879 	vp->fstamp = htonl(peer->ident_pkey->fstamp);
2880 	vp->vallen = htonl(len);
2881 	vp->ptr = emalloc(len);
2882 	BN_bn2bin(peer->iffval, vp->ptr);
2883 	if (tstamp == 0)
2884 		return (XEVNT_OK);
2885 
2886 	vp->sig = emalloc(sign_siglen);
2887 	ctx = digest_ctx;
2888 	EVP_SignInit(ctx, sign_digest);
2889 	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2890 	EVP_SignUpdate(ctx, vp->ptr, len);
2891 	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2892 		INSIST(len <= sign_siglen);
2893 		vp->siglen = htonl(len);
2894 	}
2895 	return (XEVNT_OK);
2896 }
2897 
2898 
2899 /*
2900  * crypto_bob3 - construct Bob's response to Alice's challenge
2901  *
2902  * Returns
2903  * XEVNT_OK	success
2904  * XEVNT_ERR	protocol error
2905  */
2906 static int
2907 crypto_bob3(
2908 	struct exten *ep,	/* extension pointer */
2909 	struct value *vp	/* value pointer */
2910 	)
2911 {
2912 	const DSA *dsa;		/* MV parameters */
2913 	DSA	*sdsa;		/* DSA signature context fake */
2914 	BN_CTX	*bctx;		/* BIGNUM context */
2915 	EVP_MD_CTX *ctx;	/* signature context */
2916 	tstamp_t tstamp;	/* NTP timestamp */
2917 	BIGNUM	*r, *k, *u;
2918 	u_char	*ptr;
2919 	u_int	len;
2920 	const BIGNUM *p, *q, *g;
2921 	const BIGNUM *pub_key, *priv_key;
2922 	BIGNUM *sp, *sq, *sg;
2923 
2924 	/*
2925 	 * If the MV parameters are not valid, something awful
2926 	 * happened or we are being tormented.
2927 	 */
2928 	if (mvkey_info == NULL) {
2929 		msyslog(LOG_NOTICE, "crypto_bob3: scheme unavailable");
2930 		return (XEVNT_ID);
2931 	}
2932 	dsa = EVP_PKEY_get0_DSA(mvkey_info->pkey);
2933 	DSA_get0_pqg(dsa, &p, &q, &g);
2934 	DSA_get0_key(dsa, &pub_key, &priv_key);
2935 
2936 	/*
2937 	 * Extract r from the challenge.
2938 	 */
2939 	len = exten_payload_size(ep);
2940 	if (len == 0 || len > MAX_VALLEN)
2941 		return (XEVNT_LEN);
2942 	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2943 		msyslog(LOG_ERR, "crypto_bob3: %s",
2944 		    ERR_error_string(ERR_get_error(), NULL));
2945 		return (XEVNT_ERR);
2946 	}
2947 
2948 	/*
2949 	 * Bob rolls random k (0 < k < q), making sure it is not a
2950 	 * factor of q. He then computes y = r A^k and sends (y, gbar^k,
2951 	 * and ghat^k) to Alice.
2952 	 */
2953 	bctx = BN_CTX_new(); k = BN_new(); u = BN_new();
2954 	sdsa = DSA_new();
2955 	sp = BN_new(); sq = BN_new(); sg = BN_new();
2956 	while (1) {
2957 		BN_rand(k, BN_num_bits(q), 0, 0);
2958 		BN_mod(k, k, q, bctx);
2959 		BN_gcd(u, k, q, bctx);
2960 		if (BN_is_one(u))
2961 			break;
2962 	}
2963 	BN_mod_exp(u, g, k, p, bctx); /* A^k r */
2964 	BN_mod_mul(sp, u, r, p, bctx);
2965 	BN_mod_exp(sq, priv_key, k, p, bctx); /* gbar */
2966 	BN_mod_exp(sg, pub_key, k, p, bctx); /* ghat */
2967 	DSA_set0_key(sdsa, BN_dup(pub_key), NULL);
2968 	DSA_set0_pqg(sdsa, sp, sq, sg);
2969 	BN_CTX_free(bctx); BN_free(k); BN_free(r); BN_free(u);
2970 #ifdef DEBUG
2971 	if (debug > 1)
2972 		DSA_print_fp(stdout, sdsa, 0);
2973 #endif
2974 
2975 	/*
2976 	 * Encode the values in ASN.1 and sign. The filestamp is from
2977 	 * the local file.
2978 	 */
2979 	memset(vp, 0, sizeof(struct value));
2980 	tstamp = crypto_time();
2981 	vp->tstamp = htonl(tstamp);
2982 	vp->fstamp = htonl(mvkey_info->fstamp);
2983 	len = i2d_DSAparams(sdsa, NULL);
2984 	if (len == 0) {
2985 		msyslog(LOG_ERR, "crypto_bob3: %s",
2986 		    ERR_error_string(ERR_get_error(), NULL));
2987 		DSA_free(sdsa);
2988 		return (XEVNT_ERR);
2989 	}
2990 	vp->vallen = htonl(len);
2991 	ptr = emalloc(len);
2992 	vp->ptr = ptr;
2993 	i2d_DSAparams(sdsa, &ptr);
2994 	DSA_free(sdsa);
2995 	if (tstamp == 0)
2996 		return (XEVNT_OK);
2997 
2998 	vp->sig = emalloc(sign_siglen);
2999 	ctx = digest_ctx;
3000 	EVP_SignInit(ctx, sign_digest);
3001 	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
3002 	EVP_SignUpdate(ctx, vp->ptr, len);
3003 	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
3004 		INSIST(len <= sign_siglen);
3005 		vp->siglen = htonl(len);
3006 	}
3007 	return (XEVNT_OK);
3008 }
3009 
3010 
3011 /*
3012  * crypto_mv - verify Bob's response to Alice's challenge
3013  *
3014  * Returns
3015  * XEVNT_OK	success
3016  * XEVNT_ERR	protocol error
3017  * XEVNT_FSP	bad filestamp
3018  * XEVNT_ID	bad or missing group key
3019  * XEVNT_PUB	bad or missing public key
3020  */
3021 int
3022 crypto_mv(
3023 	struct exten *ep,	/* extension pointer */
3024 	struct peer *peer	/* peer structure pointer */
3025 	)
3026 {
3027 	const DSA *dsa;		/* MV parameters */
3028 	DSA	*sdsa;		/* DSA parameters */
3029 	BN_CTX	*bctx;		/* BIGNUM context */
3030 	BIGNUM	*k, *u, *v;
3031 	u_int	len;
3032 	const u_char *ptr;
3033 	int	temp;
3034 	const BIGNUM *p;
3035 	const BIGNUM *pub_key, *priv_key;
3036 	const BIGNUM *sp, *sq, *sg;
3037 
3038 	/*
3039 	 * If the MV parameters are not valid or no challenge was sent,
3040 	 * something awful happened or we are being tormented.
3041 	 */
3042 	if (peer->ident_pkey == NULL) {
3043 		msyslog(LOG_NOTICE, "crypto_mv: scheme unavailable");
3044 		return (XEVNT_ID);
3045 	}
3046 	if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) {
3047 		msyslog(LOG_NOTICE, "crypto_mv: invalid filestamp %u",
3048 		    ntohl(ep->fstamp));
3049 		return (XEVNT_FSP);
3050 	}
3051 	if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) {
3052 		msyslog(LOG_NOTICE, "crypto_mv: defective key");
3053 		return (XEVNT_PUB);
3054 	}
3055 	DSA_get0_pqg(dsa, &p, NULL, NULL);
3056 	DSA_get0_key(dsa, &pub_key, &priv_key);
3057 	if (peer->iffval == NULL) {
3058 		msyslog(LOG_NOTICE, "crypto_mv: missing challenge");
3059 		return (XEVNT_ID);
3060 	}
3061 
3062 	/*
3063 	 * Extract the y, gbar and ghat values from the response.
3064 	 */
3065 	bctx = BN_CTX_new(); k = BN_new(); u = BN_new(); v = BN_new();
3066 	len = ntohl(ep->vallen);
3067 	ptr = (u_char *)ep->pkt;
3068 	if ((sdsa = d2i_DSAparams(NULL, &ptr, len)) == NULL) {
3069 		msyslog(LOG_ERR, "crypto_mv: %s",
3070 		    ERR_error_string(ERR_get_error(), NULL));
3071 		return (XEVNT_ERR);
3072 	}
3073 	DSA_get0_pqg(sdsa, &sp, &sq, &sg);
3074 
3075 	/*
3076 	 * Compute (gbar^xhat ghat^xbar) mod p.
3077 	 */
3078 	BN_mod_exp(u, sq, pub_key, p, bctx);
3079 	BN_mod_exp(v, sg, priv_key, p, bctx);
3080 	BN_mod_mul(u, u, v, p, bctx);
3081 	BN_mod_mul(u, u, sp, p, bctx);
3082 
3083 	/*
3084 	 * The result should match r.
3085 	 */
3086 	temp = BN_cmp(u, peer->iffval);
3087 	BN_CTX_free(bctx); BN_free(k); BN_free(u); BN_free(v);
3088 	BN_free(peer->iffval);
3089 	peer->iffval = NULL;
3090 	DSA_free(sdsa);
3091 	if (temp == 0)
3092 		return (XEVNT_OK);
3093 
3094 	msyslog(LOG_NOTICE, "crypto_mv: identity not verified");
3095 	return (XEVNT_ID);
3096 }
3097 
3098 
3099 /*
3100  ***********************************************************************
3101  *								       *
3102  * The following routines are used to manipulate certificates          *
3103  *								       *
3104  ***********************************************************************
3105  */
3106 /*
3107  * cert_sign - sign x509 certificate equest and update value structure.
3108  *
3109  * The certificate request includes a copy of the host certificate,
3110  * which includes the version number, subject name and public key of the
3111  * host. The resulting certificate includes these values plus the
3112  * serial number, issuer name and valid interval of the server. The
3113  * valid interval extends from the current time to the same time one
3114  * year hence. This may extend the life of the signed certificate beyond
3115  * that of the signer certificate.
3116  *
3117  * It is convenient to use the NTP seconds of the current time as the
3118  * serial number. In the value structure the timestamp is the current
3119  * time and the filestamp is taken from the extension field. Note this
3120  * routine is called only when the client clock is synchronized to a
3121  * proventic source, so timestamp comparisons are valid.
3122  *
3123  * The host certificate is valid from the time it was generated for a
3124  * period of one year. A signed certificate is valid from the time of
3125  * signature for a period of one year, but only the host certificate (or
3126  * sign certificate if used) is actually used to encrypt and decrypt
3127  * signatures. The signature trail is built from the client via the
3128  * intermediate servers to the trusted server. Each signature on the
3129  * trail must be valid at the time of signature, but it could happen
3130  * that a signer certificate expire before the signed certificate, which
3131  * remains valid until its expiration.
3132  *
3133  * Returns
3134  * XEVNT_OK	success
3135  * XEVNT_CRT	bad or missing certificate
3136  * XEVNT_PER	host certificate expired
3137  * XEVNT_PUB	bad or missing public key
3138  * XEVNT_VFY	certificate not verified
3139  */
3140 static int
3141 cert_sign(
3142 	struct exten *ep,	/* extension field pointer */
3143 	struct value *vp	/* value pointer */
3144 	)
3145 {
3146 	X509	*req;		/* X509 certificate request */
3147 	X509	*cert;		/* X509 certificate */
3148 	X509_EXTENSION *ext;	/* certificate extension */
3149 	ASN1_INTEGER *serial;	/* serial number */
3150 	X509_NAME *subj;	/* distinguished (common) name */
3151 	EVP_PKEY *pkey;		/* public key */
3152 	EVP_MD_CTX *ctx;	/* message digest context */
3153 	tstamp_t tstamp;	/* NTP timestamp */
3154 	struct calendar tscal;
3155 	u_int	len;
3156 	const u_char *cptr;
3157 	u_char *ptr;
3158 	int	i, temp;
3159 
3160 	/*
3161 	 * Decode ASN.1 objects and construct certificate structure.
3162 	 * Make sure the system clock is synchronized to a proventic
3163 	 * source.
3164 	 */
3165 	tstamp = crypto_time();
3166 	if (tstamp == 0)
3167 		return (XEVNT_TSP);
3168 
3169 	len = exten_payload_size(ep);
3170 	if (len == 0 || len > MAX_VALLEN)
3171 		return (XEVNT_LEN);
3172 	cptr = (void *)ep->pkt;
3173 	if ((req = d2i_X509(NULL, &cptr, len)) == NULL) {
3174 		msyslog(LOG_ERR, "cert_sign: %s",
3175 		    ERR_error_string(ERR_get_error(), NULL));
3176 		return (XEVNT_CRT);
3177 	}
3178 	/*
3179 	 * Extract public key and check for errors.
3180 	 */
3181 	if ((pkey = X509_get_pubkey(req)) == NULL) {
3182 		msyslog(LOG_ERR, "cert_sign: %s",
3183 		    ERR_error_string(ERR_get_error(), NULL));
3184 		X509_free(req);
3185 		return (XEVNT_PUB);
3186 	}
3187 
3188 	/*
3189 	 * Generate X509 certificate signed by this server. If this is a
3190 	 * trusted host, the issuer name is the group name; otherwise,
3191 	 * it is the host name. Also copy any extensions that might be
3192 	 * present.
3193 	 */
3194 	cert = X509_new();
3195 	X509_set_version(cert, X509_get_version(req));
3196 	serial = ASN1_INTEGER_new();
3197 	ASN1_INTEGER_set(serial, tstamp);
3198 	X509_set_serialNumber(cert, serial);
3199 	X509_gmtime_adj(X509_getm_notBefore(cert), 0L);
3200 	X509_gmtime_adj(X509_getm_notAfter(cert), YEAR);
3201 	subj = X509_get_issuer_name(cert);
3202 	X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
3203 	    hostval.ptr, strlen((const char *)hostval.ptr), -1, 0);
3204 	subj = X509_get_subject_name(req);
3205 	X509_set_subject_name(cert, subj);
3206 	X509_set_pubkey(cert, pkey);
3207 	temp = X509_get_ext_count(req);
3208 	for (i = 0; i < temp; i++) {
3209 		ext = X509_get_ext(req, i);
3210 		INSIST(X509_add_ext(cert, ext, -1));
3211 	}
3212 	X509_free(req);
3213 
3214 	/*
3215 	 * Sign and verify the client certificate, but only if the host
3216 	 * certificate has not expired.
3217 	 */
3218 	(void)ntpcal_ntp_to_date(&tscal, tstamp, NULL);
3219 	if ((calcomp(&tscal, &(cert_host->first)) < 0)
3220 	|| (calcomp(&tscal, &(cert_host->last)) > 0)) {
3221 		X509_free(cert);
3222 		return (XEVNT_PER);
3223 	}
3224 	X509_sign(cert, sign_pkey, sign_digest);
3225 	if (X509_verify(cert, sign_pkey) <= 0) {
3226 		msyslog(LOG_ERR, "cert_sign: %s",
3227 		    ERR_error_string(ERR_get_error(), NULL));
3228 		X509_free(cert);
3229 		return (XEVNT_VFY);
3230 	}
3231 	len = i2d_X509(cert, NULL);
3232 
3233 	/*
3234 	 * Build and sign the value structure. We have to sign it here,
3235 	 * since the response has to be returned right away. This is a
3236 	 * clogging hazard.
3237 	 */
3238 	memset(vp, 0, sizeof(struct value));
3239 	vp->tstamp = htonl(tstamp);
3240 	vp->fstamp = ep->fstamp;
3241 	vp->vallen = htonl(len);
3242 	vp->ptr = emalloc(len);
3243 	ptr = vp->ptr;
3244 	i2d_X509(cert, (unsigned char **)(intptr_t)&ptr);
3245 	vp->siglen = 0;
3246 	if (tstamp != 0) {
3247 		vp->sig = emalloc(sign_siglen);
3248 		ctx = digest_ctx;
3249 		EVP_SignInit(ctx, sign_digest);
3250 		EVP_SignUpdate(ctx, (u_char *)vp, 12);
3251 		EVP_SignUpdate(ctx, vp->ptr, len);
3252 		if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
3253 			INSIST(len <= sign_siglen);
3254 			vp->siglen = htonl(len);
3255 		}
3256 	}
3257 #ifdef DEBUG
3258 	if (debug > 1)
3259 		X509_print_fp(stdout, cert);
3260 #endif
3261 	X509_free(cert);
3262 	return (XEVNT_OK);
3263 }
3264 
3265 
3266 /*
3267  * cert_install - install certificate in certificate cache
3268  *
3269  * This routine encodes an extension field into a certificate info/value
3270  * structure. It searches the certificate list for duplicates and
3271  * expunges whichever is older. Finally, it inserts this certificate
3272  * first on the list.
3273  *
3274  * Returns certificate info pointer if valid, NULL if not.
3275  */
3276 struct cert_info *
3277 cert_install(
3278 	struct exten *ep,	/* cert info/value */
3279 	struct peer *peer	/* peer structure */
3280 	)
3281 {
3282 	struct cert_info *cp, *xp, **zp;
3283 
3284 	/*
3285 	 * Parse and validate the signed certificate. If valid,
3286 	 * construct the info/value structure; otherwise, scamper home
3287 	 * empty handed.
3288 	 */
3289 	if ((cp = cert_parse((u_char *)ep->pkt, (long)ntohl(ep->vallen),
3290 	    (tstamp_t)ntohl(ep->fstamp))) == NULL)
3291 		return (NULL);
3292 
3293 	/*
3294 	 * Scan certificate list looking for another certificate with
3295 	 * the same subject and issuer. If another is found with the
3296 	 * same or older filestamp, unlink it and return the goodies to
3297 	 * the heap. If another is found with a later filestamp, discard
3298 	 * the new one and leave the building with the old one.
3299 	 *
3300 	 * Make a note to study this issue again. An earlier certificate
3301 	 * with a long lifetime might be overtaken by a later
3302 	 * certificate with a short lifetime, thus invalidating the
3303 	 * earlier signature. However, we gotta find a way to leak old
3304 	 * stuff from the cache, so we do it anyway.
3305 	 */
3306 	zp = &cinfo;
3307 	for (xp = cinfo; xp != NULL; xp = xp->link) {
3308 		if (strcmp(cp->subject, xp->subject) == 0 &&
3309 		    strcmp(cp->issuer, xp->issuer) == 0) {
3310 			if (ntohl(cp->cert.fstamp) <=
3311 			    ntohl(xp->cert.fstamp)) {
3312 				cert_free(cp);
3313 				cp = xp;
3314 			} else {
3315 				*zp = xp->link;
3316 				cert_free(xp);
3317 				xp = NULL;
3318 			}
3319 			break;
3320 		}
3321 		zp = &xp->link;
3322 	}
3323 	if (xp == NULL) {
3324 		cp->link = cinfo;
3325 		cinfo = cp;
3326 	}
3327 	cp->flags |= CERT_VALID;
3328 	crypto_update();
3329 	return (cp);
3330 }
3331 
3332 
3333 /*
3334  * cert_hike - verify the signature using the issuer public key
3335  *
3336  * Returns
3337  * XEVNT_OK	success
3338  * XEVNT_CRT	bad or missing certificate
3339  * XEVNT_PER	host certificate expired
3340  * XEVNT_VFY	certificate not verified
3341  */
3342 int
3343 cert_hike(
3344 	struct peer *peer,	/* peer structure pointer */
3345 	struct cert_info *yp	/* issuer certificate */
3346 	)
3347 {
3348 	struct cert_info *xp;	/* subject certificate */
3349 	X509	*cert;		/* X509 certificate */
3350 	const u_char *ptr;
3351 
3352 	/*
3353 	 * Save the issuer on the new certificate, but remember the old
3354 	 * one.
3355 	 */
3356 	if (peer->issuer != NULL)
3357 		free(peer->issuer);
3358 	peer->issuer = estrdup(yp->issuer);
3359 	xp = peer->xinfo;
3360 	peer->xinfo = yp;
3361 
3362 	/*
3363 	 * If subject Y matches issuer Y, then the certificate trail is
3364 	 * complete. If Y is not trusted, the server certificate has yet
3365 	 * been signed, so keep trying. Otherwise, save the group key
3366 	 * and light the valid bit. If the host certificate is trusted,
3367 	 * do not execute a sign exchange. If no identity scheme is in
3368 	 * use, light the identity and proventic bits.
3369 	 */
3370 	if (strcmp(yp->subject, yp->issuer) == 0) {
3371 		if (!(yp->flags & CERT_TRUST))
3372 			return (XEVNT_OK);
3373 
3374 		/*
3375 		 * If the server has an an identity scheme, fetch the
3376 		 * identity credentials. If not, the identity is
3377 		 * verified only by the trusted certificate. The next
3378 		 * signature will set the server proventic.
3379 		 */
3380 		peer->crypto |= CRYPTO_FLAG_CERT;
3381 		peer->grpkey = yp->grpkey;
3382 		if (peer->ident == NULL || !(peer->crypto &
3383 		    CRYPTO_FLAG_MASK))
3384 			peer->crypto |= CRYPTO_FLAG_VRFY;
3385 	}
3386 
3387 	/*
3388 	 * If X exists, verify signature X using public key Y.
3389 	 */
3390 	if (xp == NULL)
3391 		return (XEVNT_OK);
3392 
3393 	ptr = (u_char *)xp->cert.ptr;
3394 	cert = d2i_X509(NULL, &ptr, ntohl(xp->cert.vallen));
3395 	if (cert == NULL) {
3396 		xp->flags |= CERT_ERROR;
3397 		return (XEVNT_CRT);
3398 	}
3399 	if (X509_verify(cert, yp->pkey) <= 0) {
3400 		X509_free(cert);
3401 		xp->flags |= CERT_ERROR;
3402 		return (XEVNT_VFY);
3403 	}
3404 	X509_free(cert);
3405 
3406 	/*
3407 	 * Signature X is valid only if it begins during the
3408 	 * lifetime of Y.
3409 	 */
3410 	if ((calcomp(&(xp->first), &(yp->first)) < 0)
3411 	|| (calcomp(&(xp->first), &(yp->last)) > 0)) {
3412 		xp->flags |= CERT_ERROR;
3413 		return (XEVNT_PER);
3414 	}
3415 	xp->flags |= CERT_SIGN;
3416 	return (XEVNT_OK);
3417 }
3418 
3419 
3420 /*
3421  * cert_parse - parse x509 certificate and create info/value structures.
3422  *
3423  * The server certificate includes the version number, issuer name,
3424  * subject name, public key and valid date interval. If the issuer name
3425  * is the same as the subject name, the certificate is self signed and
3426  * valid only if the server is configured as trustable. If the names are
3427  * different, another issuer has signed the server certificate and
3428  * vouched for it. In this case the server certificate is valid if
3429  * verified by the issuer public key.
3430  *
3431  * Returns certificate info/value pointer if valid, NULL if not.
3432  */
3433 struct cert_info *		/* certificate information structure */
3434 cert_parse(
3435 	const u_char *asn1cert,	/* X509 certificate */
3436 	long	len,		/* certificate length */
3437 	tstamp_t fstamp		/* filestamp */
3438 	)
3439 {
3440 	X509	*cert;		/* X509 certificate */
3441 	struct cert_info *ret;	/* certificate info/value */
3442 	BIO	*bp;
3443 	char	pathbuf[MAXFILENAME];
3444 	const u_char *ptr;
3445 	char	*pch;
3446 	int	cnt, i;
3447 	struct calendar fscal;
3448 
3449 	/*
3450 	 * Decode ASN.1 objects and construct certificate structure.
3451 	 */
3452 	ptr = asn1cert;
3453 	if ((cert = d2i_X509(NULL, &ptr, len)) == NULL) {
3454 		msyslog(LOG_ERR, "cert_parse: %s",
3455 		    ERR_error_string(ERR_get_error(), NULL));
3456 		return (NULL);
3457 	}
3458 #ifdef DEBUG
3459 	if (debug > 1)
3460 		X509_print_fp(stdout, cert);
3461 #endif
3462 
3463 	/*
3464 	 * Extract version, subject name and public key.
3465 	 */
3466 	ret = emalloc_zero(sizeof(*ret));
3467 	if ((ret->pkey = X509_get_pubkey(cert)) == NULL) {
3468 		msyslog(LOG_ERR, "cert_parse: %s",
3469 		    ERR_error_string(ERR_get_error(), NULL));
3470 		cert_free(ret);
3471 		X509_free(cert);
3472 		return (NULL);
3473 	}
3474 	ret->version = X509_get_version(cert);
3475 	X509_NAME_oneline(X509_get_subject_name(cert), pathbuf,
3476 	    sizeof(pathbuf));
3477 	pch = strstr(pathbuf, "CN=");
3478 	if (NULL == pch) {
3479 		msyslog(LOG_NOTICE, "cert_parse: invalid subject %s",
3480 		    pathbuf);
3481 		cert_free(ret);
3482 		X509_free(cert);
3483 		return (NULL);
3484 	}
3485 	ret->subject = estrdup(pch + 3);
3486 
3487 	/*
3488 	 * Extract remaining objects. Note that the NTP serial number is
3489 	 * the NTP seconds at the time of signing, but this might not be
3490 	 * the case for other authority. We don't bother to check the
3491 	 * objects at this time, since the real crunch can happen only
3492 	 * when the time is valid but not yet certificated.
3493 	 */
3494 	ret->nid = X509_get_signature_nid(cert);
3495 	ret->digest = (const EVP_MD *)EVP_get_digestbynid(ret->nid);
3496 	ret->serial =
3497 	    (u_long)ASN1_INTEGER_get(X509_get_serialNumber(cert));
3498 	X509_NAME_oneline(X509_get_issuer_name(cert), pathbuf,
3499 	    sizeof(pathbuf));
3500 	if ((pch = strstr(pathbuf, "CN=")) == NULL) {
3501 		msyslog(LOG_NOTICE, "cert_parse: invalid issuer %s",
3502 		    pathbuf);
3503 		cert_free(ret);
3504 		X509_free(cert);
3505 		return (NULL);
3506 	}
3507 	ret->issuer = estrdup(pch + 3);
3508 	asn_to_calendar(X509_get0_notBefore(cert), &(ret->first));
3509 	asn_to_calendar(X509_get0_notAfter(cert), &(ret->last));
3510 
3511 	/*
3512 	 * Extract extension fields. These are ad hoc ripoffs of
3513 	 * currently assigned functions and will certainly be changed
3514 	 * before prime time.
3515 	 */
3516 	cnt = X509_get_ext_count(cert);
3517 	for (i = 0; i < cnt; i++) {
3518 		X509_EXTENSION *ext;
3519 		ASN1_OBJECT *obj;
3520 		int nid;
3521 		ASN1_OCTET_STRING *data;
3522 
3523 		ext = X509_get_ext(cert, i);
3524 		obj = X509_EXTENSION_get_object(ext);
3525 		nid = OBJ_obj2nid(obj);
3526 
3527 		switch (nid) {
3528 
3529 		/*
3530 		 * If a key_usage field is present, we decode whether
3531 		 * this is a trusted or private certificate. This is
3532 		 * dorky; all we want is to compare NIDs, but OpenSSL
3533 		 * insists on BIO text strings.
3534 		 */
3535 		case NID_ext_key_usage:
3536 			bp = BIO_new(BIO_s_mem());
3537 			X509V3_EXT_print(bp, ext, 0, 0);
3538 			BIO_gets(bp, pathbuf, sizeof(pathbuf));
3539 			BIO_free(bp);
3540 			if (strcmp(pathbuf, "Trust Root") == 0)
3541 				ret->flags |= CERT_TRUST;
3542 			else if (strcmp(pathbuf, "Private") == 0)
3543 				ret->flags |= CERT_PRIV;
3544 			DPRINTF(1, ("cert_parse: %s: %s\n",
3545 				    OBJ_nid2ln(nid), pathbuf));
3546 			break;
3547 
3548 		/*
3549 		 * If a NID_subject_key_identifier field is present, it
3550 		 * contains the GQ public key.
3551 		 */
3552 		case NID_subject_key_identifier:
3553 			data = X509_EXTENSION_get_data(ext);
3554 			ret->grpkey = BN_bin2bn(&data->data[2],
3555 			    data->length - 2, NULL);
3556 			/* fall through */
3557 		default:
3558 			DPRINTF(1, ("cert_parse: %s\n",
3559 				    OBJ_nid2ln(nid)));
3560 			break;
3561 		}
3562 	}
3563 	if (strcmp(ret->subject, ret->issuer) == 0) {
3564 
3565 		/*
3566 		 * If certificate is self signed, verify signature.
3567 		 */
3568 		if (X509_verify(cert, ret->pkey) <= 0) {
3569 			msyslog(LOG_NOTICE,
3570 			    "cert_parse: signature not verified %s",
3571 			    ret->subject);
3572 			cert_free(ret);
3573 			X509_free(cert);
3574 			return (NULL);
3575 		}
3576 	} else {
3577 
3578 		/*
3579 		 * Check for a certificate loop.
3580 		 */
3581 		if (strcmp((const char *)hostval.ptr, ret->issuer) == 0) {
3582 			msyslog(LOG_NOTICE,
3583 			    "cert_parse: certificate trail loop %s",
3584 			    ret->subject);
3585 			cert_free(ret);
3586 			X509_free(cert);
3587 			return (NULL);
3588 		}
3589 	}
3590 
3591 	/*
3592 	 * Verify certificate valid times. Note that certificates cannot
3593 	 * be retroactive.
3594 	 */
3595 	(void)ntpcal_ntp_to_date(&fscal, fstamp, NULL);
3596 	if ((calcomp(&(ret->first), &(ret->last)) > 0)
3597 	|| (calcomp(&(ret->first), &fscal) < 0)) {
3598 		msyslog(LOG_NOTICE,
3599 		    "cert_parse: invalid times %s first %u-%02u-%02uT%02u:%02u:%02u last %u-%02u-%02uT%02u:%02u:%02u fstamp %u-%02u-%02uT%02u:%02u:%02u",
3600 		    ret->subject,
3601 		    ret->first.year, ret->first.month, ret->first.monthday,
3602 		    ret->first.hour, ret->first.minute, ret->first.second,
3603 		    ret->last.year, ret->last.month, ret->last.monthday,
3604 		    ret->last.hour, ret->last.minute, ret->last.second,
3605 		    fscal.year, fscal.month, fscal.monthday,
3606 		    fscal.hour, fscal.minute, fscal.second);
3607 		cert_free(ret);
3608 		X509_free(cert);
3609 		return (NULL);
3610 	}
3611 
3612 	/*
3613 	 * Build the value structure to sign and send later.
3614 	 */
3615 	ret->cert.fstamp = htonl(fstamp);
3616 	ret->cert.vallen = htonl(len);
3617 	ret->cert.ptr = emalloc(len);
3618 	memcpy(ret->cert.ptr, asn1cert, len);
3619 	X509_free(cert);
3620 	return (ret);
3621 }
3622 
3623 
3624 /*
3625  * cert_free - free certificate information structure
3626  */
3627 void
3628 cert_free(
3629 	struct cert_info *cinf	/* certificate info/value structure */
3630 	)
3631 {
3632 	if (cinf->pkey != NULL)
3633 		EVP_PKEY_free(cinf->pkey);
3634 	if (cinf->subject != NULL)
3635 		free(cinf->subject);
3636 	if (cinf->issuer != NULL)
3637 		free(cinf->issuer);
3638 	if (cinf->grpkey != NULL)
3639 		BN_free(cinf->grpkey);
3640 	value_free(&cinf->cert);
3641 	free(cinf);
3642 }
3643 
3644 
3645 /*
3646  * crypto_key - load cryptographic parameters and keys
3647  *
3648  * This routine searches the key cache for matching name in the form
3649  * ntpkey_<key>_<name>, where <key> is one of host, sign, iff, gq, mv,
3650  * and <name> is the host/group name. If not found, it tries to load a
3651  * PEM-encoded file of the same name and extracts the filestamp from
3652  * the first line of the file name. It returns the key pointer if valid,
3653  * NULL if not.
3654  */
3655 static struct pkey_info *
3656 crypto_key(
3657 	char	*cp,		/* file name */
3658 	char	*passwd1,	/* password */
3659 	sockaddr_u *addr 	/* IP address */
3660 	)
3661 {
3662 	FILE	*str;		/* file handle */
3663 	struct pkey_info *pkp;	/* generic key */
3664 	EVP_PKEY *pkey = NULL;	/* public/private key */
3665 	tstamp_t fstamp;
3666 	char	filename[MAXFILENAME]; /* name of key file */
3667 	char	linkname[MAXFILENAME]; /* filestamp buffer) */
3668 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3669 	char	*ptr;
3670 
3671 	/*
3672 	 * Search the key cache for matching key and name.
3673 	 */
3674 	for (pkp = pkinfo; pkp != NULL; pkp = pkp->link) {
3675 		if (strcmp(cp, pkp->name) == 0)
3676 			return (pkp);
3677 	}
3678 
3679 	/*
3680 	 * Open the key file. If the first character of the file name is
3681 	 * not '/', prepend the keys directory string. If something goes
3682 	 * wrong, abandon ship.
3683 	 */
3684 	if (*cp == '/')
3685 		strlcpy(filename, cp, sizeof(filename));
3686 	else
3687 		snprintf(filename, sizeof(filename), "%s/%s", keysdir,
3688 		    cp);
3689 	str = fopen(filename, "r");
3690 	if (str == NULL)
3691 		return (NULL);
3692 
3693 	/*
3694 	 * Read the filestamp, which is contained in the first line.
3695 	 */
3696 	if ((ptr = fgets(linkname, sizeof(linkname), str)) == NULL) {
3697 		msyslog(LOG_ERR, "crypto_key: empty file %s",
3698 		    filename);
3699 		fclose(str);
3700 		return (NULL);
3701 	}
3702 	if ((ptr = strrchr(ptr, '.')) == NULL) {
3703 		msyslog(LOG_ERR, "crypto_key: no filestamp %s",
3704 		    filename);
3705 		fclose(str);
3706 		return (NULL);
3707 	}
3708 	if (sscanf(++ptr, "%u", &fstamp) != 1) {
3709 		msyslog(LOG_ERR, "crypto_key: invalid filestamp %s",
3710 		    filename);
3711 		fclose(str);
3712 		return (NULL);
3713 	}
3714 
3715 	/*
3716 	 * Read and decrypt PEM-encoded private key. If it fails to
3717 	 * decrypt, game over.
3718 	 */
3719 	pkey = PEM_read_PrivateKey(str, NULL, NULL, passwd1);
3720 	fclose(str);
3721 	if (pkey == NULL) {
3722 		msyslog(LOG_ERR, "crypto_key: %s",
3723 		    ERR_error_string(ERR_get_error(), NULL));
3724 		exit (-1);
3725 	}
3726 
3727 	/*
3728 	 * Make a new entry in the key cache.
3729 	 */
3730 	pkp = emalloc(sizeof(struct pkey_info));
3731 	pkp->link = pkinfo;
3732 	pkinfo = pkp;
3733 	pkp->pkey = pkey;
3734 	pkp->name = estrdup(cp);
3735 	pkp->fstamp = fstamp;
3736 
3737 	/*
3738 	 * Leave tracks in the cryptostats.
3739 	 */
3740 	if ((ptr = strrchr(linkname, '\n')) != NULL)
3741 		*ptr = '\0';
3742 	snprintf(statstr, sizeof(statstr), "%s mod %d", &linkname[2],
3743 	    EVP_PKEY_size(pkey) * 8);
3744 	record_crypto_stats(addr, statstr);
3745 
3746 	DPRINTF(1, ("crypto_key: %s\n", statstr));
3747 #ifdef DEBUG
3748 	if (debug > 1) {
3749 		if (EVP_PKEY_base_id(pkey) == EVP_PKEY_DSA)
3750 			DSA_print_fp(stdout, EVP_PKEY_get0_DSA(pkey), 0);
3751 		else if (EVP_PKEY_base_id(pkey) == EVP_PKEY_RSA)
3752 			RSA_print_fp(stdout, EVP_PKEY_get0_RSA(pkey), 0);
3753 	}
3754 #endif
3755 	return (pkp);
3756 }
3757 
3758 
3759 /*
3760  ***********************************************************************
3761  *								       *
3762  * The following routines are used only at initialization time         *
3763  *								       *
3764  ***********************************************************************
3765  */
3766 /*
3767  * crypto_cert - load certificate from file
3768  *
3769  * This routine loads an X.509 RSA or DSA certificate from a file and
3770  * constructs a info/cert value structure for this machine. The
3771  * structure includes a filestamp extracted from the file name. Later
3772  * the certificate can be sent to another machine on request.
3773  *
3774  * Returns certificate info/value pointer if valid, NULL if not.
3775  */
3776 static struct cert_info *	/* certificate information */
3777 crypto_cert(
3778 	char	*cp		/* file name */
3779 	)
3780 {
3781 	struct cert_info *ret; /* certificate information */
3782 	FILE	*str;		/* file handle */
3783 	char	filename[MAXFILENAME]; /* name of certificate file */
3784 	char	linkname[MAXFILENAME]; /* filestamp buffer */
3785 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3786 	tstamp_t fstamp;	/* filestamp */
3787 	long	len;
3788 	char	*ptr;
3789 	char	*name, *header;
3790 	u_char	*data;
3791 
3792 	/*
3793 	 * Open the certificate file. If the first character of the file
3794 	 * name is not '/', prepend the keys directory string. If
3795 	 * something goes wrong, abandon ship.
3796 	 */
3797 	if (*cp == '/')
3798 		strlcpy(filename, cp, sizeof(filename));
3799 	else
3800 		snprintf(filename, sizeof(filename), "%s/%s", keysdir,
3801 		    cp);
3802 	str = fopen(filename, "r");
3803 	if (str == NULL)
3804 		return (NULL);
3805 
3806 	/*
3807 	 * Read the filestamp, which is contained in the first line.
3808 	 */
3809 	if ((ptr = fgets(linkname, sizeof(linkname), str)) == NULL) {
3810 		msyslog(LOG_ERR, "crypto_cert: empty file %s",
3811 		    filename);
3812 		fclose(str);
3813 		return (NULL);
3814 	}
3815 	if ((ptr = strrchr(ptr, '.')) == NULL) {
3816 		msyslog(LOG_ERR, "crypto_cert: no filestamp %s",
3817 		    filename);
3818 		fclose(str);
3819 		return (NULL);
3820 	}
3821 	if (sscanf(++ptr, "%u", &fstamp) != 1) {
3822 		msyslog(LOG_ERR, "crypto_cert: invalid filestamp %s",
3823 		    filename);
3824 		fclose(str);
3825 		return (NULL);
3826 	}
3827 
3828 	/*
3829 	 * Read PEM-encoded certificate and install.
3830 	 */
3831 	if (!PEM_read(str, &name, &header, &data, &len)) {
3832 		msyslog(LOG_ERR, "crypto_cert: %s",
3833 		    ERR_error_string(ERR_get_error(), NULL));
3834 		fclose(str);
3835 		return (NULL);
3836 	}
3837 	fclose(str);
3838 	free(header);
3839 	if (strcmp(name, "CERTIFICATE") != 0) {
3840 		msyslog(LOG_NOTICE, "crypto_cert: wrong PEM type %s",
3841 		    name);
3842 		free(name);
3843 		free(data);
3844 		return (NULL);
3845 	}
3846 	free(name);
3847 
3848 	/*
3849 	 * Parse certificate and generate info/value structure. The
3850 	 * pointer and copy nonsense is due something broken in Solaris.
3851 	 */
3852 	ret = cert_parse(data, len, fstamp);
3853 	free(data);
3854 	if (ret == NULL)
3855 		return (NULL);
3856 
3857 	if ((ptr = strrchr(linkname, '\n')) != NULL)
3858 		*ptr = '\0';
3859 	snprintf(statstr, sizeof(statstr), "%s 0x%x len %lu",
3860 	    &linkname[2], ret->flags, len);
3861 	record_crypto_stats(NULL, statstr);
3862 	DPRINTF(1, ("crypto_cert: %s\n", statstr));
3863 	return (ret);
3864 }
3865 
3866 
3867 /*
3868  * crypto_setup - load keys, certificate and identity parameters
3869  *
3870  * This routine loads the public/private host key and certificate. If
3871  * available, it loads the public/private sign key, which defaults to
3872  * the host key. The host key must be RSA, but the sign key can be
3873  * either RSA or DSA. If a trusted certificate, it loads the identity
3874  * parameters. In either case, the public key on the certificate must
3875  * agree with the sign key.
3876  *
3877  * Required but missing files and inconsistent data and errors are
3878  * fatal. Allowing configuration to continue would be hazardous and
3879  * require really messy error checks.
3880  */
3881 void
3882 crypto_setup(void)
3883 {
3884 	struct pkey_info *pinfo; /* private/public key */
3885 	char	filename[MAXFILENAME]; /* file name buffer */
3886 	char	hostname[MAXFILENAME]; /* host name buffer */
3887 	char	*randfile;
3888 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3889 	l_fp	seed;		/* crypto PRNG seed as NTP timestamp */
3890 	u_int	len;
3891 	int	bytes;
3892 	u_char	*ptr;
3893 
3894 	/*
3895 	 * Check for correct OpenSSL version and avoid initialization in
3896 	 * the case of multiple crypto commands.
3897 	 */
3898 	if (crypto_flags & CRYPTO_FLAG_ENAB) {
3899 		msyslog(LOG_NOTICE,
3900 		    "crypto_setup: spurious crypto command");
3901 		return;
3902 	}
3903 
3904 	/*
3905 	 * Load required random seed file and seed the random number
3906 	 * generator. Be default, it is found as .rnd in the user home
3907 	 * directory. The root home directory may be / or /root,
3908 	 * depending on the system. Wiggle the contents a bit and write
3909 	 * it back so the sequence does not repeat when we next restart.
3910 	 */
3911 	if (!RAND_status()) {
3912 		if (rand_file == NULL) {
3913 			RAND_file_name(filename, sizeof(filename));
3914 			randfile = filename;
3915 		} else if (*rand_file != '/') {
3916 			snprintf(filename, sizeof(filename), "%s/%s",
3917 			    keysdir, rand_file);
3918 			randfile = filename;
3919 		} else
3920 			randfile = rand_file;
3921 
3922 		if ((bytes = RAND_load_file(randfile, -1)) == 0) {
3923 			msyslog(LOG_ERR,
3924 			    "crypto_setup: random seed file %s missing",
3925 			    randfile);
3926 			exit (-1);
3927 		}
3928 		arc4random_buf(&seed, sizeof(l_fp));
3929 		RAND_seed(&seed, sizeof(l_fp));
3930 		RAND_write_file(randfile);
3931 		DPRINTF(1, ("crypto_setup: OpenSSL version %lx random seed file %s bytes read %d\n",
3932 			    OpenSSL_version_num(), randfile, bytes));
3933 
3934 	}
3935 
3936 	/*
3937 	 * Initialize structures.
3938 	 */
3939 	gethostname(hostname, sizeof(hostname));
3940 	if (host_filename != NULL)
3941 		strlcpy(hostname, host_filename, sizeof(hostname));
3942 	if (passwd == NULL)
3943 		passwd = estrdup(hostname);
3944 	memset(&hostval, 0, sizeof(hostval));
3945 	memset(&pubkey, 0, sizeof(pubkey));
3946 	memset(&tai_leap, 0, sizeof(tai_leap));
3947 
3948 	/*
3949 	 * Load required host key from file "ntpkey_host_<hostname>". If
3950 	 * no host key file is not found or has invalid password, life
3951 	 * as we know it ends. The host key also becomes the default
3952 	 * sign key.
3953 	 */
3954 	snprintf(filename, sizeof(filename), "ntpkey_host_%s", hostname);
3955 	pinfo = crypto_key(filename, passwd, NULL);
3956 	if (pinfo == NULL) {
3957 		msyslog(LOG_ERR,
3958 		    "crypto_setup: host key file %s not found or corrupt",
3959 		    filename);
3960 		exit (-1);
3961 	}
3962 	if (EVP_PKEY_base_id(pinfo->pkey) != EVP_PKEY_RSA) {
3963 		msyslog(LOG_ERR,
3964 		    "crypto_setup: host key is not RSA key type");
3965 		exit (-1);
3966 	}
3967 	host_pkey = pinfo->pkey;
3968 	sign_pkey = host_pkey;
3969 	hostval.fstamp = htonl(pinfo->fstamp);
3970 
3971 	/*
3972 	 * Construct public key extension field for agreement scheme.
3973 	 */
3974 	len = i2d_PublicKey(host_pkey, NULL);
3975 	ptr = emalloc(len);
3976 	pubkey.ptr = ptr;
3977 	i2d_PublicKey(host_pkey, &ptr);
3978 	pubkey.fstamp = hostval.fstamp;
3979 	pubkey.vallen = htonl(len);
3980 
3981 	/*
3982 	 * Load optional sign key from file "ntpkey_sign_<hostname>". If
3983 	 * available, it becomes the sign key.
3984 	 */
3985 	snprintf(filename, sizeof(filename), "ntpkey_sign_%s", hostname);
3986 	pinfo = crypto_key(filename, passwd, NULL);
3987 	if (pinfo != NULL)
3988 		sign_pkey = pinfo->pkey;
3989 
3990 	/*
3991 	 * Load required certificate from file "ntpkey_cert_<hostname>".
3992 	 */
3993 	snprintf(filename, sizeof(filename), "ntpkey_cert_%s", hostname);
3994 	cinfo = crypto_cert(filename);
3995 	if (cinfo == NULL) {
3996 		msyslog(LOG_ERR,
3997 		    "crypto_setup: certificate file %s not found or corrupt",
3998 		    filename);
3999 		exit (-1);
4000 	}
4001 	cert_host = cinfo;
4002 	sign_digest = cinfo->digest;
4003 	sign_siglen = EVP_PKEY_size(sign_pkey);
4004 	if (cinfo->flags & CERT_PRIV)
4005 		crypto_flags |= CRYPTO_FLAG_PRIV;
4006 
4007 	/*
4008 	 * The certificate must be self-signed.
4009 	 */
4010 	if (strcmp(cinfo->subject, cinfo->issuer) != 0) {
4011 		msyslog(LOG_ERR,
4012 		    "crypto_setup: certificate %s is not self-signed",
4013 		    filename);
4014 		exit (-1);
4015 	}
4016 	hostval.ptr = estrdup(cinfo->subject);
4017 	hostval.vallen = htonl(strlen(cinfo->subject));
4018 	sys_hostname = hostval.ptr;
4019 	ptr = (u_char *)strchr(sys_hostname, '@');
4020 	if (ptr != NULL)
4021 		sys_groupname = estrdup((char *)++ptr);
4022 	if (ident_filename != NULL)
4023 		strlcpy(hostname, ident_filename, sizeof(hostname));
4024 
4025 	/*
4026 	 * Load optional IFF parameters from file
4027 	 * "ntpkey_iffkey_<hostname>".
4028 	 */
4029 	snprintf(filename, sizeof(filename), "ntpkey_iffkey_%s",
4030 	    hostname);
4031 	iffkey_info = crypto_key(filename, passwd, NULL);
4032 	if (iffkey_info != NULL)
4033 		crypto_flags |= CRYPTO_FLAG_IFF;
4034 
4035 	/*
4036 	 * Load optional GQ parameters from file
4037 	 * "ntpkey_gqkey_<hostname>".
4038 	 */
4039 	snprintf(filename, sizeof(filename), "ntpkey_gqkey_%s",
4040 	    hostname);
4041 	gqkey_info = crypto_key(filename, passwd, NULL);
4042 	if (gqkey_info != NULL)
4043 		crypto_flags |= CRYPTO_FLAG_GQ;
4044 
4045 	/*
4046 	 * Load optional MV parameters from file
4047 	 * "ntpkey_mvkey_<hostname>".
4048 	 */
4049 	snprintf(filename, sizeof(filename), "ntpkey_mvkey_%s",
4050 	    hostname);
4051 	mvkey_info = crypto_key(filename, passwd, NULL);
4052 	if (mvkey_info != NULL)
4053 		crypto_flags |= CRYPTO_FLAG_MV;
4054 
4055 	/*
4056 	 * We met the enemy and he is us. Now strike up the dance.
4057 	 */
4058 	crypto_flags |= CRYPTO_FLAG_ENAB | (cinfo->nid << 16);
4059 	snprintf(statstr, sizeof(statstr), "setup 0x%x host %s %s",
4060 	    crypto_flags, hostname, OBJ_nid2ln(cinfo->nid));
4061 	record_crypto_stats(NULL, statstr);
4062 	DPRINTF(1, ("crypto_setup: %s\n", statstr));
4063 }
4064 
4065 
4066 /*
4067  * crypto_config - configure data from the crypto command.
4068  */
4069 void
4070 crypto_config(
4071 	int	item,		/* configuration item */
4072 	char	*cp		/* item name */
4073 	)
4074 {
4075 	int	nid;
4076 
4077 	DPRINTF(1, ("crypto_config: item %d %s\n", item, cp));
4078 
4079 	switch (item) {
4080 
4081 	/*
4082 	 * Set host name (host).
4083 	 */
4084 	case CRYPTO_CONF_PRIV:
4085 		if (NULL != host_filename)
4086 			free(host_filename);
4087 		host_filename = estrdup(cp);
4088 		break;
4089 
4090 	/*
4091 	 * Set group name (ident).
4092 	 */
4093 	case CRYPTO_CONF_IDENT:
4094 		if (NULL != ident_filename)
4095 			free(ident_filename);
4096 		ident_filename = estrdup(cp);
4097 		break;
4098 
4099 	/*
4100 	 * Set private key password (pw).
4101 	 */
4102 	case CRYPTO_CONF_PW:
4103 		if (NULL != passwd)
4104 			free(passwd);
4105 		passwd = estrdup(cp);
4106 		break;
4107 
4108 	/*
4109 	 * Set random seed file name (randfile).
4110 	 */
4111 	case CRYPTO_CONF_RAND:
4112 		if (NULL != rand_file)
4113 			free(rand_file);
4114 		rand_file = estrdup(cp);
4115 		break;
4116 
4117 	/*
4118 	 * Set message digest NID.
4119 	 */
4120 	case CRYPTO_CONF_NID:
4121 		nid = OBJ_sn2nid(cp);
4122 		if (nid == 0)
4123 			msyslog(LOG_ERR,
4124 			    "crypto_config: invalid digest name %s", cp);
4125 		else
4126 			crypto_nid = nid;
4127 		break;
4128 	}
4129 }
4130 
4131 /*
4132  * Get the  payload size (internal value length) of an extension packet.
4133  * If the inner value size does not match the outer packet size (that
4134  * is, the value would end behind the frame given by the opcode/size
4135  * field) the function will effectively return UINT_MAX. If the frame is
4136  * too short to hold a variable-sized value, the return value is zero.
4137  */
4138 static u_int
4139 exten_payload_size(
4140 	const struct exten * ep)
4141 {
4142 	typedef const u_char *BPTR;
4143 
4144 	size_t extn_size;
4145 	size_t data_size;
4146 	size_t head_size;
4147 
4148 	data_size = 0;
4149 	if (NULL != ep) {
4150 		head_size = (BPTR)(&ep->vallen + 1) - (BPTR)ep;
4151 		extn_size = (uint16_t)(ntohl(ep->opcode) & 0x0000ffff);
4152 		if (extn_size >= head_size) {
4153 			data_size = (uint32_t)ntohl(ep->vallen);
4154 			if (data_size > extn_size - head_size)
4155 				data_size = ~(size_t)0u;
4156 		}
4157 	}
4158 	return (u_int)data_size;
4159 }
4160 # else	/* !AUTOKEY follows */
4161 NONEMPTY_TRANSLATION_UNIT
4162 # endif	/* !AUTOKEY */
4163