1 /* 2 * ntp_crypto.c - NTP version 4 public key routines 3 */ 4 #ifdef HAVE_CONFIG_H 5 #include <config.h> 6 #endif 7 8 #ifdef AUTOKEY 9 #include <stdio.h> 10 #include <stdlib.h> /* strtoul */ 11 #include <sys/types.h> 12 #include <sys/param.h> 13 #include <unistd.h> 14 #include <fcntl.h> 15 16 #include "ntpd.h" 17 #include "ntp_stdlib.h" 18 #include "ntp_unixtime.h" 19 #include "ntp_string.h" 20 #include "ntp_random.h" 21 #include "ntp_assert.h" 22 #include "ntp_calendar.h" 23 #include "ntp_leapsec.h" 24 25 #include "openssl/asn1_mac.h" 26 #include "openssl/bn.h" 27 #include "openssl/err.h" 28 #include "openssl/evp.h" 29 #include "openssl/pem.h" 30 #include "openssl/rand.h" 31 #include "openssl/x509v3.h" 32 33 #ifdef KERNEL_PLL 34 #include "ntp_syscall.h" 35 #endif /* KERNEL_PLL */ 36 37 /* 38 * calcomp - compare two calendar structures, ignoring yearday and weekday; like strcmp 39 * No, it's not a plotter. If you don't understand that, you're too young. 40 */ 41 static int calcomp(struct calendar *pjd1, struct calendar *pjd2) 42 { 43 int32_t diff; /* large enough to hold the signed difference between two uint16_t values */ 44 45 diff = pjd1->year - pjd2->year; 46 if (diff < 0) return -1; else if (diff > 0) return 1; 47 /* same year; compare months */ 48 diff = pjd1->month - pjd2->month; 49 if (diff < 0) return -1; else if (diff > 0) return 1; 50 /* same year and month; compare monthday */ 51 diff = pjd1->monthday - pjd2->monthday; 52 if (diff < 0) return -1; else if (diff > 0) return 1; 53 /* same year and month and monthday; compare time */ 54 diff = pjd1->hour - pjd2->hour; 55 if (diff < 0) return -1; else if (diff > 0) return 1; 56 diff = pjd1->minute - pjd2->minute; 57 if (diff < 0) return -1; else if (diff > 0) return 1; 58 diff = pjd1->second - pjd2->second; 59 if (diff < 0) return -1; else if (diff > 0) return 1; 60 /* identical */ 61 return 0; 62 } 63 64 /* 65 * Extension field message format 66 * 67 * These are always signed and saved before sending in network byte 68 * order. They must be converted to and from host byte order for 69 * processing. 70 * 71 * +-------+-------+ 72 * | op | len | <- extension pointer 73 * +-------+-------+ 74 * | associd | 75 * +---------------+ 76 * | timestamp | <- value pointer 77 * +---------------+ 78 * | filestamp | 79 * +---------------+ 80 * | value len | 81 * +---------------+ 82 * | | 83 * = value = 84 * | | 85 * +---------------+ 86 * | signature len | 87 * +---------------+ 88 * | | 89 * = signature = 90 * | | 91 * +---------------+ 92 * 93 * The CRYPTO_RESP bit is set to 0 for requests, 1 for responses. 94 * Requests carry the association ID of the receiver; responses carry 95 * the association ID of the sender. Some messages include only the 96 * operation/length and association ID words and so have length 8 97 * octets. Ohers include the value structure and associated value and 98 * signature fields. These messages include the timestamp, filestamp, 99 * value and signature words and so have length at least 24 octets. The 100 * signature and/or value fields can be empty, in which case the 101 * respective length words are zero. An empty value with nonempty 102 * signature is syntactically valid, but semantically questionable. 103 * 104 * The filestamp represents the time when a cryptographic data file such 105 * as a public/private key pair is created. It follows every reference 106 * depending on that file and serves as a means to obsolete earlier data 107 * of the same type. The timestamp represents the time when the 108 * cryptographic data of the message were last signed. Creation of a 109 * cryptographic data file or signing a message can occur only when the 110 * creator or signor is synchronized to an authoritative source and 111 * proventicated to a trusted authority. 112 * 113 * Note there are several conditions required for server trust. First, 114 * the public key on the server certificate must be verified, which can 115 * involve a hike along the certificate trail to a trusted host. Next, 116 * the server trust must be confirmed by one of several identity 117 * schemes. Valid cryptographic values are signed with attached 118 * timestamp and filestamp. Individual packet trust is confirmed 119 * relative to these values by a message digest with keys generated by a 120 * reverse-order pseudorandom hash. 121 * 122 * State decomposition. These flags are lit in the order given. They are 123 * dim only when the association is demobilized. 124 * 125 * CRYPTO_FLAG_ENAB Lit upon acceptance of a CRYPTO_ASSOC message 126 * CRYPTO_FLAG_CERT Lit when a self-digned trusted certificate is 127 * accepted. 128 * CRYPTO_FLAG_VRFY Lit when identity is confirmed. 129 * CRYPTO_FLAG_PROV Lit when the first signature is verified. 130 * CRYPTO_FLAG_COOK Lit when a valid cookie is accepted. 131 * CRYPTO_FLAG_AUTO Lit when valid autokey values are accepted. 132 * CRYPTO_FLAG_SIGN Lit when the server signed certificate is 133 * accepted. 134 * CRYPTO_FLAG_LEAP Lit when the leapsecond values are accepted. 135 */ 136 /* 137 * Cryptodefines 138 */ 139 #define TAI_1972 10 /* initial TAI offset (s) */ 140 #define MAX_LEAP 100 /* max UTC leapseconds (s) */ 141 #define VALUE_LEN (6 * 4) /* min response field length */ 142 #define MAX_VALLEN (65535 - VALUE_LEN) 143 #define YEAR (60 * 60 * 24 * 365) /* seconds in year */ 144 145 /* 146 * Global cryptodata in host byte order 147 */ 148 u_int32 crypto_flags = 0x0; /* status word */ 149 int crypto_nid = KEY_TYPE_MD5; /* digest nid */ 150 char *sys_hostname = NULL; 151 char *sys_groupname = NULL; 152 static char *host_filename = NULL; /* host file name */ 153 static char *ident_filename = NULL; /* group file name */ 154 155 /* 156 * Global cryptodata in network byte order 157 */ 158 struct cert_info *cinfo = NULL; /* certificate info/value cache */ 159 struct cert_info *cert_host = NULL; /* host certificate */ 160 struct pkey_info *pkinfo = NULL; /* key info/value cache */ 161 struct value hostval; /* host value */ 162 struct value pubkey; /* public key */ 163 struct value tai_leap; /* leapseconds values */ 164 struct pkey_info *iffkey_info = NULL; /* IFF keys */ 165 struct pkey_info *gqkey_info = NULL; /* GQ keys */ 166 struct pkey_info *mvkey_info = NULL; /* MV keys */ 167 168 /* 169 * Private cryptodata in host byte order 170 */ 171 static char *passwd = NULL; /* private key password */ 172 static EVP_PKEY *host_pkey = NULL; /* host key */ 173 static EVP_PKEY *sign_pkey = NULL; /* sign key */ 174 static const EVP_MD *sign_digest = NULL; /* sign digest */ 175 static u_int sign_siglen; /* sign key length */ 176 static char *rand_file = NULL; /* random seed file */ 177 178 /* 179 * Cryptotypes 180 */ 181 static int crypto_verify (struct exten *, struct value *, 182 struct peer *); 183 static int crypto_encrypt (const u_char *, u_int, keyid_t *, 184 struct value *); 185 static int crypto_alice (struct peer *, struct value *); 186 static int crypto_alice2 (struct peer *, struct value *); 187 static int crypto_alice3 (struct peer *, struct value *); 188 static int crypto_bob (struct exten *, struct value *); 189 static int crypto_bob2 (struct exten *, struct value *); 190 static int crypto_bob3 (struct exten *, struct value *); 191 static int crypto_iff (struct exten *, struct peer *); 192 static int crypto_gq (struct exten *, struct peer *); 193 static int crypto_mv (struct exten *, struct peer *); 194 static int crypto_send (struct exten *, struct value *, int); 195 static tstamp_t crypto_time (void); 196 static void asn_to_calendar (ASN1_TIME *, struct calendar*); 197 static struct cert_info *cert_parse (const u_char *, long, tstamp_t); 198 static int cert_sign (struct exten *, struct value *); 199 static struct cert_info *cert_install (struct exten *, struct peer *); 200 static int cert_hike (struct peer *, struct cert_info *); 201 static void cert_free (struct cert_info *); 202 static struct pkey_info *crypto_key (char *, char *, sockaddr_u *); 203 static void bighash (BIGNUM *, BIGNUM *); 204 static struct cert_info *crypto_cert (char *); 205 static u_int exten_payload_size(const struct exten *); 206 207 #ifdef SYS_WINNT 208 int 209 readlink(char * link, char * file, int len) { 210 return (-1); 211 } 212 #endif 213 214 /* 215 * session_key - generate session key 216 * 217 * This routine generates a session key from the source address, 218 * destination address, key ID and private value. The value of the 219 * session key is the MD5 hash of these values, while the next key ID is 220 * the first four octets of the hash. 221 * 222 * Returns the next key ID or 0 if there is no destination address. 223 */ 224 keyid_t 225 session_key( 226 sockaddr_u *srcadr, /* source address */ 227 sockaddr_u *dstadr, /* destination address */ 228 keyid_t keyno, /* key ID */ 229 keyid_t private, /* private value */ 230 u_long lifetime /* key lifetime */ 231 ) 232 { 233 EVP_MD_CTX ctx; /* message digest context */ 234 u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */ 235 keyid_t keyid; /* key identifer */ 236 u_int32 header[10]; /* data in network byte order */ 237 u_int hdlen, len; 238 239 if (!dstadr) 240 return 0; 241 242 /* 243 * Generate the session key and key ID. If the lifetime is 244 * greater than zero, install the key and call it trusted. 245 */ 246 hdlen = 0; 247 switch(AF(srcadr)) { 248 case AF_INET: 249 header[0] = NSRCADR(srcadr); 250 header[1] = NSRCADR(dstadr); 251 header[2] = htonl(keyno); 252 header[3] = htonl(private); 253 hdlen = 4 * sizeof(u_int32); 254 break; 255 256 case AF_INET6: 257 memcpy(&header[0], PSOCK_ADDR6(srcadr), 258 sizeof(struct in6_addr)); 259 memcpy(&header[4], PSOCK_ADDR6(dstadr), 260 sizeof(struct in6_addr)); 261 header[8] = htonl(keyno); 262 header[9] = htonl(private); 263 hdlen = 10 * sizeof(u_int32); 264 break; 265 } 266 EVP_DigestInit(&ctx, EVP_get_digestbynid(crypto_nid)); 267 EVP_DigestUpdate(&ctx, (u_char *)header, hdlen); 268 EVP_DigestFinal(&ctx, dgst, &len); 269 memcpy(&keyid, dgst, 4); 270 keyid = ntohl(keyid); 271 if (lifetime != 0) { 272 MD5auth_setkey(keyno, crypto_nid, dgst, len, NULL); 273 authtrust(keyno, lifetime); 274 } 275 DPRINTF(2, ("session_key: %s > %s %08x %08x hash %08x life %lu\n", 276 stoa(srcadr), stoa(dstadr), keyno, 277 private, keyid, lifetime)); 278 279 return (keyid); 280 } 281 282 283 /* 284 * make_keylist - generate key list 285 * 286 * Returns 287 * XEVNT_OK success 288 * XEVNT_ERR protocol error 289 * 290 * This routine constructs a pseudo-random sequence by repeatedly 291 * hashing the session key starting from a given source address, 292 * destination address, private value and the next key ID of the 293 * preceeding session key. The last entry on the list is saved along 294 * with its sequence number and public signature. 295 */ 296 int 297 make_keylist( 298 struct peer *peer, /* peer structure pointer */ 299 struct interface *dstadr /* interface */ 300 ) 301 { 302 EVP_MD_CTX ctx; /* signature context */ 303 tstamp_t tstamp; /* NTP timestamp */ 304 struct autokey *ap; /* autokey pointer */ 305 struct value *vp; /* value pointer */ 306 keyid_t keyid = 0; /* next key ID */ 307 keyid_t cookie; /* private value */ 308 long lifetime; 309 u_int len, mpoll; 310 int i; 311 312 if (!dstadr) 313 return XEVNT_ERR; 314 315 /* 316 * Allocate the key list if necessary. 317 */ 318 tstamp = crypto_time(); 319 if (peer->keylist == NULL) 320 peer->keylist = eallocarray(NTP_MAXSESSION, 321 sizeof(keyid_t)); 322 323 /* 324 * Generate an initial key ID which is unique and greater than 325 * NTP_MAXKEY. 326 */ 327 while (1) { 328 keyid = ntp_random() & 0xffffffff; 329 if (keyid <= NTP_MAXKEY) 330 continue; 331 332 if (authhavekey(keyid)) 333 continue; 334 break; 335 } 336 337 /* 338 * Generate up to NTP_MAXSESSION session keys. Stop if the 339 * next one would not be unique or not a session key ID or if 340 * it would expire before the next poll. The private value 341 * included in the hash is zero if broadcast mode, the peer 342 * cookie if client mode or the host cookie if symmetric modes. 343 */ 344 mpoll = 1 << min(peer->ppoll, peer->hpoll); 345 lifetime = min(1U << sys_automax, NTP_MAXSESSION * mpoll); 346 if (peer->hmode == MODE_BROADCAST) 347 cookie = 0; 348 else 349 cookie = peer->pcookie; 350 for (i = 0; i < NTP_MAXSESSION; i++) { 351 peer->keylist[i] = keyid; 352 peer->keynumber = i; 353 keyid = session_key(&dstadr->sin, &peer->srcadr, keyid, 354 cookie, lifetime + mpoll); 355 lifetime -= mpoll; 356 if (auth_havekey(keyid) || keyid <= NTP_MAXKEY || 357 lifetime < 0 || tstamp == 0) 358 break; 359 } 360 361 /* 362 * Save the last session key ID, sequence number and timestamp, 363 * then sign these values for later retrieval by the clients. Be 364 * careful not to use invalid key media. Use the public values 365 * timestamp as filestamp. 366 */ 367 vp = &peer->sndval; 368 if (vp->ptr == NULL) 369 vp->ptr = emalloc(sizeof(struct autokey)); 370 ap = (struct autokey *)vp->ptr; 371 ap->seq = htonl(peer->keynumber); 372 ap->key = htonl(keyid); 373 vp->tstamp = htonl(tstamp); 374 vp->fstamp = hostval.tstamp; 375 vp->vallen = htonl(sizeof(struct autokey)); 376 vp->siglen = 0; 377 if (tstamp != 0) { 378 if (vp->sig == NULL) 379 vp->sig = emalloc(sign_siglen); 380 EVP_SignInit(&ctx, sign_digest); 381 EVP_SignUpdate(&ctx, (u_char *)vp, 12); 382 EVP_SignUpdate(&ctx, vp->ptr, sizeof(struct autokey)); 383 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) { 384 INSIST(len <= sign_siglen); 385 vp->siglen = htonl(len); 386 peer->flags |= FLAG_ASSOC; 387 } 388 } 389 DPRINTF(1, ("make_keys: %d %08x %08x ts %u fs %u poll %d\n", 390 peer->keynumber, keyid, cookie, ntohl(vp->tstamp), 391 ntohl(vp->fstamp), peer->hpoll)); 392 return (XEVNT_OK); 393 } 394 395 396 /* 397 * crypto_recv - parse extension fields 398 * 399 * This routine is called when the packet has been matched to an 400 * association and passed sanity, format and MAC checks. We believe the 401 * extension field values only if the field has proper format and 402 * length, the timestamp and filestamp are valid and the signature has 403 * valid length and is verified. There are a few cases where some values 404 * are believed even if the signature fails, but only if the proventic 405 * bit is not set. 406 * 407 * Returns 408 * XEVNT_OK success 409 * XEVNT_ERR protocol error 410 * XEVNT_LEN bad field format or length 411 */ 412 int 413 crypto_recv( 414 struct peer *peer, /* peer structure pointer */ 415 struct recvbuf *rbufp /* packet buffer pointer */ 416 ) 417 { 418 const EVP_MD *dp; /* message digest algorithm */ 419 u_int32 *pkt; /* receive packet pointer */ 420 struct autokey *ap, *bp; /* autokey pointer */ 421 struct exten *ep, *fp; /* extension pointers */ 422 struct cert_info *xinfo; /* certificate info pointer */ 423 int macbytes; /* length of MAC field, signed by intention */ 424 int authlen; /* offset of MAC field */ 425 associd_t associd; /* association ID */ 426 tstamp_t fstamp = 0; /* filestamp */ 427 u_int len; /* extension field length */ 428 u_int code; /* extension field opcode */ 429 u_int vallen = 0; /* value length */ 430 X509 *cert; /* X509 certificate */ 431 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 432 keyid_t cookie; /* crumbles */ 433 int hismode; /* packet mode */ 434 int rval = XEVNT_OK; 435 const u_char *puch; 436 u_int32 temp32; 437 438 /* 439 * Initialize. Note that the packet has already been checked for 440 * valid format and extension field lengths. First extract the 441 * field length, command code and association ID in host byte 442 * order. These are used with all commands and modes. Then check 443 * the version number, which must be 2, and length, which must 444 * be at least 8 for requests and VALUE_LEN (24) for responses. 445 * Packets that fail either test sink without a trace. The 446 * association ID is saved only if nonzero. 447 */ 448 authlen = LEN_PKT_NOMAC; 449 hismode = (int)PKT_MODE((&rbufp->recv_pkt)->li_vn_mode); 450 while ((macbytes = rbufp->recv_length - authlen) > (int)MAX_MAC_LEN) { 451 /* We can be reasonably sure that we can read at least 452 * the opcode and the size field here. More stringent 453 * checks follow up shortly. 454 */ 455 pkt = (u_int32 *)&rbufp->recv_pkt + authlen / 4; 456 ep = (struct exten *)pkt; 457 code = ntohl(ep->opcode) & 0xffff0000; 458 len = ntohl(ep->opcode) & 0x0000ffff; 459 // HMS: Why pkt[1] instead of ep->associd ? 460 associd = (associd_t)ntohl(pkt[1]); 461 rval = XEVNT_OK; 462 DPRINTF(1, ("crypto_recv: flags 0x%x ext offset %d len %u code 0x%x associd %d\n", 463 peer->crypto, authlen, len, code >> 16, 464 associd)); 465 466 /* 467 * Check version number and field length. If bad, 468 * quietly ignore the packet. 469 */ 470 if (((code >> 24) & 0x3f) != CRYPTO_VN || len < 8) { 471 sys_badlength++; 472 code |= CRYPTO_ERROR; 473 } 474 475 /* Check if the declared size fits into the remaining 476 * buffer. We *know* 'macbytes' > 0 here! 477 */ 478 if (len > (u_int)macbytes) { 479 DPRINTF(1, ("crypto_recv: possible attack detected, associd %d\n", 480 associd)); 481 return XEVNT_LEN; 482 } 483 484 /* Check if the paylod of the extension fits into the 485 * declared frame. 486 */ 487 if (len >= VALUE_LEN) { 488 fstamp = ntohl(ep->fstamp); 489 vallen = ntohl(ep->vallen); 490 /* 491 * Bug 2761: I hope this isn't too early... 492 */ 493 if ( vallen == 0 494 || len - VALUE_LEN < vallen) 495 return XEVNT_LEN; 496 } 497 switch (code) { 498 499 /* 500 * Install status word, host name, signature scheme and 501 * association ID. In OpenSSL the signature algorithm is 502 * bound to the digest algorithm, so the NID completely 503 * defines the signature scheme. Note the request and 504 * response are identical, but neither is validated by 505 * signature. The request is processed here only in 506 * symmetric modes. The server name field might be 507 * useful to implement access controls in future. 508 */ 509 case CRYPTO_ASSOC: 510 511 /* 512 * If our state machine is running when this 513 * message arrives, the other fellow might have 514 * restarted. However, this could be an 515 * intruder, so just clamp the poll interval and 516 * find out for ourselves. Otherwise, pass the 517 * extension field to the transmit side. 518 */ 519 if (peer->crypto & CRYPTO_FLAG_CERT) { 520 rval = XEVNT_ERR; 521 break; 522 } 523 if (peer->cmmd) { 524 if (peer->assoc != associd) { 525 rval = XEVNT_ERR; 526 break; 527 } 528 free(peer->cmmd); /* will be set again! */ 529 } 530 fp = emalloc(len); 531 memcpy(fp, ep, len); 532 fp->associd = htonl(peer->associd); 533 peer->cmmd = fp; 534 /* fall through */ 535 536 case CRYPTO_ASSOC | CRYPTO_RESP: 537 538 /* 539 * Discard the message if it has already been 540 * stored or the message has been amputated. 541 */ 542 if (peer->crypto) { 543 if (peer->assoc != associd) 544 rval = XEVNT_ERR; 545 break; 546 } 547 INSIST(len >= VALUE_LEN); 548 if (vallen == 0 || vallen > MAXHOSTNAME || 549 len - VALUE_LEN < vallen) { 550 rval = XEVNT_LEN; 551 break; 552 } 553 DPRINTF(1, ("crypto_recv: ident host 0x%x %d server 0x%x %d\n", 554 crypto_flags, peer->associd, fstamp, 555 peer->assoc)); 556 temp32 = crypto_flags & CRYPTO_FLAG_MASK; 557 558 /* 559 * If the client scheme is PC, the server scheme 560 * must be PC. The public key and identity are 561 * presumed valid, so we skip the certificate 562 * and identity exchanges and move immediately 563 * to the cookie exchange which confirms the 564 * server signature. 565 */ 566 if (crypto_flags & CRYPTO_FLAG_PRIV) { 567 if (!(fstamp & CRYPTO_FLAG_PRIV)) { 568 rval = XEVNT_KEY; 569 break; 570 } 571 fstamp |= CRYPTO_FLAG_CERT | 572 CRYPTO_FLAG_VRFY | CRYPTO_FLAG_SIGN; 573 574 /* 575 * It is an error if either peer supports 576 * identity, but the other does not. 577 */ 578 } else if (hismode == MODE_ACTIVE || hismode == 579 MODE_PASSIVE) { 580 if ((temp32 && !(fstamp & 581 CRYPTO_FLAG_MASK)) || 582 (!temp32 && (fstamp & 583 CRYPTO_FLAG_MASK))) { 584 rval = XEVNT_KEY; 585 break; 586 } 587 } 588 589 /* 590 * Discard the message if the signature digest 591 * NID is not supported. 592 */ 593 temp32 = (fstamp >> 16) & 0xffff; 594 dp = 595 (const EVP_MD *)EVP_get_digestbynid(temp32); 596 if (dp == NULL) { 597 rval = XEVNT_MD; 598 break; 599 } 600 601 /* 602 * Save status word, host name and message 603 * digest/signature type. If this is from a 604 * broadcast and the association ID has changed, 605 * request the autokey values. 606 */ 607 peer->assoc = associd; 608 if (hismode == MODE_SERVER) 609 fstamp |= CRYPTO_FLAG_AUTO; 610 if (!(fstamp & CRYPTO_FLAG_TAI)) 611 fstamp |= CRYPTO_FLAG_LEAP; 612 RAND_bytes((u_char *)&peer->hcookie, 4); 613 peer->crypto = fstamp; 614 peer->digest = dp; 615 if (peer->subject != NULL) 616 free(peer->subject); 617 peer->subject = emalloc(vallen + 1); 618 memcpy(peer->subject, ep->pkt, vallen); 619 peer->subject[vallen] = '\0'; 620 if (peer->issuer != NULL) 621 free(peer->issuer); 622 peer->issuer = estrdup(peer->subject); 623 snprintf(statstr, sizeof(statstr), 624 "assoc %d %d host %s %s", peer->associd, 625 peer->assoc, peer->subject, 626 OBJ_nid2ln(temp32)); 627 record_crypto_stats(&peer->srcadr, statstr); 628 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 629 break; 630 631 /* 632 * Decode X509 certificate in ASN.1 format and extract 633 * the data containing, among other things, subject 634 * name and public key. In the default identification 635 * scheme, the certificate trail is followed to a self 636 * signed trusted certificate. 637 */ 638 case CRYPTO_CERT | CRYPTO_RESP: 639 640 /* 641 * Discard the message if empty or invalid. 642 */ 643 if (len < VALUE_LEN) 644 break; 645 646 if ((rval = crypto_verify(ep, NULL, peer)) != 647 XEVNT_OK) 648 break; 649 650 /* 651 * Scan the certificate list to delete old 652 * versions and link the newest version first on 653 * the list. Then, verify the signature. If the 654 * certificate is bad or missing, just ignore 655 * it. 656 */ 657 if ((xinfo = cert_install(ep, peer)) == NULL) { 658 rval = XEVNT_CRT; 659 break; 660 } 661 if ((rval = cert_hike(peer, xinfo)) != XEVNT_OK) 662 break; 663 664 /* 665 * We plug in the public key and lifetime from 666 * the first certificate received. However, note 667 * that this certificate might not be signed by 668 * the server, so we can't check the 669 * signature/digest NID. 670 */ 671 if (peer->pkey == NULL) { 672 puch = xinfo->cert.ptr; 673 cert = d2i_X509(NULL, &puch, 674 ntohl(xinfo->cert.vallen)); 675 peer->pkey = X509_get_pubkey(cert); 676 X509_free(cert); 677 } 678 peer->flash &= ~TEST8; 679 temp32 = xinfo->nid; 680 snprintf(statstr, sizeof(statstr), 681 "cert %s %s 0x%x %s (%u) fs %u", 682 xinfo->subject, xinfo->issuer, xinfo->flags, 683 OBJ_nid2ln(temp32), temp32, 684 ntohl(ep->fstamp)); 685 record_crypto_stats(&peer->srcadr, statstr); 686 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 687 break; 688 689 /* 690 * Schnorr (IFF) identity scheme. This scheme is 691 * designed for use with shared secret server group keys 692 * and where the certificate may be generated by a third 693 * party. The client sends a challenge to the server, 694 * which performs a calculation and returns the result. 695 * A positive result is possible only if both client and 696 * server contain the same secret group key. 697 */ 698 case CRYPTO_IFF | CRYPTO_RESP: 699 700 /* 701 * Discard the message if invalid. 702 */ 703 if ((rval = crypto_verify(ep, NULL, peer)) != 704 XEVNT_OK) 705 break; 706 707 /* 708 * If the challenge matches the response, the 709 * server public key, signature and identity are 710 * all verified at the same time. The server is 711 * declared trusted, so we skip further 712 * certificate exchanges and move immediately to 713 * the cookie exchange. 714 */ 715 if ((rval = crypto_iff(ep, peer)) != XEVNT_OK) 716 break; 717 718 peer->crypto |= CRYPTO_FLAG_VRFY; 719 peer->flash &= ~TEST8; 720 snprintf(statstr, sizeof(statstr), "iff %s fs %u", 721 peer->issuer, ntohl(ep->fstamp)); 722 record_crypto_stats(&peer->srcadr, statstr); 723 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 724 break; 725 726 /* 727 * Guillou-Quisquater (GQ) identity scheme. This scheme 728 * is designed for use with public certificates carrying 729 * the GQ public key in an extension field. The client 730 * sends a challenge to the server, which performs a 731 * calculation and returns the result. A positive result 732 * is possible only if both client and server contain 733 * the same group key and the server has the matching GQ 734 * private key. 735 */ 736 case CRYPTO_GQ | CRYPTO_RESP: 737 738 /* 739 * Discard the message if invalid 740 */ 741 if ((rval = crypto_verify(ep, NULL, peer)) != 742 XEVNT_OK) 743 break; 744 745 /* 746 * If the challenge matches the response, the 747 * server public key, signature and identity are 748 * all verified at the same time. The server is 749 * declared trusted, so we skip further 750 * certificate exchanges and move immediately to 751 * the cookie exchange. 752 */ 753 if ((rval = crypto_gq(ep, peer)) != XEVNT_OK) 754 break; 755 756 peer->crypto |= CRYPTO_FLAG_VRFY; 757 peer->flash &= ~TEST8; 758 snprintf(statstr, sizeof(statstr), "gq %s fs %u", 759 peer->issuer, ntohl(ep->fstamp)); 760 record_crypto_stats(&peer->srcadr, statstr); 761 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 762 break; 763 764 /* 765 * Mu-Varadharajan (MV) identity scheme. This scheme is 766 * designed for use with three levels of trust, trusted 767 * host, server and client. The trusted host key is 768 * opaque to servers and clients; the server keys are 769 * opaque to clients and each client key is different. 770 * Client keys can be revoked without requiring new key 771 * generations. 772 */ 773 case CRYPTO_MV | CRYPTO_RESP: 774 775 /* 776 * Discard the message if invalid. 777 */ 778 if ((rval = crypto_verify(ep, NULL, peer)) != 779 XEVNT_OK) 780 break; 781 782 /* 783 * If the challenge matches the response, the 784 * server public key, signature and identity are 785 * all verified at the same time. The server is 786 * declared trusted, so we skip further 787 * certificate exchanges and move immediately to 788 * the cookie exchange. 789 */ 790 if ((rval = crypto_mv(ep, peer)) != XEVNT_OK) 791 break; 792 793 peer->crypto |= CRYPTO_FLAG_VRFY; 794 peer->flash &= ~TEST8; 795 snprintf(statstr, sizeof(statstr), "mv %s fs %u", 796 peer->issuer, ntohl(ep->fstamp)); 797 record_crypto_stats(&peer->srcadr, statstr); 798 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 799 break; 800 801 802 /* 803 * Cookie response in client and symmetric modes. If the 804 * cookie bit is set, the working cookie is the EXOR of 805 * the current and new values. 806 */ 807 case CRYPTO_COOK | CRYPTO_RESP: 808 809 /* 810 * Discard the message if invalid or signature 811 * not verified with respect to the cookie 812 * values. 813 */ 814 if ((rval = crypto_verify(ep, &peer->cookval, 815 peer)) != XEVNT_OK) 816 break; 817 818 /* 819 * Decrypt the cookie, hunting all the time for 820 * errors. 821 */ 822 if (vallen == (u_int)EVP_PKEY_size(host_pkey)) { 823 u_int32 *cookiebuf = malloc( 824 RSA_size(host_pkey->pkey.rsa)); 825 if (!cookiebuf) { 826 rval = XEVNT_CKY; 827 break; 828 } 829 830 if (RSA_private_decrypt(vallen, 831 (u_char *)ep->pkt, 832 (u_char *)cookiebuf, 833 host_pkey->pkey.rsa, 834 RSA_PKCS1_OAEP_PADDING) != 4) { 835 rval = XEVNT_CKY; 836 free(cookiebuf); 837 break; 838 } else { 839 cookie = ntohl(*cookiebuf); 840 free(cookiebuf); 841 } 842 } else { 843 rval = XEVNT_CKY; 844 break; 845 } 846 847 /* 848 * Install cookie values and light the cookie 849 * bit. If this is not broadcast client mode, we 850 * are done here. 851 */ 852 key_expire(peer); 853 if (hismode == MODE_ACTIVE || hismode == 854 MODE_PASSIVE) 855 peer->pcookie = peer->hcookie ^ cookie; 856 else 857 peer->pcookie = cookie; 858 peer->crypto |= CRYPTO_FLAG_COOK; 859 peer->flash &= ~TEST8; 860 snprintf(statstr, sizeof(statstr), 861 "cook %x ts %u fs %u", peer->pcookie, 862 ntohl(ep->tstamp), ntohl(ep->fstamp)); 863 record_crypto_stats(&peer->srcadr, statstr); 864 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 865 break; 866 867 /* 868 * Install autokey values in broadcast client and 869 * symmetric modes. We have to do this every time the 870 * sever/peer cookie changes or a new keylist is 871 * rolled. Ordinarily, this is automatic as this message 872 * is piggybacked on the first NTP packet sent upon 873 * either of these events. Note that a broadcast client 874 * or symmetric peer can receive this response without a 875 * matching request. 876 */ 877 case CRYPTO_AUTO | CRYPTO_RESP: 878 879 /* 880 * Discard the message if invalid or signature 881 * not verified with respect to the receive 882 * autokey values. 883 */ 884 if ((rval = crypto_verify(ep, &peer->recval, 885 peer)) != XEVNT_OK) 886 break; 887 888 /* 889 * Discard the message if a broadcast client and 890 * the association ID does not match. This might 891 * happen if a broacast server restarts the 892 * protocol. A protocol restart will occur at 893 * the next ASSOC message. 894 */ 895 if ((peer->cast_flags & MDF_BCLNT) && 896 peer->assoc != associd) 897 break; 898 899 /* 900 * Install autokey values and light the 901 * autokey bit. This is not hard. 902 */ 903 if (ep->tstamp == 0) 904 break; 905 906 if (peer->recval.ptr == NULL) 907 peer->recval.ptr = 908 emalloc(sizeof(struct autokey)); 909 bp = (struct autokey *)peer->recval.ptr; 910 peer->recval.tstamp = ep->tstamp; 911 peer->recval.fstamp = ep->fstamp; 912 ap = (struct autokey *)ep->pkt; 913 bp->seq = ntohl(ap->seq); 914 bp->key = ntohl(ap->key); 915 peer->pkeyid = bp->key; 916 peer->crypto |= CRYPTO_FLAG_AUTO; 917 peer->flash &= ~TEST8; 918 snprintf(statstr, sizeof(statstr), 919 "auto seq %d key %x ts %u fs %u", bp->seq, 920 bp->key, ntohl(ep->tstamp), 921 ntohl(ep->fstamp)); 922 record_crypto_stats(&peer->srcadr, statstr); 923 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 924 break; 925 926 /* 927 * X509 certificate sign response. Validate the 928 * certificate signed by the server and install. Later 929 * this can be provided to clients of this server in 930 * lieu of the self signed certificate in order to 931 * validate the public key. 932 */ 933 case CRYPTO_SIGN | CRYPTO_RESP: 934 935 /* 936 * Discard the message if invalid. 937 */ 938 if ((rval = crypto_verify(ep, NULL, peer)) != 939 XEVNT_OK) 940 break; 941 942 /* 943 * Scan the certificate list to delete old 944 * versions and link the newest version first on 945 * the list. 946 */ 947 if ((xinfo = cert_install(ep, peer)) == NULL) { 948 rval = XEVNT_CRT; 949 break; 950 } 951 peer->crypto |= CRYPTO_FLAG_SIGN; 952 peer->flash &= ~TEST8; 953 temp32 = xinfo->nid; 954 snprintf(statstr, sizeof(statstr), 955 "sign %s %s 0x%x %s (%u) fs %u", 956 xinfo->subject, xinfo->issuer, xinfo->flags, 957 OBJ_nid2ln(temp32), temp32, 958 ntohl(ep->fstamp)); 959 record_crypto_stats(&peer->srcadr, statstr); 960 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 961 break; 962 963 /* 964 * Install leapseconds values. While the leapsecond 965 * values epoch, TAI offset and values expiration epoch 966 * are retained, only the current TAI offset is provided 967 * via the kernel to other applications. 968 */ 969 case CRYPTO_LEAP | CRYPTO_RESP: 970 /* 971 * Discard the message if invalid. We can't 972 * compare the value timestamps here, as they 973 * can be updated by different servers. 974 */ 975 rval = crypto_verify(ep, NULL, peer); 976 if ((rval != XEVNT_OK ) || 977 (vallen != 3*sizeof(uint32_t)) ) 978 break; 979 980 /* Check if we can update the basic TAI offset 981 * for our current leap frame. This is a hack 982 * and ignores the time stamps in the autokey 983 * message. 984 */ 985 if (sys_leap != LEAP_NOTINSYNC) 986 leapsec_autokey_tai(ntohl(ep->pkt[0]), 987 rbufp->recv_time.l_ui, NULL); 988 tai_leap.tstamp = ep->tstamp; 989 tai_leap.fstamp = ep->fstamp; 990 crypto_update(); 991 mprintf_event(EVNT_TAI, peer, 992 "%d seconds", ntohl(ep->pkt[0])); 993 peer->crypto |= CRYPTO_FLAG_LEAP; 994 peer->flash &= ~TEST8; 995 snprintf(statstr, sizeof(statstr), 996 "leap TAI offset %d at %u expire %u fs %u", 997 ntohl(ep->pkt[0]), ntohl(ep->pkt[1]), 998 ntohl(ep->pkt[2]), ntohl(ep->fstamp)); 999 record_crypto_stats(&peer->srcadr, statstr); 1000 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 1001 break; 1002 1003 /* 1004 * We come here in symmetric modes for miscellaneous 1005 * commands that have value fields but are processed on 1006 * the transmit side. All we need do here is check for 1007 * valid field length. Note that ASSOC is handled 1008 * separately. 1009 */ 1010 case CRYPTO_CERT: 1011 case CRYPTO_IFF: 1012 case CRYPTO_GQ: 1013 case CRYPTO_MV: 1014 case CRYPTO_COOK: 1015 case CRYPTO_SIGN: 1016 if (len < VALUE_LEN) { 1017 rval = XEVNT_LEN; 1018 break; 1019 } 1020 /* fall through */ 1021 1022 /* 1023 * We come here in symmetric modes for requests 1024 * requiring a response (above plus AUTO and LEAP) and 1025 * for responses. If a request, save the extension field 1026 * for later; invalid requests will be caught on the 1027 * transmit side. If an error or invalid response, 1028 * declare a protocol error. 1029 */ 1030 default: 1031 if (code & (CRYPTO_RESP | CRYPTO_ERROR)) { 1032 rval = XEVNT_ERR; 1033 } else if (peer->cmmd == NULL) { 1034 fp = emalloc(len); 1035 memcpy(fp, ep, len); 1036 peer->cmmd = fp; 1037 } 1038 } 1039 1040 /* 1041 * The first error found terminates the extension field 1042 * scan and we return the laundry to the caller. 1043 */ 1044 if (rval != XEVNT_OK) { 1045 snprintf(statstr, sizeof(statstr), 1046 "%04x %d %02x %s", htonl(ep->opcode), 1047 associd, rval, eventstr(rval)); 1048 record_crypto_stats(&peer->srcadr, statstr); 1049 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 1050 return (rval); 1051 } 1052 authlen += (len + 3) / 4 * 4; 1053 } 1054 return (rval); 1055 } 1056 1057 1058 /* 1059 * crypto_xmit - construct extension fields 1060 * 1061 * This routine is called both when an association is configured and 1062 * when one is not. The only case where this matters is to retrieve the 1063 * autokey information, in which case the caller has to provide the 1064 * association ID to match the association. 1065 * 1066 * Side effect: update the packet offset. 1067 * 1068 * Errors 1069 * XEVNT_OK success 1070 * XEVNT_CRT bad or missing certificate 1071 * XEVNT_ERR protocol error 1072 * XEVNT_LEN bad field format or length 1073 * XEVNT_PER host certificate expired 1074 */ 1075 int 1076 crypto_xmit( 1077 struct peer *peer, /* peer structure pointer */ 1078 struct pkt *xpkt, /* transmit packet pointer */ 1079 struct recvbuf *rbufp, /* receive buffer pointer */ 1080 int start, /* offset to extension field */ 1081 struct exten *ep, /* extension pointer */ 1082 keyid_t cookie /* session cookie */ 1083 ) 1084 { 1085 struct exten *fp; /* extension pointers */ 1086 struct cert_info *cp, *xp, *yp; /* cert info/value pointer */ 1087 sockaddr_u *srcadr_sin; /* source address */ 1088 u_int32 *pkt; /* packet pointer */ 1089 u_int opcode; /* extension field opcode */ 1090 char certname[MAXHOSTNAME + 1]; /* subject name buffer */ 1091 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 1092 tstamp_t tstamp; 1093 struct calendar tscal; 1094 u_int vallen; 1095 struct value vtemp; 1096 associd_t associd; 1097 int rval; 1098 int len; 1099 keyid_t tcookie; 1100 1101 /* 1102 * Generate the requested extension field request code, length 1103 * and association ID. If this is a response and the host is not 1104 * synchronized, light the error bit and go home. 1105 */ 1106 pkt = (u_int32 *)xpkt + start / 4; 1107 fp = (struct exten *)pkt; 1108 opcode = ntohl(ep->opcode); 1109 if (peer != NULL) { 1110 srcadr_sin = &peer->srcadr; 1111 if (!(opcode & CRYPTO_RESP)) 1112 peer->opcode = ep->opcode; 1113 } else { 1114 srcadr_sin = &rbufp->recv_srcadr; 1115 } 1116 associd = (associd_t) ntohl(ep->associd); 1117 len = 8; 1118 fp->opcode = htonl((opcode & 0xffff0000) | len); 1119 fp->associd = ep->associd; 1120 rval = XEVNT_OK; 1121 tstamp = crypto_time(); 1122 switch (opcode & 0xffff0000) { 1123 1124 /* 1125 * Send association request and response with status word and 1126 * host name. Note, this message is not signed and the filestamp 1127 * contains only the status word. 1128 */ 1129 case CRYPTO_ASSOC: 1130 case CRYPTO_ASSOC | CRYPTO_RESP: 1131 len = crypto_send(fp, &hostval, start); 1132 fp->fstamp = htonl(crypto_flags); 1133 break; 1134 1135 /* 1136 * Send certificate request. Use the values from the extension 1137 * field. 1138 */ 1139 case CRYPTO_CERT: 1140 memset(&vtemp, 0, sizeof(vtemp)); 1141 vtemp.tstamp = ep->tstamp; 1142 vtemp.fstamp = ep->fstamp; 1143 vtemp.vallen = ep->vallen; 1144 vtemp.ptr = (u_char *)ep->pkt; 1145 len = crypto_send(fp, &vtemp, start); 1146 break; 1147 1148 /* 1149 * Send sign request. Use the host certificate, which is self- 1150 * signed and may or may not be trusted. 1151 */ 1152 case CRYPTO_SIGN: 1153 (void)ntpcal_ntp_to_date(&tscal, tstamp, NULL); 1154 if ((calcomp(&tscal, &(cert_host->first)) < 0) 1155 || (calcomp(&tscal, &(cert_host->last)) > 0)) 1156 rval = XEVNT_PER; 1157 else 1158 len = crypto_send(fp, &cert_host->cert, start); 1159 break; 1160 1161 /* 1162 * Send certificate response. Use the name in the extension 1163 * field to find the certificate in the cache. If the request 1164 * contains no subject name, assume the name of this host. This 1165 * is for backwards compatibility. Private certificates are 1166 * never sent. 1167 * 1168 * There may be several certificates matching the request. First 1169 * choice is a self-signed trusted certificate; second choice is 1170 * any certificate signed by another host. There is no third 1171 * choice. 1172 */ 1173 case CRYPTO_CERT | CRYPTO_RESP: 1174 vallen = exten_payload_size(ep); /* Must be <64k */ 1175 if (vallen == 0 || vallen >= sizeof(certname) ) { 1176 rval = XEVNT_LEN; 1177 break; 1178 } 1179 1180 /* 1181 * Find all public valid certificates with matching 1182 * subject. If a self-signed, trusted certificate is 1183 * found, use that certificate. If not, use the last non 1184 * self-signed certificate. 1185 */ 1186 memcpy(certname, ep->pkt, vallen); 1187 certname[vallen] = '\0'; 1188 xp = yp = NULL; 1189 for (cp = cinfo; cp != NULL; cp = cp->link) { 1190 if (cp->flags & (CERT_PRIV | CERT_ERROR)) 1191 continue; 1192 1193 if (strcmp(certname, cp->subject) != 0) 1194 continue; 1195 1196 if (strcmp(certname, cp->issuer) != 0) 1197 yp = cp; 1198 else if (cp ->flags & CERT_TRUST) 1199 xp = cp; 1200 continue; 1201 } 1202 1203 /* 1204 * Be careful who you trust. If the certificate is not 1205 * found, return an empty response. Note that we dont 1206 * enforce lifetimes here. 1207 * 1208 * The timestamp and filestamp are taken from the 1209 * certificate value structure. For all certificates the 1210 * timestamp is the latest signature update time. For 1211 * host and imported certificates the filestamp is the 1212 * creation epoch. For signed certificates the filestamp 1213 * is the creation epoch of the trusted certificate at 1214 * the root of the certificate trail. In principle, this 1215 * allows strong checking for signature masquerade. 1216 */ 1217 if (xp == NULL) 1218 xp = yp; 1219 if (xp == NULL) 1220 break; 1221 1222 if (tstamp == 0) 1223 break; 1224 1225 len = crypto_send(fp, &xp->cert, start); 1226 break; 1227 1228 /* 1229 * Send challenge in Schnorr (IFF) identity scheme. 1230 */ 1231 case CRYPTO_IFF: 1232 if (peer == NULL) 1233 break; /* hack attack */ 1234 1235 if ((rval = crypto_alice(peer, &vtemp)) == XEVNT_OK) { 1236 len = crypto_send(fp, &vtemp, start); 1237 value_free(&vtemp); 1238 } 1239 break; 1240 1241 /* 1242 * Send response in Schnorr (IFF) identity scheme. 1243 */ 1244 case CRYPTO_IFF | CRYPTO_RESP: 1245 if ((rval = crypto_bob(ep, &vtemp)) == XEVNT_OK) { 1246 len = crypto_send(fp, &vtemp, start); 1247 value_free(&vtemp); 1248 } 1249 break; 1250 1251 /* 1252 * Send challenge in Guillou-Quisquater (GQ) identity scheme. 1253 */ 1254 case CRYPTO_GQ: 1255 if (peer == NULL) 1256 break; /* hack attack */ 1257 1258 if ((rval = crypto_alice2(peer, &vtemp)) == XEVNT_OK) { 1259 len = crypto_send(fp, &vtemp, start); 1260 value_free(&vtemp); 1261 } 1262 break; 1263 1264 /* 1265 * Send response in Guillou-Quisquater (GQ) identity scheme. 1266 */ 1267 case CRYPTO_GQ | CRYPTO_RESP: 1268 if ((rval = crypto_bob2(ep, &vtemp)) == XEVNT_OK) { 1269 len = crypto_send(fp, &vtemp, start); 1270 value_free(&vtemp); 1271 } 1272 break; 1273 1274 /* 1275 * Send challenge in MV identity scheme. 1276 */ 1277 case CRYPTO_MV: 1278 if (peer == NULL) 1279 break; /* hack attack */ 1280 1281 if ((rval = crypto_alice3(peer, &vtemp)) == XEVNT_OK) { 1282 len = crypto_send(fp, &vtemp, start); 1283 value_free(&vtemp); 1284 } 1285 break; 1286 1287 /* 1288 * Send response in MV identity scheme. 1289 */ 1290 case CRYPTO_MV | CRYPTO_RESP: 1291 if ((rval = crypto_bob3(ep, &vtemp)) == XEVNT_OK) { 1292 len = crypto_send(fp, &vtemp, start); 1293 value_free(&vtemp); 1294 } 1295 break; 1296 1297 /* 1298 * Send certificate sign response. The integrity of the request 1299 * certificate has already been verified on the receive side. 1300 * Sign the response using the local server key. Use the 1301 * filestamp from the request and use the timestamp as the 1302 * current time. Light the error bit if the certificate is 1303 * invalid or contains an unverified signature. 1304 */ 1305 case CRYPTO_SIGN | CRYPTO_RESP: 1306 if ((rval = cert_sign(ep, &vtemp)) == XEVNT_OK) { 1307 len = crypto_send(fp, &vtemp, start); 1308 value_free(&vtemp); 1309 } 1310 break; 1311 1312 /* 1313 * Send public key and signature. Use the values from the public 1314 * key. 1315 */ 1316 case CRYPTO_COOK: 1317 len = crypto_send(fp, &pubkey, start); 1318 break; 1319 1320 /* 1321 * Encrypt and send cookie and signature. Light the error bit if 1322 * anything goes wrong. 1323 */ 1324 case CRYPTO_COOK | CRYPTO_RESP: 1325 vallen = ntohl(ep->vallen); /* Must be <64k */ 1326 if ( vallen == 0 1327 || (vallen >= MAX_VALLEN) 1328 || (opcode & 0x0000ffff) < VALUE_LEN + vallen) { 1329 rval = XEVNT_LEN; 1330 break; 1331 } 1332 if (peer == NULL) 1333 tcookie = cookie; 1334 else 1335 tcookie = peer->hcookie; 1336 if ((rval = crypto_encrypt((const u_char *)ep->pkt, vallen, &tcookie, &vtemp)) 1337 == XEVNT_OK) { 1338 len = crypto_send(fp, &vtemp, start); 1339 value_free(&vtemp); 1340 } 1341 break; 1342 1343 /* 1344 * Find peer and send autokey data and signature in broadcast 1345 * server and symmetric modes. Use the values in the autokey 1346 * structure. If no association is found, either the server has 1347 * restarted with new associations or some perp has replayed an 1348 * old message, in which case light the error bit. 1349 */ 1350 case CRYPTO_AUTO | CRYPTO_RESP: 1351 if (peer == NULL) { 1352 if ((peer = findpeerbyassoc(associd)) == NULL) { 1353 rval = XEVNT_ERR; 1354 break; 1355 } 1356 } 1357 peer->flags &= ~FLAG_ASSOC; 1358 len = crypto_send(fp, &peer->sndval, start); 1359 break; 1360 1361 /* 1362 * Send leapseconds values and signature. Use the values from 1363 * the tai structure. If no table has been loaded, just send an 1364 * empty request. 1365 */ 1366 case CRYPTO_LEAP | CRYPTO_RESP: 1367 len = crypto_send(fp, &tai_leap, start); 1368 break; 1369 1370 /* 1371 * Default - Send a valid command for unknown requests; send 1372 * an error response for unknown resonses. 1373 */ 1374 default: 1375 if (opcode & CRYPTO_RESP) 1376 rval = XEVNT_ERR; 1377 } 1378 1379 /* 1380 * In case of error, flame the log. If a request, toss the 1381 * puppy; if a response, return so the sender can flame, too. 1382 */ 1383 if (rval != XEVNT_OK) { 1384 u_int32 uint32; 1385 1386 uint32 = CRYPTO_ERROR; 1387 opcode |= uint32; 1388 fp->opcode |= htonl(uint32); 1389 snprintf(statstr, sizeof(statstr), 1390 "%04x %d %02x %s", opcode, associd, rval, 1391 eventstr(rval)); 1392 record_crypto_stats(srcadr_sin, statstr); 1393 DPRINTF(1, ("crypto_xmit: %s\n", statstr)); 1394 if (!(opcode & CRYPTO_RESP)) 1395 return (0); 1396 } 1397 DPRINTF(1, ("crypto_xmit: flags 0x%x offset %d len %d code 0x%x associd %d\n", 1398 crypto_flags, start, len, opcode >> 16, associd)); 1399 return (len); 1400 } 1401 1402 1403 /* 1404 * crypto_verify - verify the extension field value and signature 1405 * 1406 * Returns 1407 * XEVNT_OK success 1408 * XEVNT_ERR protocol error 1409 * XEVNT_FSP bad filestamp 1410 * XEVNT_LEN bad field format or length 1411 * XEVNT_PUB bad or missing public key 1412 * XEVNT_SGL bad signature length 1413 * XEVNT_SIG signature not verified 1414 * XEVNT_TSP bad timestamp 1415 */ 1416 static int 1417 crypto_verify( 1418 struct exten *ep, /* extension pointer */ 1419 struct value *vp, /* value pointer */ 1420 struct peer *peer /* peer structure pointer */ 1421 ) 1422 { 1423 EVP_PKEY *pkey; /* server public key */ 1424 EVP_MD_CTX ctx; /* signature context */ 1425 tstamp_t tstamp, tstamp1 = 0; /* timestamp */ 1426 tstamp_t fstamp, fstamp1 = 0; /* filestamp */ 1427 u_int vallen; /* value length */ 1428 u_int siglen; /* signature length */ 1429 u_int opcode, len; 1430 int i; 1431 1432 /* 1433 * We are extremely parannoyed. We require valid opcode, length, 1434 * association ID, timestamp, filestamp, public key, digest, 1435 * signature length and signature, where relevant. Note that 1436 * preliminary length checks are done in the main loop. 1437 */ 1438 len = ntohl(ep->opcode) & 0x0000ffff; 1439 opcode = ntohl(ep->opcode) & 0xffff0000; 1440 1441 /* 1442 * Check for valid value header, association ID and extension 1443 * field length. Remember, it is not an error to receive an 1444 * unsolicited response; however, the response ID must match 1445 * the association ID. 1446 */ 1447 if (opcode & CRYPTO_ERROR) 1448 return (XEVNT_ERR); 1449 1450 if (len < VALUE_LEN) 1451 return (XEVNT_LEN); 1452 1453 if (opcode == (CRYPTO_AUTO | CRYPTO_RESP) && (peer->pmode == 1454 MODE_BROADCAST || (peer->cast_flags & MDF_BCLNT))) { 1455 if (ntohl(ep->associd) != peer->assoc) 1456 return (XEVNT_ERR); 1457 } else { 1458 if (ntohl(ep->associd) != peer->associd) 1459 return (XEVNT_ERR); 1460 } 1461 1462 /* 1463 * We have a valid value header. Check for valid value and 1464 * signature field lengths. The extension field length must be 1465 * long enough to contain the value header, value and signature. 1466 * Note both the value and signature field lengths are rounded 1467 * up to the next word (4 octets). 1468 */ 1469 vallen = ntohl(ep->vallen); 1470 if ( vallen == 0 1471 || vallen > MAX_VALLEN) 1472 return (XEVNT_LEN); 1473 1474 i = (vallen + 3) / 4; 1475 siglen = ntohl(ep->pkt[i++]); 1476 if ( siglen > MAX_VALLEN 1477 || len - VALUE_LEN < ((vallen + 3) / 4) * 4 1478 || len - VALUE_LEN - ((vallen + 3) / 4) * 4 1479 < ((siglen + 3) / 4) * 4) 1480 return (XEVNT_LEN); 1481 1482 /* 1483 * Check for valid timestamp and filestamp. If the timestamp is 1484 * zero, the sender is not synchronized and signatures are 1485 * not possible. If nonzero the timestamp must not precede the 1486 * filestamp. The timestamp and filestamp must not precede the 1487 * corresponding values in the value structure, if present. 1488 */ 1489 tstamp = ntohl(ep->tstamp); 1490 fstamp = ntohl(ep->fstamp); 1491 if (tstamp == 0) 1492 return (XEVNT_TSP); 1493 1494 if (tstamp < fstamp) 1495 return (XEVNT_TSP); 1496 1497 if (vp != NULL) { 1498 tstamp1 = ntohl(vp->tstamp); 1499 fstamp1 = ntohl(vp->fstamp); 1500 if (tstamp1 != 0 && fstamp1 != 0) { 1501 if (tstamp < tstamp1) 1502 return (XEVNT_TSP); 1503 1504 if ((tstamp < fstamp1 || fstamp < fstamp1)) 1505 return (XEVNT_FSP); 1506 } 1507 } 1508 1509 /* 1510 * At the time the certificate message is validated, the public 1511 * key in the message is not available. Thus, don't try to 1512 * verify the signature. 1513 */ 1514 if (opcode == (CRYPTO_CERT | CRYPTO_RESP)) 1515 return (XEVNT_OK); 1516 1517 /* 1518 * Check for valid signature length, public key and digest 1519 * algorithm. 1520 */ 1521 if (crypto_flags & peer->crypto & CRYPTO_FLAG_PRIV) 1522 pkey = sign_pkey; 1523 else 1524 pkey = peer->pkey; 1525 if (siglen == 0 || pkey == NULL || peer->digest == NULL) 1526 return (XEVNT_ERR); 1527 1528 if (siglen != (u_int)EVP_PKEY_size(pkey)) 1529 return (XEVNT_SGL); 1530 1531 /* 1532 * Darn, I thought we would never get here. Verify the 1533 * signature. If the identity exchange is verified, light the 1534 * proventic bit. What a relief. 1535 */ 1536 EVP_VerifyInit(&ctx, peer->digest); 1537 /* XXX: the "+ 12" needs to be at least documented... */ 1538 EVP_VerifyUpdate(&ctx, (u_char *)&ep->tstamp, vallen + 12); 1539 if (EVP_VerifyFinal(&ctx, (u_char *)&ep->pkt[i], siglen, 1540 pkey) <= 0) 1541 return (XEVNT_SIG); 1542 1543 if (peer->crypto & CRYPTO_FLAG_VRFY) 1544 peer->crypto |= CRYPTO_FLAG_PROV; 1545 return (XEVNT_OK); 1546 } 1547 1548 1549 /* 1550 * crypto_encrypt - construct vp (encrypted cookie and signature) from 1551 * the public key and cookie. 1552 * 1553 * Returns: 1554 * XEVNT_OK success 1555 * XEVNT_CKY bad or missing cookie 1556 * XEVNT_PUB bad or missing public key 1557 */ 1558 static int 1559 crypto_encrypt( 1560 const u_char *ptr, /* Public Key */ 1561 u_int vallen, /* Length of Public Key */ 1562 keyid_t *cookie, /* server cookie */ 1563 struct value *vp /* value pointer */ 1564 ) 1565 { 1566 EVP_PKEY *pkey; /* public key */ 1567 EVP_MD_CTX ctx; /* signature context */ 1568 tstamp_t tstamp; /* NTP timestamp */ 1569 u_int32 temp32; 1570 u_char *puch; 1571 1572 /* 1573 * Extract the public key from the request. 1574 */ 1575 pkey = d2i_PublicKey(EVP_PKEY_RSA, NULL, &ptr, vallen); 1576 if (pkey == NULL) { 1577 msyslog(LOG_ERR, "crypto_encrypt: %s", 1578 ERR_error_string(ERR_get_error(), NULL)); 1579 return (XEVNT_PUB); 1580 } 1581 1582 /* 1583 * Encrypt the cookie, encode in ASN.1 and sign. 1584 */ 1585 memset(vp, 0, sizeof(struct value)); 1586 tstamp = crypto_time(); 1587 vp->tstamp = htonl(tstamp); 1588 vp->fstamp = hostval.tstamp; 1589 vallen = EVP_PKEY_size(pkey); 1590 vp->vallen = htonl(vallen); 1591 vp->ptr = emalloc(vallen); 1592 puch = vp->ptr; 1593 temp32 = htonl(*cookie); 1594 if (RSA_public_encrypt(4, (u_char *)&temp32, puch, 1595 pkey->pkey.rsa, RSA_PKCS1_OAEP_PADDING) <= 0) { 1596 msyslog(LOG_ERR, "crypto_encrypt: %s", 1597 ERR_error_string(ERR_get_error(), NULL)); 1598 free(vp->ptr); 1599 EVP_PKEY_free(pkey); 1600 return (XEVNT_CKY); 1601 } 1602 EVP_PKEY_free(pkey); 1603 if (tstamp == 0) 1604 return (XEVNT_OK); 1605 1606 vp->sig = emalloc(sign_siglen); 1607 EVP_SignInit(&ctx, sign_digest); 1608 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12); 1609 EVP_SignUpdate(&ctx, vp->ptr, vallen); 1610 if (EVP_SignFinal(&ctx, vp->sig, &vallen, sign_pkey)) { 1611 INSIST(vallen <= sign_siglen); 1612 vp->siglen = htonl(vallen); 1613 } 1614 return (XEVNT_OK); 1615 } 1616 1617 1618 /* 1619 * crypto_ident - construct extension field for identity scheme 1620 * 1621 * This routine determines which identity scheme is in use and 1622 * constructs an extension field for that scheme. 1623 * 1624 * Returns 1625 * CRYTPO_IFF IFF scheme 1626 * CRYPTO_GQ GQ scheme 1627 * CRYPTO_MV MV scheme 1628 * CRYPTO_NULL no available scheme 1629 */ 1630 u_int 1631 crypto_ident( 1632 struct peer *peer /* peer structure pointer */ 1633 ) 1634 { 1635 char filename[MAXFILENAME]; 1636 const char * scheme_name; 1637 u_int scheme_id; 1638 1639 /* 1640 * We come here after the group trusted host has been found; its 1641 * name defines the group name. Search the key cache for all 1642 * keys matching the same group name in order IFF, GQ and MV. 1643 * Use the first one available. 1644 */ 1645 scheme_name = NULL; 1646 if (peer->crypto & CRYPTO_FLAG_IFF) { 1647 scheme_name = "iff"; 1648 scheme_id = CRYPTO_IFF; 1649 } else if (peer->crypto & CRYPTO_FLAG_GQ) { 1650 scheme_name = "gq"; 1651 scheme_id = CRYPTO_GQ; 1652 } else if (peer->crypto & CRYPTO_FLAG_MV) { 1653 scheme_name = "mv"; 1654 scheme_id = CRYPTO_MV; 1655 } 1656 1657 if (scheme_name != NULL) { 1658 snprintf(filename, sizeof(filename), "ntpkey_%spar_%s", 1659 scheme_name, peer->ident); 1660 peer->ident_pkey = crypto_key(filename, NULL, 1661 &peer->srcadr); 1662 if (peer->ident_pkey != NULL) 1663 return scheme_id; 1664 } 1665 1666 msyslog(LOG_NOTICE, 1667 "crypto_ident: no identity parameters found for group %s", 1668 peer->ident); 1669 1670 return CRYPTO_NULL; 1671 } 1672 1673 1674 /* 1675 * crypto_args - construct extension field from arguments 1676 * 1677 * This routine creates an extension field with current timestamps and 1678 * specified opcode, association ID and optional string. Note that the 1679 * extension field is created here, but freed after the crypto_xmit() 1680 * call in the protocol module. 1681 * 1682 * Returns extension field pointer (no errors) 1683 * 1684 * XXX: opcode and len should really be 32-bit quantities and 1685 * we should make sure that str is not too big. 1686 */ 1687 struct exten * 1688 crypto_args( 1689 struct peer *peer, /* peer structure pointer */ 1690 u_int opcode, /* operation code */ 1691 associd_t associd, /* association ID */ 1692 char *str /* argument string */ 1693 ) 1694 { 1695 tstamp_t tstamp; /* NTP timestamp */ 1696 struct exten *ep; /* extension field pointer */ 1697 u_int len; /* extension field length */ 1698 size_t slen = 0; 1699 1700 tstamp = crypto_time(); 1701 len = sizeof(struct exten); 1702 if (str != NULL) { 1703 slen = strlen(str); 1704 INSIST(slen < MAX_VALLEN); 1705 len += slen; 1706 } 1707 ep = emalloc_zero(len); 1708 if (opcode == 0) 1709 return (ep); 1710 1711 REQUIRE(0 == (len & ~0x0000ffff)); 1712 REQUIRE(0 == (opcode & ~0xffff0000)); 1713 1714 ep->opcode = htonl(opcode + len); 1715 ep->associd = htonl(associd); 1716 ep->tstamp = htonl(tstamp); 1717 ep->fstamp = hostval.tstamp; 1718 ep->vallen = 0; 1719 if (str != NULL) { 1720 ep->vallen = htonl(slen); 1721 memcpy((char *)ep->pkt, str, slen); 1722 } 1723 return (ep); 1724 } 1725 1726 1727 /* 1728 * crypto_send - construct extension field from value components 1729 * 1730 * The value and signature fields are zero-padded to a word boundary. 1731 * Note: it is not polite to send a nonempty signature with zero 1732 * timestamp or a nonzero timestamp with an empty signature, but those 1733 * rules are not enforced here. 1734 * 1735 * XXX This code won't work on a box with 16-bit ints. 1736 */ 1737 int 1738 crypto_send( 1739 struct exten *ep, /* extension field pointer */ 1740 struct value *vp, /* value pointer */ 1741 int start /* buffer offset */ 1742 ) 1743 { 1744 u_int len, vallen, siglen, opcode; 1745 u_int i, j; 1746 1747 /* 1748 * Calculate extension field length and check for buffer 1749 * overflow. Leave room for the MAC. 1750 */ 1751 len = 16; /* XXX Document! */ 1752 vallen = ntohl(vp->vallen); 1753 INSIST(vallen <= MAX_VALLEN); 1754 len += ((vallen + 3) / 4 + 1) * 4; 1755 siglen = ntohl(vp->siglen); 1756 len += ((siglen + 3) / 4 + 1) * 4; 1757 if (start + len > sizeof(struct pkt) - MAX_MAC_LEN) 1758 return (0); 1759 1760 /* 1761 * Copy timestamps. 1762 */ 1763 ep->tstamp = vp->tstamp; 1764 ep->fstamp = vp->fstamp; 1765 ep->vallen = vp->vallen; 1766 1767 /* 1768 * Copy value. If the data field is empty or zero length, 1769 * encode an empty value with length zero. 1770 */ 1771 i = 0; 1772 if (vallen > 0 && vp->ptr != NULL) { 1773 j = vallen / 4; 1774 if (j * 4 < vallen) 1775 ep->pkt[i + j++] = 0; 1776 memcpy(&ep->pkt[i], vp->ptr, vallen); 1777 i += j; 1778 } 1779 1780 /* 1781 * Copy signature. If the signature field is empty or zero 1782 * length, encode an empty signature with length zero. 1783 */ 1784 ep->pkt[i++] = vp->siglen; 1785 if (siglen > 0 && vp->sig != NULL) { 1786 j = siglen / 4; 1787 if (j * 4 < siglen) 1788 ep->pkt[i + j++] = 0; 1789 memcpy(&ep->pkt[i], vp->sig, siglen); 1790 /* i += j; */ /* We don't use i after this */ 1791 } 1792 opcode = ntohl(ep->opcode); 1793 ep->opcode = htonl((opcode & 0xffff0000) | len); 1794 ENSURE(len <= MAX_VALLEN); 1795 return (len); 1796 } 1797 1798 1799 /* 1800 * crypto_update - compute new public value and sign extension fields 1801 * 1802 * This routine runs periodically, like once a day, and when something 1803 * changes. It updates the timestamps on three value structures and one 1804 * value structure list, then signs all the structures: 1805 * 1806 * hostval host name (not signed) 1807 * pubkey public key 1808 * cinfo certificate info/value list 1809 * tai_leap leap values 1810 * 1811 * Filestamps are proventic data, so this routine runs only when the 1812 * host is synchronized to a proventicated source. Thus, the timestamp 1813 * is proventic and can be used to deflect clogging attacks. 1814 * 1815 * Returns void (no errors) 1816 */ 1817 void 1818 crypto_update(void) 1819 { 1820 EVP_MD_CTX ctx; /* message digest context */ 1821 struct cert_info *cp; /* certificate info/value */ 1822 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 1823 u_int32 *ptr; 1824 u_int len; 1825 leap_result_t leap_data; 1826 1827 hostval.tstamp = htonl(crypto_time()); 1828 if (hostval.tstamp == 0) 1829 return; 1830 1831 /* 1832 * Sign public key and timestamps. The filestamp is derived from 1833 * the host key file extension from wherever the file was 1834 * generated. 1835 */ 1836 if (pubkey.vallen != 0) { 1837 pubkey.tstamp = hostval.tstamp; 1838 pubkey.siglen = 0; 1839 if (pubkey.sig == NULL) 1840 pubkey.sig = emalloc(sign_siglen); 1841 EVP_SignInit(&ctx, sign_digest); 1842 EVP_SignUpdate(&ctx, (u_char *)&pubkey, 12); 1843 EVP_SignUpdate(&ctx, pubkey.ptr, ntohl(pubkey.vallen)); 1844 if (EVP_SignFinal(&ctx, pubkey.sig, &len, sign_pkey)) { 1845 INSIST(len <= sign_siglen); 1846 pubkey.siglen = htonl(len); 1847 } 1848 } 1849 1850 /* 1851 * Sign certificates and timestamps. The filestamp is derived 1852 * from the certificate file extension from wherever the file 1853 * was generated. Note we do not throw expired certificates 1854 * away; they may have signed younger ones. 1855 */ 1856 for (cp = cinfo; cp != NULL; cp = cp->link) { 1857 cp->cert.tstamp = hostval.tstamp; 1858 cp->cert.siglen = 0; 1859 if (cp->cert.sig == NULL) 1860 cp->cert.sig = emalloc(sign_siglen); 1861 EVP_SignInit(&ctx, sign_digest); 1862 EVP_SignUpdate(&ctx, (u_char *)&cp->cert, 12); 1863 EVP_SignUpdate(&ctx, cp->cert.ptr, 1864 ntohl(cp->cert.vallen)); 1865 if (EVP_SignFinal(&ctx, cp->cert.sig, &len, sign_pkey)) { 1866 INSIST(len <= sign_siglen); 1867 cp->cert.siglen = htonl(len); 1868 } 1869 } 1870 1871 /* 1872 * Sign leapseconds values and timestamps. Note it is not an 1873 * error to return null values. 1874 */ 1875 tai_leap.tstamp = hostval.tstamp; 1876 tai_leap.fstamp = hostval.fstamp; 1877 1878 /* Get the leap second era. We might need a full lookup early 1879 * after start, when the cache is not yet loaded. 1880 */ 1881 leapsec_frame(&leap_data); 1882 if ( ! memcmp(&leap_data.ebase, &leap_data.ttime, sizeof(vint64))) { 1883 time_t now = time(NULL); 1884 uint32_t nowntp = (uint32_t)now + JAN_1970; 1885 leapsec_query(&leap_data, nowntp, &now); 1886 } 1887 1888 /* Create the data block. The protocol does not work without. */ 1889 len = 3 * sizeof(u_int32); 1890 if (tai_leap.ptr == NULL || ntohl(tai_leap.vallen) != len) { 1891 free(tai_leap.ptr); 1892 tai_leap.ptr = emalloc(len); 1893 tai_leap.vallen = htonl(len); 1894 } 1895 ptr = (u_int32 *)tai_leap.ptr; 1896 if (leap_data.tai_offs > 10) { 1897 /* create a TAI / leap era block. The end time is a 1898 * fake -- maybe we can do better. 1899 */ 1900 ptr[0] = htonl(leap_data.tai_offs); 1901 ptr[1] = htonl(leap_data.ebase.d_s.lo); 1902 if (leap_data.ttime.d_s.hi >= 0) 1903 ptr[2] = htonl(leap_data.ttime.D_s.lo + 7*86400); 1904 else 1905 ptr[2] = htonl(leap_data.ebase.D_s.lo + 25*86400); 1906 } else { 1907 /* no leap era available */ 1908 memset(ptr, 0, len); 1909 } 1910 if (tai_leap.sig == NULL) 1911 tai_leap.sig = emalloc(sign_siglen); 1912 EVP_SignInit(&ctx, sign_digest); 1913 EVP_SignUpdate(&ctx, (u_char *)&tai_leap, 12); 1914 EVP_SignUpdate(&ctx, tai_leap.ptr, len); 1915 if (EVP_SignFinal(&ctx, tai_leap.sig, &len, sign_pkey)) { 1916 INSIST(len <= sign_siglen); 1917 tai_leap.siglen = htonl(len); 1918 } 1919 crypto_flags |= CRYPTO_FLAG_TAI; 1920 1921 snprintf(statstr, sizeof(statstr), "signature update ts %u", 1922 ntohl(hostval.tstamp)); 1923 record_crypto_stats(NULL, statstr); 1924 DPRINTF(1, ("crypto_update: %s\n", statstr)); 1925 } 1926 1927 /* 1928 * crypto_update_taichange - eventually trigger crypto_update 1929 * 1930 * This is called when a change in 'sys_tai' is detected. This will 1931 * happen shortly after a leap second is detected, but unhappily also 1932 * early after system start; also, the crypto stuff might be unused and 1933 * an unguarded call to crypto_update() causes a crash. 1934 * 1935 * This function makes sure that there already *is* a valid crypto block 1936 * for the use with autokey, and only calls 'crypto_update()' if it can 1937 * succeed. 1938 * 1939 * Returns void (no errors) 1940 */ 1941 void 1942 crypto_update_taichange(void) 1943 { 1944 static const u_int len = 3 * sizeof(u_int32); 1945 1946 /* check if the signing digest algo is available */ 1947 if (sign_digest == NULL || sign_pkey == NULL) 1948 return; 1949 1950 /* check size of TAI extension block */ 1951 if (tai_leap.ptr == NULL || ntohl(tai_leap.vallen) != len) 1952 return; 1953 1954 /* crypto_update should at least not crash here! */ 1955 crypto_update(); 1956 } 1957 1958 /* 1959 * value_free - free value structure components. 1960 * 1961 * Returns void (no errors) 1962 */ 1963 void 1964 value_free( 1965 struct value *vp /* value structure */ 1966 ) 1967 { 1968 if (vp->ptr != NULL) 1969 free(vp->ptr); 1970 if (vp->sig != NULL) 1971 free(vp->sig); 1972 memset(vp, 0, sizeof(struct value)); 1973 } 1974 1975 1976 /* 1977 * crypto_time - returns current NTP time. 1978 * 1979 * Returns NTP seconds if in synch, 0 otherwise 1980 */ 1981 tstamp_t 1982 crypto_time() 1983 { 1984 l_fp tstamp; /* NTP time */ 1985 1986 L_CLR(&tstamp); 1987 if (sys_leap != LEAP_NOTINSYNC) 1988 get_systime(&tstamp); 1989 return (tstamp.l_ui); 1990 } 1991 1992 1993 /* 1994 * asn_to_calendar - convert ASN1_TIME time structure to struct calendar. 1995 * 1996 */ 1997 static 1998 void 1999 asn_to_calendar ( 2000 ASN1_TIME *asn1time, /* pointer to ASN1_TIME structure */ 2001 struct calendar *pjd /* pointer to result */ 2002 ) 2003 { 2004 size_t len; /* length of ASN1_TIME string */ 2005 char v[24]; /* writable copy of ASN1_TIME string */ 2006 unsigned long temp; /* result from strtoul */ 2007 2008 /* 2009 * Extract time string YYMMDDHHMMSSZ from ASN1 time structure. 2010 * Or YYYYMMDDHHMMSSZ. 2011 * Note that the YY, MM, DD fields start with one, the HH, MM, 2012 * SS fields start with zero and the Z character is ignored. 2013 * Also note that two-digit years less than 50 map to years greater than 2014 * 100. Dontcha love ASN.1? Better than MIL-188. 2015 */ 2016 len = asn1time->length; 2017 REQUIRE(len < sizeof(v)); 2018 (void)strncpy(v, (char *)(asn1time->data), len); 2019 REQUIRE(len >= 13); 2020 temp = strtoul(v+len-3, NULL, 10); 2021 pjd->second = temp; 2022 v[len-3] = '\0'; 2023 2024 temp = strtoul(v+len-5, NULL, 10); 2025 pjd->minute = temp; 2026 v[len-5] = '\0'; 2027 2028 temp = strtoul(v+len-7, NULL, 10); 2029 pjd->hour = temp; 2030 v[len-7] = '\0'; 2031 2032 temp = strtoul(v+len-9, NULL, 10); 2033 pjd->monthday = temp; 2034 v[len-9] = '\0'; 2035 2036 temp = strtoul(v+len-11, NULL, 10); 2037 pjd->month = temp; 2038 v[len-11] = '\0'; 2039 2040 temp = strtoul(v, NULL, 10); 2041 /* handle two-digit years */ 2042 if (temp < 50UL) 2043 temp += 100UL; 2044 if (temp < 150UL) 2045 temp += 1900UL; 2046 pjd->year = temp; 2047 2048 pjd->yearday = pjd->weekday = 0; 2049 return; 2050 } 2051 2052 2053 /* 2054 * bigdig() - compute a BIGNUM MD5 hash of a BIGNUM number. 2055 * 2056 * Returns void (no errors) 2057 */ 2058 static void 2059 bighash( 2060 BIGNUM *bn, /* BIGNUM * from */ 2061 BIGNUM *bk /* BIGNUM * to */ 2062 ) 2063 { 2064 EVP_MD_CTX ctx; /* message digest context */ 2065 u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */ 2066 u_char *ptr; /* a BIGNUM as binary string */ 2067 u_int len; 2068 2069 len = BN_num_bytes(bn); 2070 ptr = emalloc(len); 2071 BN_bn2bin(bn, ptr); 2072 EVP_DigestInit(&ctx, EVP_md5()); 2073 EVP_DigestUpdate(&ctx, ptr, len); 2074 EVP_DigestFinal(&ctx, dgst, &len); 2075 BN_bin2bn(dgst, len, bk); 2076 free(ptr); 2077 } 2078 2079 2080 /* 2081 *********************************************************************** 2082 * * 2083 * The following routines implement the Schnorr (IFF) identity scheme * 2084 * * 2085 *********************************************************************** 2086 * 2087 * The Schnorr (IFF) identity scheme is intended for use when 2088 * certificates are generated by some other trusted certificate 2089 * authority and the certificate cannot be used to convey public 2090 * parameters. There are two kinds of files: encrypted server files that 2091 * contain private and public values and nonencrypted client files that 2092 * contain only public values. New generations of server files must be 2093 * securely transmitted to all servers of the group; client files can be 2094 * distributed by any means. The scheme is self contained and 2095 * independent of new generations of host keys, sign keys and 2096 * certificates. 2097 * 2098 * The IFF values hide in a DSA cuckoo structure which uses the same 2099 * parameters. The values are used by an identity scheme based on DSA 2100 * cryptography and described in Stimson p. 285. The p is a 512-bit 2101 * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1 2102 * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a 2103 * private random group key b (0 < b < q) and public key v = g^b, then 2104 * sends (p, q, g, b) to the servers and (p, q, g, v) to the clients. 2105 * Alice challenges Bob to confirm identity using the protocol described 2106 * below. 2107 * 2108 * How it works 2109 * 2110 * The scheme goes like this. Both Alice and Bob have the public primes 2111 * p, q and generator g. The TA gives private key b to Bob and public 2112 * key v to Alice. 2113 * 2114 * Alice rolls new random challenge r (o < r < q) and sends to Bob in 2115 * the IFF request message. Bob rolls new random k (0 < k < q), then 2116 * computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x)) 2117 * to Alice in the response message. Besides making the response 2118 * shorter, the hash makes it effectivey impossible for an intruder to 2119 * solve for b by observing a number of these messages. 2120 * 2121 * Alice receives the response and computes g^y v^r mod p. After a bit 2122 * of algebra, this simplifies to g^k. If the hash of this result 2123 * matches hash(x), Alice knows that Bob has the group key b. The signed 2124 * response binds this knowledge to Bob's private key and the public key 2125 * previously received in his certificate. 2126 * 2127 * crypto_alice - construct Alice's challenge in IFF scheme 2128 * 2129 * Returns 2130 * XEVNT_OK success 2131 * XEVNT_ID bad or missing group key 2132 * XEVNT_PUB bad or missing public key 2133 */ 2134 static int 2135 crypto_alice( 2136 struct peer *peer, /* peer pointer */ 2137 struct value *vp /* value pointer */ 2138 ) 2139 { 2140 DSA *dsa; /* IFF parameters */ 2141 BN_CTX *bctx; /* BIGNUM context */ 2142 EVP_MD_CTX ctx; /* signature context */ 2143 tstamp_t tstamp; 2144 u_int len; 2145 2146 /* 2147 * The identity parameters must have correct format and content. 2148 */ 2149 if (peer->ident_pkey == NULL) { 2150 msyslog(LOG_NOTICE, "crypto_alice: scheme unavailable"); 2151 return (XEVNT_ID); 2152 } 2153 2154 if ((dsa = peer->ident_pkey->pkey->pkey.dsa) == NULL) { 2155 msyslog(LOG_NOTICE, "crypto_alice: defective key"); 2156 return (XEVNT_PUB); 2157 } 2158 2159 /* 2160 * Roll new random r (0 < r < q). 2161 */ 2162 if (peer->iffval != NULL) 2163 BN_free(peer->iffval); 2164 peer->iffval = BN_new(); 2165 len = BN_num_bytes(dsa->q); 2166 BN_rand(peer->iffval, len * 8, -1, 1); /* r mod q*/ 2167 bctx = BN_CTX_new(); 2168 BN_mod(peer->iffval, peer->iffval, dsa->q, bctx); 2169 BN_CTX_free(bctx); 2170 2171 /* 2172 * Sign and send to Bob. The filestamp is from the local file. 2173 */ 2174 memset(vp, 0, sizeof(struct value)); 2175 tstamp = crypto_time(); 2176 vp->tstamp = htonl(tstamp); 2177 vp->fstamp = htonl(peer->ident_pkey->fstamp); 2178 vp->vallen = htonl(len); 2179 vp->ptr = emalloc(len); 2180 BN_bn2bin(peer->iffval, vp->ptr); 2181 if (tstamp == 0) 2182 return (XEVNT_OK); 2183 2184 vp->sig = emalloc(sign_siglen); 2185 EVP_SignInit(&ctx, sign_digest); 2186 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12); 2187 EVP_SignUpdate(&ctx, vp->ptr, len); 2188 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) { 2189 INSIST(len <= sign_siglen); 2190 vp->siglen = htonl(len); 2191 } 2192 return (XEVNT_OK); 2193 } 2194 2195 2196 /* 2197 * crypto_bob - construct Bob's response to Alice's challenge 2198 * 2199 * Returns 2200 * XEVNT_OK success 2201 * XEVNT_ERR protocol error 2202 * XEVNT_ID bad or missing group key 2203 */ 2204 static int 2205 crypto_bob( 2206 struct exten *ep, /* extension pointer */ 2207 struct value *vp /* value pointer */ 2208 ) 2209 { 2210 DSA *dsa; /* IFF parameters */ 2211 DSA_SIG *sdsa; /* DSA signature context fake */ 2212 BN_CTX *bctx; /* BIGNUM context */ 2213 EVP_MD_CTX ctx; /* signature context */ 2214 tstamp_t tstamp; /* NTP timestamp */ 2215 BIGNUM *bn, *bk, *r; 2216 u_char *ptr; 2217 u_int len; /* extension field value length */ 2218 2219 /* 2220 * If the IFF parameters are not valid, something awful 2221 * happened or we are being tormented. 2222 */ 2223 if (iffkey_info == NULL) { 2224 msyslog(LOG_NOTICE, "crypto_bob: scheme unavailable"); 2225 return (XEVNT_ID); 2226 } 2227 dsa = iffkey_info->pkey->pkey.dsa; 2228 2229 /* 2230 * Extract r from the challenge. 2231 */ 2232 len = exten_payload_size(ep); 2233 if (len == 0 || len > MAX_VALLEN) 2234 return (XEVNT_LEN); 2235 if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) { 2236 msyslog(LOG_ERR, "crypto_bob: %s", 2237 ERR_error_string(ERR_get_error(), NULL)); 2238 return (XEVNT_ERR); 2239 } 2240 2241 /* 2242 * Bob rolls random k (0 < k < q), computes y = k + b r mod q 2243 * and x = g^k mod p, then sends (y, hash(x)) to Alice. 2244 */ 2245 bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new(); 2246 sdsa = DSA_SIG_new(); 2247 BN_rand(bk, len * 8, -1, 1); /* k */ 2248 BN_mod_mul(bn, dsa->priv_key, r, dsa->q, bctx); /* b r mod q */ 2249 BN_add(bn, bn, bk); 2250 BN_mod(bn, bn, dsa->q, bctx); /* k + b r mod q */ 2251 sdsa->r = BN_dup(bn); 2252 BN_mod_exp(bk, dsa->g, bk, dsa->p, bctx); /* g^k mod p */ 2253 bighash(bk, bk); 2254 sdsa->s = BN_dup(bk); 2255 BN_CTX_free(bctx); 2256 BN_free(r); BN_free(bn); BN_free(bk); 2257 #ifdef DEBUG 2258 if (debug > 1) 2259 DSA_print_fp(stdout, dsa, 0); 2260 #endif 2261 2262 /* 2263 * Encode the values in ASN.1 and sign. The filestamp is from 2264 * the local file. 2265 */ 2266 len = i2d_DSA_SIG(sdsa, NULL); 2267 if (len == 0) { 2268 msyslog(LOG_ERR, "crypto_bob: %s", 2269 ERR_error_string(ERR_get_error(), NULL)); 2270 DSA_SIG_free(sdsa); 2271 return (XEVNT_ERR); 2272 } 2273 if (len > MAX_VALLEN) { 2274 msyslog(LOG_ERR, "crypto_bob: signature is too big: %u", 2275 len); 2276 DSA_SIG_free(sdsa); 2277 return (XEVNT_LEN); 2278 } 2279 memset(vp, 0, sizeof(struct value)); 2280 tstamp = crypto_time(); 2281 vp->tstamp = htonl(tstamp); 2282 vp->fstamp = htonl(iffkey_info->fstamp); 2283 vp->vallen = htonl(len); 2284 ptr = emalloc(len); 2285 vp->ptr = ptr; 2286 i2d_DSA_SIG(sdsa, &ptr); 2287 DSA_SIG_free(sdsa); 2288 if (tstamp == 0) 2289 return (XEVNT_OK); 2290 2291 /* XXX: more validation to make sure the sign fits... */ 2292 vp->sig = emalloc(sign_siglen); 2293 EVP_SignInit(&ctx, sign_digest); 2294 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12); 2295 EVP_SignUpdate(&ctx, vp->ptr, len); 2296 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) { 2297 INSIST(len <= sign_siglen); 2298 vp->siglen = htonl(len); 2299 } 2300 return (XEVNT_OK); 2301 } 2302 2303 2304 /* 2305 * crypto_iff - verify Bob's response to Alice's challenge 2306 * 2307 * Returns 2308 * XEVNT_OK success 2309 * XEVNT_FSP bad filestamp 2310 * XEVNT_ID bad or missing group key 2311 * XEVNT_PUB bad or missing public key 2312 */ 2313 int 2314 crypto_iff( 2315 struct exten *ep, /* extension pointer */ 2316 struct peer *peer /* peer structure pointer */ 2317 ) 2318 { 2319 DSA *dsa; /* IFF parameters */ 2320 BN_CTX *bctx; /* BIGNUM context */ 2321 DSA_SIG *sdsa; /* DSA parameters */ 2322 BIGNUM *bn, *bk; 2323 u_int len; 2324 const u_char *ptr; 2325 int temp; 2326 2327 /* 2328 * If the IFF parameters are not valid or no challenge was sent, 2329 * something awful happened or we are being tormented. 2330 */ 2331 if (peer->ident_pkey == NULL) { 2332 msyslog(LOG_NOTICE, "crypto_iff: scheme unavailable"); 2333 return (XEVNT_ID); 2334 } 2335 if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) { 2336 msyslog(LOG_NOTICE, "crypto_iff: invalid filestamp %u", 2337 ntohl(ep->fstamp)); 2338 return (XEVNT_FSP); 2339 } 2340 if ((dsa = peer->ident_pkey->pkey->pkey.dsa) == NULL) { 2341 msyslog(LOG_NOTICE, "crypto_iff: defective key"); 2342 return (XEVNT_PUB); 2343 } 2344 if (peer->iffval == NULL) { 2345 msyslog(LOG_NOTICE, "crypto_iff: missing challenge"); 2346 return (XEVNT_ID); 2347 } 2348 2349 /* 2350 * Extract the k + b r and g^k values from the response. 2351 */ 2352 bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new(); 2353 len = ntohl(ep->vallen); 2354 ptr = (u_char *)ep->pkt; 2355 if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) { 2356 BN_free(bn); BN_free(bk); BN_CTX_free(bctx); 2357 msyslog(LOG_ERR, "crypto_iff: %s", 2358 ERR_error_string(ERR_get_error(), NULL)); 2359 return (XEVNT_ERR); 2360 } 2361 2362 /* 2363 * Compute g^(k + b r) g^(q - b)r mod p. 2364 */ 2365 BN_mod_exp(bn, dsa->pub_key, peer->iffval, dsa->p, bctx); 2366 BN_mod_exp(bk, dsa->g, sdsa->r, dsa->p, bctx); 2367 BN_mod_mul(bn, bn, bk, dsa->p, bctx); 2368 2369 /* 2370 * Verify the hash of the result matches hash(x). 2371 */ 2372 bighash(bn, bn); 2373 temp = BN_cmp(bn, sdsa->s); 2374 BN_free(bn); BN_free(bk); BN_CTX_free(bctx); 2375 BN_free(peer->iffval); 2376 peer->iffval = NULL; 2377 DSA_SIG_free(sdsa); 2378 if (temp == 0) 2379 return (XEVNT_OK); 2380 2381 msyslog(LOG_NOTICE, "crypto_iff: identity not verified"); 2382 return (XEVNT_ID); 2383 } 2384 2385 2386 /* 2387 *********************************************************************** 2388 * * 2389 * The following routines implement the Guillou-Quisquater (GQ) * 2390 * identity scheme * 2391 * * 2392 *********************************************************************** 2393 * 2394 * The Guillou-Quisquater (GQ) identity scheme is intended for use when 2395 * the certificate can be used to convey public parameters. The scheme 2396 * uses a X509v3 certificate extension field do convey the public key of 2397 * a private key known only to servers. There are two kinds of files: 2398 * encrypted server files that contain private and public values and 2399 * nonencrypted client files that contain only public values. New 2400 * generations of server files must be securely transmitted to all 2401 * servers of the group; client files can be distributed by any means. 2402 * The scheme is self contained and independent of new generations of 2403 * host keys and sign keys. The scheme is self contained and independent 2404 * of new generations of host keys and sign keys. 2405 * 2406 * The GQ parameters hide in a RSA cuckoo structure which uses the same 2407 * parameters. The values are used by an identity scheme based on RSA 2408 * cryptography and described in Stimson p. 300 (with errors). The 512- 2409 * bit public modulus is n = p q, where p and q are secret large primes. 2410 * The TA rolls private random group key b as RSA exponent. These values 2411 * are known to all group members. 2412 * 2413 * When rolling new certificates, a server recomputes the private and 2414 * public keys. The private key u is a random roll, while the public key 2415 * is the inverse obscured by the group key v = (u^-1)^b. These values 2416 * replace the private and public keys normally generated by the RSA 2417 * scheme. Alice challenges Bob to confirm identity using the protocol 2418 * described below. 2419 * 2420 * How it works 2421 * 2422 * The scheme goes like this. Both Alice and Bob have the same modulus n 2423 * and some random b as the group key. These values are computed and 2424 * distributed in advance via secret means, although only the group key 2425 * b is truly secret. Each has a private random private key u and public 2426 * key (u^-1)^b, although not necessarily the same ones. Bob and Alice 2427 * can regenerate the key pair from time to time without affecting 2428 * operations. The public key is conveyed on the certificate in an 2429 * extension field; the private key is never revealed. 2430 * 2431 * Alice rolls new random challenge r and sends to Bob in the GQ 2432 * request message. Bob rolls new random k, then computes y = k u^r mod 2433 * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response 2434 * message. Besides making the response shorter, the hash makes it 2435 * effectivey impossible for an intruder to solve for b by observing 2436 * a number of these messages. 2437 * 2438 * Alice receives the response and computes y^b v^r mod n. After a bit 2439 * of algebra, this simplifies to k^b. If the hash of this result 2440 * matches hash(x), Alice knows that Bob has the group key b. The signed 2441 * response binds this knowledge to Bob's private key and the public key 2442 * previously received in his certificate. 2443 * 2444 * crypto_alice2 - construct Alice's challenge in GQ scheme 2445 * 2446 * Returns 2447 * XEVNT_OK success 2448 * XEVNT_ID bad or missing group key 2449 * XEVNT_PUB bad or missing public key 2450 */ 2451 static int 2452 crypto_alice2( 2453 struct peer *peer, /* peer pointer */ 2454 struct value *vp /* value pointer */ 2455 ) 2456 { 2457 RSA *rsa; /* GQ parameters */ 2458 BN_CTX *bctx; /* BIGNUM context */ 2459 EVP_MD_CTX ctx; /* signature context */ 2460 tstamp_t tstamp; 2461 u_int len; 2462 2463 /* 2464 * The identity parameters must have correct format and content. 2465 */ 2466 if (peer->ident_pkey == NULL) 2467 return (XEVNT_ID); 2468 2469 if ((rsa = peer->ident_pkey->pkey->pkey.rsa) == NULL) { 2470 msyslog(LOG_NOTICE, "crypto_alice2: defective key"); 2471 return (XEVNT_PUB); 2472 } 2473 2474 /* 2475 * Roll new random r (0 < r < n). 2476 */ 2477 if (peer->iffval != NULL) 2478 BN_free(peer->iffval); 2479 peer->iffval = BN_new(); 2480 len = BN_num_bytes(rsa->n); 2481 BN_rand(peer->iffval, len * 8, -1, 1); /* r mod n */ 2482 bctx = BN_CTX_new(); 2483 BN_mod(peer->iffval, peer->iffval, rsa->n, bctx); 2484 BN_CTX_free(bctx); 2485 2486 /* 2487 * Sign and send to Bob. The filestamp is from the local file. 2488 */ 2489 memset(vp, 0, sizeof(struct value)); 2490 tstamp = crypto_time(); 2491 vp->tstamp = htonl(tstamp); 2492 vp->fstamp = htonl(peer->ident_pkey->fstamp); 2493 vp->vallen = htonl(len); 2494 vp->ptr = emalloc(len); 2495 BN_bn2bin(peer->iffval, vp->ptr); 2496 if (tstamp == 0) 2497 return (XEVNT_OK); 2498 2499 vp->sig = emalloc(sign_siglen); 2500 EVP_SignInit(&ctx, sign_digest); 2501 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12); 2502 EVP_SignUpdate(&ctx, vp->ptr, len); 2503 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) { 2504 INSIST(len <= sign_siglen); 2505 vp->siglen = htonl(len); 2506 } 2507 return (XEVNT_OK); 2508 } 2509 2510 2511 /* 2512 * crypto_bob2 - construct Bob's response to Alice's challenge 2513 * 2514 * Returns 2515 * XEVNT_OK success 2516 * XEVNT_ERR protocol error 2517 * XEVNT_ID bad or missing group key 2518 */ 2519 static int 2520 crypto_bob2( 2521 struct exten *ep, /* extension pointer */ 2522 struct value *vp /* value pointer */ 2523 ) 2524 { 2525 RSA *rsa; /* GQ parameters */ 2526 DSA_SIG *sdsa; /* DSA parameters */ 2527 BN_CTX *bctx; /* BIGNUM context */ 2528 EVP_MD_CTX ctx; /* signature context */ 2529 tstamp_t tstamp; /* NTP timestamp */ 2530 BIGNUM *r, *k, *g, *y; 2531 u_char *ptr; 2532 u_int len; 2533 int s_len; 2534 2535 /* 2536 * If the GQ parameters are not valid, something awful 2537 * happened or we are being tormented. 2538 */ 2539 if (gqkey_info == NULL) { 2540 msyslog(LOG_NOTICE, "crypto_bob2: scheme unavailable"); 2541 return (XEVNT_ID); 2542 } 2543 rsa = gqkey_info->pkey->pkey.rsa; 2544 2545 /* 2546 * Extract r from the challenge. 2547 */ 2548 len = exten_payload_size(ep); 2549 if (len == 0 || len > MAX_VALLEN) 2550 return (XEVNT_LEN); 2551 if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) { 2552 msyslog(LOG_ERR, "crypto_bob2: %s", 2553 ERR_error_string(ERR_get_error(), NULL)); 2554 return (XEVNT_ERR); 2555 } 2556 2557 /* 2558 * Bob rolls random k (0 < k < n), computes y = k u^r mod n and 2559 * x = k^b mod n, then sends (y, hash(x)) to Alice. 2560 */ 2561 bctx = BN_CTX_new(); k = BN_new(); g = BN_new(); y = BN_new(); 2562 sdsa = DSA_SIG_new(); 2563 BN_rand(k, len * 8, -1, 1); /* k */ 2564 BN_mod(k, k, rsa->n, bctx); 2565 BN_mod_exp(y, rsa->p, r, rsa->n, bctx); /* u^r mod n */ 2566 BN_mod_mul(y, k, y, rsa->n, bctx); /* k u^r mod n */ 2567 sdsa->r = BN_dup(y); 2568 BN_mod_exp(g, k, rsa->e, rsa->n, bctx); /* k^b mod n */ 2569 bighash(g, g); 2570 sdsa->s = BN_dup(g); 2571 BN_CTX_free(bctx); 2572 BN_free(r); BN_free(k); BN_free(g); BN_free(y); 2573 #ifdef DEBUG 2574 if (debug > 1) 2575 RSA_print_fp(stdout, rsa, 0); 2576 #endif 2577 2578 /* 2579 * Encode the values in ASN.1 and sign. The filestamp is from 2580 * the local file. 2581 */ 2582 len = s_len = i2d_DSA_SIG(sdsa, NULL); 2583 if (s_len <= 0) { 2584 msyslog(LOG_ERR, "crypto_bob2: %s", 2585 ERR_error_string(ERR_get_error(), NULL)); 2586 DSA_SIG_free(sdsa); 2587 return (XEVNT_ERR); 2588 } 2589 memset(vp, 0, sizeof(struct value)); 2590 tstamp = crypto_time(); 2591 vp->tstamp = htonl(tstamp); 2592 vp->fstamp = htonl(gqkey_info->fstamp); 2593 vp->vallen = htonl(len); 2594 ptr = emalloc(len); 2595 vp->ptr = ptr; 2596 i2d_DSA_SIG(sdsa, &ptr); 2597 DSA_SIG_free(sdsa); 2598 if (tstamp == 0) 2599 return (XEVNT_OK); 2600 2601 vp->sig = emalloc(sign_siglen); 2602 EVP_SignInit(&ctx, sign_digest); 2603 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12); 2604 EVP_SignUpdate(&ctx, vp->ptr, len); 2605 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) { 2606 INSIST(len <= sign_siglen); 2607 vp->siglen = htonl(len); 2608 } 2609 return (XEVNT_OK); 2610 } 2611 2612 2613 /* 2614 * crypto_gq - verify Bob's response to Alice's challenge 2615 * 2616 * Returns 2617 * XEVNT_OK success 2618 * XEVNT_ERR protocol error 2619 * XEVNT_FSP bad filestamp 2620 * XEVNT_ID bad or missing group keys 2621 * XEVNT_PUB bad or missing public key 2622 */ 2623 int 2624 crypto_gq( 2625 struct exten *ep, /* extension pointer */ 2626 struct peer *peer /* peer structure pointer */ 2627 ) 2628 { 2629 RSA *rsa; /* GQ parameters */ 2630 BN_CTX *bctx; /* BIGNUM context */ 2631 DSA_SIG *sdsa; /* RSA signature context fake */ 2632 BIGNUM *y, *v; 2633 const u_char *ptr; 2634 long len; 2635 u_int temp; 2636 2637 /* 2638 * If the GQ parameters are not valid or no challenge was sent, 2639 * something awful happened or we are being tormented. Note that 2640 * the filestamp on the local key file can be greater than on 2641 * the remote parameter file if the keys have been refreshed. 2642 */ 2643 if (peer->ident_pkey == NULL) { 2644 msyslog(LOG_NOTICE, "crypto_gq: scheme unavailable"); 2645 return (XEVNT_ID); 2646 } 2647 if (ntohl(ep->fstamp) < peer->ident_pkey->fstamp) { 2648 msyslog(LOG_NOTICE, "crypto_gq: invalid filestamp %u", 2649 ntohl(ep->fstamp)); 2650 return (XEVNT_FSP); 2651 } 2652 if ((rsa = peer->ident_pkey->pkey->pkey.rsa) == NULL) { 2653 msyslog(LOG_NOTICE, "crypto_gq: defective key"); 2654 return (XEVNT_PUB); 2655 } 2656 if (peer->iffval == NULL) { 2657 msyslog(LOG_NOTICE, "crypto_gq: missing challenge"); 2658 return (XEVNT_ID); 2659 } 2660 2661 /* 2662 * Extract the y = k u^r and hash(x = k^b) values from the 2663 * response. 2664 */ 2665 bctx = BN_CTX_new(); y = BN_new(); v = BN_new(); 2666 len = ntohl(ep->vallen); 2667 ptr = (u_char *)ep->pkt; 2668 if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) { 2669 BN_CTX_free(bctx); BN_free(y); BN_free(v); 2670 msyslog(LOG_ERR, "crypto_gq: %s", 2671 ERR_error_string(ERR_get_error(), NULL)); 2672 return (XEVNT_ERR); 2673 } 2674 2675 /* 2676 * Compute v^r y^b mod n. 2677 */ 2678 if (peer->grpkey == NULL) { 2679 msyslog(LOG_NOTICE, "crypto_gq: missing group key"); 2680 return (XEVNT_ID); 2681 } 2682 BN_mod_exp(v, peer->grpkey, peer->iffval, rsa->n, bctx); 2683 /* v^r mod n */ 2684 BN_mod_exp(y, sdsa->r, rsa->e, rsa->n, bctx); /* y^b mod n */ 2685 BN_mod_mul(y, v, y, rsa->n, bctx); /* v^r y^b mod n */ 2686 2687 /* 2688 * Verify the hash of the result matches hash(x). 2689 */ 2690 bighash(y, y); 2691 temp = BN_cmp(y, sdsa->s); 2692 BN_CTX_free(bctx); BN_free(y); BN_free(v); 2693 BN_free(peer->iffval); 2694 peer->iffval = NULL; 2695 DSA_SIG_free(sdsa); 2696 if (temp == 0) 2697 return (XEVNT_OK); 2698 2699 msyslog(LOG_NOTICE, "crypto_gq: identity not verified"); 2700 return (XEVNT_ID); 2701 } 2702 2703 2704 /* 2705 *********************************************************************** 2706 * * 2707 * The following routines implement the Mu-Varadharajan (MV) identity * 2708 * scheme * 2709 * * 2710 *********************************************************************** 2711 * 2712 * The Mu-Varadharajan (MV) cryptosystem was originally intended when 2713 * servers broadcast messages to clients, but clients never send 2714 * messages to servers. There is one encryption key for the server and a 2715 * separate decryption key for each client. It operated something like a 2716 * pay-per-view satellite broadcasting system where the session key is 2717 * encrypted by the broadcaster and the decryption keys are held in a 2718 * tamperproof set-top box. 2719 * 2720 * The MV parameters and private encryption key hide in a DSA cuckoo 2721 * structure which uses the same parameters, but generated in a 2722 * different way. The values are used in an encryption scheme similar to 2723 * El Gamal cryptography and a polynomial formed from the expansion of 2724 * product terms (x - x[j]), as described in Mu, Y., and V. 2725 * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001, 2726 * 223-231. The paper has significant errors and serious omissions. 2727 * 2728 * Let q be the product of n distinct primes s1[j] (j = 1...n), where 2729 * each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so 2730 * that q and each s1[j] divide p - 1 and p has M = n * m + 1 2731 * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1) 2732 * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then 2733 * project into Zp* as exponents of g. Sometimes we have to compute an 2734 * inverse b^-1 of random b in Zq, but for that purpose we require 2735 * gcd(b, q) = 1. We expect M to be in the 500-bit range and n 2736 * relatively small, like 30. These are the parameters of the scheme and 2737 * they are expensive to compute. 2738 * 2739 * We set up an instance of the scheme as follows. A set of random 2740 * values x[j] mod q (j = 1...n), are generated as the zeros of a 2741 * polynomial of order n. The product terms (x - x[j]) are expanded to 2742 * form coefficients a[i] mod q (i = 0...n) in powers of x. These are 2743 * used as exponents of the generator g mod p to generate the private 2744 * encryption key A. The pair (gbar, ghat) of public server keys and the 2745 * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used 2746 * to construct the decryption keys. The devil is in the details. 2747 * 2748 * This routine generates a private server encryption file including the 2749 * private encryption key E and partial decryption keys gbar and ghat. 2750 * It then generates public client decryption files including the public 2751 * keys xbar[j] and xhat[j] for each client j. The partial decryption 2752 * files are used to compute the inverse of E. These values are suitably 2753 * blinded so secrets are not revealed. 2754 * 2755 * The distinguishing characteristic of this scheme is the capability to 2756 * revoke keys. Included in the calculation of E, gbar and ghat is the 2757 * product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is 2758 * subsequently removed from the product and E, gbar and ghat 2759 * recomputed, the jth client will no longer be able to compute E^-1 and 2760 * thus unable to decrypt the messageblock. 2761 * 2762 * How it works 2763 * 2764 * The scheme goes like this. Bob has the server values (p, E, q, gbar, 2765 * ghat) and Alice has the client values (p, xbar, xhat). 2766 * 2767 * Alice rolls new random nonce r mod p and sends to Bob in the MV 2768 * request message. Bob rolls random nonce k mod q, encrypts y = r E^k 2769 * mod p and sends (y, gbar^k, ghat^k) to Alice. 2770 * 2771 * Alice receives the response and computes the inverse (E^k)^-1 from 2772 * the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then 2773 * decrypts y and verifies it matches the original r. The signed 2774 * response binds this knowledge to Bob's private key and the public key 2775 * previously received in his certificate. 2776 * 2777 * crypto_alice3 - construct Alice's challenge in MV scheme 2778 * 2779 * Returns 2780 * XEVNT_OK success 2781 * XEVNT_ID bad or missing group key 2782 * XEVNT_PUB bad or missing public key 2783 */ 2784 static int 2785 crypto_alice3( 2786 struct peer *peer, /* peer pointer */ 2787 struct value *vp /* value pointer */ 2788 ) 2789 { 2790 DSA *dsa; /* MV parameters */ 2791 BN_CTX *bctx; /* BIGNUM context */ 2792 EVP_MD_CTX ctx; /* signature context */ 2793 tstamp_t tstamp; 2794 u_int len; 2795 2796 /* 2797 * The identity parameters must have correct format and content. 2798 */ 2799 if (peer->ident_pkey == NULL) 2800 return (XEVNT_ID); 2801 2802 if ((dsa = peer->ident_pkey->pkey->pkey.dsa) == NULL) { 2803 msyslog(LOG_NOTICE, "crypto_alice3: defective key"); 2804 return (XEVNT_PUB); 2805 } 2806 2807 /* 2808 * Roll new random r (0 < r < q). 2809 */ 2810 if (peer->iffval != NULL) 2811 BN_free(peer->iffval); 2812 peer->iffval = BN_new(); 2813 len = BN_num_bytes(dsa->p); 2814 BN_rand(peer->iffval, len * 8, -1, 1); /* r mod p */ 2815 bctx = BN_CTX_new(); 2816 BN_mod(peer->iffval, peer->iffval, dsa->p, bctx); 2817 BN_CTX_free(bctx); 2818 2819 /* 2820 * Sign and send to Bob. The filestamp is from the local file. 2821 */ 2822 memset(vp, 0, sizeof(struct value)); 2823 tstamp = crypto_time(); 2824 vp->tstamp = htonl(tstamp); 2825 vp->fstamp = htonl(peer->ident_pkey->fstamp); 2826 vp->vallen = htonl(len); 2827 vp->ptr = emalloc(len); 2828 BN_bn2bin(peer->iffval, vp->ptr); 2829 if (tstamp == 0) 2830 return (XEVNT_OK); 2831 2832 vp->sig = emalloc(sign_siglen); 2833 EVP_SignInit(&ctx, sign_digest); 2834 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12); 2835 EVP_SignUpdate(&ctx, vp->ptr, len); 2836 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) { 2837 INSIST(len <= sign_siglen); 2838 vp->siglen = htonl(len); 2839 } 2840 return (XEVNT_OK); 2841 } 2842 2843 2844 /* 2845 * crypto_bob3 - construct Bob's response to Alice's challenge 2846 * 2847 * Returns 2848 * XEVNT_OK success 2849 * XEVNT_ERR protocol error 2850 */ 2851 static int 2852 crypto_bob3( 2853 struct exten *ep, /* extension pointer */ 2854 struct value *vp /* value pointer */ 2855 ) 2856 { 2857 DSA *dsa; /* MV parameters */ 2858 DSA *sdsa; /* DSA signature context fake */ 2859 BN_CTX *bctx; /* BIGNUM context */ 2860 EVP_MD_CTX ctx; /* signature context */ 2861 tstamp_t tstamp; /* NTP timestamp */ 2862 BIGNUM *r, *k, *u; 2863 u_char *ptr; 2864 u_int len; 2865 2866 /* 2867 * If the MV parameters are not valid, something awful 2868 * happened or we are being tormented. 2869 */ 2870 if (mvkey_info == NULL) { 2871 msyslog(LOG_NOTICE, "crypto_bob3: scheme unavailable"); 2872 return (XEVNT_ID); 2873 } 2874 dsa = mvkey_info->pkey->pkey.dsa; 2875 2876 /* 2877 * Extract r from the challenge. 2878 */ 2879 len = exten_payload_size(ep); 2880 if (len == 0 || len > MAX_VALLEN) 2881 return (XEVNT_LEN); 2882 if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) { 2883 msyslog(LOG_ERR, "crypto_bob3: %s", 2884 ERR_error_string(ERR_get_error(), NULL)); 2885 return (XEVNT_ERR); 2886 } 2887 2888 /* 2889 * Bob rolls random k (0 < k < q), making sure it is not a 2890 * factor of q. He then computes y = r A^k and sends (y, gbar^k, 2891 * and ghat^k) to Alice. 2892 */ 2893 bctx = BN_CTX_new(); k = BN_new(); u = BN_new(); 2894 sdsa = DSA_new(); 2895 sdsa->p = BN_new(); sdsa->q = BN_new(); sdsa->g = BN_new(); 2896 while (1) { 2897 BN_rand(k, BN_num_bits(dsa->q), 0, 0); 2898 BN_mod(k, k, dsa->q, bctx); 2899 BN_gcd(u, k, dsa->q, bctx); 2900 if (BN_is_one(u)) 2901 break; 2902 } 2903 BN_mod_exp(u, dsa->g, k, dsa->p, bctx); /* A^k r */ 2904 BN_mod_mul(sdsa->p, u, r, dsa->p, bctx); 2905 BN_mod_exp(sdsa->q, dsa->priv_key, k, dsa->p, bctx); /* gbar */ 2906 BN_mod_exp(sdsa->g, dsa->pub_key, k, dsa->p, bctx); /* ghat */ 2907 BN_CTX_free(bctx); BN_free(k); BN_free(r); BN_free(u); 2908 #ifdef DEBUG 2909 if (debug > 1) 2910 DSA_print_fp(stdout, sdsa, 0); 2911 #endif 2912 2913 /* 2914 * Encode the values in ASN.1 and sign. The filestamp is from 2915 * the local file. 2916 */ 2917 memset(vp, 0, sizeof(struct value)); 2918 tstamp = crypto_time(); 2919 vp->tstamp = htonl(tstamp); 2920 vp->fstamp = htonl(mvkey_info->fstamp); 2921 len = i2d_DSAparams(sdsa, NULL); 2922 if (len == 0) { 2923 msyslog(LOG_ERR, "crypto_bob3: %s", 2924 ERR_error_string(ERR_get_error(), NULL)); 2925 DSA_free(sdsa); 2926 return (XEVNT_ERR); 2927 } 2928 vp->vallen = htonl(len); 2929 ptr = emalloc(len); 2930 vp->ptr = ptr; 2931 i2d_DSAparams(sdsa, &ptr); 2932 DSA_free(sdsa); 2933 if (tstamp == 0) 2934 return (XEVNT_OK); 2935 2936 vp->sig = emalloc(sign_siglen); 2937 EVP_SignInit(&ctx, sign_digest); 2938 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12); 2939 EVP_SignUpdate(&ctx, vp->ptr, len); 2940 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) { 2941 INSIST(len <= sign_siglen); 2942 vp->siglen = htonl(len); 2943 } 2944 return (XEVNT_OK); 2945 } 2946 2947 2948 /* 2949 * crypto_mv - verify Bob's response to Alice's challenge 2950 * 2951 * Returns 2952 * XEVNT_OK success 2953 * XEVNT_ERR protocol error 2954 * XEVNT_FSP bad filestamp 2955 * XEVNT_ID bad or missing group key 2956 * XEVNT_PUB bad or missing public key 2957 */ 2958 int 2959 crypto_mv( 2960 struct exten *ep, /* extension pointer */ 2961 struct peer *peer /* peer structure pointer */ 2962 ) 2963 { 2964 DSA *dsa; /* MV parameters */ 2965 DSA *sdsa; /* DSA parameters */ 2966 BN_CTX *bctx; /* BIGNUM context */ 2967 BIGNUM *k, *u, *v; 2968 u_int len; 2969 const u_char *ptr; 2970 int temp; 2971 2972 /* 2973 * If the MV parameters are not valid or no challenge was sent, 2974 * something awful happened or we are being tormented. 2975 */ 2976 if (peer->ident_pkey == NULL) { 2977 msyslog(LOG_NOTICE, "crypto_mv: scheme unavailable"); 2978 return (XEVNT_ID); 2979 } 2980 if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) { 2981 msyslog(LOG_NOTICE, "crypto_mv: invalid filestamp %u", 2982 ntohl(ep->fstamp)); 2983 return (XEVNT_FSP); 2984 } 2985 if ((dsa = peer->ident_pkey->pkey->pkey.dsa) == NULL) { 2986 msyslog(LOG_NOTICE, "crypto_mv: defective key"); 2987 return (XEVNT_PUB); 2988 } 2989 if (peer->iffval == NULL) { 2990 msyslog(LOG_NOTICE, "crypto_mv: missing challenge"); 2991 return (XEVNT_ID); 2992 } 2993 2994 /* 2995 * Extract the y, gbar and ghat values from the response. 2996 */ 2997 bctx = BN_CTX_new(); k = BN_new(); u = BN_new(); v = BN_new(); 2998 len = ntohl(ep->vallen); 2999 ptr = (u_char *)ep->pkt; 3000 if ((sdsa = d2i_DSAparams(NULL, &ptr, len)) == NULL) { 3001 msyslog(LOG_ERR, "crypto_mv: %s", 3002 ERR_error_string(ERR_get_error(), NULL)); 3003 return (XEVNT_ERR); 3004 } 3005 3006 /* 3007 * Compute (gbar^xhat ghat^xbar) mod p. 3008 */ 3009 BN_mod_exp(u, sdsa->q, dsa->pub_key, dsa->p, bctx); 3010 BN_mod_exp(v, sdsa->g, dsa->priv_key, dsa->p, bctx); 3011 BN_mod_mul(u, u, v, dsa->p, bctx); 3012 BN_mod_mul(u, u, sdsa->p, dsa->p, bctx); 3013 3014 /* 3015 * The result should match r. 3016 */ 3017 temp = BN_cmp(u, peer->iffval); 3018 BN_CTX_free(bctx); BN_free(k); BN_free(u); BN_free(v); 3019 BN_free(peer->iffval); 3020 peer->iffval = NULL; 3021 DSA_free(sdsa); 3022 if (temp == 0) 3023 return (XEVNT_OK); 3024 3025 msyslog(LOG_NOTICE, "crypto_mv: identity not verified"); 3026 return (XEVNT_ID); 3027 } 3028 3029 3030 /* 3031 *********************************************************************** 3032 * * 3033 * The following routines are used to manipulate certificates * 3034 * * 3035 *********************************************************************** 3036 */ 3037 /* 3038 * cert_sign - sign x509 certificate equest and update value structure. 3039 * 3040 * The certificate request includes a copy of the host certificate, 3041 * which includes the version number, subject name and public key of the 3042 * host. The resulting certificate includes these values plus the 3043 * serial number, issuer name and valid interval of the server. The 3044 * valid interval extends from the current time to the same time one 3045 * year hence. This may extend the life of the signed certificate beyond 3046 * that of the signer certificate. 3047 * 3048 * It is convenient to use the NTP seconds of the current time as the 3049 * serial number. In the value structure the timestamp is the current 3050 * time and the filestamp is taken from the extension field. Note this 3051 * routine is called only when the client clock is synchronized to a 3052 * proventic source, so timestamp comparisons are valid. 3053 * 3054 * The host certificate is valid from the time it was generated for a 3055 * period of one year. A signed certificate is valid from the time of 3056 * signature for a period of one year, but only the host certificate (or 3057 * sign certificate if used) is actually used to encrypt and decrypt 3058 * signatures. The signature trail is built from the client via the 3059 * intermediate servers to the trusted server. Each signature on the 3060 * trail must be valid at the time of signature, but it could happen 3061 * that a signer certificate expire before the signed certificate, which 3062 * remains valid until its expiration. 3063 * 3064 * Returns 3065 * XEVNT_OK success 3066 * XEVNT_CRT bad or missing certificate 3067 * XEVNT_PER host certificate expired 3068 * XEVNT_PUB bad or missing public key 3069 * XEVNT_VFY certificate not verified 3070 */ 3071 static int 3072 cert_sign( 3073 struct exten *ep, /* extension field pointer */ 3074 struct value *vp /* value pointer */ 3075 ) 3076 { 3077 X509 *req; /* X509 certificate request */ 3078 X509 *cert; /* X509 certificate */ 3079 X509_EXTENSION *ext; /* certificate extension */ 3080 ASN1_INTEGER *serial; /* serial number */ 3081 X509_NAME *subj; /* distinguished (common) name */ 3082 EVP_PKEY *pkey; /* public key */ 3083 EVP_MD_CTX ctx; /* message digest context */ 3084 tstamp_t tstamp; /* NTP timestamp */ 3085 struct calendar tscal; 3086 u_int len; 3087 const u_char *cptr; 3088 u_char *ptr; 3089 int i, temp; 3090 3091 /* 3092 * Decode ASN.1 objects and construct certificate structure. 3093 * Make sure the system clock is synchronized to a proventic 3094 * source. 3095 */ 3096 tstamp = crypto_time(); 3097 if (tstamp == 0) 3098 return (XEVNT_TSP); 3099 3100 len = exten_payload_size(ep); 3101 if (len == 0 || len > MAX_VALLEN) 3102 return (XEVNT_LEN); 3103 cptr = (void *)ep->pkt; 3104 if ((req = d2i_X509(NULL, &cptr, len)) == NULL) { 3105 msyslog(LOG_ERR, "cert_sign: %s", 3106 ERR_error_string(ERR_get_error(), NULL)); 3107 return (XEVNT_CRT); 3108 } 3109 /* 3110 * Extract public key and check for errors. 3111 */ 3112 if ((pkey = X509_get_pubkey(req)) == NULL) { 3113 msyslog(LOG_ERR, "cert_sign: %s", 3114 ERR_error_string(ERR_get_error(), NULL)); 3115 X509_free(req); 3116 return (XEVNT_PUB); 3117 } 3118 3119 /* 3120 * Generate X509 certificate signed by this server. If this is a 3121 * trusted host, the issuer name is the group name; otherwise, 3122 * it is the host name. Also copy any extensions that might be 3123 * present. 3124 */ 3125 cert = X509_new(); 3126 X509_set_version(cert, X509_get_version(req)); 3127 serial = ASN1_INTEGER_new(); 3128 ASN1_INTEGER_set(serial, tstamp); 3129 X509_set_serialNumber(cert, serial); 3130 X509_gmtime_adj(X509_get_notBefore(cert), 0L); 3131 X509_gmtime_adj(X509_get_notAfter(cert), YEAR); 3132 subj = X509_get_issuer_name(cert); 3133 X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC, 3134 hostval.ptr, strlen((const char *)hostval.ptr), -1, 0); 3135 subj = X509_get_subject_name(req); 3136 X509_set_subject_name(cert, subj); 3137 X509_set_pubkey(cert, pkey); 3138 temp = X509_get_ext_count(req); 3139 for (i = 0; i < temp; i++) { 3140 ext = X509_get_ext(req, i); 3141 INSIST(X509_add_ext(cert, ext, -1)); 3142 } 3143 X509_free(req); 3144 3145 /* 3146 * Sign and verify the client certificate, but only if the host 3147 * certificate has not expired. 3148 */ 3149 (void)ntpcal_ntp_to_date(&tscal, tstamp, NULL); 3150 if ((calcomp(&tscal, &(cert_host->first)) < 0) 3151 || (calcomp(&tscal, &(cert_host->last)) > 0)) { 3152 X509_free(cert); 3153 return (XEVNT_PER); 3154 } 3155 X509_sign(cert, sign_pkey, sign_digest); 3156 if (X509_verify(cert, sign_pkey) <= 0) { 3157 msyslog(LOG_ERR, "cert_sign: %s", 3158 ERR_error_string(ERR_get_error(), NULL)); 3159 X509_free(cert); 3160 return (XEVNT_VFY); 3161 } 3162 len = i2d_X509(cert, NULL); 3163 3164 /* 3165 * Build and sign the value structure. We have to sign it here, 3166 * since the response has to be returned right away. This is a 3167 * clogging hazard. 3168 */ 3169 memset(vp, 0, sizeof(struct value)); 3170 vp->tstamp = htonl(tstamp); 3171 vp->fstamp = ep->fstamp; 3172 vp->vallen = htonl(len); 3173 vp->ptr = emalloc(len); 3174 ptr = vp->ptr; 3175 i2d_X509(cert, (unsigned char **)(intptr_t)&ptr); 3176 vp->siglen = 0; 3177 if (tstamp != 0) { 3178 vp->sig = emalloc(sign_siglen); 3179 EVP_SignInit(&ctx, sign_digest); 3180 EVP_SignUpdate(&ctx, (u_char *)vp, 12); 3181 EVP_SignUpdate(&ctx, vp->ptr, len); 3182 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) { 3183 INSIST(len <= sign_siglen); 3184 vp->siglen = htonl(len); 3185 } 3186 } 3187 #ifdef DEBUG 3188 if (debug > 1) 3189 X509_print_fp(stdout, cert); 3190 #endif 3191 X509_free(cert); 3192 return (XEVNT_OK); 3193 } 3194 3195 3196 /* 3197 * cert_install - install certificate in certificate cache 3198 * 3199 * This routine encodes an extension field into a certificate info/value 3200 * structure. It searches the certificate list for duplicates and 3201 * expunges whichever is older. Finally, it inserts this certificate 3202 * first on the list. 3203 * 3204 * Returns certificate info pointer if valid, NULL if not. 3205 */ 3206 struct cert_info * 3207 cert_install( 3208 struct exten *ep, /* cert info/value */ 3209 struct peer *peer /* peer structure */ 3210 ) 3211 { 3212 struct cert_info *cp, *xp, **zp; 3213 3214 /* 3215 * Parse and validate the signed certificate. If valid, 3216 * construct the info/value structure; otherwise, scamper home 3217 * empty handed. 3218 */ 3219 if ((cp = cert_parse((u_char *)ep->pkt, (long)ntohl(ep->vallen), 3220 (tstamp_t)ntohl(ep->fstamp))) == NULL) 3221 return (NULL); 3222 3223 /* 3224 * Scan certificate list looking for another certificate with 3225 * the same subject and issuer. If another is found with the 3226 * same or older filestamp, unlink it and return the goodies to 3227 * the heap. If another is found with a later filestamp, discard 3228 * the new one and leave the building with the old one. 3229 * 3230 * Make a note to study this issue again. An earlier certificate 3231 * with a long lifetime might be overtaken by a later 3232 * certificate with a short lifetime, thus invalidating the 3233 * earlier signature. However, we gotta find a way to leak old 3234 * stuff from the cache, so we do it anyway. 3235 */ 3236 zp = &cinfo; 3237 for (xp = cinfo; xp != NULL; xp = xp->link) { 3238 if (strcmp(cp->subject, xp->subject) == 0 && 3239 strcmp(cp->issuer, xp->issuer) == 0) { 3240 if (ntohl(cp->cert.fstamp) <= 3241 ntohl(xp->cert.fstamp)) { 3242 cert_free(cp); 3243 cp = xp; 3244 } else { 3245 *zp = xp->link; 3246 cert_free(xp); 3247 xp = NULL; 3248 } 3249 break; 3250 } 3251 zp = &xp->link; 3252 } 3253 if (xp == NULL) { 3254 cp->link = cinfo; 3255 cinfo = cp; 3256 } 3257 cp->flags |= CERT_VALID; 3258 crypto_update(); 3259 return (cp); 3260 } 3261 3262 3263 /* 3264 * cert_hike - verify the signature using the issuer public key 3265 * 3266 * Returns 3267 * XEVNT_OK success 3268 * XEVNT_CRT bad or missing certificate 3269 * XEVNT_PER host certificate expired 3270 * XEVNT_VFY certificate not verified 3271 */ 3272 int 3273 cert_hike( 3274 struct peer *peer, /* peer structure pointer */ 3275 struct cert_info *yp /* issuer certificate */ 3276 ) 3277 { 3278 struct cert_info *xp; /* subject certificate */ 3279 X509 *cert; /* X509 certificate */ 3280 const u_char *ptr; 3281 3282 /* 3283 * Save the issuer on the new certificate, but remember the old 3284 * one. 3285 */ 3286 if (peer->issuer != NULL) 3287 free(peer->issuer); 3288 peer->issuer = estrdup(yp->issuer); 3289 xp = peer->xinfo; 3290 peer->xinfo = yp; 3291 3292 /* 3293 * If subject Y matches issuer Y, then the certificate trail is 3294 * complete. If Y is not trusted, the server certificate has yet 3295 * been signed, so keep trying. Otherwise, save the group key 3296 * and light the valid bit. If the host certificate is trusted, 3297 * do not execute a sign exchange. If no identity scheme is in 3298 * use, light the identity and proventic bits. 3299 */ 3300 if (strcmp(yp->subject, yp->issuer) == 0) { 3301 if (!(yp->flags & CERT_TRUST)) 3302 return (XEVNT_OK); 3303 3304 /* 3305 * If the server has an an identity scheme, fetch the 3306 * identity credentials. If not, the identity is 3307 * verified only by the trusted certificate. The next 3308 * signature will set the server proventic. 3309 */ 3310 peer->crypto |= CRYPTO_FLAG_CERT; 3311 peer->grpkey = yp->grpkey; 3312 if (peer->ident == NULL || !(peer->crypto & 3313 CRYPTO_FLAG_MASK)) 3314 peer->crypto |= CRYPTO_FLAG_VRFY; 3315 } 3316 3317 /* 3318 * If X exists, verify signature X using public key Y. 3319 */ 3320 if (xp == NULL) 3321 return (XEVNT_OK); 3322 3323 ptr = (u_char *)xp->cert.ptr; 3324 cert = d2i_X509(NULL, &ptr, ntohl(xp->cert.vallen)); 3325 if (cert == NULL) { 3326 xp->flags |= CERT_ERROR; 3327 return (XEVNT_CRT); 3328 } 3329 if (X509_verify(cert, yp->pkey) <= 0) { 3330 X509_free(cert); 3331 xp->flags |= CERT_ERROR; 3332 return (XEVNT_VFY); 3333 } 3334 X509_free(cert); 3335 3336 /* 3337 * Signature X is valid only if it begins during the 3338 * lifetime of Y. 3339 */ 3340 if ((calcomp(&(xp->first), &(yp->first)) < 0) 3341 || (calcomp(&(xp->first), &(yp->last)) > 0)) { 3342 xp->flags |= CERT_ERROR; 3343 return (XEVNT_PER); 3344 } 3345 xp->flags |= CERT_SIGN; 3346 return (XEVNT_OK); 3347 } 3348 3349 3350 /* 3351 * cert_parse - parse x509 certificate and create info/value structures. 3352 * 3353 * The server certificate includes the version number, issuer name, 3354 * subject name, public key and valid date interval. If the issuer name 3355 * is the same as the subject name, the certificate is self signed and 3356 * valid only if the server is configured as trustable. If the names are 3357 * different, another issuer has signed the server certificate and 3358 * vouched for it. In this case the server certificate is valid if 3359 * verified by the issuer public key. 3360 * 3361 * Returns certificate info/value pointer if valid, NULL if not. 3362 */ 3363 struct cert_info * /* certificate information structure */ 3364 cert_parse( 3365 const u_char *asn1cert, /* X509 certificate */ 3366 long len, /* certificate length */ 3367 tstamp_t fstamp /* filestamp */ 3368 ) 3369 { 3370 X509 *cert; /* X509 certificate */ 3371 X509_EXTENSION *ext; /* X509v3 extension */ 3372 struct cert_info *ret; /* certificate info/value */ 3373 BIO *bp; 3374 char pathbuf[MAXFILENAME]; 3375 const u_char *ptr; 3376 char *pch; 3377 int temp, cnt, i; 3378 struct calendar fscal; 3379 3380 /* 3381 * Decode ASN.1 objects and construct certificate structure. 3382 */ 3383 ptr = asn1cert; 3384 if ((cert = d2i_X509(NULL, &ptr, len)) == NULL) { 3385 msyslog(LOG_ERR, "cert_parse: %s", 3386 ERR_error_string(ERR_get_error(), NULL)); 3387 return (NULL); 3388 } 3389 #ifdef DEBUG 3390 if (debug > 1) 3391 X509_print_fp(stdout, cert); 3392 #endif 3393 3394 /* 3395 * Extract version, subject name and public key. 3396 */ 3397 ret = emalloc_zero(sizeof(*ret)); 3398 if ((ret->pkey = X509_get_pubkey(cert)) == NULL) { 3399 msyslog(LOG_ERR, "cert_parse: %s", 3400 ERR_error_string(ERR_get_error(), NULL)); 3401 cert_free(ret); 3402 X509_free(cert); 3403 return (NULL); 3404 } 3405 ret->version = X509_get_version(cert); 3406 X509_NAME_oneline(X509_get_subject_name(cert), pathbuf, 3407 sizeof(pathbuf)); 3408 pch = strstr(pathbuf, "CN="); 3409 if (NULL == pch) { 3410 msyslog(LOG_NOTICE, "cert_parse: invalid subject %s", 3411 pathbuf); 3412 cert_free(ret); 3413 X509_free(cert); 3414 return (NULL); 3415 } 3416 ret->subject = estrdup(pch + 3); 3417 3418 /* 3419 * Extract remaining objects. Note that the NTP serial number is 3420 * the NTP seconds at the time of signing, but this might not be 3421 * the case for other authority. We don't bother to check the 3422 * objects at this time, since the real crunch can happen only 3423 * when the time is valid but not yet certificated. 3424 */ 3425 ret->nid = OBJ_obj2nid(cert->cert_info->signature->algorithm); 3426 ret->digest = (const EVP_MD *)EVP_get_digestbynid(ret->nid); 3427 ret->serial = 3428 (u_long)ASN1_INTEGER_get(X509_get_serialNumber(cert)); 3429 X509_NAME_oneline(X509_get_issuer_name(cert), pathbuf, 3430 sizeof(pathbuf)); 3431 if ((pch = strstr(pathbuf, "CN=")) == NULL) { 3432 msyslog(LOG_NOTICE, "cert_parse: invalid issuer %s", 3433 pathbuf); 3434 cert_free(ret); 3435 X509_free(cert); 3436 return (NULL); 3437 } 3438 ret->issuer = estrdup(pch + 3); 3439 asn_to_calendar(X509_get_notBefore(cert), &(ret->first)); 3440 asn_to_calendar(X509_get_notAfter(cert), &(ret->last)); 3441 3442 /* 3443 * Extract extension fields. These are ad hoc ripoffs of 3444 * currently assigned functions and will certainly be changed 3445 * before prime time. 3446 */ 3447 cnt = X509_get_ext_count(cert); 3448 for (i = 0; i < cnt; i++) { 3449 ext = X509_get_ext(cert, i); 3450 temp = OBJ_obj2nid(ext->object); 3451 switch (temp) { 3452 3453 /* 3454 * If a key_usage field is present, we decode whether 3455 * this is a trusted or private certificate. This is 3456 * dorky; all we want is to compare NIDs, but OpenSSL 3457 * insists on BIO text strings. 3458 */ 3459 case NID_ext_key_usage: 3460 bp = BIO_new(BIO_s_mem()); 3461 X509V3_EXT_print(bp, ext, 0, 0); 3462 BIO_gets(bp, pathbuf, sizeof(pathbuf)); 3463 BIO_free(bp); 3464 if (strcmp(pathbuf, "Trust Root") == 0) 3465 ret->flags |= CERT_TRUST; 3466 else if (strcmp(pathbuf, "Private") == 0) 3467 ret->flags |= CERT_PRIV; 3468 DPRINTF(1, ("cert_parse: %s: %s\n", 3469 OBJ_nid2ln(temp), pathbuf)); 3470 break; 3471 3472 /* 3473 * If a NID_subject_key_identifier field is present, it 3474 * contains the GQ public key. 3475 */ 3476 case NID_subject_key_identifier: 3477 ret->grpkey = BN_bin2bn(&ext->value->data[2], 3478 ext->value->length - 2, NULL); 3479 /* fall through */ 3480 default: 3481 DPRINTF(1, ("cert_parse: %s\n", 3482 OBJ_nid2ln(temp))); 3483 break; 3484 } 3485 } 3486 if (strcmp(ret->subject, ret->issuer) == 0) { 3487 3488 /* 3489 * If certificate is self signed, verify signature. 3490 */ 3491 if (X509_verify(cert, ret->pkey) <= 0) { 3492 msyslog(LOG_NOTICE, 3493 "cert_parse: signature not verified %s", 3494 ret->subject); 3495 cert_free(ret); 3496 X509_free(cert); 3497 return (NULL); 3498 } 3499 } else { 3500 3501 /* 3502 * Check for a certificate loop. 3503 */ 3504 if (strcmp((const char *)hostval.ptr, ret->issuer) == 0) { 3505 msyslog(LOG_NOTICE, 3506 "cert_parse: certificate trail loop %s", 3507 ret->subject); 3508 cert_free(ret); 3509 X509_free(cert); 3510 return (NULL); 3511 } 3512 } 3513 3514 /* 3515 * Verify certificate valid times. Note that certificates cannot 3516 * be retroactive. 3517 */ 3518 (void)ntpcal_ntp_to_date(&fscal, fstamp, NULL); 3519 if ((calcomp(&(ret->first), &(ret->last)) > 0) 3520 || (calcomp(&(ret->first), &fscal) < 0)) { 3521 msyslog(LOG_NOTICE, 3522 "cert_parse: invalid times %s first %u-%02u-%02uT%02u:%02u:%02u last %u-%02u-%02uT%02u:%02u:%02u fstamp %u-%02u-%02uT%02u:%02u:%02u", 3523 ret->subject, 3524 ret->first.year, ret->first.month, ret->first.monthday, 3525 ret->first.hour, ret->first.minute, ret->first.second, 3526 ret->last.year, ret->last.month, ret->last.monthday, 3527 ret->last.hour, ret->last.minute, ret->last.second, 3528 fscal.year, fscal.month, fscal.monthday, 3529 fscal.hour, fscal.minute, fscal.second); 3530 cert_free(ret); 3531 X509_free(cert); 3532 return (NULL); 3533 } 3534 3535 /* 3536 * Build the value structure to sign and send later. 3537 */ 3538 ret->cert.fstamp = htonl(fstamp); 3539 ret->cert.vallen = htonl(len); 3540 ret->cert.ptr = emalloc(len); 3541 memcpy(ret->cert.ptr, asn1cert, len); 3542 X509_free(cert); 3543 return (ret); 3544 } 3545 3546 3547 /* 3548 * cert_free - free certificate information structure 3549 */ 3550 void 3551 cert_free( 3552 struct cert_info *cinf /* certificate info/value structure */ 3553 ) 3554 { 3555 if (cinf->pkey != NULL) 3556 EVP_PKEY_free(cinf->pkey); 3557 if (cinf->subject != NULL) 3558 free(cinf->subject); 3559 if (cinf->issuer != NULL) 3560 free(cinf->issuer); 3561 if (cinf->grpkey != NULL) 3562 BN_free(cinf->grpkey); 3563 value_free(&cinf->cert); 3564 free(cinf); 3565 } 3566 3567 3568 /* 3569 * crypto_key - load cryptographic parameters and keys 3570 * 3571 * This routine searches the key cache for matching name in the form 3572 * ntpkey_<key>_<name>, where <key> is one of host, sign, iff, gq, mv, 3573 * and <name> is the host/group name. If not found, it tries to load a 3574 * PEM-encoded file of the same name and extracts the filestamp from 3575 * the first line of the file name. It returns the key pointer if valid, 3576 * NULL if not. 3577 */ 3578 static struct pkey_info * 3579 crypto_key( 3580 char *cp, /* file name */ 3581 char *passwd1, /* password */ 3582 sockaddr_u *addr /* IP address */ 3583 ) 3584 { 3585 FILE *str; /* file handle */ 3586 struct pkey_info *pkp; /* generic key */ 3587 EVP_PKEY *pkey = NULL; /* public/private key */ 3588 tstamp_t fstamp; 3589 char filename[MAXFILENAME]; /* name of key file */ 3590 char linkname[MAXFILENAME]; /* filestamp buffer) */ 3591 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 3592 char *ptr; 3593 3594 /* 3595 * Search the key cache for matching key and name. 3596 */ 3597 for (pkp = pkinfo; pkp != NULL; pkp = pkp->link) { 3598 if (strcmp(cp, pkp->name) == 0) 3599 return (pkp); 3600 } 3601 3602 /* 3603 * Open the key file. If the first character of the file name is 3604 * not '/', prepend the keys directory string. If something goes 3605 * wrong, abandon ship. 3606 */ 3607 if (*cp == '/') 3608 strlcpy(filename, cp, sizeof(filename)); 3609 else 3610 snprintf(filename, sizeof(filename), "%s/%s", keysdir, 3611 cp); 3612 str = fopen(filename, "r"); 3613 if (str == NULL) 3614 return (NULL); 3615 3616 /* 3617 * Read the filestamp, which is contained in the first line. 3618 */ 3619 if ((ptr = fgets(linkname, sizeof(linkname), str)) == NULL) { 3620 msyslog(LOG_ERR, "crypto_key: empty file %s", 3621 filename); 3622 fclose(str); 3623 return (NULL); 3624 } 3625 if ((ptr = strrchr(ptr, '.')) == NULL) { 3626 msyslog(LOG_ERR, "crypto_key: no filestamp %s", 3627 filename); 3628 fclose(str); 3629 return (NULL); 3630 } 3631 if (sscanf(++ptr, "%u", &fstamp) != 1) { 3632 msyslog(LOG_ERR, "crypto_key: invalid filestamp %s", 3633 filename); 3634 fclose(str); 3635 return (NULL); 3636 } 3637 3638 /* 3639 * Read and decrypt PEM-encoded private key. If it fails to 3640 * decrypt, game over. 3641 */ 3642 pkey = PEM_read_PrivateKey(str, NULL, NULL, passwd1); 3643 fclose(str); 3644 if (pkey == NULL) { 3645 msyslog(LOG_ERR, "crypto_key: %s", 3646 ERR_error_string(ERR_get_error(), NULL)); 3647 exit (-1); 3648 } 3649 3650 /* 3651 * Make a new entry in the key cache. 3652 */ 3653 pkp = emalloc(sizeof(struct pkey_info)); 3654 pkp->link = pkinfo; 3655 pkinfo = pkp; 3656 pkp->pkey = pkey; 3657 pkp->name = estrdup(cp); 3658 pkp->fstamp = fstamp; 3659 3660 /* 3661 * Leave tracks in the cryptostats. 3662 */ 3663 if ((ptr = strrchr(linkname, '\n')) != NULL) 3664 *ptr = '\0'; 3665 snprintf(statstr, sizeof(statstr), "%s mod %d", &linkname[2], 3666 EVP_PKEY_size(pkey) * 8); 3667 record_crypto_stats(addr, statstr); 3668 3669 DPRINTF(1, ("crypto_key: %s\n", statstr)); 3670 #ifdef DEBUG 3671 if (debug > 1) { 3672 if (pkey->type == EVP_PKEY_DSA) 3673 DSA_print_fp(stdout, pkey->pkey.dsa, 0); 3674 else if (pkey->type == EVP_PKEY_RSA) 3675 RSA_print_fp(stdout, pkey->pkey.rsa, 0); 3676 } 3677 #endif 3678 return (pkp); 3679 } 3680 3681 3682 /* 3683 *********************************************************************** 3684 * * 3685 * The following routines are used only at initialization time * 3686 * * 3687 *********************************************************************** 3688 */ 3689 /* 3690 * crypto_cert - load certificate from file 3691 * 3692 * This routine loads an X.509 RSA or DSA certificate from a file and 3693 * constructs a info/cert value structure for this machine. The 3694 * structure includes a filestamp extracted from the file name. Later 3695 * the certificate can be sent to another machine on request. 3696 * 3697 * Returns certificate info/value pointer if valid, NULL if not. 3698 */ 3699 static struct cert_info * /* certificate information */ 3700 crypto_cert( 3701 char *cp /* file name */ 3702 ) 3703 { 3704 struct cert_info *ret; /* certificate information */ 3705 FILE *str; /* file handle */ 3706 char filename[MAXFILENAME]; /* name of certificate file */ 3707 char linkname[MAXFILENAME]; /* filestamp buffer */ 3708 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 3709 tstamp_t fstamp; /* filestamp */ 3710 long len; 3711 char *ptr; 3712 char *name, *header; 3713 u_char *data; 3714 3715 /* 3716 * Open the certificate file. If the first character of the file 3717 * name is not '/', prepend the keys directory string. If 3718 * something goes wrong, abandon ship. 3719 */ 3720 if (*cp == '/') 3721 strlcpy(filename, cp, sizeof(filename)); 3722 else 3723 snprintf(filename, sizeof(filename), "%s/%s", keysdir, 3724 cp); 3725 str = fopen(filename, "r"); 3726 if (str == NULL) 3727 return (NULL); 3728 3729 /* 3730 * Read the filestamp, which is contained in the first line. 3731 */ 3732 if ((ptr = fgets(linkname, sizeof(linkname), str)) == NULL) { 3733 msyslog(LOG_ERR, "crypto_cert: empty file %s", 3734 filename); 3735 fclose(str); 3736 return (NULL); 3737 } 3738 if ((ptr = strrchr(ptr, '.')) == NULL) { 3739 msyslog(LOG_ERR, "crypto_cert: no filestamp %s", 3740 filename); 3741 fclose(str); 3742 return (NULL); 3743 } 3744 if (sscanf(++ptr, "%u", &fstamp) != 1) { 3745 msyslog(LOG_ERR, "crypto_cert: invalid filestamp %s", 3746 filename); 3747 fclose(str); 3748 return (NULL); 3749 } 3750 3751 /* 3752 * Read PEM-encoded certificate and install. 3753 */ 3754 if (!PEM_read(str, &name, &header, &data, &len)) { 3755 msyslog(LOG_ERR, "crypto_cert: %s", 3756 ERR_error_string(ERR_get_error(), NULL)); 3757 fclose(str); 3758 return (NULL); 3759 } 3760 fclose(str); 3761 free(header); 3762 if (strcmp(name, "CERTIFICATE") != 0) { 3763 msyslog(LOG_NOTICE, "crypto_cert: wrong PEM type %s", 3764 name); 3765 free(name); 3766 free(data); 3767 return (NULL); 3768 } 3769 free(name); 3770 3771 /* 3772 * Parse certificate and generate info/value structure. The 3773 * pointer and copy nonsense is due something broken in Solaris. 3774 */ 3775 ret = cert_parse(data, len, fstamp); 3776 free(data); 3777 if (ret == NULL) 3778 return (NULL); 3779 3780 if ((ptr = strrchr(linkname, '\n')) != NULL) 3781 *ptr = '\0'; 3782 snprintf(statstr, sizeof(statstr), "%s 0x%x len %lu", 3783 &linkname[2], ret->flags, len); 3784 record_crypto_stats(NULL, statstr); 3785 DPRINTF(1, ("crypto_cert: %s\n", statstr)); 3786 return (ret); 3787 } 3788 3789 3790 /* 3791 * crypto_setup - load keys, certificate and identity parameters 3792 * 3793 * This routine loads the public/private host key and certificate. If 3794 * available, it loads the public/private sign key, which defaults to 3795 * the host key. The host key must be RSA, but the sign key can be 3796 * either RSA or DSA. If a trusted certificate, it loads the identity 3797 * parameters. In either case, the public key on the certificate must 3798 * agree with the sign key. 3799 * 3800 * Required but missing files and inconsistent data and errors are 3801 * fatal. Allowing configuration to continue would be hazardous and 3802 * require really messy error checks. 3803 */ 3804 void 3805 crypto_setup(void) 3806 { 3807 struct pkey_info *pinfo; /* private/public key */ 3808 char filename[MAXFILENAME]; /* file name buffer */ 3809 char hostname[MAXFILENAME]; /* host name buffer */ 3810 char *randfile; 3811 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 3812 l_fp seed; /* crypto PRNG seed as NTP timestamp */ 3813 u_int len; 3814 int bytes; 3815 u_char *ptr; 3816 3817 /* 3818 * Check for correct OpenSSL version and avoid initialization in 3819 * the case of multiple crypto commands. 3820 */ 3821 if (crypto_flags & CRYPTO_FLAG_ENAB) { 3822 msyslog(LOG_NOTICE, 3823 "crypto_setup: spurious crypto command"); 3824 return; 3825 } 3826 ssl_check_version(); 3827 3828 /* 3829 * Load required random seed file and seed the random number 3830 * generator. Be default, it is found as .rnd in the user home 3831 * directory. The root home directory may be / or /root, 3832 * depending on the system. Wiggle the contents a bit and write 3833 * it back so the sequence does not repeat when we next restart. 3834 */ 3835 if (!RAND_status()) { 3836 if (rand_file == NULL) { 3837 RAND_file_name(filename, sizeof(filename)); 3838 randfile = filename; 3839 } else if (*rand_file != '/') { 3840 snprintf(filename, sizeof(filename), "%s/%s", 3841 keysdir, rand_file); 3842 randfile = filename; 3843 } else 3844 randfile = rand_file; 3845 3846 if ((bytes = RAND_load_file(randfile, -1)) == 0) { 3847 msyslog(LOG_ERR, 3848 "crypto_setup: random seed file %s missing", 3849 randfile); 3850 exit (-1); 3851 } 3852 arc4random_buf(&seed, sizeof(l_fp)); 3853 RAND_seed(&seed, sizeof(l_fp)); 3854 RAND_write_file(randfile); 3855 DPRINTF(1, ("crypto_setup: OpenSSL version %lx random seed file %s bytes read %d\n", 3856 SSLeay(), randfile, bytes)); 3857 } 3858 3859 /* 3860 * Initialize structures. 3861 */ 3862 gethostname(hostname, sizeof(hostname)); 3863 if (host_filename != NULL) 3864 strlcpy(hostname, host_filename, sizeof(hostname)); 3865 if (passwd == NULL) 3866 passwd = estrdup(hostname); 3867 memset(&hostval, 0, sizeof(hostval)); 3868 memset(&pubkey, 0, sizeof(pubkey)); 3869 memset(&tai_leap, 0, sizeof(tai_leap)); 3870 3871 /* 3872 * Load required host key from file "ntpkey_host_<hostname>". If 3873 * no host key file is not found or has invalid password, life 3874 * as we know it ends. The host key also becomes the default 3875 * sign key. 3876 */ 3877 snprintf(filename, sizeof(filename), "ntpkey_host_%s", hostname); 3878 pinfo = crypto_key(filename, passwd, NULL); 3879 if (pinfo == NULL) { 3880 msyslog(LOG_ERR, 3881 "crypto_setup: host key file %s not found or corrupt", 3882 filename); 3883 exit (-1); 3884 } 3885 if (pinfo->pkey->type != EVP_PKEY_RSA) { 3886 msyslog(LOG_ERR, 3887 "crypto_setup: host key is not RSA key type"); 3888 exit (-1); 3889 } 3890 host_pkey = pinfo->pkey; 3891 sign_pkey = host_pkey; 3892 hostval.fstamp = htonl(pinfo->fstamp); 3893 3894 /* 3895 * Construct public key extension field for agreement scheme. 3896 */ 3897 len = i2d_PublicKey(host_pkey, NULL); 3898 ptr = emalloc(len); 3899 pubkey.ptr = ptr; 3900 i2d_PublicKey(host_pkey, &ptr); 3901 pubkey.fstamp = hostval.fstamp; 3902 pubkey.vallen = htonl(len); 3903 3904 /* 3905 * Load optional sign key from file "ntpkey_sign_<hostname>". If 3906 * available, it becomes the sign key. 3907 */ 3908 snprintf(filename, sizeof(filename), "ntpkey_sign_%s", hostname); 3909 pinfo = crypto_key(filename, passwd, NULL); 3910 if (pinfo != NULL) 3911 sign_pkey = pinfo->pkey; 3912 3913 /* 3914 * Load required certificate from file "ntpkey_cert_<hostname>". 3915 */ 3916 snprintf(filename, sizeof(filename), "ntpkey_cert_%s", hostname); 3917 cinfo = crypto_cert(filename); 3918 if (cinfo == NULL) { 3919 msyslog(LOG_ERR, 3920 "crypto_setup: certificate file %s not found or corrupt", 3921 filename); 3922 exit (-1); 3923 } 3924 cert_host = cinfo; 3925 sign_digest = cinfo->digest; 3926 sign_siglen = EVP_PKEY_size(sign_pkey); 3927 if (cinfo->flags & CERT_PRIV) 3928 crypto_flags |= CRYPTO_FLAG_PRIV; 3929 3930 /* 3931 * The certificate must be self-signed. 3932 */ 3933 if (strcmp(cinfo->subject, cinfo->issuer) != 0) { 3934 msyslog(LOG_ERR, 3935 "crypto_setup: certificate %s is not self-signed", 3936 filename); 3937 exit (-1); 3938 } 3939 hostval.ptr = estrdup(cinfo->subject); 3940 hostval.vallen = htonl(strlen(cinfo->subject)); 3941 sys_hostname = hostval.ptr; 3942 ptr = (u_char *)strchr(sys_hostname, '@'); 3943 if (ptr != NULL) 3944 sys_groupname = estrdup((char *)++ptr); 3945 if (ident_filename != NULL) 3946 strlcpy(hostname, ident_filename, sizeof(hostname)); 3947 3948 /* 3949 * Load optional IFF parameters from file 3950 * "ntpkey_iffkey_<hostname>". 3951 */ 3952 snprintf(filename, sizeof(filename), "ntpkey_iffkey_%s", 3953 hostname); 3954 iffkey_info = crypto_key(filename, passwd, NULL); 3955 if (iffkey_info != NULL) 3956 crypto_flags |= CRYPTO_FLAG_IFF; 3957 3958 /* 3959 * Load optional GQ parameters from file 3960 * "ntpkey_gqkey_<hostname>". 3961 */ 3962 snprintf(filename, sizeof(filename), "ntpkey_gqkey_%s", 3963 hostname); 3964 gqkey_info = crypto_key(filename, passwd, NULL); 3965 if (gqkey_info != NULL) 3966 crypto_flags |= CRYPTO_FLAG_GQ; 3967 3968 /* 3969 * Load optional MV parameters from file 3970 * "ntpkey_mvkey_<hostname>". 3971 */ 3972 snprintf(filename, sizeof(filename), "ntpkey_mvkey_%s", 3973 hostname); 3974 mvkey_info = crypto_key(filename, passwd, NULL); 3975 if (mvkey_info != NULL) 3976 crypto_flags |= CRYPTO_FLAG_MV; 3977 3978 /* 3979 * We met the enemy and he is us. Now strike up the dance. 3980 */ 3981 crypto_flags |= CRYPTO_FLAG_ENAB | (cinfo->nid << 16); 3982 snprintf(statstr, sizeof(statstr), "setup 0x%x host %s %s", 3983 crypto_flags, hostname, OBJ_nid2ln(cinfo->nid)); 3984 record_crypto_stats(NULL, statstr); 3985 DPRINTF(1, ("crypto_setup: %s\n", statstr)); 3986 } 3987 3988 3989 /* 3990 * crypto_config - configure data from the crypto command. 3991 */ 3992 void 3993 crypto_config( 3994 int item, /* configuration item */ 3995 char *cp /* item name */ 3996 ) 3997 { 3998 int nid; 3999 4000 DPRINTF(1, ("crypto_config: item %d %s\n", item, cp)); 4001 4002 switch (item) { 4003 4004 /* 4005 * Set host name (host). 4006 */ 4007 case CRYPTO_CONF_PRIV: 4008 if (NULL != host_filename) 4009 free(host_filename); 4010 host_filename = estrdup(cp); 4011 break; 4012 4013 /* 4014 * Set group name (ident). 4015 */ 4016 case CRYPTO_CONF_IDENT: 4017 if (NULL != ident_filename) 4018 free(ident_filename); 4019 ident_filename = estrdup(cp); 4020 break; 4021 4022 /* 4023 * Set private key password (pw). 4024 */ 4025 case CRYPTO_CONF_PW: 4026 if (NULL != passwd) 4027 free(passwd); 4028 passwd = estrdup(cp); 4029 break; 4030 4031 /* 4032 * Set random seed file name (randfile). 4033 */ 4034 case CRYPTO_CONF_RAND: 4035 if (NULL != rand_file) 4036 free(rand_file); 4037 rand_file = estrdup(cp); 4038 break; 4039 4040 /* 4041 * Set message digest NID. 4042 */ 4043 case CRYPTO_CONF_NID: 4044 nid = OBJ_sn2nid(cp); 4045 if (nid == 0) 4046 msyslog(LOG_ERR, 4047 "crypto_config: invalid digest name %s", cp); 4048 else 4049 crypto_nid = nid; 4050 break; 4051 } 4052 } 4053 4054 /* 4055 * Get the payload size (internal value length) of an extension packet. 4056 * If the inner value size does not match the outer packet size (that 4057 * is, the value would end behind the frame given by the opcode/size 4058 * field) the function will effectively return UINT_MAX. If the frame is 4059 * too short to hold a variable-sized value, the return value is zero. 4060 */ 4061 static u_int 4062 exten_payload_size( 4063 const struct exten * ep) 4064 { 4065 typedef const u_char *BPTR; 4066 4067 size_t extn_size; 4068 size_t data_size; 4069 size_t head_size; 4070 4071 data_size = 0; 4072 if (NULL != ep) { 4073 head_size = (BPTR)(&ep->vallen + 1) - (BPTR)ep; 4074 extn_size = (uint16_t)(ntohl(ep->opcode) & 0x0000ffff); 4075 if (extn_size >= head_size) { 4076 data_size = (uint32_t)ntohl(ep->vallen); 4077 if (data_size > extn_size - head_size) 4078 data_size = ~(size_t)0u; 4079 } 4080 } 4081 return (u_int)data_size; 4082 } 4083 # else /* !AUTOKEY follows */ 4084 int ntp_crypto_bs_pubkey; 4085 # endif /* !AUTOKEY */ 4086