xref: /freebsd/contrib/ntp/ntpd/ntp_crypto.c (revision 119b75925c562202145d7bac7b676b98029c6cb9)
1 /*
2  * ntp_crypto.c - NTP version 4 public key routines
3  */
4 #ifdef HAVE_CONFIG_H
5 #include <config.h>
6 #endif
7 
8 #ifdef AUTOKEY
9 #include <stdio.h>
10 #include <stdlib.h>	/* strtoul */
11 #include <sys/types.h>
12 #include <sys/param.h>
13 #include <unistd.h>
14 #include <fcntl.h>
15 
16 #include "ntpd.h"
17 #include "ntp_stdlib.h"
18 #include "ntp_unixtime.h"
19 #include "ntp_string.h"
20 #include "ntp_random.h"
21 #include "ntp_assert.h"
22 #include "ntp_calendar.h"
23 #include "ntp_leapsec.h"
24 
25 #include "openssl/asn1_mac.h"
26 #include "openssl/bn.h"
27 #include "openssl/err.h"
28 #include "openssl/evp.h"
29 #include "openssl/pem.h"
30 #include "openssl/rand.h"
31 #include "openssl/x509v3.h"
32 
33 #ifdef KERNEL_PLL
34 #include "ntp_syscall.h"
35 #endif /* KERNEL_PLL */
36 
37 /*
38  * calcomp - compare two calendar structures, ignoring yearday and weekday; like strcmp
39  * No, it's not a plotter.  If you don't understand that, you're too young.
40  */
41 static int calcomp(struct calendar *pjd1, struct calendar *pjd2)
42 {
43 	int32_t diff;	/* large enough to hold the signed difference between two uint16_t values */
44 
45 	diff = pjd1->year - pjd2->year;
46 	if (diff < 0) return -1; else if (diff > 0) return 1;
47 	/* same year; compare months */
48 	diff = pjd1->month - pjd2->month;
49 	if (diff < 0) return -1; else if (diff > 0) return 1;
50 	/* same year and month; compare monthday */
51 	diff = pjd1->monthday - pjd2->monthday;
52 	if (diff < 0) return -1; else if (diff > 0) return 1;
53 	/* same year and month and monthday; compare time */
54 	diff = pjd1->hour - pjd2->hour;
55 	if (diff < 0) return -1; else if (diff > 0) return 1;
56 	diff = pjd1->minute - pjd2->minute;
57 	if (diff < 0) return -1; else if (diff > 0) return 1;
58 	diff = pjd1->second - pjd2->second;
59 	if (diff < 0) return -1; else if (diff > 0) return 1;
60 	/* identical */
61 	return 0;
62 }
63 
64 /*
65  * Extension field message format
66  *
67  * These are always signed and saved before sending in network byte
68  * order. They must be converted to and from host byte order for
69  * processing.
70  *
71  * +-------+-------+
72  * |   op  |  len  | <- extension pointer
73  * +-------+-------+
74  * |    associd    |
75  * +---------------+
76  * |   timestamp   | <- value pointer
77  * +---------------+
78  * |   filestamp   |
79  * +---------------+
80  * |   value len   |
81  * +---------------+
82  * |               |
83  * =     value     =
84  * |               |
85  * +---------------+
86  * | signature len |
87  * +---------------+
88  * |               |
89  * =   signature   =
90  * |               |
91  * +---------------+
92  *
93  * The CRYPTO_RESP bit is set to 0 for requests, 1 for responses.
94  * Requests carry the association ID of the receiver; responses carry
95  * the association ID of the sender. Some messages include only the
96  * operation/length and association ID words and so have length 8
97  * octets. Ohers include the value structure and associated value and
98  * signature fields. These messages include the timestamp, filestamp,
99  * value and signature words and so have length at least 24 octets. The
100  * signature and/or value fields can be empty, in which case the
101  * respective length words are zero. An empty value with nonempty
102  * signature is syntactically valid, but semantically questionable.
103  *
104  * The filestamp represents the time when a cryptographic data file such
105  * as a public/private key pair is created. It follows every reference
106  * depending on that file and serves as a means to obsolete earlier data
107  * of the same type. The timestamp represents the time when the
108  * cryptographic data of the message were last signed. Creation of a
109  * cryptographic data file or signing a message can occur only when the
110  * creator or signor is synchronized to an authoritative source and
111  * proventicated to a trusted authority.
112  *
113  * Note there are several conditions required for server trust. First,
114  * the public key on the server certificate must be verified, which can
115  * involve a hike along the certificate trail to a trusted host. Next,
116  * the server trust must be confirmed by one of several identity
117  * schemes. Valid cryptographic values are signed with attached
118  * timestamp and filestamp. Individual packet trust is confirmed
119  * relative to these values by a message digest with keys generated by a
120  * reverse-order pseudorandom hash.
121  *
122  * State decomposition. These flags are lit in the order given. They are
123  * dim only when the association is demobilized.
124  *
125  * CRYPTO_FLAG_ENAB	Lit upon acceptance of a CRYPTO_ASSOC message
126  * CRYPTO_FLAG_CERT	Lit when a self-digned trusted certificate is
127  *			accepted.
128  * CRYPTO_FLAG_VRFY	Lit when identity is confirmed.
129  * CRYPTO_FLAG_PROV	Lit when the first signature is verified.
130  * CRYPTO_FLAG_COOK	Lit when a valid cookie is accepted.
131  * CRYPTO_FLAG_AUTO	Lit when valid autokey values are accepted.
132  * CRYPTO_FLAG_SIGN	Lit when the server signed certificate is
133  *			accepted.
134  * CRYPTO_FLAG_LEAP	Lit when the leapsecond values are accepted.
135  */
136 /*
137  * Cryptodefines
138  */
139 #define TAI_1972	10	/* initial TAI offset (s) */
140 #define MAX_LEAP	100	/* max UTC leapseconds (s) */
141 #define VALUE_LEN	(6 * 4) /* min response field length */
142 #define MAX_VALLEN	(65535 - VALUE_LEN)
143 #define YEAR		(60 * 60 * 24 * 365) /* seconds in year */
144 
145 /*
146  * Global cryptodata in host byte order
147  */
148 u_int32	crypto_flags = 0x0;	/* status word */
149 int	crypto_nid = KEY_TYPE_MD5; /* digest nid */
150 char	*sys_hostname = NULL;
151 char	*sys_groupname = NULL;
152 static char *host_filename = NULL;	/* host file name */
153 static char *ident_filename = NULL;	/* group file name */
154 
155 /*
156  * Global cryptodata in network byte order
157  */
158 struct cert_info *cinfo = NULL;	/* certificate info/value cache */
159 struct cert_info *cert_host = NULL; /* host certificate */
160 struct pkey_info *pkinfo = NULL; /* key info/value cache */
161 struct value hostval;		/* host value */
162 struct value pubkey;		/* public key */
163 struct value tai_leap;		/* leapseconds values */
164 struct pkey_info *iffkey_info = NULL; /* IFF keys */
165 struct pkey_info *gqkey_info = NULL; /* GQ keys */
166 struct pkey_info *mvkey_info = NULL; /* MV keys */
167 
168 /*
169  * Private cryptodata in host byte order
170  */
171 static char *passwd = NULL;	/* private key password */
172 static EVP_PKEY *host_pkey = NULL; /* host key */
173 static EVP_PKEY *sign_pkey = NULL; /* sign key */
174 static const EVP_MD *sign_digest = NULL; /* sign digest */
175 static u_int sign_siglen;	/* sign key length */
176 static char *rand_file = NULL;	/* random seed file */
177 
178 /*
179  * Cryptotypes
180  */
181 static	int	crypto_verify	(struct exten *, struct value *,
182 				    struct peer *);
183 static	int	crypto_encrypt	(const u_char *, u_int, keyid_t *,
184 				    struct value *);
185 static	int	crypto_alice	(struct peer *, struct value *);
186 static	int	crypto_alice2	(struct peer *, struct value *);
187 static	int	crypto_alice3	(struct peer *, struct value *);
188 static	int	crypto_bob	(struct exten *, struct value *);
189 static	int	crypto_bob2	(struct exten *, struct value *);
190 static	int	crypto_bob3	(struct exten *, struct value *);
191 static	int	crypto_iff	(struct exten *, struct peer *);
192 static	int	crypto_gq	(struct exten *, struct peer *);
193 static	int	crypto_mv	(struct exten *, struct peer *);
194 static	int	crypto_send	(struct exten *, struct value *, int);
195 static	tstamp_t crypto_time	(void);
196 static	void	asn_to_calendar		(ASN1_TIME *, struct calendar*);
197 static	struct cert_info *cert_parse (const u_char *, long, tstamp_t);
198 static	int	cert_sign	(struct exten *, struct value *);
199 static	struct cert_info *cert_install (struct exten *, struct peer *);
200 static	int	cert_hike	(struct peer *, struct cert_info *);
201 static	void	cert_free	(struct cert_info *);
202 static	struct pkey_info *crypto_key (char *, char *, sockaddr_u *);
203 static	void	bighash		(BIGNUM *, BIGNUM *);
204 static	struct cert_info *crypto_cert (char *);
205 
206 #ifdef SYS_WINNT
207 int
208 readlink(char * link, char * file, int len) {
209 	return (-1);
210 }
211 #endif
212 
213 /*
214  * session_key - generate session key
215  *
216  * This routine generates a session key from the source address,
217  * destination address, key ID and private value. The value of the
218  * session key is the MD5 hash of these values, while the next key ID is
219  * the first four octets of the hash.
220  *
221  * Returns the next key ID or 0 if there is no destination address.
222  */
223 keyid_t
224 session_key(
225 	sockaddr_u *srcadr, 	/* source address */
226 	sockaddr_u *dstadr, 	/* destination address */
227 	keyid_t	keyno,		/* key ID */
228 	keyid_t	private,	/* private value */
229 	u_long	lifetime 	/* key lifetime */
230 	)
231 {
232 	EVP_MD_CTX ctx;		/* message digest context */
233 	u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */
234 	keyid_t	keyid;		/* key identifer */
235 	u_int32	header[10];	/* data in network byte order */
236 	u_int	hdlen, len;
237 
238 	if (!dstadr)
239 		return 0;
240 
241 	/*
242 	 * Generate the session key and key ID. If the lifetime is
243 	 * greater than zero, install the key and call it trusted.
244 	 */
245 	hdlen = 0;
246 	switch(AF(srcadr)) {
247 	case AF_INET:
248 		header[0] = NSRCADR(srcadr);
249 		header[1] = NSRCADR(dstadr);
250 		header[2] = htonl(keyno);
251 		header[3] = htonl(private);
252 		hdlen = 4 * sizeof(u_int32);
253 		break;
254 
255 	case AF_INET6:
256 		memcpy(&header[0], PSOCK_ADDR6(srcadr),
257 		    sizeof(struct in6_addr));
258 		memcpy(&header[4], PSOCK_ADDR6(dstadr),
259 		    sizeof(struct in6_addr));
260 		header[8] = htonl(keyno);
261 		header[9] = htonl(private);
262 		hdlen = 10 * sizeof(u_int32);
263 		break;
264 	}
265 	EVP_DigestInit(&ctx, EVP_get_digestbynid(crypto_nid));
266 	EVP_DigestUpdate(&ctx, (u_char *)header, hdlen);
267 	EVP_DigestFinal(&ctx, dgst, &len);
268 	memcpy(&keyid, dgst, 4);
269 	keyid = ntohl(keyid);
270 	if (lifetime != 0) {
271 		MD5auth_setkey(keyno, crypto_nid, dgst, len);
272 		authtrust(keyno, lifetime);
273 	}
274 	DPRINTF(2, ("session_key: %s > %s %08x %08x hash %08x life %lu\n",
275 		    stoa(srcadr), stoa(dstadr), keyno,
276 		    private, keyid, lifetime));
277 
278 	return (keyid);
279 }
280 
281 
282 /*
283  * make_keylist - generate key list
284  *
285  * Returns
286  * XEVNT_OK	success
287  * XEVNT_ERR	protocol error
288  *
289  * This routine constructs a pseudo-random sequence by repeatedly
290  * hashing the session key starting from a given source address,
291  * destination address, private value and the next key ID of the
292  * preceeding session key. The last entry on the list is saved along
293  * with its sequence number and public signature.
294  */
295 int
296 make_keylist(
297 	struct peer *peer,	/* peer structure pointer */
298 	struct interface *dstadr /* interface */
299 	)
300 {
301 	EVP_MD_CTX ctx;		/* signature context */
302 	tstamp_t tstamp;	/* NTP timestamp */
303 	struct autokey *ap;	/* autokey pointer */
304 	struct value *vp;	/* value pointer */
305 	keyid_t	keyid = 0;	/* next key ID */
306 	keyid_t	cookie;		/* private value */
307 	long	lifetime;
308 	u_int	len, mpoll;
309 	int	i;
310 
311 	if (!dstadr)
312 		return XEVNT_ERR;
313 
314 	/*
315 	 * Allocate the key list if necessary.
316 	 */
317 	tstamp = crypto_time();
318 	if (peer->keylist == NULL)
319 		peer->keylist = eallocarray(NTP_MAXSESSION,
320 					    sizeof(keyid_t));
321 
322 	/*
323 	 * Generate an initial key ID which is unique and greater than
324 	 * NTP_MAXKEY.
325 	 */
326 	while (1) {
327 		keyid = ntp_random() & 0xffffffff;
328 		if (keyid <= NTP_MAXKEY)
329 			continue;
330 
331 		if (authhavekey(keyid))
332 			continue;
333 		break;
334 	}
335 
336 	/*
337 	 * Generate up to NTP_MAXSESSION session keys. Stop if the
338 	 * next one would not be unique or not a session key ID or if
339 	 * it would expire before the next poll. The private value
340 	 * included in the hash is zero if broadcast mode, the peer
341 	 * cookie if client mode or the host cookie if symmetric modes.
342 	 */
343 	mpoll = 1 << min(peer->ppoll, peer->hpoll);
344 	lifetime = min(1U << sys_automax, NTP_MAXSESSION * mpoll);
345 	if (peer->hmode == MODE_BROADCAST)
346 		cookie = 0;
347 	else
348 		cookie = peer->pcookie;
349 	for (i = 0; i < NTP_MAXSESSION; i++) {
350 		peer->keylist[i] = keyid;
351 		peer->keynumber = i;
352 		keyid = session_key(&dstadr->sin, &peer->srcadr, keyid,
353 		    cookie, lifetime + mpoll);
354 		lifetime -= mpoll;
355 		if (auth_havekey(keyid) || keyid <= NTP_MAXKEY ||
356 		    lifetime < 0 || tstamp == 0)
357 			break;
358 	}
359 
360 	/*
361 	 * Save the last session key ID, sequence number and timestamp,
362 	 * then sign these values for later retrieval by the clients. Be
363 	 * careful not to use invalid key media. Use the public values
364 	 * timestamp as filestamp.
365 	 */
366 	vp = &peer->sndval;
367 	if (vp->ptr == NULL)
368 		vp->ptr = emalloc(sizeof(struct autokey));
369 	ap = (struct autokey *)vp->ptr;
370 	ap->seq = htonl(peer->keynumber);
371 	ap->key = htonl(keyid);
372 	vp->tstamp = htonl(tstamp);
373 	vp->fstamp = hostval.tstamp;
374 	vp->vallen = htonl(sizeof(struct autokey));
375 	vp->siglen = 0;
376 	if (tstamp != 0) {
377 		if (vp->sig == NULL)
378 			vp->sig = emalloc(sign_siglen);
379 		EVP_SignInit(&ctx, sign_digest);
380 		EVP_SignUpdate(&ctx, (u_char *)vp, 12);
381 		EVP_SignUpdate(&ctx, vp->ptr, sizeof(struct autokey));
382 		if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) {
383 			NTP_INSIST(len <= sign_siglen);
384 			vp->siglen = htonl(len);
385 			peer->flags |= FLAG_ASSOC;
386 		}
387 	}
388 	DPRINTF(1, ("make_keys: %d %08x %08x ts %u fs %u poll %d\n",
389 		    peer->keynumber, keyid, cookie, ntohl(vp->tstamp),
390 		    ntohl(vp->fstamp), peer->hpoll));
391 	return (XEVNT_OK);
392 }
393 
394 
395 /*
396  * crypto_recv - parse extension fields
397  *
398  * This routine is called when the packet has been matched to an
399  * association and passed sanity, format and MAC checks. We believe the
400  * extension field values only if the field has proper format and
401  * length, the timestamp and filestamp are valid and the signature has
402  * valid length and is verified. There are a few cases where some values
403  * are believed even if the signature fails, but only if the proventic
404  * bit is not set.
405  *
406  * Returns
407  * XEVNT_OK	success
408  * XEVNT_ERR	protocol error
409  * XEVNT_LEN	bad field format or length
410  */
411 int
412 crypto_recv(
413 	struct peer *peer,	/* peer structure pointer */
414 	struct recvbuf *rbufp	/* packet buffer pointer */
415 	)
416 {
417 	const EVP_MD *dp;	/* message digest algorithm */
418 	u_int32	*pkt;		/* receive packet pointer */
419 	struct autokey *ap, *bp; /* autokey pointer */
420 	struct exten *ep, *fp;	/* extension pointers */
421 	struct cert_info *xinfo; /* certificate info pointer */
422 	int	has_mac;	/* length of MAC field */
423 	int	authlen;	/* offset of MAC field */
424 	associd_t associd;	/* association ID */
425 	tstamp_t fstamp = 0;	/* filestamp */
426 	u_int	len;		/* extension field length */
427 	u_int	code;		/* extension field opcode */
428 	u_int	vallen = 0;	/* value length */
429 	X509	*cert;		/* X509 certificate */
430 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
431 	keyid_t	cookie;		/* crumbles */
432 	int	hismode;	/* packet mode */
433 	int	rval = XEVNT_OK;
434 	const u_char *puch;
435 	u_int32 temp32;
436 
437 	/*
438 	 * Initialize. Note that the packet has already been checked for
439 	 * valid format and extension field lengths. First extract the
440 	 * field length, command code and association ID in host byte
441 	 * order. These are used with all commands and modes. Then check
442 	 * the version number, which must be 2, and length, which must
443 	 * be at least 8 for requests and VALUE_LEN (24) for responses.
444 	 * Packets that fail either test sink without a trace. The
445 	 * association ID is saved only if nonzero.
446 	 */
447 	authlen = LEN_PKT_NOMAC;
448 	hismode = (int)PKT_MODE((&rbufp->recv_pkt)->li_vn_mode);
449 	while ((has_mac = rbufp->recv_length - authlen) > (int)MAX_MAC_LEN) {
450 		pkt = (u_int32 *)&rbufp->recv_pkt + authlen / 4;
451 		ep = (struct exten *)pkt;
452 		code = ntohl(ep->opcode) & 0xffff0000;
453 		len = ntohl(ep->opcode) & 0x0000ffff;
454 		// HMS: Why pkt[1] instead of ep->associd ?
455 		associd = (associd_t)ntohl(pkt[1]);
456 		rval = XEVNT_OK;
457 		DPRINTF(1, ("crypto_recv: flags 0x%x ext offset %d len %u code 0x%x associd %d\n",
458 			    peer->crypto, authlen, len, code >> 16,
459 			    associd));
460 
461 		/*
462 		 * Check version number and field length. If bad,
463 		 * quietly ignore the packet.
464 		 */
465 		if (((code >> 24) & 0x3f) != CRYPTO_VN || len < 8) {
466 			sys_badlength++;
467 			code |= CRYPTO_ERROR;
468 		}
469 
470 		if (len >= VALUE_LEN) {
471 			fstamp = ntohl(ep->fstamp);
472 			vallen = ntohl(ep->vallen);
473 			/*
474 			 * Bug 2761: I hope this isn't too early...
475 			 */
476 			if (   vallen == 0
477 			    || len - VALUE_LEN < vallen)
478 				return XEVNT_LEN;
479 		}
480 		switch (code) {
481 
482 		/*
483 		 * Install status word, host name, signature scheme and
484 		 * association ID. In OpenSSL the signature algorithm is
485 		 * bound to the digest algorithm, so the NID completely
486 		 * defines the signature scheme. Note the request and
487 		 * response are identical, but neither is validated by
488 		 * signature. The request is processed here only in
489 		 * symmetric modes. The server name field might be
490 		 * useful to implement access controls in future.
491 		 */
492 		case CRYPTO_ASSOC:
493 
494 			/*
495 			 * If our state machine is running when this
496 			 * message arrives, the other fellow might have
497 			 * restarted. However, this could be an
498 			 * intruder, so just clamp the poll interval and
499 			 * find out for ourselves. Otherwise, pass the
500 			 * extension field to the transmit side.
501 			 */
502 			if (peer->crypto & CRYPTO_FLAG_CERT) {
503 				rval = XEVNT_ERR;
504 				break;
505 			}
506 			if (peer->cmmd) {
507 				if (peer->assoc != associd) {
508 					rval = XEVNT_ERR;
509 					break;
510 				}
511 			}
512 			fp = emalloc(len);
513 			memcpy(fp, ep, len);
514 			fp->associd = htonl(peer->associd);
515 			peer->cmmd = fp;
516 			/* fall through */
517 
518 		case CRYPTO_ASSOC | CRYPTO_RESP:
519 
520 			/*
521 			 * Discard the message if it has already been
522 			 * stored or the message has been amputated.
523 			 */
524 			if (peer->crypto) {
525 				if (peer->assoc != associd)
526 					rval = XEVNT_ERR;
527 				break;
528 			}
529 			INSIST(len >= VALUE_LEN);
530 			if (vallen == 0 || vallen > MAXHOSTNAME ||
531 			    len - VALUE_LEN < vallen) {
532 				rval = XEVNT_LEN;
533 				break;
534 			}
535 			DPRINTF(1, ("crypto_recv: ident host 0x%x %d server 0x%x %d\n",
536 				    crypto_flags, peer->associd, fstamp,
537 				    peer->assoc));
538 			temp32 = crypto_flags & CRYPTO_FLAG_MASK;
539 
540 			/*
541 			 * If the client scheme is PC, the server scheme
542 			 * must be PC. The public key and identity are
543 			 * presumed valid, so we skip the certificate
544 			 * and identity exchanges and move immediately
545 			 * to the cookie exchange which confirms the
546 			 * server signature.
547 			 */
548 			if (crypto_flags & CRYPTO_FLAG_PRIV) {
549 				if (!(fstamp & CRYPTO_FLAG_PRIV)) {
550 					rval = XEVNT_KEY;
551 					break;
552 				}
553 				fstamp |= CRYPTO_FLAG_CERT |
554 				    CRYPTO_FLAG_VRFY | CRYPTO_FLAG_SIGN;
555 
556 			/*
557 			 * It is an error if either peer supports
558 			 * identity, but the other does not.
559 			 */
560 			} else if (hismode == MODE_ACTIVE || hismode ==
561 			    MODE_PASSIVE) {
562 				if ((temp32 && !(fstamp &
563 				    CRYPTO_FLAG_MASK)) ||
564 				    (!temp32 && (fstamp &
565 				    CRYPTO_FLAG_MASK))) {
566 					rval = XEVNT_KEY;
567 					break;
568 				}
569 			}
570 
571 			/*
572 			 * Discard the message if the signature digest
573 			 * NID is not supported.
574 			 */
575 			temp32 = (fstamp >> 16) & 0xffff;
576 			dp =
577 			    (const EVP_MD *)EVP_get_digestbynid(temp32);
578 			if (dp == NULL) {
579 				rval = XEVNT_MD;
580 				break;
581 			}
582 
583 			/*
584 			 * Save status word, host name and message
585 			 * digest/signature type. If this is from a
586 			 * broadcast and the association ID has changed,
587 			 * request the autokey values.
588 			 */
589 			peer->assoc = associd;
590 			if (hismode == MODE_SERVER)
591 				fstamp |= CRYPTO_FLAG_AUTO;
592 			if (!(fstamp & CRYPTO_FLAG_TAI))
593 				fstamp |= CRYPTO_FLAG_LEAP;
594 			RAND_bytes((u_char *)&peer->hcookie, 4);
595 			peer->crypto = fstamp;
596 			peer->digest = dp;
597 			if (peer->subject != NULL)
598 				free(peer->subject);
599 			peer->subject = emalloc(vallen + 1);
600 			memcpy(peer->subject, ep->pkt, vallen);
601 			peer->subject[vallen] = '\0';
602 			if (peer->issuer != NULL)
603 				free(peer->issuer);
604 			peer->issuer = estrdup(peer->subject);
605 			snprintf(statstr, sizeof(statstr),
606 			    "assoc %d %d host %s %s", peer->associd,
607 			    peer->assoc, peer->subject,
608 			    OBJ_nid2ln(temp32));
609 			record_crypto_stats(&peer->srcadr, statstr);
610 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
611 			break;
612 
613 		/*
614 		 * Decode X509 certificate in ASN.1 format and extract
615 		 * the data containing, among other things, subject
616 		 * name and public key. In the default identification
617 		 * scheme, the certificate trail is followed to a self
618 		 * signed trusted certificate.
619 		 */
620 		case CRYPTO_CERT | CRYPTO_RESP:
621 
622 			/*
623 			 * Discard the message if empty or invalid.
624 			 */
625 			if (len < VALUE_LEN)
626 				break;
627 
628 			if ((rval = crypto_verify(ep, NULL, peer)) !=
629 			    XEVNT_OK)
630 				break;
631 
632 			/*
633 			 * Scan the certificate list to delete old
634 			 * versions and link the newest version first on
635 			 * the list. Then, verify the signature. If the
636 			 * certificate is bad or missing, just ignore
637 			 * it.
638 			 */
639 			if ((xinfo = cert_install(ep, peer)) == NULL) {
640 				rval = XEVNT_CRT;
641 				break;
642 			}
643 			if ((rval = cert_hike(peer, xinfo)) != XEVNT_OK)
644 				break;
645 
646 			/*
647 			 * We plug in the public key and lifetime from
648 			 * the first certificate received. However, note
649 			 * that this certificate might not be signed by
650 			 * the server, so we can't check the
651 			 * signature/digest NID.
652 			 */
653 			if (peer->pkey == NULL) {
654 				puch = xinfo->cert.ptr;
655 				cert = d2i_X509(NULL, &puch,
656 				    ntohl(xinfo->cert.vallen));
657 				peer->pkey = X509_get_pubkey(cert);
658 				X509_free(cert);
659 			}
660 			peer->flash &= ~TEST8;
661 			temp32 = xinfo->nid;
662 			snprintf(statstr, sizeof(statstr),
663 			    "cert %s %s 0x%x %s (%u) fs %u",
664 			    xinfo->subject, xinfo->issuer, xinfo->flags,
665 			    OBJ_nid2ln(temp32), temp32,
666 			    ntohl(ep->fstamp));
667 			record_crypto_stats(&peer->srcadr, statstr);
668 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
669 			break;
670 
671 		/*
672 		 * Schnorr (IFF) identity scheme. This scheme is
673 		 * designed for use with shared secret server group keys
674 		 * and where the certificate may be generated by a third
675 		 * party. The client sends a challenge to the server,
676 		 * which performs a calculation and returns the result.
677 		 * A positive result is possible only if both client and
678 		 * server contain the same secret group key.
679 		 */
680 		case CRYPTO_IFF | CRYPTO_RESP:
681 
682 			/*
683 			 * Discard the message if invalid.
684 			 */
685 			if ((rval = crypto_verify(ep, NULL, peer)) !=
686 			    XEVNT_OK)
687 				break;
688 
689 			/*
690 			 * If the challenge matches the response, the
691 			 * server public key, signature and identity are
692 			 * all verified at the same time. The server is
693 			 * declared trusted, so we skip further
694 			 * certificate exchanges and move immediately to
695 			 * the cookie exchange.
696 			 */
697 			if ((rval = crypto_iff(ep, peer)) != XEVNT_OK)
698 				break;
699 
700 			peer->crypto |= CRYPTO_FLAG_VRFY;
701 			peer->flash &= ~TEST8;
702 			snprintf(statstr, sizeof(statstr), "iff %s fs %u",
703 			    peer->issuer, ntohl(ep->fstamp));
704 			record_crypto_stats(&peer->srcadr, statstr);
705 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
706 			break;
707 
708 		/*
709 		 * Guillou-Quisquater (GQ) identity scheme. This scheme
710 		 * is designed for use with public certificates carrying
711 		 * the GQ public key in an extension field. The client
712 		 * sends a challenge to the server, which performs a
713 		 * calculation and returns the result. A positive result
714 		 * is possible only if both client and server contain
715 		 * the same group key and the server has the matching GQ
716 		 * private key.
717 		 */
718 		case CRYPTO_GQ | CRYPTO_RESP:
719 
720 			/*
721 			 * Discard the message if invalid
722 			 */
723 			if ((rval = crypto_verify(ep, NULL, peer)) !=
724 			    XEVNT_OK)
725 				break;
726 
727 			/*
728 			 * If the challenge matches the response, the
729 			 * server public key, signature and identity are
730 			 * all verified at the same time. The server is
731 			 * declared trusted, so we skip further
732 			 * certificate exchanges and move immediately to
733 			 * the cookie exchange.
734 			 */
735 			if ((rval = crypto_gq(ep, peer)) != XEVNT_OK)
736 				break;
737 
738 			peer->crypto |= CRYPTO_FLAG_VRFY;
739 			peer->flash &= ~TEST8;
740 			snprintf(statstr, sizeof(statstr), "gq %s fs %u",
741 			    peer->issuer, ntohl(ep->fstamp));
742 			record_crypto_stats(&peer->srcadr, statstr);
743 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
744 			break;
745 
746 		/*
747 		 * Mu-Varadharajan (MV) identity scheme. This scheme is
748 		 * designed for use with three levels of trust, trusted
749 		 * host, server and client. The trusted host key is
750 		 * opaque to servers and clients; the server keys are
751 		 * opaque to clients and each client key is different.
752 		 * Client keys can be revoked without requiring new key
753 		 * generations.
754 		 */
755 		case CRYPTO_MV | CRYPTO_RESP:
756 
757 			/*
758 			 * Discard the message if invalid.
759 			 */
760 			if ((rval = crypto_verify(ep, NULL, peer)) !=
761 			    XEVNT_OK)
762 				break;
763 
764 			/*
765 			 * If the challenge matches the response, the
766 			 * server public key, signature and identity are
767 			 * all verified at the same time. The server is
768 			 * declared trusted, so we skip further
769 			 * certificate exchanges and move immediately to
770 			 * the cookie exchange.
771 			 */
772 			if ((rval = crypto_mv(ep, peer)) != XEVNT_OK)
773 				break;
774 
775 			peer->crypto |= CRYPTO_FLAG_VRFY;
776 			peer->flash &= ~TEST8;
777 			snprintf(statstr, sizeof(statstr), "mv %s fs %u",
778 			    peer->issuer, ntohl(ep->fstamp));
779 			record_crypto_stats(&peer->srcadr, statstr);
780 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
781 			break;
782 
783 
784 		/*
785 		 * Cookie response in client and symmetric modes. If the
786 		 * cookie bit is set, the working cookie is the EXOR of
787 		 * the current and new values.
788 		 */
789 		case CRYPTO_COOK | CRYPTO_RESP:
790 
791 			/*
792 			 * Discard the message if invalid or signature
793 			 * not verified with respect to the cookie
794 			 * values.
795 			 */
796 			if ((rval = crypto_verify(ep, &peer->cookval,
797 			    peer)) != XEVNT_OK)
798 				break;
799 
800 			/*
801 			 * Decrypt the cookie, hunting all the time for
802 			 * errors.
803 			 */
804 			if (vallen == (u_int)EVP_PKEY_size(host_pkey)) {
805 				u_int32 *cookiebuf = malloc(
806 				    RSA_size(host_pkey->pkey.rsa));
807 				if (!cookiebuf) {
808 					rval = XEVNT_CKY;
809 					break;
810 				}
811 
812 				if (RSA_private_decrypt(vallen,
813 				    (u_char *)ep->pkt,
814 				    (u_char *)cookiebuf,
815 				    host_pkey->pkey.rsa,
816 				    RSA_PKCS1_OAEP_PADDING) != 4) {
817 					rval = XEVNT_CKY;
818 					free(cookiebuf);
819 					break;
820 				} else {
821 					cookie = ntohl(*cookiebuf);
822 					free(cookiebuf);
823 				}
824 			} else {
825 				rval = XEVNT_CKY;
826 				break;
827 			}
828 
829 			/*
830 			 * Install cookie values and light the cookie
831 			 * bit. If this is not broadcast client mode, we
832 			 * are done here.
833 			 */
834 			key_expire(peer);
835 			if (hismode == MODE_ACTIVE || hismode ==
836 			    MODE_PASSIVE)
837 				peer->pcookie = peer->hcookie ^ cookie;
838 			else
839 				peer->pcookie = cookie;
840 			peer->crypto |= CRYPTO_FLAG_COOK;
841 			peer->flash &= ~TEST8;
842 			snprintf(statstr, sizeof(statstr),
843 			    "cook %x ts %u fs %u", peer->pcookie,
844 			    ntohl(ep->tstamp), ntohl(ep->fstamp));
845 			record_crypto_stats(&peer->srcadr, statstr);
846 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
847 			break;
848 
849 		/*
850 		 * Install autokey values in broadcast client and
851 		 * symmetric modes. We have to do this every time the
852 		 * sever/peer cookie changes or a new keylist is
853 		 * rolled. Ordinarily, this is automatic as this message
854 		 * is piggybacked on the first NTP packet sent upon
855 		 * either of these events. Note that a broadcast client
856 		 * or symmetric peer can receive this response without a
857 		 * matching request.
858 		 */
859 		case CRYPTO_AUTO | CRYPTO_RESP:
860 
861 			/*
862 			 * Discard the message if invalid or signature
863 			 * not verified with respect to the receive
864 			 * autokey values.
865 			 */
866 			if ((rval = crypto_verify(ep, &peer->recval,
867 			    peer)) != XEVNT_OK)
868 				break;
869 
870 			/*
871 			 * Discard the message if a broadcast client and
872 			 * the association ID does not match. This might
873 			 * happen if a broacast server restarts the
874 			 * protocol. A protocol restart will occur at
875 			 * the next ASSOC message.
876 			 */
877 			if ((peer->cast_flags & MDF_BCLNT) &&
878 			    peer->assoc != associd)
879 				break;
880 
881 			/*
882 			 * Install autokey values and light the
883 			 * autokey bit. This is not hard.
884 			 */
885 			if (ep->tstamp == 0)
886 				break;
887 
888 			if (peer->recval.ptr == NULL)
889 				peer->recval.ptr =
890 				    emalloc(sizeof(struct autokey));
891 			bp = (struct autokey *)peer->recval.ptr;
892 			peer->recval.tstamp = ep->tstamp;
893 			peer->recval.fstamp = ep->fstamp;
894 			ap = (struct autokey *)ep->pkt;
895 			bp->seq = ntohl(ap->seq);
896 			bp->key = ntohl(ap->key);
897 			peer->pkeyid = bp->key;
898 			peer->crypto |= CRYPTO_FLAG_AUTO;
899 			peer->flash &= ~TEST8;
900 			snprintf(statstr, sizeof(statstr),
901 			    "auto seq %d key %x ts %u fs %u", bp->seq,
902 			    bp->key, ntohl(ep->tstamp),
903 			    ntohl(ep->fstamp));
904 			record_crypto_stats(&peer->srcadr, statstr);
905 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
906 			break;
907 
908 		/*
909 		 * X509 certificate sign response. Validate the
910 		 * certificate signed by the server and install. Later
911 		 * this can be provided to clients of this server in
912 		 * lieu of the self signed certificate in order to
913 		 * validate the public key.
914 		 */
915 		case CRYPTO_SIGN | CRYPTO_RESP:
916 
917 			/*
918 			 * Discard the message if invalid.
919 			 */
920 			if ((rval = crypto_verify(ep, NULL, peer)) !=
921 			    XEVNT_OK)
922 				break;
923 
924 			/*
925 			 * Scan the certificate list to delete old
926 			 * versions and link the newest version first on
927 			 * the list.
928 			 */
929 			if ((xinfo = cert_install(ep, peer)) == NULL) {
930 				rval = XEVNT_CRT;
931 				break;
932 			}
933 			peer->crypto |= CRYPTO_FLAG_SIGN;
934 			peer->flash &= ~TEST8;
935 			temp32 = xinfo->nid;
936 			snprintf(statstr, sizeof(statstr),
937 			    "sign %s %s 0x%x %s (%u) fs %u",
938 			    xinfo->subject, xinfo->issuer, xinfo->flags,
939 			    OBJ_nid2ln(temp32), temp32,
940 			    ntohl(ep->fstamp));
941 			record_crypto_stats(&peer->srcadr, statstr);
942 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
943 			break;
944 
945 		/*
946 		 * Install leapseconds values. While the leapsecond
947 		 * values epoch, TAI offset and values expiration epoch
948 		 * are retained, only the current TAI offset is provided
949 		 * via the kernel to other applications.
950 		 */
951 		case CRYPTO_LEAP | CRYPTO_RESP:
952 			/*
953 			 * Discard the message if invalid. We can't
954 			 * compare the value timestamps here, as they
955 			 * can be updated by different servers.
956 			 */
957 			rval = crypto_verify(ep, NULL, peer);
958 			if ((rval   != XEVNT_OK          ) ||
959 			    (vallen != 3*sizeof(uint32_t))  )
960 				break;
961 
962 			/* Check if we can update the basic TAI offset
963 			 * for our current leap frame. This is a hack
964 			 * and ignores the time stamps in the autokey
965 			 * message.
966 			 */
967 			if (sys_leap != LEAP_NOTINSYNC)
968 				leapsec_autokey_tai(ntohl(ep->pkt[0]),
969 						    rbufp->recv_time.l_ui, NULL);
970 			tai_leap.tstamp = ep->tstamp;
971 			tai_leap.fstamp = ep->fstamp;
972 			crypto_update();
973 			mprintf_event(EVNT_TAI, peer,
974 				      "%d seconds", ntohl(ep->pkt[0]));
975 			peer->crypto |= CRYPTO_FLAG_LEAP;
976 			peer->flash &= ~TEST8;
977 			snprintf(statstr, sizeof(statstr),
978 				 "leap TAI offset %d at %u expire %u fs %u",
979 				 ntohl(ep->pkt[0]), ntohl(ep->pkt[1]),
980 				 ntohl(ep->pkt[2]), ntohl(ep->fstamp));
981 			record_crypto_stats(&peer->srcadr, statstr);
982 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
983 			break;
984 
985 		/*
986 		 * We come here in symmetric modes for miscellaneous
987 		 * commands that have value fields but are processed on
988 		 * the transmit side. All we need do here is check for
989 		 * valid field length. Note that ASSOC is handled
990 		 * separately.
991 		 */
992 		case CRYPTO_CERT:
993 		case CRYPTO_IFF:
994 		case CRYPTO_GQ:
995 		case CRYPTO_MV:
996 		case CRYPTO_COOK:
997 		case CRYPTO_SIGN:
998 			if (len < VALUE_LEN) {
999 				rval = XEVNT_LEN;
1000 				break;
1001 			}
1002 			/* fall through */
1003 
1004 		/*
1005 		 * We come here in symmetric modes for requests
1006 		 * requiring a response (above plus AUTO and LEAP) and
1007 		 * for responses. If a request, save the extension field
1008 		 * for later; invalid requests will be caught on the
1009 		 * transmit side. If an error or invalid response,
1010 		 * declare a protocol error.
1011 		 */
1012 		default:
1013 			if (code & (CRYPTO_RESP | CRYPTO_ERROR)) {
1014 				rval = XEVNT_ERR;
1015 			} else if (peer->cmmd == NULL) {
1016 				fp = emalloc(len);
1017 				memcpy(fp, ep, len);
1018 				peer->cmmd = fp;
1019 			}
1020 		}
1021 
1022 		/*
1023 		 * The first error found terminates the extension field
1024 		 * scan and we return the laundry to the caller.
1025 		 */
1026 		if (rval != XEVNT_OK) {
1027 			snprintf(statstr, sizeof(statstr),
1028 			    "%04x %d %02x %s", htonl(ep->opcode),
1029 			    associd, rval, eventstr(rval));
1030 			record_crypto_stats(&peer->srcadr, statstr);
1031 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
1032 			return (rval);
1033 		}
1034 		authlen += (len + 3) / 4 * 4;
1035 	}
1036 	return (rval);
1037 }
1038 
1039 
1040 /*
1041  * crypto_xmit - construct extension fields
1042  *
1043  * This routine is called both when an association is configured and
1044  * when one is not. The only case where this matters is to retrieve the
1045  * autokey information, in which case the caller has to provide the
1046  * association ID to match the association.
1047  *
1048  * Side effect: update the packet offset.
1049  *
1050  * Errors
1051  * XEVNT_OK	success
1052  * XEVNT_CRT	bad or missing certificate
1053  * XEVNT_ERR	protocol error
1054  * XEVNT_LEN	bad field format or length
1055  * XEVNT_PER	host certificate expired
1056  */
1057 int
1058 crypto_xmit(
1059 	struct peer *peer,	/* peer structure pointer */
1060 	struct pkt *xpkt,	/* transmit packet pointer */
1061 	struct recvbuf *rbufp,	/* receive buffer pointer */
1062 	int	start,		/* offset to extension field */
1063 	struct exten *ep,	/* extension pointer */
1064 	keyid_t cookie		/* session cookie */
1065 	)
1066 {
1067 	struct exten *fp;	/* extension pointers */
1068 	struct cert_info *cp, *xp, *yp; /* cert info/value pointer */
1069 	sockaddr_u *srcadr_sin; /* source address */
1070 	u_int32	*pkt;		/* packet pointer */
1071 	u_int	opcode;		/* extension field opcode */
1072 	char	certname[MAXHOSTNAME + 1]; /* subject name buffer */
1073 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
1074 	tstamp_t tstamp;
1075 	struct calendar tscal;
1076 	u_int	vallen;
1077 	struct value vtemp;
1078 	associd_t associd;
1079 	int	rval;
1080 	int	len;
1081 	keyid_t tcookie;
1082 
1083 	/*
1084 	 * Generate the requested extension field request code, length
1085 	 * and association ID. If this is a response and the host is not
1086 	 * synchronized, light the error bit and go home.
1087 	 */
1088 	pkt = (u_int32 *)xpkt + start / 4;
1089 	fp = (struct exten *)pkt;
1090 	opcode = ntohl(ep->opcode);
1091 	if (peer != NULL) {
1092 		srcadr_sin = &peer->srcadr;
1093 		if (!(opcode & CRYPTO_RESP))
1094 			peer->opcode = ep->opcode;
1095 	} else {
1096 		srcadr_sin = &rbufp->recv_srcadr;
1097 	}
1098 	associd = (associd_t) ntohl(ep->associd);
1099 	len = 8;
1100 	fp->opcode = htonl((opcode & 0xffff0000) | len);
1101 	fp->associd = ep->associd;
1102 	rval = XEVNT_OK;
1103 	tstamp = crypto_time();
1104 	switch (opcode & 0xffff0000) {
1105 
1106 	/*
1107 	 * Send association request and response with status word and
1108 	 * host name. Note, this message is not signed and the filestamp
1109 	 * contains only the status word.
1110 	 */
1111 	case CRYPTO_ASSOC:
1112 	case CRYPTO_ASSOC | CRYPTO_RESP:
1113 		len = crypto_send(fp, &hostval, start);
1114 		fp->fstamp = htonl(crypto_flags);
1115 		break;
1116 
1117 	/*
1118 	 * Send certificate request. Use the values from the extension
1119 	 * field.
1120 	 */
1121 	case CRYPTO_CERT:
1122 		memset(&vtemp, 0, sizeof(vtemp));
1123 		vtemp.tstamp = ep->tstamp;
1124 		vtemp.fstamp = ep->fstamp;
1125 		vtemp.vallen = ep->vallen;
1126 		vtemp.ptr = (u_char *)ep->pkt;
1127 		len = crypto_send(fp, &vtemp, start);
1128 		break;
1129 
1130 	/*
1131 	 * Send sign request. Use the host certificate, which is self-
1132 	 * signed and may or may not be trusted.
1133 	 */
1134 	case CRYPTO_SIGN:
1135 		(void)ntpcal_ntp_to_date(&tscal, tstamp, NULL);
1136 		if ((calcomp(&tscal, &(cert_host->first)) < 0)
1137 		|| (calcomp(&tscal, &(cert_host->last)) > 0))
1138 			rval = XEVNT_PER;
1139 		else
1140 			len = crypto_send(fp, &cert_host->cert, start);
1141 		break;
1142 
1143 	/*
1144 	 * Send certificate response. Use the name in the extension
1145 	 * field to find the certificate in the cache. If the request
1146 	 * contains no subject name, assume the name of this host. This
1147 	 * is for backwards compatibility. Private certificates are
1148 	 * never sent.
1149 	 *
1150 	 * There may be several certificates matching the request. First
1151 	 * choice is a self-signed trusted certificate; second choice is
1152 	 * any certificate signed by another host. There is no third
1153 	 * choice.
1154 	 */
1155 	case CRYPTO_CERT | CRYPTO_RESP:
1156 		vallen = ntohl(ep->vallen);	/* Must be <64k */
1157 		if (vallen == 0 || vallen > MAXHOSTNAME ||
1158 		    len - VALUE_LEN < vallen) {
1159 			rval = XEVNT_LEN;
1160 			break;
1161 		}
1162 
1163 		/*
1164 		 * Find all public valid certificates with matching
1165 		 * subject. If a self-signed, trusted certificate is
1166 		 * found, use that certificate. If not, use the last non
1167 		 * self-signed certificate.
1168 		 */
1169 		memcpy(certname, ep->pkt, vallen);
1170 		certname[vallen] = '\0';
1171 		xp = yp = NULL;
1172 		for (cp = cinfo; cp != NULL; cp = cp->link) {
1173 			if (cp->flags & (CERT_PRIV | CERT_ERROR))
1174 				continue;
1175 
1176 			if (strcmp(certname, cp->subject) != 0)
1177 				continue;
1178 
1179 			if (strcmp(certname, cp->issuer) != 0)
1180 				yp = cp;
1181 			else if (cp ->flags & CERT_TRUST)
1182 				xp = cp;
1183 			continue;
1184 		}
1185 
1186 		/*
1187 		 * Be careful who you trust. If the certificate is not
1188 		 * found, return an empty response. Note that we dont
1189 		 * enforce lifetimes here.
1190 		 *
1191 		 * The timestamp and filestamp are taken from the
1192 		 * certificate value structure. For all certificates the
1193 		 * timestamp is the latest signature update time. For
1194 		 * host and imported certificates the filestamp is the
1195 		 * creation epoch. For signed certificates the filestamp
1196 		 * is the creation epoch of the trusted certificate at
1197 		 * the root of the certificate trail. In principle, this
1198 		 * allows strong checking for signature masquerade.
1199 		 */
1200 		if (xp == NULL)
1201 			xp = yp;
1202 		if (xp == NULL)
1203 			break;
1204 
1205 		if (tstamp == 0)
1206 			break;
1207 
1208 		len = crypto_send(fp, &xp->cert, start);
1209 		break;
1210 
1211 	/*
1212 	 * Send challenge in Schnorr (IFF) identity scheme.
1213 	 */
1214 	case CRYPTO_IFF:
1215 		if (peer == NULL)
1216 			break;		/* hack attack */
1217 
1218 		if ((rval = crypto_alice(peer, &vtemp)) == XEVNT_OK) {
1219 			len = crypto_send(fp, &vtemp, start);
1220 			value_free(&vtemp);
1221 		}
1222 		break;
1223 
1224 	/*
1225 	 * Send response in Schnorr (IFF) identity scheme.
1226 	 */
1227 	case CRYPTO_IFF | CRYPTO_RESP:
1228 		if ((rval = crypto_bob(ep, &vtemp)) == XEVNT_OK) {
1229 			len = crypto_send(fp, &vtemp, start);
1230 			value_free(&vtemp);
1231 		}
1232 		break;
1233 
1234 	/*
1235 	 * Send challenge in Guillou-Quisquater (GQ) identity scheme.
1236 	 */
1237 	case CRYPTO_GQ:
1238 		if (peer == NULL)
1239 			break;		/* hack attack */
1240 
1241 		if ((rval = crypto_alice2(peer, &vtemp)) == XEVNT_OK) {
1242 			len = crypto_send(fp, &vtemp, start);
1243 			value_free(&vtemp);
1244 		}
1245 		break;
1246 
1247 	/*
1248 	 * Send response in Guillou-Quisquater (GQ) identity scheme.
1249 	 */
1250 	case CRYPTO_GQ | CRYPTO_RESP:
1251 		if ((rval = crypto_bob2(ep, &vtemp)) == XEVNT_OK) {
1252 			len = crypto_send(fp, &vtemp, start);
1253 			value_free(&vtemp);
1254 		}
1255 		break;
1256 
1257 	/*
1258 	 * Send challenge in MV identity scheme.
1259 	 */
1260 	case CRYPTO_MV:
1261 		if (peer == NULL)
1262 			break;		/* hack attack */
1263 
1264 		if ((rval = crypto_alice3(peer, &vtemp)) == XEVNT_OK) {
1265 			len = crypto_send(fp, &vtemp, start);
1266 			value_free(&vtemp);
1267 		}
1268 		break;
1269 
1270 	/*
1271 	 * Send response in MV identity scheme.
1272 	 */
1273 	case CRYPTO_MV | CRYPTO_RESP:
1274 		if ((rval = crypto_bob3(ep, &vtemp)) == XEVNT_OK) {
1275 			len = crypto_send(fp, &vtemp, start);
1276 			value_free(&vtemp);
1277 		}
1278 		break;
1279 
1280 	/*
1281 	 * Send certificate sign response. The integrity of the request
1282 	 * certificate has already been verified on the receive side.
1283 	 * Sign the response using the local server key. Use the
1284 	 * filestamp from the request and use the timestamp as the
1285 	 * current time. Light the error bit if the certificate is
1286 	 * invalid or contains an unverified signature.
1287 	 */
1288 	case CRYPTO_SIGN | CRYPTO_RESP:
1289 		if ((rval = cert_sign(ep, &vtemp)) == XEVNT_OK) {
1290 			len = crypto_send(fp, &vtemp, start);
1291 			value_free(&vtemp);
1292 		}
1293 		break;
1294 
1295 	/*
1296 	 * Send public key and signature. Use the values from the public
1297 	 * key.
1298 	 */
1299 	case CRYPTO_COOK:
1300 		len = crypto_send(fp, &pubkey, start);
1301 		break;
1302 
1303 	/*
1304 	 * Encrypt and send cookie and signature. Light the error bit if
1305 	 * anything goes wrong.
1306 	 */
1307 	case CRYPTO_COOK | CRYPTO_RESP:
1308 		vallen = ntohl(ep->vallen);	/* Must be <64k */
1309 		if (   vallen == 0
1310 		    || (vallen >= MAX_VALLEN)
1311 		    || (opcode & 0x0000ffff)  < VALUE_LEN + vallen) {
1312 			rval = XEVNT_LEN;
1313 			break;
1314 		}
1315 		if (peer == NULL)
1316 			tcookie = cookie;
1317 		else
1318 			tcookie = peer->hcookie;
1319 		if ((rval = crypto_encrypt((const u_char *)ep->pkt, vallen, &tcookie, &vtemp))
1320 		    == XEVNT_OK) {
1321 			len = crypto_send(fp, &vtemp, start);
1322 			value_free(&vtemp);
1323 		}
1324 		break;
1325 
1326 	/*
1327 	 * Find peer and send autokey data and signature in broadcast
1328 	 * server and symmetric modes. Use the values in the autokey
1329 	 * structure. If no association is found, either the server has
1330 	 * restarted with new associations or some perp has replayed an
1331 	 * old message, in which case light the error bit.
1332 	 */
1333 	case CRYPTO_AUTO | CRYPTO_RESP:
1334 		if (peer == NULL) {
1335 			if ((peer = findpeerbyassoc(associd)) == NULL) {
1336 				rval = XEVNT_ERR;
1337 				break;
1338 			}
1339 		}
1340 		peer->flags &= ~FLAG_ASSOC;
1341 		len = crypto_send(fp, &peer->sndval, start);
1342 		break;
1343 
1344 	/*
1345 	 * Send leapseconds values and signature. Use the values from
1346 	 * the tai structure. If no table has been loaded, just send an
1347 	 * empty request.
1348 	 */
1349 	case CRYPTO_LEAP | CRYPTO_RESP:
1350 		len = crypto_send(fp, &tai_leap, start);
1351 		break;
1352 
1353 	/*
1354 	 * Default - Send a valid command for unknown requests; send
1355 	 * an error response for unknown resonses.
1356 	 */
1357 	default:
1358 		if (opcode & CRYPTO_RESP)
1359 			rval = XEVNT_ERR;
1360 	}
1361 
1362 	/*
1363 	 * In case of error, flame the log. If a request, toss the
1364 	 * puppy; if a response, return so the sender can flame, too.
1365 	 */
1366 	if (rval != XEVNT_OK) {
1367 		u_int32	uint32;
1368 
1369 		uint32 = CRYPTO_ERROR;
1370 		opcode |= uint32;
1371 		fp->opcode |= htonl(uint32);
1372 		snprintf(statstr, sizeof(statstr),
1373 		    "%04x %d %02x %s", opcode, associd, rval,
1374 		    eventstr(rval));
1375 		record_crypto_stats(srcadr_sin, statstr);
1376 		DPRINTF(1, ("crypto_xmit: %s\n", statstr));
1377 		if (!(opcode & CRYPTO_RESP))
1378 			return (0);
1379 	}
1380 	DPRINTF(1, ("crypto_xmit: flags 0x%x offset %d len %d code 0x%x associd %d\n",
1381 		    crypto_flags, start, len, opcode >> 16, associd));
1382 	return (len);
1383 }
1384 
1385 
1386 /*
1387  * crypto_verify - verify the extension field value and signature
1388  *
1389  * Returns
1390  * XEVNT_OK	success
1391  * XEVNT_ERR	protocol error
1392  * XEVNT_FSP	bad filestamp
1393  * XEVNT_LEN	bad field format or length
1394  * XEVNT_PUB	bad or missing public key
1395  * XEVNT_SGL	bad signature length
1396  * XEVNT_SIG	signature not verified
1397  * XEVNT_TSP	bad timestamp
1398  */
1399 static int
1400 crypto_verify(
1401 	struct exten *ep,	/* extension pointer */
1402 	struct value *vp,	/* value pointer */
1403 	struct peer *peer	/* peer structure pointer */
1404 	)
1405 {
1406 	EVP_PKEY *pkey;		/* server public key */
1407 	EVP_MD_CTX ctx;		/* signature context */
1408 	tstamp_t tstamp, tstamp1 = 0; /* timestamp */
1409 	tstamp_t fstamp, fstamp1 = 0; /* filestamp */
1410 	u_int	vallen;		/* value length */
1411 	u_int	siglen;		/* signature length */
1412 	u_int	opcode, len;
1413 	int	i;
1414 
1415 	/*
1416 	 * We are extremely parannoyed. We require valid opcode, length,
1417 	 * association ID, timestamp, filestamp, public key, digest,
1418 	 * signature length and signature, where relevant. Note that
1419 	 * preliminary length checks are done in the main loop.
1420 	 */
1421 	len = ntohl(ep->opcode) & 0x0000ffff;
1422 	opcode = ntohl(ep->opcode) & 0xffff0000;
1423 
1424 	/*
1425 	 * Check for valid value header, association ID and extension
1426 	 * field length. Remember, it is not an error to receive an
1427 	 * unsolicited response; however, the response ID must match
1428 	 * the association ID.
1429 	 */
1430 	if (opcode & CRYPTO_ERROR)
1431 		return (XEVNT_ERR);
1432 
1433  	if (len < VALUE_LEN)
1434 		return (XEVNT_LEN);
1435 
1436 	if (opcode == (CRYPTO_AUTO | CRYPTO_RESP) && (peer->pmode ==
1437 	    MODE_BROADCAST || (peer->cast_flags & MDF_BCLNT))) {
1438 		if (ntohl(ep->associd) != peer->assoc)
1439 			return (XEVNT_ERR);
1440 	} else {
1441 		if (ntohl(ep->associd) != peer->associd)
1442 			return (XEVNT_ERR);
1443 	}
1444 
1445 	/*
1446 	 * We have a valid value header. Check for valid value and
1447 	 * signature field lengths. The extension field length must be
1448 	 * long enough to contain the value header, value and signature.
1449 	 * Note both the value and signature field lengths are rounded
1450 	 * up to the next word (4 octets).
1451 	 */
1452 	vallen = ntohl(ep->vallen);
1453 	if (   vallen == 0
1454 	    || vallen > MAX_VALLEN)
1455 		return (XEVNT_LEN);
1456 
1457 	i = (vallen + 3) / 4;
1458 	siglen = ntohl(ep->pkt[i++]);
1459 	if (   siglen > MAX_VALLEN
1460 	    || len - VALUE_LEN < ((vallen + 3) / 4) * 4
1461 	    || len - VALUE_LEN - ((vallen + 3) / 4) * 4
1462 	      < ((siglen + 3) / 4) * 4)
1463 		return (XEVNT_LEN);
1464 
1465 	/*
1466 	 * Check for valid timestamp and filestamp. If the timestamp is
1467 	 * zero, the sender is not synchronized and signatures are
1468 	 * not possible. If nonzero the timestamp must not precede the
1469 	 * filestamp. The timestamp and filestamp must not precede the
1470 	 * corresponding values in the value structure, if present.
1471  	 */
1472 	tstamp = ntohl(ep->tstamp);
1473 	fstamp = ntohl(ep->fstamp);
1474 	if (tstamp == 0)
1475 		return (XEVNT_TSP);
1476 
1477 	if (tstamp < fstamp)
1478 		return (XEVNT_TSP);
1479 
1480 	if (vp != NULL) {
1481 		tstamp1 = ntohl(vp->tstamp);
1482 		fstamp1 = ntohl(vp->fstamp);
1483 		if (tstamp1 != 0 && fstamp1 != 0) {
1484 			if (tstamp < tstamp1)
1485 				return (XEVNT_TSP);
1486 
1487 			if ((tstamp < fstamp1 || fstamp < fstamp1))
1488 				return (XEVNT_FSP);
1489 		}
1490 	}
1491 
1492 	/*
1493 	 * At the time the certificate message is validated, the public
1494 	 * key in the message is not available. Thus, don't try to
1495 	 * verify the signature.
1496 	 */
1497 	if (opcode == (CRYPTO_CERT | CRYPTO_RESP))
1498 		return (XEVNT_OK);
1499 
1500 	/*
1501 	 * Check for valid signature length, public key and digest
1502 	 * algorithm.
1503 	 */
1504 	if (crypto_flags & peer->crypto & CRYPTO_FLAG_PRIV)
1505 		pkey = sign_pkey;
1506 	else
1507 		pkey = peer->pkey;
1508 	if (siglen == 0 || pkey == NULL || peer->digest == NULL)
1509 		return (XEVNT_ERR);
1510 
1511 	if (siglen != (u_int)EVP_PKEY_size(pkey))
1512 		return (XEVNT_SGL);
1513 
1514 	/*
1515 	 * Darn, I thought we would never get here. Verify the
1516 	 * signature. If the identity exchange is verified, light the
1517 	 * proventic bit. What a relief.
1518 	 */
1519 	EVP_VerifyInit(&ctx, peer->digest);
1520 	/* XXX: the "+ 12" needs to be at least documented... */
1521 	EVP_VerifyUpdate(&ctx, (u_char *)&ep->tstamp, vallen + 12);
1522 	if (EVP_VerifyFinal(&ctx, (u_char *)&ep->pkt[i], siglen,
1523 	    pkey) <= 0)
1524 		return (XEVNT_SIG);
1525 
1526 	if (peer->crypto & CRYPTO_FLAG_VRFY)
1527 		peer->crypto |= CRYPTO_FLAG_PROV;
1528 	return (XEVNT_OK);
1529 }
1530 
1531 
1532 /*
1533  * crypto_encrypt - construct vp (encrypted cookie and signature) from
1534  * the public key and cookie.
1535  *
1536  * Returns:
1537  * XEVNT_OK	success
1538  * XEVNT_CKY	bad or missing cookie
1539  * XEVNT_PUB	bad or missing public key
1540  */
1541 static int
1542 crypto_encrypt(
1543 	const u_char *ptr,	/* Public Key */
1544 	u_int	vallen,		/* Length of Public Key */
1545 	keyid_t	*cookie,	/* server cookie */
1546 	struct value *vp	/* value pointer */
1547 	)
1548 {
1549 	EVP_PKEY *pkey;		/* public key */
1550 	EVP_MD_CTX ctx;		/* signature context */
1551 	tstamp_t tstamp;	/* NTP timestamp */
1552 	u_int32	temp32;
1553 	u_char *puch;
1554 
1555 	/*
1556 	 * Extract the public key from the request.
1557 	 */
1558 	pkey = d2i_PublicKey(EVP_PKEY_RSA, NULL, &ptr, vallen);
1559 	if (pkey == NULL) {
1560 		msyslog(LOG_ERR, "crypto_encrypt: %s",
1561 		    ERR_error_string(ERR_get_error(), NULL));
1562 		return (XEVNT_PUB);
1563 	}
1564 
1565 	/*
1566 	 * Encrypt the cookie, encode in ASN.1 and sign.
1567 	 */
1568 	memset(vp, 0, sizeof(struct value));
1569 	tstamp = crypto_time();
1570 	vp->tstamp = htonl(tstamp);
1571 	vp->fstamp = hostval.tstamp;
1572 	vallen = EVP_PKEY_size(pkey);
1573 	vp->vallen = htonl(vallen);
1574 	vp->ptr = emalloc(vallen);
1575 	puch = vp->ptr;
1576 	temp32 = htonl(*cookie);
1577 	if (RSA_public_encrypt(4, (u_char *)&temp32, puch,
1578 	    pkey->pkey.rsa, RSA_PKCS1_OAEP_PADDING) <= 0) {
1579 		msyslog(LOG_ERR, "crypto_encrypt: %s",
1580 		    ERR_error_string(ERR_get_error(), NULL));
1581 		free(vp->ptr);
1582 		EVP_PKEY_free(pkey);
1583 		return (XEVNT_CKY);
1584 	}
1585 	EVP_PKEY_free(pkey);
1586 	if (tstamp == 0)
1587 		return (XEVNT_OK);
1588 
1589 	vp->sig = emalloc(sign_siglen);
1590 	EVP_SignInit(&ctx, sign_digest);
1591 	EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
1592 	EVP_SignUpdate(&ctx, vp->ptr, vallen);
1593 	if (EVP_SignFinal(&ctx, vp->sig, &vallen, sign_pkey)) {
1594 		NTP_INSIST(vallen <= sign_siglen);
1595 		vp->siglen = htonl(vallen);
1596 	}
1597 	return (XEVNT_OK);
1598 }
1599 
1600 
1601 /*
1602  * crypto_ident - construct extension field for identity scheme
1603  *
1604  * This routine determines which identity scheme is in use and
1605  * constructs an extension field for that scheme.
1606  *
1607  * Returns
1608  * CRYTPO_IFF	IFF scheme
1609  * CRYPTO_GQ	GQ scheme
1610  * CRYPTO_MV	MV scheme
1611  * CRYPTO_NULL	no available scheme
1612  */
1613 u_int
1614 crypto_ident(
1615 	struct peer *peer	/* peer structure pointer */
1616 	)
1617 {
1618 	char		filename[MAXFILENAME];
1619 	const char *	scheme_name;
1620 	u_int		scheme_id;
1621 
1622 	/*
1623 	 * We come here after the group trusted host has been found; its
1624 	 * name defines the group name. Search the key cache for all
1625 	 * keys matching the same group name in order IFF, GQ and MV.
1626 	 * Use the first one available.
1627 	 */
1628 	scheme_name = NULL;
1629 	if (peer->crypto & CRYPTO_FLAG_IFF) {
1630 		scheme_name = "iff";
1631 		scheme_id = CRYPTO_IFF;
1632 	} else if (peer->crypto & CRYPTO_FLAG_GQ) {
1633 		scheme_name = "gq";
1634 		scheme_id = CRYPTO_GQ;
1635 	} else if (peer->crypto & CRYPTO_FLAG_MV) {
1636 		scheme_name = "mv";
1637 		scheme_id = CRYPTO_MV;
1638 	}
1639 
1640 	if (scheme_name != NULL) {
1641 		snprintf(filename, sizeof(filename), "ntpkey_%spar_%s",
1642 		    scheme_name, peer->ident);
1643 		peer->ident_pkey = crypto_key(filename, NULL,
1644 		    &peer->srcadr);
1645 		if (peer->ident_pkey != NULL)
1646 			return scheme_id;
1647 	}
1648 
1649 	msyslog(LOG_NOTICE,
1650 	    "crypto_ident: no identity parameters found for group %s",
1651 	    peer->ident);
1652 
1653 	return CRYPTO_NULL;
1654 }
1655 
1656 
1657 /*
1658  * crypto_args - construct extension field from arguments
1659  *
1660  * This routine creates an extension field with current timestamps and
1661  * specified opcode, association ID and optional string. Note that the
1662  * extension field is created here, but freed after the crypto_xmit()
1663  * call in the protocol module.
1664  *
1665  * Returns extension field pointer (no errors)
1666  *
1667  * XXX: opcode and len should really be 32-bit quantities and
1668  * we should make sure that str is not too big.
1669  */
1670 struct exten *
1671 crypto_args(
1672 	struct peer *peer,	/* peer structure pointer */
1673 	u_int	opcode,		/* operation code */
1674 	associd_t associd,	/* association ID */
1675 	char	*str		/* argument string */
1676 	)
1677 {
1678 	tstamp_t tstamp;	/* NTP timestamp */
1679 	struct exten *ep;	/* extension field pointer */
1680 	u_int	len;		/* extension field length */
1681 	size_t	slen = 0;
1682 
1683 	tstamp = crypto_time();
1684 	len = sizeof(struct exten);
1685 	if (str != NULL) {
1686 		slen = strlen(str);
1687 		INSIST(slen < MAX_VALLEN);
1688 		len += slen;
1689 	}
1690 	ep = emalloc_zero(len);
1691 	if (opcode == 0)
1692 		return (ep);
1693 
1694 	REQUIRE(0 == (len    & ~0x0000ffff));
1695 	REQUIRE(0 == (opcode & ~0xffff0000));
1696 
1697 	ep->opcode = htonl(opcode + len);
1698 	ep->associd = htonl(associd);
1699 	ep->tstamp = htonl(tstamp);
1700 	ep->fstamp = hostval.tstamp;
1701 	ep->vallen = 0;
1702 	if (str != NULL) {
1703 		ep->vallen = htonl(slen);
1704 		memcpy((char *)ep->pkt, str, slen);
1705 	}
1706 	return (ep);
1707 }
1708 
1709 
1710 /*
1711  * crypto_send - construct extension field from value components
1712  *
1713  * The value and signature fields are zero-padded to a word boundary.
1714  * Note: it is not polite to send a nonempty signature with zero
1715  * timestamp or a nonzero timestamp with an empty signature, but those
1716  * rules are not enforced here.
1717  *
1718  * XXX This code won't work on a box with 16-bit ints.
1719  */
1720 int
1721 crypto_send(
1722 	struct exten *ep,	/* extension field pointer */
1723 	struct value *vp,	/* value pointer */
1724 	int	start		/* buffer offset */
1725 	)
1726 {
1727 	u_int	len, vallen, siglen, opcode;
1728 	u_int	i, j;
1729 
1730 	/*
1731 	 * Calculate extension field length and check for buffer
1732 	 * overflow. Leave room for the MAC.
1733 	 */
1734 	len = 16;				/* XXX Document! */
1735 	vallen = ntohl(vp->vallen);
1736 	INSIST(vallen <= MAX_VALLEN);
1737 	len += ((vallen + 3) / 4 + 1) * 4;
1738 	siglen = ntohl(vp->siglen);
1739 	len += ((siglen + 3) / 4 + 1) * 4;
1740 	if (start + len > sizeof(struct pkt) - MAX_MAC_LEN)
1741 		return (0);
1742 
1743 	/*
1744 	 * Copy timestamps.
1745 	 */
1746 	ep->tstamp = vp->tstamp;
1747 	ep->fstamp = vp->fstamp;
1748 	ep->vallen = vp->vallen;
1749 
1750 	/*
1751 	 * Copy value. If the data field is empty or zero length,
1752 	 * encode an empty value with length zero.
1753 	 */
1754 	i = 0;
1755 	if (vallen > 0 && vp->ptr != NULL) {
1756 		j = vallen / 4;
1757 		if (j * 4 < vallen)
1758 			ep->pkt[i + j++] = 0;
1759 		memcpy(&ep->pkt[i], vp->ptr, vallen);
1760 		i += j;
1761 	}
1762 
1763 	/*
1764 	 * Copy signature. If the signature field is empty or zero
1765 	 * length, encode an empty signature with length zero.
1766 	 */
1767 	ep->pkt[i++] = vp->siglen;
1768 	if (siglen > 0 && vp->sig != NULL) {
1769 		j = siglen / 4;
1770 		if (j * 4 < siglen)
1771 			ep->pkt[i + j++] = 0;
1772 		memcpy(&ep->pkt[i], vp->sig, siglen);
1773 		i += j;
1774 	}
1775 	opcode = ntohl(ep->opcode);
1776 	ep->opcode = htonl((opcode & 0xffff0000) | len);
1777 	ENSURE(len <= MAX_VALLEN);
1778 	return (len);
1779 }
1780 
1781 
1782 /*
1783  * crypto_update - compute new public value and sign extension fields
1784  *
1785  * This routine runs periodically, like once a day, and when something
1786  * changes. It updates the timestamps on three value structures and one
1787  * value structure list, then signs all the structures:
1788  *
1789  * hostval	host name (not signed)
1790  * pubkey	public key
1791  * cinfo	certificate info/value list
1792  * tai_leap	leap values
1793  *
1794  * Filestamps are proventic data, so this routine runs only when the
1795  * host is synchronized to a proventicated source. Thus, the timestamp
1796  * is proventic and can be used to deflect clogging attacks.
1797  *
1798  * Returns void (no errors)
1799  */
1800 void
1801 crypto_update(void)
1802 {
1803 	EVP_MD_CTX ctx;		/* message digest context */
1804 	struct cert_info *cp;	/* certificate info/value */
1805 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
1806 	u_int32	*ptr;
1807 	u_int	len;
1808 	leap_result_t leap_data;
1809 
1810 	hostval.tstamp = htonl(crypto_time());
1811 	if (hostval.tstamp == 0)
1812 		return;
1813 
1814 	/*
1815 	 * Sign public key and timestamps. The filestamp is derived from
1816 	 * the host key file extension from wherever the file was
1817 	 * generated.
1818 	 */
1819 	if (pubkey.vallen != 0) {
1820 		pubkey.tstamp = hostval.tstamp;
1821 		pubkey.siglen = 0;
1822 		if (pubkey.sig == NULL)
1823 			pubkey.sig = emalloc(sign_siglen);
1824 		EVP_SignInit(&ctx, sign_digest);
1825 		EVP_SignUpdate(&ctx, (u_char *)&pubkey, 12);
1826 		EVP_SignUpdate(&ctx, pubkey.ptr, ntohl(pubkey.vallen));
1827 		if (EVP_SignFinal(&ctx, pubkey.sig, &len, sign_pkey)) {
1828 			NTP_INSIST(len <= sign_siglen);
1829 			pubkey.siglen = htonl(len);
1830 		}
1831 	}
1832 
1833 	/*
1834 	 * Sign certificates and timestamps. The filestamp is derived
1835 	 * from the certificate file extension from wherever the file
1836 	 * was generated. Note we do not throw expired certificates
1837 	 * away; they may have signed younger ones.
1838 	 */
1839 	for (cp = cinfo; cp != NULL; cp = cp->link) {
1840 		cp->cert.tstamp = hostval.tstamp;
1841 		cp->cert.siglen = 0;
1842 		if (cp->cert.sig == NULL)
1843 			cp->cert.sig = emalloc(sign_siglen);
1844 		EVP_SignInit(&ctx, sign_digest);
1845 		EVP_SignUpdate(&ctx, (u_char *)&cp->cert, 12);
1846 		EVP_SignUpdate(&ctx, cp->cert.ptr,
1847 		    ntohl(cp->cert.vallen));
1848 		if (EVP_SignFinal(&ctx, cp->cert.sig, &len, sign_pkey)) {
1849 			NTP_INSIST(len <= sign_siglen);
1850 			cp->cert.siglen = htonl(len);
1851 		}
1852 	}
1853 
1854 	/*
1855 	 * Sign leapseconds values and timestamps. Note it is not an
1856 	 * error to return null values.
1857 	 */
1858 	tai_leap.tstamp = hostval.tstamp;
1859 	tai_leap.fstamp = hostval.fstamp;
1860 
1861 	/* Get the leap second era. We might need a full lookup early
1862 	 * after start, when the cache is not yet loaded.
1863 	 */
1864 	leapsec_frame(&leap_data);
1865 	if ( ! memcmp(&leap_data.ebase, &leap_data.ttime, sizeof(vint64))) {
1866 		time_t   now    = time(NULL);
1867 		uint32_t nowntp = (uint32_t)now + JAN_1970;
1868 		leapsec_query(&leap_data, nowntp, &now);
1869 	}
1870 
1871 	/* Create the data block. The protocol does not work without. */
1872 	len = 3 * sizeof(u_int32);
1873 	if (tai_leap.ptr == NULL || ntohl(tai_leap.vallen) != len) {
1874 		free(tai_leap.ptr);
1875 		tai_leap.ptr = emalloc(len);
1876 		tai_leap.vallen = htonl(len);
1877 	}
1878 	ptr = (u_int32 *)tai_leap.ptr;
1879 	if (leap_data.tai_offs > 10) {
1880 		/* create a TAI / leap era block. The end time is a
1881 		 * fake -- maybe we can do better.
1882 		 */
1883 		ptr[0] = htonl(leap_data.tai_offs);
1884 		ptr[1] = htonl(leap_data.ebase.d_s.lo);
1885 		if (leap_data.ttime.d_s.hi >= 0)
1886 			ptr[2] = htonl(leap_data.ttime.D_s.lo +  7*86400);
1887 		else
1888 			ptr[2] = htonl(leap_data.ebase.D_s.lo + 25*86400);
1889 	} else {
1890 		/* no leap era available */
1891 		memset(ptr, 0, len);
1892 	}
1893 	if (tai_leap.sig == NULL)
1894 		tai_leap.sig = emalloc(sign_siglen);
1895 	EVP_SignInit(&ctx, sign_digest);
1896 	EVP_SignUpdate(&ctx, (u_char *)&tai_leap, 12);
1897 	EVP_SignUpdate(&ctx, tai_leap.ptr, len);
1898 	if (EVP_SignFinal(&ctx, tai_leap.sig, &len, sign_pkey)) {
1899 		NTP_INSIST(len <= sign_siglen);
1900 		tai_leap.siglen = htonl(len);
1901 	}
1902 	crypto_flags |= CRYPTO_FLAG_TAI;
1903 
1904 	snprintf(statstr, sizeof(statstr), "signature update ts %u",
1905 	    ntohl(hostval.tstamp));
1906 	record_crypto_stats(NULL, statstr);
1907 	DPRINTF(1, ("crypto_update: %s\n", statstr));
1908 }
1909 
1910 /*
1911  * crypto_update_taichange - eventually trigger crypto_update
1912  *
1913  * This is called when a change in 'sys_tai' is detected. This will
1914  * happen shortly after a leap second is detected, but unhappily also
1915  * early after system start; also, the crypto stuff might be unused and
1916  * an unguarded call to crypto_update() causes a crash.
1917  *
1918  * This function makes sure that there already *is* a valid crypto block
1919  * for the use with autokey, and only calls 'crypto_update()' if it can
1920  * succeed.
1921  *
1922  * Returns void (no errors)
1923  */
1924 void
1925 crypto_update_taichange(void)
1926 {
1927 	static const u_int len = 3 * sizeof(u_int32);
1928 
1929 	/* check if the signing digest algo is available */
1930 	if (sign_digest == NULL || sign_pkey == NULL)
1931 		return;
1932 
1933 	/* check size of TAI extension block */
1934 	if (tai_leap.ptr == NULL || ntohl(tai_leap.vallen) != len)
1935 		return;
1936 
1937 	/* crypto_update should at least not crash here! */
1938 	crypto_update();
1939 }
1940 
1941 /*
1942  * value_free - free value structure components.
1943  *
1944  * Returns void (no errors)
1945  */
1946 void
1947 value_free(
1948 	struct value *vp	/* value structure */
1949 	)
1950 {
1951 	if (vp->ptr != NULL)
1952 		free(vp->ptr);
1953 	if (vp->sig != NULL)
1954 		free(vp->sig);
1955 	memset(vp, 0, sizeof(struct value));
1956 }
1957 
1958 
1959 /*
1960  * crypto_time - returns current NTP time.
1961  *
1962  * Returns NTP seconds if in synch, 0 otherwise
1963  */
1964 tstamp_t
1965 crypto_time()
1966 {
1967 	l_fp	tstamp;		/* NTP time */
1968 
1969 	L_CLR(&tstamp);
1970 	if (sys_leap != LEAP_NOTINSYNC)
1971 		get_systime(&tstamp);
1972 	return (tstamp.l_ui);
1973 }
1974 
1975 
1976 /*
1977  * asn_to_calendar - convert ASN1_TIME time structure to struct calendar.
1978  *
1979  */
1980 static
1981 void
1982 asn_to_calendar	(
1983 	ASN1_TIME *asn1time,	/* pointer to ASN1_TIME structure */
1984 	struct calendar *pjd	/* pointer to result */
1985 	)
1986 {
1987 	size_t	len;		/* length of ASN1_TIME string */
1988 	char	v[24];		/* writable copy of ASN1_TIME string */
1989 	unsigned long	temp;	/* result from strtoul */
1990 
1991 	/*
1992 	 * Extract time string YYMMDDHHMMSSZ from ASN1 time structure.
1993 	 * Or YYYYMMDDHHMMSSZ.
1994 	 * Note that the YY, MM, DD fields start with one, the HH, MM,
1995 	 * SS fields start with zero and the Z character is ignored.
1996 	 * Also note that two-digit years less than 50 map to years greater than
1997 	 * 100. Dontcha love ASN.1? Better than MIL-188.
1998 	 */
1999 	len = asn1time->length;
2000 	NTP_REQUIRE(len < sizeof(v));
2001 	(void)strncpy(v, (char *)(asn1time->data), len);
2002 	NTP_REQUIRE(len >= 13);
2003 	temp = strtoul(v+len-3, NULL, 10);
2004 	pjd->second = temp;
2005 	v[len-3] = '\0';
2006 
2007 	temp = strtoul(v+len-5, NULL, 10);
2008 	pjd->minute = temp;
2009 	v[len-5] = '\0';
2010 
2011 	temp = strtoul(v+len-7, NULL, 10);
2012 	pjd->hour = temp;
2013 	v[len-7] = '\0';
2014 
2015 	temp = strtoul(v+len-9, NULL, 10);
2016 	pjd->monthday = temp;
2017 	v[len-9] = '\0';
2018 
2019 	temp = strtoul(v+len-11, NULL, 10);
2020 	pjd->month = temp;
2021 	v[len-11] = '\0';
2022 
2023 	temp = strtoul(v, NULL, 10);
2024 	/* handle two-digit years */
2025 	if (temp < 50UL)
2026 	    temp += 100UL;
2027 	if (temp < 150UL)
2028 	    temp += 1900UL;
2029 	pjd->year = temp;
2030 
2031 	pjd->yearday = pjd->weekday = 0;
2032 	return;
2033 }
2034 
2035 
2036 /*
2037  * bigdig() - compute a BIGNUM MD5 hash of a BIGNUM number.
2038  *
2039  * Returns void (no errors)
2040  */
2041 static void
2042 bighash(
2043 	BIGNUM	*bn,		/* BIGNUM * from */
2044 	BIGNUM	*bk		/* BIGNUM * to */
2045 	)
2046 {
2047 	EVP_MD_CTX ctx;		/* message digest context */
2048 	u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */
2049 	u_char	*ptr;		/* a BIGNUM as binary string */
2050 	u_int	len;
2051 
2052 	len = BN_num_bytes(bn);
2053 	ptr = emalloc(len);
2054 	BN_bn2bin(bn, ptr);
2055 	EVP_DigestInit(&ctx, EVP_md5());
2056 	EVP_DigestUpdate(&ctx, ptr, len);
2057 	EVP_DigestFinal(&ctx, dgst, &len);
2058 	BN_bin2bn(dgst, len, bk);
2059 	free(ptr);
2060 }
2061 
2062 
2063 /*
2064  ***********************************************************************
2065  *								       *
2066  * The following routines implement the Schnorr (IFF) identity scheme  *
2067  *								       *
2068  ***********************************************************************
2069  *
2070  * The Schnorr (IFF) identity scheme is intended for use when
2071  * certificates are generated by some other trusted certificate
2072  * authority and the certificate cannot be used to convey public
2073  * parameters. There are two kinds of files: encrypted server files that
2074  * contain private and public values and nonencrypted client files that
2075  * contain only public values. New generations of server files must be
2076  * securely transmitted to all servers of the group; client files can be
2077  * distributed by any means. The scheme is self contained and
2078  * independent of new generations of host keys, sign keys and
2079  * certificates.
2080  *
2081  * The IFF values hide in a DSA cuckoo structure which uses the same
2082  * parameters. The values are used by an identity scheme based on DSA
2083  * cryptography and described in Stimson p. 285. The p is a 512-bit
2084  * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1
2085  * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a
2086  * private random group key b (0 < b < q) and public key v = g^b, then
2087  * sends (p, q, g, b) to the servers and (p, q, g, v) to the clients.
2088  * Alice challenges Bob to confirm identity using the protocol described
2089  * below.
2090  *
2091  * How it works
2092  *
2093  * The scheme goes like this. Both Alice and Bob have the public primes
2094  * p, q and generator g. The TA gives private key b to Bob and public
2095  * key v to Alice.
2096  *
2097  * Alice rolls new random challenge r (o < r < q) and sends to Bob in
2098  * the IFF request message. Bob rolls new random k (0 < k < q), then
2099  * computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x))
2100  * to Alice in the response message. Besides making the response
2101  * shorter, the hash makes it effectivey impossible for an intruder to
2102  * solve for b by observing a number of these messages.
2103  *
2104  * Alice receives the response and computes g^y v^r mod p. After a bit
2105  * of algebra, this simplifies to g^k. If the hash of this result
2106  * matches hash(x), Alice knows that Bob has the group key b. The signed
2107  * response binds this knowledge to Bob's private key and the public key
2108  * previously received in his certificate.
2109  *
2110  * crypto_alice - construct Alice's challenge in IFF scheme
2111  *
2112  * Returns
2113  * XEVNT_OK	success
2114  * XEVNT_ID	bad or missing group key
2115  * XEVNT_PUB	bad or missing public key
2116  */
2117 static int
2118 crypto_alice(
2119 	struct peer *peer,	/* peer pointer */
2120 	struct value *vp	/* value pointer */
2121 	)
2122 {
2123 	DSA	*dsa;		/* IFF parameters */
2124 	BN_CTX	*bctx;		/* BIGNUM context */
2125 	EVP_MD_CTX ctx;		/* signature context */
2126 	tstamp_t tstamp;
2127 	u_int	len;
2128 
2129 	/*
2130 	 * The identity parameters must have correct format and content.
2131 	 */
2132 	if (peer->ident_pkey == NULL) {
2133 		msyslog(LOG_NOTICE, "crypto_alice: scheme unavailable");
2134 		return (XEVNT_ID);
2135 	}
2136 
2137 	if ((dsa = peer->ident_pkey->pkey->pkey.dsa) == NULL) {
2138 		msyslog(LOG_NOTICE, "crypto_alice: defective key");
2139 		return (XEVNT_PUB);
2140 	}
2141 
2142 	/*
2143 	 * Roll new random r (0 < r < q).
2144 	 */
2145 	if (peer->iffval != NULL)
2146 		BN_free(peer->iffval);
2147 	peer->iffval = BN_new();
2148 	len = BN_num_bytes(dsa->q);
2149 	BN_rand(peer->iffval, len * 8, -1, 1);	/* r mod q*/
2150 	bctx = BN_CTX_new();
2151 	BN_mod(peer->iffval, peer->iffval, dsa->q, bctx);
2152 	BN_CTX_free(bctx);
2153 
2154 	/*
2155 	 * Sign and send to Bob. The filestamp is from the local file.
2156 	 */
2157 	memset(vp, 0, sizeof(struct value));
2158 	tstamp = crypto_time();
2159 	vp->tstamp = htonl(tstamp);
2160 	vp->fstamp = htonl(peer->ident_pkey->fstamp);
2161 	vp->vallen = htonl(len);
2162 	vp->ptr = emalloc(len);
2163 	BN_bn2bin(peer->iffval, vp->ptr);
2164 	if (tstamp == 0)
2165 		return (XEVNT_OK);
2166 
2167 	vp->sig = emalloc(sign_siglen);
2168 	EVP_SignInit(&ctx, sign_digest);
2169 	EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
2170 	EVP_SignUpdate(&ctx, vp->ptr, len);
2171 	if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) {
2172 		NTP_INSIST(len <= sign_siglen);
2173 		vp->siglen = htonl(len);
2174 	}
2175 	return (XEVNT_OK);
2176 }
2177 
2178 
2179 /*
2180  * crypto_bob - construct Bob's response to Alice's challenge
2181  *
2182  * Returns
2183  * XEVNT_OK	success
2184  * XEVNT_ERR	protocol error
2185  * XEVNT_ID	bad or missing group key
2186  */
2187 static int
2188 crypto_bob(
2189 	struct exten *ep,	/* extension pointer */
2190 	struct value *vp	/* value pointer */
2191 	)
2192 {
2193 	DSA	*dsa;		/* IFF parameters */
2194 	DSA_SIG	*sdsa;		/* DSA signature context fake */
2195 	BN_CTX	*bctx;		/* BIGNUM context */
2196 	EVP_MD_CTX ctx;		/* signature context */
2197 	tstamp_t tstamp;	/* NTP timestamp */
2198 	BIGNUM	*bn, *bk, *r;
2199 	u_char	*ptr;
2200 	u_int	len;		/* extension field length */
2201 	u_int	vallen = 0;	/* value length */
2202 
2203 	/*
2204 	 * If the IFF parameters are not valid, something awful
2205 	 * happened or we are being tormented.
2206 	 */
2207 	if (iffkey_info == NULL) {
2208 		msyslog(LOG_NOTICE, "crypto_bob: scheme unavailable");
2209 		return (XEVNT_ID);
2210 	}
2211 	dsa = iffkey_info->pkey->pkey.dsa;
2212 
2213 	/*
2214 	 * Extract r from the challenge.
2215 	 */
2216 	vallen = ntohl(ep->vallen);
2217 	len = ntohl(ep->opcode) & 0x0000ffff;
2218 	if (vallen == 0 || len < VALUE_LEN || len - VALUE_LEN < vallen)
2219 		return XEVNT_LEN;
2220 	if ((r = BN_bin2bn((u_char *)ep->pkt, vallen, NULL)) == NULL) {
2221 		msyslog(LOG_ERR, "crypto_bob: %s",
2222 		    ERR_error_string(ERR_get_error(), NULL));
2223 		return (XEVNT_ERR);
2224 	}
2225 
2226 	/*
2227 	 * Bob rolls random k (0 < k < q), computes y = k + b r mod q
2228 	 * and x = g^k mod p, then sends (y, hash(x)) to Alice.
2229 	 */
2230 	bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new();
2231 	sdsa = DSA_SIG_new();
2232 	BN_rand(bk, vallen * 8, -1, 1);		/* k */
2233 	BN_mod_mul(bn, dsa->priv_key, r, dsa->q, bctx); /* b r mod q */
2234 	BN_add(bn, bn, bk);
2235 	BN_mod(bn, bn, dsa->q, bctx);		/* k + b r mod q */
2236 	sdsa->r = BN_dup(bn);
2237 	BN_mod_exp(bk, dsa->g, bk, dsa->p, bctx); /* g^k mod p */
2238 	bighash(bk, bk);
2239 	sdsa->s = BN_dup(bk);
2240 	BN_CTX_free(bctx);
2241 	BN_free(r); BN_free(bn); BN_free(bk);
2242 #ifdef DEBUG
2243 	if (debug > 1)
2244 		DSA_print_fp(stdout, dsa, 0);
2245 #endif
2246 
2247 	/*
2248 	 * Encode the values in ASN.1 and sign. The filestamp is from
2249 	 * the local file.
2250 	 */
2251 	vallen = i2d_DSA_SIG(sdsa, NULL);
2252 	if (vallen == 0) {
2253 		msyslog(LOG_ERR, "crypto_bob: %s",
2254 		    ERR_error_string(ERR_get_error(), NULL));
2255 		DSA_SIG_free(sdsa);
2256 		return (XEVNT_ERR);
2257 	}
2258 	if (vallen > MAX_VALLEN) {
2259 		msyslog(LOG_ERR, "crypto_bob: signature is too big: %d",
2260 		    vallen);
2261 		DSA_SIG_free(sdsa);
2262 		return (XEVNT_LEN);
2263 	}
2264 	memset(vp, 0, sizeof(struct value));
2265 	tstamp = crypto_time();
2266 	vp->tstamp = htonl(tstamp);
2267 	vp->fstamp = htonl(iffkey_info->fstamp);
2268 	vp->vallen = htonl(vallen);
2269 	ptr = emalloc(vallen);
2270 	vp->ptr = ptr;
2271 	i2d_DSA_SIG(sdsa, &ptr);
2272 	DSA_SIG_free(sdsa);
2273 	if (tstamp == 0)
2274 		return (XEVNT_OK);
2275 
2276 	/* XXX: more validation to make sure the sign fits... */
2277 	vp->sig = emalloc(sign_siglen);
2278 	EVP_SignInit(&ctx, sign_digest);
2279 	EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
2280 	EVP_SignUpdate(&ctx, vp->ptr, vallen);
2281 	if (EVP_SignFinal(&ctx, vp->sig, &vallen, sign_pkey)) {
2282 		NTP_INSIST(vallen <= sign_siglen);
2283 		vp->siglen = htonl(vallen);
2284 	}
2285 	return (XEVNT_OK);
2286 }
2287 
2288 
2289 /*
2290  * crypto_iff - verify Bob's response to Alice's challenge
2291  *
2292  * Returns
2293  * XEVNT_OK	success
2294  * XEVNT_FSP	bad filestamp
2295  * XEVNT_ID	bad or missing group key
2296  * XEVNT_PUB	bad or missing public key
2297  */
2298 int
2299 crypto_iff(
2300 	struct exten *ep,	/* extension pointer */
2301 	struct peer *peer	/* peer structure pointer */
2302 	)
2303 {
2304 	DSA	*dsa;		/* IFF parameters */
2305 	BN_CTX	*bctx;		/* BIGNUM context */
2306 	DSA_SIG	*sdsa;		/* DSA parameters */
2307 	BIGNUM	*bn, *bk;
2308 	u_int	len;
2309 	const u_char *ptr;
2310 	int	temp;
2311 
2312 	/*
2313 	 * If the IFF parameters are not valid or no challenge was sent,
2314 	 * something awful happened or we are being tormented.
2315 	 */
2316 	if (peer->ident_pkey == NULL) {
2317 		msyslog(LOG_NOTICE, "crypto_iff: scheme unavailable");
2318 		return (XEVNT_ID);
2319 	}
2320 	if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) {
2321 		msyslog(LOG_NOTICE, "crypto_iff: invalid filestamp %u",
2322 		    ntohl(ep->fstamp));
2323 		return (XEVNT_FSP);
2324 	}
2325 	if ((dsa = peer->ident_pkey->pkey->pkey.dsa) == NULL) {
2326 		msyslog(LOG_NOTICE, "crypto_iff: defective key");
2327 		return (XEVNT_PUB);
2328 	}
2329 	if (peer->iffval == NULL) {
2330 		msyslog(LOG_NOTICE, "crypto_iff: missing challenge");
2331 		return (XEVNT_ID);
2332 	}
2333 
2334 	/*
2335 	 * Extract the k + b r and g^k values from the response.
2336 	 */
2337 	bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new();
2338 	len = ntohl(ep->vallen);
2339 	ptr = (u_char *)ep->pkt;
2340 	if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) {
2341 		BN_free(bn); BN_free(bk); BN_CTX_free(bctx);
2342 		msyslog(LOG_ERR, "crypto_iff: %s",
2343 		    ERR_error_string(ERR_get_error(), NULL));
2344 		return (XEVNT_ERR);
2345 	}
2346 
2347 	/*
2348 	 * Compute g^(k + b r) g^(q - b)r mod p.
2349 	 */
2350 	BN_mod_exp(bn, dsa->pub_key, peer->iffval, dsa->p, bctx);
2351 	BN_mod_exp(bk, dsa->g, sdsa->r, dsa->p, bctx);
2352 	BN_mod_mul(bn, bn, bk, dsa->p, bctx);
2353 
2354 	/*
2355 	 * Verify the hash of the result matches hash(x).
2356 	 */
2357 	bighash(bn, bn);
2358 	temp = BN_cmp(bn, sdsa->s);
2359 	BN_free(bn); BN_free(bk); BN_CTX_free(bctx);
2360 	BN_free(peer->iffval);
2361 	peer->iffval = NULL;
2362 	DSA_SIG_free(sdsa);
2363 	if (temp == 0)
2364 		return (XEVNT_OK);
2365 
2366 	msyslog(LOG_NOTICE, "crypto_iff: identity not verified");
2367 	return (XEVNT_ID);
2368 }
2369 
2370 
2371 /*
2372  ***********************************************************************
2373  *								       *
2374  * The following routines implement the Guillou-Quisquater (GQ)        *
2375  * identity scheme                                                     *
2376  *								       *
2377  ***********************************************************************
2378  *
2379  * The Guillou-Quisquater (GQ) identity scheme is intended for use when
2380  * the certificate can be used to convey public parameters. The scheme
2381  * uses a X509v3 certificate extension field do convey the public key of
2382  * a private key known only to servers. There are two kinds of files:
2383  * encrypted server files that contain private and public values and
2384  * nonencrypted client files that contain only public values. New
2385  * generations of server files must be securely transmitted to all
2386  * servers of the group; client files can be distributed by any means.
2387  * The scheme is self contained and independent of new generations of
2388  * host keys and sign keys. The scheme is self contained and independent
2389  * of new generations of host keys and sign keys.
2390  *
2391  * The GQ parameters hide in a RSA cuckoo structure which uses the same
2392  * parameters. The values are used by an identity scheme based on RSA
2393  * cryptography and described in Stimson p. 300 (with errors). The 512-
2394  * bit public modulus is n = p q, where p and q are secret large primes.
2395  * The TA rolls private random group key b as RSA exponent. These values
2396  * are known to all group members.
2397  *
2398  * When rolling new certificates, a server recomputes the private and
2399  * public keys. The private key u is a random roll, while the public key
2400  * is the inverse obscured by the group key v = (u^-1)^b. These values
2401  * replace the private and public keys normally generated by the RSA
2402  * scheme. Alice challenges Bob to confirm identity using the protocol
2403  * described below.
2404  *
2405  * How it works
2406  *
2407  * The scheme goes like this. Both Alice and Bob have the same modulus n
2408  * and some random b as the group key. These values are computed and
2409  * distributed in advance via secret means, although only the group key
2410  * b is truly secret. Each has a private random private key u and public
2411  * key (u^-1)^b, although not necessarily the same ones. Bob and Alice
2412  * can regenerate the key pair from time to time without affecting
2413  * operations. The public key is conveyed on the certificate in an
2414  * extension field; the private key is never revealed.
2415  *
2416  * Alice rolls new random challenge r and sends to Bob in the GQ
2417  * request message. Bob rolls new random k, then computes y = k u^r mod
2418  * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response
2419  * message. Besides making the response shorter, the hash makes it
2420  * effectivey impossible for an intruder to solve for b by observing
2421  * a number of these messages.
2422  *
2423  * Alice receives the response and computes y^b v^r mod n. After a bit
2424  * of algebra, this simplifies to k^b. If the hash of this result
2425  * matches hash(x), Alice knows that Bob has the group key b. The signed
2426  * response binds this knowledge to Bob's private key and the public key
2427  * previously received in his certificate.
2428  *
2429  * crypto_alice2 - construct Alice's challenge in GQ scheme
2430  *
2431  * Returns
2432  * XEVNT_OK	success
2433  * XEVNT_ID	bad or missing group key
2434  * XEVNT_PUB	bad or missing public key
2435  */
2436 static int
2437 crypto_alice2(
2438 	struct peer *peer,	/* peer pointer */
2439 	struct value *vp	/* value pointer */
2440 	)
2441 {
2442 	RSA	*rsa;		/* GQ parameters */
2443 	BN_CTX	*bctx;		/* BIGNUM context */
2444 	EVP_MD_CTX ctx;		/* signature context */
2445 	tstamp_t tstamp;
2446 	u_int	len;
2447 
2448 	/*
2449 	 * The identity parameters must have correct format and content.
2450 	 */
2451 	if (peer->ident_pkey == NULL)
2452 		return (XEVNT_ID);
2453 
2454 	if ((rsa = peer->ident_pkey->pkey->pkey.rsa) == NULL) {
2455 		msyslog(LOG_NOTICE, "crypto_alice2: defective key");
2456 		return (XEVNT_PUB);
2457 	}
2458 
2459 	/*
2460 	 * Roll new random r (0 < r < n).
2461 	 */
2462 	if (peer->iffval != NULL)
2463 		BN_free(peer->iffval);
2464 	peer->iffval = BN_new();
2465 	len = BN_num_bytes(rsa->n);
2466 	BN_rand(peer->iffval, len * 8, -1, 1);	/* r mod n */
2467 	bctx = BN_CTX_new();
2468 	BN_mod(peer->iffval, peer->iffval, rsa->n, bctx);
2469 	BN_CTX_free(bctx);
2470 
2471 	/*
2472 	 * Sign and send to Bob. The filestamp is from the local file.
2473 	 */
2474 	memset(vp, 0, sizeof(struct value));
2475 	tstamp = crypto_time();
2476 	vp->tstamp = htonl(tstamp);
2477 	vp->fstamp = htonl(peer->ident_pkey->fstamp);
2478 	vp->vallen = htonl(len);
2479 	vp->ptr = emalloc(len);
2480 	BN_bn2bin(peer->iffval, vp->ptr);
2481 	if (tstamp == 0)
2482 		return (XEVNT_OK);
2483 
2484 	vp->sig = emalloc(sign_siglen);
2485 	EVP_SignInit(&ctx, sign_digest);
2486 	EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
2487 	EVP_SignUpdate(&ctx, vp->ptr, len);
2488 	if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) {
2489 		NTP_INSIST(len <= sign_siglen);
2490 		vp->siglen = htonl(len);
2491 	}
2492 	return (XEVNT_OK);
2493 }
2494 
2495 
2496 /*
2497  * crypto_bob2 - construct Bob's response to Alice's challenge
2498  *
2499  * Returns
2500  * XEVNT_OK	success
2501  * XEVNT_ERR	protocol error
2502  * XEVNT_ID	bad or missing group key
2503  */
2504 static int
2505 crypto_bob2(
2506 	struct exten *ep,	/* extension pointer */
2507 	struct value *vp	/* value pointer */
2508 	)
2509 {
2510 	RSA	*rsa;		/* GQ parameters */
2511 	DSA_SIG	*sdsa;		/* DSA parameters */
2512 	BN_CTX	*bctx;		/* BIGNUM context */
2513 	EVP_MD_CTX ctx;		/* signature context */
2514 	tstamp_t tstamp;	/* NTP timestamp */
2515 	BIGNUM	*r, *k, *g, *y;
2516 	u_char	*ptr;
2517 	u_int	len;
2518 	int	s_len;
2519 
2520 	/*
2521 	 * If the GQ parameters are not valid, something awful
2522 	 * happened or we are being tormented.
2523 	 */
2524 	if (gqkey_info == NULL) {
2525 		msyslog(LOG_NOTICE, "crypto_bob2: scheme unavailable");
2526 		return (XEVNT_ID);
2527 	}
2528 	rsa = gqkey_info->pkey->pkey.rsa;
2529 
2530 	/*
2531 	 * Extract r from the challenge.
2532 	 */
2533 	len = ntohl(ep->vallen);
2534 	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2535 		msyslog(LOG_ERR, "crypto_bob2: %s",
2536 		    ERR_error_string(ERR_get_error(), NULL));
2537 		return (XEVNT_ERR);
2538 	}
2539 
2540 	/*
2541 	 * Bob rolls random k (0 < k < n), computes y = k u^r mod n and
2542 	 * x = k^b mod n, then sends (y, hash(x)) to Alice.
2543 	 */
2544 	bctx = BN_CTX_new(); k = BN_new(); g = BN_new(); y = BN_new();
2545 	sdsa = DSA_SIG_new();
2546 	BN_rand(k, len * 8, -1, 1);		/* k */
2547 	BN_mod(k, k, rsa->n, bctx);
2548 	BN_mod_exp(y, rsa->p, r, rsa->n, bctx); /* u^r mod n */
2549 	BN_mod_mul(y, k, y, rsa->n, bctx);	/* k u^r mod n */
2550 	sdsa->r = BN_dup(y);
2551 	BN_mod_exp(g, k, rsa->e, rsa->n, bctx); /* k^b mod n */
2552 	bighash(g, g);
2553 	sdsa->s = BN_dup(g);
2554 	BN_CTX_free(bctx);
2555 	BN_free(r); BN_free(k); BN_free(g); BN_free(y);
2556 #ifdef DEBUG
2557 	if (debug > 1)
2558 		RSA_print_fp(stdout, rsa, 0);
2559 #endif
2560 
2561 	/*
2562 	 * Encode the values in ASN.1 and sign. The filestamp is from
2563 	 * the local file.
2564 	 */
2565 	len = s_len = i2d_DSA_SIG(sdsa, NULL);
2566 	if (s_len <= 0) {
2567 		msyslog(LOG_ERR, "crypto_bob2: %s",
2568 		    ERR_error_string(ERR_get_error(), NULL));
2569 		DSA_SIG_free(sdsa);
2570 		return (XEVNT_ERR);
2571 	}
2572 	memset(vp, 0, sizeof(struct value));
2573 	tstamp = crypto_time();
2574 	vp->tstamp = htonl(tstamp);
2575 	vp->fstamp = htonl(gqkey_info->fstamp);
2576 	vp->vallen = htonl(len);
2577 	ptr = emalloc(len);
2578 	vp->ptr = ptr;
2579 	i2d_DSA_SIG(sdsa, &ptr);
2580 	DSA_SIG_free(sdsa);
2581 	if (tstamp == 0)
2582 		return (XEVNT_OK);
2583 
2584 	vp->sig = emalloc(sign_siglen);
2585 	EVP_SignInit(&ctx, sign_digest);
2586 	EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
2587 	EVP_SignUpdate(&ctx, vp->ptr, len);
2588 	if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) {
2589 		NTP_INSIST(len <= sign_siglen);
2590 		vp->siglen = htonl(len);
2591 	}
2592 	return (XEVNT_OK);
2593 }
2594 
2595 
2596 /*
2597  * crypto_gq - verify Bob's response to Alice's challenge
2598  *
2599  * Returns
2600  * XEVNT_OK	success
2601  * XEVNT_ERR	protocol error
2602  * XEVNT_FSP	bad filestamp
2603  * XEVNT_ID	bad or missing group keys
2604  * XEVNT_PUB	bad or missing public key
2605  */
2606 int
2607 crypto_gq(
2608 	struct exten *ep,	/* extension pointer */
2609 	struct peer *peer	/* peer structure pointer */
2610 	)
2611 {
2612 	RSA	*rsa;		/* GQ parameters */
2613 	BN_CTX	*bctx;		/* BIGNUM context */
2614 	DSA_SIG	*sdsa;		/* RSA signature context fake */
2615 	BIGNUM	*y, *v;
2616 	const u_char *ptr;
2617 	long	len;
2618 	u_int	temp;
2619 
2620 	/*
2621 	 * If the GQ parameters are not valid or no challenge was sent,
2622 	 * something awful happened or we are being tormented. Note that
2623 	 * the filestamp on the local key file can be greater than on
2624 	 * the remote parameter file if the keys have been refreshed.
2625 	 */
2626 	if (peer->ident_pkey == NULL) {
2627 		msyslog(LOG_NOTICE, "crypto_gq: scheme unavailable");
2628 		return (XEVNT_ID);
2629 	}
2630 	if (ntohl(ep->fstamp) < peer->ident_pkey->fstamp) {
2631 		msyslog(LOG_NOTICE, "crypto_gq: invalid filestamp %u",
2632 		    ntohl(ep->fstamp));
2633 		return (XEVNT_FSP);
2634 	}
2635 	if ((rsa = peer->ident_pkey->pkey->pkey.rsa) == NULL) {
2636 		msyslog(LOG_NOTICE, "crypto_gq: defective key");
2637 		return (XEVNT_PUB);
2638 	}
2639 	if (peer->iffval == NULL) {
2640 		msyslog(LOG_NOTICE, "crypto_gq: missing challenge");
2641 		return (XEVNT_ID);
2642 	}
2643 
2644 	/*
2645 	 * Extract the y = k u^r and hash(x = k^b) values from the
2646 	 * response.
2647 	 */
2648 	bctx = BN_CTX_new(); y = BN_new(); v = BN_new();
2649 	len = ntohl(ep->vallen);
2650 	ptr = (u_char *)ep->pkt;
2651 	if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) {
2652 		BN_CTX_free(bctx); BN_free(y); BN_free(v);
2653 		msyslog(LOG_ERR, "crypto_gq: %s",
2654 		    ERR_error_string(ERR_get_error(), NULL));
2655 		return (XEVNT_ERR);
2656 	}
2657 
2658 	/*
2659 	 * Compute v^r y^b mod n.
2660 	 */
2661 	if (peer->grpkey == NULL) {
2662 		msyslog(LOG_NOTICE, "crypto_gq: missing group key");
2663 		return (XEVNT_ID);
2664 	}
2665 	BN_mod_exp(v, peer->grpkey, peer->iffval, rsa->n, bctx);
2666 						/* v^r mod n */
2667 	BN_mod_exp(y, sdsa->r, rsa->e, rsa->n, bctx); /* y^b mod n */
2668 	BN_mod_mul(y, v, y, rsa->n, bctx);	/* v^r y^b mod n */
2669 
2670 	/*
2671 	 * Verify the hash of the result matches hash(x).
2672 	 */
2673 	bighash(y, y);
2674 	temp = BN_cmp(y, sdsa->s);
2675 	BN_CTX_free(bctx); BN_free(y); BN_free(v);
2676 	BN_free(peer->iffval);
2677 	peer->iffval = NULL;
2678 	DSA_SIG_free(sdsa);
2679 	if (temp == 0)
2680 		return (XEVNT_OK);
2681 
2682 	msyslog(LOG_NOTICE, "crypto_gq: identity not verified");
2683 	return (XEVNT_ID);
2684 }
2685 
2686 
2687 /*
2688  ***********************************************************************
2689  *								       *
2690  * The following routines implement the Mu-Varadharajan (MV) identity  *
2691  * scheme                                                              *
2692  *								       *
2693  ***********************************************************************
2694  *
2695  * The Mu-Varadharajan (MV) cryptosystem was originally intended when
2696  * servers broadcast messages to clients, but clients never send
2697  * messages to servers. There is one encryption key for the server and a
2698  * separate decryption key for each client. It operated something like a
2699  * pay-per-view satellite broadcasting system where the session key is
2700  * encrypted by the broadcaster and the decryption keys are held in a
2701  * tamperproof set-top box.
2702  *
2703  * The MV parameters and private encryption key hide in a DSA cuckoo
2704  * structure which uses the same parameters, but generated in a
2705  * different way. The values are used in an encryption scheme similar to
2706  * El Gamal cryptography and a polynomial formed from the expansion of
2707  * product terms (x - x[j]), as described in Mu, Y., and V.
2708  * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001,
2709  * 223-231. The paper has significant errors and serious omissions.
2710  *
2711  * Let q be the product of n distinct primes s1[j] (j = 1...n), where
2712  * each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so
2713  * that q and each s1[j] divide p - 1 and p has M = n * m + 1
2714  * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1)
2715  * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then
2716  * project into Zp* as exponents of g. Sometimes we have to compute an
2717  * inverse b^-1 of random b in Zq, but for that purpose we require
2718  * gcd(b, q) = 1. We expect M to be in the 500-bit range and n
2719  * relatively small, like 30. These are the parameters of the scheme and
2720  * they are expensive to compute.
2721  *
2722  * We set up an instance of the scheme as follows. A set of random
2723  * values x[j] mod q (j = 1...n), are generated as the zeros of a
2724  * polynomial of order n. The product terms (x - x[j]) are expanded to
2725  * form coefficients a[i] mod q (i = 0...n) in powers of x. These are
2726  * used as exponents of the generator g mod p to generate the private
2727  * encryption key A. The pair (gbar, ghat) of public server keys and the
2728  * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used
2729  * to construct the decryption keys. The devil is in the details.
2730  *
2731  * This routine generates a private server encryption file including the
2732  * private encryption key E and partial decryption keys gbar and ghat.
2733  * It then generates public client decryption files including the public
2734  * keys xbar[j] and xhat[j] for each client j. The partial decryption
2735  * files are used to compute the inverse of E. These values are suitably
2736  * blinded so secrets are not revealed.
2737  *
2738  * The distinguishing characteristic of this scheme is the capability to
2739  * revoke keys. Included in the calculation of E, gbar and ghat is the
2740  * product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is
2741  * subsequently removed from the product and E, gbar and ghat
2742  * recomputed, the jth client will no longer be able to compute E^-1 and
2743  * thus unable to decrypt the messageblock.
2744  *
2745  * How it works
2746  *
2747  * The scheme goes like this. Bob has the server values (p, E, q, gbar,
2748  * ghat) and Alice has the client values (p, xbar, xhat).
2749  *
2750  * Alice rolls new random nonce r mod p and sends to Bob in the MV
2751  * request message. Bob rolls random nonce k mod q, encrypts y = r E^k
2752  * mod p and sends (y, gbar^k, ghat^k) to Alice.
2753  *
2754  * Alice receives the response and computes the inverse (E^k)^-1 from
2755  * the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then
2756  * decrypts y and verifies it matches the original r. The signed
2757  * response binds this knowledge to Bob's private key and the public key
2758  * previously received in his certificate.
2759  *
2760  * crypto_alice3 - construct Alice's challenge in MV scheme
2761  *
2762  * Returns
2763  * XEVNT_OK	success
2764  * XEVNT_ID	bad or missing group key
2765  * XEVNT_PUB	bad or missing public key
2766  */
2767 static int
2768 crypto_alice3(
2769 	struct peer *peer,	/* peer pointer */
2770 	struct value *vp	/* value pointer */
2771 	)
2772 {
2773 	DSA	*dsa;		/* MV parameters */
2774 	BN_CTX	*bctx;		/* BIGNUM context */
2775 	EVP_MD_CTX ctx;		/* signature context */
2776 	tstamp_t tstamp;
2777 	u_int	len;
2778 
2779 	/*
2780 	 * The identity parameters must have correct format and content.
2781 	 */
2782 	if (peer->ident_pkey == NULL)
2783 		return (XEVNT_ID);
2784 
2785 	if ((dsa = peer->ident_pkey->pkey->pkey.dsa) == NULL) {
2786 		msyslog(LOG_NOTICE, "crypto_alice3: defective key");
2787 		return (XEVNT_PUB);
2788 	}
2789 
2790 	/*
2791 	 * Roll new random r (0 < r < q).
2792 	 */
2793 	if (peer->iffval != NULL)
2794 		BN_free(peer->iffval);
2795 	peer->iffval = BN_new();
2796 	len = BN_num_bytes(dsa->p);
2797 	BN_rand(peer->iffval, len * 8, -1, 1);	/* r mod p */
2798 	bctx = BN_CTX_new();
2799 	BN_mod(peer->iffval, peer->iffval, dsa->p, bctx);
2800 	BN_CTX_free(bctx);
2801 
2802 	/*
2803 	 * Sign and send to Bob. The filestamp is from the local file.
2804 	 */
2805 	memset(vp, 0, sizeof(struct value));
2806 	tstamp = crypto_time();
2807 	vp->tstamp = htonl(tstamp);
2808 	vp->fstamp = htonl(peer->ident_pkey->fstamp);
2809 	vp->vallen = htonl(len);
2810 	vp->ptr = emalloc(len);
2811 	BN_bn2bin(peer->iffval, vp->ptr);
2812 	if (tstamp == 0)
2813 		return (XEVNT_OK);
2814 
2815 	vp->sig = emalloc(sign_siglen);
2816 	EVP_SignInit(&ctx, sign_digest);
2817 	EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
2818 	EVP_SignUpdate(&ctx, vp->ptr, len);
2819 	if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) {
2820 		NTP_INSIST(len <= sign_siglen);
2821 		vp->siglen = htonl(len);
2822 	}
2823 	return (XEVNT_OK);
2824 }
2825 
2826 
2827 /*
2828  * crypto_bob3 - construct Bob's response to Alice's challenge
2829  *
2830  * Returns
2831  * XEVNT_OK	success
2832  * XEVNT_ERR	protocol error
2833  */
2834 static int
2835 crypto_bob3(
2836 	struct exten *ep,	/* extension pointer */
2837 	struct value *vp	/* value pointer */
2838 	)
2839 {
2840 	DSA	*dsa;		/* MV parameters */
2841 	DSA	*sdsa;		/* DSA signature context fake */
2842 	BN_CTX	*bctx;		/* BIGNUM context */
2843 	EVP_MD_CTX ctx;		/* signature context */
2844 	tstamp_t tstamp;	/* NTP timestamp */
2845 	BIGNUM	*r, *k, *u;
2846 	u_char	*ptr;
2847 	u_int	len;
2848 
2849 	/*
2850 	 * If the MV parameters are not valid, something awful
2851 	 * happened or we are being tormented.
2852 	 */
2853 	if (mvkey_info == NULL) {
2854 		msyslog(LOG_NOTICE, "crypto_bob3: scheme unavailable");
2855 		return (XEVNT_ID);
2856 	}
2857 	dsa = mvkey_info->pkey->pkey.dsa;
2858 
2859 	/*
2860 	 * Extract r from the challenge.
2861 	 */
2862 	len = ntohl(ep->vallen);
2863 	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2864 		msyslog(LOG_ERR, "crypto_bob3: %s",
2865 		    ERR_error_string(ERR_get_error(), NULL));
2866 		return (XEVNT_ERR);
2867 	}
2868 
2869 	/*
2870 	 * Bob rolls random k (0 < k < q), making sure it is not a
2871 	 * factor of q. He then computes y = r A^k and sends (y, gbar^k,
2872 	 * and ghat^k) to Alice.
2873 	 */
2874 	bctx = BN_CTX_new(); k = BN_new(); u = BN_new();
2875 	sdsa = DSA_new();
2876 	sdsa->p = BN_new(); sdsa->q = BN_new(); sdsa->g = BN_new();
2877 	while (1) {
2878 		BN_rand(k, BN_num_bits(dsa->q), 0, 0);
2879 		BN_mod(k, k, dsa->q, bctx);
2880 		BN_gcd(u, k, dsa->q, bctx);
2881 		if (BN_is_one(u))
2882 			break;
2883 	}
2884 	BN_mod_exp(u, dsa->g, k, dsa->p, bctx); /* A^k r */
2885 	BN_mod_mul(sdsa->p, u, r, dsa->p, bctx);
2886 	BN_mod_exp(sdsa->q, dsa->priv_key, k, dsa->p, bctx); /* gbar */
2887 	BN_mod_exp(sdsa->g, dsa->pub_key, k, dsa->p, bctx); /* ghat */
2888 	BN_CTX_free(bctx); BN_free(k); BN_free(r); BN_free(u);
2889 #ifdef DEBUG
2890 	if (debug > 1)
2891 		DSA_print_fp(stdout, sdsa, 0);
2892 #endif
2893 
2894 	/*
2895 	 * Encode the values in ASN.1 and sign. The filestamp is from
2896 	 * the local file.
2897 	 */
2898 	memset(vp, 0, sizeof(struct value));
2899 	tstamp = crypto_time();
2900 	vp->tstamp = htonl(tstamp);
2901 	vp->fstamp = htonl(mvkey_info->fstamp);
2902 	len = i2d_DSAparams(sdsa, NULL);
2903 	if (len == 0) {
2904 		msyslog(LOG_ERR, "crypto_bob3: %s",
2905 		    ERR_error_string(ERR_get_error(), NULL));
2906 		DSA_free(sdsa);
2907 		return (XEVNT_ERR);
2908 	}
2909 	vp->vallen = htonl(len);
2910 	ptr = emalloc(len);
2911 	vp->ptr = ptr;
2912 	i2d_DSAparams(sdsa, &ptr);
2913 	DSA_free(sdsa);
2914 	if (tstamp == 0)
2915 		return (XEVNT_OK);
2916 
2917 	vp->sig = emalloc(sign_siglen);
2918 	EVP_SignInit(&ctx, sign_digest);
2919 	EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
2920 	EVP_SignUpdate(&ctx, vp->ptr, len);
2921 	if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) {
2922 		NTP_INSIST(len <= sign_siglen);
2923 		vp->siglen = htonl(len);
2924 	}
2925 	return (XEVNT_OK);
2926 }
2927 
2928 
2929 /*
2930  * crypto_mv - verify Bob's response to Alice's challenge
2931  *
2932  * Returns
2933  * XEVNT_OK	success
2934  * XEVNT_ERR	protocol error
2935  * XEVNT_FSP	bad filestamp
2936  * XEVNT_ID	bad or missing group key
2937  * XEVNT_PUB	bad or missing public key
2938  */
2939 int
2940 crypto_mv(
2941 	struct exten *ep,	/* extension pointer */
2942 	struct peer *peer	/* peer structure pointer */
2943 	)
2944 {
2945 	DSA	*dsa;		/* MV parameters */
2946 	DSA	*sdsa;		/* DSA parameters */
2947 	BN_CTX	*bctx;		/* BIGNUM context */
2948 	BIGNUM	*k, *u, *v;
2949 	u_int	len;
2950 	const u_char *ptr;
2951 	int	temp;
2952 
2953 	/*
2954 	 * If the MV parameters are not valid or no challenge was sent,
2955 	 * something awful happened or we are being tormented.
2956 	 */
2957 	if (peer->ident_pkey == NULL) {
2958 		msyslog(LOG_NOTICE, "crypto_mv: scheme unavailable");
2959 		return (XEVNT_ID);
2960 	}
2961 	if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) {
2962 		msyslog(LOG_NOTICE, "crypto_mv: invalid filestamp %u",
2963 		    ntohl(ep->fstamp));
2964 		return (XEVNT_FSP);
2965 	}
2966 	if ((dsa = peer->ident_pkey->pkey->pkey.dsa) == NULL) {
2967 		msyslog(LOG_NOTICE, "crypto_mv: defective key");
2968 		return (XEVNT_PUB);
2969 	}
2970 	if (peer->iffval == NULL) {
2971 		msyslog(LOG_NOTICE, "crypto_mv: missing challenge");
2972 		return (XEVNT_ID);
2973 	}
2974 
2975 	/*
2976 	 * Extract the y, gbar and ghat values from the response.
2977 	 */
2978 	bctx = BN_CTX_new(); k = BN_new(); u = BN_new(); v = BN_new();
2979 	len = ntohl(ep->vallen);
2980 	ptr = (u_char *)ep->pkt;
2981 	if ((sdsa = d2i_DSAparams(NULL, &ptr, len)) == NULL) {
2982 		msyslog(LOG_ERR, "crypto_mv: %s",
2983 		    ERR_error_string(ERR_get_error(), NULL));
2984 		return (XEVNT_ERR);
2985 	}
2986 
2987 	/*
2988 	 * Compute (gbar^xhat ghat^xbar) mod p.
2989 	 */
2990 	BN_mod_exp(u, sdsa->q, dsa->pub_key, dsa->p, bctx);
2991 	BN_mod_exp(v, sdsa->g, dsa->priv_key, dsa->p, bctx);
2992 	BN_mod_mul(u, u, v, dsa->p, bctx);
2993 	BN_mod_mul(u, u, sdsa->p, dsa->p, bctx);
2994 
2995 	/*
2996 	 * The result should match r.
2997 	 */
2998 	temp = BN_cmp(u, peer->iffval);
2999 	BN_CTX_free(bctx); BN_free(k); BN_free(u); BN_free(v);
3000 	BN_free(peer->iffval);
3001 	peer->iffval = NULL;
3002 	DSA_free(sdsa);
3003 	if (temp == 0)
3004 		return (XEVNT_OK);
3005 
3006 	msyslog(LOG_NOTICE, "crypto_mv: identity not verified");
3007 	return (XEVNT_ID);
3008 }
3009 
3010 
3011 /*
3012  ***********************************************************************
3013  *								       *
3014  * The following routines are used to manipulate certificates          *
3015  *								       *
3016  ***********************************************************************
3017  */
3018 /*
3019  * cert_sign - sign x509 certificate equest and update value structure.
3020  *
3021  * The certificate request includes a copy of the host certificate,
3022  * which includes the version number, subject name and public key of the
3023  * host. The resulting certificate includes these values plus the
3024  * serial number, issuer name and valid interval of the server. The
3025  * valid interval extends from the current time to the same time one
3026  * year hence. This may extend the life of the signed certificate beyond
3027  * that of the signer certificate.
3028  *
3029  * It is convenient to use the NTP seconds of the current time as the
3030  * serial number. In the value structure the timestamp is the current
3031  * time and the filestamp is taken from the extension field. Note this
3032  * routine is called only when the client clock is synchronized to a
3033  * proventic source, so timestamp comparisons are valid.
3034  *
3035  * The host certificate is valid from the time it was generated for a
3036  * period of one year. A signed certificate is valid from the time of
3037  * signature for a period of one year, but only the host certificate (or
3038  * sign certificate if used) is actually used to encrypt and decrypt
3039  * signatures. The signature trail is built from the client via the
3040  * intermediate servers to the trusted server. Each signature on the
3041  * trail must be valid at the time of signature, but it could happen
3042  * that a signer certificate expire before the signed certificate, which
3043  * remains valid until its expiration.
3044  *
3045  * Returns
3046  * XEVNT_OK	success
3047  * XEVNT_CRT	bad or missing certificate
3048  * XEVNT_PER	host certificate expired
3049  * XEVNT_PUB	bad or missing public key
3050  * XEVNT_VFY	certificate not verified
3051  */
3052 static int
3053 cert_sign(
3054 	struct exten *ep,	/* extension field pointer */
3055 	struct value *vp	/* value pointer */
3056 	)
3057 {
3058 	X509	*req;		/* X509 certificate request */
3059 	X509	*cert;		/* X509 certificate */
3060 	X509_EXTENSION *ext;	/* certificate extension */
3061 	ASN1_INTEGER *serial;	/* serial number */
3062 	X509_NAME *subj;	/* distinguished (common) name */
3063 	EVP_PKEY *pkey;		/* public key */
3064 	EVP_MD_CTX ctx;		/* message digest context */
3065 	tstamp_t tstamp;	/* NTP timestamp */
3066 	struct calendar tscal;
3067 	u_int	len;
3068 	const u_char *cptr;
3069 	u_char *ptr;
3070 	int	i, temp;
3071 
3072 	/*
3073 	 * Decode ASN.1 objects and construct certificate structure.
3074 	 * Make sure the system clock is synchronized to a proventic
3075 	 * source.
3076 	 */
3077 	tstamp = crypto_time();
3078 	if (tstamp == 0)
3079 		return (XEVNT_TSP);
3080 
3081 	cptr = (void *)ep->pkt;
3082 	if ((req = d2i_X509(NULL, &cptr, ntohl(ep->vallen))) == NULL) {
3083 		msyslog(LOG_ERR, "cert_sign: %s",
3084 		    ERR_error_string(ERR_get_error(), NULL));
3085 		return (XEVNT_CRT);
3086 	}
3087 	/*
3088 	 * Extract public key and check for errors.
3089 	 */
3090 	if ((pkey = X509_get_pubkey(req)) == NULL) {
3091 		msyslog(LOG_ERR, "cert_sign: %s",
3092 		    ERR_error_string(ERR_get_error(), NULL));
3093 		X509_free(req);
3094 		return (XEVNT_PUB);
3095 	}
3096 
3097 	/*
3098 	 * Generate X509 certificate signed by this server. If this is a
3099 	 * trusted host, the issuer name is the group name; otherwise,
3100 	 * it is the host name. Also copy any extensions that might be
3101 	 * present.
3102 	 */
3103 	cert = X509_new();
3104 	X509_set_version(cert, X509_get_version(req));
3105 	serial = ASN1_INTEGER_new();
3106 	ASN1_INTEGER_set(serial, tstamp);
3107 	X509_set_serialNumber(cert, serial);
3108 	X509_gmtime_adj(X509_get_notBefore(cert), 0L);
3109 	X509_gmtime_adj(X509_get_notAfter(cert), YEAR);
3110 	subj = X509_get_issuer_name(cert);
3111 	X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
3112 	    hostval.ptr, strlen((const char *)hostval.ptr), -1, 0);
3113 	subj = X509_get_subject_name(req);
3114 	X509_set_subject_name(cert, subj);
3115 	X509_set_pubkey(cert, pkey);
3116 	temp = X509_get_ext_count(req);
3117 	for (i = 0; i < temp; i++) {
3118 		ext = X509_get_ext(req, i);
3119 		INSIST(X509_add_ext(cert, ext, -1));
3120 	}
3121 	X509_free(req);
3122 
3123 	/*
3124 	 * Sign and verify the client certificate, but only if the host
3125 	 * certificate has not expired.
3126 	 */
3127 	(void)ntpcal_ntp_to_date(&tscal, tstamp, NULL);
3128 	if ((calcomp(&tscal, &(cert_host->first)) < 0)
3129 	|| (calcomp(&tscal, &(cert_host->last)) > 0)) {
3130 		X509_free(cert);
3131 		return (XEVNT_PER);
3132 	}
3133 	X509_sign(cert, sign_pkey, sign_digest);
3134 	if (X509_verify(cert, sign_pkey) <= 0) {
3135 		msyslog(LOG_ERR, "cert_sign: %s",
3136 		    ERR_error_string(ERR_get_error(), NULL));
3137 		X509_free(cert);
3138 		return (XEVNT_VFY);
3139 	}
3140 	len = i2d_X509(cert, NULL);
3141 
3142 	/*
3143 	 * Build and sign the value structure. We have to sign it here,
3144 	 * since the response has to be returned right away. This is a
3145 	 * clogging hazard.
3146 	 */
3147 	memset(vp, 0, sizeof(struct value));
3148 	vp->tstamp = htonl(tstamp);
3149 	vp->fstamp = ep->fstamp;
3150 	vp->vallen = htonl(len);
3151 	vp->ptr = emalloc(len);
3152 	ptr = vp->ptr;
3153 	i2d_X509(cert, (unsigned char **)(intptr_t)&ptr);
3154 	vp->siglen = 0;
3155 	if (tstamp != 0) {
3156 		vp->sig = emalloc(sign_siglen);
3157 		EVP_SignInit(&ctx, sign_digest);
3158 		EVP_SignUpdate(&ctx, (u_char *)vp, 12);
3159 		EVP_SignUpdate(&ctx, vp->ptr, len);
3160 		if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) {
3161 			NTP_INSIST(len <= sign_siglen);
3162 			vp->siglen = htonl(len);
3163 		}
3164 	}
3165 #ifdef DEBUG
3166 	if (debug > 1)
3167 		X509_print_fp(stdout, cert);
3168 #endif
3169 	X509_free(cert);
3170 	return (XEVNT_OK);
3171 }
3172 
3173 
3174 /*
3175  * cert_install - install certificate in certificate cache
3176  *
3177  * This routine encodes an extension field into a certificate info/value
3178  * structure. It searches the certificate list for duplicates and
3179  * expunges whichever is older. Finally, it inserts this certificate
3180  * first on the list.
3181  *
3182  * Returns certificate info pointer if valid, NULL if not.
3183  */
3184 struct cert_info *
3185 cert_install(
3186 	struct exten *ep,	/* cert info/value */
3187 	struct peer *peer	/* peer structure */
3188 	)
3189 {
3190 	struct cert_info *cp, *xp, **zp;
3191 
3192 	/*
3193 	 * Parse and validate the signed certificate. If valid,
3194 	 * construct the info/value structure; otherwise, scamper home
3195 	 * empty handed.
3196 	 */
3197 	if ((cp = cert_parse((u_char *)ep->pkt, (long)ntohl(ep->vallen),
3198 	    (tstamp_t)ntohl(ep->fstamp))) == NULL)
3199 		return (NULL);
3200 
3201 	/*
3202 	 * Scan certificate list looking for another certificate with
3203 	 * the same subject and issuer. If another is found with the
3204 	 * same or older filestamp, unlink it and return the goodies to
3205 	 * the heap. If another is found with a later filestamp, discard
3206 	 * the new one and leave the building with the old one.
3207 	 *
3208 	 * Make a note to study this issue again. An earlier certificate
3209 	 * with a long lifetime might be overtaken by a later
3210 	 * certificate with a short lifetime, thus invalidating the
3211 	 * earlier signature. However, we gotta find a way to leak old
3212 	 * stuff from the cache, so we do it anyway.
3213 	 */
3214 	zp = &cinfo;
3215 	for (xp = cinfo; xp != NULL; xp = xp->link) {
3216 		if (strcmp(cp->subject, xp->subject) == 0 &&
3217 		    strcmp(cp->issuer, xp->issuer) == 0) {
3218 			if (ntohl(cp->cert.fstamp) <=
3219 			    ntohl(xp->cert.fstamp)) {
3220 				cert_free(cp);
3221 				cp = xp;
3222 			} else {
3223 				*zp = xp->link;
3224 				cert_free(xp);
3225 				xp = NULL;
3226 			}
3227 			break;
3228 		}
3229 		zp = &xp->link;
3230 	}
3231 	if (xp == NULL) {
3232 		cp->link = cinfo;
3233 		cinfo = cp;
3234 	}
3235 	cp->flags |= CERT_VALID;
3236 	crypto_update();
3237 	return (cp);
3238 }
3239 
3240 
3241 /*
3242  * cert_hike - verify the signature using the issuer public key
3243  *
3244  * Returns
3245  * XEVNT_OK	success
3246  * XEVNT_CRT	bad or missing certificate
3247  * XEVNT_PER	host certificate expired
3248  * XEVNT_VFY	certificate not verified
3249  */
3250 int
3251 cert_hike(
3252 	struct peer *peer,	/* peer structure pointer */
3253 	struct cert_info *yp	/* issuer certificate */
3254 	)
3255 {
3256 	struct cert_info *xp;	/* subject certificate */
3257 	X509	*cert;		/* X509 certificate */
3258 	const u_char *ptr;
3259 
3260 	/*
3261 	 * Save the issuer on the new certificate, but remember the old
3262 	 * one.
3263 	 */
3264 	if (peer->issuer != NULL)
3265 		free(peer->issuer);
3266 	peer->issuer = estrdup(yp->issuer);
3267 	xp = peer->xinfo;
3268 	peer->xinfo = yp;
3269 
3270 	/*
3271 	 * If subject Y matches issuer Y, then the certificate trail is
3272 	 * complete. If Y is not trusted, the server certificate has yet
3273 	 * been signed, so keep trying. Otherwise, save the group key
3274 	 * and light the valid bit. If the host certificate is trusted,
3275 	 * do not execute a sign exchange. If no identity scheme is in
3276 	 * use, light the identity and proventic bits.
3277 	 */
3278 	if (strcmp(yp->subject, yp->issuer) == 0) {
3279 		if (!(yp->flags & CERT_TRUST))
3280 			return (XEVNT_OK);
3281 
3282 		/*
3283 		 * If the server has an an identity scheme, fetch the
3284 		 * identity credentials. If not, the identity is
3285 		 * verified only by the trusted certificate. The next
3286 		 * signature will set the server proventic.
3287 		 */
3288 		peer->crypto |= CRYPTO_FLAG_CERT;
3289 		peer->grpkey = yp->grpkey;
3290 		if (peer->ident == NULL || !(peer->crypto &
3291 		    CRYPTO_FLAG_MASK))
3292 			peer->crypto |= CRYPTO_FLAG_VRFY;
3293 	}
3294 
3295 	/*
3296 	 * If X exists, verify signature X using public key Y.
3297 	 */
3298 	if (xp == NULL)
3299 		return (XEVNT_OK);
3300 
3301 	ptr = (u_char *)xp->cert.ptr;
3302 	cert = d2i_X509(NULL, &ptr, ntohl(xp->cert.vallen));
3303 	if (cert == NULL) {
3304 		xp->flags |= CERT_ERROR;
3305 		return (XEVNT_CRT);
3306 	}
3307 	if (X509_verify(cert, yp->pkey) <= 0) {
3308 		X509_free(cert);
3309 		xp->flags |= CERT_ERROR;
3310 		return (XEVNT_VFY);
3311 	}
3312 	X509_free(cert);
3313 
3314 	/*
3315 	 * Signature X is valid only if it begins during the
3316 	 * lifetime of Y.
3317 	 */
3318 	if ((calcomp(&(xp->first), &(yp->first)) < 0)
3319 	|| (calcomp(&(xp->first), &(yp->last)) > 0)) {
3320 		xp->flags |= CERT_ERROR;
3321 		return (XEVNT_PER);
3322 	}
3323 	xp->flags |= CERT_SIGN;
3324 	return (XEVNT_OK);
3325 }
3326 
3327 
3328 /*
3329  * cert_parse - parse x509 certificate and create info/value structures.
3330  *
3331  * The server certificate includes the version number, issuer name,
3332  * subject name, public key and valid date interval. If the issuer name
3333  * is the same as the subject name, the certificate is self signed and
3334  * valid only if the server is configured as trustable. If the names are
3335  * different, another issuer has signed the server certificate and
3336  * vouched for it. In this case the server certificate is valid if
3337  * verified by the issuer public key.
3338  *
3339  * Returns certificate info/value pointer if valid, NULL if not.
3340  */
3341 struct cert_info *		/* certificate information structure */
3342 cert_parse(
3343 	const u_char *asn1cert,	/* X509 certificate */
3344 	long	len,		/* certificate length */
3345 	tstamp_t fstamp		/* filestamp */
3346 	)
3347 {
3348 	X509	*cert;		/* X509 certificate */
3349 	X509_EXTENSION *ext;	/* X509v3 extension */
3350 	struct cert_info *ret;	/* certificate info/value */
3351 	BIO	*bp;
3352 	char	pathbuf[MAXFILENAME];
3353 	const u_char *ptr;
3354 	char	*pch;
3355 	int	temp, cnt, i;
3356 	struct calendar fscal;
3357 
3358 	/*
3359 	 * Decode ASN.1 objects and construct certificate structure.
3360 	 */
3361 	ptr = asn1cert;
3362 	if ((cert = d2i_X509(NULL, &ptr, len)) == NULL) {
3363 		msyslog(LOG_ERR, "cert_parse: %s",
3364 		    ERR_error_string(ERR_get_error(), NULL));
3365 		return (NULL);
3366 	}
3367 #ifdef DEBUG
3368 	if (debug > 1)
3369 		X509_print_fp(stdout, cert);
3370 #endif
3371 
3372 	/*
3373 	 * Extract version, subject name and public key.
3374 	 */
3375 	ret = emalloc_zero(sizeof(*ret));
3376 	if ((ret->pkey = X509_get_pubkey(cert)) == NULL) {
3377 		msyslog(LOG_ERR, "cert_parse: %s",
3378 		    ERR_error_string(ERR_get_error(), NULL));
3379 		cert_free(ret);
3380 		X509_free(cert);
3381 		return (NULL);
3382 	}
3383 	ret->version = X509_get_version(cert);
3384 	X509_NAME_oneline(X509_get_subject_name(cert), pathbuf,
3385 	    sizeof(pathbuf));
3386 	pch = strstr(pathbuf, "CN=");
3387 	if (NULL == pch) {
3388 		msyslog(LOG_NOTICE, "cert_parse: invalid subject %s",
3389 		    pathbuf);
3390 		cert_free(ret);
3391 		X509_free(cert);
3392 		return (NULL);
3393 	}
3394 	ret->subject = estrdup(pch + 3);
3395 
3396 	/*
3397 	 * Extract remaining objects. Note that the NTP serial number is
3398 	 * the NTP seconds at the time of signing, but this might not be
3399 	 * the case for other authority. We don't bother to check the
3400 	 * objects at this time, since the real crunch can happen only
3401 	 * when the time is valid but not yet certificated.
3402 	 */
3403 	ret->nid = OBJ_obj2nid(cert->cert_info->signature->algorithm);
3404 	ret->digest = (const EVP_MD *)EVP_get_digestbynid(ret->nid);
3405 	ret->serial =
3406 	    (u_long)ASN1_INTEGER_get(X509_get_serialNumber(cert));
3407 	X509_NAME_oneline(X509_get_issuer_name(cert), pathbuf,
3408 	    sizeof(pathbuf));
3409 	if ((pch = strstr(pathbuf, "CN=")) == NULL) {
3410 		msyslog(LOG_NOTICE, "cert_parse: invalid issuer %s",
3411 		    pathbuf);
3412 		cert_free(ret);
3413 		X509_free(cert);
3414 		return (NULL);
3415 	}
3416 	ret->issuer = estrdup(pch + 3);
3417 	asn_to_calendar(X509_get_notBefore(cert), &(ret->first));
3418 	asn_to_calendar(X509_get_notAfter(cert), &(ret->last));
3419 
3420 	/*
3421 	 * Extract extension fields. These are ad hoc ripoffs of
3422 	 * currently assigned functions and will certainly be changed
3423 	 * before prime time.
3424 	 */
3425 	cnt = X509_get_ext_count(cert);
3426 	for (i = 0; i < cnt; i++) {
3427 		ext = X509_get_ext(cert, i);
3428 		temp = OBJ_obj2nid(ext->object);
3429 		switch (temp) {
3430 
3431 		/*
3432 		 * If a key_usage field is present, we decode whether
3433 		 * this is a trusted or private certificate. This is
3434 		 * dorky; all we want is to compare NIDs, but OpenSSL
3435 		 * insists on BIO text strings.
3436 		 */
3437 		case NID_ext_key_usage:
3438 			bp = BIO_new(BIO_s_mem());
3439 			X509V3_EXT_print(bp, ext, 0, 0);
3440 			BIO_gets(bp, pathbuf, sizeof(pathbuf));
3441 			BIO_free(bp);
3442 			if (strcmp(pathbuf, "Trust Root") == 0)
3443 				ret->flags |= CERT_TRUST;
3444 			else if (strcmp(pathbuf, "Private") == 0)
3445 				ret->flags |= CERT_PRIV;
3446 			DPRINTF(1, ("cert_parse: %s: %s\n",
3447 				    OBJ_nid2ln(temp), pathbuf));
3448 			break;
3449 
3450 		/*
3451 		 * If a NID_subject_key_identifier field is present, it
3452 		 * contains the GQ public key.
3453 		 */
3454 		case NID_subject_key_identifier:
3455 			ret->grpkey = BN_bin2bn(&ext->value->data[2],
3456 			    ext->value->length - 2, NULL);
3457 			/* fall through */
3458 		default:
3459 			DPRINTF(1, ("cert_parse: %s\n",
3460 				    OBJ_nid2ln(temp)));
3461 			break;
3462 		}
3463 	}
3464 	if (strcmp(ret->subject, ret->issuer) == 0) {
3465 
3466 		/*
3467 		 * If certificate is self signed, verify signature.
3468 		 */
3469 		if (X509_verify(cert, ret->pkey) <= 0) {
3470 			msyslog(LOG_NOTICE,
3471 			    "cert_parse: signature not verified %s",
3472 			    ret->subject);
3473 			cert_free(ret);
3474 			X509_free(cert);
3475 			return (NULL);
3476 		}
3477 	} else {
3478 
3479 		/*
3480 		 * Check for a certificate loop.
3481 		 */
3482 		if (strcmp((const char *)hostval.ptr, ret->issuer) == 0) {
3483 			msyslog(LOG_NOTICE,
3484 			    "cert_parse: certificate trail loop %s",
3485 			    ret->subject);
3486 			cert_free(ret);
3487 			X509_free(cert);
3488 			return (NULL);
3489 		}
3490 	}
3491 
3492 	/*
3493 	 * Verify certificate valid times. Note that certificates cannot
3494 	 * be retroactive.
3495 	 */
3496 	(void)ntpcal_ntp_to_date(&fscal, fstamp, NULL);
3497 	if ((calcomp(&(ret->first), &(ret->last)) > 0)
3498 	|| (calcomp(&(ret->first), &fscal) < 0)) {
3499 		msyslog(LOG_NOTICE,
3500 		    "cert_parse: invalid times %s first %u-%02u-%02uT%02u:%02u:%02u last %u-%02u-%02uT%02u:%02u:%02u fstamp %u-%02u-%02uT%02u:%02u:%02u",
3501 		    ret->subject,
3502 		    ret->first.year, ret->first.month, ret->first.monthday,
3503 		    ret->first.hour, ret->first.minute, ret->first.second,
3504 		    ret->last.year, ret->last.month, ret->last.monthday,
3505 		    ret->last.hour, ret->last.minute, ret->last.second,
3506 		    fscal.year, fscal.month, fscal.monthday,
3507 		    fscal.hour, fscal.minute, fscal.second);
3508 		cert_free(ret);
3509 		X509_free(cert);
3510 		return (NULL);
3511 	}
3512 
3513 	/*
3514 	 * Build the value structure to sign and send later.
3515 	 */
3516 	ret->cert.fstamp = htonl(fstamp);
3517 	ret->cert.vallen = htonl(len);
3518 	ret->cert.ptr = emalloc(len);
3519 	memcpy(ret->cert.ptr, asn1cert, len);
3520 	X509_free(cert);
3521 	return (ret);
3522 }
3523 
3524 
3525 /*
3526  * cert_free - free certificate information structure
3527  */
3528 void
3529 cert_free(
3530 	struct cert_info *cinf	/* certificate info/value structure */
3531 	)
3532 {
3533 	if (cinf->pkey != NULL)
3534 		EVP_PKEY_free(cinf->pkey);
3535 	if (cinf->subject != NULL)
3536 		free(cinf->subject);
3537 	if (cinf->issuer != NULL)
3538 		free(cinf->issuer);
3539 	if (cinf->grpkey != NULL)
3540 		BN_free(cinf->grpkey);
3541 	value_free(&cinf->cert);
3542 	free(cinf);
3543 }
3544 
3545 
3546 /*
3547  * crypto_key - load cryptographic parameters and keys
3548  *
3549  * This routine searches the key cache for matching name in the form
3550  * ntpkey_<key>_<name>, where <key> is one of host, sign, iff, gq, mv,
3551  * and <name> is the host/group name. If not found, it tries to load a
3552  * PEM-encoded file of the same name and extracts the filestamp from
3553  * the first line of the file name. It returns the key pointer if valid,
3554  * NULL if not.
3555  */
3556 static struct pkey_info *
3557 crypto_key(
3558 	char	*cp,		/* file name */
3559 	char	*passwd1,	/* password */
3560 	sockaddr_u *addr 	/* IP address */
3561 	)
3562 {
3563 	FILE	*str;		/* file handle */
3564 	struct pkey_info *pkp;	/* generic key */
3565 	EVP_PKEY *pkey = NULL;	/* public/private key */
3566 	tstamp_t fstamp;
3567 	char	filename[MAXFILENAME]; /* name of key file */
3568 	char	linkname[MAXFILENAME]; /* filestamp buffer) */
3569 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3570 	char	*ptr;
3571 
3572 	/*
3573 	 * Search the key cache for matching key and name.
3574 	 */
3575 	for (pkp = pkinfo; pkp != NULL; pkp = pkp->link) {
3576 		if (strcmp(cp, pkp->name) == 0)
3577 			return (pkp);
3578 	}
3579 
3580 	/*
3581 	 * Open the key file. If the first character of the file name is
3582 	 * not '/', prepend the keys directory string. If something goes
3583 	 * wrong, abandon ship.
3584 	 */
3585 	if (*cp == '/')
3586 		strlcpy(filename, cp, sizeof(filename));
3587 	else
3588 		snprintf(filename, sizeof(filename), "%s/%s", keysdir,
3589 		    cp);
3590 	str = fopen(filename, "r");
3591 	if (str == NULL)
3592 		return (NULL);
3593 
3594 	/*
3595 	 * Read the filestamp, which is contained in the first line.
3596 	 */
3597 	if ((ptr = fgets(linkname, sizeof(linkname), str)) == NULL) {
3598 		msyslog(LOG_ERR, "crypto_key: empty file %s",
3599 		    filename);
3600 		fclose(str);
3601 		return (NULL);
3602 	}
3603 	if ((ptr = strrchr(ptr, '.')) == NULL) {
3604 		msyslog(LOG_ERR, "crypto_key: no filestamp %s",
3605 		    filename);
3606 		fclose(str);
3607 		return (NULL);
3608 	}
3609 	if (sscanf(++ptr, "%u", &fstamp) != 1) {
3610 		msyslog(LOG_ERR, "crypto_key: invalid filestamp %s",
3611 		    filename);
3612 		fclose(str);
3613 		return (NULL);
3614 	}
3615 
3616 	/*
3617 	 * Read and decrypt PEM-encoded private key. If it fails to
3618 	 * decrypt, game over.
3619 	 */
3620 	pkey = PEM_read_PrivateKey(str, NULL, NULL, passwd1);
3621 	fclose(str);
3622 	if (pkey == NULL) {
3623 		msyslog(LOG_ERR, "crypto_key: %s",
3624 		    ERR_error_string(ERR_get_error(), NULL));
3625 		exit (-1);
3626 	}
3627 
3628 	/*
3629 	 * Make a new entry in the key cache.
3630 	 */
3631 	pkp = emalloc(sizeof(struct pkey_info));
3632 	pkp->link = pkinfo;
3633 	pkinfo = pkp;
3634 	pkp->pkey = pkey;
3635 	pkp->name = estrdup(cp);
3636 	pkp->fstamp = fstamp;
3637 
3638 	/*
3639 	 * Leave tracks in the cryptostats.
3640 	 */
3641 	if ((ptr = strrchr(linkname, '\n')) != NULL)
3642 		*ptr = '\0';
3643 	snprintf(statstr, sizeof(statstr), "%s mod %d", &linkname[2],
3644 	    EVP_PKEY_size(pkey) * 8);
3645 	record_crypto_stats(addr, statstr);
3646 
3647 	DPRINTF(1, ("crypto_key: %s\n", statstr));
3648 #ifdef DEBUG
3649 	if (debug > 1) {
3650 		if (pkey->type == EVP_PKEY_DSA)
3651 			DSA_print_fp(stdout, pkey->pkey.dsa, 0);
3652 		else if (pkey->type == EVP_PKEY_RSA)
3653 			RSA_print_fp(stdout, pkey->pkey.rsa, 0);
3654 	}
3655 #endif
3656 	return (pkp);
3657 }
3658 
3659 
3660 /*
3661  ***********************************************************************
3662  *								       *
3663  * The following routines are used only at initialization time         *
3664  *								       *
3665  ***********************************************************************
3666  */
3667 /*
3668  * crypto_cert - load certificate from file
3669  *
3670  * This routine loads an X.509 RSA or DSA certificate from a file and
3671  * constructs a info/cert value structure for this machine. The
3672  * structure includes a filestamp extracted from the file name. Later
3673  * the certificate can be sent to another machine on request.
3674  *
3675  * Returns certificate info/value pointer if valid, NULL if not.
3676  */
3677 static struct cert_info *	/* certificate information */
3678 crypto_cert(
3679 	char	*cp		/* file name */
3680 	)
3681 {
3682 	struct cert_info *ret; /* certificate information */
3683 	FILE	*str;		/* file handle */
3684 	char	filename[MAXFILENAME]; /* name of certificate file */
3685 	char	linkname[MAXFILENAME]; /* filestamp buffer */
3686 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3687 	tstamp_t fstamp;	/* filestamp */
3688 	long	len;
3689 	char	*ptr;
3690 	char	*name, *header;
3691 	u_char	*data;
3692 
3693 	/*
3694 	 * Open the certificate file. If the first character of the file
3695 	 * name is not '/', prepend the keys directory string. If
3696 	 * something goes wrong, abandon ship.
3697 	 */
3698 	if (*cp == '/')
3699 		strlcpy(filename, cp, sizeof(filename));
3700 	else
3701 		snprintf(filename, sizeof(filename), "%s/%s", keysdir,
3702 		    cp);
3703 	str = fopen(filename, "r");
3704 	if (str == NULL)
3705 		return (NULL);
3706 
3707 	/*
3708 	 * Read the filestamp, which is contained in the first line.
3709 	 */
3710 	if ((ptr = fgets(linkname, sizeof(linkname), str)) == NULL) {
3711 		msyslog(LOG_ERR, "crypto_cert: empty file %s",
3712 		    filename);
3713 		fclose(str);
3714 		return (NULL);
3715 	}
3716 	if ((ptr = strrchr(ptr, '.')) == NULL) {
3717 		msyslog(LOG_ERR, "crypto_cert: no filestamp %s",
3718 		    filename);
3719 		fclose(str);
3720 		return (NULL);
3721 	}
3722 	if (sscanf(++ptr, "%u", &fstamp) != 1) {
3723 		msyslog(LOG_ERR, "crypto_cert: invalid filestamp %s",
3724 		    filename);
3725 		fclose(str);
3726 		return (NULL);
3727 	}
3728 
3729 	/*
3730 	 * Read PEM-encoded certificate and install.
3731 	 */
3732 	if (!PEM_read(str, &name, &header, &data, &len)) {
3733 		msyslog(LOG_ERR, "crypto_cert: %s",
3734 		    ERR_error_string(ERR_get_error(), NULL));
3735 		fclose(str);
3736 		return (NULL);
3737 	}
3738 	fclose(str);
3739 	free(header);
3740 	if (strcmp(name, "CERTIFICATE") != 0) {
3741 		msyslog(LOG_NOTICE, "crypto_cert: wrong PEM type %s",
3742 		    name);
3743 		free(name);
3744 		free(data);
3745 		return (NULL);
3746 	}
3747 	free(name);
3748 
3749 	/*
3750 	 * Parse certificate and generate info/value structure. The
3751 	 * pointer and copy nonsense is due something broken in Solaris.
3752 	 */
3753 	ret = cert_parse(data, len, fstamp);
3754 	free(data);
3755 	if (ret == NULL)
3756 		return (NULL);
3757 
3758 	if ((ptr = strrchr(linkname, '\n')) != NULL)
3759 		*ptr = '\0';
3760 	snprintf(statstr, sizeof(statstr), "%s 0x%x len %lu",
3761 	    &linkname[2], ret->flags, len);
3762 	record_crypto_stats(NULL, statstr);
3763 	DPRINTF(1, ("crypto_cert: %s\n", statstr));
3764 	return (ret);
3765 }
3766 
3767 
3768 /*
3769  * crypto_setup - load keys, certificate and identity parameters
3770  *
3771  * This routine loads the public/private host key and certificate. If
3772  * available, it loads the public/private sign key, which defaults to
3773  * the host key. The host key must be RSA, but the sign key can be
3774  * either RSA or DSA. If a trusted certificate, it loads the identity
3775  * parameters. In either case, the public key on the certificate must
3776  * agree with the sign key.
3777  *
3778  * Required but missing files and inconsistent data and errors are
3779  * fatal. Allowing configuration to continue would be hazardous and
3780  * require really messy error checks.
3781  */
3782 void
3783 crypto_setup(void)
3784 {
3785 	struct pkey_info *pinfo; /* private/public key */
3786 	char	filename[MAXFILENAME]; /* file name buffer */
3787 	char	hostname[MAXFILENAME]; /* host name buffer */
3788 	char	*randfile;
3789 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3790 	l_fp	seed;		/* crypto PRNG seed as NTP timestamp */
3791 	u_int	len;
3792 	int	bytes;
3793 	u_char	*ptr;
3794 
3795 	/*
3796 	 * Check for correct OpenSSL version and avoid initialization in
3797 	 * the case of multiple crypto commands.
3798 	 */
3799 	if (crypto_flags & CRYPTO_FLAG_ENAB) {
3800 		msyslog(LOG_NOTICE,
3801 		    "crypto_setup: spurious crypto command");
3802 		return;
3803 	}
3804 	ssl_check_version();
3805 
3806 	/*
3807 	 * Load required random seed file and seed the random number
3808 	 * generator. Be default, it is found as .rnd in the user home
3809 	 * directory. The root home directory may be / or /root,
3810 	 * depending on the system. Wiggle the contents a bit and write
3811 	 * it back so the sequence does not repeat when we next restart.
3812 	 */
3813 	if (!RAND_status()) {
3814 		if (rand_file == NULL) {
3815 			RAND_file_name(filename, sizeof(filename));
3816 			randfile = filename;
3817 		} else if (*rand_file != '/') {
3818 			snprintf(filename, sizeof(filename), "%s/%s",
3819 			    keysdir, rand_file);
3820 			randfile = filename;
3821 		} else
3822 			randfile = rand_file;
3823 
3824 		if ((bytes = RAND_load_file(randfile, -1)) == 0) {
3825 			msyslog(LOG_ERR,
3826 			    "crypto_setup: random seed file %s missing",
3827 			    randfile);
3828 			exit (-1);
3829 		}
3830 		arc4random_buf(&seed, sizeof(l_fp));
3831 		RAND_seed(&seed, sizeof(l_fp));
3832 		RAND_write_file(randfile);
3833 		DPRINTF(1, ("crypto_setup: OpenSSL version %lx random seed file %s bytes read %d\n",
3834 			    SSLeay(), randfile, bytes));
3835 	}
3836 
3837 	/*
3838 	 * Initialize structures.
3839 	 */
3840 	gethostname(hostname, sizeof(hostname));
3841 	if (host_filename != NULL)
3842 		strlcpy(hostname, host_filename, sizeof(hostname));
3843 	if (passwd == NULL)
3844 		passwd = estrdup(hostname);
3845 	memset(&hostval, 0, sizeof(hostval));
3846 	memset(&pubkey, 0, sizeof(pubkey));
3847 	memset(&tai_leap, 0, sizeof(tai_leap));
3848 
3849 	/*
3850 	 * Load required host key from file "ntpkey_host_<hostname>". If
3851 	 * no host key file is not found or has invalid password, life
3852 	 * as we know it ends. The host key also becomes the default
3853 	 * sign key.
3854 	 */
3855 	snprintf(filename, sizeof(filename), "ntpkey_host_%s", hostname);
3856 	pinfo = crypto_key(filename, passwd, NULL);
3857 	if (pinfo == NULL) {
3858 		msyslog(LOG_ERR,
3859 		    "crypto_setup: host key file %s not found or corrupt",
3860 		    filename);
3861 		exit (-1);
3862 	}
3863 	if (pinfo->pkey->type != EVP_PKEY_RSA) {
3864 		msyslog(LOG_ERR,
3865 		    "crypto_setup: host key is not RSA key type");
3866 		exit (-1);
3867 	}
3868 	host_pkey = pinfo->pkey;
3869 	sign_pkey = host_pkey;
3870 	hostval.fstamp = htonl(pinfo->fstamp);
3871 
3872 	/*
3873 	 * Construct public key extension field for agreement scheme.
3874 	 */
3875 	len = i2d_PublicKey(host_pkey, NULL);
3876 	ptr = emalloc(len);
3877 	pubkey.ptr = ptr;
3878 	i2d_PublicKey(host_pkey, &ptr);
3879 	pubkey.fstamp = hostval.fstamp;
3880 	pubkey.vallen = htonl(len);
3881 
3882 	/*
3883 	 * Load optional sign key from file "ntpkey_sign_<hostname>". If
3884 	 * available, it becomes the sign key.
3885 	 */
3886 	snprintf(filename, sizeof(filename), "ntpkey_sign_%s", hostname);
3887 	pinfo = crypto_key(filename, passwd, NULL);
3888 	if (pinfo != NULL)
3889 		sign_pkey = pinfo->pkey;
3890 
3891 	/*
3892 	 * Load required certificate from file "ntpkey_cert_<hostname>".
3893 	 */
3894 	snprintf(filename, sizeof(filename), "ntpkey_cert_%s", hostname);
3895 	cinfo = crypto_cert(filename);
3896 	if (cinfo == NULL) {
3897 		msyslog(LOG_ERR,
3898 		    "crypto_setup: certificate file %s not found or corrupt",
3899 		    filename);
3900 		exit (-1);
3901 	}
3902 	cert_host = cinfo;
3903 	sign_digest = cinfo->digest;
3904 	sign_siglen = EVP_PKEY_size(sign_pkey);
3905 	if (cinfo->flags & CERT_PRIV)
3906 		crypto_flags |= CRYPTO_FLAG_PRIV;
3907 
3908 	/*
3909 	 * The certificate must be self-signed.
3910 	 */
3911 	if (strcmp(cinfo->subject, cinfo->issuer) != 0) {
3912 		msyslog(LOG_ERR,
3913 		    "crypto_setup: certificate %s is not self-signed",
3914 		    filename);
3915 		exit (-1);
3916 	}
3917 	hostval.ptr = estrdup(cinfo->subject);
3918 	hostval.vallen = htonl(strlen(cinfo->subject));
3919 	sys_hostname = hostval.ptr;
3920 	ptr = (u_char *)strchr(sys_hostname, '@');
3921 	if (ptr != NULL)
3922 		sys_groupname = estrdup((char *)++ptr);
3923 	if (ident_filename != NULL)
3924 		strlcpy(hostname, ident_filename, sizeof(hostname));
3925 
3926 	/*
3927 	 * Load optional IFF parameters from file
3928 	 * "ntpkey_iffkey_<hostname>".
3929 	 */
3930 	snprintf(filename, sizeof(filename), "ntpkey_iffkey_%s",
3931 	    hostname);
3932 	iffkey_info = crypto_key(filename, passwd, NULL);
3933 	if (iffkey_info != NULL)
3934 		crypto_flags |= CRYPTO_FLAG_IFF;
3935 
3936 	/*
3937 	 * Load optional GQ parameters from file
3938 	 * "ntpkey_gqkey_<hostname>".
3939 	 */
3940 	snprintf(filename, sizeof(filename), "ntpkey_gqkey_%s",
3941 	    hostname);
3942 	gqkey_info = crypto_key(filename, passwd, NULL);
3943 	if (gqkey_info != NULL)
3944 		crypto_flags |= CRYPTO_FLAG_GQ;
3945 
3946 	/*
3947 	 * Load optional MV parameters from file
3948 	 * "ntpkey_mvkey_<hostname>".
3949 	 */
3950 	snprintf(filename, sizeof(filename), "ntpkey_mvkey_%s",
3951 	    hostname);
3952 	mvkey_info = crypto_key(filename, passwd, NULL);
3953 	if (mvkey_info != NULL)
3954 		crypto_flags |= CRYPTO_FLAG_MV;
3955 
3956 	/*
3957 	 * We met the enemy and he is us. Now strike up the dance.
3958 	 */
3959 	crypto_flags |= CRYPTO_FLAG_ENAB | (cinfo->nid << 16);
3960 	snprintf(statstr, sizeof(statstr), "setup 0x%x host %s %s",
3961 	    crypto_flags, hostname, OBJ_nid2ln(cinfo->nid));
3962 	record_crypto_stats(NULL, statstr);
3963 	DPRINTF(1, ("crypto_setup: %s\n", statstr));
3964 }
3965 
3966 
3967 /*
3968  * crypto_config - configure data from the crypto command.
3969  */
3970 void
3971 crypto_config(
3972 	int	item,		/* configuration item */
3973 	char	*cp		/* item name */
3974 	)
3975 {
3976 	int	nid;
3977 
3978 	DPRINTF(1, ("crypto_config: item %d %s\n", item, cp));
3979 
3980 	switch (item) {
3981 
3982 	/*
3983 	 * Set host name (host).
3984 	 */
3985 	case CRYPTO_CONF_PRIV:
3986 		if (NULL != host_filename)
3987 			free(host_filename);
3988 		host_filename = estrdup(cp);
3989 		break;
3990 
3991 	/*
3992 	 * Set group name (ident).
3993 	 */
3994 	case CRYPTO_CONF_IDENT:
3995 		if (NULL != ident_filename)
3996 			free(ident_filename);
3997 		ident_filename = estrdup(cp);
3998 		break;
3999 
4000 	/*
4001 	 * Set private key password (pw).
4002 	 */
4003 	case CRYPTO_CONF_PW:
4004 		if (NULL != passwd)
4005 			free(passwd);
4006 		passwd = estrdup(cp);
4007 		break;
4008 
4009 	/*
4010 	 * Set random seed file name (randfile).
4011 	 */
4012 	case CRYPTO_CONF_RAND:
4013 		if (NULL != rand_file)
4014 			free(rand_file);
4015 		rand_file = estrdup(cp);
4016 		break;
4017 
4018 	/*
4019 	 * Set message digest NID.
4020 	 */
4021 	case CRYPTO_CONF_NID:
4022 		nid = OBJ_sn2nid(cp);
4023 		if (nid == 0)
4024 			msyslog(LOG_ERR,
4025 			    "crypto_config: invalid digest name %s", cp);
4026 		else
4027 			crypto_nid = nid;
4028 		break;
4029 	}
4030 }
4031 # else	/* !AUTOKEY follows */
4032 int ntp_crypto_bs_pubkey;
4033 # endif	/* !AUTOKEY */
4034