1 /* 2 * ntp_crypto.c - NTP version 4 public key routines 3 */ 4 #ifdef HAVE_CONFIG_H 5 #include <config.h> 6 #endif 7 8 #ifdef AUTOKEY 9 #include <stdio.h> 10 #include <stdlib.h> /* strtoul */ 11 #include <sys/types.h> 12 #include <sys/param.h> 13 #include <unistd.h> 14 #include <fcntl.h> 15 16 #include "ntpd.h" 17 #include "ntp_stdlib.h" 18 #include "ntp_unixtime.h" 19 #include "ntp_string.h" 20 #include "ntp_random.h" 21 #include "ntp_assert.h" 22 #include "ntp_calendar.h" 23 #include "ntp_leapsec.h" 24 25 #include "openssl/asn1.h" 26 #include "openssl/bn.h" 27 #include "openssl/crypto.h" 28 #include "openssl/err.h" 29 #include "openssl/evp.h" 30 #include "openssl/opensslv.h" 31 #include "openssl/pem.h" 32 #include "openssl/rand.h" 33 #include "openssl/x509.h" 34 #include "openssl/x509v3.h" 35 #include "libssl_compat.h" 36 37 #ifdef KERNEL_PLL 38 #include "ntp_syscall.h" 39 #endif /* KERNEL_PLL */ 40 41 /* 42 * calcomp - compare two calendar structures, ignoring yearday and weekday; like strcmp 43 * No, it's not a plotter. If you don't understand that, you're too young. 44 */ 45 static int calcomp(struct calendar *pjd1, struct calendar *pjd2) 46 { 47 int32_t diff; /* large enough to hold the signed difference between two uint16_t values */ 48 49 diff = pjd1->year - pjd2->year; 50 if (diff < 0) return -1; else if (diff > 0) return 1; 51 /* same year; compare months */ 52 diff = pjd1->month - pjd2->month; 53 if (diff < 0) return -1; else if (diff > 0) return 1; 54 /* same year and month; compare monthday */ 55 diff = pjd1->monthday - pjd2->monthday; 56 if (diff < 0) return -1; else if (diff > 0) return 1; 57 /* same year and month and monthday; compare time */ 58 diff = pjd1->hour - pjd2->hour; 59 if (diff < 0) return -1; else if (diff > 0) return 1; 60 diff = pjd1->minute - pjd2->minute; 61 if (diff < 0) return -1; else if (diff > 0) return 1; 62 diff = pjd1->second - pjd2->second; 63 if (diff < 0) return -1; else if (diff > 0) return 1; 64 /* identical */ 65 return 0; 66 } 67 68 /* 69 * Extension field message format 70 * 71 * These are always signed and saved before sending in network byte 72 * order. They must be converted to and from host byte order for 73 * processing. 74 * 75 * +-------+-------+ 76 * | op | len | <- extension pointer 77 * +-------+-------+ 78 * | associd | 79 * +---------------+ 80 * | timestamp | <- value pointer 81 * +---------------+ 82 * | filestamp | 83 * +---------------+ 84 * | value len | 85 * +---------------+ 86 * | | 87 * = value = 88 * | | 89 * +---------------+ 90 * | signature len | 91 * +---------------+ 92 * | | 93 * = signature = 94 * | | 95 * +---------------+ 96 * 97 * The CRYPTO_RESP bit is set to 0 for requests, 1 for responses. 98 * Requests carry the association ID of the receiver; responses carry 99 * the association ID of the sender. Some messages include only the 100 * operation/length and association ID words and so have length 8 101 * octets. Ohers include the value structure and associated value and 102 * signature fields. These messages include the timestamp, filestamp, 103 * value and signature words and so have length at least 24 octets. The 104 * signature and/or value fields can be empty, in which case the 105 * respective length words are zero. An empty value with nonempty 106 * signature is syntactically valid, but semantically questionable. 107 * 108 * The filestamp represents the time when a cryptographic data file such 109 * as a public/private key pair is created. It follows every reference 110 * depending on that file and serves as a means to obsolete earlier data 111 * of the same type. The timestamp represents the time when the 112 * cryptographic data of the message were last signed. Creation of a 113 * cryptographic data file or signing a message can occur only when the 114 * creator or signor is synchronized to an authoritative source and 115 * proventicated to a trusted authority. 116 * 117 * Note there are several conditions required for server trust. First, 118 * the public key on the server certificate must be verified, which can 119 * involve a hike along the certificate trail to a trusted host. Next, 120 * the server trust must be confirmed by one of several identity 121 * schemes. Valid cryptographic values are signed with attached 122 * timestamp and filestamp. Individual packet trust is confirmed 123 * relative to these values by a message digest with keys generated by a 124 * reverse-order pseudorandom hash. 125 * 126 * State decomposition. These flags are lit in the order given. They are 127 * dim only when the association is demobilized. 128 * 129 * CRYPTO_FLAG_ENAB Lit upon acceptance of a CRYPTO_ASSOC message 130 * CRYPTO_FLAG_CERT Lit when a self-digned trusted certificate is 131 * accepted. 132 * CRYPTO_FLAG_VRFY Lit when identity is confirmed. 133 * CRYPTO_FLAG_PROV Lit when the first signature is verified. 134 * CRYPTO_FLAG_COOK Lit when a valid cookie is accepted. 135 * CRYPTO_FLAG_AUTO Lit when valid autokey values are accepted. 136 * CRYPTO_FLAG_SIGN Lit when the server signed certificate is 137 * accepted. 138 * CRYPTO_FLAG_LEAP Lit when the leapsecond values are accepted. 139 */ 140 /* 141 * Cryptodefines 142 */ 143 #define TAI_1972 10 /* initial TAI offset (s) */ 144 #define MAX_LEAP 100 /* max UTC leapseconds (s) */ 145 #define VALUE_LEN (6 * 4) /* min response field length */ 146 #define MAX_VALLEN (65535 - VALUE_LEN) 147 #define YEAR (60 * 60 * 24 * 365) /* seconds in year */ 148 149 /* 150 * Global cryptodata in host byte order 151 */ 152 u_int32 crypto_flags = 0x0; /* status word */ 153 int crypto_nid = KEY_TYPE_MD5; /* digest nid */ 154 char *sys_hostname = NULL; 155 char *sys_groupname = NULL; 156 static char *host_filename = NULL; /* host file name */ 157 static char *ident_filename = NULL; /* group file name */ 158 159 /* 160 * Global cryptodata in network byte order 161 */ 162 struct cert_info *cinfo = NULL; /* certificate info/value cache */ 163 struct cert_info *cert_host = NULL; /* host certificate */ 164 struct pkey_info *pkinfo = NULL; /* key info/value cache */ 165 struct value hostval; /* host value */ 166 struct value pubkey; /* public key */ 167 struct value tai_leap; /* leapseconds values */ 168 struct pkey_info *iffkey_info = NULL; /* IFF keys */ 169 struct pkey_info *gqkey_info = NULL; /* GQ keys */ 170 struct pkey_info *mvkey_info = NULL; /* MV keys */ 171 172 /* 173 * Private cryptodata in host byte order 174 */ 175 static char *passwd = NULL; /* private key password */ 176 static EVP_PKEY *host_pkey = NULL; /* host key */ 177 static EVP_PKEY *sign_pkey = NULL; /* sign key */ 178 static const EVP_MD *sign_digest = NULL; /* sign digest */ 179 static u_int sign_siglen; /* sign key length */ 180 static char *rand_file = NULL; /* random seed file */ 181 182 /* 183 * Cryptotypes 184 */ 185 static int crypto_verify (struct exten *, struct value *, 186 struct peer *); 187 static int crypto_encrypt (const u_char *, u_int, keyid_t *, 188 struct value *); 189 static int crypto_alice (struct peer *, struct value *); 190 static int crypto_alice2 (struct peer *, struct value *); 191 static int crypto_alice3 (struct peer *, struct value *); 192 static int crypto_bob (struct exten *, struct value *); 193 static int crypto_bob2 (struct exten *, struct value *); 194 static int crypto_bob3 (struct exten *, struct value *); 195 static int crypto_iff (struct exten *, struct peer *); 196 static int crypto_gq (struct exten *, struct peer *); 197 static int crypto_mv (struct exten *, struct peer *); 198 static int crypto_send (struct exten *, struct value *, int); 199 static tstamp_t crypto_time (void); 200 static void asn_to_calendar (const ASN1_TIME *, struct calendar*); 201 static struct cert_info *cert_parse (const u_char *, long, tstamp_t); 202 static int cert_sign (struct exten *, struct value *); 203 static struct cert_info *cert_install (struct exten *, struct peer *); 204 static int cert_hike (struct peer *, struct cert_info *); 205 static void cert_free (struct cert_info *); 206 static struct pkey_info *crypto_key (char *, char *, sockaddr_u *); 207 static void bighash (BIGNUM *, BIGNUM *); 208 static struct cert_info *crypto_cert (char *); 209 static u_int exten_payload_size(const struct exten *); 210 211 #ifdef SYS_WINNT 212 int 213 readlink(char * link, char * file, int len) { 214 return (-1); 215 } 216 #endif 217 218 /* 219 * session_key - generate session key 220 * 221 * This routine generates a session key from the source address, 222 * destination address, key ID and private value. The value of the 223 * session key is the MD5 hash of these values, while the next key ID is 224 * the first four octets of the hash. 225 * 226 * Returns the next key ID or 0 if there is no destination address. 227 */ 228 keyid_t 229 session_key( 230 sockaddr_u *srcadr, /* source address */ 231 sockaddr_u *dstadr, /* destination address */ 232 keyid_t keyno, /* key ID */ 233 keyid_t private, /* private value */ 234 u_long lifetime /* key lifetime */ 235 ) 236 { 237 EVP_MD_CTX *ctx; /* message digest context */ 238 u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */ 239 keyid_t keyid; /* key identifer */ 240 u_int32 header[10]; /* data in network byte order */ 241 u_int hdlen, len; 242 243 if (!dstadr) 244 return 0; 245 246 /* 247 * Generate the session key and key ID. If the lifetime is 248 * greater than zero, install the key and call it trusted. 249 */ 250 hdlen = 0; 251 switch(AF(srcadr)) { 252 case AF_INET: 253 header[0] = NSRCADR(srcadr); 254 header[1] = NSRCADR(dstadr); 255 header[2] = htonl(keyno); 256 header[3] = htonl(private); 257 hdlen = 4 * sizeof(u_int32); 258 break; 259 260 case AF_INET6: 261 memcpy(&header[0], PSOCK_ADDR6(srcadr), 262 sizeof(struct in6_addr)); 263 memcpy(&header[4], PSOCK_ADDR6(dstadr), 264 sizeof(struct in6_addr)); 265 header[8] = htonl(keyno); 266 header[9] = htonl(private); 267 hdlen = 10 * sizeof(u_int32); 268 break; 269 } 270 ctx = digest_ctx; 271 EVP_DigestInit(ctx, EVP_get_digestbynid(crypto_nid)); 272 EVP_DigestUpdate(ctx, (u_char *)header, hdlen); 273 EVP_DigestFinal(ctx, dgst, &len); 274 memcpy(&keyid, dgst, 4); 275 keyid = ntohl(keyid); 276 if (lifetime != 0) { 277 MD5auth_setkey(keyno, crypto_nid, dgst, len, NULL); 278 authtrust(keyno, lifetime); 279 } 280 DPRINTF(2, ("session_key: %s > %s %08x %08x hash %08x life %lu\n", 281 stoa(srcadr), stoa(dstadr), keyno, 282 private, keyid, lifetime)); 283 284 return (keyid); 285 } 286 287 288 /* 289 * make_keylist - generate key list 290 * 291 * Returns 292 * XEVNT_OK success 293 * XEVNT_ERR protocol error 294 * 295 * This routine constructs a pseudo-random sequence by repeatedly 296 * hashing the session key starting from a given source address, 297 * destination address, private value and the next key ID of the 298 * preceeding session key. The last entry on the list is saved along 299 * with its sequence number and public signature. 300 */ 301 int 302 make_keylist( 303 struct peer *peer, /* peer structure pointer */ 304 endpt *dstadr /* interface */ 305 ) 306 { 307 EVP_MD_CTX *ctx; /* signature context */ 308 tstamp_t tstamp; /* NTP timestamp */ 309 struct autokey *ap; /* autokey pointer */ 310 struct value *vp; /* value pointer */ 311 keyid_t keyid = 0; /* next key ID */ 312 keyid_t cookie; /* private value */ 313 long lifetime; 314 u_int len, mpoll; 315 int i; 316 317 if (!dstadr) 318 return XEVNT_ERR; 319 320 /* 321 * Allocate the key list if necessary. 322 */ 323 tstamp = crypto_time(); 324 if (peer->keylist == NULL) 325 peer->keylist = eallocarray(NTP_MAXSESSION, 326 sizeof(keyid_t)); 327 328 /* 329 * Generate an initial key ID which is unique and greater than 330 * NTP_MAXKEY. 331 */ 332 while (1) { 333 keyid = ntp_random() & 0xffffffff; 334 if (keyid <= NTP_MAXKEY) 335 continue; 336 337 if (authhavekey(keyid)) 338 continue; 339 break; 340 } 341 342 /* 343 * Generate up to NTP_MAXSESSION session keys. Stop if the 344 * next one would not be unique or not a session key ID or if 345 * it would expire before the next poll. The private value 346 * included in the hash is zero if broadcast mode, the peer 347 * cookie if client mode or the host cookie if symmetric modes. 348 */ 349 mpoll = 1U << min(peer->ppoll, peer->hpoll); 350 lifetime = min((1UL << sys_automax), NTP_MAXSESSION * mpoll); 351 if (peer->hmode == MODE_BROADCAST) 352 cookie = 0; 353 else 354 cookie = peer->pcookie; 355 for (i = 0; i < NTP_MAXSESSION; i++) { 356 peer->keylist[i] = keyid; 357 peer->keynumber = i; 358 keyid = session_key(&dstadr->sin, &peer->srcadr, keyid, 359 cookie, lifetime + mpoll); 360 lifetime -= mpoll; 361 if (auth_havekey(keyid) || keyid <= NTP_MAXKEY || 362 lifetime < 0 || tstamp == 0) 363 break; 364 } 365 366 /* 367 * Save the last session key ID, sequence number and timestamp, 368 * then sign these values for later retrieval by the clients. Be 369 * careful not to use invalid key media. Use the public values 370 * timestamp as filestamp. 371 */ 372 vp = &peer->sndval; 373 if (vp->ptr == NULL) 374 vp->ptr = emalloc(sizeof(struct autokey)); 375 ap = (struct autokey *)vp->ptr; 376 ap->seq = htonl(peer->keynumber); 377 ap->key = htonl(keyid); 378 vp->tstamp = htonl(tstamp); 379 vp->fstamp = hostval.tstamp; 380 vp->vallen = htonl(sizeof(struct autokey)); 381 vp->siglen = 0; 382 if (tstamp != 0) { 383 if (vp->sig == NULL) 384 vp->sig = emalloc(sign_siglen); 385 ctx = digest_ctx; 386 EVP_SignInit(ctx, sign_digest); 387 EVP_SignUpdate(ctx, (u_char *)vp, 12); 388 EVP_SignUpdate(ctx, vp->ptr, sizeof(struct autokey)); 389 if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) { 390 INSIST(len <= sign_siglen); 391 vp->siglen = htonl(len); 392 peer->flags |= FLAG_ASSOC; 393 } 394 } 395 DPRINTF(1, ("make_keys: %d %08x %08x ts %u fs %u poll %d\n", 396 peer->keynumber, keyid, cookie, ntohl(vp->tstamp), 397 ntohl(vp->fstamp), peer->hpoll)); 398 return (XEVNT_OK); 399 } 400 401 402 /* 403 * crypto_recv - parse extension fields 404 * 405 * This routine is called when the packet has been matched to an 406 * association and passed sanity, format and MAC checks. We believe the 407 * extension field values only if the field has proper format and 408 * length, the timestamp and filestamp are valid and the signature has 409 * valid length and is verified. There are a few cases where some values 410 * are believed even if the signature fails, but only if the proventic 411 * bit is not set. 412 * 413 * Returns 414 * XEVNT_OK success 415 * XEVNT_ERR protocol error 416 * XEVNT_LEN bad field format or length 417 */ 418 int 419 crypto_recv( 420 struct peer *peer, /* peer structure pointer */ 421 struct recvbuf *rbufp /* packet buffer pointer */ 422 ) 423 { 424 const EVP_MD *dp; /* message digest algorithm */ 425 u_int32 *pkt; /* receive packet pointer */ 426 struct autokey *ap, *bp; /* autokey pointer */ 427 struct exten *ep, *fp; /* extension pointers */ 428 struct cert_info *xinfo; /* certificate info pointer */ 429 int macbytes; /* length of MAC field, signed by intention */ 430 int authlen; /* offset of MAC field */ 431 associd_t associd; /* association ID */ 432 tstamp_t fstamp = 0; /* filestamp */ 433 u_int len; /* extension field length */ 434 u_int code; /* extension field opcode */ 435 u_int vallen = 0; /* value length */ 436 X509 *cert; /* X509 certificate */ 437 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 438 keyid_t cookie; /* crumbles */ 439 int hismode; /* packet mode */ 440 int rval = XEVNT_OK; 441 const u_char *puch; 442 u_int32 temp32; 443 444 /* 445 * Initialize. Note that the packet has already been checked for 446 * valid format and extension field lengths. First extract the 447 * field length, command code and association ID in host byte 448 * order. These are used with all commands and modes. Then check 449 * the version number, which must be 2, and length, which must 450 * be at least 8 for requests and VALUE_LEN (24) for responses. 451 * Packets that fail either test sink without a trace. The 452 * association ID is saved only if nonzero. 453 */ 454 authlen = LEN_PKT_NOMAC; 455 hismode = (int)PKT_MODE((&rbufp->recv_pkt)->li_vn_mode); 456 while ((macbytes = rbufp->recv_length - authlen) > (int)MAX_MAC_LEN) { 457 /* We can be reasonably sure that we can read at least 458 * the opcode and the size field here. More stringent 459 * checks follow up shortly. 460 */ 461 pkt = (u_int32 *)&rbufp->recv_pkt + authlen / 4; 462 ep = (struct exten *)pkt; 463 code = ntohl(ep->opcode) & 0xffff0000; 464 len = ntohl(ep->opcode) & 0x0000ffff; 465 // HMS: Why pkt[1] instead of ep->associd ? 466 associd = (associd_t)ntohl(pkt[1]); 467 rval = XEVNT_OK; 468 DPRINTF(1, ("crypto_recv: flags 0x%x ext offset %d len %u code 0x%x associd %d\n", 469 peer->crypto, authlen, len, code >> 16, 470 associd)); 471 472 /* 473 * Check version number and field length. If bad, 474 * quietly ignore the packet. 475 */ 476 if (((code >> 24) & 0x3f) != CRYPTO_VN || len < 8) { 477 sys_badlength++; 478 code |= CRYPTO_ERROR; 479 } 480 481 /* Check if the declared size fits into the remaining 482 * buffer. We *know* 'macbytes' > 0 here! 483 */ 484 if (len > (u_int)macbytes) { 485 DPRINTF(1, ("crypto_recv: possible attack detected, associd %d\n", 486 associd)); 487 return XEVNT_LEN; 488 } 489 490 /* Check if the paylod of the extension fits into the 491 * declared frame. 492 */ 493 if (len >= VALUE_LEN) { 494 fstamp = ntohl(ep->fstamp); 495 vallen = ntohl(ep->vallen); 496 /* 497 * Bug 2761: I hope this isn't too early... 498 */ 499 if ( vallen == 0 500 || len - VALUE_LEN < vallen) 501 return XEVNT_LEN; 502 } 503 switch (code) { 504 505 /* 506 * Install status word, host name, signature scheme and 507 * association ID. In OpenSSL the signature algorithm is 508 * bound to the digest algorithm, so the NID completely 509 * defines the signature scheme. Note the request and 510 * response are identical, but neither is validated by 511 * signature. The request is processed here only in 512 * symmetric modes. The server name field might be 513 * useful to implement access controls in future. 514 */ 515 case CRYPTO_ASSOC: 516 517 /* 518 * If our state machine is running when this 519 * message arrives, the other fellow might have 520 * restarted. However, this could be an 521 * intruder, so just clamp the poll interval and 522 * find out for ourselves. Otherwise, pass the 523 * extension field to the transmit side. 524 */ 525 if (peer->crypto & CRYPTO_FLAG_CERT) { 526 rval = XEVNT_ERR; 527 break; 528 } 529 if (peer->cmmd) { 530 if (peer->assoc != associd) { 531 rval = XEVNT_ERR; 532 break; 533 } 534 free(peer->cmmd); /* will be set again! */ 535 } 536 fp = emalloc(len); 537 memcpy(fp, ep, len); 538 fp->associd = htonl(peer->associd); 539 peer->cmmd = fp; 540 /* fall through */ 541 542 case CRYPTO_ASSOC | CRYPTO_RESP: 543 544 /* 545 * Discard the message if it has already been 546 * stored or the message has been amputated. 547 */ 548 if (peer->crypto) { 549 if (peer->assoc != associd) 550 rval = XEVNT_ERR; 551 break; 552 } 553 INSIST(len >= VALUE_LEN); 554 if (vallen == 0 || vallen > MAXHOSTNAME || 555 len - VALUE_LEN < vallen) { 556 rval = XEVNT_LEN; 557 break; 558 } 559 DPRINTF(1, ("crypto_recv: ident host 0x%x %d server 0x%x %d\n", 560 crypto_flags, peer->associd, fstamp, 561 peer->assoc)); 562 temp32 = crypto_flags & CRYPTO_FLAG_MASK; 563 564 /* 565 * If the client scheme is PC, the server scheme 566 * must be PC. The public key and identity are 567 * presumed valid, so we skip the certificate 568 * and identity exchanges and move immediately 569 * to the cookie exchange which confirms the 570 * server signature. 571 */ 572 if (crypto_flags & CRYPTO_FLAG_PRIV) { 573 if (!(fstamp & CRYPTO_FLAG_PRIV)) { 574 rval = XEVNT_KEY; 575 break; 576 } 577 fstamp |= CRYPTO_FLAG_CERT | 578 CRYPTO_FLAG_VRFY | CRYPTO_FLAG_SIGN; 579 580 /* 581 * It is an error if either peer supports 582 * identity, but the other does not. 583 */ 584 } else if (hismode == MODE_ACTIVE || hismode == 585 MODE_PASSIVE) { 586 if ((temp32 && !(fstamp & 587 CRYPTO_FLAG_MASK)) || 588 (!temp32 && (fstamp & 589 CRYPTO_FLAG_MASK))) { 590 rval = XEVNT_KEY; 591 break; 592 } 593 } 594 595 /* 596 * Discard the message if the signature digest 597 * NID is not supported. 598 */ 599 temp32 = (fstamp >> 16) & 0xffff; 600 dp = 601 (const EVP_MD *)EVP_get_digestbynid(temp32); 602 if (dp == NULL) { 603 rval = XEVNT_MD; 604 break; 605 } 606 607 /* 608 * Save status word, host name and message 609 * digest/signature type. If this is from a 610 * broadcast and the association ID has changed, 611 * request the autokey values. 612 */ 613 peer->assoc = associd; 614 if (hismode == MODE_SERVER) 615 fstamp |= CRYPTO_FLAG_AUTO; 616 if (!(fstamp & CRYPTO_FLAG_TAI)) 617 fstamp |= CRYPTO_FLAG_LEAP; 618 RAND_bytes((u_char *)&peer->hcookie, 4); 619 peer->crypto = fstamp; 620 peer->digest = dp; 621 if (peer->subject != NULL) 622 free(peer->subject); 623 peer->subject = emalloc(vallen + 1); 624 memcpy(peer->subject, ep->pkt, vallen); 625 peer->subject[vallen] = '\0'; 626 if (peer->issuer != NULL) 627 free(peer->issuer); 628 peer->issuer = estrdup(peer->subject); 629 snprintf(statstr, sizeof(statstr), 630 "assoc %d %d host %s %s", peer->associd, 631 peer->assoc, peer->subject, 632 OBJ_nid2ln(temp32)); 633 record_crypto_stats(&peer->srcadr, statstr); 634 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 635 break; 636 637 /* 638 * Decode X509 certificate in ASN.1 format and extract 639 * the data containing, among other things, subject 640 * name and public key. In the default identification 641 * scheme, the certificate trail is followed to a self 642 * signed trusted certificate. 643 */ 644 case CRYPTO_CERT | CRYPTO_RESP: 645 646 /* 647 * Discard the message if empty or invalid. 648 */ 649 if (len < VALUE_LEN) 650 break; 651 652 if ((rval = crypto_verify(ep, NULL, peer)) != 653 XEVNT_OK) 654 break; 655 656 /* 657 * Scan the certificate list to delete old 658 * versions and link the newest version first on 659 * the list. Then, verify the signature. If the 660 * certificate is bad or missing, just ignore 661 * it. 662 */ 663 if ((xinfo = cert_install(ep, peer)) == NULL) { 664 rval = XEVNT_CRT; 665 break; 666 } 667 if ((rval = cert_hike(peer, xinfo)) != XEVNT_OK) 668 break; 669 670 /* 671 * We plug in the public key and lifetime from 672 * the first certificate received. However, note 673 * that this certificate might not be signed by 674 * the server, so we can't check the 675 * signature/digest NID. 676 */ 677 if (peer->pkey == NULL) { 678 puch = xinfo->cert.ptr; 679 cert = d2i_X509(NULL, &puch, 680 ntohl(xinfo->cert.vallen)); 681 peer->pkey = X509_get_pubkey(cert); 682 X509_free(cert); 683 } 684 peer->flash &= ~TEST8; 685 temp32 = xinfo->nid; 686 snprintf(statstr, sizeof(statstr), 687 "cert %s %s 0x%x %s (%u) fs %u", 688 xinfo->subject, xinfo->issuer, xinfo->flags, 689 OBJ_nid2ln(temp32), temp32, 690 ntohl(ep->fstamp)); 691 record_crypto_stats(&peer->srcadr, statstr); 692 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 693 break; 694 695 /* 696 * Schnorr (IFF) identity scheme. This scheme is 697 * designed for use with shared secret server group keys 698 * and where the certificate may be generated by a third 699 * party. The client sends a challenge to the server, 700 * which performs a calculation and returns the result. 701 * A positive result is possible only if both client and 702 * server contain the same secret group key. 703 */ 704 case CRYPTO_IFF | CRYPTO_RESP: 705 706 /* 707 * Discard the message if invalid. 708 */ 709 if ((rval = crypto_verify(ep, NULL, peer)) != 710 XEVNT_OK) 711 break; 712 713 /* 714 * If the challenge matches the response, the 715 * server public key, signature and identity are 716 * all verified at the same time. The server is 717 * declared trusted, so we skip further 718 * certificate exchanges and move immediately to 719 * the cookie exchange. 720 */ 721 if ((rval = crypto_iff(ep, peer)) != XEVNT_OK) 722 break; 723 724 peer->crypto |= CRYPTO_FLAG_VRFY; 725 peer->flash &= ~TEST8; 726 snprintf(statstr, sizeof(statstr), "iff %s fs %u", 727 peer->issuer, ntohl(ep->fstamp)); 728 record_crypto_stats(&peer->srcadr, statstr); 729 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 730 break; 731 732 /* 733 * Guillou-Quisquater (GQ) identity scheme. This scheme 734 * is designed for use with public certificates carrying 735 * the GQ public key in an extension field. The client 736 * sends a challenge to the server, which performs a 737 * calculation and returns the result. A positive result 738 * is possible only if both client and server contain 739 * the same group key and the server has the matching GQ 740 * private key. 741 */ 742 case CRYPTO_GQ | CRYPTO_RESP: 743 744 /* 745 * Discard the message if invalid 746 */ 747 if ((rval = crypto_verify(ep, NULL, peer)) != 748 XEVNT_OK) 749 break; 750 751 /* 752 * If the challenge matches the response, the 753 * server public key, signature and identity are 754 * all verified at the same time. The server is 755 * declared trusted, so we skip further 756 * certificate exchanges and move immediately to 757 * the cookie exchange. 758 */ 759 if ((rval = crypto_gq(ep, peer)) != XEVNT_OK) 760 break; 761 762 peer->crypto |= CRYPTO_FLAG_VRFY; 763 peer->flash &= ~TEST8; 764 snprintf(statstr, sizeof(statstr), "gq %s fs %u", 765 peer->issuer, ntohl(ep->fstamp)); 766 record_crypto_stats(&peer->srcadr, statstr); 767 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 768 break; 769 770 /* 771 * Mu-Varadharajan (MV) identity scheme. This scheme is 772 * designed for use with three levels of trust, trusted 773 * host, server and client. The trusted host key is 774 * opaque to servers and clients; the server keys are 775 * opaque to clients and each client key is different. 776 * Client keys can be revoked without requiring new key 777 * generations. 778 */ 779 case CRYPTO_MV | CRYPTO_RESP: 780 781 /* 782 * Discard the message if invalid. 783 */ 784 if ((rval = crypto_verify(ep, NULL, peer)) != 785 XEVNT_OK) 786 break; 787 788 /* 789 * If the challenge matches the response, the 790 * server public key, signature and identity are 791 * all verified at the same time. The server is 792 * declared trusted, so we skip further 793 * certificate exchanges and move immediately to 794 * the cookie exchange. 795 */ 796 if ((rval = crypto_mv(ep, peer)) != XEVNT_OK) 797 break; 798 799 peer->crypto |= CRYPTO_FLAG_VRFY; 800 peer->flash &= ~TEST8; 801 snprintf(statstr, sizeof(statstr), "mv %s fs %u", 802 peer->issuer, ntohl(ep->fstamp)); 803 record_crypto_stats(&peer->srcadr, statstr); 804 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 805 break; 806 807 808 /* 809 * Cookie response in client and symmetric modes. If the 810 * cookie bit is set, the working cookie is the EXOR of 811 * the current and new values. 812 */ 813 case CRYPTO_COOK | CRYPTO_RESP: 814 815 /* 816 * Discard the message if invalid or signature 817 * not verified with respect to the cookie 818 * values. 819 */ 820 if ((rval = crypto_verify(ep, &peer->cookval, 821 peer)) != XEVNT_OK) 822 break; 823 824 /* 825 * Decrypt the cookie, hunting all the time for 826 * errors. 827 */ 828 if (vallen == (u_int)EVP_PKEY_size(host_pkey)) { 829 RSA *rsa = EVP_PKEY_get1_RSA(host_pkey); 830 u_int32 *cookiebuf = malloc(RSA_size(rsa)); 831 if (!cookiebuf) { 832 rval = XEVNT_CKY; 833 break; 834 } 835 836 if (RSA_private_decrypt(vallen, 837 (u_char *)ep->pkt, 838 (u_char *)cookiebuf, 839 rsa, 840 RSA_PKCS1_OAEP_PADDING) != 4) { 841 rval = XEVNT_CKY; 842 free(cookiebuf); 843 break; 844 } else { 845 cookie = ntohl(*cookiebuf); 846 free(cookiebuf); 847 } 848 RSA_free(rsa); 849 } else { 850 rval = XEVNT_CKY; 851 break; 852 } 853 854 /* 855 * Install cookie values and light the cookie 856 * bit. If this is not broadcast client mode, we 857 * are done here. 858 */ 859 key_expire(peer); 860 if (hismode == MODE_ACTIVE || hismode == 861 MODE_PASSIVE) 862 peer->pcookie = peer->hcookie ^ cookie; 863 else 864 peer->pcookie = cookie; 865 peer->crypto |= CRYPTO_FLAG_COOK; 866 peer->flash &= ~TEST8; 867 snprintf(statstr, sizeof(statstr), 868 "cook %x ts %u fs %u", peer->pcookie, 869 ntohl(ep->tstamp), ntohl(ep->fstamp)); 870 record_crypto_stats(&peer->srcadr, statstr); 871 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 872 break; 873 874 /* 875 * Install autokey values in broadcast client and 876 * symmetric modes. We have to do this every time the 877 * sever/peer cookie changes or a new keylist is 878 * rolled. Ordinarily, this is automatic as this message 879 * is piggybacked on the first NTP packet sent upon 880 * either of these events. Note that a broadcast client 881 * or symmetric peer can receive this response without a 882 * matching request. 883 */ 884 case CRYPTO_AUTO | CRYPTO_RESP: 885 886 /* 887 * Discard the message if invalid or signature 888 * not verified with respect to the receive 889 * autokey values. 890 */ 891 if ((rval = crypto_verify(ep, &peer->recval, 892 peer)) != XEVNT_OK) 893 break; 894 895 /* 896 * Discard the message if a broadcast client and 897 * the association ID does not match. This might 898 * happen if a broacast server restarts the 899 * protocol. A protocol restart will occur at 900 * the next ASSOC message. 901 */ 902 if ((peer->cast_flags & MDF_BCLNT) && 903 peer->assoc != associd) 904 break; 905 906 /* 907 * Install autokey values and light the 908 * autokey bit. This is not hard. 909 */ 910 if (ep->tstamp == 0) 911 break; 912 913 if (peer->recval.ptr == NULL) 914 peer->recval.ptr = 915 emalloc(sizeof(struct autokey)); 916 bp = (struct autokey *)peer->recval.ptr; 917 peer->recval.tstamp = ep->tstamp; 918 peer->recval.fstamp = ep->fstamp; 919 ap = (struct autokey *)ep->pkt; 920 bp->seq = ntohl(ap->seq); 921 bp->key = ntohl(ap->key); 922 peer->pkeyid = bp->key; 923 peer->crypto |= CRYPTO_FLAG_AUTO; 924 peer->flash &= ~TEST8; 925 snprintf(statstr, sizeof(statstr), 926 "auto seq %d key %x ts %u fs %u", bp->seq, 927 bp->key, ntohl(ep->tstamp), 928 ntohl(ep->fstamp)); 929 record_crypto_stats(&peer->srcadr, statstr); 930 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 931 break; 932 933 /* 934 * X509 certificate sign response. Validate the 935 * certificate signed by the server and install. Later 936 * this can be provided to clients of this server in 937 * lieu of the self signed certificate in order to 938 * validate the public key. 939 */ 940 case CRYPTO_SIGN | CRYPTO_RESP: 941 942 /* 943 * Discard the message if invalid. 944 */ 945 if ((rval = crypto_verify(ep, NULL, peer)) != 946 XEVNT_OK) 947 break; 948 949 /* 950 * Scan the certificate list to delete old 951 * versions and link the newest version first on 952 * the list. 953 */ 954 if ((xinfo = cert_install(ep, peer)) == NULL) { 955 rval = XEVNT_CRT; 956 break; 957 } 958 peer->crypto |= CRYPTO_FLAG_SIGN; 959 peer->flash &= ~TEST8; 960 temp32 = xinfo->nid; 961 snprintf(statstr, sizeof(statstr), 962 "sign %s %s 0x%x %s (%u) fs %u", 963 xinfo->subject, xinfo->issuer, xinfo->flags, 964 OBJ_nid2ln(temp32), temp32, 965 ntohl(ep->fstamp)); 966 record_crypto_stats(&peer->srcadr, statstr); 967 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 968 break; 969 970 /* 971 * Install leapseconds values. While the leapsecond 972 * values epoch, TAI offset and values expiration epoch 973 * are retained, only the current TAI offset is provided 974 * via the kernel to other applications. 975 */ 976 case CRYPTO_LEAP | CRYPTO_RESP: 977 /* 978 * Discard the message if invalid. We can't 979 * compare the value timestamps here, as they 980 * can be updated by different servers. 981 */ 982 rval = crypto_verify(ep, NULL, peer); 983 if ((rval != XEVNT_OK ) || 984 (vallen != 3*sizeof(uint32_t)) ) 985 break; 986 987 /* Check if we can update the basic TAI offset 988 * for our current leap frame. This is a hack 989 * and ignores the time stamps in the autokey 990 * message. 991 */ 992 if (sys_leap != LEAP_NOTINSYNC) 993 leapsec_autokey_tai(ntohl(ep->pkt[0]), 994 rbufp->recv_time.l_ui, NULL); 995 tai_leap.tstamp = ep->tstamp; 996 tai_leap.fstamp = ep->fstamp; 997 crypto_update(); 998 mprintf_event(EVNT_TAI, peer, 999 "%d seconds", ntohl(ep->pkt[0])); 1000 peer->crypto |= CRYPTO_FLAG_LEAP; 1001 peer->flash &= ~TEST8; 1002 snprintf(statstr, sizeof(statstr), 1003 "leap TAI offset %d at %u expire %u fs %u", 1004 ntohl(ep->pkt[0]), ntohl(ep->pkt[1]), 1005 ntohl(ep->pkt[2]), ntohl(ep->fstamp)); 1006 record_crypto_stats(&peer->srcadr, statstr); 1007 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 1008 break; 1009 1010 /* 1011 * We come here in symmetric modes for miscellaneous 1012 * commands that have value fields but are processed on 1013 * the transmit side. All we need do here is check for 1014 * valid field length. Note that ASSOC is handled 1015 * separately. 1016 */ 1017 case CRYPTO_CERT: 1018 case CRYPTO_IFF: 1019 case CRYPTO_GQ: 1020 case CRYPTO_MV: 1021 case CRYPTO_COOK: 1022 case CRYPTO_SIGN: 1023 if (len < VALUE_LEN) { 1024 rval = XEVNT_LEN; 1025 break; 1026 } 1027 /* fall through */ 1028 1029 /* 1030 * We come here in symmetric modes for requests 1031 * requiring a response (above plus AUTO and LEAP) and 1032 * for responses. If a request, save the extension field 1033 * for later; invalid requests will be caught on the 1034 * transmit side. If an error or invalid response, 1035 * declare a protocol error. 1036 */ 1037 default: 1038 if (code & (CRYPTO_RESP | CRYPTO_ERROR)) { 1039 rval = XEVNT_ERR; 1040 } else if (peer->cmmd == NULL) { 1041 fp = emalloc(len); 1042 memcpy(fp, ep, len); 1043 peer->cmmd = fp; 1044 } 1045 } 1046 1047 /* 1048 * The first error found terminates the extension field 1049 * scan and we return the laundry to the caller. 1050 */ 1051 if (rval != XEVNT_OK) { 1052 snprintf(statstr, sizeof(statstr), 1053 "%04x %d %02x %s", htonl(ep->opcode), 1054 associd, rval, eventstr(rval)); 1055 record_crypto_stats(&peer->srcadr, statstr); 1056 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 1057 return (rval); 1058 } 1059 authlen += (len + 3) / 4 * 4; 1060 } 1061 return (rval); 1062 } 1063 1064 1065 /* 1066 * crypto_xmit - construct extension fields 1067 * 1068 * This routine is called both when an association is configured and 1069 * when one is not. The only case where this matters is to retrieve the 1070 * autokey information, in which case the caller has to provide the 1071 * association ID to match the association. 1072 * 1073 * Side effect: update the packet offset. 1074 * 1075 * Errors 1076 * XEVNT_OK success 1077 * XEVNT_CRT bad or missing certificate 1078 * XEVNT_ERR protocol error 1079 * XEVNT_LEN bad field format or length 1080 * XEVNT_PER host certificate expired 1081 */ 1082 int 1083 crypto_xmit( 1084 struct peer *peer, /* peer structure pointer */ 1085 struct pkt *xpkt, /* transmit packet pointer */ 1086 struct recvbuf *rbufp, /* receive buffer pointer */ 1087 int start, /* offset to extension field */ 1088 struct exten *ep, /* extension pointer */ 1089 keyid_t cookie /* session cookie */ 1090 ) 1091 { 1092 struct exten *fp; /* extension pointers */ 1093 struct cert_info *cp, *xp, *yp; /* cert info/value pointer */ 1094 sockaddr_u *srcadr_sin; /* source address */ 1095 u_int32 *pkt; /* packet pointer */ 1096 u_int opcode; /* extension field opcode */ 1097 char certname[MAXHOSTNAME + 1]; /* subject name buffer */ 1098 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 1099 tstamp_t tstamp; 1100 struct calendar tscal; 1101 u_int vallen; 1102 struct value vtemp; 1103 associd_t associd; 1104 int rval; 1105 int len; 1106 keyid_t tcookie; 1107 1108 /* 1109 * Generate the requested extension field request code, length 1110 * and association ID. If this is a response and the host is not 1111 * synchronized, light the error bit and go home. 1112 */ 1113 pkt = (u_int32 *)xpkt + start / 4; 1114 fp = (struct exten *)pkt; 1115 opcode = ntohl(ep->opcode); 1116 if (peer != NULL) { 1117 srcadr_sin = &peer->srcadr; 1118 if (!(opcode & CRYPTO_RESP)) 1119 peer->opcode = ep->opcode; 1120 } else { 1121 srcadr_sin = &rbufp->recv_srcadr; 1122 } 1123 associd = (associd_t) ntohl(ep->associd); 1124 len = 8; 1125 fp->opcode = htonl((opcode & 0xffff0000) | len); 1126 fp->associd = ep->associd; 1127 rval = XEVNT_OK; 1128 tstamp = crypto_time(); 1129 switch (opcode & 0xffff0000) { 1130 1131 /* 1132 * Send association request and response with status word and 1133 * host name. Note, this message is not signed and the filestamp 1134 * contains only the status word. 1135 */ 1136 case CRYPTO_ASSOC: 1137 case CRYPTO_ASSOC | CRYPTO_RESP: 1138 len = crypto_send(fp, &hostval, start); 1139 fp->fstamp = htonl(crypto_flags); 1140 break; 1141 1142 /* 1143 * Send certificate request. Use the values from the extension 1144 * field. 1145 */ 1146 case CRYPTO_CERT: 1147 memset(&vtemp, 0, sizeof(vtemp)); 1148 vtemp.tstamp = ep->tstamp; 1149 vtemp.fstamp = ep->fstamp; 1150 vtemp.vallen = ep->vallen; 1151 vtemp.ptr = (u_char *)ep->pkt; 1152 len = crypto_send(fp, &vtemp, start); 1153 break; 1154 1155 /* 1156 * Send sign request. Use the host certificate, which is self- 1157 * signed and may or may not be trusted. 1158 */ 1159 case CRYPTO_SIGN: 1160 (void)ntpcal_ntp_to_date(&tscal, tstamp, NULL); 1161 if ((calcomp(&tscal, &(cert_host->first)) < 0) 1162 || (calcomp(&tscal, &(cert_host->last)) > 0)) 1163 rval = XEVNT_PER; 1164 else 1165 len = crypto_send(fp, &cert_host->cert, start); 1166 break; 1167 1168 /* 1169 * Send certificate response. Use the name in the extension 1170 * field to find the certificate in the cache. If the request 1171 * contains no subject name, assume the name of this host. This 1172 * is for backwards compatibility. Private certificates are 1173 * never sent. 1174 * 1175 * There may be several certificates matching the request. First 1176 * choice is a self-signed trusted certificate; second choice is 1177 * any certificate signed by another host. There is no third 1178 * choice. 1179 */ 1180 case CRYPTO_CERT | CRYPTO_RESP: 1181 vallen = exten_payload_size(ep); /* Must be <64k */ 1182 if (vallen == 0 || vallen >= sizeof(certname) ) { 1183 rval = XEVNT_LEN; 1184 break; 1185 } 1186 1187 /* 1188 * Find all public valid certificates with matching 1189 * subject. If a self-signed, trusted certificate is 1190 * found, use that certificate. If not, use the last non 1191 * self-signed certificate. 1192 */ 1193 memcpy(certname, ep->pkt, vallen); 1194 certname[vallen] = '\0'; 1195 xp = yp = NULL; 1196 for (cp = cinfo; cp != NULL; cp = cp->link) { 1197 if (cp->flags & (CERT_PRIV | CERT_ERROR)) 1198 continue; 1199 1200 if (strcmp(certname, cp->subject) != 0) 1201 continue; 1202 1203 if (strcmp(certname, cp->issuer) != 0) 1204 yp = cp; 1205 else if (cp ->flags & CERT_TRUST) 1206 xp = cp; 1207 continue; 1208 } 1209 1210 /* 1211 * Be careful who you trust. If the certificate is not 1212 * found, return an empty response. Note that we dont 1213 * enforce lifetimes here. 1214 * 1215 * The timestamp and filestamp are taken from the 1216 * certificate value structure. For all certificates the 1217 * timestamp is the latest signature update time. For 1218 * host and imported certificates the filestamp is the 1219 * creation epoch. For signed certificates the filestamp 1220 * is the creation epoch of the trusted certificate at 1221 * the root of the certificate trail. In principle, this 1222 * allows strong checking for signature masquerade. 1223 */ 1224 if (xp == NULL) 1225 xp = yp; 1226 if (xp == NULL) 1227 break; 1228 1229 if (tstamp == 0) 1230 break; 1231 1232 len = crypto_send(fp, &xp->cert, start); 1233 break; 1234 1235 /* 1236 * Send challenge in Schnorr (IFF) identity scheme. 1237 */ 1238 case CRYPTO_IFF: 1239 if (peer == NULL) 1240 break; /* hack attack */ 1241 1242 if ((rval = crypto_alice(peer, &vtemp)) == XEVNT_OK) { 1243 len = crypto_send(fp, &vtemp, start); 1244 value_free(&vtemp); 1245 } 1246 break; 1247 1248 /* 1249 * Send response in Schnorr (IFF) identity scheme. 1250 */ 1251 case CRYPTO_IFF | CRYPTO_RESP: 1252 if ((rval = crypto_bob(ep, &vtemp)) == XEVNT_OK) { 1253 len = crypto_send(fp, &vtemp, start); 1254 value_free(&vtemp); 1255 } 1256 break; 1257 1258 /* 1259 * Send challenge in Guillou-Quisquater (GQ) identity scheme. 1260 */ 1261 case CRYPTO_GQ: 1262 if (peer == NULL) 1263 break; /* hack attack */ 1264 1265 if ((rval = crypto_alice2(peer, &vtemp)) == XEVNT_OK) { 1266 len = crypto_send(fp, &vtemp, start); 1267 value_free(&vtemp); 1268 } 1269 break; 1270 1271 /* 1272 * Send response in Guillou-Quisquater (GQ) identity scheme. 1273 */ 1274 case CRYPTO_GQ | CRYPTO_RESP: 1275 if ((rval = crypto_bob2(ep, &vtemp)) == XEVNT_OK) { 1276 len = crypto_send(fp, &vtemp, start); 1277 value_free(&vtemp); 1278 } 1279 break; 1280 1281 /* 1282 * Send challenge in MV identity scheme. 1283 */ 1284 case CRYPTO_MV: 1285 if (peer == NULL) 1286 break; /* hack attack */ 1287 1288 if ((rval = crypto_alice3(peer, &vtemp)) == XEVNT_OK) { 1289 len = crypto_send(fp, &vtemp, start); 1290 value_free(&vtemp); 1291 } 1292 break; 1293 1294 /* 1295 * Send response in MV identity scheme. 1296 */ 1297 case CRYPTO_MV | CRYPTO_RESP: 1298 if ((rval = crypto_bob3(ep, &vtemp)) == XEVNT_OK) { 1299 len = crypto_send(fp, &vtemp, start); 1300 value_free(&vtemp); 1301 } 1302 break; 1303 1304 /* 1305 * Send certificate sign response. The integrity of the request 1306 * certificate has already been verified on the receive side. 1307 * Sign the response using the local server key. Use the 1308 * filestamp from the request and use the timestamp as the 1309 * current time. Light the error bit if the certificate is 1310 * invalid or contains an unverified signature. 1311 */ 1312 case CRYPTO_SIGN | CRYPTO_RESP: 1313 if ((rval = cert_sign(ep, &vtemp)) == XEVNT_OK) { 1314 len = crypto_send(fp, &vtemp, start); 1315 value_free(&vtemp); 1316 } 1317 break; 1318 1319 /* 1320 * Send public key and signature. Use the values from the public 1321 * key. 1322 */ 1323 case CRYPTO_COOK: 1324 len = crypto_send(fp, &pubkey, start); 1325 break; 1326 1327 /* 1328 * Encrypt and send cookie and signature. Light the error bit if 1329 * anything goes wrong. 1330 */ 1331 case CRYPTO_COOK | CRYPTO_RESP: 1332 vallen = ntohl(ep->vallen); /* Must be <64k */ 1333 if ( vallen == 0 1334 || (vallen >= MAX_VALLEN) 1335 || (opcode & 0x0000ffff) < VALUE_LEN + vallen) { 1336 rval = XEVNT_LEN; 1337 break; 1338 } 1339 if (peer == NULL) 1340 tcookie = cookie; 1341 else 1342 tcookie = peer->hcookie; 1343 if ((rval = crypto_encrypt((const u_char *)ep->pkt, vallen, &tcookie, &vtemp)) 1344 == XEVNT_OK) { 1345 len = crypto_send(fp, &vtemp, start); 1346 value_free(&vtemp); 1347 } 1348 break; 1349 1350 /* 1351 * Find peer and send autokey data and signature in broadcast 1352 * server and symmetric modes. Use the values in the autokey 1353 * structure. If no association is found, either the server has 1354 * restarted with new associations or some perp has replayed an 1355 * old message, in which case light the error bit. 1356 */ 1357 case CRYPTO_AUTO | CRYPTO_RESP: 1358 if (peer == NULL) { 1359 if ((peer = findpeerbyassoc(associd)) == NULL) { 1360 rval = XEVNT_ERR; 1361 break; 1362 } 1363 } 1364 peer->flags &= ~FLAG_ASSOC; 1365 len = crypto_send(fp, &peer->sndval, start); 1366 break; 1367 1368 /* 1369 * Send leapseconds values and signature. Use the values from 1370 * the tai structure. If no table has been loaded, just send an 1371 * empty request. 1372 */ 1373 case CRYPTO_LEAP | CRYPTO_RESP: 1374 len = crypto_send(fp, &tai_leap, start); 1375 break; 1376 1377 /* 1378 * Default - Send a valid command for unknown requests; send 1379 * an error response for unknown resonses. 1380 */ 1381 default: 1382 if (opcode & CRYPTO_RESP) 1383 rval = XEVNT_ERR; 1384 } 1385 1386 /* 1387 * In case of error, flame the log. If a request, toss the 1388 * puppy; if a response, return so the sender can flame, too. 1389 */ 1390 if (rval != XEVNT_OK) { 1391 u_int32 opcode_bits; 1392 1393 opcode_bits = CRYPTO_ERROR; 1394 opcode |= opcode_bits; 1395 fp->opcode |= htonl(opcode_bits); 1396 snprintf(statstr, sizeof(statstr), 1397 "%04x %d %02x %s", opcode, associd, rval, 1398 eventstr(rval)); 1399 record_crypto_stats(srcadr_sin, statstr); 1400 DPRINTF(1, ("crypto_xmit: %s\n", statstr)); 1401 if (!(opcode & CRYPTO_RESP)) 1402 return (0); 1403 } 1404 DPRINTF(1, ("crypto_xmit: flags 0x%x offset %d len %d code 0x%x associd %d\n", 1405 crypto_flags, start, len, opcode >> 16, associd)); 1406 return (len); 1407 } 1408 1409 1410 /* 1411 * crypto_verify - verify the extension field value and signature 1412 * 1413 * Returns 1414 * XEVNT_OK success 1415 * XEVNT_ERR protocol error 1416 * XEVNT_FSP bad filestamp 1417 * XEVNT_LEN bad field format or length 1418 * XEVNT_PUB bad or missing public key 1419 * XEVNT_SGL bad signature length 1420 * XEVNT_SIG signature not verified 1421 * XEVNT_TSP bad timestamp 1422 */ 1423 static int 1424 crypto_verify( 1425 struct exten *ep, /* extension pointer */ 1426 struct value *vp, /* value pointer */ 1427 struct peer *peer /* peer structure pointer */ 1428 ) 1429 { 1430 EVP_PKEY *pkey; /* server public key */ 1431 EVP_MD_CTX *ctx; /* signature context */ 1432 tstamp_t tstamp, tstamp1 = 0; /* timestamp */ 1433 tstamp_t fstamp, fstamp1 = 0; /* filestamp */ 1434 u_int vallen; /* value length */ 1435 u_int siglen; /* signature length */ 1436 u_int opcode, len; 1437 int i; 1438 1439 /* 1440 * We are extremely parannoyed. We require valid opcode, length, 1441 * association ID, timestamp, filestamp, public key, digest, 1442 * signature length and signature, where relevant. Note that 1443 * preliminary length checks are done in the main loop. 1444 */ 1445 len = ntohl(ep->opcode) & 0x0000ffff; 1446 opcode = ntohl(ep->opcode) & 0xffff0000; 1447 1448 /* 1449 * Check for valid value header, association ID and extension 1450 * field length. Remember, it is not an error to receive an 1451 * unsolicited response; however, the response ID must match 1452 * the association ID. 1453 */ 1454 if (opcode & CRYPTO_ERROR) 1455 return (XEVNT_ERR); 1456 1457 if (len < VALUE_LEN) 1458 return (XEVNT_LEN); 1459 1460 if (opcode == (CRYPTO_AUTO | CRYPTO_RESP) && (peer->pmode == 1461 MODE_BROADCAST || (peer->cast_flags & MDF_BCLNT))) { 1462 if (ntohl(ep->associd) != peer->assoc) 1463 return (XEVNT_ERR); 1464 } else { 1465 if (ntohl(ep->associd) != peer->associd) 1466 return (XEVNT_ERR); 1467 } 1468 1469 /* 1470 * We have a valid value header. Check for valid value and 1471 * signature field lengths. The extension field length must be 1472 * long enough to contain the value header, value and signature. 1473 * Note both the value and signature field lengths are rounded 1474 * up to the next word (4 octets). 1475 */ 1476 vallen = ntohl(ep->vallen); 1477 if ( vallen == 0 1478 || vallen > MAX_VALLEN) 1479 return (XEVNT_LEN); 1480 1481 i = (vallen + 3) / 4; 1482 siglen = ntohl(ep->pkt[i]); 1483 ++i; 1484 if ( siglen > MAX_VALLEN 1485 || len - VALUE_LEN < ((vallen + 3) / 4) * 4 1486 || len - VALUE_LEN - ((vallen + 3) / 4) * 4 1487 < ((siglen + 3) / 4) * 4) 1488 return (XEVNT_LEN); 1489 1490 /* 1491 * Check for valid timestamp and filestamp. If the timestamp is 1492 * zero, the sender is not synchronized and signatures are 1493 * not possible. If nonzero the timestamp must not precede the 1494 * filestamp. The timestamp and filestamp must not precede the 1495 * corresponding values in the value structure, if present. 1496 */ 1497 tstamp = ntohl(ep->tstamp); 1498 fstamp = ntohl(ep->fstamp); 1499 if (tstamp == 0) 1500 return (XEVNT_TSP); 1501 1502 if (tstamp < fstamp) 1503 return (XEVNT_TSP); 1504 1505 if (vp != NULL) { 1506 tstamp1 = ntohl(vp->tstamp); 1507 fstamp1 = ntohl(vp->fstamp); 1508 if (tstamp1 != 0 && fstamp1 != 0) { 1509 if (tstamp < tstamp1) 1510 return (XEVNT_TSP); 1511 1512 if ((tstamp < fstamp1 || fstamp < fstamp1)) 1513 return (XEVNT_FSP); 1514 } 1515 } 1516 1517 /* 1518 * At the time the certificate message is validated, the public 1519 * key in the message is not available. Thus, don't try to 1520 * verify the signature. 1521 */ 1522 if (opcode == (CRYPTO_CERT | CRYPTO_RESP)) 1523 return (XEVNT_OK); 1524 1525 /* 1526 * Check for valid signature length, public key and digest 1527 * algorithm. 1528 */ 1529 if (crypto_flags & peer->crypto & CRYPTO_FLAG_PRIV) 1530 pkey = sign_pkey; 1531 else 1532 pkey = peer->pkey; 1533 if (siglen == 0 || pkey == NULL || peer->digest == NULL) 1534 return (XEVNT_ERR); 1535 1536 if (siglen != (u_int)EVP_PKEY_size(pkey)) 1537 return (XEVNT_SGL); 1538 1539 /* 1540 * Darn, I thought we would never get here. Verify the 1541 * signature. If the identity exchange is verified, light the 1542 * proventic bit. What a relief. 1543 */ 1544 ctx = digest_ctx; 1545 EVP_VerifyInit(ctx, peer->digest); 1546 EVP_VerifyUpdate(ctx, (u_char *)&ep->tstamp, vallen + 1547 sizeof(ep->tstamp) + sizeof(ep->fstamp) + 1548 sizeof(ep->vallen)); 1549 if (EVP_VerifyFinal(ctx, (u_char *)&ep->pkt[i], siglen, 1550 pkey) <= 0) { 1551 return (XEVNT_SIG); 1552 } 1553 1554 if (peer->crypto & CRYPTO_FLAG_VRFY) 1555 peer->crypto |= CRYPTO_FLAG_PROV; 1556 return (XEVNT_OK); 1557 } 1558 1559 1560 /* 1561 * crypto_encrypt - construct vp (encrypted cookie and signature) from 1562 * the public key and cookie. 1563 * 1564 * Returns: 1565 * XEVNT_OK success 1566 * XEVNT_CKY bad or missing cookie 1567 * XEVNT_PUB bad or missing public key 1568 */ 1569 static int 1570 crypto_encrypt( 1571 const u_char *ptr, /* Public Key */ 1572 u_int vallen, /* Length of Public Key */ 1573 keyid_t *cookie, /* server cookie */ 1574 struct value *vp /* value pointer */ 1575 ) 1576 { 1577 EVP_PKEY *pkey; /* public key */ 1578 RSA* rsa; /* public key */ 1579 EVP_MD_CTX *ctx; /* signature context */ 1580 tstamp_t tstamp; /* NTP timestamp */ 1581 u_int32 temp32; 1582 u_char *puch; 1583 1584 /* 1585 * Extract the public key from the request. 1586 */ 1587 pkey = d2i_PublicKey(EVP_PKEY_RSA, NULL, &ptr, vallen); 1588 if (pkey == NULL) { 1589 msyslog(LOG_ERR, "crypto_encrypt: %s", 1590 ERR_error_string(ERR_get_error(), NULL)); 1591 return (XEVNT_PUB); 1592 } 1593 1594 /* 1595 * Encrypt the cookie, encode in ASN.1 and sign. 1596 */ 1597 memset(vp, 0, sizeof(struct value)); 1598 tstamp = crypto_time(); 1599 vp->tstamp = htonl(tstamp); 1600 vp->fstamp = hostval.tstamp; 1601 vallen = EVP_PKEY_size(pkey); 1602 vp->vallen = htonl(vallen); 1603 vp->ptr = emalloc(vallen); 1604 puch = vp->ptr; 1605 temp32 = htonl(*cookie); 1606 rsa = EVP_PKEY_get1_RSA(pkey); 1607 if (RSA_public_encrypt(4, (u_char *)&temp32, puch, rsa, 1608 RSA_PKCS1_OAEP_PADDING) <= 0) { 1609 msyslog(LOG_ERR, "crypto_encrypt: %s", 1610 ERR_error_string(ERR_get_error(), NULL)); 1611 free(vp->ptr); 1612 EVP_PKEY_free(pkey); 1613 return (XEVNT_CKY); 1614 } 1615 EVP_PKEY_free(pkey); 1616 pkey = NULL; 1617 RSA_free(rsa); 1618 rsa = NULL; 1619 if (tstamp == 0) 1620 return (XEVNT_OK); 1621 1622 vp->sig = emalloc(sign_siglen); 1623 ctx = digest_ctx; 1624 EVP_SignInit(ctx, sign_digest); 1625 EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12); 1626 EVP_SignUpdate(ctx, vp->ptr, vallen); 1627 if (EVP_SignFinal(ctx, vp->sig, &vallen, sign_pkey)) { 1628 INSIST(vallen <= sign_siglen); 1629 vp->siglen = htonl(vallen); 1630 } 1631 return (XEVNT_OK); 1632 } 1633 1634 1635 /* 1636 * crypto_ident - construct extension field for identity scheme 1637 * 1638 * This routine determines which identity scheme is in use and 1639 * constructs an extension field for that scheme. 1640 * 1641 * Returns 1642 * CRYTPO_IFF IFF scheme 1643 * CRYPTO_GQ GQ scheme 1644 * CRYPTO_MV MV scheme 1645 * CRYPTO_NULL no available scheme 1646 */ 1647 u_int 1648 crypto_ident( 1649 struct peer *peer /* peer structure pointer */ 1650 ) 1651 { 1652 char filename[MAXFILENAME]; 1653 const char * scheme_name; 1654 u_int scheme_id; 1655 1656 /* 1657 * We come here after the group trusted host has been found; its 1658 * name defines the group name. Search the key cache for all 1659 * keys matching the same group name in order IFF, GQ and MV. 1660 * Use the first one available. 1661 */ 1662 scheme_name = NULL; 1663 if (peer->crypto & CRYPTO_FLAG_IFF) { 1664 scheme_name = "iff"; 1665 scheme_id = CRYPTO_IFF; 1666 } else if (peer->crypto & CRYPTO_FLAG_GQ) { 1667 scheme_name = "gq"; 1668 scheme_id = CRYPTO_GQ; 1669 } else if (peer->crypto & CRYPTO_FLAG_MV) { 1670 scheme_name = "mv"; 1671 scheme_id = CRYPTO_MV; 1672 } 1673 1674 if (scheme_name != NULL) { 1675 snprintf(filename, sizeof(filename), "ntpkey_%spar_%s", 1676 scheme_name, peer->ident); 1677 peer->ident_pkey = crypto_key(filename, NULL, 1678 &peer->srcadr); 1679 if (peer->ident_pkey != NULL) 1680 return scheme_id; 1681 } 1682 1683 msyslog(LOG_NOTICE, 1684 "crypto_ident: no identity parameters found for group %s", 1685 peer->ident); 1686 1687 return CRYPTO_NULL; 1688 } 1689 1690 1691 /* 1692 * crypto_args - construct extension field from arguments 1693 * 1694 * This routine creates an extension field with current timestamps and 1695 * specified opcode, association ID and optional string. Note that the 1696 * extension field is created here, but freed after the crypto_xmit() 1697 * call in the protocol module. 1698 * 1699 * Returns extension field pointer (no errors) 1700 * 1701 * XXX: opcode and len should really be 32-bit quantities and 1702 * we should make sure that str is not too big. 1703 */ 1704 struct exten * 1705 crypto_args( 1706 struct peer *peer, /* peer structure pointer */ 1707 u_int opcode, /* operation code */ 1708 associd_t associd, /* association ID */ 1709 char *str /* argument string */ 1710 ) 1711 { 1712 tstamp_t tstamp; /* NTP timestamp */ 1713 struct exten *ep; /* extension field pointer */ 1714 u_int len; /* extension field length */ 1715 size_t slen = 0; 1716 1717 tstamp = crypto_time(); 1718 len = sizeof(struct exten); 1719 if (str != NULL) { 1720 slen = strlen(str); 1721 INSIST(slen < MAX_VALLEN); 1722 len += slen; 1723 } 1724 ep = emalloc_zero(len); 1725 if (opcode == 0) 1726 return (ep); 1727 1728 REQUIRE(0 == (len & ~0x0000ffff)); 1729 REQUIRE(0 == (opcode & ~0xffff0000)); 1730 1731 ep->opcode = htonl(opcode + len); 1732 ep->associd = htonl(associd); 1733 ep->tstamp = htonl(tstamp); 1734 ep->fstamp = hostval.tstamp; 1735 ep->vallen = 0; 1736 if (str != NULL) { 1737 ep->vallen = htonl(slen); 1738 memcpy((char *)ep->pkt, str, slen); 1739 } 1740 return (ep); 1741 } 1742 1743 1744 /* 1745 * crypto_send - construct extension field from value components 1746 * 1747 * The value and signature fields are zero-padded to a word boundary. 1748 * Note: it is not polite to send a nonempty signature with zero 1749 * timestamp or a nonzero timestamp with an empty signature, but those 1750 * rules are not enforced here. 1751 * 1752 * XXX This code won't work on a box with 16-bit ints. 1753 */ 1754 int 1755 crypto_send( 1756 struct exten *ep, /* extension field pointer */ 1757 struct value *vp, /* value pointer */ 1758 int start /* buffer offset */ 1759 ) 1760 { 1761 u_int len, vallen, siglen, opcode; 1762 u_int i, j; 1763 1764 /* 1765 * Calculate extension field length and check for buffer 1766 * overflow. Leave room for the MAC. 1767 */ 1768 len = 16; /* XXX Document! */ 1769 vallen = ntohl(vp->vallen); 1770 INSIST(vallen <= MAX_VALLEN); 1771 len += ((vallen + 3) / 4 + 1) * 4; 1772 siglen = ntohl(vp->siglen); 1773 len += ((siglen + 3) / 4 + 1) * 4; 1774 if (start + len > sizeof(struct pkt) - MAX_MAC_LEN) 1775 return (0); 1776 1777 /* 1778 * Copy timestamps. 1779 */ 1780 ep->tstamp = vp->tstamp; 1781 ep->fstamp = vp->fstamp; 1782 ep->vallen = vp->vallen; 1783 1784 /* 1785 * Copy value. If the data field is empty or zero length, 1786 * encode an empty value with length zero. 1787 */ 1788 i = 0; 1789 if (vallen > 0 && vp->ptr != NULL) { 1790 j = vallen / 4; 1791 if (j * 4 < vallen) 1792 ep->pkt[i + j++] = 0; 1793 memcpy(&ep->pkt[i], vp->ptr, vallen); 1794 i += j; 1795 } 1796 1797 /* 1798 * Copy signature. If the signature field is empty or zero 1799 * length, encode an empty signature with length zero. 1800 */ 1801 ep->pkt[i++] = vp->siglen; 1802 if (siglen > 0 && vp->sig != NULL) { 1803 j = siglen / 4; 1804 if (j * 4 < siglen) 1805 ep->pkt[i + j++] = 0; 1806 memcpy(&ep->pkt[i], vp->sig, siglen); 1807 /* i += j; */ /* We don't use i after this */ 1808 } 1809 opcode = ntohl(ep->opcode); 1810 ep->opcode = htonl((opcode & 0xffff0000) | len); 1811 ENSURE(len <= MAX_VALLEN); 1812 return (len); 1813 } 1814 1815 1816 /* 1817 * crypto_update - compute new public value and sign extension fields 1818 * 1819 * This routine runs periodically, like once a day, and when something 1820 * changes. It updates the timestamps on three value structures and one 1821 * value structure list, then signs all the structures: 1822 * 1823 * hostval host name (not signed) 1824 * pubkey public key 1825 * cinfo certificate info/value list 1826 * tai_leap leap values 1827 * 1828 * Filestamps are proventic data, so this routine runs only when the 1829 * host is synchronized to a proventicated source. Thus, the timestamp 1830 * is proventic and can be used to deflect clogging attacks. 1831 * 1832 * Returns void (no errors) 1833 */ 1834 void 1835 crypto_update(void) 1836 { 1837 EVP_MD_CTX *ctx; /* message digest context */ 1838 struct cert_info *cp; /* certificate info/value */ 1839 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 1840 u_int32 *ptr; 1841 u_int len; 1842 leap_result_t leap_data; 1843 1844 hostval.tstamp = htonl(crypto_time()); 1845 if (hostval.tstamp == 0) 1846 return; 1847 1848 ctx = digest_ctx; 1849 1850 /* 1851 * Sign public key and timestamps. The filestamp is derived from 1852 * the host key file extension from wherever the file was 1853 * generated. 1854 */ 1855 if (pubkey.vallen != 0) { 1856 pubkey.tstamp = hostval.tstamp; 1857 pubkey.siglen = 0; 1858 if (pubkey.sig == NULL) 1859 pubkey.sig = emalloc(sign_siglen); 1860 EVP_SignInit(ctx, sign_digest); 1861 EVP_SignUpdate(ctx, (u_char *)&pubkey, 12); 1862 EVP_SignUpdate(ctx, pubkey.ptr, ntohl(pubkey.vallen)); 1863 if (EVP_SignFinal(ctx, pubkey.sig, &len, sign_pkey)) { 1864 INSIST(len <= sign_siglen); 1865 pubkey.siglen = htonl(len); 1866 } 1867 } 1868 1869 /* 1870 * Sign certificates and timestamps. The filestamp is derived 1871 * from the certificate file extension from wherever the file 1872 * was generated. Note we do not throw expired certificates 1873 * away; they may have signed younger ones. 1874 */ 1875 for (cp = cinfo; cp != NULL; cp = cp->link) { 1876 cp->cert.tstamp = hostval.tstamp; 1877 cp->cert.siglen = 0; 1878 if (cp->cert.sig == NULL) 1879 cp->cert.sig = emalloc(sign_siglen); 1880 EVP_SignInit(ctx, sign_digest); 1881 EVP_SignUpdate(ctx, (u_char *)&cp->cert, 12); 1882 EVP_SignUpdate(ctx, cp->cert.ptr, 1883 ntohl(cp->cert.vallen)); 1884 if (EVP_SignFinal(ctx, cp->cert.sig, &len, sign_pkey)) { 1885 INSIST(len <= sign_siglen); 1886 cp->cert.siglen = htonl(len); 1887 } 1888 } 1889 1890 /* 1891 * Sign leapseconds values and timestamps. Note it is not an 1892 * error to return null values. 1893 */ 1894 tai_leap.tstamp = hostval.tstamp; 1895 tai_leap.fstamp = hostval.fstamp; 1896 1897 /* Get the leap second era. We might need a full lookup early 1898 * after start, when the cache is not yet loaded. 1899 */ 1900 leapsec_frame(&leap_data); 1901 if ( ! memcmp(&leap_data.ebase, &leap_data.ttime, sizeof(vint64))) { 1902 time_t now = time(NULL); 1903 uint32_t nowntp = (uint32_t)now + JAN_1970; 1904 leapsec_query(&leap_data, nowntp, &now); 1905 } 1906 1907 /* Create the data block. The protocol does not work without. */ 1908 len = 3 * sizeof(u_int32); 1909 if (tai_leap.ptr == NULL || ntohl(tai_leap.vallen) != len) { 1910 free(tai_leap.ptr); 1911 tai_leap.ptr = emalloc(len); 1912 tai_leap.vallen = htonl(len); 1913 } 1914 ptr = (u_int32 *)tai_leap.ptr; 1915 if (leap_data.tai_offs > 10) { 1916 /* create a TAI / leap era block. The end time is a 1917 * fake -- maybe we can do better. 1918 */ 1919 ptr[0] = htonl(leap_data.tai_offs); 1920 ptr[1] = htonl(leap_data.ebase.d_s.lo); 1921 if (leap_data.ttime.d_s.hi >= 0) 1922 ptr[2] = htonl(leap_data.ttime.D_s.lo + 7*86400); 1923 else 1924 ptr[2] = htonl(leap_data.ebase.D_s.lo + 25*86400); 1925 } else { 1926 /* no leap era available */ 1927 memset(ptr, 0, len); 1928 } 1929 if (tai_leap.sig == NULL) 1930 tai_leap.sig = emalloc(sign_siglen); 1931 EVP_SignInit(ctx, sign_digest); 1932 EVP_SignUpdate(ctx, (u_char *)&tai_leap, 12); 1933 EVP_SignUpdate(ctx, tai_leap.ptr, len); 1934 if (EVP_SignFinal(ctx, tai_leap.sig, &len, sign_pkey)) { 1935 INSIST(len <= sign_siglen); 1936 tai_leap.siglen = htonl(len); 1937 } 1938 crypto_flags |= CRYPTO_FLAG_TAI; 1939 1940 snprintf(statstr, sizeof(statstr), "signature update ts %u", 1941 ntohl(hostval.tstamp)); 1942 record_crypto_stats(NULL, statstr); 1943 DPRINTF(1, ("crypto_update: %s\n", statstr)); 1944 } 1945 1946 /* 1947 * crypto_update_taichange - eventually trigger crypto_update 1948 * 1949 * This is called when a change in 'sys_tai' is detected. This will 1950 * happen shortly after a leap second is detected, but unhappily also 1951 * early after system start; also, the crypto stuff might be unused and 1952 * an unguarded call to crypto_update() causes a crash. 1953 * 1954 * This function makes sure that there already *is* a valid crypto block 1955 * for the use with autokey, and only calls 'crypto_update()' if it can 1956 * succeed. 1957 * 1958 * Returns void (no errors) 1959 */ 1960 void 1961 crypto_update_taichange(void) 1962 { 1963 static const u_int len = 3 * sizeof(u_int32); 1964 1965 /* check if the signing digest algo is available */ 1966 if (sign_digest == NULL || sign_pkey == NULL) 1967 return; 1968 1969 /* check size of TAI extension block */ 1970 if (tai_leap.ptr == NULL || ntohl(tai_leap.vallen) != len) 1971 return; 1972 1973 /* crypto_update should at least not crash here! */ 1974 crypto_update(); 1975 } 1976 1977 /* 1978 * value_free - free value structure components. 1979 * 1980 * Returns void (no errors) 1981 */ 1982 void 1983 value_free( 1984 struct value *vp /* value structure */ 1985 ) 1986 { 1987 if (vp->ptr != NULL) 1988 free(vp->ptr); 1989 if (vp->sig != NULL) 1990 free(vp->sig); 1991 memset(vp, 0, sizeof(struct value)); 1992 } 1993 1994 1995 /* 1996 * crypto_time - returns current NTP time. 1997 * 1998 * Returns NTP seconds if in synch, 0 otherwise 1999 */ 2000 tstamp_t 2001 crypto_time(void) 2002 { 2003 l_fp tstamp; /* NTP time */ 2004 2005 L_CLR(&tstamp); 2006 if (sys_leap != LEAP_NOTINSYNC) 2007 get_systime(&tstamp); 2008 return (tstamp.l_ui); 2009 } 2010 2011 2012 /* 2013 * asn_to_calendar - convert ASN1_TIME time structure to struct calendar. 2014 * 2015 */ 2016 static 2017 void 2018 asn_to_calendar ( 2019 const ASN1_TIME *asn1time, /* pointer to ASN1_TIME structure */ 2020 struct calendar *pjd /* pointer to result */ 2021 ) 2022 { 2023 size_t len; /* length of ASN1_TIME string */ 2024 char v[24]; /* writable copy of ASN1_TIME string */ 2025 unsigned long temp; /* result from strtoul */ 2026 2027 /* 2028 * Extract time string YYMMDDHHMMSSZ from ASN1 time structure. 2029 * Or YYYYMMDDHHMMSSZ. 2030 * Note that the YY, MM, DD fields start with one, the HH, MM, 2031 * SS fields start with zero and the Z character is ignored. 2032 * Also note that two-digit years less than 50 map to years greater than 2033 * 100. Dontcha love ASN.1? Better than MIL-188. 2034 */ 2035 len = asn1time->length; 2036 REQUIRE(len < sizeof(v)); 2037 (void)strncpy(v, (char *)(asn1time->data), len); 2038 REQUIRE(len >= 13); 2039 temp = strtoul(v+len-3, NULL, 10); 2040 pjd->second = temp; 2041 v[len-3] = '\0'; 2042 2043 temp = strtoul(v+len-5, NULL, 10); 2044 pjd->minute = temp; 2045 v[len-5] = '\0'; 2046 2047 temp = strtoul(v+len-7, NULL, 10); 2048 pjd->hour = temp; 2049 v[len-7] = '\0'; 2050 2051 temp = strtoul(v+len-9, NULL, 10); 2052 pjd->monthday = temp; 2053 v[len-9] = '\0'; 2054 2055 temp = strtoul(v+len-11, NULL, 10); 2056 pjd->month = temp; 2057 v[len-11] = '\0'; 2058 2059 temp = strtoul(v, NULL, 10); 2060 /* handle two-digit years */ 2061 if (temp < 50UL) 2062 temp += 100UL; 2063 if (temp < 150UL) 2064 temp += 1900UL; 2065 pjd->year = temp; 2066 2067 pjd->yearday = pjd->weekday = 0; 2068 return; 2069 } 2070 2071 2072 /* 2073 * bighash() - compute a BIGNUM MD5 hash of a BIGNUM number. 2074 * 2075 * Returns void (no errors) 2076 */ 2077 static void 2078 bighash( 2079 BIGNUM *bn, /* BIGNUM * from */ 2080 BIGNUM *bk /* BIGNUM * to */ 2081 ) 2082 { 2083 EVP_MD_CTX *ctx; /* message digest context */ 2084 u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */ 2085 u_char *ptr; /* a BIGNUM as binary string */ 2086 u_int len; 2087 2088 len = BN_num_bytes(bn); 2089 ptr = emalloc(len); 2090 BN_bn2bin(bn, ptr); 2091 ctx = digest_ctx; 2092 EVP_DigestInit(ctx, EVP_md5()); 2093 EVP_DigestUpdate(ctx, ptr, len); 2094 EVP_DigestFinal(ctx, dgst, &len); 2095 BN_bin2bn(dgst, len, bk); 2096 free(ptr); 2097 } 2098 2099 2100 /* 2101 *********************************************************************** 2102 * * 2103 * The following routines implement the Schnorr (IFF) identity scheme * 2104 * * 2105 *********************************************************************** 2106 * 2107 * The Schnorr (IFF) identity scheme is intended for use when 2108 * certificates are generated by some other trusted certificate 2109 * authority and the certificate cannot be used to convey public 2110 * parameters. There are two kinds of files: encrypted server files that 2111 * contain private and public values and nonencrypted client files that 2112 * contain only public values. New generations of server files must be 2113 * securely transmitted to all servers of the group; client files can be 2114 * distributed by any means. The scheme is self contained and 2115 * independent of new generations of host keys, sign keys and 2116 * certificates. 2117 * 2118 * The IFF values hide in a DSA cuckoo structure which uses the same 2119 * parameters. The values are used by an identity scheme based on DSA 2120 * cryptography and described in Stimson p. 285. The p is a 512-bit 2121 * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1 2122 * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a 2123 * private random group key b (0 < b < q) and public key v = g^b, then 2124 * sends (p, q, g, b) to the servers and (p, q, g, v) to the clients. 2125 * Alice challenges Bob to confirm identity using the protocol described 2126 * below. 2127 * 2128 * How it works 2129 * 2130 * The scheme goes like this. Both Alice and Bob have the public primes 2131 * p, q and generator g. The TA gives private key b to Bob and public 2132 * key v to Alice. 2133 * 2134 * Alice rolls new random challenge r (o < r < q) and sends to Bob in 2135 * the IFF request message. Bob rolls new random k (0 < k < q), then 2136 * computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x)) 2137 * to Alice in the response message. Besides making the response 2138 * shorter, the hash makes it effectivey impossible for an intruder to 2139 * solve for b by observing a number of these messages. 2140 * 2141 * Alice receives the response and computes g^y v^r mod p. After a bit 2142 * of algebra, this simplifies to g^k. If the hash of this result 2143 * matches hash(x), Alice knows that Bob has the group key b. The signed 2144 * response binds this knowledge to Bob's private key and the public key 2145 * previously received in his certificate. 2146 * 2147 * crypto_alice - construct Alice's challenge in IFF scheme 2148 * 2149 * Returns 2150 * XEVNT_OK success 2151 * XEVNT_ID bad or missing group key 2152 * XEVNT_PUB bad or missing public key 2153 */ 2154 static int 2155 crypto_alice( 2156 struct peer *peer, /* peer pointer */ 2157 struct value *vp /* value pointer */ 2158 ) 2159 { 2160 const DSA *dsa; /* IFF parameters */ 2161 BN_CTX *bctx; /* BIGNUM context */ 2162 EVP_MD_CTX *ctx; /* signature context */ 2163 tstamp_t tstamp; 2164 u_int len; 2165 const BIGNUM *q; 2166 2167 /* 2168 * The identity parameters must have correct format and content. 2169 */ 2170 if (peer->ident_pkey == NULL) { 2171 msyslog(LOG_NOTICE, "crypto_alice: scheme unavailable"); 2172 return (XEVNT_ID); 2173 } 2174 2175 if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) { 2176 msyslog(LOG_NOTICE, "crypto_alice: defective key"); 2177 return (XEVNT_PUB); 2178 } 2179 2180 /* 2181 * Roll new random r (0 < r < q). 2182 */ 2183 if (peer->iffval != NULL) 2184 BN_free(peer->iffval); 2185 peer->iffval = BN_new(); 2186 DSA_get0_pqg(dsa, NULL, &q, NULL); 2187 len = BN_num_bytes(q); 2188 BN_rand(peer->iffval, len * 8, -1, 1); /* r mod q*/ 2189 bctx = BN_CTX_new(); 2190 BN_mod(peer->iffval, peer->iffval, q, bctx); 2191 BN_CTX_free(bctx); 2192 2193 /* 2194 * Sign and send to Bob. The filestamp is from the local file. 2195 */ 2196 memset(vp, 0, sizeof(struct value)); 2197 tstamp = crypto_time(); 2198 vp->tstamp = htonl(tstamp); 2199 vp->fstamp = htonl(peer->ident_pkey->fstamp); 2200 vp->vallen = htonl(len); 2201 vp->ptr = emalloc(len); 2202 BN_bn2bin(peer->iffval, vp->ptr); 2203 if (tstamp == 0) 2204 return (XEVNT_OK); 2205 2206 vp->sig = emalloc(sign_siglen); 2207 ctx = digest_ctx; 2208 EVP_SignInit(ctx, sign_digest); 2209 EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12); 2210 EVP_SignUpdate(ctx, vp->ptr, len); 2211 if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) { 2212 INSIST(len <= sign_siglen); 2213 vp->siglen = htonl(len); 2214 } 2215 return (XEVNT_OK); 2216 } 2217 2218 2219 /* 2220 * crypto_bob - construct Bob's response to Alice's challenge 2221 * 2222 * Returns 2223 * XEVNT_OK success 2224 * XEVNT_ERR protocol error 2225 * XEVNT_ID bad or missing group key 2226 */ 2227 static int 2228 crypto_bob( 2229 struct exten *ep, /* extension pointer */ 2230 struct value *vp /* value pointer */ 2231 ) 2232 { 2233 int retv; /* return value */ 2234 const DSA *dsa; /* IFF parameters */ 2235 DSA_SIG *sdsa; /* DSA signature context fake */ 2236 BN_CTX *bctx; /* BIGNUM context */ 2237 EVP_MD_CTX *ctx; /* signature context */ 2238 tstamp_t tstamp; /* NTP timestamp */ 2239 BIGNUM *bn, *bk, *r; 2240 u_char *ptr; 2241 u_int len; /* extension field value length */ 2242 const BIGNUM *p, *q, *g; 2243 const BIGNUM *priv_key; 2244 2245 /* 2246 * If the IFF parameters are not valid, something awful 2247 * happened or we are being tormented. 2248 */ 2249 if (iffkey_info == NULL) { 2250 msyslog(LOG_NOTICE, "crypto_bob: scheme unavailable"); 2251 return (XEVNT_ID); 2252 } 2253 2254 /* Initialize pointers that may need freeing in cleanup. */ 2255 sdsa = NULL; 2256 2257 dsa = EVP_PKEY_get0_DSA(iffkey_info->pkey); 2258 DSA_get0_pqg(dsa, &p, &q, &g); 2259 DSA_get0_key(dsa, NULL, &priv_key); 2260 2261 /* 2262 * Extract r from the challenge. 2263 */ 2264 len = exten_payload_size(ep); 2265 if (len == 0 || len > MAX_VALLEN) 2266 return (XEVNT_LEN); 2267 if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) { 2268 msyslog(LOG_ERR, "crypto_bob: %s", 2269 ERR_error_string(ERR_get_error(), NULL)); 2270 return (XEVNT_ERR); 2271 } 2272 2273 /* 2274 * Bob rolls random k (0 < k < q), computes y = k + b r mod q 2275 * and x = g^k mod p, then sends (y, hash(x)) to Alice. 2276 */ 2277 bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new(); 2278 sdsa = DSA_SIG_new(); 2279 BN_rand(bk, len * 8, -1, 1); /* k */ 2280 BN_mod_mul(bn, priv_key, r, q, bctx); /* b r mod q */ 2281 BN_add(bn, bn, bk); 2282 BN_mod(bn, bn, q, bctx); /* k + b r mod q */ 2283 BN_mod_exp(bk, g, bk, p, bctx); /* g^k mod p */ 2284 bighash(bk, bk); 2285 DSA_SIG_set0(sdsa, bn, bk); 2286 BN_CTX_free(bctx); 2287 BN_free(r); 2288 #ifdef DEBUG 2289 if (debug > 1) 2290 DSA_print_fp(stdout, dsa, 0); 2291 #endif 2292 2293 /* 2294 * Encode the values in ASN.1 and sign. The filestamp is from 2295 * the local file. 2296 */ 2297 len = i2d_DSA_SIG(sdsa, NULL); 2298 if (len == 0) { 2299 msyslog(LOG_ERR, "crypto_bob: %s", 2300 ERR_error_string(ERR_get_error(), NULL)); 2301 retv = XEVNT_ERR; 2302 goto cleanup; 2303 } 2304 if (len > MAX_VALLEN) { 2305 msyslog(LOG_ERR, "crypto_bob: signature is too big: %u", 2306 len); 2307 retv = XEVNT_ERR; 2308 goto cleanup; 2309 } 2310 ZERO(*vp); 2311 tstamp = crypto_time(); 2312 vp->tstamp = htonl(tstamp); 2313 vp->fstamp = htonl(iffkey_info->fstamp); 2314 vp->vallen = htonl(len); 2315 ptr = emalloc(len); 2316 vp->ptr = ptr; 2317 i2d_DSA_SIG(sdsa, &ptr); 2318 if (0 == tstamp) { 2319 retv = XEVNT_OK; 2320 goto cleanup; 2321 } 2322 2323 /* XXX: more validation to make sure the sign fits... */ 2324 vp->sig = emalloc(sign_siglen); 2325 ctx = digest_ctx; 2326 EVP_SignInit(ctx, sign_digest); 2327 EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12); 2328 EVP_SignUpdate(ctx, vp->ptr, len); 2329 if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) { 2330 INSIST(len <= sign_siglen); 2331 vp->siglen = htonl(len); 2332 } 2333 retv = XEVNT_OK; 2334 2335 cleanup: 2336 DSA_SIG_free(sdsa); 2337 return retv; 2338 } 2339 2340 2341 /* 2342 * crypto_iff - verify Bob's response to Alice's challenge 2343 * 2344 * Returns 2345 * XEVNT_OK success 2346 * XEVNT_FSP bad filestamp 2347 * XEVNT_ID bad or missing group key 2348 * XEVNT_PUB bad or missing public key 2349 */ 2350 int 2351 crypto_iff( 2352 struct exten *ep, /* extension pointer */ 2353 struct peer *peer /* peer structure pointer */ 2354 ) 2355 { 2356 const DSA *dsa; /* IFF parameters */ 2357 BN_CTX *bctx; /* BIGNUM context */ 2358 DSA_SIG *sdsa; /* DSA parameters */ 2359 BIGNUM *bn, *bk; 2360 u_int len; 2361 const u_char *ptr; 2362 int temp; 2363 const BIGNUM *p, *g; 2364 const BIGNUM *r, *s; 2365 const BIGNUM *pub_key; 2366 2367 /* 2368 * If the IFF parameters are not valid or no challenge was sent, 2369 * something awful happened or we are being tormented. 2370 */ 2371 if (peer->ident_pkey == NULL) { 2372 msyslog(LOG_NOTICE, "crypto_iff: scheme unavailable"); 2373 return (XEVNT_ID); 2374 } 2375 if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) { 2376 msyslog(LOG_NOTICE, "crypto_iff: invalid filestamp %u", 2377 ntohl(ep->fstamp)); 2378 return (XEVNT_FSP); 2379 } 2380 if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) { 2381 msyslog(LOG_NOTICE, "crypto_iff: defective key"); 2382 return (XEVNT_PUB); 2383 } 2384 if (peer->iffval == NULL) { 2385 msyslog(LOG_NOTICE, "crypto_iff: missing challenge"); 2386 return (XEVNT_ID); 2387 } 2388 2389 /* 2390 * Extract the k + b r and g^k values from the response. 2391 */ 2392 bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new(); 2393 len = ntohl(ep->vallen); 2394 ptr = (u_char *)ep->pkt; 2395 if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) { 2396 BN_free(bn); BN_free(bk); BN_CTX_free(bctx); 2397 msyslog(LOG_ERR, "crypto_iff: %s", 2398 ERR_error_string(ERR_get_error(), NULL)); 2399 return (XEVNT_ERR); 2400 } 2401 2402 /* 2403 * Compute g^(k + b r) g^(q - b)r mod p. 2404 */ 2405 DSA_get0_key(dsa, &pub_key, NULL); 2406 DSA_get0_pqg(dsa, &p, NULL, &g); 2407 DSA_SIG_get0(sdsa, &r, &s); 2408 BN_mod_exp(bn, pub_key, peer->iffval, p, bctx); 2409 BN_mod_exp(bk, g, r, p, bctx); 2410 BN_mod_mul(bn, bn, bk, p, bctx); 2411 2412 /* 2413 * Verify the hash of the result matches hash(x). 2414 */ 2415 bighash(bn, bn); 2416 temp = BN_cmp(bn, s); 2417 BN_free(bn); BN_free(bk); BN_CTX_free(bctx); 2418 BN_free(peer->iffval); 2419 peer->iffval = NULL; 2420 DSA_SIG_free(sdsa); 2421 if (temp == 0) 2422 return (XEVNT_OK); 2423 2424 msyslog(LOG_NOTICE, "crypto_iff: identity not verified"); 2425 return (XEVNT_ID); 2426 } 2427 2428 2429 /* 2430 *********************************************************************** 2431 * * 2432 * The following routines implement the Guillou-Quisquater (GQ) * 2433 * identity scheme * 2434 * * 2435 *********************************************************************** 2436 * 2437 * The Guillou-Quisquater (GQ) identity scheme is intended for use when 2438 * the certificate can be used to convey public parameters. The scheme 2439 * uses a X509v3 certificate extension field do convey the public key of 2440 * a private key known only to servers. There are two kinds of files: 2441 * encrypted server files that contain private and public values and 2442 * nonencrypted client files that contain only public values. New 2443 * generations of server files must be securely transmitted to all 2444 * servers of the group; client files can be distributed by any means. 2445 * The scheme is self contained and independent of new generations of 2446 * host keys and sign keys. The scheme is self contained and independent 2447 * of new generations of host keys and sign keys. 2448 * 2449 * The GQ parameters hide in a RSA cuckoo structure which uses the same 2450 * parameters. The values are used by an identity scheme based on RSA 2451 * cryptography and described in Stimson p. 300 (with errors). The 512- 2452 * bit public modulus is n = p q, where p and q are secret large primes. 2453 * The TA rolls private random group key b as RSA exponent. These values 2454 * are known to all group members. 2455 * 2456 * When rolling new certificates, a server recomputes the private and 2457 * public keys. The private key u is a random roll, while the public key 2458 * is the inverse obscured by the group key v = (u^-1)^b. These values 2459 * replace the private and public keys normally generated by the RSA 2460 * scheme. Alice challenges Bob to confirm identity using the protocol 2461 * described below. 2462 * 2463 * How it works 2464 * 2465 * The scheme goes like this. Both Alice and Bob have the same modulus n 2466 * and some random b as the group key. These values are computed and 2467 * distributed in advance via secret means, although only the group key 2468 * b is truly secret. Each has a private random private key u and public 2469 * key (u^-1)^b, although not necessarily the same ones. Bob and Alice 2470 * can regenerate the key pair from time to time without affecting 2471 * operations. The public key is conveyed on the certificate in an 2472 * extension field; the private key is never revealed. 2473 * 2474 * Alice rolls new random challenge r and sends to Bob in the GQ 2475 * request message. Bob rolls new random k, then computes y = k u^r mod 2476 * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response 2477 * message. Besides making the response shorter, the hash makes it 2478 * effectivey impossible for an intruder to solve for b by observing 2479 * a number of these messages. 2480 * 2481 * Alice receives the response and computes y^b v^r mod n. After a bit 2482 * of algebra, this simplifies to k^b. If the hash of this result 2483 * matches hash(x), Alice knows that Bob has the group key b. The signed 2484 * response binds this knowledge to Bob's private key and the public key 2485 * previously received in his certificate. 2486 * 2487 * crypto_alice2 - construct Alice's challenge in GQ scheme 2488 * 2489 * Returns 2490 * XEVNT_OK success 2491 * XEVNT_ID bad or missing group key 2492 * XEVNT_PUB bad or missing public key 2493 */ 2494 static int 2495 crypto_alice2( 2496 struct peer *peer, /* peer pointer */ 2497 struct value *vp /* value pointer */ 2498 ) 2499 { 2500 const RSA *rsa; /* GQ parameters */ 2501 BN_CTX *bctx; /* BIGNUM context */ 2502 EVP_MD_CTX *ctx; /* signature context */ 2503 tstamp_t tstamp; 2504 u_int len; 2505 const BIGNUM *n; 2506 2507 /* 2508 * The identity parameters must have correct format and content. 2509 */ 2510 if (peer->ident_pkey == NULL) 2511 return (XEVNT_ID); 2512 2513 if ((rsa = EVP_PKEY_get0_RSA(peer->ident_pkey->pkey)) == NULL) { 2514 msyslog(LOG_NOTICE, "crypto_alice2: defective key"); 2515 return (XEVNT_PUB); 2516 } 2517 2518 /* 2519 * Roll new random r (0 < r < n). 2520 */ 2521 if (peer->iffval != NULL) 2522 BN_free(peer->iffval); 2523 peer->iffval = BN_new(); 2524 RSA_get0_key(rsa, &n, NULL, NULL); 2525 len = BN_num_bytes(n); 2526 BN_rand(peer->iffval, len * 8, -1, 1); /* r mod n */ 2527 bctx = BN_CTX_new(); 2528 BN_mod(peer->iffval, peer->iffval, n, bctx); 2529 BN_CTX_free(bctx); 2530 2531 /* 2532 * Sign and send to Bob. The filestamp is from the local file. 2533 */ 2534 memset(vp, 0, sizeof(struct value)); 2535 tstamp = crypto_time(); 2536 vp->tstamp = htonl(tstamp); 2537 vp->fstamp = htonl(peer->ident_pkey->fstamp); 2538 vp->vallen = htonl(len); 2539 vp->ptr = emalloc(len); 2540 BN_bn2bin(peer->iffval, vp->ptr); 2541 if (tstamp == 0) 2542 return (XEVNT_OK); 2543 2544 vp->sig = emalloc(sign_siglen); 2545 ctx = digest_ctx; 2546 EVP_SignInit(ctx, sign_digest); 2547 EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12); 2548 EVP_SignUpdate(ctx, vp->ptr, len); 2549 if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) { 2550 INSIST(len <= sign_siglen); 2551 vp->siglen = htonl(len); 2552 } 2553 return (XEVNT_OK); 2554 } 2555 2556 2557 /* 2558 * crypto_bob2 - construct Bob's response to Alice's challenge 2559 * 2560 * Returns 2561 * XEVNT_OK success 2562 * XEVNT_ERR protocol error 2563 * XEVNT_ID bad or missing group key 2564 */ 2565 static int 2566 crypto_bob2( 2567 struct exten *ep, /* extension pointer */ 2568 struct value *vp /* value pointer */ 2569 ) 2570 { 2571 const RSA *rsa; /* GQ parameters */ 2572 DSA_SIG *sdsa; /* DSA parameters */ 2573 BN_CTX *bctx; /* BIGNUM context */ 2574 EVP_MD_CTX *ctx; /* signature context */ 2575 tstamp_t tstamp; /* NTP timestamp */ 2576 BIGNUM *r, *k, *g, *y; 2577 u_char *ptr; 2578 u_int len; 2579 int s_len; 2580 const BIGNUM *n, *p, *e; 2581 2582 /* 2583 * If the GQ parameters are not valid, something awful 2584 * happened or we are being tormented. 2585 */ 2586 if (gqkey_info == NULL) { 2587 msyslog(LOG_NOTICE, "crypto_bob2: scheme unavailable"); 2588 return (XEVNT_ID); 2589 } 2590 rsa = EVP_PKEY_get0_RSA(gqkey_info->pkey); 2591 RSA_get0_key(rsa, &n, &p, &e); 2592 2593 /* 2594 * Extract r from the challenge. 2595 */ 2596 len = exten_payload_size(ep); 2597 if (len == 0 || len > MAX_VALLEN) 2598 return (XEVNT_LEN); 2599 if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) { 2600 msyslog(LOG_ERR, "crypto_bob2: %s", 2601 ERR_error_string(ERR_get_error(), NULL)); 2602 return (XEVNT_ERR); 2603 } 2604 2605 /* 2606 * Bob rolls random k (0 < k < n), computes y = k u^r mod n and 2607 * x = k^b mod n, then sends (y, hash(x)) to Alice. 2608 */ 2609 bctx = BN_CTX_new(); k = BN_new(); g = BN_new(); y = BN_new(); 2610 sdsa = DSA_SIG_new(); 2611 BN_rand(k, len * 8, -1, 1); /* k */ 2612 BN_mod(k, k, n, bctx); 2613 BN_mod_exp(y, p, r, n, bctx); /* u^r mod n */ 2614 BN_mod_mul(y, k, y, n, bctx); /* k u^r mod n */ 2615 BN_mod_exp(g, k, e, n, bctx); /* k^b mod n */ 2616 bighash(g, g); 2617 DSA_SIG_set0(sdsa, y, g); 2618 BN_CTX_free(bctx); 2619 BN_free(r); BN_free(k); 2620 #ifdef DEBUG 2621 if (debug > 1) 2622 RSA_print_fp(stdout, rsa, 0); 2623 #endif 2624 2625 /* 2626 * Encode the values in ASN.1 and sign. The filestamp is from 2627 * the local file. 2628 */ 2629 len = s_len = i2d_DSA_SIG(sdsa, NULL); 2630 if (s_len <= 0) { 2631 msyslog(LOG_ERR, "crypto_bob2: %s", 2632 ERR_error_string(ERR_get_error(), NULL)); 2633 DSA_SIG_free(sdsa); 2634 return (XEVNT_ERR); 2635 } 2636 memset(vp, 0, sizeof(struct value)); 2637 tstamp = crypto_time(); 2638 vp->tstamp = htonl(tstamp); 2639 vp->fstamp = htonl(gqkey_info->fstamp); 2640 vp->vallen = htonl(len); 2641 ptr = emalloc(len); 2642 vp->ptr = ptr; 2643 i2d_DSA_SIG(sdsa, &ptr); 2644 DSA_SIG_free(sdsa); 2645 if (tstamp == 0) 2646 return (XEVNT_OK); 2647 2648 vp->sig = emalloc(sign_siglen); 2649 ctx = digest_ctx; 2650 EVP_SignInit(ctx, sign_digest); 2651 EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12); 2652 EVP_SignUpdate(ctx, vp->ptr, len); 2653 if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) { 2654 INSIST(len <= sign_siglen); 2655 vp->siglen = htonl(len); 2656 } 2657 return (XEVNT_OK); 2658 } 2659 2660 2661 /* 2662 * crypto_gq - verify Bob's response to Alice's challenge 2663 * 2664 * Returns 2665 * XEVNT_OK success 2666 * XEVNT_ERR protocol error 2667 * XEVNT_FSP bad filestamp 2668 * XEVNT_ID bad or missing group keys 2669 * XEVNT_PUB bad or missing public key 2670 */ 2671 int 2672 crypto_gq( 2673 struct exten *ep, /* extension pointer */ 2674 struct peer *peer /* peer structure pointer */ 2675 ) 2676 { 2677 const RSA *rsa; /* GQ parameters */ 2678 BN_CTX *bctx; /* BIGNUM context */ 2679 DSA_SIG *sdsa; /* RSA signature context fake */ 2680 BIGNUM *y, *v; 2681 const u_char *ptr; 2682 long len; 2683 u_int temp; 2684 const BIGNUM *n, *e; 2685 const BIGNUM *r, *s; 2686 2687 /* 2688 * If the GQ parameters are not valid or no challenge was sent, 2689 * something awful happened or we are being tormented. Note that 2690 * the filestamp on the local key file can be greater than on 2691 * the remote parameter file if the keys have been refreshed. 2692 */ 2693 if (peer->ident_pkey == NULL) { 2694 msyslog(LOG_NOTICE, "crypto_gq: scheme unavailable"); 2695 return (XEVNT_ID); 2696 } 2697 if (ntohl(ep->fstamp) < peer->ident_pkey->fstamp) { 2698 msyslog(LOG_NOTICE, "crypto_gq: invalid filestamp %u", 2699 ntohl(ep->fstamp)); 2700 return (XEVNT_FSP); 2701 } 2702 if ((rsa = EVP_PKEY_get0_RSA(peer->ident_pkey->pkey)) == NULL) { 2703 msyslog(LOG_NOTICE, "crypto_gq: defective key"); 2704 return (XEVNT_PUB); 2705 } 2706 RSA_get0_key(rsa, &n, NULL, &e); 2707 if (peer->iffval == NULL) { 2708 msyslog(LOG_NOTICE, "crypto_gq: missing challenge"); 2709 return (XEVNT_ID); 2710 } 2711 2712 /* 2713 * Extract the y = k u^r and hash(x = k^b) values from the 2714 * response. 2715 */ 2716 bctx = BN_CTX_new(); y = BN_new(); v = BN_new(); 2717 len = ntohl(ep->vallen); 2718 ptr = (u_char *)ep->pkt; 2719 if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) { 2720 BN_CTX_free(bctx); BN_free(y); BN_free(v); 2721 msyslog(LOG_ERR, "crypto_gq: %s", 2722 ERR_error_string(ERR_get_error(), NULL)); 2723 return (XEVNT_ERR); 2724 } 2725 DSA_SIG_get0(sdsa, &r, &s); 2726 2727 /* 2728 * Compute v^r y^b mod n. 2729 */ 2730 if (peer->grpkey == NULL) { 2731 msyslog(LOG_NOTICE, "crypto_gq: missing group key"); 2732 return (XEVNT_ID); 2733 } 2734 BN_mod_exp(v, peer->grpkey, peer->iffval, n, bctx); 2735 /* v^r mod n */ 2736 BN_mod_exp(y, r, e, n, bctx); /* y^b mod n */ 2737 BN_mod_mul(y, v, y, n, bctx); /* v^r y^b mod n */ 2738 2739 /* 2740 * Verify the hash of the result matches hash(x). 2741 */ 2742 bighash(y, y); 2743 temp = BN_cmp(y, s); 2744 BN_CTX_free(bctx); BN_free(y); BN_free(v); 2745 BN_free(peer->iffval); 2746 peer->iffval = NULL; 2747 DSA_SIG_free(sdsa); 2748 if (temp == 0) 2749 return (XEVNT_OK); 2750 2751 msyslog(LOG_NOTICE, "crypto_gq: identity not verified"); 2752 return (XEVNT_ID); 2753 } 2754 2755 2756 /* 2757 *********************************************************************** 2758 * * 2759 * The following routines implement the Mu-Varadharajan (MV) identity * 2760 * scheme * 2761 * * 2762 *********************************************************************** 2763 * 2764 * The Mu-Varadharajan (MV) cryptosystem was originally intended when 2765 * servers broadcast messages to clients, but clients never send 2766 * messages to servers. There is one encryption key for the server and a 2767 * separate decryption key for each client. It operated something like a 2768 * pay-per-view satellite broadcasting system where the session key is 2769 * encrypted by the broadcaster and the decryption keys are held in a 2770 * tamperproof set-top box. 2771 * 2772 * The MV parameters and private encryption key hide in a DSA cuckoo 2773 * structure which uses the same parameters, but generated in a 2774 * different way. The values are used in an encryption scheme similar to 2775 * El Gamal cryptography and a polynomial formed from the expansion of 2776 * product terms (x - x[j]), as described in Mu, Y., and V. 2777 * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001, 2778 * 223-231. The paper has significant errors and serious omissions. 2779 * 2780 * Let q be the product of n distinct primes s1[j] (j = 1...n), where 2781 * each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so 2782 * that q and each s1[j] divide p - 1 and p has M = n * m + 1 2783 * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1) 2784 * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then 2785 * project into Zp* as exponents of g. Sometimes we have to compute an 2786 * inverse b^-1 of random b in Zq, but for that purpose we require 2787 * gcd(b, q) = 1. We expect M to be in the 500-bit range and n 2788 * relatively small, like 30. These are the parameters of the scheme and 2789 * they are expensive to compute. 2790 * 2791 * We set up an instance of the scheme as follows. A set of random 2792 * values x[j] mod q (j = 1...n), are generated as the zeros of a 2793 * polynomial of order n. The product terms (x - x[j]) are expanded to 2794 * form coefficients a[i] mod q (i = 0...n) in powers of x. These are 2795 * used as exponents of the generator g mod p to generate the private 2796 * encryption key A. The pair (gbar, ghat) of public server keys and the 2797 * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used 2798 * to construct the decryption keys. The devil is in the details. 2799 * 2800 * This routine generates a private server encryption file including the 2801 * private encryption key E and partial decryption keys gbar and ghat. 2802 * It then generates public client decryption files including the public 2803 * keys xbar[j] and xhat[j] for each client j. The partial decryption 2804 * files are used to compute the inverse of E. These values are suitably 2805 * blinded so secrets are not revealed. 2806 * 2807 * The distinguishing characteristic of this scheme is the capability to 2808 * revoke keys. Included in the calculation of E, gbar and ghat is the 2809 * product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is 2810 * subsequently removed from the product and E, gbar and ghat 2811 * recomputed, the jth client will no longer be able to compute E^-1 and 2812 * thus unable to decrypt the messageblock. 2813 * 2814 * How it works 2815 * 2816 * The scheme goes like this. Bob has the server values (p, E, q, gbar, 2817 * ghat) and Alice has the client values (p, xbar, xhat). 2818 * 2819 * Alice rolls new random nonce r mod p and sends to Bob in the MV 2820 * request message. Bob rolls random nonce k mod q, encrypts y = r E^k 2821 * mod p and sends (y, gbar^k, ghat^k) to Alice. 2822 * 2823 * Alice receives the response and computes the inverse (E^k)^-1 from 2824 * the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then 2825 * decrypts y and verifies it matches the original r. The signed 2826 * response binds this knowledge to Bob's private key and the public key 2827 * previously received in his certificate. 2828 * 2829 * crypto_alice3 - construct Alice's challenge in MV scheme 2830 * 2831 * Returns 2832 * XEVNT_OK success 2833 * XEVNT_ID bad or missing group key 2834 * XEVNT_PUB bad or missing public key 2835 */ 2836 static int 2837 crypto_alice3( 2838 struct peer *peer, /* peer pointer */ 2839 struct value *vp /* value pointer */ 2840 ) 2841 { 2842 const DSA *dsa; /* MV parameters */ 2843 BN_CTX *bctx; /* BIGNUM context */ 2844 EVP_MD_CTX *ctx; /* signature context */ 2845 tstamp_t tstamp; 2846 u_int len; 2847 const BIGNUM *p; 2848 2849 /* 2850 * The identity parameters must have correct format and content. 2851 */ 2852 if (peer->ident_pkey == NULL) 2853 return (XEVNT_ID); 2854 2855 if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) { 2856 msyslog(LOG_NOTICE, "crypto_alice3: defective key"); 2857 return (XEVNT_PUB); 2858 } 2859 DSA_get0_pqg(dsa, &p, NULL, NULL); 2860 2861 /* 2862 * Roll new random r (0 < r < q). 2863 */ 2864 if (peer->iffval != NULL) 2865 BN_free(peer->iffval); 2866 peer->iffval = BN_new(); 2867 len = BN_num_bytes(p); 2868 BN_rand(peer->iffval, len * 8, -1, 1); /* r mod p */ 2869 bctx = BN_CTX_new(); 2870 BN_mod(peer->iffval, peer->iffval, p, bctx); 2871 BN_CTX_free(bctx); 2872 2873 /* 2874 * Sign and send to Bob. The filestamp is from the local file. 2875 */ 2876 memset(vp, 0, sizeof(struct value)); 2877 tstamp = crypto_time(); 2878 vp->tstamp = htonl(tstamp); 2879 vp->fstamp = htonl(peer->ident_pkey->fstamp); 2880 vp->vallen = htonl(len); 2881 vp->ptr = emalloc(len); 2882 BN_bn2bin(peer->iffval, vp->ptr); 2883 if (tstamp == 0) 2884 return (XEVNT_OK); 2885 2886 vp->sig = emalloc(sign_siglen); 2887 ctx = digest_ctx; 2888 EVP_SignInit(ctx, sign_digest); 2889 EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12); 2890 EVP_SignUpdate(ctx, vp->ptr, len); 2891 if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) { 2892 INSIST(len <= sign_siglen); 2893 vp->siglen = htonl(len); 2894 } 2895 return (XEVNT_OK); 2896 } 2897 2898 2899 /* 2900 * crypto_bob3 - construct Bob's response to Alice's challenge 2901 * 2902 * Returns 2903 * XEVNT_OK success 2904 * XEVNT_ERR protocol error 2905 */ 2906 static int 2907 crypto_bob3( 2908 struct exten *ep, /* extension pointer */ 2909 struct value *vp /* value pointer */ 2910 ) 2911 { 2912 const DSA *dsa; /* MV parameters */ 2913 DSA *sdsa; /* DSA signature context fake */ 2914 BN_CTX *bctx; /* BIGNUM context */ 2915 EVP_MD_CTX *ctx; /* signature context */ 2916 tstamp_t tstamp; /* NTP timestamp */ 2917 BIGNUM *r, *k, *u; 2918 u_char *ptr; 2919 u_int len; 2920 const BIGNUM *p, *q, *g; 2921 const BIGNUM *pub_key, *priv_key; 2922 BIGNUM *sp, *sq, *sg; 2923 2924 /* 2925 * If the MV parameters are not valid, something awful 2926 * happened or we are being tormented. 2927 */ 2928 if (mvkey_info == NULL) { 2929 msyslog(LOG_NOTICE, "crypto_bob3: scheme unavailable"); 2930 return (XEVNT_ID); 2931 } 2932 dsa = EVP_PKEY_get0_DSA(mvkey_info->pkey); 2933 DSA_get0_pqg(dsa, &p, &q, &g); 2934 DSA_get0_key(dsa, &pub_key, &priv_key); 2935 2936 /* 2937 * Extract r from the challenge. 2938 */ 2939 len = exten_payload_size(ep); 2940 if (len == 0 || len > MAX_VALLEN) 2941 return (XEVNT_LEN); 2942 if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) { 2943 msyslog(LOG_ERR, "crypto_bob3: %s", 2944 ERR_error_string(ERR_get_error(), NULL)); 2945 return (XEVNT_ERR); 2946 } 2947 2948 /* 2949 * Bob rolls random k (0 < k < q), making sure it is not a 2950 * factor of q. He then computes y = r A^k and sends (y, gbar^k, 2951 * and ghat^k) to Alice. 2952 */ 2953 bctx = BN_CTX_new(); k = BN_new(); u = BN_new(); 2954 sdsa = DSA_new(); 2955 sp = BN_new(); sq = BN_new(); sg = BN_new(); 2956 while (1) { 2957 BN_rand(k, BN_num_bits(q), 0, 0); 2958 BN_mod(k, k, q, bctx); 2959 BN_gcd(u, k, q, bctx); 2960 if (BN_is_one(u)) 2961 break; 2962 } 2963 BN_mod_exp(u, g, k, p, bctx); /* A^k r */ 2964 BN_mod_mul(sp, u, r, p, bctx); 2965 BN_mod_exp(sq, priv_key, k, p, bctx); /* gbar */ 2966 BN_mod_exp(sg, pub_key, k, p, bctx); /* ghat */ 2967 DSA_set0_key(sdsa, BN_dup(pub_key), NULL); 2968 DSA_set0_pqg(sdsa, sp, sq, sg); 2969 BN_CTX_free(bctx); BN_free(k); BN_free(r); BN_free(u); 2970 #ifdef DEBUG 2971 if (debug > 1) 2972 DSA_print_fp(stdout, sdsa, 0); 2973 #endif 2974 2975 /* 2976 * Encode the values in ASN.1 and sign. The filestamp is from 2977 * the local file. 2978 */ 2979 memset(vp, 0, sizeof(struct value)); 2980 tstamp = crypto_time(); 2981 vp->tstamp = htonl(tstamp); 2982 vp->fstamp = htonl(mvkey_info->fstamp); 2983 len = i2d_DSAparams(sdsa, NULL); 2984 if (len == 0) { 2985 msyslog(LOG_ERR, "crypto_bob3: %s", 2986 ERR_error_string(ERR_get_error(), NULL)); 2987 DSA_free(sdsa); 2988 return (XEVNT_ERR); 2989 } 2990 vp->vallen = htonl(len); 2991 ptr = emalloc(len); 2992 vp->ptr = ptr; 2993 i2d_DSAparams(sdsa, &ptr); 2994 DSA_free(sdsa); 2995 if (tstamp == 0) 2996 return (XEVNT_OK); 2997 2998 vp->sig = emalloc(sign_siglen); 2999 ctx = digest_ctx; 3000 EVP_SignInit(ctx, sign_digest); 3001 EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12); 3002 EVP_SignUpdate(ctx, vp->ptr, len); 3003 if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) { 3004 INSIST(len <= sign_siglen); 3005 vp->siglen = htonl(len); 3006 } 3007 return (XEVNT_OK); 3008 } 3009 3010 3011 /* 3012 * crypto_mv - verify Bob's response to Alice's challenge 3013 * 3014 * Returns 3015 * XEVNT_OK success 3016 * XEVNT_ERR protocol error 3017 * XEVNT_FSP bad filestamp 3018 * XEVNT_ID bad or missing group key 3019 * XEVNT_PUB bad or missing public key 3020 */ 3021 int 3022 crypto_mv( 3023 struct exten *ep, /* extension pointer */ 3024 struct peer *peer /* peer structure pointer */ 3025 ) 3026 { 3027 const DSA *dsa; /* MV parameters */ 3028 DSA *sdsa; /* DSA parameters */ 3029 BN_CTX *bctx; /* BIGNUM context */ 3030 BIGNUM *k, *u, *v; 3031 u_int len; 3032 const u_char *ptr; 3033 int temp; 3034 const BIGNUM *p; 3035 const BIGNUM *pub_key, *priv_key; 3036 const BIGNUM *sp, *sq, *sg; 3037 3038 /* 3039 * If the MV parameters are not valid or no challenge was sent, 3040 * something awful happened or we are being tormented. 3041 */ 3042 if (peer->ident_pkey == NULL) { 3043 msyslog(LOG_NOTICE, "crypto_mv: scheme unavailable"); 3044 return (XEVNT_ID); 3045 } 3046 if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) { 3047 msyslog(LOG_NOTICE, "crypto_mv: invalid filestamp %u", 3048 ntohl(ep->fstamp)); 3049 return (XEVNT_FSP); 3050 } 3051 if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) { 3052 msyslog(LOG_NOTICE, "crypto_mv: defective key"); 3053 return (XEVNT_PUB); 3054 } 3055 DSA_get0_pqg(dsa, &p, NULL, NULL); 3056 DSA_get0_key(dsa, &pub_key, &priv_key); 3057 if (peer->iffval == NULL) { 3058 msyslog(LOG_NOTICE, "crypto_mv: missing challenge"); 3059 return (XEVNT_ID); 3060 } 3061 3062 /* 3063 * Extract the y, gbar and ghat values from the response. 3064 */ 3065 bctx = BN_CTX_new(); k = BN_new(); u = BN_new(); v = BN_new(); 3066 len = ntohl(ep->vallen); 3067 ptr = (u_char *)ep->pkt; 3068 if ((sdsa = d2i_DSAparams(NULL, &ptr, len)) == NULL) { 3069 msyslog(LOG_ERR, "crypto_mv: %s", 3070 ERR_error_string(ERR_get_error(), NULL)); 3071 return (XEVNT_ERR); 3072 } 3073 DSA_get0_pqg(sdsa, &sp, &sq, &sg); 3074 3075 /* 3076 * Compute (gbar^xhat ghat^xbar) mod p. 3077 */ 3078 BN_mod_exp(u, sq, pub_key, p, bctx); 3079 BN_mod_exp(v, sg, priv_key, p, bctx); 3080 BN_mod_mul(u, u, v, p, bctx); 3081 BN_mod_mul(u, u, sp, p, bctx); 3082 3083 /* 3084 * The result should match r. 3085 */ 3086 temp = BN_cmp(u, peer->iffval); 3087 BN_CTX_free(bctx); BN_free(k); BN_free(u); BN_free(v); 3088 BN_free(peer->iffval); 3089 peer->iffval = NULL; 3090 DSA_free(sdsa); 3091 if (temp == 0) 3092 return (XEVNT_OK); 3093 3094 msyslog(LOG_NOTICE, "crypto_mv: identity not verified"); 3095 return (XEVNT_ID); 3096 } 3097 3098 3099 /* 3100 *********************************************************************** 3101 * * 3102 * The following routines are used to manipulate certificates * 3103 * * 3104 *********************************************************************** 3105 */ 3106 /* 3107 * cert_sign - sign x509 certificate equest and update value structure. 3108 * 3109 * The certificate request includes a copy of the host certificate, 3110 * which includes the version number, subject name and public key of the 3111 * host. The resulting certificate includes these values plus the 3112 * serial number, issuer name and valid interval of the server. The 3113 * valid interval extends from the current time to the same time one 3114 * year hence. This may extend the life of the signed certificate beyond 3115 * that of the signer certificate. 3116 * 3117 * It is convenient to use the NTP seconds of the current time as the 3118 * serial number. In the value structure the timestamp is the current 3119 * time and the filestamp is taken from the extension field. Note this 3120 * routine is called only when the client clock is synchronized to a 3121 * proventic source, so timestamp comparisons are valid. 3122 * 3123 * The host certificate is valid from the time it was generated for a 3124 * period of one year. A signed certificate is valid from the time of 3125 * signature for a period of one year, but only the host certificate (or 3126 * sign certificate if used) is actually used to encrypt and decrypt 3127 * signatures. The signature trail is built from the client via the 3128 * intermediate servers to the trusted server. Each signature on the 3129 * trail must be valid at the time of signature, but it could happen 3130 * that a signer certificate expire before the signed certificate, which 3131 * remains valid until its expiration. 3132 * 3133 * Returns 3134 * XEVNT_OK success 3135 * XEVNT_CRT bad or missing certificate 3136 * XEVNT_PER host certificate expired 3137 * XEVNT_PUB bad or missing public key 3138 * XEVNT_VFY certificate not verified 3139 */ 3140 static int 3141 cert_sign( 3142 struct exten *ep, /* extension field pointer */ 3143 struct value *vp /* value pointer */ 3144 ) 3145 { 3146 X509 *req; /* X509 certificate request */ 3147 X509 *cert; /* X509 certificate */ 3148 X509_EXTENSION *ext; /* certificate extension */ 3149 ASN1_INTEGER *serial; /* serial number */ 3150 X509_NAME *subj; /* distinguished (common) name */ 3151 EVP_PKEY *pkey; /* public key */ 3152 EVP_MD_CTX *ctx; /* message digest context */ 3153 tstamp_t tstamp; /* NTP timestamp */ 3154 struct calendar tscal; 3155 u_int len; 3156 const u_char *cptr; 3157 u_char *ptr; 3158 int i, temp; 3159 3160 /* 3161 * Decode ASN.1 objects and construct certificate structure. 3162 * Make sure the system clock is synchronized to a proventic 3163 * source. 3164 */ 3165 tstamp = crypto_time(); 3166 if (tstamp == 0) 3167 return (XEVNT_TSP); 3168 3169 len = exten_payload_size(ep); 3170 if (len == 0 || len > MAX_VALLEN) 3171 return (XEVNT_LEN); 3172 cptr = (void *)ep->pkt; 3173 if ((req = d2i_X509(NULL, &cptr, len)) == NULL) { 3174 msyslog(LOG_ERR, "cert_sign: %s", 3175 ERR_error_string(ERR_get_error(), NULL)); 3176 return (XEVNT_CRT); 3177 } 3178 /* 3179 * Extract public key and check for errors. 3180 */ 3181 if ((pkey = X509_get_pubkey(req)) == NULL) { 3182 msyslog(LOG_ERR, "cert_sign: %s", 3183 ERR_error_string(ERR_get_error(), NULL)); 3184 X509_free(req); 3185 return (XEVNT_PUB); 3186 } 3187 3188 /* 3189 * Generate X509 certificate signed by this server. If this is a 3190 * trusted host, the issuer name is the group name; otherwise, 3191 * it is the host name. Also copy any extensions that might be 3192 * present. 3193 */ 3194 cert = X509_new(); 3195 X509_set_version(cert, X509_get_version(req)); 3196 serial = ASN1_INTEGER_new(); 3197 ASN1_INTEGER_set(serial, tstamp); 3198 X509_set_serialNumber(cert, serial); 3199 X509_gmtime_adj(X509_getm_notBefore(cert), 0L); 3200 X509_gmtime_adj(X509_getm_notAfter(cert), YEAR); 3201 subj = X509_get_issuer_name(cert); 3202 X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC, 3203 hostval.ptr, strlen((const char *)hostval.ptr), -1, 0); 3204 subj = X509_get_subject_name(req); 3205 X509_set_subject_name(cert, subj); 3206 X509_set_pubkey(cert, pkey); 3207 temp = X509_get_ext_count(req); 3208 for (i = 0; i < temp; i++) { 3209 ext = X509_get_ext(req, i); 3210 INSIST(X509_add_ext(cert, ext, -1)); 3211 } 3212 X509_free(req); 3213 3214 /* 3215 * Sign and verify the client certificate, but only if the host 3216 * certificate has not expired. 3217 */ 3218 (void)ntpcal_ntp_to_date(&tscal, tstamp, NULL); 3219 if ((calcomp(&tscal, &(cert_host->first)) < 0) 3220 || (calcomp(&tscal, &(cert_host->last)) > 0)) { 3221 X509_free(cert); 3222 return (XEVNT_PER); 3223 } 3224 X509_sign(cert, sign_pkey, sign_digest); 3225 if (X509_verify(cert, sign_pkey) <= 0) { 3226 msyslog(LOG_ERR, "cert_sign: %s", 3227 ERR_error_string(ERR_get_error(), NULL)); 3228 X509_free(cert); 3229 return (XEVNT_VFY); 3230 } 3231 len = i2d_X509(cert, NULL); 3232 3233 /* 3234 * Build and sign the value structure. We have to sign it here, 3235 * since the response has to be returned right away. This is a 3236 * clogging hazard. 3237 */ 3238 memset(vp, 0, sizeof(struct value)); 3239 vp->tstamp = htonl(tstamp); 3240 vp->fstamp = ep->fstamp; 3241 vp->vallen = htonl(len); 3242 vp->ptr = emalloc(len); 3243 ptr = vp->ptr; 3244 i2d_X509(cert, (unsigned char **)(intptr_t)&ptr); 3245 vp->siglen = 0; 3246 if (tstamp != 0) { 3247 vp->sig = emalloc(sign_siglen); 3248 ctx = digest_ctx; 3249 EVP_SignInit(ctx, sign_digest); 3250 EVP_SignUpdate(ctx, (u_char *)vp, 12); 3251 EVP_SignUpdate(ctx, vp->ptr, len); 3252 if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) { 3253 INSIST(len <= sign_siglen); 3254 vp->siglen = htonl(len); 3255 } 3256 } 3257 #ifdef DEBUG 3258 if (debug > 1) 3259 X509_print_fp(stdout, cert); 3260 #endif 3261 X509_free(cert); 3262 return (XEVNT_OK); 3263 } 3264 3265 3266 /* 3267 * cert_install - install certificate in certificate cache 3268 * 3269 * This routine encodes an extension field into a certificate info/value 3270 * structure. It searches the certificate list for duplicates and 3271 * expunges whichever is older. Finally, it inserts this certificate 3272 * first on the list. 3273 * 3274 * Returns certificate info pointer if valid, NULL if not. 3275 */ 3276 struct cert_info * 3277 cert_install( 3278 struct exten *ep, /* cert info/value */ 3279 struct peer *peer /* peer structure */ 3280 ) 3281 { 3282 struct cert_info *cp, *xp, **zp; 3283 3284 /* 3285 * Parse and validate the signed certificate. If valid, 3286 * construct the info/value structure; otherwise, scamper home 3287 * empty handed. 3288 */ 3289 if ((cp = cert_parse((u_char *)ep->pkt, (long)ntohl(ep->vallen), 3290 (tstamp_t)ntohl(ep->fstamp))) == NULL) 3291 return (NULL); 3292 3293 /* 3294 * Scan certificate list looking for another certificate with 3295 * the same subject and issuer. If another is found with the 3296 * same or older filestamp, unlink it and return the goodies to 3297 * the heap. If another is found with a later filestamp, discard 3298 * the new one and leave the building with the old one. 3299 * 3300 * Make a note to study this issue again. An earlier certificate 3301 * with a long lifetime might be overtaken by a later 3302 * certificate with a short lifetime, thus invalidating the 3303 * earlier signature. However, we gotta find a way to leak old 3304 * stuff from the cache, so we do it anyway. 3305 */ 3306 zp = &cinfo; 3307 for (xp = cinfo; xp != NULL; xp = xp->link) { 3308 if (strcmp(cp->subject, xp->subject) == 0 && 3309 strcmp(cp->issuer, xp->issuer) == 0) { 3310 if (ntohl(cp->cert.fstamp) <= 3311 ntohl(xp->cert.fstamp)) { 3312 cert_free(cp); 3313 cp = xp; 3314 } else { 3315 *zp = xp->link; 3316 cert_free(xp); 3317 xp = NULL; 3318 } 3319 break; 3320 } 3321 zp = &xp->link; 3322 } 3323 if (xp == NULL) { 3324 cp->link = cinfo; 3325 cinfo = cp; 3326 } 3327 cp->flags |= CERT_VALID; 3328 crypto_update(); 3329 return (cp); 3330 } 3331 3332 3333 /* 3334 * cert_hike - verify the signature using the issuer public key 3335 * 3336 * Returns 3337 * XEVNT_OK success 3338 * XEVNT_CRT bad or missing certificate 3339 * XEVNT_PER host certificate expired 3340 * XEVNT_VFY certificate not verified 3341 */ 3342 int 3343 cert_hike( 3344 struct peer *peer, /* peer structure pointer */ 3345 struct cert_info *yp /* issuer certificate */ 3346 ) 3347 { 3348 struct cert_info *xp; /* subject certificate */ 3349 X509 *cert; /* X509 certificate */ 3350 const u_char *ptr; 3351 3352 /* 3353 * Save the issuer on the new certificate, but remember the old 3354 * one. 3355 */ 3356 if (peer->issuer != NULL) 3357 free(peer->issuer); 3358 peer->issuer = estrdup(yp->issuer); 3359 xp = peer->xinfo; 3360 peer->xinfo = yp; 3361 3362 /* 3363 * If subject Y matches issuer Y, then the certificate trail is 3364 * complete. If Y is not trusted, the server certificate has yet 3365 * been signed, so keep trying. Otherwise, save the group key 3366 * and light the valid bit. If the host certificate is trusted, 3367 * do not execute a sign exchange. If no identity scheme is in 3368 * use, light the identity and proventic bits. 3369 */ 3370 if (strcmp(yp->subject, yp->issuer) == 0) { 3371 if (!(yp->flags & CERT_TRUST)) 3372 return (XEVNT_OK); 3373 3374 /* 3375 * If the server has an an identity scheme, fetch the 3376 * identity credentials. If not, the identity is 3377 * verified only by the trusted certificate. The next 3378 * signature will set the server proventic. 3379 */ 3380 peer->crypto |= CRYPTO_FLAG_CERT; 3381 peer->grpkey = yp->grpkey; 3382 if (peer->ident == NULL || !(peer->crypto & 3383 CRYPTO_FLAG_MASK)) 3384 peer->crypto |= CRYPTO_FLAG_VRFY; 3385 } 3386 3387 /* 3388 * If X exists, verify signature X using public key Y. 3389 */ 3390 if (xp == NULL) 3391 return (XEVNT_OK); 3392 3393 ptr = (u_char *)xp->cert.ptr; 3394 cert = d2i_X509(NULL, &ptr, ntohl(xp->cert.vallen)); 3395 if (cert == NULL) { 3396 xp->flags |= CERT_ERROR; 3397 return (XEVNT_CRT); 3398 } 3399 if (X509_verify(cert, yp->pkey) <= 0) { 3400 X509_free(cert); 3401 xp->flags |= CERT_ERROR; 3402 return (XEVNT_VFY); 3403 } 3404 X509_free(cert); 3405 3406 /* 3407 * Signature X is valid only if it begins during the 3408 * lifetime of Y. 3409 */ 3410 if ((calcomp(&(xp->first), &(yp->first)) < 0) 3411 || (calcomp(&(xp->first), &(yp->last)) > 0)) { 3412 xp->flags |= CERT_ERROR; 3413 return (XEVNT_PER); 3414 } 3415 xp->flags |= CERT_SIGN; 3416 return (XEVNT_OK); 3417 } 3418 3419 3420 /* 3421 * cert_parse - parse x509 certificate and create info/value structures. 3422 * 3423 * The server certificate includes the version number, issuer name, 3424 * subject name, public key and valid date interval. If the issuer name 3425 * is the same as the subject name, the certificate is self signed and 3426 * valid only if the server is configured as trustable. If the names are 3427 * different, another issuer has signed the server certificate and 3428 * vouched for it. In this case the server certificate is valid if 3429 * verified by the issuer public key. 3430 * 3431 * Returns certificate info/value pointer if valid, NULL if not. 3432 */ 3433 struct cert_info * /* certificate information structure */ 3434 cert_parse( 3435 const u_char *asn1cert, /* X509 certificate */ 3436 long len, /* certificate length */ 3437 tstamp_t fstamp /* filestamp */ 3438 ) 3439 { 3440 X509 *cert; /* X509 certificate */ 3441 struct cert_info *ret; /* certificate info/value */ 3442 BIO *bp; 3443 char pathbuf[MAXFILENAME]; 3444 const u_char *ptr; 3445 char *pch; 3446 int cnt, i; 3447 struct calendar fscal; 3448 3449 /* 3450 * Decode ASN.1 objects and construct certificate structure. 3451 */ 3452 ptr = asn1cert; 3453 if ((cert = d2i_X509(NULL, &ptr, len)) == NULL) { 3454 msyslog(LOG_ERR, "cert_parse: %s", 3455 ERR_error_string(ERR_get_error(), NULL)); 3456 return (NULL); 3457 } 3458 #ifdef DEBUG 3459 if (debug > 1) 3460 X509_print_fp(stdout, cert); 3461 #endif 3462 3463 /* 3464 * Extract version, subject name and public key. 3465 */ 3466 ret = emalloc_zero(sizeof(*ret)); 3467 if ((ret->pkey = X509_get_pubkey(cert)) == NULL) { 3468 msyslog(LOG_ERR, "cert_parse: %s", 3469 ERR_error_string(ERR_get_error(), NULL)); 3470 cert_free(ret); 3471 X509_free(cert); 3472 return (NULL); 3473 } 3474 ret->version = X509_get_version(cert); 3475 X509_NAME_oneline(X509_get_subject_name(cert), pathbuf, 3476 sizeof(pathbuf)); 3477 pch = strstr(pathbuf, "CN="); 3478 if (NULL == pch) { 3479 msyslog(LOG_NOTICE, "cert_parse: invalid subject %s", 3480 pathbuf); 3481 cert_free(ret); 3482 X509_free(cert); 3483 return (NULL); 3484 } 3485 ret->subject = estrdup(pch + 3); 3486 3487 /* 3488 * Extract remaining objects. Note that the NTP serial number is 3489 * the NTP seconds at the time of signing, but this might not be 3490 * the case for other authority. We don't bother to check the 3491 * objects at this time, since the real crunch can happen only 3492 * when the time is valid but not yet certificated. 3493 */ 3494 ret->nid = X509_get_signature_nid(cert); 3495 ret->digest = (const EVP_MD *)EVP_get_digestbynid(ret->nid); 3496 ret->serial = 3497 (u_long)ASN1_INTEGER_get(X509_get_serialNumber(cert)); 3498 X509_NAME_oneline(X509_get_issuer_name(cert), pathbuf, 3499 sizeof(pathbuf)); 3500 if ((pch = strstr(pathbuf, "CN=")) == NULL) { 3501 msyslog(LOG_NOTICE, "cert_parse: invalid issuer %s", 3502 pathbuf); 3503 cert_free(ret); 3504 X509_free(cert); 3505 return (NULL); 3506 } 3507 ret->issuer = estrdup(pch + 3); 3508 asn_to_calendar(X509_get0_notBefore(cert), &(ret->first)); 3509 asn_to_calendar(X509_get0_notAfter(cert), &(ret->last)); 3510 3511 /* 3512 * Extract extension fields. These are ad hoc ripoffs of 3513 * currently assigned functions and will certainly be changed 3514 * before prime time. 3515 */ 3516 cnt = X509_get_ext_count(cert); 3517 for (i = 0; i < cnt; i++) { 3518 X509_EXTENSION *ext; 3519 ASN1_OBJECT *obj; 3520 int nid; 3521 ASN1_OCTET_STRING *data; 3522 3523 ext = X509_get_ext(cert, i); 3524 obj = X509_EXTENSION_get_object(ext); 3525 nid = OBJ_obj2nid(obj); 3526 3527 switch (nid) { 3528 3529 /* 3530 * If a key_usage field is present, we decode whether 3531 * this is a trusted or private certificate. This is 3532 * dorky; all we want is to compare NIDs, but OpenSSL 3533 * insists on BIO text strings. 3534 */ 3535 case NID_ext_key_usage: 3536 bp = BIO_new(BIO_s_mem()); 3537 X509V3_EXT_print(bp, ext, 0, 0); 3538 BIO_gets(bp, pathbuf, sizeof(pathbuf)); 3539 BIO_free(bp); 3540 if (strcmp(pathbuf, "Trust Root") == 0) 3541 ret->flags |= CERT_TRUST; 3542 else if (strcmp(pathbuf, "Private") == 0) 3543 ret->flags |= CERT_PRIV; 3544 DPRINTF(1, ("cert_parse: %s: %s\n", 3545 OBJ_nid2ln(nid), pathbuf)); 3546 break; 3547 3548 /* 3549 * If a NID_subject_key_identifier field is present, it 3550 * contains the GQ public key. 3551 */ 3552 case NID_subject_key_identifier: 3553 data = X509_EXTENSION_get_data(ext); 3554 ret->grpkey = BN_bin2bn(&data->data[2], 3555 data->length - 2, NULL); 3556 /* fall through */ 3557 default: 3558 DPRINTF(1, ("cert_parse: %s\n", 3559 OBJ_nid2ln(nid))); 3560 break; 3561 } 3562 } 3563 if (strcmp(ret->subject, ret->issuer) == 0) { 3564 3565 /* 3566 * If certificate is self signed, verify signature. 3567 */ 3568 if (X509_verify(cert, ret->pkey) <= 0) { 3569 msyslog(LOG_NOTICE, 3570 "cert_parse: signature not verified %s", 3571 ret->subject); 3572 cert_free(ret); 3573 X509_free(cert); 3574 return (NULL); 3575 } 3576 } else { 3577 3578 /* 3579 * Check for a certificate loop. 3580 */ 3581 if (strcmp((const char *)hostval.ptr, ret->issuer) == 0) { 3582 msyslog(LOG_NOTICE, 3583 "cert_parse: certificate trail loop %s", 3584 ret->subject); 3585 cert_free(ret); 3586 X509_free(cert); 3587 return (NULL); 3588 } 3589 } 3590 3591 /* 3592 * Verify certificate valid times. Note that certificates cannot 3593 * be retroactive. 3594 */ 3595 (void)ntpcal_ntp_to_date(&fscal, fstamp, NULL); 3596 if ((calcomp(&(ret->first), &(ret->last)) > 0) 3597 || (calcomp(&(ret->first), &fscal) < 0)) { 3598 msyslog(LOG_NOTICE, 3599 "cert_parse: invalid times %s first %u-%02u-%02uT%02u:%02u:%02u last %u-%02u-%02uT%02u:%02u:%02u fstamp %u-%02u-%02uT%02u:%02u:%02u", 3600 ret->subject, 3601 ret->first.year, ret->first.month, ret->first.monthday, 3602 ret->first.hour, ret->first.minute, ret->first.second, 3603 ret->last.year, ret->last.month, ret->last.monthday, 3604 ret->last.hour, ret->last.minute, ret->last.second, 3605 fscal.year, fscal.month, fscal.monthday, 3606 fscal.hour, fscal.minute, fscal.second); 3607 cert_free(ret); 3608 X509_free(cert); 3609 return (NULL); 3610 } 3611 3612 /* 3613 * Build the value structure to sign and send later. 3614 */ 3615 ret->cert.fstamp = htonl(fstamp); 3616 ret->cert.vallen = htonl(len); 3617 ret->cert.ptr = emalloc(len); 3618 memcpy(ret->cert.ptr, asn1cert, len); 3619 X509_free(cert); 3620 return (ret); 3621 } 3622 3623 3624 /* 3625 * cert_free - free certificate information structure 3626 */ 3627 void 3628 cert_free( 3629 struct cert_info *cinf /* certificate info/value structure */ 3630 ) 3631 { 3632 if (cinf->pkey != NULL) 3633 EVP_PKEY_free(cinf->pkey); 3634 if (cinf->subject != NULL) 3635 free(cinf->subject); 3636 if (cinf->issuer != NULL) 3637 free(cinf->issuer); 3638 if (cinf->grpkey != NULL) 3639 BN_free(cinf->grpkey); 3640 value_free(&cinf->cert); 3641 free(cinf); 3642 } 3643 3644 3645 /* 3646 * crypto_key - load cryptographic parameters and keys 3647 * 3648 * This routine searches the key cache for matching name in the form 3649 * ntpkey_<key>_<name>, where <key> is one of host, sign, iff, gq, mv, 3650 * and <name> is the host/group name. If not found, it tries to load a 3651 * PEM-encoded file of the same name and extracts the filestamp from 3652 * the first line of the file name. It returns the key pointer if valid, 3653 * NULL if not. 3654 */ 3655 static struct pkey_info * 3656 crypto_key( 3657 char *cp, /* file name */ 3658 char *passwd1, /* password */ 3659 sockaddr_u *addr /* IP address */ 3660 ) 3661 { 3662 FILE *str; /* file handle */ 3663 struct pkey_info *pkp; /* generic key */ 3664 EVP_PKEY *pkey = NULL; /* public/private key */ 3665 tstamp_t fstamp; 3666 char filename[MAXFILENAME]; /* name of key file */ 3667 char linkname[MAXFILENAME]; /* filestamp buffer) */ 3668 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 3669 char *ptr; 3670 3671 /* 3672 * Search the key cache for matching key and name. 3673 */ 3674 for (pkp = pkinfo; pkp != NULL; pkp = pkp->link) { 3675 if (strcmp(cp, pkp->name) == 0) 3676 return (pkp); 3677 } 3678 3679 /* 3680 * Open the key file. If the first character of the file name is 3681 * not '/', prepend the keys directory string. If something goes 3682 * wrong, abandon ship. 3683 */ 3684 if (*cp == '/') 3685 strlcpy(filename, cp, sizeof(filename)); 3686 else 3687 snprintf(filename, sizeof(filename), "%s/%s", keysdir, 3688 cp); 3689 str = fopen(filename, "r"); 3690 if (str == NULL) 3691 return (NULL); 3692 3693 /* 3694 * Read the filestamp, which is contained in the first line. 3695 */ 3696 if ((ptr = fgets(linkname, sizeof(linkname), str)) == NULL) { 3697 msyslog(LOG_ERR, "crypto_key: empty file %s", 3698 filename); 3699 fclose(str); 3700 return (NULL); 3701 } 3702 if ((ptr = strrchr(ptr, '.')) == NULL) { 3703 msyslog(LOG_ERR, "crypto_key: no filestamp %s", 3704 filename); 3705 fclose(str); 3706 return (NULL); 3707 } 3708 if (sscanf(++ptr, "%u", &fstamp) != 1) { 3709 msyslog(LOG_ERR, "crypto_key: invalid filestamp %s", 3710 filename); 3711 fclose(str); 3712 return (NULL); 3713 } 3714 3715 /* 3716 * Read and decrypt PEM-encoded private key. If it fails to 3717 * decrypt, game over. 3718 */ 3719 pkey = PEM_read_PrivateKey(str, NULL, NULL, passwd1); 3720 fclose(str); 3721 if (pkey == NULL) { 3722 msyslog(LOG_ERR, "crypto_key: %s", 3723 ERR_error_string(ERR_get_error(), NULL)); 3724 exit (-1); 3725 } 3726 3727 /* 3728 * Make a new entry in the key cache. 3729 */ 3730 pkp = emalloc(sizeof(struct pkey_info)); 3731 pkp->link = pkinfo; 3732 pkinfo = pkp; 3733 pkp->pkey = pkey; 3734 pkp->name = estrdup(cp); 3735 pkp->fstamp = fstamp; 3736 3737 /* 3738 * Leave tracks in the cryptostats. 3739 */ 3740 if ((ptr = strrchr(linkname, '\n')) != NULL) 3741 *ptr = '\0'; 3742 snprintf(statstr, sizeof(statstr), "%s mod %d", &linkname[2], 3743 EVP_PKEY_size(pkey) * 8); 3744 record_crypto_stats(addr, statstr); 3745 3746 DPRINTF(1, ("crypto_key: %s\n", statstr)); 3747 #ifdef DEBUG 3748 if (debug > 1) { 3749 if (EVP_PKEY_base_id(pkey) == EVP_PKEY_DSA) 3750 DSA_print_fp(stdout, EVP_PKEY_get0_DSA(pkey), 0); 3751 else if (EVP_PKEY_base_id(pkey) == EVP_PKEY_RSA) 3752 RSA_print_fp(stdout, EVP_PKEY_get0_RSA(pkey), 0); 3753 } 3754 #endif 3755 return (pkp); 3756 } 3757 3758 3759 /* 3760 *********************************************************************** 3761 * * 3762 * The following routines are used only at initialization time * 3763 * * 3764 *********************************************************************** 3765 */ 3766 /* 3767 * crypto_cert - load certificate from file 3768 * 3769 * This routine loads an X.509 RSA or DSA certificate from a file and 3770 * constructs a info/cert value structure for this machine. The 3771 * structure includes a filestamp extracted from the file name. Later 3772 * the certificate can be sent to another machine on request. 3773 * 3774 * Returns certificate info/value pointer if valid, NULL if not. 3775 */ 3776 static struct cert_info * /* certificate information */ 3777 crypto_cert( 3778 char *cp /* file name */ 3779 ) 3780 { 3781 struct cert_info *ret; /* certificate information */ 3782 FILE *str; /* file handle */ 3783 char filename[MAXFILENAME]; /* name of certificate file */ 3784 char linkname[MAXFILENAME]; /* filestamp buffer */ 3785 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 3786 tstamp_t fstamp; /* filestamp */ 3787 long len; 3788 char *ptr; 3789 char *name, *header; 3790 u_char *data; 3791 3792 /* 3793 * Open the certificate file. If the first character of the file 3794 * name is not '/', prepend the keys directory string. If 3795 * something goes wrong, abandon ship. 3796 */ 3797 if (*cp == '/') 3798 strlcpy(filename, cp, sizeof(filename)); 3799 else 3800 snprintf(filename, sizeof(filename), "%s/%s", keysdir, 3801 cp); 3802 str = fopen(filename, "r"); 3803 if (str == NULL) 3804 return (NULL); 3805 3806 /* 3807 * Read the filestamp, which is contained in the first line. 3808 */ 3809 if ((ptr = fgets(linkname, sizeof(linkname), str)) == NULL) { 3810 msyslog(LOG_ERR, "crypto_cert: empty file %s", 3811 filename); 3812 fclose(str); 3813 return (NULL); 3814 } 3815 if ((ptr = strrchr(ptr, '.')) == NULL) { 3816 msyslog(LOG_ERR, "crypto_cert: no filestamp %s", 3817 filename); 3818 fclose(str); 3819 return (NULL); 3820 } 3821 if (sscanf(++ptr, "%u", &fstamp) != 1) { 3822 msyslog(LOG_ERR, "crypto_cert: invalid filestamp %s", 3823 filename); 3824 fclose(str); 3825 return (NULL); 3826 } 3827 3828 /* 3829 * Read PEM-encoded certificate and install. 3830 */ 3831 if (!PEM_read(str, &name, &header, &data, &len)) { 3832 msyslog(LOG_ERR, "crypto_cert: %s", 3833 ERR_error_string(ERR_get_error(), NULL)); 3834 fclose(str); 3835 return (NULL); 3836 } 3837 fclose(str); 3838 free(header); 3839 if (strcmp(name, "CERTIFICATE") != 0) { 3840 msyslog(LOG_NOTICE, "crypto_cert: wrong PEM type %s", 3841 name); 3842 free(name); 3843 free(data); 3844 return (NULL); 3845 } 3846 free(name); 3847 3848 /* 3849 * Parse certificate and generate info/value structure. The 3850 * pointer and copy nonsense is due something broken in Solaris. 3851 */ 3852 ret = cert_parse(data, len, fstamp); 3853 free(data); 3854 if (ret == NULL) 3855 return (NULL); 3856 3857 if ((ptr = strrchr(linkname, '\n')) != NULL) 3858 *ptr = '\0'; 3859 snprintf(statstr, sizeof(statstr), "%s 0x%x len %lu", 3860 &linkname[2], ret->flags, len); 3861 record_crypto_stats(NULL, statstr); 3862 DPRINTF(1, ("crypto_cert: %s\n", statstr)); 3863 return (ret); 3864 } 3865 3866 3867 /* 3868 * crypto_setup - load keys, certificate and identity parameters 3869 * 3870 * This routine loads the public/private host key and certificate. If 3871 * available, it loads the public/private sign key, which defaults to 3872 * the host key. The host key must be RSA, but the sign key can be 3873 * either RSA or DSA. If a trusted certificate, it loads the identity 3874 * parameters. In either case, the public key on the certificate must 3875 * agree with the sign key. 3876 * 3877 * Required but missing files and inconsistent data and errors are 3878 * fatal. Allowing configuration to continue would be hazardous and 3879 * require really messy error checks. 3880 */ 3881 void 3882 crypto_setup(void) 3883 { 3884 struct pkey_info *pinfo; /* private/public key */ 3885 char filename[MAXFILENAME]; /* file name buffer */ 3886 char hostname[MAXFILENAME]; /* host name buffer */ 3887 char *randfile; 3888 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 3889 l_fp seed; /* crypto PRNG seed as NTP timestamp */ 3890 u_int len; 3891 int bytes; 3892 u_char *ptr; 3893 3894 /* 3895 * Check for correct OpenSSL version and avoid initialization in 3896 * the case of multiple crypto commands. 3897 */ 3898 if (crypto_flags & CRYPTO_FLAG_ENAB) { 3899 msyslog(LOG_NOTICE, 3900 "crypto_setup: spurious crypto command"); 3901 return; 3902 } 3903 3904 /* 3905 * Load required random seed file and seed the random number 3906 * generator. Be default, it is found as .rnd in the user home 3907 * directory. The root home directory may be / or /root, 3908 * depending on the system. Wiggle the contents a bit and write 3909 * it back so the sequence does not repeat when we next restart. 3910 */ 3911 if (!RAND_status()) { 3912 if (rand_file == NULL) { 3913 RAND_file_name(filename, sizeof(filename)); 3914 randfile = filename; 3915 } else if (*rand_file != '/') { 3916 snprintf(filename, sizeof(filename), "%s/%s", 3917 keysdir, rand_file); 3918 randfile = filename; 3919 } else 3920 randfile = rand_file; 3921 3922 if ((bytes = RAND_load_file(randfile, -1)) == 0) { 3923 msyslog(LOG_ERR, 3924 "crypto_setup: random seed file %s missing", 3925 randfile); 3926 exit (-1); 3927 } 3928 arc4random_buf(&seed, sizeof(l_fp)); 3929 RAND_seed(&seed, sizeof(l_fp)); 3930 RAND_write_file(randfile); 3931 DPRINTF(1, ("crypto_setup: OpenSSL version %lx random seed file %s bytes read %d\n", 3932 OpenSSL_version_num(), randfile, bytes)); 3933 3934 } 3935 3936 /* 3937 * Initialize structures. 3938 */ 3939 gethostname(hostname, sizeof(hostname)); 3940 if (host_filename != NULL) 3941 strlcpy(hostname, host_filename, sizeof(hostname)); 3942 if (passwd == NULL) 3943 passwd = estrdup(hostname); 3944 memset(&hostval, 0, sizeof(hostval)); 3945 memset(&pubkey, 0, sizeof(pubkey)); 3946 memset(&tai_leap, 0, sizeof(tai_leap)); 3947 3948 /* 3949 * Load required host key from file "ntpkey_host_<hostname>". If 3950 * no host key file is not found or has invalid password, life 3951 * as we know it ends. The host key also becomes the default 3952 * sign key. 3953 */ 3954 snprintf(filename, sizeof(filename), "ntpkey_host_%s", hostname); 3955 pinfo = crypto_key(filename, passwd, NULL); 3956 if (pinfo == NULL) { 3957 msyslog(LOG_ERR, 3958 "crypto_setup: host key file %s not found or corrupt", 3959 filename); 3960 exit (-1); 3961 } 3962 if (EVP_PKEY_base_id(pinfo->pkey) != EVP_PKEY_RSA) { 3963 msyslog(LOG_ERR, 3964 "crypto_setup: host key is not RSA key type"); 3965 exit (-1); 3966 } 3967 host_pkey = pinfo->pkey; 3968 sign_pkey = host_pkey; 3969 hostval.fstamp = htonl(pinfo->fstamp); 3970 3971 /* 3972 * Construct public key extension field for agreement scheme. 3973 */ 3974 len = i2d_PublicKey(host_pkey, NULL); 3975 ptr = emalloc(len); 3976 pubkey.ptr = ptr; 3977 i2d_PublicKey(host_pkey, &ptr); 3978 pubkey.fstamp = hostval.fstamp; 3979 pubkey.vallen = htonl(len); 3980 3981 /* 3982 * Load optional sign key from file "ntpkey_sign_<hostname>". If 3983 * available, it becomes the sign key. 3984 */ 3985 snprintf(filename, sizeof(filename), "ntpkey_sign_%s", hostname); 3986 pinfo = crypto_key(filename, passwd, NULL); 3987 if (pinfo != NULL) 3988 sign_pkey = pinfo->pkey; 3989 3990 /* 3991 * Load required certificate from file "ntpkey_cert_<hostname>". 3992 */ 3993 snprintf(filename, sizeof(filename), "ntpkey_cert_%s", hostname); 3994 cinfo = crypto_cert(filename); 3995 if (cinfo == NULL) { 3996 msyslog(LOG_ERR, 3997 "crypto_setup: certificate file %s not found or corrupt", 3998 filename); 3999 exit (-1); 4000 } 4001 cert_host = cinfo; 4002 sign_digest = cinfo->digest; 4003 sign_siglen = EVP_PKEY_size(sign_pkey); 4004 if (cinfo->flags & CERT_PRIV) 4005 crypto_flags |= CRYPTO_FLAG_PRIV; 4006 4007 /* 4008 * The certificate must be self-signed. 4009 */ 4010 if (strcmp(cinfo->subject, cinfo->issuer) != 0) { 4011 msyslog(LOG_ERR, 4012 "crypto_setup: certificate %s is not self-signed", 4013 filename); 4014 exit (-1); 4015 } 4016 hostval.ptr = estrdup(cinfo->subject); 4017 hostval.vallen = htonl(strlen(cinfo->subject)); 4018 sys_hostname = hostval.ptr; 4019 ptr = (u_char *)strchr(sys_hostname, '@'); 4020 if (ptr != NULL) 4021 sys_groupname = estrdup((char *)++ptr); 4022 if (ident_filename != NULL) 4023 strlcpy(hostname, ident_filename, sizeof(hostname)); 4024 4025 /* 4026 * Load optional IFF parameters from file 4027 * "ntpkey_iffkey_<hostname>". 4028 */ 4029 snprintf(filename, sizeof(filename), "ntpkey_iffkey_%s", 4030 hostname); 4031 iffkey_info = crypto_key(filename, passwd, NULL); 4032 if (iffkey_info != NULL) 4033 crypto_flags |= CRYPTO_FLAG_IFF; 4034 4035 /* 4036 * Load optional GQ parameters from file 4037 * "ntpkey_gqkey_<hostname>". 4038 */ 4039 snprintf(filename, sizeof(filename), "ntpkey_gqkey_%s", 4040 hostname); 4041 gqkey_info = crypto_key(filename, passwd, NULL); 4042 if (gqkey_info != NULL) 4043 crypto_flags |= CRYPTO_FLAG_GQ; 4044 4045 /* 4046 * Load optional MV parameters from file 4047 * "ntpkey_mvkey_<hostname>". 4048 */ 4049 snprintf(filename, sizeof(filename), "ntpkey_mvkey_%s", 4050 hostname); 4051 mvkey_info = crypto_key(filename, passwd, NULL); 4052 if (mvkey_info != NULL) 4053 crypto_flags |= CRYPTO_FLAG_MV; 4054 4055 /* 4056 * We met the enemy and he is us. Now strike up the dance. 4057 */ 4058 crypto_flags |= CRYPTO_FLAG_ENAB | (cinfo->nid << 16); 4059 snprintf(statstr, sizeof(statstr), "setup 0x%x host %s %s", 4060 crypto_flags, hostname, OBJ_nid2ln(cinfo->nid)); 4061 record_crypto_stats(NULL, statstr); 4062 DPRINTF(1, ("crypto_setup: %s\n", statstr)); 4063 } 4064 4065 4066 /* 4067 * crypto_config - configure data from the crypto command. 4068 */ 4069 void 4070 crypto_config( 4071 int item, /* configuration item */ 4072 char *cp /* item name */ 4073 ) 4074 { 4075 int nid; 4076 4077 DPRINTF(1, ("crypto_config: item %d %s\n", item, cp)); 4078 4079 switch (item) { 4080 4081 /* 4082 * Set host name (host). 4083 */ 4084 case CRYPTO_CONF_PRIV: 4085 if (NULL != host_filename) 4086 free(host_filename); 4087 host_filename = estrdup(cp); 4088 break; 4089 4090 /* 4091 * Set group name (ident). 4092 */ 4093 case CRYPTO_CONF_IDENT: 4094 if (NULL != ident_filename) 4095 free(ident_filename); 4096 ident_filename = estrdup(cp); 4097 break; 4098 4099 /* 4100 * Set private key password (pw). 4101 */ 4102 case CRYPTO_CONF_PW: 4103 if (NULL != passwd) 4104 free(passwd); 4105 passwd = estrdup(cp); 4106 break; 4107 4108 /* 4109 * Set random seed file name (randfile). 4110 */ 4111 case CRYPTO_CONF_RAND: 4112 if (NULL != rand_file) 4113 free(rand_file); 4114 rand_file = estrdup(cp); 4115 break; 4116 4117 /* 4118 * Set message digest NID. 4119 */ 4120 case CRYPTO_CONF_NID: 4121 nid = OBJ_sn2nid(cp); 4122 if (nid == 0) 4123 msyslog(LOG_ERR, 4124 "crypto_config: invalid digest name %s", cp); 4125 else 4126 crypto_nid = nid; 4127 break; 4128 } 4129 } 4130 4131 /* 4132 * Get the payload size (internal value length) of an extension packet. 4133 * If the inner value size does not match the outer packet size (that 4134 * is, the value would end behind the frame given by the opcode/size 4135 * field) the function will effectively return UINT_MAX. If the frame is 4136 * too short to hold a variable-sized value, the return value is zero. 4137 */ 4138 static u_int 4139 exten_payload_size( 4140 const struct exten * ep) 4141 { 4142 typedef const u_char *BPTR; 4143 4144 size_t extn_size; 4145 size_t data_size; 4146 size_t head_size; 4147 4148 data_size = 0; 4149 if (NULL != ep) { 4150 head_size = (BPTR)(&ep->vallen + 1) - (BPTR)ep; 4151 extn_size = (uint16_t)(ntohl(ep->opcode) & 0x0000ffff); 4152 if (extn_size >= head_size) { 4153 data_size = (uint32_t)ntohl(ep->vallen); 4154 if (data_size > extn_size - head_size) 4155 data_size = ~(size_t)0u; 4156 } 4157 } 4158 return (u_int)data_size; 4159 } 4160 # else /* !AUTOKEY follows */ 4161 NONEMPTY_TRANSLATION_UNIT 4162 # endif /* !AUTOKEY */ 4163