xref: /freebsd/contrib/ntp/ntpd/ntp_control.c (revision e2e86de153977a85ab3ff3b0bd771fc915a1f95c)
1 /*
2  * ntp_control.c - respond to mode 6 control messages and send async
3  *		   traps.  Provides service to ntpq and others.
4  */
5 
6 /*
7  * $FreeBSD: projects/release-pkg/contrib/ntp/ntpd/ntp_control.c 277386 2015-01-19 16:15:12Z gjb $
8  */
9 
10 #ifdef HAVE_CONFIG_H
11 # include <config.h>
12 #endif
13 
14 #include <stdio.h>
15 #include <ctype.h>
16 #include <signal.h>
17 #include <sys/stat.h>
18 #ifdef HAVE_NETINET_IN_H
19 # include <netinet/in.h>
20 #endif
21 #include <arpa/inet.h>
22 
23 #include "ntpd.h"
24 #include "ntp_io.h"
25 #include "ntp_refclock.h"
26 #include "ntp_control.h"
27 #include "ntp_unixtime.h"
28 #include "ntp_stdlib.h"
29 #include "ntp_config.h"
30 #include "ntp_crypto.h"
31 #include "ntp_assert.h"
32 #include "ntp_leapsec.h"
33 #include "ntp_md5.h"	/* provides OpenSSL digest API */
34 #include "lib_strbuf.h"
35 #include <rc_cmdlength.h>
36 #ifdef KERNEL_PLL
37 # include "ntp_syscall.h"
38 #endif
39 
40 
41 /*
42  * Structure to hold request procedure information
43  */
44 
45 struct ctl_proc {
46 	short control_code;		/* defined request code */
47 #define NO_REQUEST	(-1)
48 	u_short flags;			/* flags word */
49 	/* Only one flag.  Authentication required or not. */
50 #define NOAUTH	0
51 #define AUTH	1
52 	void (*handler) (struct recvbuf *, int); /* handle request */
53 };
54 
55 
56 /*
57  * Request processing routines
58  */
59 static	void	ctl_error	(u_char);
60 #ifdef REFCLOCK
61 static	u_short ctlclkstatus	(struct refclockstat *);
62 #endif
63 static	void	ctl_flushpkt	(u_char);
64 static	void	ctl_putdata	(const char *, unsigned int, int);
65 static	void	ctl_putstr	(const char *, const char *, size_t);
66 static	void	ctl_putdblf	(const char *, int, int, double);
67 #define	ctl_putdbl(tag, d)	ctl_putdblf(tag, 1, 3, d)
68 #define	ctl_putdbl6(tag, d)	ctl_putdblf(tag, 1, 6, d)
69 #define	ctl_putsfp(tag, sfp)	ctl_putdblf(tag, 0, -1, \
70 					    FPTOD(sfp))
71 static	void	ctl_putuint	(const char *, u_long);
72 static	void	ctl_puthex	(const char *, u_long);
73 static	void	ctl_putint	(const char *, long);
74 static	void	ctl_putts	(const char *, l_fp *);
75 static	void	ctl_putadr	(const char *, u_int32,
76 				 sockaddr_u *);
77 static	void	ctl_putrefid	(const char *, u_int32);
78 static	void	ctl_putarray	(const char *, double *, int);
79 static	void	ctl_putsys	(int);
80 static	void	ctl_putpeer	(int, struct peer *);
81 static	void	ctl_putfs	(const char *, tstamp_t);
82 #ifdef REFCLOCK
83 static	void	ctl_putclock	(int, struct refclockstat *, int);
84 #endif	/* REFCLOCK */
85 static	const struct ctl_var *ctl_getitem(const struct ctl_var *,
86 					  char **);
87 static	u_short	count_var	(const struct ctl_var *);
88 static	void	control_unspec	(struct recvbuf *, int);
89 static	void	read_status	(struct recvbuf *, int);
90 static	void	read_sysvars	(void);
91 static	void	read_peervars	(void);
92 static	void	read_variables	(struct recvbuf *, int);
93 static	void	write_variables (struct recvbuf *, int);
94 static	void	read_clockstatus(struct recvbuf *, int);
95 static	void	write_clockstatus(struct recvbuf *, int);
96 static	void	set_trap	(struct recvbuf *, int);
97 static	void	save_config	(struct recvbuf *, int);
98 static	void	configure	(struct recvbuf *, int);
99 static	void	send_mru_entry	(mon_entry *, int);
100 static	void	send_random_tag_value(int);
101 static	void	read_mru_list	(struct recvbuf *, int);
102 static	void	send_ifstats_entry(endpt *, u_int);
103 static	void	read_ifstats	(struct recvbuf *);
104 static	void	sockaddrs_from_restrict_u(sockaddr_u *,	sockaddr_u *,
105 					  restrict_u *, int);
106 static	void	send_restrict_entry(restrict_u *, int, u_int);
107 static	void	send_restrict_list(restrict_u *, int, u_int *);
108 static	void	read_addr_restrictions(struct recvbuf *);
109 static	void	read_ordlist	(struct recvbuf *, int);
110 static	u_int32	derive_nonce	(sockaddr_u *, u_int32, u_int32);
111 static	void	generate_nonce	(struct recvbuf *, char *, size_t);
112 static	int	validate_nonce	(const char *, struct recvbuf *);
113 static	void	req_nonce	(struct recvbuf *, int);
114 static	void	unset_trap	(struct recvbuf *, int);
115 static	struct ctl_trap *ctlfindtrap(sockaddr_u *,
116 				     struct interface *);
117 
118 static const struct ctl_proc control_codes[] = {
119 	{ CTL_OP_UNSPEC,		NOAUTH,	control_unspec },
120 	{ CTL_OP_READSTAT,		NOAUTH,	read_status },
121 	{ CTL_OP_READVAR,		NOAUTH,	read_variables },
122 	{ CTL_OP_WRITEVAR,		AUTH,	write_variables },
123 	{ CTL_OP_READCLOCK,		NOAUTH,	read_clockstatus },
124 	{ CTL_OP_WRITECLOCK,		NOAUTH,	write_clockstatus },
125 	{ CTL_OP_SETTRAP,		NOAUTH,	set_trap },
126 	{ CTL_OP_CONFIGURE,		AUTH,	configure },
127 	{ CTL_OP_SAVECONFIG,		AUTH,	save_config },
128 	{ CTL_OP_READ_MRU,		NOAUTH,	read_mru_list },
129 	{ CTL_OP_READ_ORDLIST_A,	AUTH,	read_ordlist },
130 	{ CTL_OP_REQ_NONCE,		NOAUTH,	req_nonce },
131 	{ CTL_OP_UNSETTRAP,		NOAUTH,	unset_trap },
132 	{ NO_REQUEST,			0,	NULL }
133 };
134 
135 /*
136  * System variables we understand
137  */
138 #define	CS_LEAP			1
139 #define	CS_STRATUM		2
140 #define	CS_PRECISION		3
141 #define	CS_ROOTDELAY		4
142 #define	CS_ROOTDISPERSION	5
143 #define	CS_REFID		6
144 #define	CS_REFTIME		7
145 #define	CS_POLL			8
146 #define	CS_PEERID		9
147 #define	CS_OFFSET		10
148 #define	CS_DRIFT		11
149 #define	CS_JITTER		12
150 #define	CS_ERROR		13
151 #define	CS_CLOCK		14
152 #define	CS_PROCESSOR		15
153 #define	CS_SYSTEM		16
154 #define	CS_VERSION		17
155 #define	CS_STABIL		18
156 #define	CS_VARLIST		19
157 #define	CS_TAI			20
158 #define	CS_LEAPTAB		21
159 #define	CS_LEAPEND		22
160 #define	CS_RATE			23
161 #define	CS_MRU_ENABLED		24
162 #define	CS_MRU_DEPTH		25
163 #define	CS_MRU_DEEPEST		26
164 #define	CS_MRU_MINDEPTH		27
165 #define	CS_MRU_MAXAGE		28
166 #define	CS_MRU_MAXDEPTH		29
167 #define	CS_MRU_MEM		30
168 #define	CS_MRU_MAXMEM		31
169 #define	CS_SS_UPTIME		32
170 #define	CS_SS_RESET		33
171 #define	CS_SS_RECEIVED		34
172 #define	CS_SS_THISVER		35
173 #define	CS_SS_OLDVER		36
174 #define	CS_SS_BADFORMAT		37
175 #define	CS_SS_BADAUTH		38
176 #define	CS_SS_DECLINED		39
177 #define	CS_SS_RESTRICTED	40
178 #define	CS_SS_LIMITED		41
179 #define	CS_SS_KODSENT		42
180 #define	CS_SS_PROCESSED		43
181 #define	CS_PEERADR		44
182 #define	CS_PEERMODE		45
183 #define	CS_BCASTDELAY		46
184 #define	CS_AUTHDELAY		47
185 #define	CS_AUTHKEYS		48
186 #define	CS_AUTHFREEK		49
187 #define	CS_AUTHKLOOKUPS		50
188 #define	CS_AUTHKNOTFOUND	51
189 #define	CS_AUTHKUNCACHED	52
190 #define	CS_AUTHKEXPIRED		53
191 #define	CS_AUTHENCRYPTS		54
192 #define	CS_AUTHDECRYPTS		55
193 #define	CS_AUTHRESET		56
194 #define	CS_K_OFFSET		57
195 #define	CS_K_FREQ		58
196 #define	CS_K_MAXERR		59
197 #define	CS_K_ESTERR		60
198 #define	CS_K_STFLAGS		61
199 #define	CS_K_TIMECONST		62
200 #define	CS_K_PRECISION		63
201 #define	CS_K_FREQTOL		64
202 #define	CS_K_PPS_FREQ		65
203 #define	CS_K_PPS_STABIL		66
204 #define	CS_K_PPS_JITTER		67
205 #define	CS_K_PPS_CALIBDUR	68
206 #define	CS_K_PPS_CALIBS		69
207 #define	CS_K_PPS_CALIBERRS	70
208 #define	CS_K_PPS_JITEXC		71
209 #define	CS_K_PPS_STBEXC		72
210 #define	CS_KERN_FIRST		CS_K_OFFSET
211 #define	CS_KERN_LAST		CS_K_PPS_STBEXC
212 #define	CS_IOSTATS_RESET	73
213 #define	CS_TOTAL_RBUF		74
214 #define	CS_FREE_RBUF		75
215 #define	CS_USED_RBUF		76
216 #define	CS_RBUF_LOWATER		77
217 #define	CS_IO_DROPPED		78
218 #define	CS_IO_IGNORED		79
219 #define	CS_IO_RECEIVED		80
220 #define	CS_IO_SENT		81
221 #define	CS_IO_SENDFAILED	82
222 #define	CS_IO_WAKEUPS		83
223 #define	CS_IO_GOODWAKEUPS	84
224 #define	CS_TIMERSTATS_RESET	85
225 #define	CS_TIMER_OVERRUNS	86
226 #define	CS_TIMER_XMTS		87
227 #define	CS_FUZZ			88
228 #define	CS_WANDER_THRESH	89
229 #define	CS_LEAPSMEARINTV	90
230 #define	CS_LEAPSMEAROFFS	91
231 #define	CS_MAX_NOAUTOKEY	CS_LEAPSMEAROFFS
232 #ifdef AUTOKEY
233 #define	CS_FLAGS		(1 + CS_MAX_NOAUTOKEY)
234 #define	CS_HOST			(2 + CS_MAX_NOAUTOKEY)
235 #define	CS_PUBLIC		(3 + CS_MAX_NOAUTOKEY)
236 #define	CS_CERTIF		(4 + CS_MAX_NOAUTOKEY)
237 #define	CS_SIGNATURE		(5 + CS_MAX_NOAUTOKEY)
238 #define	CS_REVTIME		(6 + CS_MAX_NOAUTOKEY)
239 #define	CS_IDENT		(7 + CS_MAX_NOAUTOKEY)
240 #define	CS_DIGEST		(8 + CS_MAX_NOAUTOKEY)
241 #define	CS_MAXCODE		CS_DIGEST
242 #else	/* !AUTOKEY follows */
243 #define	CS_MAXCODE		CS_MAX_NOAUTOKEY
244 #endif	/* !AUTOKEY */
245 
246 /*
247  * Peer variables we understand
248  */
249 #define	CP_CONFIG		1
250 #define	CP_AUTHENABLE		2
251 #define	CP_AUTHENTIC		3
252 #define	CP_SRCADR		4
253 #define	CP_SRCPORT		5
254 #define	CP_DSTADR		6
255 #define	CP_DSTPORT		7
256 #define	CP_LEAP			8
257 #define	CP_HMODE		9
258 #define	CP_STRATUM		10
259 #define	CP_PPOLL		11
260 #define	CP_HPOLL		12
261 #define	CP_PRECISION		13
262 #define	CP_ROOTDELAY		14
263 #define	CP_ROOTDISPERSION	15
264 #define	CP_REFID		16
265 #define	CP_REFTIME		17
266 #define	CP_ORG			18
267 #define	CP_REC			19
268 #define	CP_XMT			20
269 #define	CP_REACH		21
270 #define	CP_UNREACH		22
271 #define	CP_TIMER		23
272 #define	CP_DELAY		24
273 #define	CP_OFFSET		25
274 #define	CP_JITTER		26
275 #define	CP_DISPERSION		27
276 #define	CP_KEYID		28
277 #define	CP_FILTDELAY		29
278 #define	CP_FILTOFFSET		30
279 #define	CP_PMODE		31
280 #define	CP_RECEIVED		32
281 #define	CP_SENT			33
282 #define	CP_FILTERROR		34
283 #define	CP_FLASH		35
284 #define	CP_TTL			36
285 #define	CP_VARLIST		37
286 #define	CP_IN			38
287 #define	CP_OUT			39
288 #define	CP_RATE			40
289 #define	CP_BIAS			41
290 #define	CP_SRCHOST		42
291 #define	CP_TIMEREC		43
292 #define	CP_TIMEREACH		44
293 #define	CP_BADAUTH		45
294 #define	CP_BOGUSORG		46
295 #define	CP_OLDPKT		47
296 #define	CP_SELDISP		48
297 #define	CP_SELBROKEN		49
298 #define	CP_CANDIDATE		50
299 #define	CP_MAX_NOAUTOKEY	CP_CANDIDATE
300 #ifdef AUTOKEY
301 #define	CP_FLAGS		(1 + CP_MAX_NOAUTOKEY)
302 #define	CP_HOST			(2 + CP_MAX_NOAUTOKEY)
303 #define	CP_VALID		(3 + CP_MAX_NOAUTOKEY)
304 #define	CP_INITSEQ		(4 + CP_MAX_NOAUTOKEY)
305 #define	CP_INITKEY		(5 + CP_MAX_NOAUTOKEY)
306 #define	CP_INITTSP		(6 + CP_MAX_NOAUTOKEY)
307 #define	CP_SIGNATURE		(7 + CP_MAX_NOAUTOKEY)
308 #define	CP_IDENT		(8 + CP_MAX_NOAUTOKEY)
309 #define	CP_MAXCODE		CP_IDENT
310 #else	/* !AUTOKEY follows */
311 #define	CP_MAXCODE		CP_MAX_NOAUTOKEY
312 #endif	/* !AUTOKEY */
313 
314 /*
315  * Clock variables we understand
316  */
317 #define	CC_TYPE		1
318 #define	CC_TIMECODE	2
319 #define	CC_POLL		3
320 #define	CC_NOREPLY	4
321 #define	CC_BADFORMAT	5
322 #define	CC_BADDATA	6
323 #define	CC_FUDGETIME1	7
324 #define	CC_FUDGETIME2	8
325 #define	CC_FUDGEVAL1	9
326 #define	CC_FUDGEVAL2	10
327 #define	CC_FLAGS	11
328 #define	CC_DEVICE	12
329 #define	CC_VARLIST	13
330 #define	CC_MAXCODE	CC_VARLIST
331 
332 /*
333  * System variable values. The array can be indexed by the variable
334  * index to find the textual name.
335  */
336 static const struct ctl_var sys_var[] = {
337 	{ 0,		PADDING, "" },		/* 0 */
338 	{ CS_LEAP,	RW, "leap" },		/* 1 */
339 	{ CS_STRATUM,	RO, "stratum" },	/* 2 */
340 	{ CS_PRECISION, RO, "precision" },	/* 3 */
341 	{ CS_ROOTDELAY, RO, "rootdelay" },	/* 4 */
342 	{ CS_ROOTDISPERSION, RO, "rootdisp" },	/* 5 */
343 	{ CS_REFID,	RO, "refid" },		/* 6 */
344 	{ CS_REFTIME,	RO, "reftime" },	/* 7 */
345 	{ CS_POLL,	RO, "tc" },		/* 8 */
346 	{ CS_PEERID,	RO, "peer" },		/* 9 */
347 	{ CS_OFFSET,	RO, "offset" },		/* 10 */
348 	{ CS_DRIFT,	RO, "frequency" },	/* 11 */
349 	{ CS_JITTER,	RO, "sys_jitter" },	/* 12 */
350 	{ CS_ERROR,	RO, "clk_jitter" },	/* 13 */
351 	{ CS_CLOCK,	RO, "clock" },		/* 14 */
352 	{ CS_PROCESSOR, RO, "processor" },	/* 15 */
353 	{ CS_SYSTEM,	RO, "system" },		/* 16 */
354 	{ CS_VERSION,	RO, "version" },	/* 17 */
355 	{ CS_STABIL,	RO, "clk_wander" },	/* 18 */
356 	{ CS_VARLIST,	RO, "sys_var_list" },	/* 19 */
357 	{ CS_TAI,	RO, "tai" },		/* 20 */
358 	{ CS_LEAPTAB,	RO, "leapsec" },	/* 21 */
359 	{ CS_LEAPEND,	RO, "expire" },		/* 22 */
360 	{ CS_RATE,	RO, "mintc" },		/* 23 */
361 	{ CS_MRU_ENABLED,	RO, "mru_enabled" },	/* 24 */
362 	{ CS_MRU_DEPTH,		RO, "mru_depth" },	/* 25 */
363 	{ CS_MRU_DEEPEST,	RO, "mru_deepest" },	/* 26 */
364 	{ CS_MRU_MINDEPTH,	RO, "mru_mindepth" },	/* 27 */
365 	{ CS_MRU_MAXAGE,	RO, "mru_maxage" },	/* 28 */
366 	{ CS_MRU_MAXDEPTH,	RO, "mru_maxdepth" },	/* 29 */
367 	{ CS_MRU_MEM,		RO, "mru_mem" },	/* 30 */
368 	{ CS_MRU_MAXMEM,	RO, "mru_maxmem" },	/* 31 */
369 	{ CS_SS_UPTIME,		RO, "ss_uptime" },	/* 32 */
370 	{ CS_SS_RESET,		RO, "ss_reset" },	/* 33 */
371 	{ CS_SS_RECEIVED,	RO, "ss_received" },	/* 34 */
372 	{ CS_SS_THISVER,	RO, "ss_thisver" },	/* 35 */
373 	{ CS_SS_OLDVER,		RO, "ss_oldver" },	/* 36 */
374 	{ CS_SS_BADFORMAT,	RO, "ss_badformat" },	/* 37 */
375 	{ CS_SS_BADAUTH,	RO, "ss_badauth" },	/* 38 */
376 	{ CS_SS_DECLINED,	RO, "ss_declined" },	/* 39 */
377 	{ CS_SS_RESTRICTED,	RO, "ss_restricted" },	/* 40 */
378 	{ CS_SS_LIMITED,	RO, "ss_limited" },	/* 41 */
379 	{ CS_SS_KODSENT,	RO, "ss_kodsent" },	/* 42 */
380 	{ CS_SS_PROCESSED,	RO, "ss_processed" },	/* 43 */
381 	{ CS_PEERADR,		RO, "peeradr" },	/* 44 */
382 	{ CS_PEERMODE,		RO, "peermode" },	/* 45 */
383 	{ CS_BCASTDELAY,	RO, "bcastdelay" },	/* 46 */
384 	{ CS_AUTHDELAY,		RO, "authdelay" },	/* 47 */
385 	{ CS_AUTHKEYS,		RO, "authkeys" },	/* 48 */
386 	{ CS_AUTHFREEK,		RO, "authfreek" },	/* 49 */
387 	{ CS_AUTHKLOOKUPS,	RO, "authklookups" },	/* 50 */
388 	{ CS_AUTHKNOTFOUND,	RO, "authknotfound" },	/* 51 */
389 	{ CS_AUTHKUNCACHED,	RO, "authkuncached" },	/* 52 */
390 	{ CS_AUTHKEXPIRED,	RO, "authkexpired" },	/* 53 */
391 	{ CS_AUTHENCRYPTS,	RO, "authencrypts" },	/* 54 */
392 	{ CS_AUTHDECRYPTS,	RO, "authdecrypts" },	/* 55 */
393 	{ CS_AUTHRESET,		RO, "authreset" },	/* 56 */
394 	{ CS_K_OFFSET,		RO, "koffset" },	/* 57 */
395 	{ CS_K_FREQ,		RO, "kfreq" },		/* 58 */
396 	{ CS_K_MAXERR,		RO, "kmaxerr" },	/* 59 */
397 	{ CS_K_ESTERR,		RO, "kesterr" },	/* 60 */
398 	{ CS_K_STFLAGS,		RO, "kstflags" },	/* 61 */
399 	{ CS_K_TIMECONST,	RO, "ktimeconst" },	/* 62 */
400 	{ CS_K_PRECISION,	RO, "kprecis" },	/* 63 */
401 	{ CS_K_FREQTOL,		RO, "kfreqtol" },	/* 64 */
402 	{ CS_K_PPS_FREQ,	RO, "kppsfreq" },	/* 65 */
403 	{ CS_K_PPS_STABIL,	RO, "kppsstab" },	/* 66 */
404 	{ CS_K_PPS_JITTER,	RO, "kppsjitter" },	/* 67 */
405 	{ CS_K_PPS_CALIBDUR,	RO, "kppscalibdur" },	/* 68 */
406 	{ CS_K_PPS_CALIBS,	RO, "kppscalibs" },	/* 69 */
407 	{ CS_K_PPS_CALIBERRS,	RO, "kppscaliberrs" },	/* 70 */
408 	{ CS_K_PPS_JITEXC,	RO, "kppsjitexc" },	/* 71 */
409 	{ CS_K_PPS_STBEXC,	RO, "kppsstbexc" },	/* 72 */
410 	{ CS_IOSTATS_RESET,	RO, "iostats_reset" },	/* 73 */
411 	{ CS_TOTAL_RBUF,	RO, "total_rbuf" },	/* 74 */
412 	{ CS_FREE_RBUF,		RO, "free_rbuf" },	/* 75 */
413 	{ CS_USED_RBUF,		RO, "used_rbuf" },	/* 76 */
414 	{ CS_RBUF_LOWATER,	RO, "rbuf_lowater" },	/* 77 */
415 	{ CS_IO_DROPPED,	RO, "io_dropped" },	/* 78 */
416 	{ CS_IO_IGNORED,	RO, "io_ignored" },	/* 79 */
417 	{ CS_IO_RECEIVED,	RO, "io_received" },	/* 80 */
418 	{ CS_IO_SENT,		RO, "io_sent" },	/* 81 */
419 	{ CS_IO_SENDFAILED,	RO, "io_sendfailed" },	/* 82 */
420 	{ CS_IO_WAKEUPS,	RO, "io_wakeups" },	/* 83 */
421 	{ CS_IO_GOODWAKEUPS,	RO, "io_goodwakeups" },	/* 84 */
422 	{ CS_TIMERSTATS_RESET,	RO, "timerstats_reset" },/* 85 */
423 	{ CS_TIMER_OVERRUNS,	RO, "timer_overruns" },	/* 86 */
424 	{ CS_TIMER_XMTS,	RO, "timer_xmts" },	/* 87 */
425 	{ CS_FUZZ,		RO, "fuzz" },		/* 88 */
426 	{ CS_WANDER_THRESH,	RO, "clk_wander_threshold" }, /* 89 */
427 
428 	{ CS_LEAPSMEARINTV,	RO, "leapsmearinterval" },    /* 90 */
429 	{ CS_LEAPSMEAROFFS,	RO, "leapsmearoffset" },      /* 91 */
430 
431 #ifdef AUTOKEY
432 	{ CS_FLAGS,	RO, "flags" },		/* 1 + CS_MAX_NOAUTOKEY */
433 	{ CS_HOST,	RO, "host" },		/* 2 + CS_MAX_NOAUTOKEY */
434 	{ CS_PUBLIC,	RO, "update" },		/* 3 + CS_MAX_NOAUTOKEY */
435 	{ CS_CERTIF,	RO, "cert" },		/* 4 + CS_MAX_NOAUTOKEY */
436 	{ CS_SIGNATURE,	RO, "signature" },	/* 5 + CS_MAX_NOAUTOKEY */
437 	{ CS_REVTIME,	RO, "until" },		/* 6 + CS_MAX_NOAUTOKEY */
438 	{ CS_IDENT,	RO, "ident" },		/* 7 + CS_MAX_NOAUTOKEY */
439 	{ CS_DIGEST,	RO, "digest" },		/* 8 + CS_MAX_NOAUTOKEY */
440 #endif	/* AUTOKEY */
441 	{ 0,		EOV, "" }		/* 87/95 */
442 };
443 
444 static struct ctl_var *ext_sys_var = NULL;
445 
446 /*
447  * System variables we print by default (in fuzzball order,
448  * more-or-less)
449  */
450 static const u_char def_sys_var[] = {
451 	CS_VERSION,
452 	CS_PROCESSOR,
453 	CS_SYSTEM,
454 	CS_LEAP,
455 	CS_STRATUM,
456 	CS_PRECISION,
457 	CS_ROOTDELAY,
458 	CS_ROOTDISPERSION,
459 	CS_REFID,
460 	CS_REFTIME,
461 	CS_CLOCK,
462 	CS_PEERID,
463 	CS_POLL,
464 	CS_RATE,
465 	CS_OFFSET,
466 	CS_DRIFT,
467 	CS_JITTER,
468 	CS_ERROR,
469 	CS_STABIL,
470 	CS_TAI,
471 	CS_LEAPTAB,
472 	CS_LEAPEND,
473 	CS_LEAPSMEARINTV,
474 	CS_LEAPSMEAROFFS,
475 #ifdef AUTOKEY
476 	CS_HOST,
477 	CS_IDENT,
478 	CS_FLAGS,
479 	CS_DIGEST,
480 	CS_SIGNATURE,
481 	CS_PUBLIC,
482 	CS_CERTIF,
483 #endif	/* AUTOKEY */
484 	0
485 };
486 
487 
488 /*
489  * Peer variable list
490  */
491 static const struct ctl_var peer_var[] = {
492 	{ 0,		PADDING, "" },		/* 0 */
493 	{ CP_CONFIG,	RO, "config" },		/* 1 */
494 	{ CP_AUTHENABLE, RO,	"authenable" },	/* 2 */
495 	{ CP_AUTHENTIC, RO, "authentic" },	/* 3 */
496 	{ CP_SRCADR,	RO, "srcadr" },		/* 4 */
497 	{ CP_SRCPORT,	RO, "srcport" },	/* 5 */
498 	{ CP_DSTADR,	RO, "dstadr" },		/* 6 */
499 	{ CP_DSTPORT,	RO, "dstport" },	/* 7 */
500 	{ CP_LEAP,	RO, "leap" },		/* 8 */
501 	{ CP_HMODE,	RO, "hmode" },		/* 9 */
502 	{ CP_STRATUM,	RO, "stratum" },	/* 10 */
503 	{ CP_PPOLL,	RO, "ppoll" },		/* 11 */
504 	{ CP_HPOLL,	RO, "hpoll" },		/* 12 */
505 	{ CP_PRECISION,	RO, "precision" },	/* 13 */
506 	{ CP_ROOTDELAY,	RO, "rootdelay" },	/* 14 */
507 	{ CP_ROOTDISPERSION, RO, "rootdisp" },	/* 15 */
508 	{ CP_REFID,	RO, "refid" },		/* 16 */
509 	{ CP_REFTIME,	RO, "reftime" },	/* 17 */
510 	{ CP_ORG,	RO, "org" },		/* 18 */
511 	{ CP_REC,	RO, "rec" },		/* 19 */
512 	{ CP_XMT,	RO, "xleave" },		/* 20 */
513 	{ CP_REACH,	RO, "reach" },		/* 21 */
514 	{ CP_UNREACH,	RO, "unreach" },	/* 22 */
515 	{ CP_TIMER,	RO, "timer" },		/* 23 */
516 	{ CP_DELAY,	RO, "delay" },		/* 24 */
517 	{ CP_OFFSET,	RO, "offset" },		/* 25 */
518 	{ CP_JITTER,	RO, "jitter" },		/* 26 */
519 	{ CP_DISPERSION, RO, "dispersion" },	/* 27 */
520 	{ CP_KEYID,	RO, "keyid" },		/* 28 */
521 	{ CP_FILTDELAY,	RO, "filtdelay" },	/* 29 */
522 	{ CP_FILTOFFSET, RO, "filtoffset" },	/* 30 */
523 	{ CP_PMODE,	RO, "pmode" },		/* 31 */
524 	{ CP_RECEIVED,	RO, "received"},	/* 32 */
525 	{ CP_SENT,	RO, "sent" },		/* 33 */
526 	{ CP_FILTERROR,	RO, "filtdisp" },	/* 34 */
527 	{ CP_FLASH,	RO, "flash" },		/* 35 */
528 	{ CP_TTL,	RO, "ttl" },		/* 36 */
529 	{ CP_VARLIST,	RO, "peer_var_list" },	/* 37 */
530 	{ CP_IN,	RO, "in" },		/* 38 */
531 	{ CP_OUT,	RO, "out" },		/* 39 */
532 	{ CP_RATE,	RO, "headway" },	/* 40 */
533 	{ CP_BIAS,	RO, "bias" },		/* 41 */
534 	{ CP_SRCHOST,	RO, "srchost" },	/* 42 */
535 	{ CP_TIMEREC,	RO, "timerec" },	/* 43 */
536 	{ CP_TIMEREACH,	RO, "timereach" },	/* 44 */
537 	{ CP_BADAUTH,	RO, "badauth" },	/* 45 */
538 	{ CP_BOGUSORG,	RO, "bogusorg" },	/* 46 */
539 	{ CP_OLDPKT,	RO, "oldpkt" },		/* 47 */
540 	{ CP_SELDISP,	RO, "seldisp" },	/* 48 */
541 	{ CP_SELBROKEN,	RO, "selbroken" },	/* 49 */
542 	{ CP_CANDIDATE, RO, "candidate" },	/* 50 */
543 #ifdef AUTOKEY
544 	{ CP_FLAGS,	RO, "flags" },		/* 1 + CP_MAX_NOAUTOKEY */
545 	{ CP_HOST,	RO, "host" },		/* 2 + CP_MAX_NOAUTOKEY */
546 	{ CP_VALID,	RO, "valid" },		/* 3 + CP_MAX_NOAUTOKEY */
547 	{ CP_INITSEQ,	RO, "initsequence" },	/* 4 + CP_MAX_NOAUTOKEY */
548 	{ CP_INITKEY,	RO, "initkey" },	/* 5 + CP_MAX_NOAUTOKEY */
549 	{ CP_INITTSP,	RO, "timestamp" },	/* 6 + CP_MAX_NOAUTOKEY */
550 	{ CP_SIGNATURE,	RO, "signature" },	/* 7 + CP_MAX_NOAUTOKEY */
551 	{ CP_IDENT,	RO, "ident" },		/* 8 + CP_MAX_NOAUTOKEY */
552 #endif	/* AUTOKEY */
553 	{ 0,		EOV, "" }		/* 50/58 */
554 };
555 
556 
557 /*
558  * Peer variables we print by default
559  */
560 static const u_char def_peer_var[] = {
561 	CP_SRCADR,
562 	CP_SRCPORT,
563 	CP_SRCHOST,
564 	CP_DSTADR,
565 	CP_DSTPORT,
566 	CP_OUT,
567 	CP_IN,
568 	CP_LEAP,
569 	CP_STRATUM,
570 	CP_PRECISION,
571 	CP_ROOTDELAY,
572 	CP_ROOTDISPERSION,
573 	CP_REFID,
574 	CP_REFTIME,
575 	CP_REC,
576 	CP_REACH,
577 	CP_UNREACH,
578 	CP_HMODE,
579 	CP_PMODE,
580 	CP_HPOLL,
581 	CP_PPOLL,
582 	CP_RATE,
583 	CP_FLASH,
584 	CP_KEYID,
585 	CP_TTL,
586 	CP_OFFSET,
587 	CP_DELAY,
588 	CP_DISPERSION,
589 	CP_JITTER,
590 	CP_XMT,
591 	CP_BIAS,
592 	CP_FILTDELAY,
593 	CP_FILTOFFSET,
594 	CP_FILTERROR,
595 #ifdef AUTOKEY
596 	CP_HOST,
597 	CP_FLAGS,
598 	CP_SIGNATURE,
599 	CP_VALID,
600 	CP_INITSEQ,
601 	CP_IDENT,
602 #endif	/* AUTOKEY */
603 	0
604 };
605 
606 
607 #ifdef REFCLOCK
608 /*
609  * Clock variable list
610  */
611 static const struct ctl_var clock_var[] = {
612 	{ 0,		PADDING, "" },		/* 0 */
613 	{ CC_TYPE,	RO, "type" },		/* 1 */
614 	{ CC_TIMECODE,	RO, "timecode" },	/* 2 */
615 	{ CC_POLL,	RO, "poll" },		/* 3 */
616 	{ CC_NOREPLY,	RO, "noreply" },	/* 4 */
617 	{ CC_BADFORMAT, RO, "badformat" },	/* 5 */
618 	{ CC_BADDATA,	RO, "baddata" },	/* 6 */
619 	{ CC_FUDGETIME1, RO, "fudgetime1" },	/* 7 */
620 	{ CC_FUDGETIME2, RO, "fudgetime2" },	/* 8 */
621 	{ CC_FUDGEVAL1, RO, "stratum" },	/* 9 */
622 	{ CC_FUDGEVAL2, RO, "refid" },		/* 10 */
623 	{ CC_FLAGS,	RO, "flags" },		/* 11 */
624 	{ CC_DEVICE,	RO, "device" },		/* 12 */
625 	{ CC_VARLIST,	RO, "clock_var_list" },	/* 13 */
626 	{ 0,		EOV, ""  }		/* 14 */
627 };
628 
629 
630 /*
631  * Clock variables printed by default
632  */
633 static const u_char def_clock_var[] = {
634 	CC_DEVICE,
635 	CC_TYPE,	/* won't be output if device = known */
636 	CC_TIMECODE,
637 	CC_POLL,
638 	CC_NOREPLY,
639 	CC_BADFORMAT,
640 	CC_BADDATA,
641 	CC_FUDGETIME1,
642 	CC_FUDGETIME2,
643 	CC_FUDGEVAL1,
644 	CC_FUDGEVAL2,
645 	CC_FLAGS,
646 	0
647 };
648 #endif
649 
650 /*
651  * MRU string constants shared by send_mru_entry() and read_mru_list().
652  */
653 static const char addr_fmt[] =		"addr.%d";
654 static const char last_fmt[] =		"last.%d";
655 
656 /*
657  * System and processor definitions.
658  */
659 #ifndef HAVE_UNAME
660 # ifndef STR_SYSTEM
661 #  define		STR_SYSTEM	"UNIX"
662 # endif
663 # ifndef STR_PROCESSOR
664 #  define		STR_PROCESSOR	"unknown"
665 # endif
666 
667 static const char str_system[] = STR_SYSTEM;
668 static const char str_processor[] = STR_PROCESSOR;
669 #else
670 # include <sys/utsname.h>
671 static struct utsname utsnamebuf;
672 #endif /* HAVE_UNAME */
673 
674 /*
675  * Trap structures. We only allow a few of these, and send a copy of
676  * each async message to each live one. Traps time out after an hour, it
677  * is up to the trap receipient to keep resetting it to avoid being
678  * timed out.
679  */
680 /* ntp_request.c */
681 struct ctl_trap ctl_traps[CTL_MAXTRAPS];
682 int num_ctl_traps;
683 
684 /*
685  * Type bits, for ctlsettrap() call.
686  */
687 #define TRAP_TYPE_CONFIG	0	/* used by configuration code */
688 #define TRAP_TYPE_PRIO		1	/* priority trap */
689 #define TRAP_TYPE_NONPRIO	2	/* nonpriority trap */
690 
691 
692 /*
693  * List relating reference clock types to control message time sources.
694  * Index by the reference clock type. This list will only be used iff
695  * the reference clock driver doesn't set peer->sstclktype to something
696  * different than CTL_SST_TS_UNSPEC.
697  */
698 #ifdef REFCLOCK
699 static const u_char clocktypes[] = {
700 	CTL_SST_TS_NTP,		/* REFCLK_NONE (0) */
701 	CTL_SST_TS_LOCAL,	/* REFCLK_LOCALCLOCK (1) */
702 	CTL_SST_TS_UHF,		/* deprecated REFCLK_GPS_TRAK (2) */
703 	CTL_SST_TS_HF,		/* REFCLK_WWV_PST (3) */
704 	CTL_SST_TS_LF,		/* REFCLK_WWVB_SPECTRACOM (4) */
705 	CTL_SST_TS_UHF,		/* REFCLK_TRUETIME (5) */
706 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_AUDIO (6) */
707 	CTL_SST_TS_HF,		/* REFCLK_CHU (7) */
708 	CTL_SST_TS_LF,		/* REFCLOCK_PARSE (default) (8) */
709 	CTL_SST_TS_LF,		/* REFCLK_GPS_MX4200 (9) */
710 	CTL_SST_TS_UHF,		/* REFCLK_GPS_AS2201 (10) */
711 	CTL_SST_TS_UHF,		/* REFCLK_GPS_ARBITER (11) */
712 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_TPRO (12) */
713 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_LEITCH (13) */
714 	CTL_SST_TS_LF,		/* deprecated REFCLK_MSF_EES (14) */
715 	CTL_SST_TS_NTP,		/* not used (15) */
716 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_BANCOMM (16) */
717 	CTL_SST_TS_UHF,		/* REFCLK_GPS_DATU (17) */
718 	CTL_SST_TS_TELEPHONE,	/* REFCLK_NIST_ACTS (18) */
719 	CTL_SST_TS_HF,		/* REFCLK_WWV_HEATH (19) */
720 	CTL_SST_TS_UHF,		/* REFCLK_GPS_NMEA (20) */
721 	CTL_SST_TS_UHF,		/* REFCLK_GPS_VME (21) */
722 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_PPS (22) */
723 	CTL_SST_TS_NTP,		/* not used (23) */
724 	CTL_SST_TS_NTP,		/* not used (24) */
725 	CTL_SST_TS_NTP,		/* not used (25) */
726 	CTL_SST_TS_UHF,		/* REFCLK_GPS_HP (26) */
727 	CTL_SST_TS_LF,		/* REFCLK_ARCRON_MSF (27) */
728 	CTL_SST_TS_UHF,		/* REFCLK_SHM (28) */
729 	CTL_SST_TS_UHF,		/* REFCLK_PALISADE (29) */
730 	CTL_SST_TS_UHF,		/* REFCLK_ONCORE (30) */
731 	CTL_SST_TS_UHF,		/* REFCLK_JUPITER (31) */
732 	CTL_SST_TS_LF,		/* REFCLK_CHRONOLOG (32) */
733 	CTL_SST_TS_LF,		/* REFCLK_DUMBCLOCK (33) */
734 	CTL_SST_TS_LF,		/* REFCLK_ULINK (34) */
735 	CTL_SST_TS_LF,		/* REFCLK_PCF (35) */
736 	CTL_SST_TS_HF,		/* REFCLK_WWV (36) */
737 	CTL_SST_TS_LF,		/* REFCLK_FG (37) */
738 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_SERIAL (38) */
739 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_PCI (39) */
740 	CTL_SST_TS_LF,		/* REFCLK_JJY (40) */
741 	CTL_SST_TS_UHF,		/* REFCLK_TT560 (41) */
742 	CTL_SST_TS_UHF,		/* REFCLK_ZYFER (42) */
743 	CTL_SST_TS_UHF,		/* REFCLK_RIPENCC (43) */
744 	CTL_SST_TS_UHF,		/* REFCLK_NEOCLOCK4X (44) */
745 	CTL_SST_TS_UHF,		/* REFCLK_TSYNCPCI (45) */
746 	CTL_SST_TS_UHF		/* REFCLK_GPSDJSON (46) */
747 };
748 #endif  /* REFCLOCK */
749 
750 
751 /*
752  * Keyid used for authenticating write requests.
753  */
754 keyid_t ctl_auth_keyid;
755 
756 /*
757  * We keep track of the last error reported by the system internally
758  */
759 static	u_char ctl_sys_last_event;
760 static	u_char ctl_sys_num_events;
761 
762 
763 /*
764  * Statistic counters to keep track of requests and responses.
765  */
766 u_long ctltimereset;		/* time stats reset */
767 u_long numctlreq;		/* number of requests we've received */
768 u_long numctlbadpkts;		/* number of bad control packets */
769 u_long numctlresponses;		/* number of resp packets sent with data */
770 u_long numctlfrags;		/* number of fragments sent */
771 u_long numctlerrors;		/* number of error responses sent */
772 u_long numctltooshort;		/* number of too short input packets */
773 u_long numctlinputresp;		/* number of responses on input */
774 u_long numctlinputfrag;		/* number of fragments on input */
775 u_long numctlinputerr;		/* number of input pkts with err bit set */
776 u_long numctlbadoffset;		/* number of input pkts with nonzero offset */
777 u_long numctlbadversion;	/* number of input pkts with unknown version */
778 u_long numctldatatooshort;	/* data too short for count */
779 u_long numctlbadop;		/* bad op code found in packet */
780 u_long numasyncmsgs;		/* number of async messages we've sent */
781 
782 /*
783  * Response packet used by these routines. Also some state information
784  * so that we can handle packet formatting within a common set of
785  * subroutines.  Note we try to enter data in place whenever possible,
786  * but the need to set the more bit correctly means we occasionally
787  * use the extra buffer and copy.
788  */
789 static struct ntp_control rpkt;
790 static u_char	res_version;
791 static u_char	res_opcode;
792 static associd_t res_associd;
793 static u_short	res_frags;	/* datagrams in this response */
794 static int	res_offset;	/* offset of payload in response */
795 static u_char * datapt;
796 static u_char * dataend;
797 static int	datalinelen;
798 static int	datasent;	/* flag to avoid initial ", " */
799 static int	datanotbinflag;
800 static sockaddr_u *rmt_addr;
801 static struct interface *lcl_inter;
802 
803 static u_char	res_authenticate;
804 static u_char	res_authokay;
805 static keyid_t	res_keyid;
806 
807 #define MAXDATALINELEN	(72)
808 
809 static u_char	res_async;	/* sending async trap response? */
810 
811 /*
812  * Pointers for saving state when decoding request packets
813  */
814 static	char *reqpt;
815 static	char *reqend;
816 
817 #ifndef MIN
818 #define MIN(a, b) (((a) <= (b)) ? (a) : (b))
819 #endif
820 
821 /*
822  * init_control - initialize request data
823  */
824 void
825 init_control(void)
826 {
827 	size_t i;
828 
829 #ifdef HAVE_UNAME
830 	uname(&utsnamebuf);
831 #endif /* HAVE_UNAME */
832 
833 	ctl_clr_stats();
834 
835 	ctl_auth_keyid = 0;
836 	ctl_sys_last_event = EVNT_UNSPEC;
837 	ctl_sys_num_events = 0;
838 
839 	num_ctl_traps = 0;
840 	for (i = 0; i < COUNTOF(ctl_traps); i++)
841 		ctl_traps[i].tr_flags = 0;
842 }
843 
844 
845 /*
846  * ctl_error - send an error response for the current request
847  */
848 static void
849 ctl_error(
850 	u_char errcode
851 	)
852 {
853 	int		maclen;
854 
855 	numctlerrors++;
856 	DPRINTF(3, ("sending control error %u\n", errcode));
857 
858 	/*
859 	 * Fill in the fields. We assume rpkt.sequence and rpkt.associd
860 	 * have already been filled in.
861 	 */
862 	rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
863 			(res_opcode & CTL_OP_MASK);
864 	rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
865 	rpkt.count = 0;
866 
867 	/*
868 	 * send packet and bump counters
869 	 */
870 	if (res_authenticate && sys_authenticate) {
871 		maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
872 				     CTL_HEADER_LEN);
873 		sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
874 			CTL_HEADER_LEN + maclen);
875 	} else
876 		sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
877 			CTL_HEADER_LEN);
878 }
879 
880 /*
881  * save_config - Implements ntpq -c "saveconfig <filename>"
882  *		 Writes current configuration including any runtime
883  *		 changes by ntpq's :config or config-from-file
884  */
885 void
886 save_config(
887 	struct recvbuf *rbufp,
888 	int restrict_mask
889 	)
890 {
891 	/* block directory traversal by searching for characters that
892 	 * indicate directory components in a file path.
893 	 *
894 	 * Conceptually we should be searching for DIRSEP in filename,
895 	 * however Windows actually recognizes both forward and
896 	 * backslashes as equivalent directory separators at the API
897 	 * level.  On POSIX systems we could allow '\\' but such
898 	 * filenames are tricky to manipulate from a shell, so just
899 	 * reject both types of slashes on all platforms.
900 	 */
901 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
902 	static const char * illegal_in_filename =
903 #if defined(VMS)
904 	    ":[]"	/* do not allow drive and path components here */
905 #elif defined(SYS_WINNT)
906 	    ":\\/"	/* path and drive separators */
907 #else
908 	    "\\/"	/* separator and critical char for POSIX */
909 #endif
910 	    ;
911 
912 
913 	char reply[128];
914 #ifdef SAVECONFIG
915 	char filespec[128];
916 	char filename[128];
917 	char fullpath[512];
918 	const char savedconfig_eq[] = "savedconfig=";
919 	char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
920 	time_t now;
921 	int fd;
922 	FILE *fptr;
923 #endif
924 
925 	if (RES_NOMODIFY & restrict_mask) {
926 		snprintf(reply, sizeof(reply),
927 			 "saveconfig prohibited by restrict ... nomodify");
928 		ctl_putdata(reply, strlen(reply), 0);
929 		ctl_flushpkt(0);
930 		NLOG(NLOG_SYSINFO)
931 			msyslog(LOG_NOTICE,
932 				"saveconfig from %s rejected due to nomodify restriction",
933 				stoa(&rbufp->recv_srcadr));
934 		sys_restricted++;
935 		return;
936 	}
937 
938 #ifdef SAVECONFIG
939 	if (NULL == saveconfigdir) {
940 		snprintf(reply, sizeof(reply),
941 			 "saveconfig prohibited, no saveconfigdir configured");
942 		ctl_putdata(reply, strlen(reply), 0);
943 		ctl_flushpkt(0);
944 		NLOG(NLOG_SYSINFO)
945 			msyslog(LOG_NOTICE,
946 				"saveconfig from %s rejected, no saveconfigdir",
947 				stoa(&rbufp->recv_srcadr));
948 		return;
949 	}
950 
951 	if (0 == reqend - reqpt)
952 		return;
953 
954 	strlcpy(filespec, reqpt, sizeof(filespec));
955 	time(&now);
956 
957 	/*
958 	 * allow timestamping of the saved config filename with
959 	 * strftime() format such as:
960 	 *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
961 	 * XXX: Nice feature, but not too safe.
962 	 */
963 	if (0 == strftime(filename, sizeof(filename), filespec,
964 			       localtime(&now)))
965 		strlcpy(filename, filespec, sizeof(filename));
966 
967 	/* block directory/drive traversal */
968 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
969 	if (NULL != strpbrk(filename, illegal_in_filename)) {
970 		snprintf(reply, sizeof(reply),
971 			 "saveconfig does not allow directory in filename");
972 		ctl_putdata(reply, strlen(reply), 0);
973 		ctl_flushpkt(0);
974 		msyslog(LOG_NOTICE,
975 			"saveconfig with path from %s rejected",
976 			stoa(&rbufp->recv_srcadr));
977 		return;
978 	}
979 
980 	snprintf(fullpath, sizeof(fullpath), "%s%s",
981 		 saveconfigdir, filename);
982 
983 	fd = open(fullpath, O_CREAT | O_TRUNC | O_WRONLY,
984 		  S_IRUSR | S_IWUSR);
985 	if (-1 == fd)
986 		fptr = NULL;
987 	else
988 		fptr = fdopen(fd, "w");
989 
990 	if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
991 		snprintf(reply, sizeof(reply),
992 			 "Unable to save configuration to file %s",
993 			 filename);
994 		msyslog(LOG_ERR,
995 			"saveconfig %s from %s failed", filename,
996 			stoa(&rbufp->recv_srcadr));
997 	} else {
998 		snprintf(reply, sizeof(reply),
999 			 "Configuration saved to %s", filename);
1000 		msyslog(LOG_NOTICE,
1001 			"Configuration saved to %s (requested by %s)",
1002 			fullpath, stoa(&rbufp->recv_srcadr));
1003 		/*
1004 		 * save the output filename in system variable
1005 		 * savedconfig, retrieved with:
1006 		 *   ntpq -c "rv 0 savedconfig"
1007 		 */
1008 		snprintf(savedconfig, sizeof(savedconfig), "%s%s",
1009 			 savedconfig_eq, filename);
1010 		set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
1011 	}
1012 
1013 	if (NULL != fptr)
1014 		fclose(fptr);
1015 #else	/* !SAVECONFIG follows */
1016 	snprintf(reply, sizeof(reply),
1017 		 "saveconfig unavailable, configured with --disable-saveconfig");
1018 #endif
1019 
1020 	ctl_putdata(reply, strlen(reply), 0);
1021 	ctl_flushpkt(0);
1022 }
1023 
1024 
1025 /*
1026  * process_control - process an incoming control message
1027  */
1028 void
1029 process_control(
1030 	struct recvbuf *rbufp,
1031 	int restrict_mask
1032 	)
1033 {
1034 	struct ntp_control *pkt;
1035 	int req_count;
1036 	int req_data;
1037 	const struct ctl_proc *cc;
1038 	keyid_t *pkid;
1039 	int properlen;
1040 	size_t maclen;
1041 
1042 	DPRINTF(3, ("in process_control()\n"));
1043 
1044 	/*
1045 	 * Save the addresses for error responses
1046 	 */
1047 	numctlreq++;
1048 	rmt_addr = &rbufp->recv_srcadr;
1049 	lcl_inter = rbufp->dstadr;
1050 	pkt = (struct ntp_control *)&rbufp->recv_pkt;
1051 
1052 	/*
1053 	 * If the length is less than required for the header, or
1054 	 * it is a response or a fragment, ignore this.
1055 	 */
1056 	if (rbufp->recv_length < (int)CTL_HEADER_LEN
1057 	    || (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1058 	    || pkt->offset != 0) {
1059 		DPRINTF(1, ("invalid format in control packet\n"));
1060 		if (rbufp->recv_length < (int)CTL_HEADER_LEN)
1061 			numctltooshort++;
1062 		if (CTL_RESPONSE & pkt->r_m_e_op)
1063 			numctlinputresp++;
1064 		if (CTL_MORE & pkt->r_m_e_op)
1065 			numctlinputfrag++;
1066 		if (CTL_ERROR & pkt->r_m_e_op)
1067 			numctlinputerr++;
1068 		if (pkt->offset != 0)
1069 			numctlbadoffset++;
1070 		return;
1071 	}
1072 	res_version = PKT_VERSION(pkt->li_vn_mode);
1073 	if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1074 		DPRINTF(1, ("unknown version %d in control packet\n",
1075 			    res_version));
1076 		numctlbadversion++;
1077 		return;
1078 	}
1079 
1080 	/*
1081 	 * Pull enough data from the packet to make intelligent
1082 	 * responses
1083 	 */
1084 	rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1085 					 MODE_CONTROL);
1086 	res_opcode = pkt->r_m_e_op;
1087 	rpkt.sequence = pkt->sequence;
1088 	rpkt.associd = pkt->associd;
1089 	rpkt.status = 0;
1090 	res_frags = 1;
1091 	res_offset = 0;
1092 	res_associd = htons(pkt->associd);
1093 	res_async = FALSE;
1094 	res_authenticate = FALSE;
1095 	res_keyid = 0;
1096 	res_authokay = FALSE;
1097 	req_count = (int)ntohs(pkt->count);
1098 	datanotbinflag = FALSE;
1099 	datalinelen = 0;
1100 	datasent = 0;
1101 	datapt = rpkt.u.data;
1102 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1103 
1104 	if ((rbufp->recv_length & 0x3) != 0)
1105 		DPRINTF(3, ("Control packet length %d unrounded\n",
1106 			    rbufp->recv_length));
1107 
1108 	/*
1109 	 * We're set up now. Make sure we've got at least enough
1110 	 * incoming data space to match the count.
1111 	 */
1112 	req_data = rbufp->recv_length - CTL_HEADER_LEN;
1113 	if (req_data < req_count || rbufp->recv_length & 0x3) {
1114 		ctl_error(CERR_BADFMT);
1115 		numctldatatooshort++;
1116 		return;
1117 	}
1118 
1119 	properlen = req_count + CTL_HEADER_LEN;
1120 	/* round up proper len to a 8 octet boundary */
1121 
1122 	properlen = (properlen + 7) & ~7;
1123 	maclen = rbufp->recv_length - properlen;
1124 	if ((rbufp->recv_length & 3) == 0 &&
1125 	    maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1126 	    sys_authenticate) {
1127 		res_authenticate = TRUE;
1128 		pkid = (void *)((char *)pkt + properlen);
1129 		res_keyid = ntohl(*pkid);
1130 		DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1131 			    rbufp->recv_length, properlen, res_keyid,
1132 			    maclen));
1133 
1134 		if (!authistrusted(res_keyid))
1135 			DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1136 		else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1137 				     rbufp->recv_length - maclen,
1138 				     maclen)) {
1139 			res_authokay = TRUE;
1140 			DPRINTF(3, ("authenticated okay\n"));
1141 		} else {
1142 			res_keyid = 0;
1143 			DPRINTF(3, ("authentication failed\n"));
1144 		}
1145 	}
1146 
1147 	/*
1148 	 * Set up translate pointers
1149 	 */
1150 	reqpt = (char *)pkt->u.data;
1151 	reqend = reqpt + req_count;
1152 
1153 	/*
1154 	 * Look for the opcode processor
1155 	 */
1156 	for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1157 		if (cc->control_code == res_opcode) {
1158 			DPRINTF(3, ("opcode %d, found command handler\n",
1159 				    res_opcode));
1160 			if (cc->flags == AUTH
1161 			    && (!res_authokay
1162 				|| res_keyid != ctl_auth_keyid)) {
1163 				ctl_error(CERR_PERMISSION);
1164 				return;
1165 			}
1166 			(cc->handler)(rbufp, restrict_mask);
1167 			return;
1168 		}
1169 	}
1170 
1171 	/*
1172 	 * Can't find this one, return an error.
1173 	 */
1174 	numctlbadop++;
1175 	ctl_error(CERR_BADOP);
1176 	return;
1177 }
1178 
1179 
1180 /*
1181  * ctlpeerstatus - return a status word for this peer
1182  */
1183 u_short
1184 ctlpeerstatus(
1185 	register struct peer *p
1186 	)
1187 {
1188 	u_short status;
1189 
1190 	status = p->status;
1191 	if (FLAG_CONFIG & p->flags)
1192 		status |= CTL_PST_CONFIG;
1193 	if (p->keyid)
1194 		status |= CTL_PST_AUTHENABLE;
1195 	if (FLAG_AUTHENTIC & p->flags)
1196 		status |= CTL_PST_AUTHENTIC;
1197 	if (p->reach)
1198 		status |= CTL_PST_REACH;
1199 	if (MDF_TXONLY_MASK & p->cast_flags)
1200 		status |= CTL_PST_BCAST;
1201 
1202 	return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1203 }
1204 
1205 
1206 /*
1207  * ctlclkstatus - return a status word for this clock
1208  */
1209 #ifdef REFCLOCK
1210 static u_short
1211 ctlclkstatus(
1212 	struct refclockstat *pcs
1213 	)
1214 {
1215 	return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1216 }
1217 #endif
1218 
1219 
1220 /*
1221  * ctlsysstatus - return the system status word
1222  */
1223 u_short
1224 ctlsysstatus(void)
1225 {
1226 	register u_char this_clock;
1227 
1228 	this_clock = CTL_SST_TS_UNSPEC;
1229 #ifdef REFCLOCK
1230 	if (sys_peer != NULL) {
1231 		if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1232 			this_clock = sys_peer->sstclktype;
1233 		else if (sys_peer->refclktype < COUNTOF(clocktypes))
1234 			this_clock = clocktypes[sys_peer->refclktype];
1235 	}
1236 #else /* REFCLOCK */
1237 	if (sys_peer != 0)
1238 		this_clock = CTL_SST_TS_NTP;
1239 #endif /* REFCLOCK */
1240 	return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1241 			      ctl_sys_last_event);
1242 }
1243 
1244 
1245 /*
1246  * ctl_flushpkt - write out the current packet and prepare
1247  *		  another if necessary.
1248  */
1249 static void
1250 ctl_flushpkt(
1251 	u_char more
1252 	)
1253 {
1254 	size_t i;
1255 	int dlen;
1256 	int sendlen;
1257 	int maclen;
1258 	int totlen;
1259 	keyid_t keyid;
1260 
1261 	dlen = datapt - rpkt.u.data;
1262 	if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1263 		/*
1264 		 * Big hack, output a trailing \r\n
1265 		 */
1266 		*datapt++ = '\r';
1267 		*datapt++ = '\n';
1268 		dlen += 2;
1269 	}
1270 	sendlen = dlen + CTL_HEADER_LEN;
1271 
1272 	/*
1273 	 * Pad to a multiple of 32 bits
1274 	 */
1275 	while (sendlen & 0x3) {
1276 		*datapt++ = '\0';
1277 		sendlen++;
1278 	}
1279 
1280 	/*
1281 	 * Fill in the packet with the current info
1282 	 */
1283 	rpkt.r_m_e_op = CTL_RESPONSE | more |
1284 			(res_opcode & CTL_OP_MASK);
1285 	rpkt.count = htons((u_short)dlen);
1286 	rpkt.offset = htons((u_short)res_offset);
1287 	if (res_async) {
1288 		for (i = 0; i < COUNTOF(ctl_traps); i++) {
1289 			if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1290 				rpkt.li_vn_mode =
1291 				    PKT_LI_VN_MODE(
1292 					sys_leap,
1293 					ctl_traps[i].tr_version,
1294 					MODE_CONTROL);
1295 				rpkt.sequence =
1296 				    htons(ctl_traps[i].tr_sequence);
1297 				sendpkt(&ctl_traps[i].tr_addr,
1298 					ctl_traps[i].tr_localaddr, -4,
1299 					(struct pkt *)&rpkt, sendlen);
1300 				if (!more)
1301 					ctl_traps[i].tr_sequence++;
1302 				numasyncmsgs++;
1303 			}
1304 		}
1305 	} else {
1306 		if (res_authenticate && sys_authenticate) {
1307 			totlen = sendlen;
1308 			/*
1309 			 * If we are going to authenticate, then there
1310 			 * is an additional requirement that the MAC
1311 			 * begin on a 64 bit boundary.
1312 			 */
1313 			while (totlen & 7) {
1314 				*datapt++ = '\0';
1315 				totlen++;
1316 			}
1317 			keyid = htonl(res_keyid);
1318 			memcpy(datapt, &keyid, sizeof(keyid));
1319 			maclen = authencrypt(res_keyid,
1320 					     (u_int32 *)&rpkt, totlen);
1321 			sendpkt(rmt_addr, lcl_inter, -5,
1322 				(struct pkt *)&rpkt, totlen + maclen);
1323 		} else {
1324 			sendpkt(rmt_addr, lcl_inter, -6,
1325 				(struct pkt *)&rpkt, sendlen);
1326 		}
1327 		if (more)
1328 			numctlfrags++;
1329 		else
1330 			numctlresponses++;
1331 	}
1332 
1333 	/*
1334 	 * Set us up for another go around.
1335 	 */
1336 	res_frags++;
1337 	res_offset += dlen;
1338 	datapt = rpkt.u.data;
1339 }
1340 
1341 
1342 /*
1343  * ctl_putdata - write data into the packet, fragmenting and starting
1344  * another if this one is full.
1345  */
1346 static void
1347 ctl_putdata(
1348 	const char *dp,
1349 	unsigned int dlen,
1350 	int bin			/* set to 1 when data is binary */
1351 	)
1352 {
1353 	int overhead;
1354 	unsigned int currentlen;
1355 
1356 	overhead = 0;
1357 	if (!bin) {
1358 		datanotbinflag = TRUE;
1359 		overhead = 3;
1360 		if (datasent) {
1361 			*datapt++ = ',';
1362 			datalinelen++;
1363 			if ((dlen + datalinelen + 1) >= MAXDATALINELEN) {
1364 				*datapt++ = '\r';
1365 				*datapt++ = '\n';
1366 				datalinelen = 0;
1367 			} else {
1368 				*datapt++ = ' ';
1369 				datalinelen++;
1370 			}
1371 		}
1372 	}
1373 
1374 	/*
1375 	 * Save room for trailing junk
1376 	 */
1377 	while (dlen + overhead + datapt > dataend) {
1378 		/*
1379 		 * Not enough room in this one, flush it out.
1380 		 */
1381 		currentlen = MIN(dlen, (unsigned int)(dataend - datapt));
1382 
1383 		memcpy(datapt, dp, currentlen);
1384 
1385 		datapt += currentlen;
1386 		dp += currentlen;
1387 		dlen -= currentlen;
1388 		datalinelen += currentlen;
1389 
1390 		ctl_flushpkt(CTL_MORE);
1391 	}
1392 
1393 	memcpy(datapt, dp, dlen);
1394 	datapt += dlen;
1395 	datalinelen += dlen;
1396 	datasent = TRUE;
1397 }
1398 
1399 
1400 /*
1401  * ctl_putstr - write a tagged string into the response packet
1402  *		in the form:
1403  *
1404  *		tag="data"
1405  *
1406  *		len is the data length excluding the NUL terminator,
1407  *		as in ctl_putstr("var", "value", strlen("value"));
1408  */
1409 static void
1410 ctl_putstr(
1411 	const char *	tag,
1412 	const char *	data,
1413 	size_t		len
1414 	)
1415 {
1416 	char buffer[512];
1417 	char *cp;
1418 	size_t tl;
1419 
1420 	tl = strlen(tag);
1421 	memcpy(buffer, tag, tl);
1422 	cp = buffer + tl;
1423 	if (len > 0) {
1424 		INSIST(tl + 3 + len <= sizeof(buffer));
1425 		*cp++ = '=';
1426 		*cp++ = '"';
1427 		memcpy(cp, data, len);
1428 		cp += len;
1429 		*cp++ = '"';
1430 	}
1431 	ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1432 }
1433 
1434 
1435 /*
1436  * ctl_putunqstr - write a tagged string into the response packet
1437  *		   in the form:
1438  *
1439  *		   tag=data
1440  *
1441  *	len is the data length excluding the NUL terminator.
1442  *	data must not contain a comma or whitespace.
1443  */
1444 static void
1445 ctl_putunqstr(
1446 	const char *	tag,
1447 	const char *	data,
1448 	size_t		len
1449 	)
1450 {
1451 	char buffer[512];
1452 	char *cp;
1453 	size_t tl;
1454 
1455 	tl = strlen(tag);
1456 	memcpy(buffer, tag, tl);
1457 	cp = buffer + tl;
1458 	if (len > 0) {
1459 		INSIST(tl + 1 + len <= sizeof(buffer));
1460 		*cp++ = '=';
1461 		memcpy(cp, data, len);
1462 		cp += len;
1463 	}
1464 	ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1465 }
1466 
1467 
1468 /*
1469  * ctl_putdblf - write a tagged, signed double into the response packet
1470  */
1471 static void
1472 ctl_putdblf(
1473 	const char *	tag,
1474 	int		use_f,
1475 	int		precision,
1476 	double		d
1477 	)
1478 {
1479 	char *cp;
1480 	const char *cq;
1481 	char buffer[200];
1482 
1483 	cp = buffer;
1484 	cq = tag;
1485 	while (*cq != '\0')
1486 		*cp++ = *cq++;
1487 	*cp++ = '=';
1488 	INSIST((size_t)(cp - buffer) < sizeof(buffer));
1489 	snprintf(cp, sizeof(buffer) - (cp - buffer), use_f ? "%.*f" : "%.*g",
1490 	    precision, d);
1491 	cp += strlen(cp);
1492 	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1493 }
1494 
1495 /*
1496  * ctl_putuint - write a tagged unsigned integer into the response
1497  */
1498 static void
1499 ctl_putuint(
1500 	const char *tag,
1501 	u_long uval
1502 	)
1503 {
1504 	register char *cp;
1505 	register const char *cq;
1506 	char buffer[200];
1507 
1508 	cp = buffer;
1509 	cq = tag;
1510 	while (*cq != '\0')
1511 		*cp++ = *cq++;
1512 
1513 	*cp++ = '=';
1514 	INSIST((cp - buffer) < (int)sizeof(buffer));
1515 	snprintf(cp, sizeof(buffer) - (cp - buffer), "%lu", uval);
1516 	cp += strlen(cp);
1517 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1518 }
1519 
1520 /*
1521  * ctl_putcal - write a decoded calendar data into the response
1522  */
1523 static void
1524 ctl_putcal(
1525 	const char *tag,
1526 	const struct calendar *pcal
1527 	)
1528 {
1529 	char buffer[100];
1530 	unsigned numch;
1531 
1532 	numch = snprintf(buffer, sizeof(buffer),
1533 			"%s=%04d%02d%02d%02d%02d",
1534 			tag,
1535 			pcal->year,
1536 			pcal->month,
1537 			pcal->monthday,
1538 			pcal->hour,
1539 			pcal->minute
1540 			);
1541 	INSIST(numch < sizeof(buffer));
1542 	ctl_putdata(buffer, numch, 0);
1543 
1544 	return;
1545 }
1546 
1547 /*
1548  * ctl_putfs - write a decoded filestamp into the response
1549  */
1550 static void
1551 ctl_putfs(
1552 	const char *tag,
1553 	tstamp_t uval
1554 	)
1555 {
1556 	register char *cp;
1557 	register const char *cq;
1558 	char buffer[200];
1559 	struct tm *tm = NULL;
1560 	time_t fstamp;
1561 
1562 	cp = buffer;
1563 	cq = tag;
1564 	while (*cq != '\0')
1565 		*cp++ = *cq++;
1566 
1567 	*cp++ = '=';
1568 	fstamp = uval - JAN_1970;
1569 	tm = gmtime(&fstamp);
1570 	if (NULL ==  tm)
1571 		return;
1572 	INSIST((cp - buffer) < (int)sizeof(buffer));
1573 	snprintf(cp, sizeof(buffer) - (cp - buffer),
1574 		 "%04d%02d%02d%02d%02d", tm->tm_year + 1900,
1575 		 tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min);
1576 	cp += strlen(cp);
1577 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1578 }
1579 
1580 
1581 /*
1582  * ctl_puthex - write a tagged unsigned integer, in hex, into the
1583  * response
1584  */
1585 static void
1586 ctl_puthex(
1587 	const char *tag,
1588 	u_long uval
1589 	)
1590 {
1591 	register char *cp;
1592 	register const char *cq;
1593 	char buffer[200];
1594 
1595 	cp = buffer;
1596 	cq = tag;
1597 	while (*cq != '\0')
1598 		*cp++ = *cq++;
1599 
1600 	*cp++ = '=';
1601 	INSIST((cp - buffer) < (int)sizeof(buffer));
1602 	snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%lx", uval);
1603 	cp += strlen(cp);
1604 	ctl_putdata(buffer,(unsigned)( cp - buffer ), 0);
1605 }
1606 
1607 
1608 /*
1609  * ctl_putint - write a tagged signed integer into the response
1610  */
1611 static void
1612 ctl_putint(
1613 	const char *tag,
1614 	long ival
1615 	)
1616 {
1617 	register char *cp;
1618 	register const char *cq;
1619 	char buffer[200];
1620 
1621 	cp = buffer;
1622 	cq = tag;
1623 	while (*cq != '\0')
1624 		*cp++ = *cq++;
1625 
1626 	*cp++ = '=';
1627 	INSIST((cp - buffer) < (int)sizeof(buffer));
1628 	snprintf(cp, sizeof(buffer) - (cp - buffer), "%ld", ival);
1629 	cp += strlen(cp);
1630 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1631 }
1632 
1633 
1634 /*
1635  * ctl_putts - write a tagged timestamp, in hex, into the response
1636  */
1637 static void
1638 ctl_putts(
1639 	const char *tag,
1640 	l_fp *ts
1641 	)
1642 {
1643 	register char *cp;
1644 	register const char *cq;
1645 	char buffer[200];
1646 
1647 	cp = buffer;
1648 	cq = tag;
1649 	while (*cq != '\0')
1650 		*cp++ = *cq++;
1651 
1652 	*cp++ = '=';
1653 	INSIST((size_t)(cp - buffer) < sizeof(buffer));
1654 	snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%08x.%08x",
1655 		 (u_int)ts->l_ui, (u_int)ts->l_uf);
1656 	cp += strlen(cp);
1657 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1658 }
1659 
1660 
1661 /*
1662  * ctl_putadr - write an IP address into the response
1663  */
1664 static void
1665 ctl_putadr(
1666 	const char *tag,
1667 	u_int32 addr32,
1668 	sockaddr_u *addr
1669 	)
1670 {
1671 	register char *cp;
1672 	register const char *cq;
1673 	char buffer[200];
1674 
1675 	cp = buffer;
1676 	cq = tag;
1677 	while (*cq != '\0')
1678 		*cp++ = *cq++;
1679 
1680 	*cp++ = '=';
1681 	if (NULL == addr)
1682 		cq = numtoa(addr32);
1683 	else
1684 		cq = stoa(addr);
1685 	INSIST((cp - buffer) < (int)sizeof(buffer));
1686 	snprintf(cp, sizeof(buffer) - (cp - buffer), "%s", cq);
1687 	cp += strlen(cp);
1688 	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1689 }
1690 
1691 
1692 /*
1693  * ctl_putrefid - send a u_int32 refid as printable text
1694  */
1695 static void
1696 ctl_putrefid(
1697 	const char *	tag,
1698 	u_int32		refid
1699 	)
1700 {
1701 	char	output[16];
1702 	char *	optr;
1703 	char *	oplim;
1704 	char *	iptr;
1705 	char *	iplim;
1706 	char *	past_eq;
1707 
1708 	optr = output;
1709 	oplim = output + sizeof(output);
1710 	while (optr < oplim && '\0' != *tag)
1711 		*optr++ = *tag++;
1712 	if (optr < oplim) {
1713 		*optr++ = '=';
1714 		past_eq = optr;
1715 	}
1716 	if (!(optr < oplim))
1717 		return;
1718 	iptr = (char *)&refid;
1719 	iplim = iptr + sizeof(refid);
1720 	for ( ; optr < oplim && iptr < iplim && '\0' != *iptr;
1721 	     iptr++, optr++)
1722 		if (isprint((int)*iptr))
1723 			*optr = *iptr;
1724 		else
1725 			*optr = '.';
1726 	if (!(optr <= oplim))
1727 		optr = past_eq;
1728 	ctl_putdata(output, (u_int)(optr - output), FALSE);
1729 }
1730 
1731 
1732 /*
1733  * ctl_putarray - write a tagged eight element double array into the response
1734  */
1735 static void
1736 ctl_putarray(
1737 	const char *tag,
1738 	double *arr,
1739 	int start
1740 	)
1741 {
1742 	register char *cp;
1743 	register const char *cq;
1744 	char buffer[200];
1745 	int i;
1746 	cp = buffer;
1747 	cq = tag;
1748 	while (*cq != '\0')
1749 		*cp++ = *cq++;
1750 	*cp++ = '=';
1751 	i = start;
1752 	do {
1753 		if (i == 0)
1754 			i = NTP_SHIFT;
1755 		i--;
1756 		INSIST((cp - buffer) < (int)sizeof(buffer));
1757 		snprintf(cp, sizeof(buffer) - (cp - buffer),
1758 			 " %.2f", arr[i] * 1e3);
1759 		cp += strlen(cp);
1760 	} while (i != start);
1761 	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1762 }
1763 
1764 
1765 /*
1766  * ctl_putsys - output a system variable
1767  */
1768 static void
1769 ctl_putsys(
1770 	int varid
1771 	)
1772 {
1773 	l_fp tmp;
1774 	char str[256];
1775 	u_int u;
1776 	double kb;
1777 	double dtemp;
1778 	const char *ss;
1779 #ifdef AUTOKEY
1780 	struct cert_info *cp;
1781 #endif	/* AUTOKEY */
1782 #ifdef KERNEL_PLL
1783 	static struct timex ntx;
1784 	static u_long ntp_adjtime_time;
1785 
1786 	static const double to_ms =
1787 # ifdef STA_NANO
1788 		1.0e-6; /* nsec to msec */
1789 # else
1790 		1.0e-3; /* usec to msec */
1791 # endif
1792 
1793 	/*
1794 	 * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1795 	 */
1796 	if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1797 	    current_time != ntp_adjtime_time) {
1798 		ZERO(ntx);
1799 		if (ntp_adjtime(&ntx) < 0)
1800 			msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1801 		else
1802 			ntp_adjtime_time = current_time;
1803 	}
1804 #endif	/* KERNEL_PLL */
1805 
1806 	switch (varid) {
1807 
1808 	case CS_LEAP:
1809 		ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1810 		break;
1811 
1812 	case CS_STRATUM:
1813 		ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1814 		break;
1815 
1816 	case CS_PRECISION:
1817 		ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1818 		break;
1819 
1820 	case CS_ROOTDELAY:
1821 		ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1822 			   1e3);
1823 		break;
1824 
1825 	case CS_ROOTDISPERSION:
1826 		ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1827 			   sys_rootdisp * 1e3);
1828 		break;
1829 
1830 	case CS_REFID:
1831 		if (sys_stratum > 1 && sys_stratum < STRATUM_UNSPEC)
1832 			ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1833 		else
1834 			ctl_putrefid(sys_var[varid].text, sys_refid);
1835 		break;
1836 
1837 	case CS_REFTIME:
1838 		ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
1839 		break;
1840 
1841 	case CS_POLL:
1842 		ctl_putuint(sys_var[CS_POLL].text, sys_poll);
1843 		break;
1844 
1845 	case CS_PEERID:
1846 		if (sys_peer == NULL)
1847 			ctl_putuint(sys_var[CS_PEERID].text, 0);
1848 		else
1849 			ctl_putuint(sys_var[CS_PEERID].text,
1850 				    sys_peer->associd);
1851 		break;
1852 
1853 	case CS_PEERADR:
1854 		if (sys_peer != NULL && sys_peer->dstadr != NULL)
1855 			ss = sptoa(&sys_peer->srcadr);
1856 		else
1857 			ss = "0.0.0.0:0";
1858 		ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
1859 		break;
1860 
1861 	case CS_PEERMODE:
1862 		u = (sys_peer != NULL)
1863 			? sys_peer->hmode
1864 			: MODE_UNSPEC;
1865 		ctl_putuint(sys_var[CS_PEERMODE].text, u);
1866 		break;
1867 
1868 	case CS_OFFSET:
1869 		ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
1870 		break;
1871 
1872 	case CS_DRIFT:
1873 		ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
1874 		break;
1875 
1876 	case CS_JITTER:
1877 		ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
1878 		break;
1879 
1880 	case CS_ERROR:
1881 		ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
1882 		break;
1883 
1884 	case CS_CLOCK:
1885 		get_systime(&tmp);
1886 		ctl_putts(sys_var[CS_CLOCK].text, &tmp);
1887 		break;
1888 
1889 	case CS_PROCESSOR:
1890 #ifndef HAVE_UNAME
1891 		ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
1892 			   sizeof(str_processor) - 1);
1893 #else
1894 		ctl_putstr(sys_var[CS_PROCESSOR].text,
1895 			   utsnamebuf.machine, strlen(utsnamebuf.machine));
1896 #endif /* HAVE_UNAME */
1897 		break;
1898 
1899 	case CS_SYSTEM:
1900 #ifndef HAVE_UNAME
1901 		ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
1902 			   sizeof(str_system) - 1);
1903 #else
1904 		snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
1905 			 utsnamebuf.release);
1906 		ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
1907 #endif /* HAVE_UNAME */
1908 		break;
1909 
1910 	case CS_VERSION:
1911 		ctl_putstr(sys_var[CS_VERSION].text, Version,
1912 			   strlen(Version));
1913 		break;
1914 
1915 	case CS_STABIL:
1916 		ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
1917 			   1e6);
1918 		break;
1919 
1920 	case CS_VARLIST:
1921 	{
1922 		char buf[CTL_MAX_DATA_LEN];
1923 		//buffPointer, firstElementPointer, buffEndPointer
1924 		char *buffp, *buffend;
1925 		int firstVarName;
1926 		const char *ss1;
1927 		int len;
1928 		const struct ctl_var *k;
1929 
1930 		buffp = buf;
1931 		buffend = buf + sizeof(buf);
1932 		if (buffp + strlen(sys_var[CS_VARLIST].text) + 4 > buffend)
1933 			break;	/* really long var name */
1934 
1935 		snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
1936 		buffp += strlen(buffp);
1937 		firstVarName = TRUE;
1938 		for (k = sys_var; !(k->flags & EOV); k++) {
1939 			if (k->flags & PADDING)
1940 				continue;
1941 			len = strlen(k->text);
1942 			if (buffp + len + 1 >= buffend)
1943 				break;
1944 			if (!firstVarName)
1945 				*buffp++ = ',';
1946 			else
1947 				firstVarName = FALSE;
1948 			memcpy(buffp, k->text, len);
1949 			buffp += len;
1950 		}
1951 
1952 		for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
1953 			if (k->flags & PADDING)
1954 				continue;
1955 			if (NULL == k->text)
1956 				continue;
1957 			ss1 = strchr(k->text, '=');
1958 			if (NULL == ss1)
1959 				len = strlen(k->text);
1960 			else
1961 				len = ss1 - k->text;
1962 			if (buffp + len + 1 >= buffend)
1963 				break;
1964 			if (firstVarName) {
1965 				*buffp++ = ',';
1966 				firstVarName = FALSE;
1967 			}
1968 			memcpy(buffp, k->text,(unsigned)len);
1969 			buffp += len;
1970 		}
1971 		if (buffp + 2 >= buffend)
1972 			break;
1973 
1974 		*buffp++ = '"';
1975 		*buffp = '\0';
1976 
1977 		ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
1978 		break;
1979 	}
1980 
1981 	case CS_TAI:
1982 		if (sys_tai > 0)
1983 			ctl_putuint(sys_var[CS_TAI].text, sys_tai);
1984 		break;
1985 
1986 	case CS_LEAPTAB:
1987 	{
1988 		leap_signature_t lsig;
1989 		leapsec_getsig(&lsig);
1990 		if (lsig.ttime > 0)
1991 			ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
1992 		break;
1993 	}
1994 
1995 	case CS_LEAPEND:
1996 	{
1997 		leap_signature_t lsig;
1998 		leapsec_getsig(&lsig);
1999 		if (lsig.etime > 0)
2000 			ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
2001 		break;
2002 	}
2003 
2004 #ifdef LEAP_SMEAR
2005 	case CS_LEAPSMEARINTV:
2006 		if (leap_smear_intv > 0)
2007 			ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv);
2008 		break;
2009 
2010 	case CS_LEAPSMEAROFFS:
2011 		if (leap_smear_intv > 0)
2012 			ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text,
2013 				   leap_smear.doffset * 1e3);
2014 		break;
2015 #endif	/* LEAP_SMEAR */
2016 
2017 	case CS_RATE:
2018 		ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
2019 		break;
2020 
2021 	case CS_MRU_ENABLED:
2022 		ctl_puthex(sys_var[varid].text, mon_enabled);
2023 		break;
2024 
2025 	case CS_MRU_DEPTH:
2026 		ctl_putuint(sys_var[varid].text, mru_entries);
2027 		break;
2028 
2029 	case CS_MRU_MEM:
2030 		kb = mru_entries * (sizeof(mon_entry) / 1024.);
2031 		u = (u_int)kb;
2032 		if (kb - u >= 0.5)
2033 			u++;
2034 		ctl_putuint(sys_var[varid].text, u);
2035 		break;
2036 
2037 	case CS_MRU_DEEPEST:
2038 		ctl_putuint(sys_var[varid].text, mru_peakentries);
2039 		break;
2040 
2041 	case CS_MRU_MINDEPTH:
2042 		ctl_putuint(sys_var[varid].text, mru_mindepth);
2043 		break;
2044 
2045 	case CS_MRU_MAXAGE:
2046 		ctl_putint(sys_var[varid].text, mru_maxage);
2047 		break;
2048 
2049 	case CS_MRU_MAXDEPTH:
2050 		ctl_putuint(sys_var[varid].text, mru_maxdepth);
2051 		break;
2052 
2053 	case CS_MRU_MAXMEM:
2054 		kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
2055 		u = (u_int)kb;
2056 		if (kb - u >= 0.5)
2057 			u++;
2058 		ctl_putuint(sys_var[varid].text, u);
2059 		break;
2060 
2061 	case CS_SS_UPTIME:
2062 		ctl_putuint(sys_var[varid].text, current_time);
2063 		break;
2064 
2065 	case CS_SS_RESET:
2066 		ctl_putuint(sys_var[varid].text,
2067 			    current_time - sys_stattime);
2068 		break;
2069 
2070 	case CS_SS_RECEIVED:
2071 		ctl_putuint(sys_var[varid].text, sys_received);
2072 		break;
2073 
2074 	case CS_SS_THISVER:
2075 		ctl_putuint(sys_var[varid].text, sys_newversion);
2076 		break;
2077 
2078 	case CS_SS_OLDVER:
2079 		ctl_putuint(sys_var[varid].text, sys_oldversion);
2080 		break;
2081 
2082 	case CS_SS_BADFORMAT:
2083 		ctl_putuint(sys_var[varid].text, sys_badlength);
2084 		break;
2085 
2086 	case CS_SS_BADAUTH:
2087 		ctl_putuint(sys_var[varid].text, sys_badauth);
2088 		break;
2089 
2090 	case CS_SS_DECLINED:
2091 		ctl_putuint(sys_var[varid].text, sys_declined);
2092 		break;
2093 
2094 	case CS_SS_RESTRICTED:
2095 		ctl_putuint(sys_var[varid].text, sys_restricted);
2096 		break;
2097 
2098 	case CS_SS_LIMITED:
2099 		ctl_putuint(sys_var[varid].text, sys_limitrejected);
2100 		break;
2101 
2102 	case CS_SS_KODSENT:
2103 		ctl_putuint(sys_var[varid].text, sys_kodsent);
2104 		break;
2105 
2106 	case CS_SS_PROCESSED:
2107 		ctl_putuint(sys_var[varid].text, sys_processed);
2108 		break;
2109 
2110 	case CS_BCASTDELAY:
2111 		ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2112 		break;
2113 
2114 	case CS_AUTHDELAY:
2115 		LFPTOD(&sys_authdelay, dtemp);
2116 		ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2117 		break;
2118 
2119 	case CS_AUTHKEYS:
2120 		ctl_putuint(sys_var[varid].text, authnumkeys);
2121 		break;
2122 
2123 	case CS_AUTHFREEK:
2124 		ctl_putuint(sys_var[varid].text, authnumfreekeys);
2125 		break;
2126 
2127 	case CS_AUTHKLOOKUPS:
2128 		ctl_putuint(sys_var[varid].text, authkeylookups);
2129 		break;
2130 
2131 	case CS_AUTHKNOTFOUND:
2132 		ctl_putuint(sys_var[varid].text, authkeynotfound);
2133 		break;
2134 
2135 	case CS_AUTHKUNCACHED:
2136 		ctl_putuint(sys_var[varid].text, authkeyuncached);
2137 		break;
2138 
2139 	case CS_AUTHKEXPIRED:
2140 		ctl_putuint(sys_var[varid].text, authkeyexpired);
2141 		break;
2142 
2143 	case CS_AUTHENCRYPTS:
2144 		ctl_putuint(sys_var[varid].text, authencryptions);
2145 		break;
2146 
2147 	case CS_AUTHDECRYPTS:
2148 		ctl_putuint(sys_var[varid].text, authdecryptions);
2149 		break;
2150 
2151 	case CS_AUTHRESET:
2152 		ctl_putuint(sys_var[varid].text,
2153 			    current_time - auth_timereset);
2154 		break;
2155 
2156 		/*
2157 		 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2158 		 * unavailable, otherwise calls putfunc with args.
2159 		 */
2160 #ifndef KERNEL_PLL
2161 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2162 		ctl_putint(sys_var[varid].text, 0)
2163 #else
2164 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2165 		putfunc args
2166 #endif
2167 
2168 		/*
2169 		 * CTL_IF_KERNPPS() puts a zero if either the kernel
2170 		 * loop is unavailable, or kernel hard PPS is not
2171 		 * active, otherwise calls putfunc with args.
2172 		 */
2173 #ifndef KERNEL_PLL
2174 # define	CTL_IF_KERNPPS(putfunc, args)	\
2175 		ctl_putint(sys_var[varid].text, 0)
2176 #else
2177 # define	CTL_IF_KERNPPS(putfunc, args)			\
2178 		if (0 == ntx.shift)				\
2179 			ctl_putint(sys_var[varid].text, 0);	\
2180 		else						\
2181 			putfunc args	/* no trailing ; */
2182 #endif
2183 
2184 	case CS_K_OFFSET:
2185 		CTL_IF_KERNLOOP(
2186 			ctl_putdblf,
2187 			(sys_var[varid].text, 0, -1, to_ms * ntx.offset)
2188 		);
2189 		break;
2190 
2191 	case CS_K_FREQ:
2192 		CTL_IF_KERNLOOP(
2193 			ctl_putsfp,
2194 			(sys_var[varid].text, ntx.freq)
2195 		);
2196 		break;
2197 
2198 	case CS_K_MAXERR:
2199 		CTL_IF_KERNLOOP(
2200 			ctl_putdblf,
2201 			(sys_var[varid].text, 0, 6,
2202 			 to_ms * ntx.maxerror)
2203 		);
2204 		break;
2205 
2206 	case CS_K_ESTERR:
2207 		CTL_IF_KERNLOOP(
2208 			ctl_putdblf,
2209 			(sys_var[varid].text, 0, 6,
2210 			 to_ms * ntx.esterror)
2211 		);
2212 		break;
2213 
2214 	case CS_K_STFLAGS:
2215 #ifndef KERNEL_PLL
2216 		ss = "";
2217 #else
2218 		ss = k_st_flags(ntx.status);
2219 #endif
2220 		ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2221 		break;
2222 
2223 	case CS_K_TIMECONST:
2224 		CTL_IF_KERNLOOP(
2225 			ctl_putint,
2226 			(sys_var[varid].text, ntx.constant)
2227 		);
2228 		break;
2229 
2230 	case CS_K_PRECISION:
2231 		CTL_IF_KERNLOOP(
2232 			ctl_putdblf,
2233 			(sys_var[varid].text, 0, 6,
2234 			    to_ms * ntx.precision)
2235 		);
2236 		break;
2237 
2238 	case CS_K_FREQTOL:
2239 		CTL_IF_KERNLOOP(
2240 			ctl_putsfp,
2241 			(sys_var[varid].text, ntx.tolerance)
2242 		);
2243 		break;
2244 
2245 	case CS_K_PPS_FREQ:
2246 		CTL_IF_KERNPPS(
2247 			ctl_putsfp,
2248 			(sys_var[varid].text, ntx.ppsfreq)
2249 		);
2250 		break;
2251 
2252 	case CS_K_PPS_STABIL:
2253 		CTL_IF_KERNPPS(
2254 			ctl_putsfp,
2255 			(sys_var[varid].text, ntx.stabil)
2256 		);
2257 		break;
2258 
2259 	case CS_K_PPS_JITTER:
2260 		CTL_IF_KERNPPS(
2261 			ctl_putdbl,
2262 			(sys_var[varid].text, to_ms * ntx.jitter)
2263 		);
2264 		break;
2265 
2266 	case CS_K_PPS_CALIBDUR:
2267 		CTL_IF_KERNPPS(
2268 			ctl_putint,
2269 			(sys_var[varid].text, 1 << ntx.shift)
2270 		);
2271 		break;
2272 
2273 	case CS_K_PPS_CALIBS:
2274 		CTL_IF_KERNPPS(
2275 			ctl_putint,
2276 			(sys_var[varid].text, ntx.calcnt)
2277 		);
2278 		break;
2279 
2280 	case CS_K_PPS_CALIBERRS:
2281 		CTL_IF_KERNPPS(
2282 			ctl_putint,
2283 			(sys_var[varid].text, ntx.errcnt)
2284 		);
2285 		break;
2286 
2287 	case CS_K_PPS_JITEXC:
2288 		CTL_IF_KERNPPS(
2289 			ctl_putint,
2290 			(sys_var[varid].text, ntx.jitcnt)
2291 		);
2292 		break;
2293 
2294 	case CS_K_PPS_STBEXC:
2295 		CTL_IF_KERNPPS(
2296 			ctl_putint,
2297 			(sys_var[varid].text, ntx.stbcnt)
2298 		);
2299 		break;
2300 
2301 	case CS_IOSTATS_RESET:
2302 		ctl_putuint(sys_var[varid].text,
2303 			    current_time - io_timereset);
2304 		break;
2305 
2306 	case CS_TOTAL_RBUF:
2307 		ctl_putuint(sys_var[varid].text, total_recvbuffs());
2308 		break;
2309 
2310 	case CS_FREE_RBUF:
2311 		ctl_putuint(sys_var[varid].text, free_recvbuffs());
2312 		break;
2313 
2314 	case CS_USED_RBUF:
2315 		ctl_putuint(sys_var[varid].text, full_recvbuffs());
2316 		break;
2317 
2318 	case CS_RBUF_LOWATER:
2319 		ctl_putuint(sys_var[varid].text, lowater_additions());
2320 		break;
2321 
2322 	case CS_IO_DROPPED:
2323 		ctl_putuint(sys_var[varid].text, packets_dropped);
2324 		break;
2325 
2326 	case CS_IO_IGNORED:
2327 		ctl_putuint(sys_var[varid].text, packets_ignored);
2328 		break;
2329 
2330 	case CS_IO_RECEIVED:
2331 		ctl_putuint(sys_var[varid].text, packets_received);
2332 		break;
2333 
2334 	case CS_IO_SENT:
2335 		ctl_putuint(sys_var[varid].text, packets_sent);
2336 		break;
2337 
2338 	case CS_IO_SENDFAILED:
2339 		ctl_putuint(sys_var[varid].text, packets_notsent);
2340 		break;
2341 
2342 	case CS_IO_WAKEUPS:
2343 		ctl_putuint(sys_var[varid].text, handler_calls);
2344 		break;
2345 
2346 	case CS_IO_GOODWAKEUPS:
2347 		ctl_putuint(sys_var[varid].text, handler_pkts);
2348 		break;
2349 
2350 	case CS_TIMERSTATS_RESET:
2351 		ctl_putuint(sys_var[varid].text,
2352 			    current_time - timer_timereset);
2353 		break;
2354 
2355 	case CS_TIMER_OVERRUNS:
2356 		ctl_putuint(sys_var[varid].text, alarm_overflow);
2357 		break;
2358 
2359 	case CS_TIMER_XMTS:
2360 		ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2361 		break;
2362 
2363 	case CS_FUZZ:
2364 		ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2365 		break;
2366 	case CS_WANDER_THRESH:
2367 		ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
2368 		break;
2369 #ifdef AUTOKEY
2370 	case CS_FLAGS:
2371 		if (crypto_flags)
2372 			ctl_puthex(sys_var[CS_FLAGS].text,
2373 			    crypto_flags);
2374 		break;
2375 
2376 	case CS_DIGEST:
2377 		if (crypto_flags) {
2378 			strlcpy(str, OBJ_nid2ln(crypto_nid),
2379 			    COUNTOF(str));
2380 			ctl_putstr(sys_var[CS_DIGEST].text, str,
2381 			    strlen(str));
2382 		}
2383 		break;
2384 
2385 	case CS_SIGNATURE:
2386 		if (crypto_flags) {
2387 			const EVP_MD *dp;
2388 
2389 			dp = EVP_get_digestbynid(crypto_flags >> 16);
2390 			strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2391 			    COUNTOF(str));
2392 			ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2393 			    strlen(str));
2394 		}
2395 		break;
2396 
2397 	case CS_HOST:
2398 		if (hostval.ptr != NULL)
2399 			ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2400 			    strlen(hostval.ptr));
2401 		break;
2402 
2403 	case CS_IDENT:
2404 		if (sys_ident != NULL)
2405 			ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2406 			    strlen(sys_ident));
2407 		break;
2408 
2409 	case CS_CERTIF:
2410 		for (cp = cinfo; cp != NULL; cp = cp->link) {
2411 			snprintf(str, sizeof(str), "%s %s 0x%x",
2412 			    cp->subject, cp->issuer, cp->flags);
2413 			ctl_putstr(sys_var[CS_CERTIF].text, str,
2414 			    strlen(str));
2415 			ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
2416 		}
2417 		break;
2418 
2419 	case CS_PUBLIC:
2420 		if (hostval.tstamp != 0)
2421 			ctl_putfs(sys_var[CS_PUBLIC].text,
2422 			    ntohl(hostval.tstamp));
2423 		break;
2424 #endif	/* AUTOKEY */
2425 
2426 	default:
2427 		break;
2428 	}
2429 }
2430 
2431 
2432 /*
2433  * ctl_putpeer - output a peer variable
2434  */
2435 static void
2436 ctl_putpeer(
2437 	int id,
2438 	struct peer *p
2439 	)
2440 {
2441 	char buf[CTL_MAX_DATA_LEN];
2442 	char *s;
2443 	char *t;
2444 	char *be;
2445 	int i;
2446 	const struct ctl_var *k;
2447 #ifdef AUTOKEY
2448 	struct autokey *ap;
2449 	const EVP_MD *dp;
2450 	const char *str;
2451 #endif	/* AUTOKEY */
2452 
2453 	switch (id) {
2454 
2455 	case CP_CONFIG:
2456 		ctl_putuint(peer_var[id].text,
2457 			    !(FLAG_PREEMPT & p->flags));
2458 		break;
2459 
2460 	case CP_AUTHENABLE:
2461 		ctl_putuint(peer_var[id].text, !(p->keyid));
2462 		break;
2463 
2464 	case CP_AUTHENTIC:
2465 		ctl_putuint(peer_var[id].text,
2466 			    !!(FLAG_AUTHENTIC & p->flags));
2467 		break;
2468 
2469 	case CP_SRCADR:
2470 		ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2471 		break;
2472 
2473 	case CP_SRCPORT:
2474 		ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2475 		break;
2476 
2477 	case CP_SRCHOST:
2478 		if (p->hostname != NULL)
2479 			ctl_putstr(peer_var[id].text, p->hostname,
2480 				   strlen(p->hostname));
2481 		break;
2482 
2483 	case CP_DSTADR:
2484 		ctl_putadr(peer_var[id].text, 0,
2485 			   (p->dstadr != NULL)
2486 				? &p->dstadr->sin
2487 				: NULL);
2488 		break;
2489 
2490 	case CP_DSTPORT:
2491 		ctl_putuint(peer_var[id].text,
2492 			    (p->dstadr != NULL)
2493 				? SRCPORT(&p->dstadr->sin)
2494 				: 0);
2495 		break;
2496 
2497 	case CP_IN:
2498 		if (p->r21 > 0.)
2499 			ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2500 		break;
2501 
2502 	case CP_OUT:
2503 		if (p->r34 > 0.)
2504 			ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2505 		break;
2506 
2507 	case CP_RATE:
2508 		ctl_putuint(peer_var[id].text, p->throttle);
2509 		break;
2510 
2511 	case CP_LEAP:
2512 		ctl_putuint(peer_var[id].text, p->leap);
2513 		break;
2514 
2515 	case CP_HMODE:
2516 		ctl_putuint(peer_var[id].text, p->hmode);
2517 		break;
2518 
2519 	case CP_STRATUM:
2520 		ctl_putuint(peer_var[id].text, p->stratum);
2521 		break;
2522 
2523 	case CP_PPOLL:
2524 		ctl_putuint(peer_var[id].text, p->ppoll);
2525 		break;
2526 
2527 	case CP_HPOLL:
2528 		ctl_putuint(peer_var[id].text, p->hpoll);
2529 		break;
2530 
2531 	case CP_PRECISION:
2532 		ctl_putint(peer_var[id].text, p->precision);
2533 		break;
2534 
2535 	case CP_ROOTDELAY:
2536 		ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2537 		break;
2538 
2539 	case CP_ROOTDISPERSION:
2540 		ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2541 		break;
2542 
2543 	case CP_REFID:
2544 #ifdef REFCLOCK
2545 		if (p->flags & FLAG_REFCLOCK) {
2546 			ctl_putrefid(peer_var[id].text, p->refid);
2547 			break;
2548 		}
2549 #endif
2550 		if (p->stratum > 1 && p->stratum < STRATUM_UNSPEC)
2551 			ctl_putadr(peer_var[id].text, p->refid,
2552 				   NULL);
2553 		else
2554 			ctl_putrefid(peer_var[id].text, p->refid);
2555 		break;
2556 
2557 	case CP_REFTIME:
2558 		ctl_putts(peer_var[id].text, &p->reftime);
2559 		break;
2560 
2561 	case CP_ORG:
2562 		ctl_putts(peer_var[id].text, &p->aorg);
2563 		break;
2564 
2565 	case CP_REC:
2566 		ctl_putts(peer_var[id].text, &p->dst);
2567 		break;
2568 
2569 	case CP_XMT:
2570 		if (p->xleave)
2571 			ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2572 		break;
2573 
2574 	case CP_BIAS:
2575 		if (p->bias != 0.)
2576 			ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2577 		break;
2578 
2579 	case CP_REACH:
2580 		ctl_puthex(peer_var[id].text, p->reach);
2581 		break;
2582 
2583 	case CP_FLASH:
2584 		ctl_puthex(peer_var[id].text, p->flash);
2585 		break;
2586 
2587 	case CP_TTL:
2588 #ifdef REFCLOCK
2589 		if (p->flags & FLAG_REFCLOCK) {
2590 			ctl_putuint(peer_var[id].text, p->ttl);
2591 			break;
2592 		}
2593 #endif
2594 		if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2595 			ctl_putint(peer_var[id].text,
2596 				   sys_ttl[p->ttl]);
2597 		break;
2598 
2599 	case CP_UNREACH:
2600 		ctl_putuint(peer_var[id].text, p->unreach);
2601 		break;
2602 
2603 	case CP_TIMER:
2604 		ctl_putuint(peer_var[id].text,
2605 			    p->nextdate - current_time);
2606 		break;
2607 
2608 	case CP_DELAY:
2609 		ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2610 		break;
2611 
2612 	case CP_OFFSET:
2613 		ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2614 		break;
2615 
2616 	case CP_JITTER:
2617 		ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2618 		break;
2619 
2620 	case CP_DISPERSION:
2621 		ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2622 		break;
2623 
2624 	case CP_KEYID:
2625 		if (p->keyid > NTP_MAXKEY)
2626 			ctl_puthex(peer_var[id].text, p->keyid);
2627 		else
2628 			ctl_putuint(peer_var[id].text, p->keyid);
2629 		break;
2630 
2631 	case CP_FILTDELAY:
2632 		ctl_putarray(peer_var[id].text, p->filter_delay,
2633 			     p->filter_nextpt);
2634 		break;
2635 
2636 	case CP_FILTOFFSET:
2637 		ctl_putarray(peer_var[id].text, p->filter_offset,
2638 			     p->filter_nextpt);
2639 		break;
2640 
2641 	case CP_FILTERROR:
2642 		ctl_putarray(peer_var[id].text, p->filter_disp,
2643 			     p->filter_nextpt);
2644 		break;
2645 
2646 	case CP_PMODE:
2647 		ctl_putuint(peer_var[id].text, p->pmode);
2648 		break;
2649 
2650 	case CP_RECEIVED:
2651 		ctl_putuint(peer_var[id].text, p->received);
2652 		break;
2653 
2654 	case CP_SENT:
2655 		ctl_putuint(peer_var[id].text, p->sent);
2656 		break;
2657 
2658 	case CP_VARLIST:
2659 		s = buf;
2660 		be = buf + sizeof(buf);
2661 		if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2662 			break;	/* really long var name */
2663 
2664 		snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2665 		s += strlen(s);
2666 		t = s;
2667 		for (k = peer_var; !(EOV & k->flags); k++) {
2668 			if (PADDING & k->flags)
2669 				continue;
2670 			i = strlen(k->text);
2671 			if (s + i + 1 >= be)
2672 				break;
2673 			if (s != t)
2674 				*s++ = ',';
2675 			memcpy(s, k->text, i);
2676 			s += i;
2677 		}
2678 		if (s + 2 < be) {
2679 			*s++ = '"';
2680 			*s = '\0';
2681 			ctl_putdata(buf, (u_int)(s - buf), 0);
2682 		}
2683 		break;
2684 
2685 	case CP_TIMEREC:
2686 		ctl_putuint(peer_var[id].text,
2687 			    current_time - p->timereceived);
2688 		break;
2689 
2690 	case CP_TIMEREACH:
2691 		ctl_putuint(peer_var[id].text,
2692 			    current_time - p->timereachable);
2693 		break;
2694 
2695 	case CP_BADAUTH:
2696 		ctl_putuint(peer_var[id].text, p->badauth);
2697 		break;
2698 
2699 	case CP_BOGUSORG:
2700 		ctl_putuint(peer_var[id].text, p->bogusorg);
2701 		break;
2702 
2703 	case CP_OLDPKT:
2704 		ctl_putuint(peer_var[id].text, p->oldpkt);
2705 		break;
2706 
2707 	case CP_SELDISP:
2708 		ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2709 		break;
2710 
2711 	case CP_SELBROKEN:
2712 		ctl_putuint(peer_var[id].text, p->selbroken);
2713 		break;
2714 
2715 	case CP_CANDIDATE:
2716 		ctl_putuint(peer_var[id].text, p->status);
2717 		break;
2718 #ifdef AUTOKEY
2719 	case CP_FLAGS:
2720 		if (p->crypto)
2721 			ctl_puthex(peer_var[id].text, p->crypto);
2722 		break;
2723 
2724 	case CP_SIGNATURE:
2725 		if (p->crypto) {
2726 			dp = EVP_get_digestbynid(p->crypto >> 16);
2727 			str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2728 			ctl_putstr(peer_var[id].text, str, strlen(str));
2729 		}
2730 		break;
2731 
2732 	case CP_HOST:
2733 		if (p->subject != NULL)
2734 			ctl_putstr(peer_var[id].text, p->subject,
2735 			    strlen(p->subject));
2736 		break;
2737 
2738 	case CP_VALID:		/* not used */
2739 		break;
2740 
2741 	case CP_INITSEQ:
2742 		if (NULL == (ap = p->recval.ptr))
2743 			break;
2744 
2745 		ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2746 		ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2747 		ctl_putfs(peer_var[CP_INITTSP].text,
2748 			  ntohl(p->recval.tstamp));
2749 		break;
2750 
2751 	case CP_IDENT:
2752 		if (p->ident != NULL)
2753 			ctl_putstr(peer_var[id].text, p->ident,
2754 			    strlen(p->ident));
2755 		break;
2756 
2757 
2758 #endif	/* AUTOKEY */
2759 	}
2760 }
2761 
2762 
2763 #ifdef REFCLOCK
2764 /*
2765  * ctl_putclock - output clock variables
2766  */
2767 static void
2768 ctl_putclock(
2769 	int id,
2770 	struct refclockstat *pcs,
2771 	int mustput
2772 	)
2773 {
2774 	char buf[CTL_MAX_DATA_LEN];
2775 	char *s, *t, *be;
2776 	const char *ss;
2777 	int i;
2778 	const struct ctl_var *k;
2779 
2780 	switch (id) {
2781 
2782 	case CC_TYPE:
2783 		if (mustput || pcs->clockdesc == NULL
2784 		    || *(pcs->clockdesc) == '\0') {
2785 			ctl_putuint(clock_var[id].text, pcs->type);
2786 		}
2787 		break;
2788 	case CC_TIMECODE:
2789 		ctl_putstr(clock_var[id].text,
2790 			   pcs->p_lastcode,
2791 			   (unsigned)pcs->lencode);
2792 		break;
2793 
2794 	case CC_POLL:
2795 		ctl_putuint(clock_var[id].text, pcs->polls);
2796 		break;
2797 
2798 	case CC_NOREPLY:
2799 		ctl_putuint(clock_var[id].text,
2800 			    pcs->noresponse);
2801 		break;
2802 
2803 	case CC_BADFORMAT:
2804 		ctl_putuint(clock_var[id].text,
2805 			    pcs->badformat);
2806 		break;
2807 
2808 	case CC_BADDATA:
2809 		ctl_putuint(clock_var[id].text,
2810 			    pcs->baddata);
2811 		break;
2812 
2813 	case CC_FUDGETIME1:
2814 		if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2815 			ctl_putdbl(clock_var[id].text,
2816 				   pcs->fudgetime1 * 1e3);
2817 		break;
2818 
2819 	case CC_FUDGETIME2:
2820 		if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2821 			ctl_putdbl(clock_var[id].text,
2822 				   pcs->fudgetime2 * 1e3);
2823 		break;
2824 
2825 	case CC_FUDGEVAL1:
2826 		if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2827 			ctl_putint(clock_var[id].text,
2828 				   pcs->fudgeval1);
2829 		break;
2830 
2831 	case CC_FUDGEVAL2:
2832 		if (mustput || (pcs->haveflags & CLK_HAVEVAL2)) {
2833 			if (pcs->fudgeval1 > 1)
2834 				ctl_putadr(clock_var[id].text,
2835 					   pcs->fudgeval2, NULL);
2836 			else
2837 				ctl_putrefid(clock_var[id].text,
2838 					     pcs->fudgeval2);
2839 		}
2840 		break;
2841 
2842 	case CC_FLAGS:
2843 		ctl_putuint(clock_var[id].text, pcs->flags);
2844 		break;
2845 
2846 	case CC_DEVICE:
2847 		if (pcs->clockdesc == NULL ||
2848 		    *(pcs->clockdesc) == '\0') {
2849 			if (mustput)
2850 				ctl_putstr(clock_var[id].text,
2851 					   "", 0);
2852 		} else {
2853 			ctl_putstr(clock_var[id].text,
2854 				   pcs->clockdesc,
2855 				   strlen(pcs->clockdesc));
2856 		}
2857 		break;
2858 
2859 	case CC_VARLIST:
2860 		s = buf;
2861 		be = buf + sizeof(buf);
2862 		if (strlen(clock_var[CC_VARLIST].text) + 4 >
2863 		    sizeof(buf))
2864 			break;	/* really long var name */
2865 
2866 		snprintf(s, sizeof(buf), "%s=\"",
2867 			 clock_var[CC_VARLIST].text);
2868 		s += strlen(s);
2869 		t = s;
2870 
2871 		for (k = clock_var; !(EOV & k->flags); k++) {
2872 			if (PADDING & k->flags)
2873 				continue;
2874 
2875 			i = strlen(k->text);
2876 			if (s + i + 1 >= be)
2877 				break;
2878 
2879 			if (s != t)
2880 				*s++ = ',';
2881 			memcpy(s, k->text, i);
2882 			s += i;
2883 		}
2884 
2885 		for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
2886 			if (PADDING & k->flags)
2887 				continue;
2888 
2889 			ss = k->text;
2890 			if (NULL == ss)
2891 				continue;
2892 
2893 			while (*ss && *ss != '=')
2894 				ss++;
2895 			i = ss - k->text;
2896 			if (s + i + 1 >= be)
2897 				break;
2898 
2899 			if (s != t)
2900 				*s++ = ',';
2901 			memcpy(s, k->text, (unsigned)i);
2902 			s += i;
2903 			*s = '\0';
2904 		}
2905 		if (s + 2 >= be)
2906 			break;
2907 
2908 		*s++ = '"';
2909 		*s = '\0';
2910 		ctl_putdata(buf, (unsigned)(s - buf), 0);
2911 		break;
2912 	}
2913 }
2914 #endif
2915 
2916 
2917 
2918 /*
2919  * ctl_getitem - get the next data item from the incoming packet
2920  */
2921 static const struct ctl_var *
2922 ctl_getitem(
2923 	const struct ctl_var *var_list,
2924 	char **data
2925 	)
2926 {
2927 	static const struct ctl_var eol = { 0, EOV, NULL };
2928 	static char buf[128];
2929 	static u_long quiet_until;
2930 	const struct ctl_var *v;
2931 	const char *pch;
2932 	char *cp;
2933 	char *tp;
2934 
2935 	/*
2936 	 * Delete leading commas and white space
2937 	 */
2938 	while (reqpt < reqend && (*reqpt == ',' ||
2939 				  isspace((unsigned char)*reqpt)))
2940 		reqpt++;
2941 	if (reqpt >= reqend)
2942 		return NULL;
2943 
2944 	if (NULL == var_list)
2945 		return &eol;
2946 
2947 	/*
2948 	 * Look for a first character match on the tag.  If we find
2949 	 * one, see if it is a full match.
2950 	 */
2951 	cp = reqpt;
2952 	for (v = var_list; !(EOV & v->flags); v++) {
2953 		if (!(PADDING & v->flags) && *cp == *(v->text)) {
2954 			pch = v->text;
2955 			while ('\0' != *pch && '=' != *pch && cp < reqend
2956 			       && *cp == *pch) {
2957 				cp++;
2958 				pch++;
2959 			}
2960 			if ('\0' == *pch || '=' == *pch) {
2961 				while (cp < reqend && isspace((u_char)*cp))
2962 					cp++;
2963 				if (cp == reqend || ',' == *cp) {
2964 					buf[0] = '\0';
2965 					*data = buf;
2966 					if (cp < reqend)
2967 						cp++;
2968 					reqpt = cp;
2969 					return v;
2970 				}
2971 				if ('=' == *cp) {
2972 					cp++;
2973 					tp = buf;
2974 					while (cp < reqend && isspace((u_char)*cp))
2975 						cp++;
2976 					while (cp < reqend && *cp != ',') {
2977 						*tp++ = *cp++;
2978 						if ((size_t)(tp - buf) >= sizeof(buf)) {
2979 							ctl_error(CERR_BADFMT);
2980 							numctlbadpkts++;
2981 							NLOG(NLOG_SYSEVENT)
2982 								if (quiet_until <= current_time) {
2983 									quiet_until = current_time + 300;
2984 									msyslog(LOG_WARNING,
2985 "Possible 'ntpdx' exploit from %s#%u (possibly spoofed)", stoa(rmt_addr), SRCPORT(rmt_addr));
2986 								}
2987 							return NULL;
2988 						}
2989 					}
2990 					if (cp < reqend)
2991 						cp++;
2992 					*tp-- = '\0';
2993 					while (tp >= buf && isspace((u_char)*tp))
2994 						*tp-- = '\0';
2995 					reqpt = cp;
2996 					*data = buf;
2997 					return v;
2998 				}
2999 			}
3000 			cp = reqpt;
3001 		}
3002 	}
3003 	return v;
3004 }
3005 
3006 
3007 /*
3008  * control_unspec - response to an unspecified op-code
3009  */
3010 /*ARGSUSED*/
3011 static void
3012 control_unspec(
3013 	struct recvbuf *rbufp,
3014 	int restrict_mask
3015 	)
3016 {
3017 	struct peer *peer;
3018 
3019 	/*
3020 	 * What is an appropriate response to an unspecified op-code?
3021 	 * I return no errors and no data, unless a specified assocation
3022 	 * doesn't exist.
3023 	 */
3024 	if (res_associd) {
3025 		peer = findpeerbyassoc(res_associd);
3026 		if (NULL == peer) {
3027 			ctl_error(CERR_BADASSOC);
3028 			return;
3029 		}
3030 		rpkt.status = htons(ctlpeerstatus(peer));
3031 	} else
3032 		rpkt.status = htons(ctlsysstatus());
3033 	ctl_flushpkt(0);
3034 }
3035 
3036 
3037 /*
3038  * read_status - return either a list of associd's, or a particular
3039  * peer's status.
3040  */
3041 /*ARGSUSED*/
3042 static void
3043 read_status(
3044 	struct recvbuf *rbufp,
3045 	int restrict_mask
3046 	)
3047 {
3048 	struct peer *peer;
3049 	const u_char *cp;
3050 	size_t n;
3051 	/* a_st holds association ID, status pairs alternating */
3052 	u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
3053 
3054 #ifdef DEBUG
3055 	if (debug > 2)
3056 		printf("read_status: ID %d\n", res_associd);
3057 #endif
3058 	/*
3059 	 * Two choices here. If the specified association ID is
3060 	 * zero we return all known assocation ID's.  Otherwise
3061 	 * we return a bunch of stuff about the particular peer.
3062 	 */
3063 	if (res_associd) {
3064 		peer = findpeerbyassoc(res_associd);
3065 		if (NULL == peer) {
3066 			ctl_error(CERR_BADASSOC);
3067 			return;
3068 		}
3069 		rpkt.status = htons(ctlpeerstatus(peer));
3070 		if (res_authokay)
3071 			peer->num_events = 0;
3072 		/*
3073 		 * For now, output everything we know about the
3074 		 * peer. May be more selective later.
3075 		 */
3076 		for (cp = def_peer_var; *cp != 0; cp++)
3077 			ctl_putpeer((int)*cp, peer);
3078 		ctl_flushpkt(0);
3079 		return;
3080 	}
3081 	n = 0;
3082 	rpkt.status = htons(ctlsysstatus());
3083 	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3084 		a_st[n++] = htons(peer->associd);
3085 		a_st[n++] = htons(ctlpeerstatus(peer));
3086 		/* two entries each loop iteration, so n + 1 */
3087 		if (n + 1 >= COUNTOF(a_st)) {
3088 			ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
3089 				    1);
3090 			n = 0;
3091 		}
3092 	}
3093 	if (n)
3094 		ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3095 	ctl_flushpkt(0);
3096 }
3097 
3098 
3099 /*
3100  * read_peervars - half of read_variables() implementation
3101  */
3102 static void
3103 read_peervars(void)
3104 {
3105 	const struct ctl_var *v;
3106 	struct peer *peer;
3107 	const u_char *cp;
3108 	size_t i;
3109 	char *	valuep;
3110 	u_char	wants[CP_MAXCODE + 1];
3111 	u_int	gotvar;
3112 
3113 	/*
3114 	 * Wants info for a particular peer. See if we know
3115 	 * the guy.
3116 	 */
3117 	peer = findpeerbyassoc(res_associd);
3118 	if (NULL == peer) {
3119 		ctl_error(CERR_BADASSOC);
3120 		return;
3121 	}
3122 	rpkt.status = htons(ctlpeerstatus(peer));
3123 	if (res_authokay)
3124 		peer->num_events = 0;
3125 	ZERO(wants);
3126 	gotvar = 0;
3127 	while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3128 		if (v->flags & EOV) {
3129 			ctl_error(CERR_UNKNOWNVAR);
3130 			return;
3131 		}
3132 		INSIST(v->code < COUNTOF(wants));
3133 		wants[v->code] = 1;
3134 		gotvar = 1;
3135 	}
3136 	if (gotvar) {
3137 		for (i = 1; i < COUNTOF(wants); i++)
3138 			if (wants[i])
3139 				ctl_putpeer(i, peer);
3140 	} else
3141 		for (cp = def_peer_var; *cp != 0; cp++)
3142 			ctl_putpeer((int)*cp, peer);
3143 	ctl_flushpkt(0);
3144 }
3145 
3146 
3147 /*
3148  * read_sysvars - half of read_variables() implementation
3149  */
3150 static void
3151 read_sysvars(void)
3152 {
3153 	const struct ctl_var *v;
3154 	struct ctl_var *kv;
3155 	u_int	n;
3156 	u_int	gotvar;
3157 	const u_char *cs;
3158 	char *	valuep;
3159 	const char * pch;
3160 	u_char *wants;
3161 	size_t	wants_count;
3162 
3163 	/*
3164 	 * Wants system variables. Figure out which he wants
3165 	 * and give them to him.
3166 	 */
3167 	rpkt.status = htons(ctlsysstatus());
3168 	if (res_authokay)
3169 		ctl_sys_num_events = 0;
3170 	wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3171 	wants = emalloc_zero(wants_count);
3172 	gotvar = 0;
3173 	while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3174 		if (!(EOV & v->flags)) {
3175 			INSIST(v->code < wants_count);
3176 			wants[v->code] = 1;
3177 			gotvar = 1;
3178 		} else {
3179 			v = ctl_getitem(ext_sys_var, &valuep);
3180 			INSIST(v != NULL);
3181 			if (EOV & v->flags) {
3182 				ctl_error(CERR_UNKNOWNVAR);
3183 				free(wants);
3184 				return;
3185 			}
3186 			n = v->code + CS_MAXCODE + 1;
3187 			INSIST(n < wants_count);
3188 			wants[n] = 1;
3189 			gotvar = 1;
3190 		}
3191 	}
3192 	if (gotvar) {
3193 		for (n = 1; n <= CS_MAXCODE; n++)
3194 			if (wants[n])
3195 				ctl_putsys(n);
3196 		for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3197 			if (wants[n + CS_MAXCODE + 1]) {
3198 				pch = ext_sys_var[n].text;
3199 				ctl_putdata(pch, strlen(pch), 0);
3200 			}
3201 	} else {
3202 		for (cs = def_sys_var; *cs != 0; cs++)
3203 			ctl_putsys((int)*cs);
3204 		for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3205 			if (DEF & kv->flags)
3206 				ctl_putdata(kv->text, strlen(kv->text),
3207 					    0);
3208 	}
3209 	free(wants);
3210 	ctl_flushpkt(0);
3211 }
3212 
3213 
3214 /*
3215  * read_variables - return the variables the caller asks for
3216  */
3217 /*ARGSUSED*/
3218 static void
3219 read_variables(
3220 	struct recvbuf *rbufp,
3221 	int restrict_mask
3222 	)
3223 {
3224 	if (res_associd)
3225 		read_peervars();
3226 	else
3227 		read_sysvars();
3228 }
3229 
3230 
3231 /*
3232  * write_variables - write into variables. We only allow leap bit
3233  * writing this way.
3234  */
3235 /*ARGSUSED*/
3236 static void
3237 write_variables(
3238 	struct recvbuf *rbufp,
3239 	int restrict_mask
3240 	)
3241 {
3242 	const struct ctl_var *v;
3243 	int ext_var;
3244 	char *valuep;
3245 	long val;
3246 	size_t octets;
3247 	char *vareqv;
3248 	const char *t;
3249 	char *tt;
3250 
3251 	val = 0;
3252 	/*
3253 	 * If he's trying to write into a peer tell him no way
3254 	 */
3255 	if (res_associd != 0) {
3256 		ctl_error(CERR_PERMISSION);
3257 		return;
3258 	}
3259 
3260 	/*
3261 	 * Set status
3262 	 */
3263 	rpkt.status = htons(ctlsysstatus());
3264 
3265 	/*
3266 	 * Look through the variables. Dump out at the first sign of
3267 	 * trouble.
3268 	 */
3269 	while ((v = ctl_getitem(sys_var, &valuep)) != 0) {
3270 		ext_var = 0;
3271 		if (v->flags & EOV) {
3272 			if ((v = ctl_getitem(ext_sys_var, &valuep)) !=
3273 			    0) {
3274 				if (v->flags & EOV) {
3275 					ctl_error(CERR_UNKNOWNVAR);
3276 					return;
3277 				}
3278 				ext_var = 1;
3279 			} else {
3280 				break;
3281 			}
3282 		}
3283 		if (!(v->flags & CAN_WRITE)) {
3284 			ctl_error(CERR_PERMISSION);
3285 			return;
3286 		}
3287 		if (!ext_var && (*valuep == '\0' || !atoint(valuep,
3288 							    &val))) {
3289 			ctl_error(CERR_BADFMT);
3290 			return;
3291 		}
3292 		if (!ext_var && (val & ~LEAP_NOTINSYNC) != 0) {
3293 			ctl_error(CERR_BADVALUE);
3294 			return;
3295 		}
3296 
3297 		if (ext_var) {
3298 			octets = strlen(v->text) + strlen(valuep) + 2;
3299 			vareqv = emalloc(octets);
3300 			tt = vareqv;
3301 			t = v->text;
3302 			while (*t && *t != '=')
3303 				*tt++ = *t++;
3304 			*tt++ = '=';
3305 			memcpy(tt, valuep, 1 + strlen(valuep));
3306 			set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3307 			free(vareqv);
3308 		} else {
3309 			ctl_error(CERR_UNSPEC); /* really */
3310 			return;
3311 		}
3312 	}
3313 
3314 	/*
3315 	 * If we got anything, do it. xxx nothing to do ***
3316 	 */
3317 	/*
3318 	  if (leapind != ~0 || leapwarn != ~0) {
3319 	  if (!leap_setleap((int)leapind, (int)leapwarn)) {
3320 	  ctl_error(CERR_PERMISSION);
3321 	  return;
3322 	  }
3323 	  }
3324 	*/
3325 	ctl_flushpkt(0);
3326 }
3327 
3328 
3329 /*
3330  * configure() processes ntpq :config/config-from-file, allowing
3331  *		generic runtime reconfiguration.
3332  */
3333 static void configure(
3334 	struct recvbuf *rbufp,
3335 	int restrict_mask
3336 	)
3337 {
3338 	size_t data_count;
3339 	int retval;
3340 
3341 	/* I haven't yet implemented changes to an existing association.
3342 	 * Hence check if the association id is 0
3343 	 */
3344 	if (res_associd != 0) {
3345 		ctl_error(CERR_BADVALUE);
3346 		return;
3347 	}
3348 
3349 	if (RES_NOMODIFY & restrict_mask) {
3350 		snprintf(remote_config.err_msg,
3351 			 sizeof(remote_config.err_msg),
3352 			 "runtime configuration prohibited by restrict ... nomodify");
3353 		ctl_putdata(remote_config.err_msg,
3354 			    strlen(remote_config.err_msg), 0);
3355 		ctl_flushpkt(0);
3356 		NLOG(NLOG_SYSINFO)
3357 			msyslog(LOG_NOTICE,
3358 				"runtime config from %s rejected due to nomodify restriction",
3359 				stoa(&rbufp->recv_srcadr));
3360 		sys_restricted++;
3361 		return;
3362 	}
3363 
3364 	/* Initialize the remote config buffer */
3365 	data_count = remoteconfig_cmdlength(reqpt, reqend);
3366 
3367 	if (data_count > sizeof(remote_config.buffer) - 2) {
3368 		snprintf(remote_config.err_msg,
3369 			 sizeof(remote_config.err_msg),
3370 			 "runtime configuration failed: request too long");
3371 		ctl_putdata(remote_config.err_msg,
3372 			    strlen(remote_config.err_msg), 0);
3373 		ctl_flushpkt(0);
3374 		msyslog(LOG_NOTICE,
3375 			"runtime config from %s rejected: request too long",
3376 			stoa(&rbufp->recv_srcadr));
3377 		return;
3378 	}
3379 	/* Bug 2853 -- check if all characters were acceptable */
3380 	if (data_count != (size_t)(reqend - reqpt)) {
3381 		snprintf(remote_config.err_msg,
3382 			 sizeof(remote_config.err_msg),
3383 			 "runtime configuration failed: request contains an unprintable character");
3384 		ctl_putdata(remote_config.err_msg,
3385 			    strlen(remote_config.err_msg), 0);
3386 		ctl_flushpkt(0);
3387 		msyslog(LOG_NOTICE,
3388 			"runtime config from %s rejected: request contains an unprintable character: %0x",
3389 			stoa(&rbufp->recv_srcadr),
3390 			reqpt[data_count]);
3391 		return;
3392 	}
3393 
3394 	memcpy(remote_config.buffer, reqpt, data_count);
3395 	/* The buffer has no trailing linefeed or NUL right now. For
3396 	 * logging, we do not want a newline, so we do that first after
3397 	 * adding the necessary NUL byte.
3398 	 */
3399 	remote_config.buffer[data_count] = '\0';
3400 	DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3401 		remote_config.buffer));
3402 	msyslog(LOG_NOTICE, "%s config: %s",
3403 		stoa(&rbufp->recv_srcadr),
3404 		remote_config.buffer);
3405 
3406 	/* Now we have to make sure there is a NL/NUL sequence at the
3407 	 * end of the buffer before we parse it.
3408 	 */
3409 	remote_config.buffer[data_count++] = '\n';
3410 	remote_config.buffer[data_count] = '\0';
3411 	remote_config.pos = 0;
3412 	remote_config.err_pos = 0;
3413 	remote_config.no_errors = 0;
3414 	config_remotely(&rbufp->recv_srcadr);
3415 
3416 	/*
3417 	 * Check if errors were reported. If not, output 'Config
3418 	 * Succeeded'.  Else output the error count.  It would be nice
3419 	 * to output any parser error messages.
3420 	 */
3421 	if (0 == remote_config.no_errors) {
3422 		retval = snprintf(remote_config.err_msg,
3423 				  sizeof(remote_config.err_msg),
3424 				  "Config Succeeded");
3425 		if (retval > 0)
3426 			remote_config.err_pos += retval;
3427 	}
3428 
3429 	ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3430 	ctl_flushpkt(0);
3431 
3432 	DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3433 
3434 	if (remote_config.no_errors > 0)
3435 		msyslog(LOG_NOTICE, "%d error in %s config",
3436 			remote_config.no_errors,
3437 			stoa(&rbufp->recv_srcadr));
3438 }
3439 
3440 
3441 /*
3442  * derive_nonce - generate client-address-specific nonce value
3443  *		  associated with a given timestamp.
3444  */
3445 static u_int32 derive_nonce(
3446 	sockaddr_u *	addr,
3447 	u_int32		ts_i,
3448 	u_int32		ts_f
3449 	)
3450 {
3451 	static u_int32	salt[4];
3452 	static u_long	last_salt_update;
3453 	union d_tag {
3454 		u_char	digest[EVP_MAX_MD_SIZE];
3455 		u_int32 extract;
3456 	}		d;
3457 	EVP_MD_CTX	ctx;
3458 	u_int		len;
3459 
3460 	while (!salt[0] || current_time - last_salt_update >= 3600) {
3461 		salt[0] = ntp_random();
3462 		salt[1] = ntp_random();
3463 		salt[2] = ntp_random();
3464 		salt[3] = ntp_random();
3465 		last_salt_update = current_time;
3466 	}
3467 
3468 	EVP_DigestInit(&ctx, EVP_get_digestbynid(NID_md5));
3469 	EVP_DigestUpdate(&ctx, salt, sizeof(salt));
3470 	EVP_DigestUpdate(&ctx, &ts_i, sizeof(ts_i));
3471 	EVP_DigestUpdate(&ctx, &ts_f, sizeof(ts_f));
3472 	if (IS_IPV4(addr))
3473 		EVP_DigestUpdate(&ctx, &SOCK_ADDR4(addr),
3474 			         sizeof(SOCK_ADDR4(addr)));
3475 	else
3476 		EVP_DigestUpdate(&ctx, &SOCK_ADDR6(addr),
3477 			         sizeof(SOCK_ADDR6(addr)));
3478 	EVP_DigestUpdate(&ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
3479 	EVP_DigestUpdate(&ctx, salt, sizeof(salt));
3480 	EVP_DigestFinal(&ctx, d.digest, &len);
3481 
3482 	return d.extract;
3483 }
3484 
3485 
3486 /*
3487  * generate_nonce - generate client-address-specific nonce string.
3488  */
3489 static void generate_nonce(
3490 	struct recvbuf *	rbufp,
3491 	char *			nonce,
3492 	size_t			nonce_octets
3493 	)
3494 {
3495 	u_int32 derived;
3496 
3497 	derived = derive_nonce(&rbufp->recv_srcadr,
3498 			       rbufp->recv_time.l_ui,
3499 			       rbufp->recv_time.l_uf);
3500 	snprintf(nonce, nonce_octets, "%08x%08x%08x",
3501 		 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3502 }
3503 
3504 
3505 /*
3506  * validate_nonce - validate client-address-specific nonce string.
3507  *
3508  * Returns TRUE if the local calculation of the nonce matches the
3509  * client-provided value and the timestamp is recent enough.
3510  */
3511 static int validate_nonce(
3512 	const char *		pnonce,
3513 	struct recvbuf *	rbufp
3514 	)
3515 {
3516 	u_int	ts_i;
3517 	u_int	ts_f;
3518 	l_fp	ts;
3519 	l_fp	now_delta;
3520 	u_int	supposed;
3521 	u_int	derived;
3522 
3523 	if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3524 		return FALSE;
3525 
3526 	ts.l_ui = (u_int32)ts_i;
3527 	ts.l_uf = (u_int32)ts_f;
3528 	derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3529 	get_systime(&now_delta);
3530 	L_SUB(&now_delta, &ts);
3531 
3532 	return (supposed == derived && now_delta.l_ui < 16);
3533 }
3534 
3535 
3536 /*
3537  * send_random_tag_value - send a randomly-generated three character
3538  *			   tag prefix, a '.', an index, a '=' and a
3539  *			   random integer value.
3540  *
3541  * To try to force clients to ignore unrecognized tags in mrulist,
3542  * reslist, and ifstats responses, the first and last rows are spiced
3543  * with randomly-generated tag names with correct .# index.  Make it
3544  * three characters knowing that none of the currently-used subscripted
3545  * tags have that length, avoiding the need to test for
3546  * tag collision.
3547  */
3548 static void
3549 send_random_tag_value(
3550 	int	indx
3551 	)
3552 {
3553 	int	noise;
3554 	char	buf[32];
3555 
3556 	noise = rand() ^ (rand() << 16);
3557 	buf[0] = 'a' + noise % 26;
3558 	noise >>= 5;
3559 	buf[1] = 'a' + noise % 26;
3560 	noise >>= 5;
3561 	buf[2] = 'a' + noise % 26;
3562 	noise >>= 5;
3563 	buf[3] = '.';
3564 	snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3565 	ctl_putuint(buf, noise);
3566 }
3567 
3568 
3569 /*
3570  * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3571  *
3572  * To keep clients honest about not depending on the order of values,
3573  * and thereby avoid being locked into ugly workarounds to maintain
3574  * backward compatibility later as new fields are added to the response,
3575  * the order is random.
3576  */
3577 static void
3578 send_mru_entry(
3579 	mon_entry *	mon,
3580 	int		count
3581 	)
3582 {
3583 	const char first_fmt[] =	"first.%d";
3584 	const char ct_fmt[] =		"ct.%d";
3585 	const char mv_fmt[] =		"mv.%d";
3586 	const char rs_fmt[] =		"rs.%d";
3587 	char	tag[32];
3588 	u_char	sent[6]; /* 6 tag=value pairs */
3589 	u_int32 noise;
3590 	u_int	which;
3591 	u_int	remaining;
3592 	const char * pch;
3593 
3594 	remaining = COUNTOF(sent);
3595 	ZERO(sent);
3596 	noise = (u_int32)(rand() ^ (rand() << 16));
3597 	while (remaining > 0) {
3598 		which = (noise & 7) % COUNTOF(sent);
3599 		noise >>= 3;
3600 		while (sent[which])
3601 			which = (which + 1) % COUNTOF(sent);
3602 
3603 		switch (which) {
3604 
3605 		case 0:
3606 			snprintf(tag, sizeof(tag), addr_fmt, count);
3607 			pch = sptoa(&mon->rmtadr);
3608 			ctl_putunqstr(tag, pch, strlen(pch));
3609 			break;
3610 
3611 		case 1:
3612 			snprintf(tag, sizeof(tag), last_fmt, count);
3613 			ctl_putts(tag, &mon->last);
3614 			break;
3615 
3616 		case 2:
3617 			snprintf(tag, sizeof(tag), first_fmt, count);
3618 			ctl_putts(tag, &mon->first);
3619 			break;
3620 
3621 		case 3:
3622 			snprintf(tag, sizeof(tag), ct_fmt, count);
3623 			ctl_putint(tag, mon->count);
3624 			break;
3625 
3626 		case 4:
3627 			snprintf(tag, sizeof(tag), mv_fmt, count);
3628 			ctl_putuint(tag, mon->vn_mode);
3629 			break;
3630 
3631 		case 5:
3632 			snprintf(tag, sizeof(tag), rs_fmt, count);
3633 			ctl_puthex(tag, mon->flags);
3634 			break;
3635 		}
3636 		sent[which] = TRUE;
3637 		remaining--;
3638 	}
3639 }
3640 
3641 
3642 /*
3643  * read_mru_list - supports ntpq's mrulist command.
3644  *
3645  * The challenge here is to match ntpdc's monlist functionality without
3646  * being limited to hundreds of entries returned total, and without
3647  * requiring state on the server.  If state were required, ntpq's
3648  * mrulist command would require authentication.
3649  *
3650  * The approach was suggested by Ry Jones.  A finite and variable number
3651  * of entries are retrieved per request, to avoid having responses with
3652  * such large numbers of packets that socket buffers are overflowed and
3653  * packets lost.  The entries are retrieved oldest-first, taking into
3654  * account that the MRU list will be changing between each request.  We
3655  * can expect to see duplicate entries for addresses updated in the MRU
3656  * list during the fetch operation.  In the end, the client can assemble
3657  * a close approximation of the MRU list at the point in time the last
3658  * response was sent by ntpd.  The only difference is it may be longer,
3659  * containing some number of oldest entries which have since been
3660  * reclaimed.  If necessary, the protocol could be extended to zap those
3661  * from the client snapshot at the end, but so far that doesn't seem
3662  * useful.
3663  *
3664  * To accomodate the changing MRU list, the starting point for requests
3665  * after the first request is supplied as a series of last seen
3666  * timestamps and associated addresses, the newest ones the client has
3667  * received.  As long as at least one of those entries hasn't been
3668  * bumped to the head of the MRU list, ntpd can pick up at that point.
3669  * Otherwise, the request is failed and it is up to ntpq to back up and
3670  * provide the next newest entry's timestamps and addresses, conceivably
3671  * backing up all the way to the starting point.
3672  *
3673  * input parameters:
3674  *	nonce=		Regurgitated nonce retrieved by the client
3675  *			previously using CTL_OP_REQ_NONCE, demonstrating
3676  *			ability to receive traffic sent to its address.
3677  *	frags=		Limit on datagrams (fragments) in response.  Used
3678  *			by newer ntpq versions instead of limit= when
3679  *			retrieving multiple entries.
3680  *	limit=		Limit on MRU entries returned.  One of frags= or
3681  *			limit= must be provided.
3682  *			limit=1 is a special case:  Instead of fetching
3683  *			beginning with the supplied starting point's
3684  *			newer neighbor, fetch the supplied entry, and
3685  *			in that case the #.last timestamp can be zero.
3686  *			This enables fetching a single entry by IP
3687  *			address.  When limit is not one and frags= is
3688  *			provided, the fragment limit controls.
3689  *	mincount=	(decimal) Return entries with count >= mincount.
3690  *	laddr=		Return entries associated with the server's IP
3691  *			address given.  No port specification is needed,
3692  *			and any supplied is ignored.
3693  *	resall=		0x-prefixed hex restrict bits which must all be
3694  *			lit for an MRU entry to be included.
3695  *			Has precedence over any resany=.
3696  *	resany=		0x-prefixed hex restrict bits, at least one of
3697  *			which must be list for an MRU entry to be
3698  *			included.
3699  *	last.0=		0x-prefixed hex l_fp timestamp of newest entry
3700  *			which client previously received.
3701  *	addr.0=		text of newest entry's IP address and port,
3702  *			IPv6 addresses in bracketed form: [::]:123
3703  *	last.1=		timestamp of 2nd newest entry client has.
3704  *	addr.1=		address of 2nd newest entry.
3705  *	[...]
3706  *
3707  * ntpq provides as many last/addr pairs as will fit in a single request
3708  * packet, except for the first request in a MRU fetch operation.
3709  *
3710  * The response begins with a new nonce value to be used for any
3711  * followup request.  Following the nonce is the next newer entry than
3712  * referred to by last.0 and addr.0, if the "0" entry has not been
3713  * bumped to the front.  If it has, the first entry returned will be the
3714  * next entry newer than referred to by last.1 and addr.1, and so on.
3715  * If none of the referenced entries remain unchanged, the request fails
3716  * and ntpq backs up to the next earlier set of entries to resync.
3717  *
3718  * Except for the first response, the response begins with confirmation
3719  * of the entry that precedes the first additional entry provided:
3720  *
3721  *	last.older=	hex l_fp timestamp matching one of the input
3722  *			.last timestamps, which entry now precedes the
3723  *			response 0. entry in the MRU list.
3724  *	addr.older=	text of address corresponding to older.last.
3725  *
3726  * And in any case, a successful response contains sets of values
3727  * comprising entries, with the oldest numbered 0 and incrementing from
3728  * there:
3729  *
3730  *	addr.#		text of IPv4 or IPv6 address and port
3731  *	last.#		hex l_fp timestamp of last receipt
3732  *	first.#		hex l_fp timestamp of first receipt
3733  *	ct.#		count of packets received
3734  *	mv.#		mode and version
3735  *	rs.#		restriction mask (RES_* bits)
3736  *
3737  * Note the code currently assumes there are no valid three letter
3738  * tags sent with each row, and needs to be adjusted if that changes.
3739  *
3740  * The client should accept the values in any order, and ignore .#
3741  * values which it does not understand, to allow a smooth path to
3742  * future changes without requiring a new opcode.  Clients can rely
3743  * on all *.0 values preceding any *.1 values, that is all values for
3744  * a given index number are together in the response.
3745  *
3746  * The end of the response list is noted with one or two tag=value
3747  * pairs.  Unconditionally:
3748  *
3749  *	now=		0x-prefixed l_fp timestamp at the server marking
3750  *			the end of the operation.
3751  *
3752  * If any entries were returned, now= is followed by:
3753  *
3754  *	last.newest=	hex l_fp identical to last.# of the prior
3755  *			entry.
3756  */
3757 static void read_mru_list(
3758 	struct recvbuf *rbufp,
3759 	int restrict_mask
3760 	)
3761 {
3762 	const char		nonce_text[] =		"nonce";
3763 	const char		frags_text[] =		"frags";
3764 	const char		limit_text[] =		"limit";
3765 	const char		mincount_text[] =	"mincount";
3766 	const char		resall_text[] =		"resall";
3767 	const char		resany_text[] =		"resany";
3768 	const char		maxlstint_text[] =	"maxlstint";
3769 	const char		laddr_text[] =		"laddr";
3770 	const char		resaxx_fmt[] =		"0x%hx";
3771 	u_int			limit;
3772 	u_short			frags;
3773 	u_short			resall;
3774 	u_short			resany;
3775 	int			mincount;
3776 	u_int			maxlstint;
3777 	sockaddr_u		laddr;
3778 	struct interface *	lcladr;
3779 	u_int			count;
3780 	u_int			ui;
3781 	u_int			uf;
3782 	l_fp			last[16];
3783 	sockaddr_u		addr[COUNTOF(last)];
3784 	char			buf[128];
3785 	struct ctl_var *	in_parms;
3786 	const struct ctl_var *	v;
3787 	char *			val;
3788 	const char *		pch;
3789 	char *			pnonce;
3790 	int			nonce_valid;
3791 	size_t			i;
3792 	int			priors;
3793 	u_short			hash;
3794 	mon_entry *		mon;
3795 	mon_entry *		prior_mon;
3796 	l_fp			now;
3797 
3798 	if (RES_NOMRULIST & restrict_mask) {
3799 		ctl_error(CERR_PERMISSION);
3800 		NLOG(NLOG_SYSINFO)
3801 			msyslog(LOG_NOTICE,
3802 				"mrulist from %s rejected due to nomrulist restriction",
3803 				stoa(&rbufp->recv_srcadr));
3804 		sys_restricted++;
3805 		return;
3806 	}
3807 	/*
3808 	 * fill in_parms var list with all possible input parameters.
3809 	 */
3810 	in_parms = NULL;
3811 	set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
3812 	set_var(&in_parms, frags_text, sizeof(frags_text), 0);
3813 	set_var(&in_parms, limit_text, sizeof(limit_text), 0);
3814 	set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
3815 	set_var(&in_parms, resall_text, sizeof(resall_text), 0);
3816 	set_var(&in_parms, resany_text, sizeof(resany_text), 0);
3817 	set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
3818 	set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
3819 	for (i = 0; i < COUNTOF(last); i++) {
3820 		snprintf(buf, sizeof(buf), last_fmt, (int)i);
3821 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
3822 		snprintf(buf, sizeof(buf), addr_fmt, (int)i);
3823 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
3824 	}
3825 
3826 	/* decode input parms */
3827 	pnonce = NULL;
3828 	frags = 0;
3829 	limit = 0;
3830 	mincount = 0;
3831 	resall = 0;
3832 	resany = 0;
3833 	maxlstint = 0;
3834 	lcladr = NULL;
3835 	priors = 0;
3836 	ZERO(last);
3837 	ZERO(addr);
3838 
3839 	while (NULL != (v = ctl_getitem(in_parms, &val)) &&
3840 	       !(EOV & v->flags)) {
3841 		int si;
3842 
3843 		if (!strcmp(nonce_text, v->text)) {
3844 			if (NULL != pnonce)
3845 				free(pnonce);
3846 			pnonce = estrdup(val);
3847 		} else if (!strcmp(frags_text, v->text)) {
3848 			sscanf(val, "%hu", &frags);
3849 		} else if (!strcmp(limit_text, v->text)) {
3850 			sscanf(val, "%u", &limit);
3851 		} else if (!strcmp(mincount_text, v->text)) {
3852 			if (1 != sscanf(val, "%d", &mincount) ||
3853 			    mincount < 0)
3854 				mincount = 0;
3855 		} else if (!strcmp(resall_text, v->text)) {
3856 			sscanf(val, resaxx_fmt, &resall);
3857 		} else if (!strcmp(resany_text, v->text)) {
3858 			sscanf(val, resaxx_fmt, &resany);
3859 		} else if (!strcmp(maxlstint_text, v->text)) {
3860 			sscanf(val, "%u", &maxlstint);
3861 		} else if (!strcmp(laddr_text, v->text)) {
3862 			if (decodenetnum(val, &laddr))
3863 				lcladr = getinterface(&laddr, 0);
3864 		} else if (1 == sscanf(v->text, last_fmt, &si) &&
3865 			   (size_t)si < COUNTOF(last)) {
3866 			if (2 == sscanf(val, "0x%08x.%08x", &ui, &uf)) {
3867 				last[si].l_ui = ui;
3868 				last[si].l_uf = uf;
3869 				if (!SOCK_UNSPEC(&addr[si]) &&
3870 				    si == priors)
3871 					priors++;
3872 			}
3873 		} else if (1 == sscanf(v->text, addr_fmt, &si) &&
3874 			   (size_t)si < COUNTOF(addr)) {
3875 			if (decodenetnum(val, &addr[si])
3876 			    && last[si].l_ui && last[si].l_uf &&
3877 			    si == priors)
3878 				priors++;
3879 		}
3880 	}
3881 	free_varlist(in_parms);
3882 	in_parms = NULL;
3883 
3884 	/* return no responses until the nonce is validated */
3885 	if (NULL == pnonce)
3886 		return;
3887 
3888 	nonce_valid = validate_nonce(pnonce, rbufp);
3889 	free(pnonce);
3890 	if (!nonce_valid)
3891 		return;
3892 
3893 	if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
3894 	    frags > MRU_FRAGS_LIMIT) {
3895 		ctl_error(CERR_BADVALUE);
3896 		return;
3897 	}
3898 
3899 	/*
3900 	 * If either frags or limit is not given, use the max.
3901 	 */
3902 	if (0 != frags && 0 == limit)
3903 		limit = UINT_MAX;
3904 	else if (0 != limit && 0 == frags)
3905 		frags = MRU_FRAGS_LIMIT;
3906 
3907 	/*
3908 	 * Find the starting point if one was provided.
3909 	 */
3910 	mon = NULL;
3911 	for (i = 0; i < (size_t)priors; i++) {
3912 		hash = MON_HASH(&addr[i]);
3913 		for (mon = mon_hash[hash];
3914 		     mon != NULL;
3915 		     mon = mon->hash_next)
3916 			if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
3917 				break;
3918 		if (mon != NULL) {
3919 			if (L_ISEQU(&mon->last, &last[i]))
3920 				break;
3921 			mon = NULL;
3922 		}
3923 	}
3924 
3925 	/* If a starting point was provided... */
3926 	if (priors) {
3927 		/* and none could be found unmodified... */
3928 		if (NULL == mon) {
3929 			/* tell ntpq to try again with older entries */
3930 			ctl_error(CERR_UNKNOWNVAR);
3931 			return;
3932 		}
3933 		/* confirm the prior entry used as starting point */
3934 		ctl_putts("last.older", &mon->last);
3935 		pch = sptoa(&mon->rmtadr);
3936 		ctl_putunqstr("addr.older", pch, strlen(pch));
3937 
3938 		/*
3939 		 * Move on to the first entry the client doesn't have,
3940 		 * except in the special case of a limit of one.  In
3941 		 * that case return the starting point entry.
3942 		 */
3943 		if (limit > 1)
3944 			mon = PREV_DLIST(mon_mru_list, mon, mru);
3945 	} else {	/* start with the oldest */
3946 		mon = TAIL_DLIST(mon_mru_list, mru);
3947 	}
3948 
3949 	/*
3950 	 * send up to limit= entries in up to frags= datagrams
3951 	 */
3952 	get_systime(&now);
3953 	generate_nonce(rbufp, buf, sizeof(buf));
3954 	ctl_putunqstr("nonce", buf, strlen(buf));
3955 	prior_mon = NULL;
3956 	for (count = 0;
3957 	     mon != NULL && res_frags < frags && count < limit;
3958 	     mon = PREV_DLIST(mon_mru_list, mon, mru)) {
3959 
3960 		if (mon->count < mincount)
3961 			continue;
3962 		if (resall && resall != (resall & mon->flags))
3963 			continue;
3964 		if (resany && !(resany & mon->flags))
3965 			continue;
3966 		if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
3967 		    maxlstint)
3968 			continue;
3969 		if (lcladr != NULL && mon->lcladr != lcladr)
3970 			continue;
3971 
3972 		send_mru_entry(mon, count);
3973 		if (!count)
3974 			send_random_tag_value(0);
3975 		count++;
3976 		prior_mon = mon;
3977 	}
3978 
3979 	/*
3980 	 * If this batch completes the MRU list, say so explicitly with
3981 	 * a now= l_fp timestamp.
3982 	 */
3983 	if (NULL == mon) {
3984 		if (count > 1)
3985 			send_random_tag_value(count - 1);
3986 		ctl_putts("now", &now);
3987 		/* if any entries were returned confirm the last */
3988 		if (prior_mon != NULL)
3989 			ctl_putts("last.newest", &prior_mon->last);
3990 	}
3991 	ctl_flushpkt(0);
3992 }
3993 
3994 
3995 /*
3996  * Send a ifstats entry in response to a "ntpq -c ifstats" request.
3997  *
3998  * To keep clients honest about not depending on the order of values,
3999  * and thereby avoid being locked into ugly workarounds to maintain
4000  * backward compatibility later as new fields are added to the response,
4001  * the order is random.
4002  */
4003 static void
4004 send_ifstats_entry(
4005 	endpt *	la,
4006 	u_int	ifnum
4007 	)
4008 {
4009 	const char addr_fmtu[] =	"addr.%u";
4010 	const char bcast_fmt[] =	"bcast.%u";
4011 	const char en_fmt[] =		"en.%u";	/* enabled */
4012 	const char name_fmt[] =		"name.%u";
4013 	const char flags_fmt[] =	"flags.%u";
4014 	const char tl_fmt[] =		"tl.%u";	/* ttl */
4015 	const char mc_fmt[] =		"mc.%u";	/* mcast count */
4016 	const char rx_fmt[] =		"rx.%u";
4017 	const char tx_fmt[] =		"tx.%u";
4018 	const char txerr_fmt[] =	"txerr.%u";
4019 	const char pc_fmt[] =		"pc.%u";	/* peer count */
4020 	const char up_fmt[] =		"up.%u";	/* uptime */
4021 	char	tag[32];
4022 	u_char	sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
4023 	int	noisebits;
4024 	u_int32 noise;
4025 	u_int	which;
4026 	u_int	remaining;
4027 	const char *pch;
4028 
4029 	remaining = COUNTOF(sent);
4030 	ZERO(sent);
4031 	noise = 0;
4032 	noisebits = 0;
4033 	while (remaining > 0) {
4034 		if (noisebits < 4) {
4035 			noise = rand() ^ (rand() << 16);
4036 			noisebits = 31;
4037 		}
4038 		which = (noise & 0xf) % COUNTOF(sent);
4039 		noise >>= 4;
4040 		noisebits -= 4;
4041 
4042 		while (sent[which])
4043 			which = (which + 1) % COUNTOF(sent);
4044 
4045 		switch (which) {
4046 
4047 		case 0:
4048 			snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
4049 			pch = sptoa(&la->sin);
4050 			ctl_putunqstr(tag, pch, strlen(pch));
4051 			break;
4052 
4053 		case 1:
4054 			snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
4055 			if (INT_BCASTOPEN & la->flags)
4056 				pch = sptoa(&la->bcast);
4057 			else
4058 				pch = "";
4059 			ctl_putunqstr(tag, pch, strlen(pch));
4060 			break;
4061 
4062 		case 2:
4063 			snprintf(tag, sizeof(tag), en_fmt, ifnum);
4064 			ctl_putint(tag, !la->ignore_packets);
4065 			break;
4066 
4067 		case 3:
4068 			snprintf(tag, sizeof(tag), name_fmt, ifnum);
4069 			ctl_putstr(tag, la->name, strlen(la->name));
4070 			break;
4071 
4072 		case 4:
4073 			snprintf(tag, sizeof(tag), flags_fmt, ifnum);
4074 			ctl_puthex(tag, (u_int)la->flags);
4075 			break;
4076 
4077 		case 5:
4078 			snprintf(tag, sizeof(tag), tl_fmt, ifnum);
4079 			ctl_putint(tag, la->last_ttl);
4080 			break;
4081 
4082 		case 6:
4083 			snprintf(tag, sizeof(tag), mc_fmt, ifnum);
4084 			ctl_putint(tag, la->num_mcast);
4085 			break;
4086 
4087 		case 7:
4088 			snprintf(tag, sizeof(tag), rx_fmt, ifnum);
4089 			ctl_putint(tag, la->received);
4090 			break;
4091 
4092 		case 8:
4093 			snprintf(tag, sizeof(tag), tx_fmt, ifnum);
4094 			ctl_putint(tag, la->sent);
4095 			break;
4096 
4097 		case 9:
4098 			snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
4099 			ctl_putint(tag, la->notsent);
4100 			break;
4101 
4102 		case 10:
4103 			snprintf(tag, sizeof(tag), pc_fmt, ifnum);
4104 			ctl_putuint(tag, la->peercnt);
4105 			break;
4106 
4107 		case 11:
4108 			snprintf(tag, sizeof(tag), up_fmt, ifnum);
4109 			ctl_putuint(tag, current_time - la->starttime);
4110 			break;
4111 		}
4112 		sent[which] = TRUE;
4113 		remaining--;
4114 	}
4115 	send_random_tag_value((int)ifnum);
4116 }
4117 
4118 
4119 /*
4120  * read_ifstats - send statistics for each local address, exposed by
4121  *		  ntpq -c ifstats
4122  */
4123 static void
4124 read_ifstats(
4125 	struct recvbuf *	rbufp
4126 	)
4127 {
4128 	u_int	ifidx;
4129 	endpt *	la;
4130 
4131 	/*
4132 	 * loop over [0..sys_ifnum] searching ep_list for each
4133 	 * ifnum in turn.
4134 	 */
4135 	for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4136 		for (la = ep_list; la != NULL; la = la->elink)
4137 			if (ifidx == la->ifnum)
4138 				break;
4139 		if (NULL == la)
4140 			continue;
4141 		/* return stats for one local address */
4142 		send_ifstats_entry(la, ifidx);
4143 	}
4144 	ctl_flushpkt(0);
4145 }
4146 
4147 static void
4148 sockaddrs_from_restrict_u(
4149 	sockaddr_u *	psaA,
4150 	sockaddr_u *	psaM,
4151 	restrict_u *	pres,
4152 	int		ipv6
4153 	)
4154 {
4155 	ZERO(*psaA);
4156 	ZERO(*psaM);
4157 	if (!ipv6) {
4158 		psaA->sa.sa_family = AF_INET;
4159 		psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
4160 		psaM->sa.sa_family = AF_INET;
4161 		psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
4162 	} else {
4163 		psaA->sa.sa_family = AF_INET6;
4164 		memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
4165 		       sizeof(psaA->sa6.sin6_addr));
4166 		psaM->sa.sa_family = AF_INET6;
4167 		memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
4168 		       sizeof(psaA->sa6.sin6_addr));
4169 	}
4170 }
4171 
4172 
4173 /*
4174  * Send a restrict entry in response to a "ntpq -c reslist" request.
4175  *
4176  * To keep clients honest about not depending on the order of values,
4177  * and thereby avoid being locked into ugly workarounds to maintain
4178  * backward compatibility later as new fields are added to the response,
4179  * the order is random.
4180  */
4181 static void
4182 send_restrict_entry(
4183 	restrict_u *	pres,
4184 	int		ipv6,
4185 	u_int		idx
4186 	)
4187 {
4188 	const char addr_fmtu[] =	"addr.%u";
4189 	const char mask_fmtu[] =	"mask.%u";
4190 	const char hits_fmt[] =		"hits.%u";
4191 	const char flags_fmt[] =	"flags.%u";
4192 	char		tag[32];
4193 	u_char		sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4194 	int		noisebits;
4195 	u_int32		noise;
4196 	u_int		which;
4197 	u_int		remaining;
4198 	sockaddr_u	addr;
4199 	sockaddr_u	mask;
4200 	const char *	pch;
4201 	char *		buf;
4202 	const char *	match_str;
4203 	const char *	access_str;
4204 
4205 	sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
4206 	remaining = COUNTOF(sent);
4207 	ZERO(sent);
4208 	noise = 0;
4209 	noisebits = 0;
4210 	while (remaining > 0) {
4211 		if (noisebits < 2) {
4212 			noise = rand() ^ (rand() << 16);
4213 			noisebits = 31;
4214 		}
4215 		which = (noise & 0x3) % COUNTOF(sent);
4216 		noise >>= 2;
4217 		noisebits -= 2;
4218 
4219 		while (sent[which])
4220 			which = (which + 1) % COUNTOF(sent);
4221 
4222 		switch (which) {
4223 
4224 		case 0:
4225 			snprintf(tag, sizeof(tag), addr_fmtu, idx);
4226 			pch = stoa(&addr);
4227 			ctl_putunqstr(tag, pch, strlen(pch));
4228 			break;
4229 
4230 		case 1:
4231 			snprintf(tag, sizeof(tag), mask_fmtu, idx);
4232 			pch = stoa(&mask);
4233 			ctl_putunqstr(tag, pch, strlen(pch));
4234 			break;
4235 
4236 		case 2:
4237 			snprintf(tag, sizeof(tag), hits_fmt, idx);
4238 			ctl_putuint(tag, pres->count);
4239 			break;
4240 
4241 		case 3:
4242 			snprintf(tag, sizeof(tag), flags_fmt, idx);
4243 			match_str = res_match_flags(pres->mflags);
4244 			access_str = res_access_flags(pres->flags);
4245 			if ('\0' == match_str[0]) {
4246 				pch = access_str;
4247 			} else {
4248 				LIB_GETBUF(buf);
4249 				snprintf(buf, LIB_BUFLENGTH, "%s %s",
4250 					 match_str, access_str);
4251 				pch = buf;
4252 			}
4253 			ctl_putunqstr(tag, pch, strlen(pch));
4254 			break;
4255 		}
4256 		sent[which] = TRUE;
4257 		remaining--;
4258 	}
4259 	send_random_tag_value((int)idx);
4260 }
4261 
4262 
4263 static void
4264 send_restrict_list(
4265 	restrict_u *	pres,
4266 	int		ipv6,
4267 	u_int *		pidx
4268 	)
4269 {
4270 	for ( ; pres != NULL; pres = pres->link) {
4271 		send_restrict_entry(pres, ipv6, *pidx);
4272 		(*pidx)++;
4273 	}
4274 }
4275 
4276 
4277 /*
4278  * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4279  */
4280 static void
4281 read_addr_restrictions(
4282 	struct recvbuf *	rbufp
4283 )
4284 {
4285 	u_int idx;
4286 
4287 	idx = 0;
4288 	send_restrict_list(restrictlist4, FALSE, &idx);
4289 	send_restrict_list(restrictlist6, TRUE, &idx);
4290 	ctl_flushpkt(0);
4291 }
4292 
4293 
4294 /*
4295  * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4296  */
4297 static void
4298 read_ordlist(
4299 	struct recvbuf *	rbufp,
4300 	int			restrict_mask
4301 	)
4302 {
4303 	const char ifstats_s[] = "ifstats";
4304 	const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4305 	const char addr_rst_s[] = "addr_restrictions";
4306 	const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4307 	struct ntp_control *	cpkt;
4308 	u_short			qdata_octets;
4309 
4310 	/*
4311 	 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4312 	 * used only for ntpq -c ifstats.  With the addition of reslist
4313 	 * the same opcode was generalized to retrieve ordered lists
4314 	 * which require authentication.  The request data is empty or
4315 	 * contains "ifstats" (not null terminated) to retrieve local
4316 	 * addresses and associated stats.  It is "addr_restrictions"
4317 	 * to retrieve the IPv4 then IPv6 remote address restrictions,
4318 	 * which are access control lists.  Other request data return
4319 	 * CERR_UNKNOWNVAR.
4320 	 */
4321 	cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4322 	qdata_octets = ntohs(cpkt->count);
4323 	if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4324 	    !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4325 		read_ifstats(rbufp);
4326 		return;
4327 	}
4328 	if (a_r_chars == qdata_octets &&
4329 	    !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4330 		read_addr_restrictions(rbufp);
4331 		return;
4332 	}
4333 	ctl_error(CERR_UNKNOWNVAR);
4334 }
4335 
4336 
4337 /*
4338  * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4339  */
4340 static void req_nonce(
4341 	struct recvbuf *	rbufp,
4342 	int			restrict_mask
4343 	)
4344 {
4345 	char	buf[64];
4346 
4347 	generate_nonce(rbufp, buf, sizeof(buf));
4348 	ctl_putunqstr("nonce", buf, strlen(buf));
4349 	ctl_flushpkt(0);
4350 }
4351 
4352 
4353 /*
4354  * read_clockstatus - return clock radio status
4355  */
4356 /*ARGSUSED*/
4357 static void
4358 read_clockstatus(
4359 	struct recvbuf *rbufp,
4360 	int restrict_mask
4361 	)
4362 {
4363 #ifndef REFCLOCK
4364 	/*
4365 	 * If no refclock support, no data to return
4366 	 */
4367 	ctl_error(CERR_BADASSOC);
4368 #else
4369 	const struct ctl_var *	v;
4370 	int			i;
4371 	struct peer *		peer;
4372 	char *			valuep;
4373 	u_char *		wants;
4374 	size_t			wants_alloc;
4375 	int			gotvar;
4376 	const u_char *		cc;
4377 	struct ctl_var *	kv;
4378 	struct refclockstat	cs;
4379 
4380 	if (res_associd != 0) {
4381 		peer = findpeerbyassoc(res_associd);
4382 	} else {
4383 		/*
4384 		 * Find a clock for this jerk.	If the system peer
4385 		 * is a clock use it, else search peer_list for one.
4386 		 */
4387 		if (sys_peer != NULL && (FLAG_REFCLOCK &
4388 		    sys_peer->flags))
4389 			peer = sys_peer;
4390 		else
4391 			for (peer = peer_list;
4392 			     peer != NULL;
4393 			     peer = peer->p_link)
4394 				if (FLAG_REFCLOCK & peer->flags)
4395 					break;
4396 	}
4397 	if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4398 		ctl_error(CERR_BADASSOC);
4399 		return;
4400 	}
4401 	/*
4402 	 * If we got here we have a peer which is a clock. Get his
4403 	 * status.
4404 	 */
4405 	cs.kv_list = NULL;
4406 	refclock_control(&peer->srcadr, NULL, &cs);
4407 	kv = cs.kv_list;
4408 	/*
4409 	 * Look for variables in the packet.
4410 	 */
4411 	rpkt.status = htons(ctlclkstatus(&cs));
4412 	wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4413 	wants = emalloc_zero(wants_alloc);
4414 	gotvar = FALSE;
4415 	while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4416 		if (!(EOV & v->flags)) {
4417 			wants[v->code] = TRUE;
4418 			gotvar = TRUE;
4419 		} else {
4420 			v = ctl_getitem(kv, &valuep);
4421 			INSIST(NULL != v);
4422 			if (EOV & v->flags) {
4423 				ctl_error(CERR_UNKNOWNVAR);
4424 				free(wants);
4425 				free_varlist(cs.kv_list);
4426 				return;
4427 			}
4428 			wants[CC_MAXCODE + 1 + v->code] = TRUE;
4429 			gotvar = TRUE;
4430 		}
4431 	}
4432 
4433 	if (gotvar) {
4434 		for (i = 1; i <= CC_MAXCODE; i++)
4435 			if (wants[i])
4436 				ctl_putclock(i, &cs, TRUE);
4437 		if (kv != NULL)
4438 			for (i = 0; !(EOV & kv[i].flags); i++)
4439 				if (wants[i + CC_MAXCODE + 1])
4440 					ctl_putdata(kv[i].text,
4441 						    strlen(kv[i].text),
4442 						    FALSE);
4443 	} else {
4444 		for (cc = def_clock_var; *cc != 0; cc++)
4445 			ctl_putclock((int)*cc, &cs, FALSE);
4446 		for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4447 			if (DEF & kv->flags)
4448 				ctl_putdata(kv->text, strlen(kv->text),
4449 					    FALSE);
4450 	}
4451 
4452 	free(wants);
4453 	free_varlist(cs.kv_list);
4454 
4455 	ctl_flushpkt(0);
4456 #endif
4457 }
4458 
4459 
4460 /*
4461  * write_clockstatus - we don't do this
4462  */
4463 /*ARGSUSED*/
4464 static void
4465 write_clockstatus(
4466 	struct recvbuf *rbufp,
4467 	int restrict_mask
4468 	)
4469 {
4470 	ctl_error(CERR_PERMISSION);
4471 }
4472 
4473 /*
4474  * Trap support from here on down. We send async trap messages when the
4475  * upper levels report trouble. Traps can by set either by control
4476  * messages or by configuration.
4477  */
4478 /*
4479  * set_trap - set a trap in response to a control message
4480  */
4481 static void
4482 set_trap(
4483 	struct recvbuf *rbufp,
4484 	int restrict_mask
4485 	)
4486 {
4487 	int traptype;
4488 
4489 	/*
4490 	 * See if this guy is allowed
4491 	 */
4492 	if (restrict_mask & RES_NOTRAP) {
4493 		ctl_error(CERR_PERMISSION);
4494 		return;
4495 	}
4496 
4497 	/*
4498 	 * Determine his allowed trap type.
4499 	 */
4500 	traptype = TRAP_TYPE_PRIO;
4501 	if (restrict_mask & RES_LPTRAP)
4502 		traptype = TRAP_TYPE_NONPRIO;
4503 
4504 	/*
4505 	 * Call ctlsettrap() to do the work.  Return
4506 	 * an error if it can't assign the trap.
4507 	 */
4508 	if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4509 			(int)res_version))
4510 		ctl_error(CERR_NORESOURCE);
4511 	ctl_flushpkt(0);
4512 }
4513 
4514 
4515 /*
4516  * unset_trap - unset a trap in response to a control message
4517  */
4518 static void
4519 unset_trap(
4520 	struct recvbuf *rbufp,
4521 	int restrict_mask
4522 	)
4523 {
4524 	int traptype;
4525 
4526 	/*
4527 	 * We don't prevent anyone from removing his own trap unless the
4528 	 * trap is configured. Note we also must be aware of the
4529 	 * possibility that restriction flags were changed since this
4530 	 * guy last set his trap. Set the trap type based on this.
4531 	 */
4532 	traptype = TRAP_TYPE_PRIO;
4533 	if (restrict_mask & RES_LPTRAP)
4534 		traptype = TRAP_TYPE_NONPRIO;
4535 
4536 	/*
4537 	 * Call ctlclrtrap() to clear this out.
4538 	 */
4539 	if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4540 		ctl_error(CERR_BADASSOC);
4541 	ctl_flushpkt(0);
4542 }
4543 
4544 
4545 /*
4546  * ctlsettrap - called to set a trap
4547  */
4548 int
4549 ctlsettrap(
4550 	sockaddr_u *raddr,
4551 	struct interface *linter,
4552 	int traptype,
4553 	int version
4554 	)
4555 {
4556 	size_t n;
4557 	struct ctl_trap *tp;
4558 	struct ctl_trap *tptouse;
4559 
4560 	/*
4561 	 * See if we can find this trap.  If so, we only need update
4562 	 * the flags and the time.
4563 	 */
4564 	if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4565 		switch (traptype) {
4566 
4567 		case TRAP_TYPE_CONFIG:
4568 			tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4569 			break;
4570 
4571 		case TRAP_TYPE_PRIO:
4572 			if (tp->tr_flags & TRAP_CONFIGURED)
4573 				return (1); /* don't change anything */
4574 			tp->tr_flags = TRAP_INUSE;
4575 			break;
4576 
4577 		case TRAP_TYPE_NONPRIO:
4578 			if (tp->tr_flags & TRAP_CONFIGURED)
4579 				return (1); /* don't change anything */
4580 			tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4581 			break;
4582 		}
4583 		tp->tr_settime = current_time;
4584 		tp->tr_resets++;
4585 		return (1);
4586 	}
4587 
4588 	/*
4589 	 * First we heard of this guy.	Try to find a trap structure
4590 	 * for him to use, clearing out lesser priority guys if we
4591 	 * have to. Clear out anyone who's expired while we're at it.
4592 	 */
4593 	tptouse = NULL;
4594 	for (n = 0; n < COUNTOF(ctl_traps); n++) {
4595 		tp = &ctl_traps[n];
4596 		if ((TRAP_INUSE & tp->tr_flags) &&
4597 		    !(TRAP_CONFIGURED & tp->tr_flags) &&
4598 		    ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4599 			tp->tr_flags = 0;
4600 			num_ctl_traps--;
4601 		}
4602 		if (!(TRAP_INUSE & tp->tr_flags)) {
4603 			tptouse = tp;
4604 		} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4605 			switch (traptype) {
4606 
4607 			case TRAP_TYPE_CONFIG:
4608 				if (tptouse == NULL) {
4609 					tptouse = tp;
4610 					break;
4611 				}
4612 				if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4613 				    !(TRAP_NONPRIO & tp->tr_flags))
4614 					break;
4615 
4616 				if (!(TRAP_NONPRIO & tptouse->tr_flags)
4617 				    && (TRAP_NONPRIO & tp->tr_flags)) {
4618 					tptouse = tp;
4619 					break;
4620 				}
4621 				if (tptouse->tr_origtime <
4622 				    tp->tr_origtime)
4623 					tptouse = tp;
4624 				break;
4625 
4626 			case TRAP_TYPE_PRIO:
4627 				if ( TRAP_NONPRIO & tp->tr_flags) {
4628 					if (tptouse == NULL ||
4629 					    ((TRAP_INUSE &
4630 					      tptouse->tr_flags) &&
4631 					     tptouse->tr_origtime <
4632 					     tp->tr_origtime))
4633 						tptouse = tp;
4634 				}
4635 				break;
4636 
4637 			case TRAP_TYPE_NONPRIO:
4638 				break;
4639 			}
4640 		}
4641 	}
4642 
4643 	/*
4644 	 * If we don't have room for him return an error.
4645 	 */
4646 	if (tptouse == NULL)
4647 		return (0);
4648 
4649 	/*
4650 	 * Set up this structure for him.
4651 	 */
4652 	tptouse->tr_settime = tptouse->tr_origtime = current_time;
4653 	tptouse->tr_count = tptouse->tr_resets = 0;
4654 	tptouse->tr_sequence = 1;
4655 	tptouse->tr_addr = *raddr;
4656 	tptouse->tr_localaddr = linter;
4657 	tptouse->tr_version = (u_char) version;
4658 	tptouse->tr_flags = TRAP_INUSE;
4659 	if (traptype == TRAP_TYPE_CONFIG)
4660 		tptouse->tr_flags |= TRAP_CONFIGURED;
4661 	else if (traptype == TRAP_TYPE_NONPRIO)
4662 		tptouse->tr_flags |= TRAP_NONPRIO;
4663 	num_ctl_traps++;
4664 	return (1);
4665 }
4666 
4667 
4668 /*
4669  * ctlclrtrap - called to clear a trap
4670  */
4671 int
4672 ctlclrtrap(
4673 	sockaddr_u *raddr,
4674 	struct interface *linter,
4675 	int traptype
4676 	)
4677 {
4678 	register struct ctl_trap *tp;
4679 
4680 	if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4681 		return (0);
4682 
4683 	if (tp->tr_flags & TRAP_CONFIGURED
4684 	    && traptype != TRAP_TYPE_CONFIG)
4685 		return (0);
4686 
4687 	tp->tr_flags = 0;
4688 	num_ctl_traps--;
4689 	return (1);
4690 }
4691 
4692 
4693 /*
4694  * ctlfindtrap - find a trap given the remote and local addresses
4695  */
4696 static struct ctl_trap *
4697 ctlfindtrap(
4698 	sockaddr_u *raddr,
4699 	struct interface *linter
4700 	)
4701 {
4702 	size_t	n;
4703 
4704 	for (n = 0; n < COUNTOF(ctl_traps); n++)
4705 		if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4706 		    && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4707 		    && (linter == ctl_traps[n].tr_localaddr))
4708 			return &ctl_traps[n];
4709 
4710 	return NULL;
4711 }
4712 
4713 
4714 /*
4715  * report_event - report an event to the trappers
4716  */
4717 void
4718 report_event(
4719 	int	err,		/* error code */
4720 	struct peer *peer,	/* peer structure pointer */
4721 	const char *str		/* protostats string */
4722 	)
4723 {
4724 	char	statstr[NTP_MAXSTRLEN];
4725 	int	i;
4726 	size_t	len;
4727 
4728 	/*
4729 	 * Report the error to the protostats file, system log and
4730 	 * trappers.
4731 	 */
4732 	if (peer == NULL) {
4733 
4734 		/*
4735 		 * Discard a system report if the number of reports of
4736 		 * the same type exceeds the maximum.
4737 		 */
4738 		if (ctl_sys_last_event != (u_char)err)
4739 			ctl_sys_num_events= 0;
4740 		if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
4741 			return;
4742 
4743 		ctl_sys_last_event = (u_char)err;
4744 		ctl_sys_num_events++;
4745 		snprintf(statstr, sizeof(statstr),
4746 		    "0.0.0.0 %04x %02x %s",
4747 		    ctlsysstatus(), err, eventstr(err));
4748 		if (str != NULL) {
4749 			len = strlen(statstr);
4750 			snprintf(statstr + len, sizeof(statstr) - len,
4751 			    " %s", str);
4752 		}
4753 		NLOG(NLOG_SYSEVENT)
4754 			msyslog(LOG_INFO, "%s", statstr);
4755 	} else {
4756 
4757 		/*
4758 		 * Discard a peer report if the number of reports of
4759 		 * the same type exceeds the maximum for that peer.
4760 		 */
4761 		const char *	src;
4762 		u_char		errlast;
4763 
4764 		errlast = (u_char)err & ~PEER_EVENT;
4765 		if (peer->last_event == errlast)
4766 			peer->num_events = 0;
4767 		if (peer->num_events >= CTL_PEER_MAXEVENTS)
4768 			return;
4769 
4770 		peer->last_event = errlast;
4771 		peer->num_events++;
4772 		if (ISREFCLOCKADR(&peer->srcadr))
4773 			src = refnumtoa(&peer->srcadr);
4774 		else
4775 			src = stoa(&peer->srcadr);
4776 
4777 		snprintf(statstr, sizeof(statstr),
4778 		    "%s %04x %02x %s", src,
4779 		    ctlpeerstatus(peer), err, eventstr(err));
4780 		if (str != NULL) {
4781 			len = strlen(statstr);
4782 			snprintf(statstr + len, sizeof(statstr) - len,
4783 			    " %s", str);
4784 		}
4785 		NLOG(NLOG_PEEREVENT)
4786 			msyslog(LOG_INFO, "%s", statstr);
4787 	}
4788 	record_proto_stats(statstr);
4789 #if DEBUG
4790 	if (debug)
4791 		printf("event at %lu %s\n", current_time, statstr);
4792 #endif
4793 
4794 	/*
4795 	 * If no trappers, return.
4796 	 */
4797 	if (num_ctl_traps <= 0)
4798 		return;
4799 
4800 	/*
4801 	 * Set up the outgoing packet variables
4802 	 */
4803 	res_opcode = CTL_OP_ASYNCMSG;
4804 	res_offset = 0;
4805 	res_async = TRUE;
4806 	res_authenticate = FALSE;
4807 	datapt = rpkt.u.data;
4808 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
4809 	if (!(err & PEER_EVENT)) {
4810 		rpkt.associd = 0;
4811 		rpkt.status = htons(ctlsysstatus());
4812 
4813 		/* Include the core system variables and the list. */
4814 		for (i = 1; i <= CS_VARLIST; i++)
4815 			ctl_putsys(i);
4816 	} else {
4817 		INSIST(peer != NULL);
4818 		rpkt.associd = htons(peer->associd);
4819 		rpkt.status = htons(ctlpeerstatus(peer));
4820 
4821 		/* Dump it all. Later, maybe less. */
4822 		for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
4823 			ctl_putpeer(i, peer);
4824 #ifdef REFCLOCK
4825 		/*
4826 		 * for clock exception events: add clock variables to
4827 		 * reflect info on exception
4828 		 */
4829 		if (err == PEVNT_CLOCK) {
4830 			struct refclockstat cs;
4831 			struct ctl_var *kv;
4832 
4833 			cs.kv_list = NULL;
4834 			refclock_control(&peer->srcadr, NULL, &cs);
4835 
4836 			ctl_puthex("refclockstatus",
4837 				   ctlclkstatus(&cs));
4838 
4839 			for (i = 1; i <= CC_MAXCODE; i++)
4840 				ctl_putclock(i, &cs, FALSE);
4841 			for (kv = cs.kv_list;
4842 			     kv != NULL && !(EOV & kv->flags);
4843 			     kv++)
4844 				if (DEF & kv->flags)
4845 					ctl_putdata(kv->text,
4846 						    strlen(kv->text),
4847 						    FALSE);
4848 			free_varlist(cs.kv_list);
4849 		}
4850 #endif /* REFCLOCK */
4851 	}
4852 
4853 	/*
4854 	 * We're done, return.
4855 	 */
4856 	ctl_flushpkt(0);
4857 }
4858 
4859 
4860 /*
4861  * mprintf_event - printf-style varargs variant of report_event()
4862  */
4863 int
4864 mprintf_event(
4865 	int		evcode,		/* event code */
4866 	struct peer *	p,		/* may be NULL */
4867 	const char *	fmt,		/* msnprintf format */
4868 	...
4869 	)
4870 {
4871 	va_list	ap;
4872 	int	rc;
4873 	char	msg[512];
4874 
4875 	va_start(ap, fmt);
4876 	rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
4877 	va_end(ap);
4878 	report_event(evcode, p, msg);
4879 
4880 	return rc;
4881 }
4882 
4883 
4884 /*
4885  * ctl_clr_stats - clear stat counters
4886  */
4887 void
4888 ctl_clr_stats(void)
4889 {
4890 	ctltimereset = current_time;
4891 	numctlreq = 0;
4892 	numctlbadpkts = 0;
4893 	numctlresponses = 0;
4894 	numctlfrags = 0;
4895 	numctlerrors = 0;
4896 	numctlfrags = 0;
4897 	numctltooshort = 0;
4898 	numctlinputresp = 0;
4899 	numctlinputfrag = 0;
4900 	numctlinputerr = 0;
4901 	numctlbadoffset = 0;
4902 	numctlbadversion = 0;
4903 	numctldatatooshort = 0;
4904 	numctlbadop = 0;
4905 	numasyncmsgs = 0;
4906 }
4907 
4908 static u_short
4909 count_var(
4910 	const struct ctl_var *k
4911 	)
4912 {
4913 	u_int c;
4914 
4915 	if (NULL == k)
4916 		return 0;
4917 
4918 	c = 0;
4919 	while (!(EOV & (k++)->flags))
4920 		c++;
4921 
4922 	ENSURE(c <= USHRT_MAX);
4923 	return (u_short)c;
4924 }
4925 
4926 
4927 char *
4928 add_var(
4929 	struct ctl_var **kv,
4930 	u_long size,
4931 	u_short def
4932 	)
4933 {
4934 	u_short		c;
4935 	struct ctl_var *k;
4936 	char *		buf;
4937 
4938 	c = count_var(*kv);
4939 	*kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
4940 	k = *kv;
4941 	buf = emalloc(size);
4942 	k[c].code  = c;
4943 	k[c].text  = buf;
4944 	k[c].flags = def;
4945 	k[c + 1].code  = 0;
4946 	k[c + 1].text  = NULL;
4947 	k[c + 1].flags = EOV;
4948 
4949 	return buf;
4950 }
4951 
4952 
4953 void
4954 set_var(
4955 	struct ctl_var **kv,
4956 	const char *data,
4957 	u_long size,
4958 	u_short def
4959 	)
4960 {
4961 	struct ctl_var *k;
4962 	const char *s;
4963 	const char *t;
4964 	char *td;
4965 
4966 	if (NULL == data || !size)
4967 		return;
4968 
4969 	k = *kv;
4970 	if (k != NULL) {
4971 		while (!(EOV & k->flags)) {
4972 			if (NULL == k->text)	{
4973 				td = emalloc(size);
4974 				memcpy(td, data, size);
4975 				k->text = td;
4976 				k->flags = def;
4977 				return;
4978 			} else {
4979 				s = data;
4980 				t = k->text;
4981 				while (*t != '=' && *s == *t) {
4982 					s++;
4983 					t++;
4984 				}
4985 				if (*s == *t && ((*t == '=') || !*t)) {
4986 					td = erealloc((void *)(intptr_t)k->text, size);
4987 					memcpy(td, data, size);
4988 					k->text = td;
4989 					k->flags = def;
4990 					return;
4991 				}
4992 			}
4993 			k++;
4994 		}
4995 	}
4996 	td = add_var(kv, size, def);
4997 	memcpy(td, data, size);
4998 }
4999 
5000 
5001 void
5002 set_sys_var(
5003 	const char *data,
5004 	u_long size,
5005 	u_short def
5006 	)
5007 {
5008 	set_var(&ext_sys_var, data, size, def);
5009 }
5010 
5011 
5012 /*
5013  * get_ext_sys_var() retrieves the value of a user-defined variable or
5014  * NULL if the variable has not been setvar'd.
5015  */
5016 const char *
5017 get_ext_sys_var(const char *tag)
5018 {
5019 	struct ctl_var *	v;
5020 	size_t			c;
5021 	const char *		val;
5022 
5023 	val = NULL;
5024 	c = strlen(tag);
5025 	for (v = ext_sys_var; !(EOV & v->flags); v++) {
5026 		if (NULL != v->text && !memcmp(tag, v->text, c)) {
5027 			if ('=' == v->text[c]) {
5028 				val = v->text + c + 1;
5029 				break;
5030 			} else if ('\0' == v->text[c]) {
5031 				val = "";
5032 				break;
5033 			}
5034 		}
5035 	}
5036 
5037 	return val;
5038 }
5039 
5040 
5041 void
5042 free_varlist(
5043 	struct ctl_var *kv
5044 	)
5045 {
5046 	struct ctl_var *k;
5047 	if (kv) {
5048 		for (k = kv; !(k->flags & EOV); k++)
5049 			free((void *)(intptr_t)k->text);
5050 		free((void *)kv);
5051 	}
5052 }
5053