xref: /freebsd/contrib/ntp/ntpd/ntp_control.c (revision d275d2e3d375ae3c60fde1d7b1fc2f4b1c3fb4ef)
1 /*
2  * ntp_control.c - respond to mode 6 control messages and send async
3  *		   traps.  Provides service to ntpq and others.
4  */
5 
6 #ifdef HAVE_CONFIG_H
7 # include <config.h>
8 #endif
9 
10 #include <stdio.h>
11 #include <ctype.h>
12 #include <signal.h>
13 #include <sys/stat.h>
14 #ifdef HAVE_NETINET_IN_H
15 # include <netinet/in.h>
16 #endif
17 #include <arpa/inet.h>
18 
19 #include "ntpd.h"
20 #include "ntp_io.h"
21 #include "ntp_refclock.h"
22 #include "ntp_control.h"
23 #include "ntp_unixtime.h"
24 #include "ntp_stdlib.h"
25 #include "ntp_config.h"
26 #include "ntp_crypto.h"
27 #include "ntp_assert.h"
28 #include "ntp_leapsec.h"
29 #include "ntp_md5.h"	/* provides OpenSSL digest API */
30 #include "lib_strbuf.h"
31 #include "timexsup.h"
32 
33 #include <rc_cmdlength.h>
34 #ifdef KERNEL_PLL
35 # include "ntp_syscall.h"
36 #endif
37 
38 /*
39  * Structure to hold request procedure information
40  */
41 
42 struct ctl_proc {
43 	short control_code;		/* defined request code */
44 #define NO_REQUEST	(-1)
45 	u_short flags;			/* flags word */
46 	/* Only one flag.  Authentication required or not. */
47 #define NOAUTH	0
48 #define AUTH	1
49 	void (*handler) (struct recvbuf *, int); /* handle request */
50 };
51 
52 
53 /*
54  * Request processing routines
55  */
56 static	void	ctl_error	(u_char);
57 #ifdef REFCLOCK
58 static	u_short ctlclkstatus	(struct refclockstat *);
59 #endif
60 static	void	ctl_flushpkt	(u_char);
61 static	void	ctl_putdata	(const char *, unsigned int, int);
62 static	void	ctl_putstr	(const char *, const char *, size_t);
63 static	void	ctl_putdblf	(const char *, int, int, double);
64 #define	ctl_putdbl(tag, d)	ctl_putdblf(tag, 1, 3, d)
65 #define	ctl_putdbl6(tag, d)	ctl_putdblf(tag, 1, 6, d)
66 #define	ctl_putsfp(tag, sfp)	ctl_putdblf(tag, 0, -1, \
67 					    FPTOD(sfp))
68 static	void	ctl_putuint	(const char *, u_long);
69 static	void	ctl_puthex	(const char *, u_long);
70 static	void	ctl_putint	(const char *, long);
71 static	void	ctl_putts	(const char *, l_fp *);
72 static	void	ctl_putadr	(const char *, u_int32,
73 				 sockaddr_u *);
74 static	void	ctl_putrefid	(const char *, u_int32);
75 static	void	ctl_putarray	(const char *, double *, int);
76 static	void	ctl_putsys	(int);
77 static	void	ctl_putpeer	(int, struct peer *);
78 static	void	ctl_putfs	(const char *, tstamp_t);
79 static	void	ctl_printf	(const char *, ...) NTP_PRINTF(1, 2);
80 #ifdef REFCLOCK
81 static	void	ctl_putclock	(int, struct refclockstat *, int);
82 #endif	/* REFCLOCK */
83 static	const struct ctl_var *ctl_getitem(const struct ctl_var *,
84 					  char **);
85 static	u_short	count_var	(const struct ctl_var *);
86 static	void	control_unspec	(struct recvbuf *, int);
87 static	void	read_status	(struct recvbuf *, int);
88 static	void	read_sysvars	(void);
89 static	void	read_peervars	(void);
90 static	void	read_variables	(struct recvbuf *, int);
91 static	void	write_variables (struct recvbuf *, int);
92 static	void	read_clockstatus(struct recvbuf *, int);
93 static	void	write_clockstatus(struct recvbuf *, int);
94 static	void	set_trap	(struct recvbuf *, int);
95 static	void	save_config	(struct recvbuf *, int);
96 static	void	configure	(struct recvbuf *, int);
97 static	void	send_mru_entry	(mon_entry *, int);
98 static	void	send_random_tag_value(int);
99 static	void	read_mru_list	(struct recvbuf *, int);
100 static	void	send_ifstats_entry(endpt *, u_int);
101 static	void	read_ifstats	(struct recvbuf *);
102 static	void	sockaddrs_from_restrict_u(sockaddr_u *,	sockaddr_u *,
103 					  restrict_u *, int);
104 static	void	send_restrict_entry(restrict_u *, int, u_int);
105 static	void	send_restrict_list(restrict_u *, int, u_int *);
106 static	void	read_addr_restrictions(struct recvbuf *);
107 static	void	read_ordlist	(struct recvbuf *, int);
108 static	u_int32	derive_nonce	(sockaddr_u *, u_int32, u_int32);
109 static	void	generate_nonce	(struct recvbuf *, char *, size_t);
110 static	int	validate_nonce	(const char *, struct recvbuf *);
111 static	void	req_nonce	(struct recvbuf *, int);
112 static	void	unset_trap	(struct recvbuf *, int);
113 static	struct ctl_trap *ctlfindtrap(sockaddr_u *,
114 				     struct interface *);
115 
116 int/*BOOL*/ is_safe_filename(const char * name);
117 
118 static const struct ctl_proc control_codes[] = {
119 	{ CTL_OP_UNSPEC,		NOAUTH,	control_unspec },
120 	{ CTL_OP_READSTAT,		NOAUTH,	read_status },
121 	{ CTL_OP_READVAR,		NOAUTH,	read_variables },
122 	{ CTL_OP_WRITEVAR,		AUTH,	write_variables },
123 	{ CTL_OP_READCLOCK,		NOAUTH,	read_clockstatus },
124 	{ CTL_OP_WRITECLOCK,		AUTH,	write_clockstatus },
125 	{ CTL_OP_SETTRAP,		AUTH,	set_trap },
126 	{ CTL_OP_CONFIGURE,		AUTH,	configure },
127 	{ CTL_OP_SAVECONFIG,		AUTH,	save_config },
128 	{ CTL_OP_READ_MRU,		NOAUTH,	read_mru_list },
129 	{ CTL_OP_READ_ORDLIST_A,	AUTH,	read_ordlist },
130 	{ CTL_OP_REQ_NONCE,		NOAUTH,	req_nonce },
131 	{ CTL_OP_UNSETTRAP,		AUTH,	unset_trap },
132 	{ NO_REQUEST,			0,	NULL }
133 };
134 
135 /*
136  * System variables we understand
137  */
138 #define	CS_LEAP			1
139 #define	CS_STRATUM		2
140 #define	CS_PRECISION		3
141 #define	CS_ROOTDELAY		4
142 #define	CS_ROOTDISPERSION	5
143 #define	CS_REFID		6
144 #define	CS_REFTIME		7
145 #define	CS_POLL			8
146 #define	CS_PEERID		9
147 #define	CS_OFFSET		10
148 #define	CS_DRIFT		11
149 #define	CS_JITTER		12
150 #define	CS_ERROR		13
151 #define	CS_CLOCK		14
152 #define	CS_PROCESSOR		15
153 #define	CS_SYSTEM		16
154 #define	CS_VERSION		17
155 #define	CS_STABIL		18
156 #define	CS_VARLIST		19
157 #define	CS_TAI			20
158 #define	CS_LEAPTAB		21
159 #define	CS_LEAPEND		22
160 #define	CS_RATE			23
161 #define	CS_MRU_ENABLED		24
162 #define	CS_MRU_DEPTH		25
163 #define	CS_MRU_DEEPEST		26
164 #define	CS_MRU_MINDEPTH		27
165 #define	CS_MRU_MAXAGE		28
166 #define	CS_MRU_MAXDEPTH		29
167 #define	CS_MRU_MEM		30
168 #define	CS_MRU_MAXMEM		31
169 #define	CS_SS_UPTIME		32
170 #define	CS_SS_RESET		33
171 #define	CS_SS_RECEIVED		34
172 #define	CS_SS_THISVER		35
173 #define	CS_SS_OLDVER		36
174 #define	CS_SS_BADFORMAT		37
175 #define	CS_SS_BADAUTH		38
176 #define	CS_SS_DECLINED		39
177 #define	CS_SS_RESTRICTED	40
178 #define	CS_SS_LIMITED		41
179 #define	CS_SS_KODSENT		42
180 #define	CS_SS_PROCESSED		43
181 #define	CS_SS_LAMPORT		44
182 #define	CS_SS_TSROUNDING	45
183 #define	CS_PEERADR		46
184 #define	CS_PEERMODE		47
185 #define	CS_BCASTDELAY		48
186 #define	CS_AUTHDELAY		49
187 #define	CS_AUTHKEYS		50
188 #define	CS_AUTHFREEK		51
189 #define	CS_AUTHKLOOKUPS		52
190 #define	CS_AUTHKNOTFOUND	53
191 #define	CS_AUTHKUNCACHED	54
192 #define	CS_AUTHKEXPIRED		55
193 #define	CS_AUTHENCRYPTS		56
194 #define	CS_AUTHDECRYPTS		57
195 #define	CS_AUTHRESET		58
196 #define	CS_K_OFFSET		59
197 #define	CS_K_FREQ		60
198 #define	CS_K_MAXERR		61
199 #define	CS_K_ESTERR		62
200 #define	CS_K_STFLAGS		63
201 #define	CS_K_TIMECONST		64
202 #define	CS_K_PRECISION		65
203 #define	CS_K_FREQTOL		66
204 #define	CS_K_PPS_FREQ		67
205 #define	CS_K_PPS_STABIL		68
206 #define	CS_K_PPS_JITTER		69
207 #define	CS_K_PPS_CALIBDUR	70
208 #define	CS_K_PPS_CALIBS		71
209 #define	CS_K_PPS_CALIBERRS	72
210 #define	CS_K_PPS_JITEXC		73
211 #define	CS_K_PPS_STBEXC		74
212 #define	CS_KERN_FIRST		CS_K_OFFSET
213 #define	CS_KERN_LAST		CS_K_PPS_STBEXC
214 #define	CS_IOSTATS_RESET	75
215 #define	CS_TOTAL_RBUF		76
216 #define	CS_FREE_RBUF		77
217 #define	CS_USED_RBUF		78
218 #define	CS_RBUF_LOWATER		79
219 #define	CS_IO_DROPPED		80
220 #define	CS_IO_IGNORED		81
221 #define	CS_IO_RECEIVED		82
222 #define	CS_IO_SENT		83
223 #define	CS_IO_SENDFAILED	84
224 #define	CS_IO_WAKEUPS		85
225 #define	CS_IO_GOODWAKEUPS	86
226 #define	CS_TIMERSTATS_RESET	87
227 #define	CS_TIMER_OVERRUNS	88
228 #define	CS_TIMER_XMTS		89
229 #define	CS_FUZZ			90
230 #define	CS_WANDER_THRESH	91
231 #define	CS_LEAPSMEARINTV	92
232 #define	CS_LEAPSMEAROFFS	93
233 #define	CS_MAX_NOAUTOKEY	CS_LEAPSMEAROFFS
234 #ifdef AUTOKEY
235 #define	CS_FLAGS		(1 + CS_MAX_NOAUTOKEY)
236 #define	CS_HOST			(2 + CS_MAX_NOAUTOKEY)
237 #define	CS_PUBLIC		(3 + CS_MAX_NOAUTOKEY)
238 #define	CS_CERTIF		(4 + CS_MAX_NOAUTOKEY)
239 #define	CS_SIGNATURE		(5 + CS_MAX_NOAUTOKEY)
240 #define	CS_REVTIME		(6 + CS_MAX_NOAUTOKEY)
241 #define	CS_IDENT		(7 + CS_MAX_NOAUTOKEY)
242 #define	CS_DIGEST		(8 + CS_MAX_NOAUTOKEY)
243 #define	CS_MAXCODE		CS_DIGEST
244 #else	/* !AUTOKEY follows */
245 #define	CS_MAXCODE		CS_MAX_NOAUTOKEY
246 #endif	/* !AUTOKEY */
247 
248 /*
249  * Peer variables we understand
250  */
251 #define	CP_CONFIG		1
252 #define	CP_AUTHENABLE		2
253 #define	CP_AUTHENTIC		3
254 #define	CP_SRCADR		4
255 #define	CP_SRCPORT		5
256 #define	CP_DSTADR		6
257 #define	CP_DSTPORT		7
258 #define	CP_LEAP			8
259 #define	CP_HMODE		9
260 #define	CP_STRATUM		10
261 #define	CP_PPOLL		11
262 #define	CP_HPOLL		12
263 #define	CP_PRECISION		13
264 #define	CP_ROOTDELAY		14
265 #define	CP_ROOTDISPERSION	15
266 #define	CP_REFID		16
267 #define	CP_REFTIME		17
268 #define	CP_ORG			18
269 #define	CP_REC			19
270 #define	CP_XMT			20
271 #define	CP_REACH		21
272 #define	CP_UNREACH		22
273 #define	CP_TIMER		23
274 #define	CP_DELAY		24
275 #define	CP_OFFSET		25
276 #define	CP_JITTER		26
277 #define	CP_DISPERSION		27
278 #define	CP_KEYID		28
279 #define	CP_FILTDELAY		29
280 #define	CP_FILTOFFSET		30
281 #define	CP_PMODE		31
282 #define	CP_RECEIVED		32
283 #define	CP_SENT			33
284 #define	CP_FILTERROR		34
285 #define	CP_FLASH		35
286 #define	CP_TTL			36
287 #define	CP_VARLIST		37
288 #define	CP_IN			38
289 #define	CP_OUT			39
290 #define	CP_RATE			40
291 #define	CP_BIAS			41
292 #define	CP_SRCHOST		42
293 #define	CP_TIMEREC		43
294 #define	CP_TIMEREACH		44
295 #define	CP_BADAUTH		45
296 #define	CP_BOGUSORG		46
297 #define	CP_OLDPKT		47
298 #define	CP_SELDISP		48
299 #define	CP_SELBROKEN		49
300 #define	CP_CANDIDATE		50
301 #define	CP_MAX_NOAUTOKEY	CP_CANDIDATE
302 #ifdef AUTOKEY
303 #define	CP_FLAGS		(1 + CP_MAX_NOAUTOKEY)
304 #define	CP_HOST			(2 + CP_MAX_NOAUTOKEY)
305 #define	CP_VALID		(3 + CP_MAX_NOAUTOKEY)
306 #define	CP_INITSEQ		(4 + CP_MAX_NOAUTOKEY)
307 #define	CP_INITKEY		(5 + CP_MAX_NOAUTOKEY)
308 #define	CP_INITTSP		(6 + CP_MAX_NOAUTOKEY)
309 #define	CP_SIGNATURE		(7 + CP_MAX_NOAUTOKEY)
310 #define	CP_IDENT		(8 + CP_MAX_NOAUTOKEY)
311 #define	CP_MAXCODE		CP_IDENT
312 #else	/* !AUTOKEY follows */
313 #define	CP_MAXCODE		CP_MAX_NOAUTOKEY
314 #endif	/* !AUTOKEY */
315 
316 /*
317  * Clock variables we understand
318  */
319 #define	CC_TYPE		1
320 #define	CC_TIMECODE	2
321 #define	CC_POLL		3
322 #define	CC_NOREPLY	4
323 #define	CC_BADFORMAT	5
324 #define	CC_BADDATA	6
325 #define	CC_FUDGETIME1	7
326 #define	CC_FUDGETIME2	8
327 #define	CC_FUDGEVAL1	9
328 #define	CC_FUDGEVAL2	10
329 #define	CC_FLAGS	11
330 #define	CC_DEVICE	12
331 #define	CC_VARLIST	13
332 #define	CC_FUDGEMINJIT	14
333 #define	CC_MAXCODE	CC_FUDGEMINJIT
334 
335 /*
336  * System variable values. The array can be indexed by the variable
337  * index to find the textual name.
338  */
339 static const struct ctl_var sys_var[] = {
340 	{ 0,		PADDING, "" },		/* 0 */
341 	{ CS_LEAP,	RW, "leap" },		/* 1 */
342 	{ CS_STRATUM,	RO, "stratum" },	/* 2 */
343 	{ CS_PRECISION, RO, "precision" },	/* 3 */
344 	{ CS_ROOTDELAY, RO, "rootdelay" },	/* 4 */
345 	{ CS_ROOTDISPERSION, RO, "rootdisp" },	/* 5 */
346 	{ CS_REFID,	RO, "refid" },		/* 6 */
347 	{ CS_REFTIME,	RO, "reftime" },	/* 7 */
348 	{ CS_POLL,	RO, "tc" },		/* 8 */
349 	{ CS_PEERID,	RO, "peer" },		/* 9 */
350 	{ CS_OFFSET,	RO, "offset" },		/* 10 */
351 	{ CS_DRIFT,	RO, "frequency" },	/* 11 */
352 	{ CS_JITTER,	RO, "sys_jitter" },	/* 12 */
353 	{ CS_ERROR,	RO, "clk_jitter" },	/* 13 */
354 	{ CS_CLOCK,	RO, "clock" },		/* 14 */
355 	{ CS_PROCESSOR, RO, "processor" },	/* 15 */
356 	{ CS_SYSTEM,	RO, "system" },		/* 16 */
357 	{ CS_VERSION,	RO, "version" },	/* 17 */
358 	{ CS_STABIL,	RO, "clk_wander" },	/* 18 */
359 	{ CS_VARLIST,	RO, "sys_var_list" },	/* 19 */
360 	{ CS_TAI,	RO, "tai" },		/* 20 */
361 	{ CS_LEAPTAB,	RO, "leapsec" },	/* 21 */
362 	{ CS_LEAPEND,	RO, "expire" },		/* 22 */
363 	{ CS_RATE,	RO, "mintc" },		/* 23 */
364 	{ CS_MRU_ENABLED,	RO, "mru_enabled" },	/* 24 */
365 	{ CS_MRU_DEPTH,		RO, "mru_depth" },	/* 25 */
366 	{ CS_MRU_DEEPEST,	RO, "mru_deepest" },	/* 26 */
367 	{ CS_MRU_MINDEPTH,	RO, "mru_mindepth" },	/* 27 */
368 	{ CS_MRU_MAXAGE,	RO, "mru_maxage" },	/* 28 */
369 	{ CS_MRU_MAXDEPTH,	RO, "mru_maxdepth" },	/* 29 */
370 	{ CS_MRU_MEM,		RO, "mru_mem" },	/* 30 */
371 	{ CS_MRU_MAXMEM,	RO, "mru_maxmem" },	/* 31 */
372 	{ CS_SS_UPTIME,		RO, "ss_uptime" },	/* 32 */
373 	{ CS_SS_RESET,		RO, "ss_reset" },	/* 33 */
374 	{ CS_SS_RECEIVED,	RO, "ss_received" },	/* 34 */
375 	{ CS_SS_THISVER,	RO, "ss_thisver" },	/* 35 */
376 	{ CS_SS_OLDVER,		RO, "ss_oldver" },	/* 36 */
377 	{ CS_SS_BADFORMAT,	RO, "ss_badformat" },	/* 37 */
378 	{ CS_SS_BADAUTH,	RO, "ss_badauth" },	/* 38 */
379 	{ CS_SS_DECLINED,	RO, "ss_declined" },	/* 39 */
380 	{ CS_SS_RESTRICTED,	RO, "ss_restricted" },	/* 40 */
381 	{ CS_SS_LIMITED,	RO, "ss_limited" },	/* 41 */
382 	{ CS_SS_KODSENT,	RO, "ss_kodsent" },	/* 42 */
383 	{ CS_SS_PROCESSED,	RO, "ss_processed" },	/* 43 */
384 	{ CS_SS_LAMPORT,	RO, "ss_lamport" },	/* 44 */
385 	{ CS_SS_TSROUNDING,	RO, "ss_tsrounding" },	/* 45 */
386 	{ CS_PEERADR,		RO, "peeradr" },	/* 46 */
387 	{ CS_PEERMODE,		RO, "peermode" },	/* 47 */
388 	{ CS_BCASTDELAY,	RO, "bcastdelay" },	/* 48 */
389 	{ CS_AUTHDELAY,		RO, "authdelay" },	/* 49 */
390 	{ CS_AUTHKEYS,		RO, "authkeys" },	/* 50 */
391 	{ CS_AUTHFREEK,		RO, "authfreek" },	/* 51 */
392 	{ CS_AUTHKLOOKUPS,	RO, "authklookups" },	/* 52 */
393 	{ CS_AUTHKNOTFOUND,	RO, "authknotfound" },	/* 53 */
394 	{ CS_AUTHKUNCACHED,	RO, "authkuncached" },	/* 54 */
395 	{ CS_AUTHKEXPIRED,	RO, "authkexpired" },	/* 55 */
396 	{ CS_AUTHENCRYPTS,	RO, "authencrypts" },	/* 56 */
397 	{ CS_AUTHDECRYPTS,	RO, "authdecrypts" },	/* 57 */
398 	{ CS_AUTHRESET,		RO, "authreset" },	/* 58 */
399 	{ CS_K_OFFSET,		RO, "koffset" },	/* 59 */
400 	{ CS_K_FREQ,		RO, "kfreq" },		/* 60 */
401 	{ CS_K_MAXERR,		RO, "kmaxerr" },	/* 61 */
402 	{ CS_K_ESTERR,		RO, "kesterr" },	/* 62 */
403 	{ CS_K_STFLAGS,		RO, "kstflags" },	/* 63 */
404 	{ CS_K_TIMECONST,	RO, "ktimeconst" },	/* 64 */
405 	{ CS_K_PRECISION,	RO, "kprecis" },	/* 65 */
406 	{ CS_K_FREQTOL,		RO, "kfreqtol" },	/* 66 */
407 	{ CS_K_PPS_FREQ,	RO, "kppsfreq" },	/* 67 */
408 	{ CS_K_PPS_STABIL,	RO, "kppsstab" },	/* 68 */
409 	{ CS_K_PPS_JITTER,	RO, "kppsjitter" },	/* 69 */
410 	{ CS_K_PPS_CALIBDUR,	RO, "kppscalibdur" },	/* 70 */
411 	{ CS_K_PPS_CALIBS,	RO, "kppscalibs" },	/* 71 */
412 	{ CS_K_PPS_CALIBERRS,	RO, "kppscaliberrs" },	/* 72 */
413 	{ CS_K_PPS_JITEXC,	RO, "kppsjitexc" },	/* 73 */
414 	{ CS_K_PPS_STBEXC,	RO, "kppsstbexc" },	/* 74 */
415 	{ CS_IOSTATS_RESET,	RO, "iostats_reset" },	/* 75 */
416 	{ CS_TOTAL_RBUF,	RO, "total_rbuf" },	/* 76 */
417 	{ CS_FREE_RBUF,		RO, "free_rbuf" },	/* 77 */
418 	{ CS_USED_RBUF,		RO, "used_rbuf" },	/* 78 */
419 	{ CS_RBUF_LOWATER,	RO, "rbuf_lowater" },	/* 79 */
420 	{ CS_IO_DROPPED,	RO, "io_dropped" },	/* 80 */
421 	{ CS_IO_IGNORED,	RO, "io_ignored" },	/* 81 */
422 	{ CS_IO_RECEIVED,	RO, "io_received" },	/* 82 */
423 	{ CS_IO_SENT,		RO, "io_sent" },	/* 83 */
424 	{ CS_IO_SENDFAILED,	RO, "io_sendfailed" },	/* 84 */
425 	{ CS_IO_WAKEUPS,	RO, "io_wakeups" },	/* 85 */
426 	{ CS_IO_GOODWAKEUPS,	RO, "io_goodwakeups" },	/* 86 */
427 	{ CS_TIMERSTATS_RESET,	RO, "timerstats_reset" },/* 87 */
428 	{ CS_TIMER_OVERRUNS,	RO, "timer_overruns" },	/* 88 */
429 	{ CS_TIMER_XMTS,	RO, "timer_xmts" },	/* 89 */
430 	{ CS_FUZZ,		RO, "fuzz" },		/* 90 */
431 	{ CS_WANDER_THRESH,	RO, "clk_wander_threshold" }, /* 91 */
432 
433 	{ CS_LEAPSMEARINTV,	RO, "leapsmearinterval" },    /* 92 */
434 	{ CS_LEAPSMEAROFFS,	RO, "leapsmearoffset" },      /* 93 */
435 
436 #ifdef AUTOKEY
437 	{ CS_FLAGS,	RO, "flags" },		/* 1 + CS_MAX_NOAUTOKEY */
438 	{ CS_HOST,	RO, "host" },		/* 2 + CS_MAX_NOAUTOKEY */
439 	{ CS_PUBLIC,	RO, "update" },		/* 3 + CS_MAX_NOAUTOKEY */
440 	{ CS_CERTIF,	RO, "cert" },		/* 4 + CS_MAX_NOAUTOKEY */
441 	{ CS_SIGNATURE,	RO, "signature" },	/* 5 + CS_MAX_NOAUTOKEY */
442 	{ CS_REVTIME,	RO, "until" },		/* 6 + CS_MAX_NOAUTOKEY */
443 	{ CS_IDENT,	RO, "ident" },		/* 7 + CS_MAX_NOAUTOKEY */
444 	{ CS_DIGEST,	RO, "digest" },		/* 8 + CS_MAX_NOAUTOKEY */
445 #endif	/* AUTOKEY */
446 	{ 0,		EOV, "" }		/* 94/102 */
447 };
448 
449 static struct ctl_var *ext_sys_var = NULL;
450 
451 /*
452  * System variables we print by default (in fuzzball order,
453  * more-or-less)
454  */
455 static const u_char def_sys_var[] = {
456 	CS_VERSION,
457 	CS_PROCESSOR,
458 	CS_SYSTEM,
459 	CS_LEAP,
460 	CS_STRATUM,
461 	CS_PRECISION,
462 	CS_ROOTDELAY,
463 	CS_ROOTDISPERSION,
464 	CS_REFID,
465 	CS_REFTIME,
466 	CS_CLOCK,
467 	CS_PEERID,
468 	CS_POLL,
469 	CS_RATE,
470 	CS_OFFSET,
471 	CS_DRIFT,
472 	CS_JITTER,
473 	CS_ERROR,
474 	CS_STABIL,
475 	CS_TAI,
476 	CS_LEAPTAB,
477 	CS_LEAPEND,
478 	CS_LEAPSMEARINTV,
479 	CS_LEAPSMEAROFFS,
480 #ifdef AUTOKEY
481 	CS_HOST,
482 	CS_IDENT,
483 	CS_FLAGS,
484 	CS_DIGEST,
485 	CS_SIGNATURE,
486 	CS_PUBLIC,
487 	CS_CERTIF,
488 #endif	/* AUTOKEY */
489 	0
490 };
491 
492 
493 /*
494  * Peer variable list
495  */
496 static const struct ctl_var peer_var[] = {
497 	{ 0,		PADDING, "" },		/* 0 */
498 	{ CP_CONFIG,	RO, "config" },		/* 1 */
499 	{ CP_AUTHENABLE, RO,	"authenable" },	/* 2 */
500 	{ CP_AUTHENTIC, RO, "authentic" },	/* 3 */
501 	{ CP_SRCADR,	RO, "srcadr" },		/* 4 */
502 	{ CP_SRCPORT,	RO, "srcport" },	/* 5 */
503 	{ CP_DSTADR,	RO, "dstadr" },		/* 6 */
504 	{ CP_DSTPORT,	RO, "dstport" },	/* 7 */
505 	{ CP_LEAP,	RO, "leap" },		/* 8 */
506 	{ CP_HMODE,	RO, "hmode" },		/* 9 */
507 	{ CP_STRATUM,	RO, "stratum" },	/* 10 */
508 	{ CP_PPOLL,	RO, "ppoll" },		/* 11 */
509 	{ CP_HPOLL,	RO, "hpoll" },		/* 12 */
510 	{ CP_PRECISION,	RO, "precision" },	/* 13 */
511 	{ CP_ROOTDELAY,	RO, "rootdelay" },	/* 14 */
512 	{ CP_ROOTDISPERSION, RO, "rootdisp" },	/* 15 */
513 	{ CP_REFID,	RO, "refid" },		/* 16 */
514 	{ CP_REFTIME,	RO, "reftime" },	/* 17 */
515 	{ CP_ORG,	RO, "org" },		/* 18 */
516 	{ CP_REC,	RO, "rec" },		/* 19 */
517 	{ CP_XMT,	RO, "xleave" },		/* 20 */
518 	{ CP_REACH,	RO, "reach" },		/* 21 */
519 	{ CP_UNREACH,	RO, "unreach" },	/* 22 */
520 	{ CP_TIMER,	RO, "timer" },		/* 23 */
521 	{ CP_DELAY,	RO, "delay" },		/* 24 */
522 	{ CP_OFFSET,	RO, "offset" },		/* 25 */
523 	{ CP_JITTER,	RO, "jitter" },		/* 26 */
524 	{ CP_DISPERSION, RO, "dispersion" },	/* 27 */
525 	{ CP_KEYID,	RO, "keyid" },		/* 28 */
526 	{ CP_FILTDELAY,	RO, "filtdelay" },	/* 29 */
527 	{ CP_FILTOFFSET, RO, "filtoffset" },	/* 30 */
528 	{ CP_PMODE,	RO, "pmode" },		/* 31 */
529 	{ CP_RECEIVED,	RO, "received"},	/* 32 */
530 	{ CP_SENT,	RO, "sent" },		/* 33 */
531 	{ CP_FILTERROR,	RO, "filtdisp" },	/* 34 */
532 	{ CP_FLASH,	RO, "flash" },		/* 35 */
533 	{ CP_TTL,	RO, "ttl" },		/* 36 */
534 	{ CP_VARLIST,	RO, "peer_var_list" },	/* 37 */
535 	{ CP_IN,	RO, "in" },		/* 38 */
536 	{ CP_OUT,	RO, "out" },		/* 39 */
537 	{ CP_RATE,	RO, "headway" },	/* 40 */
538 	{ CP_BIAS,	RO, "bias" },		/* 41 */
539 	{ CP_SRCHOST,	RO, "srchost" },	/* 42 */
540 	{ CP_TIMEREC,	RO, "timerec" },	/* 43 */
541 	{ CP_TIMEREACH,	RO, "timereach" },	/* 44 */
542 	{ CP_BADAUTH,	RO, "badauth" },	/* 45 */
543 	{ CP_BOGUSORG,	RO, "bogusorg" },	/* 46 */
544 	{ CP_OLDPKT,	RO, "oldpkt" },		/* 47 */
545 	{ CP_SELDISP,	RO, "seldisp" },	/* 48 */
546 	{ CP_SELBROKEN,	RO, "selbroken" },	/* 49 */
547 	{ CP_CANDIDATE, RO, "candidate" },	/* 50 */
548 #ifdef AUTOKEY
549 	{ CP_FLAGS,	RO, "flags" },		/* 1 + CP_MAX_NOAUTOKEY */
550 	{ CP_HOST,	RO, "host" },		/* 2 + CP_MAX_NOAUTOKEY */
551 	{ CP_VALID,	RO, "valid" },		/* 3 + CP_MAX_NOAUTOKEY */
552 	{ CP_INITSEQ,	RO, "initsequence" },	/* 4 + CP_MAX_NOAUTOKEY */
553 	{ CP_INITKEY,	RO, "initkey" },	/* 5 + CP_MAX_NOAUTOKEY */
554 	{ CP_INITTSP,	RO, "timestamp" },	/* 6 + CP_MAX_NOAUTOKEY */
555 	{ CP_SIGNATURE,	RO, "signature" },	/* 7 + CP_MAX_NOAUTOKEY */
556 	{ CP_IDENT,	RO, "ident" },		/* 8 + CP_MAX_NOAUTOKEY */
557 #endif	/* AUTOKEY */
558 	{ 0,		EOV, "" }		/* 50/58 */
559 };
560 
561 
562 /*
563  * Peer variables we print by default
564  */
565 static const u_char def_peer_var[] = {
566 	CP_SRCADR,
567 	CP_SRCPORT,
568 	CP_SRCHOST,
569 	CP_DSTADR,
570 	CP_DSTPORT,
571 	CP_OUT,
572 	CP_IN,
573 	CP_LEAP,
574 	CP_STRATUM,
575 	CP_PRECISION,
576 	CP_ROOTDELAY,
577 	CP_ROOTDISPERSION,
578 	CP_REFID,
579 	CP_REFTIME,
580 	CP_REC,
581 	CP_REACH,
582 	CP_UNREACH,
583 	CP_HMODE,
584 	CP_PMODE,
585 	CP_HPOLL,
586 	CP_PPOLL,
587 	CP_RATE,
588 	CP_FLASH,
589 	CP_KEYID,
590 	CP_TTL,
591 	CP_OFFSET,
592 	CP_DELAY,
593 	CP_DISPERSION,
594 	CP_JITTER,
595 	CP_XMT,
596 	CP_BIAS,
597 	CP_FILTDELAY,
598 	CP_FILTOFFSET,
599 	CP_FILTERROR,
600 #ifdef AUTOKEY
601 	CP_HOST,
602 	CP_FLAGS,
603 	CP_SIGNATURE,
604 	CP_VALID,
605 	CP_INITSEQ,
606 	CP_IDENT,
607 #endif	/* AUTOKEY */
608 	0
609 };
610 
611 
612 #ifdef REFCLOCK
613 /*
614  * Clock variable list
615  */
616 static const struct ctl_var clock_var[] = {
617 	{ 0,		PADDING, "" },		/* 0 */
618 	{ CC_TYPE,	RO, "type" },		/* 1 */
619 	{ CC_TIMECODE,	RO, "timecode" },	/* 2 */
620 	{ CC_POLL,	RO, "poll" },		/* 3 */
621 	{ CC_NOREPLY,	RO, "noreply" },	/* 4 */
622 	{ CC_BADFORMAT, RO, "badformat" },	/* 5 */
623 	{ CC_BADDATA,	RO, "baddata" },	/* 6 */
624 	{ CC_FUDGETIME1, RO, "fudgetime1" },	/* 7 */
625 	{ CC_FUDGETIME2, RO, "fudgetime2" },	/* 8 */
626 	{ CC_FUDGEVAL1, RO, "stratum" },	/* 9 */
627 	{ CC_FUDGEVAL2, RO, "refid" },		/* 10 */
628 	{ CC_FLAGS,	RO, "flags" },		/* 11 */
629 	{ CC_DEVICE,	RO, "device" },		/* 12 */
630 	{ CC_VARLIST,	RO, "clock_var_list" },	/* 13 */
631 	{ CC_FUDGEMINJIT, RO, "minjitter" },	/* 14 */
632 	{ 0,		EOV, ""  }		/* 15 */
633 };
634 
635 
636 /*
637  * Clock variables printed by default
638  */
639 static const u_char def_clock_var[] = {
640 	CC_DEVICE,
641 	CC_TYPE,	/* won't be output if device = known */
642 	CC_TIMECODE,
643 	CC_POLL,
644 	CC_NOREPLY,
645 	CC_BADFORMAT,
646 	CC_BADDATA,
647 	CC_FUDGEMINJIT,
648 	CC_FUDGETIME1,
649 	CC_FUDGETIME2,
650 	CC_FUDGEVAL1,
651 	CC_FUDGEVAL2,
652 	CC_FLAGS,
653 	0
654 };
655 #endif
656 
657 /*
658  * MRU string constants shared by send_mru_entry() and read_mru_list().
659  */
660 static const char addr_fmt[] =		"addr.%d";
661 static const char last_fmt[] =		"last.%d";
662 
663 /*
664  * System and processor definitions.
665  */
666 #ifndef HAVE_UNAME
667 # ifndef STR_SYSTEM
668 #  define		STR_SYSTEM	"UNIX"
669 # endif
670 # ifndef STR_PROCESSOR
671 #  define		STR_PROCESSOR	"unknown"
672 # endif
673 
674 static const char str_system[] = STR_SYSTEM;
675 static const char str_processor[] = STR_PROCESSOR;
676 #else
677 # include <sys/utsname.h>
678 static struct utsname utsnamebuf;
679 #endif /* HAVE_UNAME */
680 
681 /*
682  * Trap structures. We only allow a few of these, and send a copy of
683  * each async message to each live one. Traps time out after an hour, it
684  * is up to the trap receipient to keep resetting it to avoid being
685  * timed out.
686  */
687 /* ntp_request.c */
688 struct ctl_trap ctl_traps[CTL_MAXTRAPS];
689 int num_ctl_traps;
690 
691 /*
692  * Type bits, for ctlsettrap() call.
693  */
694 #define TRAP_TYPE_CONFIG	0	/* used by configuration code */
695 #define TRAP_TYPE_PRIO		1	/* priority trap */
696 #define TRAP_TYPE_NONPRIO	2	/* nonpriority trap */
697 
698 
699 /*
700  * List relating reference clock types to control message time sources.
701  * Index by the reference clock type. This list will only be used iff
702  * the reference clock driver doesn't set peer->sstclktype to something
703  * different than CTL_SST_TS_UNSPEC.
704  */
705 #ifdef REFCLOCK
706 static const u_char clocktypes[] = {
707 	CTL_SST_TS_NTP,		/* REFCLK_NONE (0) */
708 	CTL_SST_TS_LOCAL,	/* REFCLK_LOCALCLOCK (1) */
709 	CTL_SST_TS_UHF,		/* deprecated REFCLK_GPS_TRAK (2) */
710 	CTL_SST_TS_HF,		/* REFCLK_WWV_PST (3) */
711 	CTL_SST_TS_LF,		/* REFCLK_WWVB_SPECTRACOM (4) */
712 	CTL_SST_TS_UHF,		/* REFCLK_TRUETIME (5) */
713 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_AUDIO (6) */
714 	CTL_SST_TS_HF,		/* REFCLK_CHU (7) */
715 	CTL_SST_TS_LF,		/* REFCLOCK_PARSE (default) (8) */
716 	CTL_SST_TS_LF,		/* REFCLK_GPS_MX4200 (9) */
717 	CTL_SST_TS_UHF,		/* REFCLK_GPS_AS2201 (10) */
718 	CTL_SST_TS_UHF,		/* REFCLK_GPS_ARBITER (11) */
719 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_TPRO (12) */
720 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_LEITCH (13) */
721 	CTL_SST_TS_LF,		/* deprecated REFCLK_MSF_EES (14) */
722 	CTL_SST_TS_NTP,		/* not used (15) */
723 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_BANCOMM (16) */
724 	CTL_SST_TS_UHF,		/* REFCLK_GPS_DATU (17) */
725 	CTL_SST_TS_TELEPHONE,	/* REFCLK_NIST_ACTS (18) */
726 	CTL_SST_TS_HF,		/* REFCLK_WWV_HEATH (19) */
727 	CTL_SST_TS_UHF,		/* REFCLK_GPS_NMEA (20) */
728 	CTL_SST_TS_UHF,		/* REFCLK_GPS_VME (21) */
729 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_PPS (22) */
730 	CTL_SST_TS_NTP,		/* not used (23) */
731 	CTL_SST_TS_NTP,		/* not used (24) */
732 	CTL_SST_TS_NTP,		/* not used (25) */
733 	CTL_SST_TS_UHF,		/* REFCLK_GPS_HP (26) */
734 	CTL_SST_TS_LF,		/* REFCLK_ARCRON_MSF (27) */
735 	CTL_SST_TS_UHF,		/* REFCLK_SHM (28) */
736 	CTL_SST_TS_UHF,		/* REFCLK_PALISADE (29) */
737 	CTL_SST_TS_UHF,		/* REFCLK_ONCORE (30) */
738 	CTL_SST_TS_UHF,		/* REFCLK_JUPITER (31) */
739 	CTL_SST_TS_LF,		/* REFCLK_CHRONOLOG (32) */
740 	CTL_SST_TS_LF,		/* REFCLK_DUMBCLOCK (33) */
741 	CTL_SST_TS_LF,		/* REFCLK_ULINK (34) */
742 	CTL_SST_TS_LF,		/* REFCLK_PCF (35) */
743 	CTL_SST_TS_HF,		/* REFCLK_WWV (36) */
744 	CTL_SST_TS_LF,		/* REFCLK_FG (37) */
745 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_SERIAL (38) */
746 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_PCI (39) */
747 	CTL_SST_TS_LF,		/* REFCLK_JJY (40) */
748 	CTL_SST_TS_UHF,		/* REFCLK_TT560 (41) */
749 	CTL_SST_TS_UHF,		/* REFCLK_ZYFER (42) */
750 	CTL_SST_TS_UHF,		/* REFCLK_RIPENCC (43) */
751 	CTL_SST_TS_UHF,		/* REFCLK_NEOCLOCK4X (44) */
752 	CTL_SST_TS_UHF,		/* REFCLK_TSYNCPCI (45) */
753 	CTL_SST_TS_UHF		/* REFCLK_GPSDJSON (46) */
754 };
755 #endif  /* REFCLOCK */
756 
757 
758 /*
759  * Keyid used for authenticating write requests.
760  */
761 keyid_t ctl_auth_keyid;
762 
763 /*
764  * We keep track of the last error reported by the system internally
765  */
766 static	u_char ctl_sys_last_event;
767 static	u_char ctl_sys_num_events;
768 
769 
770 /*
771  * Statistic counters to keep track of requests and responses.
772  */
773 u_long ctltimereset;		/* time stats reset */
774 u_long numctlreq;		/* number of requests we've received */
775 u_long numctlbadpkts;		/* number of bad control packets */
776 u_long numctlresponses;		/* number of resp packets sent with data */
777 u_long numctlfrags;		/* number of fragments sent */
778 u_long numctlerrors;		/* number of error responses sent */
779 u_long numctltooshort;		/* number of too short input packets */
780 u_long numctlinputresp;		/* number of responses on input */
781 u_long numctlinputfrag;		/* number of fragments on input */
782 u_long numctlinputerr;		/* number of input pkts with err bit set */
783 u_long numctlbadoffset;		/* number of input pkts with nonzero offset */
784 u_long numctlbadversion;	/* number of input pkts with unknown version */
785 u_long numctldatatooshort;	/* data too short for count */
786 u_long numctlbadop;		/* bad op code found in packet */
787 u_long numasyncmsgs;		/* number of async messages we've sent */
788 
789 /*
790  * Response packet used by these routines. Also some state information
791  * so that we can handle packet formatting within a common set of
792  * subroutines.  Note we try to enter data in place whenever possible,
793  * but the need to set the more bit correctly means we occasionally
794  * use the extra buffer and copy.
795  */
796 static struct ntp_control rpkt;
797 static u_char	res_version;
798 static u_char	res_opcode;
799 static associd_t res_associd;
800 static u_short	res_frags;	/* datagrams in this response */
801 static int	res_offset;	/* offset of payload in response */
802 static u_char * datapt;
803 static u_char * dataend;
804 static int	datalinelen;
805 static int	datasent;	/* flag to avoid initial ", " */
806 static int	datanotbinflag;
807 static sockaddr_u *rmt_addr;
808 static struct interface *lcl_inter;
809 
810 static u_char	res_authenticate;
811 static u_char	res_authokay;
812 static keyid_t	res_keyid;
813 
814 #define MAXDATALINELEN	(72)
815 
816 static u_char	res_async;	/* sending async trap response? */
817 
818 /*
819  * Pointers for saving state when decoding request packets
820  */
821 static	char *reqpt;
822 static	char *reqend;
823 
824 /*
825  * init_control - initialize request data
826  */
827 void
828 init_control(void)
829 {
830 	size_t i;
831 
832 #ifdef HAVE_UNAME
833 	uname(&utsnamebuf);
834 #endif /* HAVE_UNAME */
835 
836 	ctl_clr_stats();
837 
838 	ctl_auth_keyid = 0;
839 	ctl_sys_last_event = EVNT_UNSPEC;
840 	ctl_sys_num_events = 0;
841 
842 	num_ctl_traps = 0;
843 	for (i = 0; i < COUNTOF(ctl_traps); i++)
844 		ctl_traps[i].tr_flags = 0;
845 }
846 
847 
848 /*
849  * ctl_error - send an error response for the current request
850  */
851 static void
852 ctl_error(
853 	u_char errcode
854 	)
855 {
856 	size_t		maclen;
857 
858 	numctlerrors++;
859 	DPRINTF(3, ("sending control error %u\n", errcode));
860 
861 	/*
862 	 * Fill in the fields. We assume rpkt.sequence and rpkt.associd
863 	 * have already been filled in.
864 	 */
865 	rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
866 			(res_opcode & CTL_OP_MASK);
867 	rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
868 	rpkt.count = 0;
869 
870 	/*
871 	 * send packet and bump counters
872 	 */
873 	if (res_authenticate && sys_authenticate) {
874 		maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
875 				     CTL_HEADER_LEN);
876 		sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
877 			CTL_HEADER_LEN + maclen);
878 	} else
879 		sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
880 			CTL_HEADER_LEN);
881 }
882 
883 int/*BOOL*/
884 is_safe_filename(const char * name)
885 {
886 	/* We need a strict validation of filenames we should write: The
887 	 * daemon might run with special permissions and is remote
888 	 * controllable, so we better take care what we allow as file
889 	 * name!
890 	 *
891 	 * The first character must be digit or a letter from the ASCII
892 	 * base plane or a '_' ([_A-Za-z0-9]), the following characters
893 	 * must be from [-._+A-Za-z0-9].
894 	 *
895 	 * We do not trust the character classification much here: Since
896 	 * the NTP protocol makes no provisions for UTF-8 or local code
897 	 * pages, we strictly require the 7bit ASCII code page.
898 	 *
899 	 * The following table is a packed bit field of 128 two-bit
900 	 * groups. The LSB in each group tells us if a character is
901 	 * acceptable at the first position, the MSB if the character is
902 	 * accepted at any other position.
903 	 *
904 	 * This does not ensure that the file name is syntactically
905 	 * correct (multiple dots will not work with VMS...) but it will
906 	 * exclude potential globbing bombs and directory traversal. It
907 	 * also rules out drive selection. (For systems that have this
908 	 * notion, like Windows or VMS.)
909 	 */
910 	static const uint32_t chclass[8] = {
911 		0x00000000, 0x00000000,
912 		0x28800000, 0x000FFFFF,
913 		0xFFFFFFFC, 0xC03FFFFF,
914 		0xFFFFFFFC, 0x003FFFFF
915 	};
916 
917 	u_int widx, bidx, mask;
918 	if ( ! (name && *name))
919 		return FALSE;
920 
921 	mask = 1u;
922 	while (0 != (widx = (u_char)*name++)) {
923 		bidx = (widx & 15) << 1;
924 		widx = widx >> 4;
925 		if (widx >= sizeof(chclass)/sizeof(chclass[0]))
926 			return FALSE;
927 		if (0 == ((chclass[widx] >> bidx) & mask))
928 			return FALSE;
929 		mask = 2u;
930 	}
931 	return TRUE;
932 }
933 
934 
935 /*
936  * save_config - Implements ntpq -c "saveconfig <filename>"
937  *		 Writes current configuration including any runtime
938  *		 changes by ntpq's :config or config-from-file
939  *
940  * Note: There should be no buffer overflow or truncation in the
941  * processing of file names -- both cause security problems. This is bit
942  * painful to code but essential here.
943  */
944 void
945 save_config(
946 	struct recvbuf *rbufp,
947 	int restrict_mask
948 	)
949 {
950 	/* block directory traversal by searching for characters that
951 	 * indicate directory components in a file path.
952 	 *
953 	 * Conceptually we should be searching for DIRSEP in filename,
954 	 * however Windows actually recognizes both forward and
955 	 * backslashes as equivalent directory separators at the API
956 	 * level.  On POSIX systems we could allow '\\' but such
957 	 * filenames are tricky to manipulate from a shell, so just
958 	 * reject both types of slashes on all platforms.
959 	 */
960 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
961 	static const char * illegal_in_filename =
962 #if defined(VMS)
963 	    ":[]"	/* do not allow drive and path components here */
964 #elif defined(SYS_WINNT)
965 	    ":\\/"	/* path and drive separators */
966 #else
967 	    "\\/"	/* separator and critical char for POSIX */
968 #endif
969 	    ;
970 	char reply[128];
971 #ifdef SAVECONFIG
972 	static const char savedconfig_eq[] = "savedconfig=";
973 
974 	/* Build a safe open mode from the available mode flags. We want
975 	 * to create a new file and write it in text mode (when
976 	 * applicable -- only Windows does this...)
977 	 */
978 	static const int openmode = O_CREAT | O_TRUNC | O_WRONLY
979 #  if defined(O_EXCL)		/* posix, vms */
980 	    | O_EXCL
981 #  elif defined(_O_EXCL)	/* windows is alway very special... */
982 	    | _O_EXCL
983 #  endif
984 #  if defined(_O_TEXT)		/* windows, again */
985 	    | _O_TEXT
986 #endif
987 	    ;
988 
989 	char filespec[128];
990 	char filename[128];
991 	char fullpath[512];
992 	char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
993 	time_t now;
994 	int fd;
995 	FILE *fptr;
996 	int prc;
997 	size_t reqlen;
998 #endif
999 
1000 	if (RES_NOMODIFY & restrict_mask) {
1001 		ctl_printf("%s", "saveconfig prohibited by restrict ... nomodify");
1002 		ctl_flushpkt(0);
1003 		NLOG(NLOG_SYSINFO)
1004 			msyslog(LOG_NOTICE,
1005 				"saveconfig from %s rejected due to nomodify restriction",
1006 				stoa(&rbufp->recv_srcadr));
1007 		sys_restricted++;
1008 		return;
1009 	}
1010 
1011 #ifdef SAVECONFIG
1012 	if (NULL == saveconfigdir) {
1013 		ctl_printf("%s", "saveconfig prohibited, no saveconfigdir configured");
1014 		ctl_flushpkt(0);
1015 		NLOG(NLOG_SYSINFO)
1016 			msyslog(LOG_NOTICE,
1017 				"saveconfig from %s rejected, no saveconfigdir",
1018 				stoa(&rbufp->recv_srcadr));
1019 		return;
1020 	}
1021 
1022 	/* The length checking stuff gets serious. Do not assume a NUL
1023 	 * byte can be found, but if so, use it to calculate the needed
1024 	 * buffer size. If the available buffer is too short, bail out;
1025 	 * likewise if there is no file spec. (The latter will not
1026 	 * happen when using NTPQ, but there are other ways to craft a
1027 	 * network packet!)
1028 	 */
1029 	reqlen = (size_t)(reqend - reqpt);
1030 	if (0 != reqlen) {
1031 		char * nulpos = (char*)memchr(reqpt, 0, reqlen);
1032 		if (NULL != nulpos)
1033 			reqlen = (size_t)(nulpos - reqpt);
1034 	}
1035 	if (0 == reqlen)
1036 		return;
1037 	if (reqlen >= sizeof(filespec)) {
1038 		ctl_printf("saveconfig exceeded maximum raw name length (%u)",
1039 			   (u_int)sizeof(filespec));
1040 		ctl_flushpkt(0);
1041 		msyslog(LOG_NOTICE,
1042 			"saveconfig exceeded maximum raw name length from %s",
1043 			stoa(&rbufp->recv_srcadr));
1044 		return;
1045 	}
1046 
1047 	/* copy data directly as we exactly know the size */
1048 	memcpy(filespec, reqpt, reqlen);
1049 	filespec[reqlen] = '\0';
1050 
1051 	/*
1052 	 * allow timestamping of the saved config filename with
1053 	 * strftime() format such as:
1054 	 *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
1055 	 * XXX: Nice feature, but not too safe.
1056 	 * YYY: The check for permitted characters in file names should
1057 	 *      weed out the worst. Let's hope 'strftime()' does not
1058 	 *      develop pathological problems.
1059 	 */
1060 	time(&now);
1061 	if (0 == strftime(filename, sizeof(filename), filespec,
1062 			  localtime(&now)))
1063 	{
1064 		/*
1065 		 * If we arrive here, 'strftime()' balked; most likely
1066 		 * the buffer was too short. (Or it encounterd an empty
1067 		 * format, or just a format that expands to an empty
1068 		 * string.) We try to use the original name, though this
1069 		 * is very likely to fail later if there are format
1070 		 * specs in the string. Note that truncation cannot
1071 		 * happen here as long as both buffers have the same
1072 		 * size!
1073 		 */
1074 		strlcpy(filename, filespec, sizeof(filename));
1075 	}
1076 
1077 	/*
1078 	 * Check the file name for sanity. This might/will rule out file
1079 	 * names that would be legal but problematic, and it blocks
1080 	 * directory traversal.
1081 	 */
1082 	if (!is_safe_filename(filename)) {
1083 		ctl_printf("saveconfig rejects unsafe file name '%s'",
1084 			   filename);
1085 		ctl_flushpkt(0);
1086 		msyslog(LOG_NOTICE,
1087 			"saveconfig rejects unsafe file name from %s",
1088 			stoa(&rbufp->recv_srcadr));
1089 		return;
1090 	}
1091 
1092 	/*
1093 	 * XXX: This next test may not be needed with is_safe_filename()
1094 	 */
1095 
1096 	/* block directory/drive traversal */
1097 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
1098 	if (NULL != strpbrk(filename, illegal_in_filename)) {
1099 		snprintf(reply, sizeof(reply),
1100 			 "saveconfig does not allow directory in filename");
1101 		ctl_putdata(reply, strlen(reply), 0);
1102 		ctl_flushpkt(0);
1103 		msyslog(LOG_NOTICE,
1104 			"saveconfig rejects unsafe file name from %s",
1105 			stoa(&rbufp->recv_srcadr));
1106 		return;
1107 	}
1108 
1109 	/* concatenation of directory and path can cause another
1110 	 * truncation...
1111 	 */
1112 	prc = snprintf(fullpath, sizeof(fullpath), "%s%s",
1113 		       saveconfigdir, filename);
1114 	if (prc < 0 || (size_t)prc >= sizeof(fullpath)) {
1115 		ctl_printf("saveconfig exceeded maximum path length (%u)",
1116 			   (u_int)sizeof(fullpath));
1117 		ctl_flushpkt(0);
1118 		msyslog(LOG_NOTICE,
1119 			"saveconfig exceeded maximum path length from %s",
1120 			stoa(&rbufp->recv_srcadr));
1121 		return;
1122 	}
1123 
1124 	fd = open(fullpath, openmode, S_IRUSR | S_IWUSR);
1125 	if (-1 == fd)
1126 		fptr = NULL;
1127 	else
1128 		fptr = fdopen(fd, "w");
1129 
1130 	if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
1131 		ctl_printf("Unable to save configuration to file '%s': %s",
1132 			   filename, strerror(errno));
1133 		msyslog(LOG_ERR,
1134 			"saveconfig %s from %s failed", filename,
1135 			stoa(&rbufp->recv_srcadr));
1136 	} else {
1137 		ctl_printf("Configuration saved to '%s'", filename);
1138 		msyslog(LOG_NOTICE,
1139 			"Configuration saved to '%s' (requested by %s)",
1140 			fullpath, stoa(&rbufp->recv_srcadr));
1141 		/*
1142 		 * save the output filename in system variable
1143 		 * savedconfig, retrieved with:
1144 		 *   ntpq -c "rv 0 savedconfig"
1145 		 * Note: the way 'savedconfig' is defined makes overflow
1146 		 * checks unnecessary here.
1147 		 */
1148 		snprintf(savedconfig, sizeof(savedconfig), "%s%s",
1149 			 savedconfig_eq, filename);
1150 		set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
1151 	}
1152 
1153 	if (NULL != fptr)
1154 		fclose(fptr);
1155 #else	/* !SAVECONFIG follows */
1156 	ctl_printf("%s",
1157 		   "saveconfig unavailable, configured with --disable-saveconfig");
1158 #endif
1159 	ctl_flushpkt(0);
1160 }
1161 
1162 
1163 /*
1164  * process_control - process an incoming control message
1165  */
1166 void
1167 process_control(
1168 	struct recvbuf *rbufp,
1169 	int restrict_mask
1170 	)
1171 {
1172 	struct ntp_control *pkt;
1173 	int req_count;
1174 	int req_data;
1175 	const struct ctl_proc *cc;
1176 	keyid_t *pkid;
1177 	int properlen;
1178 	size_t maclen;
1179 
1180 	DPRINTF(3, ("in process_control()\n"));
1181 
1182 	/*
1183 	 * Save the addresses for error responses
1184 	 */
1185 	numctlreq++;
1186 	rmt_addr = &rbufp->recv_srcadr;
1187 	lcl_inter = rbufp->dstadr;
1188 	pkt = (struct ntp_control *)&rbufp->recv_pkt;
1189 
1190 	/*
1191 	 * If the length is less than required for the header,
1192 	 * ignore it.
1193 	 */
1194 	if (rbufp->recv_length < (int)CTL_HEADER_LEN) {
1195 		DPRINTF(1, ("Short control packet\n"));
1196 		numctltooshort++;
1197 		return;
1198 	}
1199 
1200 	/*
1201 	 * If this packet is a response or a fragment, ignore it.
1202 	 */
1203 	if (   (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1204 	    || pkt->offset != 0) {
1205 		DPRINTF(1, ("invalid format in control packet\n"));
1206 		if (CTL_RESPONSE & pkt->r_m_e_op)
1207 			numctlinputresp++;
1208 		if (CTL_MORE & pkt->r_m_e_op)
1209 			numctlinputfrag++;
1210 		if (CTL_ERROR & pkt->r_m_e_op)
1211 			numctlinputerr++;
1212 		if (pkt->offset != 0)
1213 			numctlbadoffset++;
1214 		return;
1215 	}
1216 
1217 	res_version = PKT_VERSION(pkt->li_vn_mode);
1218 	if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1219 		DPRINTF(1, ("unknown version %d in control packet\n",
1220 			    res_version));
1221 		numctlbadversion++;
1222 		return;
1223 	}
1224 
1225 	/*
1226 	 * Pull enough data from the packet to make intelligent
1227 	 * responses
1228 	 */
1229 	rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1230 					 MODE_CONTROL);
1231 	res_opcode = pkt->r_m_e_op;
1232 	rpkt.sequence = pkt->sequence;
1233 	rpkt.associd = pkt->associd;
1234 	rpkt.status = 0;
1235 	res_frags = 1;
1236 	res_offset = 0;
1237 	res_associd = htons(pkt->associd);
1238 	res_async = FALSE;
1239 	res_authenticate = FALSE;
1240 	res_keyid = 0;
1241 	res_authokay = FALSE;
1242 	req_count = (int)ntohs(pkt->count);
1243 	datanotbinflag = FALSE;
1244 	datalinelen = 0;
1245 	datasent = 0;
1246 	datapt = rpkt.u.data;
1247 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1248 
1249 	if ((rbufp->recv_length & 0x3) != 0)
1250 		DPRINTF(3, ("Control packet length %d unrounded\n",
1251 			    rbufp->recv_length));
1252 
1253 	/*
1254 	 * We're set up now. Make sure we've got at least enough
1255 	 * incoming data space to match the count.
1256 	 */
1257 	req_data = rbufp->recv_length - CTL_HEADER_LEN;
1258 	if (req_data < req_count || rbufp->recv_length & 0x3) {
1259 		ctl_error(CERR_BADFMT);
1260 		numctldatatooshort++;
1261 		return;
1262 	}
1263 
1264 	properlen = req_count + CTL_HEADER_LEN;
1265 	/* round up proper len to a 8 octet boundary */
1266 
1267 	properlen = (properlen + 7) & ~7;
1268 	maclen = rbufp->recv_length - properlen;
1269 	if ((rbufp->recv_length & 3) == 0 &&
1270 	    maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1271 	    sys_authenticate) {
1272 		res_authenticate = TRUE;
1273 		pkid = (void *)((char *)pkt + properlen);
1274 		res_keyid = ntohl(*pkid);
1275 		DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1276 			    rbufp->recv_length, properlen, res_keyid,
1277 			    maclen));
1278 
1279 		if (!authistrustedip(res_keyid, &rbufp->recv_srcadr))
1280 			DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1281 		else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1282 				     rbufp->recv_length - maclen,
1283 				     maclen)) {
1284 			res_authokay = TRUE;
1285 			DPRINTF(3, ("authenticated okay\n"));
1286 		} else {
1287 			res_keyid = 0;
1288 			DPRINTF(3, ("authentication failed\n"));
1289 		}
1290 	}
1291 
1292 	/*
1293 	 * Set up translate pointers
1294 	 */
1295 	reqpt = (char *)pkt->u.data;
1296 	reqend = reqpt + req_count;
1297 
1298 	/*
1299 	 * Look for the opcode processor
1300 	 */
1301 	for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1302 		if (cc->control_code == res_opcode) {
1303 			DPRINTF(3, ("opcode %d, found command handler\n",
1304 				    res_opcode));
1305 			if (cc->flags == AUTH
1306 			    && (!res_authokay
1307 				|| res_keyid != ctl_auth_keyid)) {
1308 				ctl_error(CERR_PERMISSION);
1309 				return;
1310 			}
1311 			(cc->handler)(rbufp, restrict_mask);
1312 			return;
1313 		}
1314 	}
1315 
1316 	/*
1317 	 * Can't find this one, return an error.
1318 	 */
1319 	numctlbadop++;
1320 	ctl_error(CERR_BADOP);
1321 	return;
1322 }
1323 
1324 
1325 /*
1326  * ctlpeerstatus - return a status word for this peer
1327  */
1328 u_short
1329 ctlpeerstatus(
1330 	register struct peer *p
1331 	)
1332 {
1333 	u_short status;
1334 
1335 	status = p->status;
1336 	if (FLAG_CONFIG & p->flags)
1337 		status |= CTL_PST_CONFIG;
1338 	if (p->keyid)
1339 		status |= CTL_PST_AUTHENABLE;
1340 	if (FLAG_AUTHENTIC & p->flags)
1341 		status |= CTL_PST_AUTHENTIC;
1342 	if (p->reach)
1343 		status |= CTL_PST_REACH;
1344 	if (MDF_TXONLY_MASK & p->cast_flags)
1345 		status |= CTL_PST_BCAST;
1346 
1347 	return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1348 }
1349 
1350 
1351 /*
1352  * ctlclkstatus - return a status word for this clock
1353  */
1354 #ifdef REFCLOCK
1355 static u_short
1356 ctlclkstatus(
1357 	struct refclockstat *pcs
1358 	)
1359 {
1360 	return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1361 }
1362 #endif
1363 
1364 
1365 /*
1366  * ctlsysstatus - return the system status word
1367  */
1368 u_short
1369 ctlsysstatus(void)
1370 {
1371 	register u_char this_clock;
1372 
1373 	this_clock = CTL_SST_TS_UNSPEC;
1374 #ifdef REFCLOCK
1375 	if (sys_peer != NULL) {
1376 		if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1377 			this_clock = sys_peer->sstclktype;
1378 		else if (sys_peer->refclktype < COUNTOF(clocktypes))
1379 			this_clock = clocktypes[sys_peer->refclktype];
1380 	}
1381 #else /* REFCLOCK */
1382 	if (sys_peer != 0)
1383 		this_clock = CTL_SST_TS_NTP;
1384 #endif /* REFCLOCK */
1385 	return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1386 			      ctl_sys_last_event);
1387 }
1388 
1389 
1390 /*
1391  * ctl_flushpkt - write out the current packet and prepare
1392  *		  another if necessary.
1393  */
1394 static void
1395 ctl_flushpkt(
1396 	u_char more
1397 	)
1398 {
1399 	size_t i;
1400 	size_t dlen;
1401 	size_t sendlen;
1402 	size_t maclen;
1403 	size_t totlen;
1404 	keyid_t keyid;
1405 
1406 	dlen = datapt - rpkt.u.data;
1407 	if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1408 		/*
1409 		 * Big hack, output a trailing \r\n
1410 		 */
1411 		*datapt++ = '\r';
1412 		*datapt++ = '\n';
1413 		dlen += 2;
1414 	}
1415 	sendlen = dlen + CTL_HEADER_LEN;
1416 
1417 	/*
1418 	 * Pad to a multiple of 32 bits
1419 	 */
1420 	while (sendlen & 0x3) {
1421 		*datapt++ = '\0';
1422 		sendlen++;
1423 	}
1424 
1425 	/*
1426 	 * Fill in the packet with the current info
1427 	 */
1428 	rpkt.r_m_e_op = CTL_RESPONSE | more |
1429 			(res_opcode & CTL_OP_MASK);
1430 	rpkt.count = htons((u_short)dlen);
1431 	rpkt.offset = htons((u_short)res_offset);
1432 	if (res_async) {
1433 		for (i = 0; i < COUNTOF(ctl_traps); i++) {
1434 			if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1435 				rpkt.li_vn_mode =
1436 				    PKT_LI_VN_MODE(
1437 					sys_leap,
1438 					ctl_traps[i].tr_version,
1439 					MODE_CONTROL);
1440 				rpkt.sequence =
1441 				    htons(ctl_traps[i].tr_sequence);
1442 				sendpkt(&ctl_traps[i].tr_addr,
1443 					ctl_traps[i].tr_localaddr, -4,
1444 					(struct pkt *)&rpkt, sendlen);
1445 				if (!more)
1446 					ctl_traps[i].tr_sequence++;
1447 				numasyncmsgs++;
1448 			}
1449 		}
1450 	} else {
1451 		if (res_authenticate && sys_authenticate) {
1452 			totlen = sendlen;
1453 			/*
1454 			 * If we are going to authenticate, then there
1455 			 * is an additional requirement that the MAC
1456 			 * begin on a 64 bit boundary.
1457 			 */
1458 			while (totlen & 7) {
1459 				*datapt++ = '\0';
1460 				totlen++;
1461 			}
1462 			keyid = htonl(res_keyid);
1463 			memcpy(datapt, &keyid, sizeof(keyid));
1464 			maclen = authencrypt(res_keyid,
1465 					     (u_int32 *)&rpkt, totlen);
1466 			sendpkt(rmt_addr, lcl_inter, -5,
1467 				(struct pkt *)&rpkt, totlen + maclen);
1468 		} else {
1469 			sendpkt(rmt_addr, lcl_inter, -6,
1470 				(struct pkt *)&rpkt, sendlen);
1471 		}
1472 		if (more)
1473 			numctlfrags++;
1474 		else
1475 			numctlresponses++;
1476 	}
1477 
1478 	/*
1479 	 * Set us up for another go around.
1480 	 */
1481 	res_frags++;
1482 	res_offset += dlen;
1483 	datapt = rpkt.u.data;
1484 }
1485 
1486 
1487 /* --------------------------------------------------------------------
1488  * block transfer API -- stream string/data fragments into xmit buffer
1489  * without additional copying
1490  */
1491 
1492 /* buffer descriptor: address & size of fragment
1493  * 'buf' may only be NULL when 'len' is zero!
1494  */
1495 typedef struct {
1496 	const void  *buf;
1497 	size_t       len;
1498 } CtlMemBufT;
1499 
1500 /* put ctl data in a gather-style operation */
1501 static void
1502 ctl_putdata_ex(
1503 	const CtlMemBufT * argv,
1504 	size_t             argc,
1505 	int/*BOOL*/        bin		/* set to 1 when data is binary */
1506 	)
1507 {
1508 	const char * src_ptr;
1509 	size_t       src_len, cur_len, add_len, argi;
1510 
1511 	/* text / binary preprocessing, possibly create new linefeed */
1512 	if (bin) {
1513 		add_len = 0;
1514 	} else {
1515 		datanotbinflag = TRUE;
1516 		add_len = 3;
1517 
1518 		if (datasent) {
1519 			*datapt++ = ',';
1520 			datalinelen++;
1521 
1522 			/* sum up total length */
1523 			for (argi = 0, src_len = 0; argi < argc; ++argi)
1524 				src_len += argv[argi].len;
1525 			/* possibly start a new line, assume no size_t overflow */
1526 			if ((src_len + datalinelen + 1) >= MAXDATALINELEN) {
1527 				*datapt++ = '\r';
1528 				*datapt++ = '\n';
1529 				datalinelen = 0;
1530 			} else {
1531 				*datapt++ = ' ';
1532 				datalinelen++;
1533 			}
1534 		}
1535 	}
1536 
1537 	/* now stream out all buffers */
1538 	for (argi = 0; argi < argc; ++argi) {
1539 		src_ptr = argv[argi].buf;
1540 		src_len = argv[argi].len;
1541 
1542 		if ( ! (src_ptr && src_len))
1543 			continue;
1544 
1545 		cur_len = (size_t)(dataend - datapt);
1546 		while ((src_len + add_len) > cur_len) {
1547 			/* Not enough room in this one, flush it out. */
1548 			if (src_len < cur_len)
1549 				cur_len = src_len;
1550 
1551 			memcpy(datapt, src_ptr, cur_len);
1552 			datapt      += cur_len;
1553 			datalinelen += cur_len;
1554 
1555 			src_ptr     += cur_len;
1556 			src_len     -= cur_len;
1557 
1558 			ctl_flushpkt(CTL_MORE);
1559 			cur_len = (size_t)(dataend - datapt);
1560 		}
1561 
1562 		memcpy(datapt, src_ptr, src_len);
1563 		datapt      += src_len;
1564 		datalinelen += src_len;
1565 
1566 		datasent = TRUE;
1567 	}
1568 }
1569 
1570 /*
1571  * ctl_putdata - write data into the packet, fragmenting and starting
1572  * another if this one is full.
1573  */
1574 static void
1575 ctl_putdata(
1576 	const char *dp,
1577 	unsigned int dlen,
1578 	int bin			/* set to 1 when data is binary */
1579 	)
1580 {
1581 	CtlMemBufT args[1];
1582 
1583 	args[0].buf = dp;
1584 	args[0].len = dlen;
1585 	ctl_putdata_ex(args, 1, bin);
1586 }
1587 
1588 /*
1589  * ctl_putstr - write a tagged string into the response packet
1590  *		in the form:
1591  *
1592  *		tag="data"
1593  *
1594  *		len is the data length excluding the NUL terminator,
1595  *		as in ctl_putstr("var", "value", strlen("value"));
1596  */
1597 static void
1598 ctl_putstr(
1599 	const char *	tag,
1600 	const char *	data,
1601 	size_t		len
1602 	)
1603 {
1604 	CtlMemBufT args[4];
1605 
1606 	args[0].buf = tag;
1607 	args[0].len = strlen(tag);
1608 	if (data && len) {
1609 	    args[1].buf = "=\"";
1610 	    args[1].len = 2;
1611 	    args[2].buf = data;
1612 	    args[2].len = len;
1613 	    args[3].buf = "\"";
1614 	    args[3].len = 1;
1615 	    ctl_putdata_ex(args, 4, FALSE);
1616 	} else {
1617 	    args[1].buf = "=\"\"";
1618 	    args[1].len = 3;
1619 	    ctl_putdata_ex(args, 2, FALSE);
1620 	}
1621 }
1622 
1623 
1624 /*
1625  * ctl_putunqstr - write a tagged string into the response packet
1626  *		   in the form:
1627  *
1628  *		   tag=data
1629  *
1630  *	len is the data length excluding the NUL terminator.
1631  *	data must not contain a comma or whitespace.
1632  */
1633 static void
1634 ctl_putunqstr(
1635 	const char *	tag,
1636 	const char *	data,
1637 	size_t		len
1638 	)
1639 {
1640 	CtlMemBufT args[3];
1641 
1642 	args[0].buf = tag;
1643 	args[0].len = strlen(tag);
1644 	args[1].buf = "=";
1645 	args[1].len = 1;
1646 	if (data && len) {
1647 		args[2].buf = data;
1648 		args[2].len = len;
1649 		ctl_putdata_ex(args, 3, FALSE);
1650 	} else {
1651 		ctl_putdata_ex(args, 2, FALSE);
1652 	}
1653 }
1654 
1655 
1656 /*
1657  * ctl_putdblf - write a tagged, signed double into the response packet
1658  */
1659 static void
1660 ctl_putdblf(
1661 	const char *	tag,
1662 	int		use_f,
1663 	int		precision,
1664 	double		d
1665 	)
1666 {
1667 	char buffer[40];
1668 	int  rc;
1669 
1670 	rc = snprintf(buffer, sizeof(buffer),
1671 		      (use_f ? "%.*f" : "%.*g"),
1672 		      precision, d);
1673 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1674 	ctl_putunqstr(tag, buffer, rc);
1675 }
1676 
1677 /*
1678  * ctl_putuint - write a tagged unsigned integer into the response
1679  */
1680 static void
1681 ctl_putuint(
1682 	const char *tag,
1683 	u_long uval
1684 	)
1685 {
1686 	char buffer[24]; /* needs to fit for 64 bits! */
1687 	int  rc;
1688 
1689 	rc = snprintf(buffer, sizeof(buffer), "%lu", uval);
1690 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1691 	ctl_putunqstr(tag, buffer, rc);
1692 }
1693 
1694 /*
1695  * ctl_putcal - write a decoded calendar data into the response.
1696  * only used with AUTOKEY currently, so compiled conditional
1697  */
1698 #ifdef AUTOKEY
1699 static void
1700 ctl_putcal(
1701 	const char *tag,
1702 	const struct calendar *pcal
1703 	)
1704 {
1705 	char buffer[16];
1706 	int  rc;
1707 
1708 	rc = snprintf(buffer, sizeof(buffer),
1709 		      "%04d%02d%02d%02d%02d",
1710 		      pcal->year, pcal->month, pcal->monthday,
1711 		      pcal->hour, pcal->minute
1712 		);
1713 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1714 	ctl_putunqstr(tag, buffer, rc);
1715 }
1716 #endif
1717 
1718 /*
1719  * ctl_putfs - write a decoded filestamp into the response
1720  */
1721 static void
1722 ctl_putfs(
1723 	const char *tag,
1724 	tstamp_t uval
1725 	)
1726 {
1727 	char buffer[16];
1728 	int  rc;
1729 
1730 	time_t fstamp = (time_t)uval - JAN_1970;
1731 	struct tm *tm = gmtime(&fstamp);
1732 
1733 	if (NULL == tm)
1734 		return;
1735 
1736 	rc = snprintf(buffer, sizeof(buffer),
1737 		      "%04d%02d%02d%02d%02d",
1738 		      tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
1739 		      tm->tm_hour, tm->tm_min);
1740 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1741 	ctl_putunqstr(tag, buffer, rc);
1742 }
1743 
1744 
1745 /*
1746  * ctl_puthex - write a tagged unsigned integer, in hex, into the
1747  * response
1748  */
1749 static void
1750 ctl_puthex(
1751 	const char *tag,
1752 	u_long uval
1753 	)
1754 {
1755 	char buffer[24];	/* must fit 64bit int! */
1756 	int  rc;
1757 
1758 	rc = snprintf(buffer, sizeof(buffer), "0x%lx", uval);
1759 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1760 	ctl_putunqstr(tag, buffer, rc);
1761 }
1762 
1763 
1764 /*
1765  * ctl_putint - write a tagged signed integer into the response
1766  */
1767 static void
1768 ctl_putint(
1769 	const char *tag,
1770 	long ival
1771 	)
1772 {
1773 	char buffer[24];	/*must fit 64bit int */
1774 	int  rc;
1775 
1776 	rc = snprintf(buffer, sizeof(buffer), "%ld", ival);
1777 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1778 	ctl_putunqstr(tag, buffer, rc);
1779 }
1780 
1781 
1782 /*
1783  * ctl_putts - write a tagged timestamp, in hex, into the response
1784  */
1785 static void
1786 ctl_putts(
1787 	const char *tag,
1788 	l_fp *ts
1789 	)
1790 {
1791 	char buffer[24];
1792 	int  rc;
1793 
1794 	rc = snprintf(buffer, sizeof(buffer),
1795 		      "0x%08lx.%08lx",
1796 		      (u_long)ts->l_ui, (u_long)ts->l_uf);
1797 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1798 	ctl_putunqstr(tag, buffer, rc);
1799 }
1800 
1801 
1802 /*
1803  * ctl_putadr - write an IP address into the response
1804  */
1805 static void
1806 ctl_putadr(
1807 	const char *tag,
1808 	u_int32 addr32,
1809 	sockaddr_u *addr
1810 	)
1811 {
1812 	const char *cq;
1813 
1814 	if (NULL == addr)
1815 		cq = numtoa(addr32);
1816 	else
1817 		cq = stoa(addr);
1818 	ctl_putunqstr(tag, cq, strlen(cq));
1819 }
1820 
1821 
1822 /*
1823  * ctl_putrefid - send a u_int32 refid as printable text
1824  */
1825 static void
1826 ctl_putrefid(
1827 	const char *	tag,
1828 	u_int32		refid
1829 	)
1830 {
1831 	size_t nc;
1832 
1833 	union {
1834 		uint32_t w;
1835 		uint8_t  b[sizeof(uint32_t)];
1836 	} bytes;
1837 
1838 	bytes.w = refid;
1839 	for (nc = 0; nc < sizeof(bytes.b) && bytes.b[nc]; ++nc)
1840 		if (  !isprint(bytes.b[nc])
1841 		    || isspace(bytes.b[nc])
1842 		    || bytes.b[nc] == ','  )
1843 			bytes.b[nc] = '.';
1844 	ctl_putunqstr(tag, (const char*)bytes.b, nc);
1845 }
1846 
1847 
1848 /*
1849  * ctl_putarray - write a tagged eight element double array into the response
1850  */
1851 static void
1852 ctl_putarray(
1853 	const char *tag,
1854 	double *arr,
1855 	int start
1856 	)
1857 {
1858 	char *cp, *ep;
1859 	char buffer[200];
1860 	int  i, rc;
1861 
1862 	cp = buffer;
1863 	ep = buffer + sizeof(buffer);
1864 	i  = start;
1865 	do {
1866 		if (i == 0)
1867 			i = NTP_SHIFT;
1868 		i--;
1869 		rc = snprintf(cp, (size_t)(ep - cp), " %.2f", arr[i] * 1e3);
1870 		INSIST(rc >= 0 && (size_t)rc < (size_t)(ep - cp));
1871 		cp += rc;
1872 	} while (i != start);
1873 	ctl_putunqstr(tag, buffer, (size_t)(cp - buffer));
1874 }
1875 
1876 /*
1877  * ctl_printf - put a formatted string into the data buffer
1878  */
1879 static void
1880 ctl_printf(
1881 	const char * fmt,
1882 	...
1883 	)
1884 {
1885 	static const char * ellipsis = "[...]";
1886 	va_list va;
1887 	char    fmtbuf[128];
1888 	int     rc;
1889 
1890 	va_start(va, fmt);
1891 	rc = vsnprintf(fmtbuf, sizeof(fmtbuf), fmt, va);
1892 	va_end(va);
1893 	if (rc < 0 || (size_t)rc >= sizeof(fmtbuf))
1894 		strcpy(fmtbuf + sizeof(fmtbuf) - strlen(ellipsis) - 1,
1895 		       ellipsis);
1896 	ctl_putdata(fmtbuf, strlen(fmtbuf), 0);
1897 }
1898 
1899 
1900 /*
1901  * ctl_putsys - output a system variable
1902  */
1903 static void
1904 ctl_putsys(
1905 	int varid
1906 	)
1907 {
1908 	l_fp tmp;
1909 	char str[256];
1910 	u_int u;
1911 	double kb;
1912 	double dtemp;
1913 	const char *ss;
1914 #ifdef AUTOKEY
1915 	struct cert_info *cp;
1916 #endif	/* AUTOKEY */
1917 #ifdef KERNEL_PLL
1918 	static struct timex ntx;
1919 	static u_long ntp_adjtime_time;
1920 
1921 	/*
1922 	 * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1923 	 */
1924 	if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1925 	    current_time != ntp_adjtime_time) {
1926 		ZERO(ntx);
1927 		if (ntp_adjtime(&ntx) < 0)
1928 			msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1929 		else
1930 			ntp_adjtime_time = current_time;
1931 	}
1932 #endif	/* KERNEL_PLL */
1933 
1934 	switch (varid) {
1935 
1936 	case CS_LEAP:
1937 		ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1938 		break;
1939 
1940 	case CS_STRATUM:
1941 		ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1942 		break;
1943 
1944 	case CS_PRECISION:
1945 		ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1946 		break;
1947 
1948 	case CS_ROOTDELAY:
1949 		ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1950 			   1e3);
1951 		break;
1952 
1953 	case CS_ROOTDISPERSION:
1954 		ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1955 			   sys_rootdisp * 1e3);
1956 		break;
1957 
1958 	case CS_REFID:
1959 		if (REFID_ISTEXT(sys_stratum))
1960 			ctl_putrefid(sys_var[varid].text, sys_refid);
1961 		else
1962 			ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1963 		break;
1964 
1965 	case CS_REFTIME:
1966 		ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
1967 		break;
1968 
1969 	case CS_POLL:
1970 		ctl_putuint(sys_var[CS_POLL].text, sys_poll);
1971 		break;
1972 
1973 	case CS_PEERID:
1974 		if (sys_peer == NULL)
1975 			ctl_putuint(sys_var[CS_PEERID].text, 0);
1976 		else
1977 			ctl_putuint(sys_var[CS_PEERID].text,
1978 				    sys_peer->associd);
1979 		break;
1980 
1981 	case CS_PEERADR:
1982 		if (sys_peer != NULL && sys_peer->dstadr != NULL)
1983 			ss = sptoa(&sys_peer->srcadr);
1984 		else
1985 			ss = "0.0.0.0:0";
1986 		ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
1987 		break;
1988 
1989 	case CS_PEERMODE:
1990 		u = (sys_peer != NULL)
1991 			? sys_peer->hmode
1992 			: MODE_UNSPEC;
1993 		ctl_putuint(sys_var[CS_PEERMODE].text, u);
1994 		break;
1995 
1996 	case CS_OFFSET:
1997 		ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
1998 		break;
1999 
2000 	case CS_DRIFT:
2001 		ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
2002 		break;
2003 
2004 	case CS_JITTER:
2005 		ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
2006 		break;
2007 
2008 	case CS_ERROR:
2009 		ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
2010 		break;
2011 
2012 	case CS_CLOCK:
2013 		get_systime(&tmp);
2014 		ctl_putts(sys_var[CS_CLOCK].text, &tmp);
2015 		break;
2016 
2017 	case CS_PROCESSOR:
2018 #ifndef HAVE_UNAME
2019 		ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
2020 			   sizeof(str_processor) - 1);
2021 #else
2022 		ctl_putstr(sys_var[CS_PROCESSOR].text,
2023 			   utsnamebuf.machine, strlen(utsnamebuf.machine));
2024 #endif /* HAVE_UNAME */
2025 		break;
2026 
2027 	case CS_SYSTEM:
2028 #ifndef HAVE_UNAME
2029 		ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
2030 			   sizeof(str_system) - 1);
2031 #else
2032 		snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
2033 			 utsnamebuf.release);
2034 		ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
2035 #endif /* HAVE_UNAME */
2036 		break;
2037 
2038 	case CS_VERSION:
2039 		ctl_putstr(sys_var[CS_VERSION].text, Version,
2040 			   strlen(Version));
2041 		break;
2042 
2043 	case CS_STABIL:
2044 		ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
2045 			   1e6);
2046 		break;
2047 
2048 	case CS_VARLIST:
2049 	{
2050 		char buf[CTL_MAX_DATA_LEN];
2051 		//buffPointer, firstElementPointer, buffEndPointer
2052 		char *buffp, *buffend;
2053 		int firstVarName;
2054 		const char *ss1;
2055 		int len;
2056 		const struct ctl_var *k;
2057 
2058 		buffp = buf;
2059 		buffend = buf + sizeof(buf);
2060 		if (strlen(sys_var[CS_VARLIST].text) > (sizeof(buf) - 4))
2061 			break;	/* really long var name */
2062 
2063 		snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
2064 		buffp += strlen(buffp);
2065 		firstVarName = TRUE;
2066 		for (k = sys_var; !(k->flags & EOV); k++) {
2067 			if (k->flags & PADDING)
2068 				continue;
2069 			len = strlen(k->text);
2070 			if (len + 1 >= buffend - buffp)
2071 				break;
2072 			if (!firstVarName)
2073 				*buffp++ = ',';
2074 			else
2075 				firstVarName = FALSE;
2076 			memcpy(buffp, k->text, len);
2077 			buffp += len;
2078 		}
2079 
2080 		for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
2081 			if (k->flags & PADDING)
2082 				continue;
2083 			if (NULL == k->text)
2084 				continue;
2085 			ss1 = strchr(k->text, '=');
2086 			if (NULL == ss1)
2087 				len = strlen(k->text);
2088 			else
2089 				len = ss1 - k->text;
2090 			if (len + 1 >= buffend - buffp)
2091 				break;
2092 			if (firstVarName) {
2093 				*buffp++ = ',';
2094 				firstVarName = FALSE;
2095 			}
2096 			memcpy(buffp, k->text,(unsigned)len);
2097 			buffp += len;
2098 		}
2099 		if (2 >= buffend - buffp)
2100 			break;
2101 
2102 		*buffp++ = '"';
2103 		*buffp = '\0';
2104 
2105 		ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
2106 		break;
2107 	}
2108 
2109 	case CS_TAI:
2110 		if (sys_tai > 0)
2111 			ctl_putuint(sys_var[CS_TAI].text, sys_tai);
2112 		break;
2113 
2114 	case CS_LEAPTAB:
2115 	{
2116 		leap_signature_t lsig;
2117 		leapsec_getsig(&lsig);
2118 		if (lsig.ttime > 0)
2119 			ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
2120 		break;
2121 	}
2122 
2123 	case CS_LEAPEND:
2124 	{
2125 		leap_signature_t lsig;
2126 		leapsec_getsig(&lsig);
2127 		if (lsig.etime > 0)
2128 			ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
2129 		break;
2130 	}
2131 
2132 #ifdef LEAP_SMEAR
2133 	case CS_LEAPSMEARINTV:
2134 		if (leap_smear_intv > 0)
2135 			ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv);
2136 		break;
2137 
2138 	case CS_LEAPSMEAROFFS:
2139 		if (leap_smear_intv > 0)
2140 			ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text,
2141 				   leap_smear.doffset * 1e3);
2142 		break;
2143 #endif	/* LEAP_SMEAR */
2144 
2145 	case CS_RATE:
2146 		ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
2147 		break;
2148 
2149 	case CS_MRU_ENABLED:
2150 		ctl_puthex(sys_var[varid].text, mon_enabled);
2151 		break;
2152 
2153 	case CS_MRU_DEPTH:
2154 		ctl_putuint(sys_var[varid].text, mru_entries);
2155 		break;
2156 
2157 	case CS_MRU_MEM:
2158 		kb = mru_entries * (sizeof(mon_entry) / 1024.);
2159 		u = (u_int)kb;
2160 		if (kb - u >= 0.5)
2161 			u++;
2162 		ctl_putuint(sys_var[varid].text, u);
2163 		break;
2164 
2165 	case CS_MRU_DEEPEST:
2166 		ctl_putuint(sys_var[varid].text, mru_peakentries);
2167 		break;
2168 
2169 	case CS_MRU_MINDEPTH:
2170 		ctl_putuint(sys_var[varid].text, mru_mindepth);
2171 		break;
2172 
2173 	case CS_MRU_MAXAGE:
2174 		ctl_putint(sys_var[varid].text, mru_maxage);
2175 		break;
2176 
2177 	case CS_MRU_MAXDEPTH:
2178 		ctl_putuint(sys_var[varid].text, mru_maxdepth);
2179 		break;
2180 
2181 	case CS_MRU_MAXMEM:
2182 		kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
2183 		u = (u_int)kb;
2184 		if (kb - u >= 0.5)
2185 			u++;
2186 		ctl_putuint(sys_var[varid].text, u);
2187 		break;
2188 
2189 	case CS_SS_UPTIME:
2190 		ctl_putuint(sys_var[varid].text, current_time);
2191 		break;
2192 
2193 	case CS_SS_RESET:
2194 		ctl_putuint(sys_var[varid].text,
2195 			    current_time - sys_stattime);
2196 		break;
2197 
2198 	case CS_SS_RECEIVED:
2199 		ctl_putuint(sys_var[varid].text, sys_received);
2200 		break;
2201 
2202 	case CS_SS_THISVER:
2203 		ctl_putuint(sys_var[varid].text, sys_newversion);
2204 		break;
2205 
2206 	case CS_SS_OLDVER:
2207 		ctl_putuint(sys_var[varid].text, sys_oldversion);
2208 		break;
2209 
2210 	case CS_SS_BADFORMAT:
2211 		ctl_putuint(sys_var[varid].text, sys_badlength);
2212 		break;
2213 
2214 	case CS_SS_BADAUTH:
2215 		ctl_putuint(sys_var[varid].text, sys_badauth);
2216 		break;
2217 
2218 	case CS_SS_DECLINED:
2219 		ctl_putuint(sys_var[varid].text, sys_declined);
2220 		break;
2221 
2222 	case CS_SS_RESTRICTED:
2223 		ctl_putuint(sys_var[varid].text, sys_restricted);
2224 		break;
2225 
2226 	case CS_SS_LIMITED:
2227 		ctl_putuint(sys_var[varid].text, sys_limitrejected);
2228 		break;
2229 
2230 	case CS_SS_LAMPORT:
2231 		ctl_putuint(sys_var[varid].text, sys_lamport);
2232 		break;
2233 
2234 	case CS_SS_TSROUNDING:
2235 		ctl_putuint(sys_var[varid].text, sys_tsrounding);
2236 		break;
2237 
2238 	case CS_SS_KODSENT:
2239 		ctl_putuint(sys_var[varid].text, sys_kodsent);
2240 		break;
2241 
2242 	case CS_SS_PROCESSED:
2243 		ctl_putuint(sys_var[varid].text, sys_processed);
2244 		break;
2245 
2246 	case CS_BCASTDELAY:
2247 		ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2248 		break;
2249 
2250 	case CS_AUTHDELAY:
2251 		LFPTOD(&sys_authdelay, dtemp);
2252 		ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2253 		break;
2254 
2255 	case CS_AUTHKEYS:
2256 		ctl_putuint(sys_var[varid].text, authnumkeys);
2257 		break;
2258 
2259 	case CS_AUTHFREEK:
2260 		ctl_putuint(sys_var[varid].text, authnumfreekeys);
2261 		break;
2262 
2263 	case CS_AUTHKLOOKUPS:
2264 		ctl_putuint(sys_var[varid].text, authkeylookups);
2265 		break;
2266 
2267 	case CS_AUTHKNOTFOUND:
2268 		ctl_putuint(sys_var[varid].text, authkeynotfound);
2269 		break;
2270 
2271 	case CS_AUTHKUNCACHED:
2272 		ctl_putuint(sys_var[varid].text, authkeyuncached);
2273 		break;
2274 
2275 	case CS_AUTHKEXPIRED:
2276 		ctl_putuint(sys_var[varid].text, authkeyexpired);
2277 		break;
2278 
2279 	case CS_AUTHENCRYPTS:
2280 		ctl_putuint(sys_var[varid].text, authencryptions);
2281 		break;
2282 
2283 	case CS_AUTHDECRYPTS:
2284 		ctl_putuint(sys_var[varid].text, authdecryptions);
2285 		break;
2286 
2287 	case CS_AUTHRESET:
2288 		ctl_putuint(sys_var[varid].text,
2289 			    current_time - auth_timereset);
2290 		break;
2291 
2292 		/*
2293 		 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2294 		 * unavailable, otherwise calls putfunc with args.
2295 		 */
2296 #ifndef KERNEL_PLL
2297 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2298 		ctl_putint(sys_var[varid].text, 0)
2299 #else
2300 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2301 		putfunc args
2302 #endif
2303 
2304 		/*
2305 		 * CTL_IF_KERNPPS() puts a zero if either the kernel
2306 		 * loop is unavailable, or kernel hard PPS is not
2307 		 * active, otherwise calls putfunc with args.
2308 		 */
2309 #ifndef KERNEL_PLL
2310 # define	CTL_IF_KERNPPS(putfunc, args)	\
2311 		ctl_putint(sys_var[varid].text, 0)
2312 #else
2313 # define	CTL_IF_KERNPPS(putfunc, args)			\
2314 		if (0 == ntx.shift)				\
2315 			ctl_putint(sys_var[varid].text, 0);	\
2316 		else						\
2317 			putfunc args	/* no trailing ; */
2318 #endif
2319 
2320 	case CS_K_OFFSET:
2321 		CTL_IF_KERNLOOP(
2322 			ctl_putdblf,
2323 			(sys_var[varid].text, 0, -1,
2324 			 1000 * dbl_from_var_long(ntx.offset, ntx.status))
2325 		);
2326 		break;
2327 
2328 	case CS_K_FREQ:
2329 		CTL_IF_KERNLOOP(
2330 			ctl_putsfp,
2331 			(sys_var[varid].text, ntx.freq)
2332 		);
2333 		break;
2334 
2335 	case CS_K_MAXERR:
2336 		CTL_IF_KERNLOOP(
2337 			ctl_putdblf,
2338 			(sys_var[varid].text, 0, 6,
2339 			 1000 * dbl_from_usec_long(ntx.maxerror))
2340 		);
2341 		break;
2342 
2343 	case CS_K_ESTERR:
2344 		CTL_IF_KERNLOOP(
2345 			ctl_putdblf,
2346 			(sys_var[varid].text, 0, 6,
2347 			 1000 * dbl_from_usec_long(ntx.esterror))
2348 		);
2349 		break;
2350 
2351 	case CS_K_STFLAGS:
2352 #ifndef KERNEL_PLL
2353 		ss = "";
2354 #else
2355 		ss = k_st_flags(ntx.status);
2356 #endif
2357 		ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2358 		break;
2359 
2360 	case CS_K_TIMECONST:
2361 		CTL_IF_KERNLOOP(
2362 			ctl_putint,
2363 			(sys_var[varid].text, ntx.constant)
2364 		);
2365 		break;
2366 
2367 	case CS_K_PRECISION:
2368 		CTL_IF_KERNLOOP(
2369 			ctl_putdblf,
2370 			(sys_var[varid].text, 0, 6,
2371 			 1000 * dbl_from_var_long(ntx.precision, ntx.status))
2372 		);
2373 		break;
2374 
2375 	case CS_K_FREQTOL:
2376 		CTL_IF_KERNLOOP(
2377 			ctl_putsfp,
2378 			(sys_var[varid].text, ntx.tolerance)
2379 		);
2380 		break;
2381 
2382 	case CS_K_PPS_FREQ:
2383 		CTL_IF_KERNPPS(
2384 			ctl_putsfp,
2385 			(sys_var[varid].text, ntx.ppsfreq)
2386 		);
2387 		break;
2388 
2389 	case CS_K_PPS_STABIL:
2390 		CTL_IF_KERNPPS(
2391 			ctl_putsfp,
2392 			(sys_var[varid].text, ntx.stabil)
2393 		);
2394 		break;
2395 
2396 	case CS_K_PPS_JITTER:
2397 		CTL_IF_KERNPPS(
2398 			ctl_putdbl,
2399 			(sys_var[varid].text,
2400 			 1000 * dbl_from_var_long(ntx.jitter, ntx.status))
2401 		);
2402 		break;
2403 
2404 	case CS_K_PPS_CALIBDUR:
2405 		CTL_IF_KERNPPS(
2406 			ctl_putint,
2407 			(sys_var[varid].text, 1 << ntx.shift)
2408 		);
2409 		break;
2410 
2411 	case CS_K_PPS_CALIBS:
2412 		CTL_IF_KERNPPS(
2413 			ctl_putint,
2414 			(sys_var[varid].text, ntx.calcnt)
2415 		);
2416 		break;
2417 
2418 	case CS_K_PPS_CALIBERRS:
2419 		CTL_IF_KERNPPS(
2420 			ctl_putint,
2421 			(sys_var[varid].text, ntx.errcnt)
2422 		);
2423 		break;
2424 
2425 	case CS_K_PPS_JITEXC:
2426 		CTL_IF_KERNPPS(
2427 			ctl_putint,
2428 			(sys_var[varid].text, ntx.jitcnt)
2429 		);
2430 		break;
2431 
2432 	case CS_K_PPS_STBEXC:
2433 		CTL_IF_KERNPPS(
2434 			ctl_putint,
2435 			(sys_var[varid].text, ntx.stbcnt)
2436 		);
2437 		break;
2438 
2439 	case CS_IOSTATS_RESET:
2440 		ctl_putuint(sys_var[varid].text,
2441 			    current_time - io_timereset);
2442 		break;
2443 
2444 	case CS_TOTAL_RBUF:
2445 		ctl_putuint(sys_var[varid].text, total_recvbuffs());
2446 		break;
2447 
2448 	case CS_FREE_RBUF:
2449 		ctl_putuint(sys_var[varid].text, free_recvbuffs());
2450 		break;
2451 
2452 	case CS_USED_RBUF:
2453 		ctl_putuint(sys_var[varid].text, full_recvbuffs());
2454 		break;
2455 
2456 	case CS_RBUF_LOWATER:
2457 		ctl_putuint(sys_var[varid].text, lowater_additions());
2458 		break;
2459 
2460 	case CS_IO_DROPPED:
2461 		ctl_putuint(sys_var[varid].text, packets_dropped);
2462 		break;
2463 
2464 	case CS_IO_IGNORED:
2465 		ctl_putuint(sys_var[varid].text, packets_ignored);
2466 		break;
2467 
2468 	case CS_IO_RECEIVED:
2469 		ctl_putuint(sys_var[varid].text, packets_received);
2470 		break;
2471 
2472 	case CS_IO_SENT:
2473 		ctl_putuint(sys_var[varid].text, packets_sent);
2474 		break;
2475 
2476 	case CS_IO_SENDFAILED:
2477 		ctl_putuint(sys_var[varid].text, packets_notsent);
2478 		break;
2479 
2480 	case CS_IO_WAKEUPS:
2481 		ctl_putuint(sys_var[varid].text, handler_calls);
2482 		break;
2483 
2484 	case CS_IO_GOODWAKEUPS:
2485 		ctl_putuint(sys_var[varid].text, handler_pkts);
2486 		break;
2487 
2488 	case CS_TIMERSTATS_RESET:
2489 		ctl_putuint(sys_var[varid].text,
2490 			    current_time - timer_timereset);
2491 		break;
2492 
2493 	case CS_TIMER_OVERRUNS:
2494 		ctl_putuint(sys_var[varid].text, alarm_overflow);
2495 		break;
2496 
2497 	case CS_TIMER_XMTS:
2498 		ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2499 		break;
2500 
2501 	case CS_FUZZ:
2502 		ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2503 		break;
2504 	case CS_WANDER_THRESH:
2505 		ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
2506 		break;
2507 #ifdef AUTOKEY
2508 	case CS_FLAGS:
2509 		if (crypto_flags)
2510 			ctl_puthex(sys_var[CS_FLAGS].text,
2511 			    crypto_flags);
2512 		break;
2513 
2514 	case CS_DIGEST:
2515 		if (crypto_flags) {
2516 			strlcpy(str, OBJ_nid2ln(crypto_nid),
2517 			    COUNTOF(str));
2518 			ctl_putstr(sys_var[CS_DIGEST].text, str,
2519 			    strlen(str));
2520 		}
2521 		break;
2522 
2523 	case CS_SIGNATURE:
2524 		if (crypto_flags) {
2525 			const EVP_MD *dp;
2526 
2527 			dp = EVP_get_digestbynid(crypto_flags >> 16);
2528 			strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2529 			    COUNTOF(str));
2530 			ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2531 			    strlen(str));
2532 		}
2533 		break;
2534 
2535 	case CS_HOST:
2536 		if (hostval.ptr != NULL)
2537 			ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2538 			    strlen(hostval.ptr));
2539 		break;
2540 
2541 	case CS_IDENT:
2542 		if (sys_ident != NULL)
2543 			ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2544 			    strlen(sys_ident));
2545 		break;
2546 
2547 	case CS_CERTIF:
2548 		for (cp = cinfo; cp != NULL; cp = cp->link) {
2549 			snprintf(str, sizeof(str), "%s %s 0x%x",
2550 			    cp->subject, cp->issuer, cp->flags);
2551 			ctl_putstr(sys_var[CS_CERTIF].text, str,
2552 			    strlen(str));
2553 			ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
2554 		}
2555 		break;
2556 
2557 	case CS_PUBLIC:
2558 		if (hostval.tstamp != 0)
2559 			ctl_putfs(sys_var[CS_PUBLIC].text,
2560 			    ntohl(hostval.tstamp));
2561 		break;
2562 #endif	/* AUTOKEY */
2563 
2564 	default:
2565 		break;
2566 	}
2567 }
2568 
2569 
2570 /*
2571  * ctl_putpeer - output a peer variable
2572  */
2573 static void
2574 ctl_putpeer(
2575 	int id,
2576 	struct peer *p
2577 	)
2578 {
2579 	char buf[CTL_MAX_DATA_LEN];
2580 	char *s;
2581 	char *t;
2582 	char *be;
2583 	int i;
2584 	const struct ctl_var *k;
2585 #ifdef AUTOKEY
2586 	struct autokey *ap;
2587 	const EVP_MD *dp;
2588 	const char *str;
2589 #endif	/* AUTOKEY */
2590 
2591 	switch (id) {
2592 
2593 	case CP_CONFIG:
2594 		ctl_putuint(peer_var[id].text,
2595 			    !(FLAG_PREEMPT & p->flags));
2596 		break;
2597 
2598 	case CP_AUTHENABLE:
2599 		ctl_putuint(peer_var[id].text, !(p->keyid));
2600 		break;
2601 
2602 	case CP_AUTHENTIC:
2603 		ctl_putuint(peer_var[id].text,
2604 			    !!(FLAG_AUTHENTIC & p->flags));
2605 		break;
2606 
2607 	case CP_SRCADR:
2608 		ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2609 		break;
2610 
2611 	case CP_SRCPORT:
2612 		ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2613 		break;
2614 
2615 	case CP_SRCHOST:
2616 		if (p->hostname != NULL)
2617 			ctl_putstr(peer_var[id].text, p->hostname,
2618 				   strlen(p->hostname));
2619 		break;
2620 
2621 	case CP_DSTADR:
2622 		ctl_putadr(peer_var[id].text, 0,
2623 			   (p->dstadr != NULL)
2624 				? &p->dstadr->sin
2625 				: NULL);
2626 		break;
2627 
2628 	case CP_DSTPORT:
2629 		ctl_putuint(peer_var[id].text,
2630 			    (p->dstadr != NULL)
2631 				? SRCPORT(&p->dstadr->sin)
2632 				: 0);
2633 		break;
2634 
2635 	case CP_IN:
2636 		if (p->r21 > 0.)
2637 			ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2638 		break;
2639 
2640 	case CP_OUT:
2641 		if (p->r34 > 0.)
2642 			ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2643 		break;
2644 
2645 	case CP_RATE:
2646 		ctl_putuint(peer_var[id].text, p->throttle);
2647 		break;
2648 
2649 	case CP_LEAP:
2650 		ctl_putuint(peer_var[id].text, p->leap);
2651 		break;
2652 
2653 	case CP_HMODE:
2654 		ctl_putuint(peer_var[id].text, p->hmode);
2655 		break;
2656 
2657 	case CP_STRATUM:
2658 		ctl_putuint(peer_var[id].text, p->stratum);
2659 		break;
2660 
2661 	case CP_PPOLL:
2662 		ctl_putuint(peer_var[id].text, p->ppoll);
2663 		break;
2664 
2665 	case CP_HPOLL:
2666 		ctl_putuint(peer_var[id].text, p->hpoll);
2667 		break;
2668 
2669 	case CP_PRECISION:
2670 		ctl_putint(peer_var[id].text, p->precision);
2671 		break;
2672 
2673 	case CP_ROOTDELAY:
2674 		ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2675 		break;
2676 
2677 	case CP_ROOTDISPERSION:
2678 		ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2679 		break;
2680 
2681 	case CP_REFID:
2682 #ifdef REFCLOCK
2683 		if (p->flags & FLAG_REFCLOCK) {
2684 			ctl_putrefid(peer_var[id].text, p->refid);
2685 			break;
2686 		}
2687 #endif
2688 		if (REFID_ISTEXT(p->stratum))
2689 			ctl_putrefid(peer_var[id].text, p->refid);
2690 		else
2691 			ctl_putadr(peer_var[id].text, p->refid, NULL);
2692 		break;
2693 
2694 	case CP_REFTIME:
2695 		ctl_putts(peer_var[id].text, &p->reftime);
2696 		break;
2697 
2698 	case CP_ORG:
2699 		ctl_putts(peer_var[id].text, &p->aorg);
2700 		break;
2701 
2702 	case CP_REC:
2703 		ctl_putts(peer_var[id].text, &p->dst);
2704 		break;
2705 
2706 	case CP_XMT:
2707 		if (p->xleave)
2708 			ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2709 		break;
2710 
2711 	case CP_BIAS:
2712 		if (p->bias != 0.)
2713 			ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2714 		break;
2715 
2716 	case CP_REACH:
2717 		ctl_puthex(peer_var[id].text, p->reach);
2718 		break;
2719 
2720 	case CP_FLASH:
2721 		ctl_puthex(peer_var[id].text, p->flash);
2722 		break;
2723 
2724 	case CP_TTL:
2725 #ifdef REFCLOCK
2726 		if (p->flags & FLAG_REFCLOCK) {
2727 			ctl_putuint(peer_var[id].text, p->ttl);
2728 			break;
2729 		}
2730 #endif
2731 		if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2732 			ctl_putint(peer_var[id].text,
2733 				   sys_ttl[p->ttl]);
2734 		break;
2735 
2736 	case CP_UNREACH:
2737 		ctl_putuint(peer_var[id].text, p->unreach);
2738 		break;
2739 
2740 	case CP_TIMER:
2741 		ctl_putuint(peer_var[id].text,
2742 			    p->nextdate - current_time);
2743 		break;
2744 
2745 	case CP_DELAY:
2746 		ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2747 		break;
2748 
2749 	case CP_OFFSET:
2750 		ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2751 		break;
2752 
2753 	case CP_JITTER:
2754 		ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2755 		break;
2756 
2757 	case CP_DISPERSION:
2758 		ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2759 		break;
2760 
2761 	case CP_KEYID:
2762 		if (p->keyid > NTP_MAXKEY)
2763 			ctl_puthex(peer_var[id].text, p->keyid);
2764 		else
2765 			ctl_putuint(peer_var[id].text, p->keyid);
2766 		break;
2767 
2768 	case CP_FILTDELAY:
2769 		ctl_putarray(peer_var[id].text, p->filter_delay,
2770 			     p->filter_nextpt);
2771 		break;
2772 
2773 	case CP_FILTOFFSET:
2774 		ctl_putarray(peer_var[id].text, p->filter_offset,
2775 			     p->filter_nextpt);
2776 		break;
2777 
2778 	case CP_FILTERROR:
2779 		ctl_putarray(peer_var[id].text, p->filter_disp,
2780 			     p->filter_nextpt);
2781 		break;
2782 
2783 	case CP_PMODE:
2784 		ctl_putuint(peer_var[id].text, p->pmode);
2785 		break;
2786 
2787 	case CP_RECEIVED:
2788 		ctl_putuint(peer_var[id].text, p->received);
2789 		break;
2790 
2791 	case CP_SENT:
2792 		ctl_putuint(peer_var[id].text, p->sent);
2793 		break;
2794 
2795 	case CP_VARLIST:
2796 		s = buf;
2797 		be = buf + sizeof(buf);
2798 		if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2799 			break;	/* really long var name */
2800 
2801 		snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2802 		s += strlen(s);
2803 		t = s;
2804 		for (k = peer_var; !(EOV & k->flags); k++) {
2805 			if (PADDING & k->flags)
2806 				continue;
2807 			i = strlen(k->text);
2808 			if (s + i + 1 >= be)
2809 				break;
2810 			if (s != t)
2811 				*s++ = ',';
2812 			memcpy(s, k->text, i);
2813 			s += i;
2814 		}
2815 		if (s + 2 < be) {
2816 			*s++ = '"';
2817 			*s = '\0';
2818 			ctl_putdata(buf, (u_int)(s - buf), 0);
2819 		}
2820 		break;
2821 
2822 	case CP_TIMEREC:
2823 		ctl_putuint(peer_var[id].text,
2824 			    current_time - p->timereceived);
2825 		break;
2826 
2827 	case CP_TIMEREACH:
2828 		ctl_putuint(peer_var[id].text,
2829 			    current_time - p->timereachable);
2830 		break;
2831 
2832 	case CP_BADAUTH:
2833 		ctl_putuint(peer_var[id].text, p->badauth);
2834 		break;
2835 
2836 	case CP_BOGUSORG:
2837 		ctl_putuint(peer_var[id].text, p->bogusorg);
2838 		break;
2839 
2840 	case CP_OLDPKT:
2841 		ctl_putuint(peer_var[id].text, p->oldpkt);
2842 		break;
2843 
2844 	case CP_SELDISP:
2845 		ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2846 		break;
2847 
2848 	case CP_SELBROKEN:
2849 		ctl_putuint(peer_var[id].text, p->selbroken);
2850 		break;
2851 
2852 	case CP_CANDIDATE:
2853 		ctl_putuint(peer_var[id].text, p->status);
2854 		break;
2855 #ifdef AUTOKEY
2856 	case CP_FLAGS:
2857 		if (p->crypto)
2858 			ctl_puthex(peer_var[id].text, p->crypto);
2859 		break;
2860 
2861 	case CP_SIGNATURE:
2862 		if (p->crypto) {
2863 			dp = EVP_get_digestbynid(p->crypto >> 16);
2864 			str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2865 			ctl_putstr(peer_var[id].text, str, strlen(str));
2866 		}
2867 		break;
2868 
2869 	case CP_HOST:
2870 		if (p->subject != NULL)
2871 			ctl_putstr(peer_var[id].text, p->subject,
2872 			    strlen(p->subject));
2873 		break;
2874 
2875 	case CP_VALID:		/* not used */
2876 		break;
2877 
2878 	case CP_INITSEQ:
2879 		if (NULL == (ap = p->recval.ptr))
2880 			break;
2881 
2882 		ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2883 		ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2884 		ctl_putfs(peer_var[CP_INITTSP].text,
2885 			  ntohl(p->recval.tstamp));
2886 		break;
2887 
2888 	case CP_IDENT:
2889 		if (p->ident != NULL)
2890 			ctl_putstr(peer_var[id].text, p->ident,
2891 			    strlen(p->ident));
2892 		break;
2893 
2894 
2895 #endif	/* AUTOKEY */
2896 	}
2897 }
2898 
2899 
2900 #ifdef REFCLOCK
2901 /*
2902  * ctl_putclock - output clock variables
2903  */
2904 static void
2905 ctl_putclock(
2906 	int id,
2907 	struct refclockstat *pcs,
2908 	int mustput
2909 	)
2910 {
2911 	char buf[CTL_MAX_DATA_LEN];
2912 	char *s, *t, *be;
2913 	const char *ss;
2914 	int i;
2915 	const struct ctl_var *k;
2916 
2917 	switch (id) {
2918 
2919 	case CC_TYPE:
2920 		if (mustput || pcs->clockdesc == NULL
2921 		    || *(pcs->clockdesc) == '\0') {
2922 			ctl_putuint(clock_var[id].text, pcs->type);
2923 		}
2924 		break;
2925 	case CC_TIMECODE:
2926 		ctl_putstr(clock_var[id].text,
2927 			   pcs->p_lastcode,
2928 			   (unsigned)pcs->lencode);
2929 		break;
2930 
2931 	case CC_POLL:
2932 		ctl_putuint(clock_var[id].text, pcs->polls);
2933 		break;
2934 
2935 	case CC_NOREPLY:
2936 		ctl_putuint(clock_var[id].text,
2937 			    pcs->noresponse);
2938 		break;
2939 
2940 	case CC_BADFORMAT:
2941 		ctl_putuint(clock_var[id].text,
2942 			    pcs->badformat);
2943 		break;
2944 
2945 	case CC_BADDATA:
2946 		ctl_putuint(clock_var[id].text,
2947 			    pcs->baddata);
2948 		break;
2949 
2950 	case CC_FUDGETIME1:
2951 		if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2952 			ctl_putdbl(clock_var[id].text,
2953 				   pcs->fudgetime1 * 1e3);
2954 		break;
2955 
2956 	case CC_FUDGETIME2:
2957 		if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2958 			ctl_putdbl(clock_var[id].text,
2959 				   pcs->fudgetime2 * 1e3);
2960 		break;
2961 
2962 	case CC_FUDGEVAL1:
2963 		if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2964 			ctl_putint(clock_var[id].text,
2965 				   pcs->fudgeval1);
2966 		break;
2967 
2968 	case CC_FUDGEVAL2:
2969 		/* RefID of clocks are always text even if stratum is fudged */
2970 		if (mustput || (pcs->haveflags & CLK_HAVEVAL2))
2971 			ctl_putrefid(clock_var[id].text, pcs->fudgeval2);
2972 		break;
2973 
2974 	case CC_FLAGS:
2975 		ctl_putuint(clock_var[id].text, pcs->flags);
2976 		break;
2977 
2978 	case CC_DEVICE:
2979 		if (pcs->clockdesc == NULL ||
2980 		    *(pcs->clockdesc) == '\0') {
2981 			if (mustput)
2982 				ctl_putstr(clock_var[id].text,
2983 					   "", 0);
2984 		} else {
2985 			ctl_putstr(clock_var[id].text,
2986 				   pcs->clockdesc,
2987 				   strlen(pcs->clockdesc));
2988 		}
2989 		break;
2990 
2991 	case CC_VARLIST:
2992 		s = buf;
2993 		be = buf + sizeof(buf);
2994 		if (strlen(clock_var[CC_VARLIST].text) + 4 >
2995 		    sizeof(buf))
2996 			break;	/* really long var name */
2997 
2998 		snprintf(s, sizeof(buf), "%s=\"",
2999 			 clock_var[CC_VARLIST].text);
3000 		s += strlen(s);
3001 		t = s;
3002 
3003 		for (k = clock_var; !(EOV & k->flags); k++) {
3004 			if (PADDING & k->flags)
3005 				continue;
3006 
3007 			i = strlen(k->text);
3008 			if (s + i + 1 >= be)
3009 				break;
3010 
3011 			if (s != t)
3012 				*s++ = ',';
3013 			memcpy(s, k->text, i);
3014 			s += i;
3015 		}
3016 
3017 		for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
3018 			if (PADDING & k->flags)
3019 				continue;
3020 
3021 			ss = k->text;
3022 			if (NULL == ss)
3023 				continue;
3024 
3025 			while (*ss && *ss != '=')
3026 				ss++;
3027 			i = ss - k->text;
3028 			if (s + i + 1 >= be)
3029 				break;
3030 
3031 			if (s != t)
3032 				*s++ = ',';
3033 			memcpy(s, k->text, (unsigned)i);
3034 			s += i;
3035 			*s = '\0';
3036 		}
3037 		if (s + 2 >= be)
3038 			break;
3039 
3040 		*s++ = '"';
3041 		*s = '\0';
3042 		ctl_putdata(buf, (unsigned)(s - buf), 0);
3043 		break;
3044 
3045 	case CC_FUDGEMINJIT:
3046 		if (mustput || (pcs->haveflags & CLK_HAVEMINJIT))
3047 			ctl_putdbl(clock_var[id].text,
3048 				   pcs->fudgeminjitter * 1e3);
3049 		break;
3050 
3051 	default:
3052 		break;
3053 
3054 	}
3055 }
3056 #endif
3057 
3058 
3059 
3060 /*
3061  * ctl_getitem - get the next data item from the incoming packet
3062  */
3063 static const struct ctl_var *
3064 ctl_getitem(
3065 	const struct ctl_var *var_list,
3066 	char **data
3067 	)
3068 {
3069 	/* [Bug 3008] First check the packet data sanity, then search
3070 	 * the key. This improves the consistency of result values: If
3071 	 * the result is NULL once, it will never be EOV again for this
3072 	 * packet; If it's EOV, it will never be NULL again until the
3073 	 * variable is found and processed in a given 'var_list'. (That
3074 	 * is, a result is returned that is neither NULL nor EOV).
3075 	 */
3076 	static const struct ctl_var eol = { 0, EOV, NULL };
3077 	static char buf[128];
3078 	static u_long quiet_until;
3079 	const struct ctl_var *v;
3080 	char *cp;
3081 	char *tp;
3082 
3083 	/*
3084 	 * Part One: Validate the packet state
3085 	 */
3086 
3087 	/* Delete leading commas and white space */
3088 	while (reqpt < reqend && (*reqpt == ',' ||
3089 				  isspace((unsigned char)*reqpt)))
3090 		reqpt++;
3091 	if (reqpt >= reqend)
3092 		return NULL;
3093 
3094 	/* Scan the string in the packet until we hit comma or
3095 	 * EoB. Register position of first '=' on the fly. */
3096 	for (tp = NULL, cp = reqpt; cp != reqend; ++cp) {
3097 		if (*cp == '=' && tp == NULL)
3098 			tp = cp;
3099 		if (*cp == ',')
3100 			break;
3101 	}
3102 
3103 	/* Process payload, if any. */
3104 	*data = NULL;
3105 	if (NULL != tp) {
3106 		/* eventually strip white space from argument. */
3107 		const char *plhead = tp + 1; /* skip the '=' */
3108 		const char *pltail = cp;
3109 		size_t      plsize;
3110 
3111 		while (plhead != pltail && isspace((u_char)plhead[0]))
3112 			++plhead;
3113 		while (plhead != pltail && isspace((u_char)pltail[-1]))
3114 			--pltail;
3115 
3116 		/* check payload size, terminate packet on overflow */
3117 		plsize = (size_t)(pltail - plhead);
3118 		if (plsize >= sizeof(buf))
3119 			goto badpacket;
3120 
3121 		/* copy data, NUL terminate, and set result data ptr */
3122 		memcpy(buf, plhead, plsize);
3123 		buf[plsize] = '\0';
3124 		*data = buf;
3125 	} else {
3126 		/* no payload, current end --> current name termination */
3127 		tp = cp;
3128 	}
3129 
3130 	/* Part Two
3131 	 *
3132 	 * Now we're sure that the packet data itself is sane. Scan the
3133 	 * list now. Make sure a NULL list is properly treated by
3134 	 * returning a synthetic End-Of-Values record. We must not
3135 	 * return NULL pointers after this point, or the behaviour would
3136 	 * become inconsistent if called several times with different
3137 	 * variable lists after an EoV was returned.  (Such a behavior
3138 	 * actually caused Bug 3008.)
3139 	 */
3140 
3141 	if (NULL == var_list)
3142 		return &eol;
3143 
3144 	for (v = var_list; !(EOV & v->flags); ++v)
3145 		if (!(PADDING & v->flags)) {
3146 			/* Check if the var name matches the buffer. The
3147 			 * name is bracketed by [reqpt..tp] and not NUL
3148 			 * terminated, and it contains no '=' char. The
3149 			 * lookup value IS NUL-terminated but might
3150 			 * include a '='... We have to look out for
3151 			 * that!
3152 			 */
3153 			const char *sp1 = reqpt;
3154 			const char *sp2 = v->text;
3155 
3156 			/* [Bug 3412] do not compare past NUL byte in name */
3157 			while (   (sp1 != tp)
3158 			       && ('\0' != *sp2) && (*sp1 == *sp2)) {
3159 				++sp1;
3160 				++sp2;
3161 			}
3162 			if (sp1 == tp && (*sp2 == '\0' || *sp2 == '='))
3163 				break;
3164 		}
3165 
3166 	/* See if we have found a valid entry or not. If found, advance
3167 	 * the request pointer for the next round; if not, clear the
3168 	 * data pointer so we have no dangling garbage here.
3169 	 */
3170 	if (EOV & v->flags)
3171 		*data = NULL;
3172 	else
3173 		reqpt = cp + (cp != reqend);
3174 	return v;
3175 
3176   badpacket:
3177 	/*TODO? somehow indicate this packet was bad, apart from syslog? */
3178 	numctlbadpkts++;
3179 	NLOG(NLOG_SYSEVENT)
3180 	    if (quiet_until <= current_time) {
3181 		    quiet_until = current_time + 300;
3182 		    msyslog(LOG_WARNING,
3183 			    "Possible 'ntpdx' exploit from %s#%u (possibly spoofed)",
3184 			    stoa(rmt_addr), SRCPORT(rmt_addr));
3185 	    }
3186 	reqpt = reqend; /* never again for this packet! */
3187 	return NULL;
3188 }
3189 
3190 
3191 /*
3192  * control_unspec - response to an unspecified op-code
3193  */
3194 /*ARGSUSED*/
3195 static void
3196 control_unspec(
3197 	struct recvbuf *rbufp,
3198 	int restrict_mask
3199 	)
3200 {
3201 	struct peer *peer;
3202 
3203 	/*
3204 	 * What is an appropriate response to an unspecified op-code?
3205 	 * I return no errors and no data, unless a specified assocation
3206 	 * doesn't exist.
3207 	 */
3208 	if (res_associd) {
3209 		peer = findpeerbyassoc(res_associd);
3210 		if (NULL == peer) {
3211 			ctl_error(CERR_BADASSOC);
3212 			return;
3213 		}
3214 		rpkt.status = htons(ctlpeerstatus(peer));
3215 	} else
3216 		rpkt.status = htons(ctlsysstatus());
3217 	ctl_flushpkt(0);
3218 }
3219 
3220 
3221 /*
3222  * read_status - return either a list of associd's, or a particular
3223  * peer's status.
3224  */
3225 /*ARGSUSED*/
3226 static void
3227 read_status(
3228 	struct recvbuf *rbufp,
3229 	int restrict_mask
3230 	)
3231 {
3232 	struct peer *peer;
3233 	const u_char *cp;
3234 	size_t n;
3235 	/* a_st holds association ID, status pairs alternating */
3236 	u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
3237 
3238 #ifdef DEBUG
3239 	if (debug > 2)
3240 		printf("read_status: ID %d\n", res_associd);
3241 #endif
3242 	/*
3243 	 * Two choices here. If the specified association ID is
3244 	 * zero we return all known assocation ID's.  Otherwise
3245 	 * we return a bunch of stuff about the particular peer.
3246 	 */
3247 	if (res_associd) {
3248 		peer = findpeerbyassoc(res_associd);
3249 		if (NULL == peer) {
3250 			ctl_error(CERR_BADASSOC);
3251 			return;
3252 		}
3253 		rpkt.status = htons(ctlpeerstatus(peer));
3254 		if (res_authokay)
3255 			peer->num_events = 0;
3256 		/*
3257 		 * For now, output everything we know about the
3258 		 * peer. May be more selective later.
3259 		 */
3260 		for (cp = def_peer_var; *cp != 0; cp++)
3261 			ctl_putpeer((int)*cp, peer);
3262 		ctl_flushpkt(0);
3263 		return;
3264 	}
3265 	n = 0;
3266 	rpkt.status = htons(ctlsysstatus());
3267 	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3268 		a_st[n++] = htons(peer->associd);
3269 		a_st[n++] = htons(ctlpeerstatus(peer));
3270 		/* two entries each loop iteration, so n + 1 */
3271 		if (n + 1 >= COUNTOF(a_st)) {
3272 			ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
3273 				    1);
3274 			n = 0;
3275 		}
3276 	}
3277 	if (n)
3278 		ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3279 	ctl_flushpkt(0);
3280 }
3281 
3282 
3283 /*
3284  * read_peervars - half of read_variables() implementation
3285  */
3286 static void
3287 read_peervars(void)
3288 {
3289 	const struct ctl_var *v;
3290 	struct peer *peer;
3291 	const u_char *cp;
3292 	size_t i;
3293 	char *	valuep;
3294 	u_char	wants[CP_MAXCODE + 1];
3295 	u_int	gotvar;
3296 
3297 	/*
3298 	 * Wants info for a particular peer. See if we know
3299 	 * the guy.
3300 	 */
3301 	peer = findpeerbyassoc(res_associd);
3302 	if (NULL == peer) {
3303 		ctl_error(CERR_BADASSOC);
3304 		return;
3305 	}
3306 	rpkt.status = htons(ctlpeerstatus(peer));
3307 	if (res_authokay)
3308 		peer->num_events = 0;
3309 	ZERO(wants);
3310 	gotvar = 0;
3311 	while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3312 		if (v->flags & EOV) {
3313 			ctl_error(CERR_UNKNOWNVAR);
3314 			return;
3315 		}
3316 		INSIST(v->code < COUNTOF(wants));
3317 		wants[v->code] = 1;
3318 		gotvar = 1;
3319 	}
3320 	if (gotvar) {
3321 		for (i = 1; i < COUNTOF(wants); i++)
3322 			if (wants[i])
3323 				ctl_putpeer(i, peer);
3324 	} else
3325 		for (cp = def_peer_var; *cp != 0; cp++)
3326 			ctl_putpeer((int)*cp, peer);
3327 	ctl_flushpkt(0);
3328 }
3329 
3330 
3331 /*
3332  * read_sysvars - half of read_variables() implementation
3333  */
3334 static void
3335 read_sysvars(void)
3336 {
3337 	const struct ctl_var *v;
3338 	struct ctl_var *kv;
3339 	u_int	n;
3340 	u_int	gotvar;
3341 	const u_char *cs;
3342 	char *	valuep;
3343 	const char * pch;
3344 	u_char *wants;
3345 	size_t	wants_count;
3346 
3347 	/*
3348 	 * Wants system variables. Figure out which he wants
3349 	 * and give them to him.
3350 	 */
3351 	rpkt.status = htons(ctlsysstatus());
3352 	if (res_authokay)
3353 		ctl_sys_num_events = 0;
3354 	wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3355 	wants = emalloc_zero(wants_count);
3356 	gotvar = 0;
3357 	while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3358 		if (!(EOV & v->flags)) {
3359 			INSIST(v->code < wants_count);
3360 			wants[v->code] = 1;
3361 			gotvar = 1;
3362 		} else {
3363 			v = ctl_getitem(ext_sys_var, &valuep);
3364 			if (NULL == v) {
3365 				ctl_error(CERR_BADVALUE);
3366 				free(wants);
3367 				return;
3368 			}
3369 			if (EOV & v->flags) {
3370 				ctl_error(CERR_UNKNOWNVAR);
3371 				free(wants);
3372 				return;
3373 			}
3374 			n = v->code + CS_MAXCODE + 1;
3375 			INSIST(n < wants_count);
3376 			wants[n] = 1;
3377 			gotvar = 1;
3378 		}
3379 	}
3380 	if (gotvar) {
3381 		for (n = 1; n <= CS_MAXCODE; n++)
3382 			if (wants[n])
3383 				ctl_putsys(n);
3384 		for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3385 			if (wants[n + CS_MAXCODE + 1]) {
3386 				pch = ext_sys_var[n].text;
3387 				ctl_putdata(pch, strlen(pch), 0);
3388 			}
3389 	} else {
3390 		for (cs = def_sys_var; *cs != 0; cs++)
3391 			ctl_putsys((int)*cs);
3392 		for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3393 			if (DEF & kv->flags)
3394 				ctl_putdata(kv->text, strlen(kv->text),
3395 					    0);
3396 	}
3397 	free(wants);
3398 	ctl_flushpkt(0);
3399 }
3400 
3401 
3402 /*
3403  * read_variables - return the variables the caller asks for
3404  */
3405 /*ARGSUSED*/
3406 static void
3407 read_variables(
3408 	struct recvbuf *rbufp,
3409 	int restrict_mask
3410 	)
3411 {
3412 	if (res_associd)
3413 		read_peervars();
3414 	else
3415 		read_sysvars();
3416 }
3417 
3418 
3419 /*
3420  * write_variables - write into variables. We only allow leap bit
3421  * writing this way.
3422  */
3423 /*ARGSUSED*/
3424 static void
3425 write_variables(
3426 	struct recvbuf *rbufp,
3427 	int restrict_mask
3428 	)
3429 {
3430 	const struct ctl_var *v;
3431 	int ext_var;
3432 	char *valuep;
3433 	long val;
3434 	size_t octets;
3435 	char *vareqv;
3436 	const char *t;
3437 	char *tt;
3438 
3439 	val = 0;
3440 	/*
3441 	 * If he's trying to write into a peer tell him no way
3442 	 */
3443 	if (res_associd != 0) {
3444 		ctl_error(CERR_PERMISSION);
3445 		return;
3446 	}
3447 
3448 	/*
3449 	 * Set status
3450 	 */
3451 	rpkt.status = htons(ctlsysstatus());
3452 
3453 	/*
3454 	 * Look through the variables. Dump out at the first sign of
3455 	 * trouble.
3456 	 */
3457 	while ((v = ctl_getitem(sys_var, &valuep)) != NULL) {
3458 		ext_var = 0;
3459 		if (v->flags & EOV) {
3460 			v = ctl_getitem(ext_sys_var, &valuep);
3461 			if (v != NULL) {
3462 				if (v->flags & EOV) {
3463 					ctl_error(CERR_UNKNOWNVAR);
3464 					return;
3465 				}
3466 				ext_var = 1;
3467 			} else {
3468 				break;
3469 			}
3470 		}
3471 		if (!(v->flags & CAN_WRITE)) {
3472 			ctl_error(CERR_PERMISSION);
3473 			return;
3474 		}
3475 		/* [bug 3565] writing makes sense only if we *have* a
3476 		 * value in the packet!
3477 		 */
3478 		if (valuep == NULL) {
3479 			ctl_error(CERR_BADFMT);
3480 			return;
3481 		}
3482 		if (!ext_var) {
3483 			if ( !(*valuep && atoint(valuep, &val))) {
3484 				ctl_error(CERR_BADFMT);
3485 				return;
3486 			}
3487 			if ((val & ~LEAP_NOTINSYNC) != 0) {
3488 				ctl_error(CERR_BADVALUE);
3489 				return;
3490 			}
3491 		}
3492 
3493 		if (ext_var) {
3494 			octets = strlen(v->text) + strlen(valuep) + 2;
3495 			vareqv = emalloc(octets);
3496 			tt = vareqv;
3497 			t = v->text;
3498 			while (*t && *t != '=')
3499 				*tt++ = *t++;
3500 			*tt++ = '=';
3501 			memcpy(tt, valuep, 1 + strlen(valuep));
3502 			set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3503 			free(vareqv);
3504 		} else {
3505 			ctl_error(CERR_UNSPEC); /* really */
3506 			return;
3507 		}
3508 	}
3509 
3510 	/*
3511 	 * If we got anything, do it. xxx nothing to do ***
3512 	 */
3513 	/*
3514 	  if (leapind != ~0 || leapwarn != ~0) {
3515 	  if (!leap_setleap((int)leapind, (int)leapwarn)) {
3516 	  ctl_error(CERR_PERMISSION);
3517 	  return;
3518 	  }
3519 	  }
3520 	*/
3521 	ctl_flushpkt(0);
3522 }
3523 
3524 
3525 /*
3526  * configure() processes ntpq :config/config-from-file, allowing
3527  *		generic runtime reconfiguration.
3528  */
3529 static void configure(
3530 	struct recvbuf *rbufp,
3531 	int restrict_mask
3532 	)
3533 {
3534 	size_t data_count;
3535 	int retval;
3536 
3537 	/* I haven't yet implemented changes to an existing association.
3538 	 * Hence check if the association id is 0
3539 	 */
3540 	if (res_associd != 0) {
3541 		ctl_error(CERR_BADVALUE);
3542 		return;
3543 	}
3544 
3545 	if (RES_NOMODIFY & restrict_mask) {
3546 		snprintf(remote_config.err_msg,
3547 			 sizeof(remote_config.err_msg),
3548 			 "runtime configuration prohibited by restrict ... nomodify");
3549 		ctl_putdata(remote_config.err_msg,
3550 			    strlen(remote_config.err_msg), 0);
3551 		ctl_flushpkt(0);
3552 		NLOG(NLOG_SYSINFO)
3553 			msyslog(LOG_NOTICE,
3554 				"runtime config from %s rejected due to nomodify restriction",
3555 				stoa(&rbufp->recv_srcadr));
3556 		sys_restricted++;
3557 		return;
3558 	}
3559 
3560 	/* Initialize the remote config buffer */
3561 	data_count = remoteconfig_cmdlength(reqpt, reqend);
3562 
3563 	if (data_count > sizeof(remote_config.buffer) - 2) {
3564 		snprintf(remote_config.err_msg,
3565 			 sizeof(remote_config.err_msg),
3566 			 "runtime configuration failed: request too long");
3567 		ctl_putdata(remote_config.err_msg,
3568 			    strlen(remote_config.err_msg), 0);
3569 		ctl_flushpkt(0);
3570 		msyslog(LOG_NOTICE,
3571 			"runtime config from %s rejected: request too long",
3572 			stoa(&rbufp->recv_srcadr));
3573 		return;
3574 	}
3575 	/* Bug 2853 -- check if all characters were acceptable */
3576 	if (data_count != (size_t)(reqend - reqpt)) {
3577 		snprintf(remote_config.err_msg,
3578 			 sizeof(remote_config.err_msg),
3579 			 "runtime configuration failed: request contains an unprintable character");
3580 		ctl_putdata(remote_config.err_msg,
3581 			    strlen(remote_config.err_msg), 0);
3582 		ctl_flushpkt(0);
3583 		msyslog(LOG_NOTICE,
3584 			"runtime config from %s rejected: request contains an unprintable character: %0x",
3585 			stoa(&rbufp->recv_srcadr),
3586 			reqpt[data_count]);
3587 		return;
3588 	}
3589 
3590 	memcpy(remote_config.buffer, reqpt, data_count);
3591 	/* The buffer has no trailing linefeed or NUL right now. For
3592 	 * logging, we do not want a newline, so we do that first after
3593 	 * adding the necessary NUL byte.
3594 	 */
3595 	remote_config.buffer[data_count] = '\0';
3596 	DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3597 		remote_config.buffer));
3598 	msyslog(LOG_NOTICE, "%s config: %s",
3599 		stoa(&rbufp->recv_srcadr),
3600 		remote_config.buffer);
3601 
3602 	/* Now we have to make sure there is a NL/NUL sequence at the
3603 	 * end of the buffer before we parse it.
3604 	 */
3605 	remote_config.buffer[data_count++] = '\n';
3606 	remote_config.buffer[data_count] = '\0';
3607 	remote_config.pos = 0;
3608 	remote_config.err_pos = 0;
3609 	remote_config.no_errors = 0;
3610 	config_remotely(&rbufp->recv_srcadr);
3611 
3612 	/*
3613 	 * Check if errors were reported. If not, output 'Config
3614 	 * Succeeded'.  Else output the error count.  It would be nice
3615 	 * to output any parser error messages.
3616 	 */
3617 	if (0 == remote_config.no_errors) {
3618 		retval = snprintf(remote_config.err_msg,
3619 				  sizeof(remote_config.err_msg),
3620 				  "Config Succeeded");
3621 		if (retval > 0)
3622 			remote_config.err_pos += retval;
3623 	}
3624 
3625 	ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3626 	ctl_flushpkt(0);
3627 
3628 	DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3629 
3630 	if (remote_config.no_errors > 0)
3631 		msyslog(LOG_NOTICE, "%d error in %s config",
3632 			remote_config.no_errors,
3633 			stoa(&rbufp->recv_srcadr));
3634 }
3635 
3636 
3637 /*
3638  * derive_nonce - generate client-address-specific nonce value
3639  *		  associated with a given timestamp.
3640  */
3641 static u_int32 derive_nonce(
3642 	sockaddr_u *	addr,
3643 	u_int32		ts_i,
3644 	u_int32		ts_f
3645 	)
3646 {
3647 	static u_int32	salt[4];
3648 	static u_long	last_salt_update;
3649 	union d_tag {
3650 		u_char	digest[EVP_MAX_MD_SIZE];
3651 		u_int32 extract;
3652 	}		d;
3653 	EVP_MD_CTX	*ctx;
3654 	u_int		len;
3655 	int rc;
3656 
3657 	while (!salt[0] || current_time - last_salt_update >= 3600) {
3658 		salt[0] = ntp_random();
3659 		salt[1] = ntp_random();
3660 		salt[2] = ntp_random();
3661 		salt[3] = ntp_random();
3662 		last_salt_update = current_time;
3663 	}
3664 
3665 	ctx = EVP_MD_CTX_new();
3666 #   if defined(OPENSSL) && defined(EVP_MD_CTX_FLAG_NON_FIPS_ALLOW)
3667 	/* [Bug 3457] set flags and don't kill them again */
3668 	EVP_MD_CTX_set_flags(ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
3669 	rc = EVP_DigestInit_ex(ctx, EVP_get_digestbynid(NID_md5), NULL);
3670 #   else
3671 	rc = EVP_DigestInit(ctx, EVP_get_digestbynid(NID_md5));
3672 #   endif
3673 	if (!rc) {
3674 		msyslog(LOG_ERR, "EVP_DigestInit failed in '%s'", __func__);
3675 		return (0);
3676 	}
3677 
3678 	EVP_DigestUpdate(ctx, salt, sizeof(salt));
3679 	EVP_DigestUpdate(ctx, &ts_i, sizeof(ts_i));
3680 	EVP_DigestUpdate(ctx, &ts_f, sizeof(ts_f));
3681 	if (IS_IPV4(addr))
3682 		EVP_DigestUpdate(ctx, &SOCK_ADDR4(addr),
3683 			         sizeof(SOCK_ADDR4(addr)));
3684 	else
3685 		EVP_DigestUpdate(ctx, &SOCK_ADDR6(addr),
3686 			         sizeof(SOCK_ADDR6(addr)));
3687 	EVP_DigestUpdate(ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
3688 	EVP_DigestUpdate(ctx, salt, sizeof(salt));
3689 	EVP_DigestFinal(ctx, d.digest, &len);
3690 	EVP_MD_CTX_free(ctx);
3691 
3692 	return d.extract;
3693 }
3694 
3695 
3696 /*
3697  * generate_nonce - generate client-address-specific nonce string.
3698  */
3699 static void generate_nonce(
3700 	struct recvbuf *	rbufp,
3701 	char *			nonce,
3702 	size_t			nonce_octets
3703 	)
3704 {
3705 	u_int32 derived;
3706 
3707 	derived = derive_nonce(&rbufp->recv_srcadr,
3708 			       rbufp->recv_time.l_ui,
3709 			       rbufp->recv_time.l_uf);
3710 	snprintf(nonce, nonce_octets, "%08x%08x%08x",
3711 		 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3712 }
3713 
3714 
3715 /*
3716  * validate_nonce - validate client-address-specific nonce string.
3717  *
3718  * Returns TRUE if the local calculation of the nonce matches the
3719  * client-provided value and the timestamp is recent enough.
3720  */
3721 static int validate_nonce(
3722 	const char *		pnonce,
3723 	struct recvbuf *	rbufp
3724 	)
3725 {
3726 	u_int	ts_i;
3727 	u_int	ts_f;
3728 	l_fp	ts;
3729 	l_fp	now_delta;
3730 	u_int	supposed;
3731 	u_int	derived;
3732 
3733 	if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3734 		return FALSE;
3735 
3736 	ts.l_ui = (u_int32)ts_i;
3737 	ts.l_uf = (u_int32)ts_f;
3738 	derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3739 	get_systime(&now_delta);
3740 	L_SUB(&now_delta, &ts);
3741 
3742 	return (supposed == derived && now_delta.l_ui < 16);
3743 }
3744 
3745 
3746 /*
3747  * send_random_tag_value - send a randomly-generated three character
3748  *			   tag prefix, a '.', an index, a '=' and a
3749  *			   random integer value.
3750  *
3751  * To try to force clients to ignore unrecognized tags in mrulist,
3752  * reslist, and ifstats responses, the first and last rows are spiced
3753  * with randomly-generated tag names with correct .# index.  Make it
3754  * three characters knowing that none of the currently-used subscripted
3755  * tags have that length, avoiding the need to test for
3756  * tag collision.
3757  */
3758 static void
3759 send_random_tag_value(
3760 	int	indx
3761 	)
3762 {
3763 	int	noise;
3764 	char	buf[32];
3765 
3766 	noise = rand() ^ (rand() << 16);
3767 	buf[0] = 'a' + noise % 26;
3768 	noise >>= 5;
3769 	buf[1] = 'a' + noise % 26;
3770 	noise >>= 5;
3771 	buf[2] = 'a' + noise % 26;
3772 	noise >>= 5;
3773 	buf[3] = '.';
3774 	snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3775 	ctl_putuint(buf, noise);
3776 }
3777 
3778 
3779 /*
3780  * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3781  *
3782  * To keep clients honest about not depending on the order of values,
3783  * and thereby avoid being locked into ugly workarounds to maintain
3784  * backward compatibility later as new fields are added to the response,
3785  * the order is random.
3786  */
3787 static void
3788 send_mru_entry(
3789 	mon_entry *	mon,
3790 	int		count
3791 	)
3792 {
3793 	const char first_fmt[] =	"first.%d";
3794 	const char ct_fmt[] =		"ct.%d";
3795 	const char mv_fmt[] =		"mv.%d";
3796 	const char rs_fmt[] =		"rs.%d";
3797 	char	tag[32];
3798 	u_char	sent[6]; /* 6 tag=value pairs */
3799 	u_int32 noise;
3800 	u_int	which;
3801 	u_int	remaining;
3802 	const char * pch;
3803 
3804 	remaining = COUNTOF(sent);
3805 	ZERO(sent);
3806 	noise = (u_int32)(rand() ^ (rand() << 16));
3807 	while (remaining > 0) {
3808 		which = (noise & 7) % COUNTOF(sent);
3809 		noise >>= 3;
3810 		while (sent[which])
3811 			which = (which + 1) % COUNTOF(sent);
3812 
3813 		switch (which) {
3814 
3815 		case 0:
3816 			snprintf(tag, sizeof(tag), addr_fmt, count);
3817 			pch = sptoa(&mon->rmtadr);
3818 			ctl_putunqstr(tag, pch, strlen(pch));
3819 			break;
3820 
3821 		case 1:
3822 			snprintf(tag, sizeof(tag), last_fmt, count);
3823 			ctl_putts(tag, &mon->last);
3824 			break;
3825 
3826 		case 2:
3827 			snprintf(tag, sizeof(tag), first_fmt, count);
3828 			ctl_putts(tag, &mon->first);
3829 			break;
3830 
3831 		case 3:
3832 			snprintf(tag, sizeof(tag), ct_fmt, count);
3833 			ctl_putint(tag, mon->count);
3834 			break;
3835 
3836 		case 4:
3837 			snprintf(tag, sizeof(tag), mv_fmt, count);
3838 			ctl_putuint(tag, mon->vn_mode);
3839 			break;
3840 
3841 		case 5:
3842 			snprintf(tag, sizeof(tag), rs_fmt, count);
3843 			ctl_puthex(tag, mon->flags);
3844 			break;
3845 		}
3846 		sent[which] = TRUE;
3847 		remaining--;
3848 	}
3849 }
3850 
3851 
3852 /*
3853  * read_mru_list - supports ntpq's mrulist command.
3854  *
3855  * The challenge here is to match ntpdc's monlist functionality without
3856  * being limited to hundreds of entries returned total, and without
3857  * requiring state on the server.  If state were required, ntpq's
3858  * mrulist command would require authentication.
3859  *
3860  * The approach was suggested by Ry Jones.  A finite and variable number
3861  * of entries are retrieved per request, to avoid having responses with
3862  * such large numbers of packets that socket buffers are overflowed and
3863  * packets lost.  The entries are retrieved oldest-first, taking into
3864  * account that the MRU list will be changing between each request.  We
3865  * can expect to see duplicate entries for addresses updated in the MRU
3866  * list during the fetch operation.  In the end, the client can assemble
3867  * a close approximation of the MRU list at the point in time the last
3868  * response was sent by ntpd.  The only difference is it may be longer,
3869  * containing some number of oldest entries which have since been
3870  * reclaimed.  If necessary, the protocol could be extended to zap those
3871  * from the client snapshot at the end, but so far that doesn't seem
3872  * useful.
3873  *
3874  * To accomodate the changing MRU list, the starting point for requests
3875  * after the first request is supplied as a series of last seen
3876  * timestamps and associated addresses, the newest ones the client has
3877  * received.  As long as at least one of those entries hasn't been
3878  * bumped to the head of the MRU list, ntpd can pick up at that point.
3879  * Otherwise, the request is failed and it is up to ntpq to back up and
3880  * provide the next newest entry's timestamps and addresses, conceivably
3881  * backing up all the way to the starting point.
3882  *
3883  * input parameters:
3884  *	nonce=		Regurgitated nonce retrieved by the client
3885  *			previously using CTL_OP_REQ_NONCE, demonstrating
3886  *			ability to receive traffic sent to its address.
3887  *	frags=		Limit on datagrams (fragments) in response.  Used
3888  *			by newer ntpq versions instead of limit= when
3889  *			retrieving multiple entries.
3890  *	limit=		Limit on MRU entries returned.  One of frags= or
3891  *			limit= must be provided.
3892  *			limit=1 is a special case:  Instead of fetching
3893  *			beginning with the supplied starting point's
3894  *			newer neighbor, fetch the supplied entry, and
3895  *			in that case the #.last timestamp can be zero.
3896  *			This enables fetching a single entry by IP
3897  *			address.  When limit is not one and frags= is
3898  *			provided, the fragment limit controls.
3899  *	mincount=	(decimal) Return entries with count >= mincount.
3900  *	laddr=		Return entries associated with the server's IP
3901  *			address given.  No port specification is needed,
3902  *			and any supplied is ignored.
3903  *	resall=		0x-prefixed hex restrict bits which must all be
3904  *			lit for an MRU entry to be included.
3905  *			Has precedence over any resany=.
3906  *	resany=		0x-prefixed hex restrict bits, at least one of
3907  *			which must be list for an MRU entry to be
3908  *			included.
3909  *	last.0=		0x-prefixed hex l_fp timestamp of newest entry
3910  *			which client previously received.
3911  *	addr.0=		text of newest entry's IP address and port,
3912  *			IPv6 addresses in bracketed form: [::]:123
3913  *	last.1=		timestamp of 2nd newest entry client has.
3914  *	addr.1=		address of 2nd newest entry.
3915  *	[...]
3916  *
3917  * ntpq provides as many last/addr pairs as will fit in a single request
3918  * packet, except for the first request in a MRU fetch operation.
3919  *
3920  * The response begins with a new nonce value to be used for any
3921  * followup request.  Following the nonce is the next newer entry than
3922  * referred to by last.0 and addr.0, if the "0" entry has not been
3923  * bumped to the front.  If it has, the first entry returned will be the
3924  * next entry newer than referred to by last.1 and addr.1, and so on.
3925  * If none of the referenced entries remain unchanged, the request fails
3926  * and ntpq backs up to the next earlier set of entries to resync.
3927  *
3928  * Except for the first response, the response begins with confirmation
3929  * of the entry that precedes the first additional entry provided:
3930  *
3931  *	last.older=	hex l_fp timestamp matching one of the input
3932  *			.last timestamps, which entry now precedes the
3933  *			response 0. entry in the MRU list.
3934  *	addr.older=	text of address corresponding to older.last.
3935  *
3936  * And in any case, a successful response contains sets of values
3937  * comprising entries, with the oldest numbered 0 and incrementing from
3938  * there:
3939  *
3940  *	addr.#		text of IPv4 or IPv6 address and port
3941  *	last.#		hex l_fp timestamp of last receipt
3942  *	first.#		hex l_fp timestamp of first receipt
3943  *	ct.#		count of packets received
3944  *	mv.#		mode and version
3945  *	rs.#		restriction mask (RES_* bits)
3946  *
3947  * Note the code currently assumes there are no valid three letter
3948  * tags sent with each row, and needs to be adjusted if that changes.
3949  *
3950  * The client should accept the values in any order, and ignore .#
3951  * values which it does not understand, to allow a smooth path to
3952  * future changes without requiring a new opcode.  Clients can rely
3953  * on all *.0 values preceding any *.1 values, that is all values for
3954  * a given index number are together in the response.
3955  *
3956  * The end of the response list is noted with one or two tag=value
3957  * pairs.  Unconditionally:
3958  *
3959  *	now=		0x-prefixed l_fp timestamp at the server marking
3960  *			the end of the operation.
3961  *
3962  * If any entries were returned, now= is followed by:
3963  *
3964  *	last.newest=	hex l_fp identical to last.# of the prior
3965  *			entry.
3966  */
3967 static void read_mru_list(
3968 	struct recvbuf *rbufp,
3969 	int restrict_mask
3970 	)
3971 {
3972 	static const char	nulltxt[1] = 		{ '\0' };
3973 	static const char	nonce_text[] =		"nonce";
3974 	static const char	frags_text[] =		"frags";
3975 	static const char	limit_text[] =		"limit";
3976 	static const char	mincount_text[] =	"mincount";
3977 	static const char	resall_text[] =		"resall";
3978 	static const char	resany_text[] =		"resany";
3979 	static const char	maxlstint_text[] =	"maxlstint";
3980 	static const char	laddr_text[] =		"laddr";
3981 	static const char	resaxx_fmt[] =		"0x%hx";
3982 
3983 	u_int			limit;
3984 	u_short			frags;
3985 	u_short			resall;
3986 	u_short			resany;
3987 	int			mincount;
3988 	u_int			maxlstint;
3989 	sockaddr_u		laddr;
3990 	struct interface *	lcladr;
3991 	u_int			count;
3992 	u_int			ui;
3993 	u_int			uf;
3994 	l_fp			last[16];
3995 	sockaddr_u		addr[COUNTOF(last)];
3996 	char			buf[128];
3997 	struct ctl_var *	in_parms;
3998 	const struct ctl_var *	v;
3999 	const char *		val;
4000 	const char *		pch;
4001 	char *			pnonce;
4002 	int			nonce_valid;
4003 	size_t			i;
4004 	int			priors;
4005 	u_short			hash;
4006 	mon_entry *		mon;
4007 	mon_entry *		prior_mon;
4008 	l_fp			now;
4009 
4010 	if (RES_NOMRULIST & restrict_mask) {
4011 		ctl_error(CERR_PERMISSION);
4012 		NLOG(NLOG_SYSINFO)
4013 			msyslog(LOG_NOTICE,
4014 				"mrulist from %s rejected due to nomrulist restriction",
4015 				stoa(&rbufp->recv_srcadr));
4016 		sys_restricted++;
4017 		return;
4018 	}
4019 	/*
4020 	 * fill in_parms var list with all possible input parameters.
4021 	 */
4022 	in_parms = NULL;
4023 	set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
4024 	set_var(&in_parms, frags_text, sizeof(frags_text), 0);
4025 	set_var(&in_parms, limit_text, sizeof(limit_text), 0);
4026 	set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
4027 	set_var(&in_parms, resall_text, sizeof(resall_text), 0);
4028 	set_var(&in_parms, resany_text, sizeof(resany_text), 0);
4029 	set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
4030 	set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
4031 	for (i = 0; i < COUNTOF(last); i++) {
4032 		snprintf(buf, sizeof(buf), last_fmt, (int)i);
4033 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4034 		snprintf(buf, sizeof(buf), addr_fmt, (int)i);
4035 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4036 	}
4037 
4038 	/* decode input parms */
4039 	pnonce = NULL;
4040 	frags = 0;
4041 	limit = 0;
4042 	mincount = 0;
4043 	resall = 0;
4044 	resany = 0;
4045 	maxlstint = 0;
4046 	lcladr = NULL;
4047 	priors = 0;
4048 	ZERO(last);
4049 	ZERO(addr);
4050 
4051 	/* have to go through '(void*)' to drop 'const' property from pointer.
4052 	 * ctl_getitem()' needs some cleanup, too.... perlinger@ntp.org
4053 	 */
4054 	while (NULL != (v = ctl_getitem(in_parms, (void*)&val)) &&
4055 	       !(EOV & v->flags)) {
4056 		int si;
4057 
4058 		if (NULL == val)
4059 			val = nulltxt;
4060 
4061 		if (!strcmp(nonce_text, v->text)) {
4062 			free(pnonce);
4063 			pnonce = (*val) ? estrdup(val) : NULL;
4064 		} else if (!strcmp(frags_text, v->text)) {
4065 			if (1 != sscanf(val, "%hu", &frags))
4066 				goto blooper;
4067 		} else if (!strcmp(limit_text, v->text)) {
4068 			if (1 != sscanf(val, "%u", &limit))
4069 				goto blooper;
4070 		} else if (!strcmp(mincount_text, v->text)) {
4071 			if (1 != sscanf(val, "%d", &mincount))
4072 				goto blooper;
4073 			if (mincount < 0)
4074 				mincount = 0;
4075 		} else if (!strcmp(resall_text, v->text)) {
4076 			if (1 != sscanf(val, resaxx_fmt, &resall))
4077 				goto blooper;
4078 		} else if (!strcmp(resany_text, v->text)) {
4079 			if (1 != sscanf(val, resaxx_fmt, &resany))
4080 				goto blooper;
4081 		} else if (!strcmp(maxlstint_text, v->text)) {
4082 			if (1 != sscanf(val, "%u", &maxlstint))
4083 				goto blooper;
4084 		} else if (!strcmp(laddr_text, v->text)) {
4085 			if (!decodenetnum(val, &laddr))
4086 				goto blooper;
4087 			lcladr = getinterface(&laddr, 0);
4088 		} else if (1 == sscanf(v->text, last_fmt, &si) &&
4089 			   (size_t)si < COUNTOF(last)) {
4090 			if (2 != sscanf(val, "0x%08x.%08x", &ui, &uf))
4091 				goto blooper;
4092 			last[si].l_ui = ui;
4093 			last[si].l_uf = uf;
4094 			if (!SOCK_UNSPEC(&addr[si]) && si == priors)
4095 				priors++;
4096 		} else if (1 == sscanf(v->text, addr_fmt, &si) &&
4097 			   (size_t)si < COUNTOF(addr)) {
4098 			if (!decodenetnum(val, &addr[si]))
4099 				goto blooper;
4100 			if (last[si].l_ui && last[si].l_uf && si == priors)
4101 				priors++;
4102 		} else {
4103 			DPRINTF(1, ("read_mru_list: invalid key item: '%s' (ignored)\n",
4104 				    v->text));
4105 			continue;
4106 
4107 		blooper:
4108 			DPRINTF(1, ("read_mru_list: invalid param for '%s': '%s' (bailing)\n",
4109 				    v->text, val));
4110 			free(pnonce);
4111 			pnonce = NULL;
4112 			break;
4113 		}
4114 	}
4115 	free_varlist(in_parms);
4116 	in_parms = NULL;
4117 
4118 	/* return no responses until the nonce is validated */
4119 	if (NULL == pnonce)
4120 		return;
4121 
4122 	nonce_valid = validate_nonce(pnonce, rbufp);
4123 	free(pnonce);
4124 	if (!nonce_valid)
4125 		return;
4126 
4127 	if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
4128 	    frags > MRU_FRAGS_LIMIT) {
4129 		ctl_error(CERR_BADVALUE);
4130 		return;
4131 	}
4132 
4133 	/*
4134 	 * If either frags or limit is not given, use the max.
4135 	 */
4136 	if (0 != frags && 0 == limit)
4137 		limit = UINT_MAX;
4138 	else if (0 != limit && 0 == frags)
4139 		frags = MRU_FRAGS_LIMIT;
4140 
4141 	/*
4142 	 * Find the starting point if one was provided.
4143 	 */
4144 	mon = NULL;
4145 	for (i = 0; i < (size_t)priors; i++) {
4146 		hash = MON_HASH(&addr[i]);
4147 		for (mon = mon_hash[hash];
4148 		     mon != NULL;
4149 		     mon = mon->hash_next)
4150 			if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
4151 				break;
4152 		if (mon != NULL) {
4153 			if (L_ISEQU(&mon->last, &last[i]))
4154 				break;
4155 			mon = NULL;
4156 		}
4157 	}
4158 
4159 	/* If a starting point was provided... */
4160 	if (priors) {
4161 		/* and none could be found unmodified... */
4162 		if (NULL == mon) {
4163 			/* tell ntpq to try again with older entries */
4164 			ctl_error(CERR_UNKNOWNVAR);
4165 			return;
4166 		}
4167 		/* confirm the prior entry used as starting point */
4168 		ctl_putts("last.older", &mon->last);
4169 		pch = sptoa(&mon->rmtadr);
4170 		ctl_putunqstr("addr.older", pch, strlen(pch));
4171 
4172 		/*
4173 		 * Move on to the first entry the client doesn't have,
4174 		 * except in the special case of a limit of one.  In
4175 		 * that case return the starting point entry.
4176 		 */
4177 		if (limit > 1)
4178 			mon = PREV_DLIST(mon_mru_list, mon, mru);
4179 	} else {	/* start with the oldest */
4180 		mon = TAIL_DLIST(mon_mru_list, mru);
4181 	}
4182 
4183 	/*
4184 	 * send up to limit= entries in up to frags= datagrams
4185 	 */
4186 	get_systime(&now);
4187 	generate_nonce(rbufp, buf, sizeof(buf));
4188 	ctl_putunqstr("nonce", buf, strlen(buf));
4189 	prior_mon = NULL;
4190 	for (count = 0;
4191 	     mon != NULL && res_frags < frags && count < limit;
4192 	     mon = PREV_DLIST(mon_mru_list, mon, mru)) {
4193 
4194 		if (mon->count < mincount)
4195 			continue;
4196 		if (resall && resall != (resall & mon->flags))
4197 			continue;
4198 		if (resany && !(resany & mon->flags))
4199 			continue;
4200 		if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
4201 		    maxlstint)
4202 			continue;
4203 		if (lcladr != NULL && mon->lcladr != lcladr)
4204 			continue;
4205 
4206 		send_mru_entry(mon, count);
4207 		if (!count)
4208 			send_random_tag_value(0);
4209 		count++;
4210 		prior_mon = mon;
4211 	}
4212 
4213 	/*
4214 	 * If this batch completes the MRU list, say so explicitly with
4215 	 * a now= l_fp timestamp.
4216 	 */
4217 	if (NULL == mon) {
4218 		if (count > 1)
4219 			send_random_tag_value(count - 1);
4220 		ctl_putts("now", &now);
4221 		/* if any entries were returned confirm the last */
4222 		if (prior_mon != NULL)
4223 			ctl_putts("last.newest", &prior_mon->last);
4224 	}
4225 	ctl_flushpkt(0);
4226 }
4227 
4228 
4229 /*
4230  * Send a ifstats entry in response to a "ntpq -c ifstats" request.
4231  *
4232  * To keep clients honest about not depending on the order of values,
4233  * and thereby avoid being locked into ugly workarounds to maintain
4234  * backward compatibility later as new fields are added to the response,
4235  * the order is random.
4236  */
4237 static void
4238 send_ifstats_entry(
4239 	endpt *	la,
4240 	u_int	ifnum
4241 	)
4242 {
4243 	const char addr_fmtu[] =	"addr.%u";
4244 	const char bcast_fmt[] =	"bcast.%u";
4245 	const char en_fmt[] =		"en.%u";	/* enabled */
4246 	const char name_fmt[] =		"name.%u";
4247 	const char flags_fmt[] =	"flags.%u";
4248 	const char tl_fmt[] =		"tl.%u";	/* ttl */
4249 	const char mc_fmt[] =		"mc.%u";	/* mcast count */
4250 	const char rx_fmt[] =		"rx.%u";
4251 	const char tx_fmt[] =		"tx.%u";
4252 	const char txerr_fmt[] =	"txerr.%u";
4253 	const char pc_fmt[] =		"pc.%u";	/* peer count */
4254 	const char up_fmt[] =		"up.%u";	/* uptime */
4255 	char	tag[32];
4256 	u_char	sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
4257 	int	noisebits;
4258 	u_int32 noise;
4259 	u_int	which;
4260 	u_int	remaining;
4261 	const char *pch;
4262 
4263 	remaining = COUNTOF(sent);
4264 	ZERO(sent);
4265 	noise = 0;
4266 	noisebits = 0;
4267 	while (remaining > 0) {
4268 		if (noisebits < 4) {
4269 			noise = rand() ^ (rand() << 16);
4270 			noisebits = 31;
4271 		}
4272 		which = (noise & 0xf) % COUNTOF(sent);
4273 		noise >>= 4;
4274 		noisebits -= 4;
4275 
4276 		while (sent[which])
4277 			which = (which + 1) % COUNTOF(sent);
4278 
4279 		switch (which) {
4280 
4281 		case 0:
4282 			snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
4283 			pch = sptoa(&la->sin);
4284 			ctl_putunqstr(tag, pch, strlen(pch));
4285 			break;
4286 
4287 		case 1:
4288 			snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
4289 			if (INT_BCASTOPEN & la->flags)
4290 				pch = sptoa(&la->bcast);
4291 			else
4292 				pch = "";
4293 			ctl_putunqstr(tag, pch, strlen(pch));
4294 			break;
4295 
4296 		case 2:
4297 			snprintf(tag, sizeof(tag), en_fmt, ifnum);
4298 			ctl_putint(tag, !la->ignore_packets);
4299 			break;
4300 
4301 		case 3:
4302 			snprintf(tag, sizeof(tag), name_fmt, ifnum);
4303 			ctl_putstr(tag, la->name, strlen(la->name));
4304 			break;
4305 
4306 		case 4:
4307 			snprintf(tag, sizeof(tag), flags_fmt, ifnum);
4308 			ctl_puthex(tag, (u_int)la->flags);
4309 			break;
4310 
4311 		case 5:
4312 			snprintf(tag, sizeof(tag), tl_fmt, ifnum);
4313 			ctl_putint(tag, la->last_ttl);
4314 			break;
4315 
4316 		case 6:
4317 			snprintf(tag, sizeof(tag), mc_fmt, ifnum);
4318 			ctl_putint(tag, la->num_mcast);
4319 			break;
4320 
4321 		case 7:
4322 			snprintf(tag, sizeof(tag), rx_fmt, ifnum);
4323 			ctl_putint(tag, la->received);
4324 			break;
4325 
4326 		case 8:
4327 			snprintf(tag, sizeof(tag), tx_fmt, ifnum);
4328 			ctl_putint(tag, la->sent);
4329 			break;
4330 
4331 		case 9:
4332 			snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
4333 			ctl_putint(tag, la->notsent);
4334 			break;
4335 
4336 		case 10:
4337 			snprintf(tag, sizeof(tag), pc_fmt, ifnum);
4338 			ctl_putuint(tag, la->peercnt);
4339 			break;
4340 
4341 		case 11:
4342 			snprintf(tag, sizeof(tag), up_fmt, ifnum);
4343 			ctl_putuint(tag, current_time - la->starttime);
4344 			break;
4345 		}
4346 		sent[which] = TRUE;
4347 		remaining--;
4348 	}
4349 	send_random_tag_value((int)ifnum);
4350 }
4351 
4352 
4353 /*
4354  * read_ifstats - send statistics for each local address, exposed by
4355  *		  ntpq -c ifstats
4356  */
4357 static void
4358 read_ifstats(
4359 	struct recvbuf *	rbufp
4360 	)
4361 {
4362 	u_int	ifidx;
4363 	endpt *	la;
4364 
4365 	/*
4366 	 * loop over [0..sys_ifnum] searching ep_list for each
4367 	 * ifnum in turn.
4368 	 */
4369 	for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4370 		for (la = ep_list; la != NULL; la = la->elink)
4371 			if (ifidx == la->ifnum)
4372 				break;
4373 		if (NULL == la)
4374 			continue;
4375 		/* return stats for one local address */
4376 		send_ifstats_entry(la, ifidx);
4377 	}
4378 	ctl_flushpkt(0);
4379 }
4380 
4381 static void
4382 sockaddrs_from_restrict_u(
4383 	sockaddr_u *	psaA,
4384 	sockaddr_u *	psaM,
4385 	restrict_u *	pres,
4386 	int		ipv6
4387 	)
4388 {
4389 	ZERO(*psaA);
4390 	ZERO(*psaM);
4391 	if (!ipv6) {
4392 		psaA->sa.sa_family = AF_INET;
4393 		psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
4394 		psaM->sa.sa_family = AF_INET;
4395 		psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
4396 	} else {
4397 		psaA->sa.sa_family = AF_INET6;
4398 		memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
4399 		       sizeof(psaA->sa6.sin6_addr));
4400 		psaM->sa.sa_family = AF_INET6;
4401 		memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
4402 		       sizeof(psaA->sa6.sin6_addr));
4403 	}
4404 }
4405 
4406 
4407 /*
4408  * Send a restrict entry in response to a "ntpq -c reslist" request.
4409  *
4410  * To keep clients honest about not depending on the order of values,
4411  * and thereby avoid being locked into ugly workarounds to maintain
4412  * backward compatibility later as new fields are added to the response,
4413  * the order is random.
4414  */
4415 static void
4416 send_restrict_entry(
4417 	restrict_u *	pres,
4418 	int		ipv6,
4419 	u_int		idx
4420 	)
4421 {
4422 	const char addr_fmtu[] =	"addr.%u";
4423 	const char mask_fmtu[] =	"mask.%u";
4424 	const char hits_fmt[] =		"hits.%u";
4425 	const char flags_fmt[] =	"flags.%u";
4426 	char		tag[32];
4427 	u_char		sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4428 	int		noisebits;
4429 	u_int32		noise;
4430 	u_int		which;
4431 	u_int		remaining;
4432 	sockaddr_u	addr;
4433 	sockaddr_u	mask;
4434 	const char *	pch;
4435 	char *		buf;
4436 	const char *	match_str;
4437 	const char *	access_str;
4438 
4439 	sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
4440 	remaining = COUNTOF(sent);
4441 	ZERO(sent);
4442 	noise = 0;
4443 	noisebits = 0;
4444 	while (remaining > 0) {
4445 		if (noisebits < 2) {
4446 			noise = rand() ^ (rand() << 16);
4447 			noisebits = 31;
4448 		}
4449 		which = (noise & 0x3) % COUNTOF(sent);
4450 		noise >>= 2;
4451 		noisebits -= 2;
4452 
4453 		while (sent[which])
4454 			which = (which + 1) % COUNTOF(sent);
4455 
4456 		/* XXX: Numbers?  Really? */
4457 		switch (which) {
4458 
4459 		case 0:
4460 			snprintf(tag, sizeof(tag), addr_fmtu, idx);
4461 			pch = stoa(&addr);
4462 			ctl_putunqstr(tag, pch, strlen(pch));
4463 			break;
4464 
4465 		case 1:
4466 			snprintf(tag, sizeof(tag), mask_fmtu, idx);
4467 			pch = stoa(&mask);
4468 			ctl_putunqstr(tag, pch, strlen(pch));
4469 			break;
4470 
4471 		case 2:
4472 			snprintf(tag, sizeof(tag), hits_fmt, idx);
4473 			ctl_putuint(tag, pres->count);
4474 			break;
4475 
4476 		case 3:
4477 			snprintf(tag, sizeof(tag), flags_fmt, idx);
4478 			match_str = res_match_flags(pres->mflags);
4479 			access_str = res_access_flags(pres->rflags);
4480 			if ('\0' == match_str[0]) {
4481 				pch = access_str;
4482 			} else {
4483 				LIB_GETBUF(buf);
4484 				snprintf(buf, LIB_BUFLENGTH, "%s %s",
4485 					 match_str, access_str);
4486 				pch = buf;
4487 			}
4488 			ctl_putunqstr(tag, pch, strlen(pch));
4489 			break;
4490 		}
4491 		sent[which] = TRUE;
4492 		remaining--;
4493 	}
4494 	send_random_tag_value((int)idx);
4495 }
4496 
4497 
4498 static void
4499 send_restrict_list(
4500 	restrict_u *	pres,
4501 	int		ipv6,
4502 	u_int *		pidx
4503 	)
4504 {
4505 	for ( ; pres != NULL; pres = pres->link) {
4506 		send_restrict_entry(pres, ipv6, *pidx);
4507 		(*pidx)++;
4508 	}
4509 }
4510 
4511 
4512 /*
4513  * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4514  */
4515 static void
4516 read_addr_restrictions(
4517 	struct recvbuf *	rbufp
4518 )
4519 {
4520 	u_int idx;
4521 
4522 	idx = 0;
4523 	send_restrict_list(restrictlist4, FALSE, &idx);
4524 	send_restrict_list(restrictlist6, TRUE, &idx);
4525 	ctl_flushpkt(0);
4526 }
4527 
4528 
4529 /*
4530  * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4531  */
4532 static void
4533 read_ordlist(
4534 	struct recvbuf *	rbufp,
4535 	int			restrict_mask
4536 	)
4537 {
4538 	const char ifstats_s[] = "ifstats";
4539 	const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4540 	const char addr_rst_s[] = "addr_restrictions";
4541 	const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4542 	struct ntp_control *	cpkt;
4543 	u_short			qdata_octets;
4544 
4545 	/*
4546 	 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4547 	 * used only for ntpq -c ifstats.  With the addition of reslist
4548 	 * the same opcode was generalized to retrieve ordered lists
4549 	 * which require authentication.  The request data is empty or
4550 	 * contains "ifstats" (not null terminated) to retrieve local
4551 	 * addresses and associated stats.  It is "addr_restrictions"
4552 	 * to retrieve the IPv4 then IPv6 remote address restrictions,
4553 	 * which are access control lists.  Other request data return
4554 	 * CERR_UNKNOWNVAR.
4555 	 */
4556 	cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4557 	qdata_octets = ntohs(cpkt->count);
4558 	if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4559 	    !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4560 		read_ifstats(rbufp);
4561 		return;
4562 	}
4563 	if (a_r_chars == qdata_octets &&
4564 	    !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4565 		read_addr_restrictions(rbufp);
4566 		return;
4567 	}
4568 	ctl_error(CERR_UNKNOWNVAR);
4569 }
4570 
4571 
4572 /*
4573  * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4574  */
4575 static void req_nonce(
4576 	struct recvbuf *	rbufp,
4577 	int			restrict_mask
4578 	)
4579 {
4580 	char	buf[64];
4581 
4582 	generate_nonce(rbufp, buf, sizeof(buf));
4583 	ctl_putunqstr("nonce", buf, strlen(buf));
4584 	ctl_flushpkt(0);
4585 }
4586 
4587 
4588 /*
4589  * read_clockstatus - return clock radio status
4590  */
4591 /*ARGSUSED*/
4592 static void
4593 read_clockstatus(
4594 	struct recvbuf *rbufp,
4595 	int restrict_mask
4596 	)
4597 {
4598 #ifndef REFCLOCK
4599 	/*
4600 	 * If no refclock support, no data to return
4601 	 */
4602 	ctl_error(CERR_BADASSOC);
4603 #else
4604 	const struct ctl_var *	v;
4605 	int			i;
4606 	struct peer *		peer;
4607 	char *			valuep;
4608 	u_char *		wants;
4609 	size_t			wants_alloc;
4610 	int			gotvar;
4611 	const u_char *		cc;
4612 	struct ctl_var *	kv;
4613 	struct refclockstat	cs;
4614 
4615 	if (res_associd != 0) {
4616 		peer = findpeerbyassoc(res_associd);
4617 	} else {
4618 		/*
4619 		 * Find a clock for this jerk.	If the system peer
4620 		 * is a clock use it, else search peer_list for one.
4621 		 */
4622 		if (sys_peer != NULL && (FLAG_REFCLOCK &
4623 		    sys_peer->flags))
4624 			peer = sys_peer;
4625 		else
4626 			for (peer = peer_list;
4627 			     peer != NULL;
4628 			     peer = peer->p_link)
4629 				if (FLAG_REFCLOCK & peer->flags)
4630 					break;
4631 	}
4632 	if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4633 		ctl_error(CERR_BADASSOC);
4634 		return;
4635 	}
4636 	/*
4637 	 * If we got here we have a peer which is a clock. Get his
4638 	 * status.
4639 	 */
4640 	cs.kv_list = NULL;
4641 	refclock_control(&peer->srcadr, NULL, &cs);
4642 	kv = cs.kv_list;
4643 	/*
4644 	 * Look for variables in the packet.
4645 	 */
4646 	rpkt.status = htons(ctlclkstatus(&cs));
4647 	wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4648 	wants = emalloc_zero(wants_alloc);
4649 	gotvar = FALSE;
4650 	while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4651 		if (!(EOV & v->flags)) {
4652 			wants[v->code] = TRUE;
4653 			gotvar = TRUE;
4654 		} else {
4655 			v = ctl_getitem(kv, &valuep);
4656 			if (NULL == v) {
4657 				ctl_error(CERR_BADVALUE);
4658 				free(wants);
4659 				free_varlist(cs.kv_list);
4660 				return;
4661 			}
4662 			if (EOV & v->flags) {
4663 				ctl_error(CERR_UNKNOWNVAR);
4664 				free(wants);
4665 				free_varlist(cs.kv_list);
4666 				return;
4667 			}
4668 			wants[CC_MAXCODE + 1 + v->code] = TRUE;
4669 			gotvar = TRUE;
4670 		}
4671 	}
4672 
4673 	if (gotvar) {
4674 		for (i = 1; i <= CC_MAXCODE; i++)
4675 			if (wants[i])
4676 				ctl_putclock(i, &cs, TRUE);
4677 		if (kv != NULL)
4678 			for (i = 0; !(EOV & kv[i].flags); i++)
4679 				if (wants[i + CC_MAXCODE + 1])
4680 					ctl_putdata(kv[i].text,
4681 						    strlen(kv[i].text),
4682 						    FALSE);
4683 	} else {
4684 		for (cc = def_clock_var; *cc != 0; cc++)
4685 			ctl_putclock((int)*cc, &cs, FALSE);
4686 		for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4687 			if (DEF & kv->flags)
4688 				ctl_putdata(kv->text, strlen(kv->text),
4689 					    FALSE);
4690 	}
4691 
4692 	free(wants);
4693 	free_varlist(cs.kv_list);
4694 
4695 	ctl_flushpkt(0);
4696 #endif
4697 }
4698 
4699 
4700 /*
4701  * write_clockstatus - we don't do this
4702  */
4703 /*ARGSUSED*/
4704 static void
4705 write_clockstatus(
4706 	struct recvbuf *rbufp,
4707 	int restrict_mask
4708 	)
4709 {
4710 	ctl_error(CERR_PERMISSION);
4711 }
4712 
4713 /*
4714  * Trap support from here on down. We send async trap messages when the
4715  * upper levels report trouble. Traps can by set either by control
4716  * messages or by configuration.
4717  */
4718 /*
4719  * set_trap - set a trap in response to a control message
4720  */
4721 static void
4722 set_trap(
4723 	struct recvbuf *rbufp,
4724 	int restrict_mask
4725 	)
4726 {
4727 	int traptype;
4728 
4729 	/*
4730 	 * See if this guy is allowed
4731 	 */
4732 	if (restrict_mask & RES_NOTRAP) {
4733 		ctl_error(CERR_PERMISSION);
4734 		return;
4735 	}
4736 
4737 	/*
4738 	 * Determine his allowed trap type.
4739 	 */
4740 	traptype = TRAP_TYPE_PRIO;
4741 	if (restrict_mask & RES_LPTRAP)
4742 		traptype = TRAP_TYPE_NONPRIO;
4743 
4744 	/*
4745 	 * Call ctlsettrap() to do the work.  Return
4746 	 * an error if it can't assign the trap.
4747 	 */
4748 	if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4749 			(int)res_version))
4750 		ctl_error(CERR_NORESOURCE);
4751 	ctl_flushpkt(0);
4752 }
4753 
4754 
4755 /*
4756  * unset_trap - unset a trap in response to a control message
4757  */
4758 static void
4759 unset_trap(
4760 	struct recvbuf *rbufp,
4761 	int restrict_mask
4762 	)
4763 {
4764 	int traptype;
4765 
4766 	/*
4767 	 * We don't prevent anyone from removing his own trap unless the
4768 	 * trap is configured. Note we also must be aware of the
4769 	 * possibility that restriction flags were changed since this
4770 	 * guy last set his trap. Set the trap type based on this.
4771 	 */
4772 	traptype = TRAP_TYPE_PRIO;
4773 	if (restrict_mask & RES_LPTRAP)
4774 		traptype = TRAP_TYPE_NONPRIO;
4775 
4776 	/*
4777 	 * Call ctlclrtrap() to clear this out.
4778 	 */
4779 	if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4780 		ctl_error(CERR_BADASSOC);
4781 	ctl_flushpkt(0);
4782 }
4783 
4784 
4785 /*
4786  * ctlsettrap - called to set a trap
4787  */
4788 int
4789 ctlsettrap(
4790 	sockaddr_u *raddr,
4791 	struct interface *linter,
4792 	int traptype,
4793 	int version
4794 	)
4795 {
4796 	size_t n;
4797 	struct ctl_trap *tp;
4798 	struct ctl_trap *tptouse;
4799 
4800 	/*
4801 	 * See if we can find this trap.  If so, we only need update
4802 	 * the flags and the time.
4803 	 */
4804 	if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4805 		switch (traptype) {
4806 
4807 		case TRAP_TYPE_CONFIG:
4808 			tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4809 			break;
4810 
4811 		case TRAP_TYPE_PRIO:
4812 			if (tp->tr_flags & TRAP_CONFIGURED)
4813 				return (1); /* don't change anything */
4814 			tp->tr_flags = TRAP_INUSE;
4815 			break;
4816 
4817 		case TRAP_TYPE_NONPRIO:
4818 			if (tp->tr_flags & TRAP_CONFIGURED)
4819 				return (1); /* don't change anything */
4820 			tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4821 			break;
4822 		}
4823 		tp->tr_settime = current_time;
4824 		tp->tr_resets++;
4825 		return (1);
4826 	}
4827 
4828 	/*
4829 	 * First we heard of this guy.	Try to find a trap structure
4830 	 * for him to use, clearing out lesser priority guys if we
4831 	 * have to. Clear out anyone who's expired while we're at it.
4832 	 */
4833 	tptouse = NULL;
4834 	for (n = 0; n < COUNTOF(ctl_traps); n++) {
4835 		tp = &ctl_traps[n];
4836 		if ((TRAP_INUSE & tp->tr_flags) &&
4837 		    !(TRAP_CONFIGURED & tp->tr_flags) &&
4838 		    ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4839 			tp->tr_flags = 0;
4840 			num_ctl_traps--;
4841 		}
4842 		if (!(TRAP_INUSE & tp->tr_flags)) {
4843 			tptouse = tp;
4844 		} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4845 			switch (traptype) {
4846 
4847 			case TRAP_TYPE_CONFIG:
4848 				if (tptouse == NULL) {
4849 					tptouse = tp;
4850 					break;
4851 				}
4852 				if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4853 				    !(TRAP_NONPRIO & tp->tr_flags))
4854 					break;
4855 
4856 				if (!(TRAP_NONPRIO & tptouse->tr_flags)
4857 				    && (TRAP_NONPRIO & tp->tr_flags)) {
4858 					tptouse = tp;
4859 					break;
4860 				}
4861 				if (tptouse->tr_origtime <
4862 				    tp->tr_origtime)
4863 					tptouse = tp;
4864 				break;
4865 
4866 			case TRAP_TYPE_PRIO:
4867 				if ( TRAP_NONPRIO & tp->tr_flags) {
4868 					if (tptouse == NULL ||
4869 					    ((TRAP_INUSE &
4870 					      tptouse->tr_flags) &&
4871 					     tptouse->tr_origtime <
4872 					     tp->tr_origtime))
4873 						tptouse = tp;
4874 				}
4875 				break;
4876 
4877 			case TRAP_TYPE_NONPRIO:
4878 				break;
4879 			}
4880 		}
4881 	}
4882 
4883 	/*
4884 	 * If we don't have room for him return an error.
4885 	 */
4886 	if (tptouse == NULL)
4887 		return (0);
4888 
4889 	/*
4890 	 * Set up this structure for him.
4891 	 */
4892 	tptouse->tr_settime = tptouse->tr_origtime = current_time;
4893 	tptouse->tr_count = tptouse->tr_resets = 0;
4894 	tptouse->tr_sequence = 1;
4895 	tptouse->tr_addr = *raddr;
4896 	tptouse->tr_localaddr = linter;
4897 	tptouse->tr_version = (u_char) version;
4898 	tptouse->tr_flags = TRAP_INUSE;
4899 	if (traptype == TRAP_TYPE_CONFIG)
4900 		tptouse->tr_flags |= TRAP_CONFIGURED;
4901 	else if (traptype == TRAP_TYPE_NONPRIO)
4902 		tptouse->tr_flags |= TRAP_NONPRIO;
4903 	num_ctl_traps++;
4904 	return (1);
4905 }
4906 
4907 
4908 /*
4909  * ctlclrtrap - called to clear a trap
4910  */
4911 int
4912 ctlclrtrap(
4913 	sockaddr_u *raddr,
4914 	struct interface *linter,
4915 	int traptype
4916 	)
4917 {
4918 	register struct ctl_trap *tp;
4919 
4920 	if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4921 		return (0);
4922 
4923 	if (tp->tr_flags & TRAP_CONFIGURED
4924 	    && traptype != TRAP_TYPE_CONFIG)
4925 		return (0);
4926 
4927 	tp->tr_flags = 0;
4928 	num_ctl_traps--;
4929 	return (1);
4930 }
4931 
4932 
4933 /*
4934  * ctlfindtrap - find a trap given the remote and local addresses
4935  */
4936 static struct ctl_trap *
4937 ctlfindtrap(
4938 	sockaddr_u *raddr,
4939 	struct interface *linter
4940 	)
4941 {
4942 	size_t	n;
4943 
4944 	for (n = 0; n < COUNTOF(ctl_traps); n++)
4945 		if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4946 		    && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4947 		    && (linter == ctl_traps[n].tr_localaddr))
4948 			return &ctl_traps[n];
4949 
4950 	return NULL;
4951 }
4952 
4953 
4954 /*
4955  * report_event - report an event to the trappers
4956  */
4957 void
4958 report_event(
4959 	int	err,		/* error code */
4960 	struct peer *peer,	/* peer structure pointer */
4961 	const char *str		/* protostats string */
4962 	)
4963 {
4964 	char	statstr[NTP_MAXSTRLEN];
4965 	int	i;
4966 	size_t	len;
4967 
4968 	/*
4969 	 * Report the error to the protostats file, system log and
4970 	 * trappers.
4971 	 */
4972 	if (peer == NULL) {
4973 
4974 		/*
4975 		 * Discard a system report if the number of reports of
4976 		 * the same type exceeds the maximum.
4977 		 */
4978 		if (ctl_sys_last_event != (u_char)err)
4979 			ctl_sys_num_events= 0;
4980 		if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
4981 			return;
4982 
4983 		ctl_sys_last_event = (u_char)err;
4984 		ctl_sys_num_events++;
4985 		snprintf(statstr, sizeof(statstr),
4986 		    "0.0.0.0 %04x %02x %s",
4987 		    ctlsysstatus(), err, eventstr(err));
4988 		if (str != NULL) {
4989 			len = strlen(statstr);
4990 			snprintf(statstr + len, sizeof(statstr) - len,
4991 			    " %s", str);
4992 		}
4993 		NLOG(NLOG_SYSEVENT)
4994 			msyslog(LOG_INFO, "%s", statstr);
4995 	} else {
4996 
4997 		/*
4998 		 * Discard a peer report if the number of reports of
4999 		 * the same type exceeds the maximum for that peer.
5000 		 */
5001 		const char *	src;
5002 		u_char		errlast;
5003 
5004 		errlast = (u_char)err & ~PEER_EVENT;
5005 		if (peer->last_event != errlast)
5006 			peer->num_events = 0;
5007 		if (peer->num_events >= CTL_PEER_MAXEVENTS)
5008 			return;
5009 
5010 		peer->last_event = errlast;
5011 		peer->num_events++;
5012 		if (ISREFCLOCKADR(&peer->srcadr))
5013 			src = refnumtoa(&peer->srcadr);
5014 		else
5015 			src = stoa(&peer->srcadr);
5016 
5017 		snprintf(statstr, sizeof(statstr),
5018 		    "%s %04x %02x %s", src,
5019 		    ctlpeerstatus(peer), err, eventstr(err));
5020 		if (str != NULL) {
5021 			len = strlen(statstr);
5022 			snprintf(statstr + len, sizeof(statstr) - len,
5023 			    " %s", str);
5024 		}
5025 		NLOG(NLOG_PEEREVENT)
5026 			msyslog(LOG_INFO, "%s", statstr);
5027 	}
5028 	record_proto_stats(statstr);
5029 #if DEBUG
5030 	if (debug)
5031 		printf("event at %lu %s\n", current_time, statstr);
5032 #endif
5033 
5034 	/*
5035 	 * If no trappers, return.
5036 	 */
5037 	if (num_ctl_traps <= 0)
5038 		return;
5039 
5040 	/* [Bug 3119]
5041 	 * Peer Events should be associated with a peer -- hence the
5042 	 * name. But there are instances where this function is called
5043 	 * *without* a valid peer. This happens e.g. with an unsolicited
5044 	 * CryptoNAK, or when a leap second alarm is going off while
5045 	 * currently without a system peer.
5046 	 *
5047 	 * The most sensible approach to this seems to bail out here if
5048 	 * this happens. Avoiding to call this function would also
5049 	 * bypass the log reporting in the first part of this function,
5050 	 * and this is probably not the best of all options.
5051 	 *   -*-perlinger@ntp.org-*-
5052 	 */
5053 	if ((err & PEER_EVENT) && !peer)
5054 		return;
5055 
5056 	/*
5057 	 * Set up the outgoing packet variables
5058 	 */
5059 	res_opcode = CTL_OP_ASYNCMSG;
5060 	res_offset = 0;
5061 	res_async = TRUE;
5062 	res_authenticate = FALSE;
5063 	datapt = rpkt.u.data;
5064 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
5065 	if (!(err & PEER_EVENT)) {
5066 		rpkt.associd = 0;
5067 		rpkt.status = htons(ctlsysstatus());
5068 
5069 		/* Include the core system variables and the list. */
5070 		for (i = 1; i <= CS_VARLIST; i++)
5071 			ctl_putsys(i);
5072 	} else if (NULL != peer) { /* paranoia -- skip output */
5073 		rpkt.associd = htons(peer->associd);
5074 		rpkt.status = htons(ctlpeerstatus(peer));
5075 
5076 		/* Dump it all. Later, maybe less. */
5077 		for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
5078 			ctl_putpeer(i, peer);
5079 #	    ifdef REFCLOCK
5080 		/*
5081 		 * for clock exception events: add clock variables to
5082 		 * reflect info on exception
5083 		 */
5084 		if (err == PEVNT_CLOCK) {
5085 			struct refclockstat cs;
5086 			struct ctl_var *kv;
5087 
5088 			cs.kv_list = NULL;
5089 			refclock_control(&peer->srcadr, NULL, &cs);
5090 
5091 			ctl_puthex("refclockstatus",
5092 				   ctlclkstatus(&cs));
5093 
5094 			for (i = 1; i <= CC_MAXCODE; i++)
5095 				ctl_putclock(i, &cs, FALSE);
5096 			for (kv = cs.kv_list;
5097 			     kv != NULL && !(EOV & kv->flags);
5098 			     kv++)
5099 				if (DEF & kv->flags)
5100 					ctl_putdata(kv->text,
5101 						    strlen(kv->text),
5102 						    FALSE);
5103 			free_varlist(cs.kv_list);
5104 		}
5105 #	    endif /* REFCLOCK */
5106 	}
5107 
5108 	/*
5109 	 * We're done, return.
5110 	 */
5111 	ctl_flushpkt(0);
5112 }
5113 
5114 
5115 /*
5116  * mprintf_event - printf-style varargs variant of report_event()
5117  */
5118 int
5119 mprintf_event(
5120 	int		evcode,		/* event code */
5121 	struct peer *	p,		/* may be NULL */
5122 	const char *	fmt,		/* msnprintf format */
5123 	...
5124 	)
5125 {
5126 	va_list	ap;
5127 	int	rc;
5128 	char	msg[512];
5129 
5130 	va_start(ap, fmt);
5131 	rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
5132 	va_end(ap);
5133 	report_event(evcode, p, msg);
5134 
5135 	return rc;
5136 }
5137 
5138 
5139 /*
5140  * ctl_clr_stats - clear stat counters
5141  */
5142 void
5143 ctl_clr_stats(void)
5144 {
5145 	ctltimereset = current_time;
5146 	numctlreq = 0;
5147 	numctlbadpkts = 0;
5148 	numctlresponses = 0;
5149 	numctlfrags = 0;
5150 	numctlerrors = 0;
5151 	numctlfrags = 0;
5152 	numctltooshort = 0;
5153 	numctlinputresp = 0;
5154 	numctlinputfrag = 0;
5155 	numctlinputerr = 0;
5156 	numctlbadoffset = 0;
5157 	numctlbadversion = 0;
5158 	numctldatatooshort = 0;
5159 	numctlbadop = 0;
5160 	numasyncmsgs = 0;
5161 }
5162 
5163 static u_short
5164 count_var(
5165 	const struct ctl_var *k
5166 	)
5167 {
5168 	u_int c;
5169 
5170 	if (NULL == k)
5171 		return 0;
5172 
5173 	c = 0;
5174 	while (!(EOV & (k++)->flags))
5175 		c++;
5176 
5177 	ENSURE(c <= USHRT_MAX);
5178 	return (u_short)c;
5179 }
5180 
5181 
5182 char *
5183 add_var(
5184 	struct ctl_var **kv,
5185 	u_long size,
5186 	u_short def
5187 	)
5188 {
5189 	u_short		c;
5190 	struct ctl_var *k;
5191 	char *		buf;
5192 
5193 	c = count_var(*kv);
5194 	*kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
5195 	k = *kv;
5196 	buf = emalloc(size);
5197 	k[c].code  = c;
5198 	k[c].text  = buf;
5199 	k[c].flags = def;
5200 	k[c + 1].code  = 0;
5201 	k[c + 1].text  = NULL;
5202 	k[c + 1].flags = EOV;
5203 
5204 	return buf;
5205 }
5206 
5207 
5208 void
5209 set_var(
5210 	struct ctl_var **kv,
5211 	const char *data,
5212 	u_long size,
5213 	u_short def
5214 	)
5215 {
5216 	struct ctl_var *k;
5217 	const char *s;
5218 	const char *t;
5219 	char *td;
5220 
5221 	if (NULL == data || !size)
5222 		return;
5223 
5224 	k = *kv;
5225 	if (k != NULL) {
5226 		while (!(EOV & k->flags)) {
5227 			if (NULL == k->text)	{
5228 				td = emalloc(size);
5229 				memcpy(td, data, size);
5230 				k->text = td;
5231 				k->flags = def;
5232 				return;
5233 			} else {
5234 				s = data;
5235 				t = k->text;
5236 				while (*t != '=' && *s == *t) {
5237 					s++;
5238 					t++;
5239 				}
5240 				if (*s == *t && ((*t == '=') || !*t)) {
5241 					td = erealloc((void *)(intptr_t)k->text, size);
5242 					memcpy(td, data, size);
5243 					k->text = td;
5244 					k->flags = def;
5245 					return;
5246 				}
5247 			}
5248 			k++;
5249 		}
5250 	}
5251 	td = add_var(kv, size, def);
5252 	memcpy(td, data, size);
5253 }
5254 
5255 
5256 void
5257 set_sys_var(
5258 	const char *data,
5259 	u_long size,
5260 	u_short def
5261 	)
5262 {
5263 	set_var(&ext_sys_var, data, size, def);
5264 }
5265 
5266 
5267 /*
5268  * get_ext_sys_var() retrieves the value of a user-defined variable or
5269  * NULL if the variable has not been setvar'd.
5270  */
5271 const char *
5272 get_ext_sys_var(const char *tag)
5273 {
5274 	struct ctl_var *	v;
5275 	size_t			c;
5276 	const char *		val;
5277 
5278 	val = NULL;
5279 	c = strlen(tag);
5280 	for (v = ext_sys_var; !(EOV & v->flags); v++) {
5281 		if (NULL != v->text && !memcmp(tag, v->text, c)) {
5282 			if ('=' == v->text[c]) {
5283 				val = v->text + c + 1;
5284 				break;
5285 			} else if ('\0' == v->text[c]) {
5286 				val = "";
5287 				break;
5288 			}
5289 		}
5290 	}
5291 
5292 	return val;
5293 }
5294 
5295 
5296 void
5297 free_varlist(
5298 	struct ctl_var *kv
5299 	)
5300 {
5301 	struct ctl_var *k;
5302 	if (kv) {
5303 		for (k = kv; !(k->flags & EOV); k++)
5304 			free((void *)(intptr_t)k->text);
5305 		free((void *)kv);
5306 	}
5307 }
5308