1 /* 2 * ntp_control.c - respond to mode 6 control messages and send async 3 * traps. Provides service to ntpq and others. 4 */ 5 6 #ifdef HAVE_CONFIG_H 7 # include <config.h> 8 #endif 9 10 #include <stdio.h> 11 #include <ctype.h> 12 #include <signal.h> 13 #include <sys/stat.h> 14 #ifdef HAVE_NETINET_IN_H 15 # include <netinet/in.h> 16 #endif 17 #include <arpa/inet.h> 18 19 #include "ntpd.h" 20 #include "ntp_io.h" 21 #include "ntp_refclock.h" 22 #include "ntp_control.h" 23 #include "ntp_unixtime.h" 24 #include "ntp_stdlib.h" 25 #include "ntp_config.h" 26 #include "ntp_crypto.h" 27 #include "ntp_assert.h" 28 #include "ntp_leapsec.h" 29 #include "ntp_md5.h" /* provides OpenSSL digest API */ 30 #include "lib_strbuf.h" 31 #include <rc_cmdlength.h> 32 #ifdef KERNEL_PLL 33 # include "ntp_syscall.h" 34 #endif 35 36 /* 37 * Structure to hold request procedure information 38 */ 39 40 struct ctl_proc { 41 short control_code; /* defined request code */ 42 #define NO_REQUEST (-1) 43 u_short flags; /* flags word */ 44 /* Only one flag. Authentication required or not. */ 45 #define NOAUTH 0 46 #define AUTH 1 47 void (*handler) (struct recvbuf *, int); /* handle request */ 48 }; 49 50 51 /* 52 * Request processing routines 53 */ 54 static void ctl_error (u_char); 55 #ifdef REFCLOCK 56 static u_short ctlclkstatus (struct refclockstat *); 57 #endif 58 static void ctl_flushpkt (u_char); 59 static void ctl_putdata (const char *, unsigned int, int); 60 static void ctl_putstr (const char *, const char *, size_t); 61 static void ctl_putdblf (const char *, int, int, double); 62 #define ctl_putdbl(tag, d) ctl_putdblf(tag, 1, 3, d) 63 #define ctl_putdbl6(tag, d) ctl_putdblf(tag, 1, 6, d) 64 #define ctl_putsfp(tag, sfp) ctl_putdblf(tag, 0, -1, \ 65 FPTOD(sfp)) 66 static void ctl_putuint (const char *, u_long); 67 static void ctl_puthex (const char *, u_long); 68 static void ctl_putint (const char *, long); 69 static void ctl_putts (const char *, l_fp *); 70 static void ctl_putadr (const char *, u_int32, 71 sockaddr_u *); 72 static void ctl_putrefid (const char *, u_int32); 73 static void ctl_putarray (const char *, double *, int); 74 static void ctl_putsys (int); 75 static void ctl_putpeer (int, struct peer *); 76 static void ctl_putfs (const char *, tstamp_t); 77 static void ctl_printf (const char *, ...) NTP_PRINTF(1, 2); 78 #ifdef REFCLOCK 79 static void ctl_putclock (int, struct refclockstat *, int); 80 #endif /* REFCLOCK */ 81 static const struct ctl_var *ctl_getitem(const struct ctl_var *, 82 char **); 83 static u_short count_var (const struct ctl_var *); 84 static void control_unspec (struct recvbuf *, int); 85 static void read_status (struct recvbuf *, int); 86 static void read_sysvars (void); 87 static void read_peervars (void); 88 static void read_variables (struct recvbuf *, int); 89 static void write_variables (struct recvbuf *, int); 90 static void read_clockstatus(struct recvbuf *, int); 91 static void write_clockstatus(struct recvbuf *, int); 92 static void set_trap (struct recvbuf *, int); 93 static void save_config (struct recvbuf *, int); 94 static void configure (struct recvbuf *, int); 95 static void send_mru_entry (mon_entry *, int); 96 static void send_random_tag_value(int); 97 static void read_mru_list (struct recvbuf *, int); 98 static void send_ifstats_entry(endpt *, u_int); 99 static void read_ifstats (struct recvbuf *); 100 static void sockaddrs_from_restrict_u(sockaddr_u *, sockaddr_u *, 101 restrict_u *, int); 102 static void send_restrict_entry(restrict_u *, int, u_int); 103 static void send_restrict_list(restrict_u *, int, u_int *); 104 static void read_addr_restrictions(struct recvbuf *); 105 static void read_ordlist (struct recvbuf *, int); 106 static u_int32 derive_nonce (sockaddr_u *, u_int32, u_int32); 107 static void generate_nonce (struct recvbuf *, char *, size_t); 108 static int validate_nonce (const char *, struct recvbuf *); 109 static void req_nonce (struct recvbuf *, int); 110 static void unset_trap (struct recvbuf *, int); 111 static struct ctl_trap *ctlfindtrap(sockaddr_u *, 112 struct interface *); 113 114 int/*BOOL*/ is_safe_filename(const char * name); 115 116 static const struct ctl_proc control_codes[] = { 117 { CTL_OP_UNSPEC, NOAUTH, control_unspec }, 118 { CTL_OP_READSTAT, NOAUTH, read_status }, 119 { CTL_OP_READVAR, NOAUTH, read_variables }, 120 { CTL_OP_WRITEVAR, AUTH, write_variables }, 121 { CTL_OP_READCLOCK, NOAUTH, read_clockstatus }, 122 { CTL_OP_WRITECLOCK, AUTH, write_clockstatus }, 123 { CTL_OP_SETTRAP, AUTH, set_trap }, 124 { CTL_OP_CONFIGURE, AUTH, configure }, 125 { CTL_OP_SAVECONFIG, AUTH, save_config }, 126 { CTL_OP_READ_MRU, NOAUTH, read_mru_list }, 127 { CTL_OP_READ_ORDLIST_A, AUTH, read_ordlist }, 128 { CTL_OP_REQ_NONCE, NOAUTH, req_nonce }, 129 { CTL_OP_UNSETTRAP, AUTH, unset_trap }, 130 { NO_REQUEST, 0, NULL } 131 }; 132 133 /* 134 * System variables we understand 135 */ 136 #define CS_LEAP 1 137 #define CS_STRATUM 2 138 #define CS_PRECISION 3 139 #define CS_ROOTDELAY 4 140 #define CS_ROOTDISPERSION 5 141 #define CS_REFID 6 142 #define CS_REFTIME 7 143 #define CS_POLL 8 144 #define CS_PEERID 9 145 #define CS_OFFSET 10 146 #define CS_DRIFT 11 147 #define CS_JITTER 12 148 #define CS_ERROR 13 149 #define CS_CLOCK 14 150 #define CS_PROCESSOR 15 151 #define CS_SYSTEM 16 152 #define CS_VERSION 17 153 #define CS_STABIL 18 154 #define CS_VARLIST 19 155 #define CS_TAI 20 156 #define CS_LEAPTAB 21 157 #define CS_LEAPEND 22 158 #define CS_RATE 23 159 #define CS_MRU_ENABLED 24 160 #define CS_MRU_DEPTH 25 161 #define CS_MRU_DEEPEST 26 162 #define CS_MRU_MINDEPTH 27 163 #define CS_MRU_MAXAGE 28 164 #define CS_MRU_MAXDEPTH 29 165 #define CS_MRU_MEM 30 166 #define CS_MRU_MAXMEM 31 167 #define CS_SS_UPTIME 32 168 #define CS_SS_RESET 33 169 #define CS_SS_RECEIVED 34 170 #define CS_SS_THISVER 35 171 #define CS_SS_OLDVER 36 172 #define CS_SS_BADFORMAT 37 173 #define CS_SS_BADAUTH 38 174 #define CS_SS_DECLINED 39 175 #define CS_SS_RESTRICTED 40 176 #define CS_SS_LIMITED 41 177 #define CS_SS_KODSENT 42 178 #define CS_SS_PROCESSED 43 179 #define CS_SS_LAMPORT 44 180 #define CS_SS_TSROUNDING 45 181 #define CS_PEERADR 46 182 #define CS_PEERMODE 47 183 #define CS_BCASTDELAY 48 184 #define CS_AUTHDELAY 49 185 #define CS_AUTHKEYS 50 186 #define CS_AUTHFREEK 51 187 #define CS_AUTHKLOOKUPS 52 188 #define CS_AUTHKNOTFOUND 53 189 #define CS_AUTHKUNCACHED 54 190 #define CS_AUTHKEXPIRED 55 191 #define CS_AUTHENCRYPTS 56 192 #define CS_AUTHDECRYPTS 57 193 #define CS_AUTHRESET 58 194 #define CS_K_OFFSET 59 195 #define CS_K_FREQ 60 196 #define CS_K_MAXERR 61 197 #define CS_K_ESTERR 62 198 #define CS_K_STFLAGS 63 199 #define CS_K_TIMECONST 64 200 #define CS_K_PRECISION 65 201 #define CS_K_FREQTOL 66 202 #define CS_K_PPS_FREQ 67 203 #define CS_K_PPS_STABIL 68 204 #define CS_K_PPS_JITTER 69 205 #define CS_K_PPS_CALIBDUR 70 206 #define CS_K_PPS_CALIBS 71 207 #define CS_K_PPS_CALIBERRS 72 208 #define CS_K_PPS_JITEXC 73 209 #define CS_K_PPS_STBEXC 74 210 #define CS_KERN_FIRST CS_K_OFFSET 211 #define CS_KERN_LAST CS_K_PPS_STBEXC 212 #define CS_IOSTATS_RESET 75 213 #define CS_TOTAL_RBUF 76 214 #define CS_FREE_RBUF 77 215 #define CS_USED_RBUF 78 216 #define CS_RBUF_LOWATER 79 217 #define CS_IO_DROPPED 80 218 #define CS_IO_IGNORED 81 219 #define CS_IO_RECEIVED 82 220 #define CS_IO_SENT 83 221 #define CS_IO_SENDFAILED 84 222 #define CS_IO_WAKEUPS 85 223 #define CS_IO_GOODWAKEUPS 86 224 #define CS_TIMERSTATS_RESET 87 225 #define CS_TIMER_OVERRUNS 88 226 #define CS_TIMER_XMTS 89 227 #define CS_FUZZ 90 228 #define CS_WANDER_THRESH 91 229 #define CS_LEAPSMEARINTV 92 230 #define CS_LEAPSMEAROFFS 93 231 #define CS_MAX_NOAUTOKEY CS_LEAPSMEAROFFS 232 #ifdef AUTOKEY 233 #define CS_FLAGS (1 + CS_MAX_NOAUTOKEY) 234 #define CS_HOST (2 + CS_MAX_NOAUTOKEY) 235 #define CS_PUBLIC (3 + CS_MAX_NOAUTOKEY) 236 #define CS_CERTIF (4 + CS_MAX_NOAUTOKEY) 237 #define CS_SIGNATURE (5 + CS_MAX_NOAUTOKEY) 238 #define CS_REVTIME (6 + CS_MAX_NOAUTOKEY) 239 #define CS_IDENT (7 + CS_MAX_NOAUTOKEY) 240 #define CS_DIGEST (8 + CS_MAX_NOAUTOKEY) 241 #define CS_MAXCODE CS_DIGEST 242 #else /* !AUTOKEY follows */ 243 #define CS_MAXCODE CS_MAX_NOAUTOKEY 244 #endif /* !AUTOKEY */ 245 246 /* 247 * Peer variables we understand 248 */ 249 #define CP_CONFIG 1 250 #define CP_AUTHENABLE 2 251 #define CP_AUTHENTIC 3 252 #define CP_SRCADR 4 253 #define CP_SRCPORT 5 254 #define CP_DSTADR 6 255 #define CP_DSTPORT 7 256 #define CP_LEAP 8 257 #define CP_HMODE 9 258 #define CP_STRATUM 10 259 #define CP_PPOLL 11 260 #define CP_HPOLL 12 261 #define CP_PRECISION 13 262 #define CP_ROOTDELAY 14 263 #define CP_ROOTDISPERSION 15 264 #define CP_REFID 16 265 #define CP_REFTIME 17 266 #define CP_ORG 18 267 #define CP_REC 19 268 #define CP_XMT 20 269 #define CP_REACH 21 270 #define CP_UNREACH 22 271 #define CP_TIMER 23 272 #define CP_DELAY 24 273 #define CP_OFFSET 25 274 #define CP_JITTER 26 275 #define CP_DISPERSION 27 276 #define CP_KEYID 28 277 #define CP_FILTDELAY 29 278 #define CP_FILTOFFSET 30 279 #define CP_PMODE 31 280 #define CP_RECEIVED 32 281 #define CP_SENT 33 282 #define CP_FILTERROR 34 283 #define CP_FLASH 35 284 #define CP_TTL 36 285 #define CP_VARLIST 37 286 #define CP_IN 38 287 #define CP_OUT 39 288 #define CP_RATE 40 289 #define CP_BIAS 41 290 #define CP_SRCHOST 42 291 #define CP_TIMEREC 43 292 #define CP_TIMEREACH 44 293 #define CP_BADAUTH 45 294 #define CP_BOGUSORG 46 295 #define CP_OLDPKT 47 296 #define CP_SELDISP 48 297 #define CP_SELBROKEN 49 298 #define CP_CANDIDATE 50 299 #define CP_MAX_NOAUTOKEY CP_CANDIDATE 300 #ifdef AUTOKEY 301 #define CP_FLAGS (1 + CP_MAX_NOAUTOKEY) 302 #define CP_HOST (2 + CP_MAX_NOAUTOKEY) 303 #define CP_VALID (3 + CP_MAX_NOAUTOKEY) 304 #define CP_INITSEQ (4 + CP_MAX_NOAUTOKEY) 305 #define CP_INITKEY (5 + CP_MAX_NOAUTOKEY) 306 #define CP_INITTSP (6 + CP_MAX_NOAUTOKEY) 307 #define CP_SIGNATURE (7 + CP_MAX_NOAUTOKEY) 308 #define CP_IDENT (8 + CP_MAX_NOAUTOKEY) 309 #define CP_MAXCODE CP_IDENT 310 #else /* !AUTOKEY follows */ 311 #define CP_MAXCODE CP_MAX_NOAUTOKEY 312 #endif /* !AUTOKEY */ 313 314 /* 315 * Clock variables we understand 316 */ 317 #define CC_TYPE 1 318 #define CC_TIMECODE 2 319 #define CC_POLL 3 320 #define CC_NOREPLY 4 321 #define CC_BADFORMAT 5 322 #define CC_BADDATA 6 323 #define CC_FUDGETIME1 7 324 #define CC_FUDGETIME2 8 325 #define CC_FUDGEVAL1 9 326 #define CC_FUDGEVAL2 10 327 #define CC_FLAGS 11 328 #define CC_DEVICE 12 329 #define CC_VARLIST 13 330 #define CC_MAXCODE CC_VARLIST 331 332 /* 333 * System variable values. The array can be indexed by the variable 334 * index to find the textual name. 335 */ 336 static const struct ctl_var sys_var[] = { 337 { 0, PADDING, "" }, /* 0 */ 338 { CS_LEAP, RW, "leap" }, /* 1 */ 339 { CS_STRATUM, RO, "stratum" }, /* 2 */ 340 { CS_PRECISION, RO, "precision" }, /* 3 */ 341 { CS_ROOTDELAY, RO, "rootdelay" }, /* 4 */ 342 { CS_ROOTDISPERSION, RO, "rootdisp" }, /* 5 */ 343 { CS_REFID, RO, "refid" }, /* 6 */ 344 { CS_REFTIME, RO, "reftime" }, /* 7 */ 345 { CS_POLL, RO, "tc" }, /* 8 */ 346 { CS_PEERID, RO, "peer" }, /* 9 */ 347 { CS_OFFSET, RO, "offset" }, /* 10 */ 348 { CS_DRIFT, RO, "frequency" }, /* 11 */ 349 { CS_JITTER, RO, "sys_jitter" }, /* 12 */ 350 { CS_ERROR, RO, "clk_jitter" }, /* 13 */ 351 { CS_CLOCK, RO, "clock" }, /* 14 */ 352 { CS_PROCESSOR, RO, "processor" }, /* 15 */ 353 { CS_SYSTEM, RO, "system" }, /* 16 */ 354 { CS_VERSION, RO, "version" }, /* 17 */ 355 { CS_STABIL, RO, "clk_wander" }, /* 18 */ 356 { CS_VARLIST, RO, "sys_var_list" }, /* 19 */ 357 { CS_TAI, RO, "tai" }, /* 20 */ 358 { CS_LEAPTAB, RO, "leapsec" }, /* 21 */ 359 { CS_LEAPEND, RO, "expire" }, /* 22 */ 360 { CS_RATE, RO, "mintc" }, /* 23 */ 361 { CS_MRU_ENABLED, RO, "mru_enabled" }, /* 24 */ 362 { CS_MRU_DEPTH, RO, "mru_depth" }, /* 25 */ 363 { CS_MRU_DEEPEST, RO, "mru_deepest" }, /* 26 */ 364 { CS_MRU_MINDEPTH, RO, "mru_mindepth" }, /* 27 */ 365 { CS_MRU_MAXAGE, RO, "mru_maxage" }, /* 28 */ 366 { CS_MRU_MAXDEPTH, RO, "mru_maxdepth" }, /* 29 */ 367 { CS_MRU_MEM, RO, "mru_mem" }, /* 30 */ 368 { CS_MRU_MAXMEM, RO, "mru_maxmem" }, /* 31 */ 369 { CS_SS_UPTIME, RO, "ss_uptime" }, /* 32 */ 370 { CS_SS_RESET, RO, "ss_reset" }, /* 33 */ 371 { CS_SS_RECEIVED, RO, "ss_received" }, /* 34 */ 372 { CS_SS_THISVER, RO, "ss_thisver" }, /* 35 */ 373 { CS_SS_OLDVER, RO, "ss_oldver" }, /* 36 */ 374 { CS_SS_BADFORMAT, RO, "ss_badformat" }, /* 37 */ 375 { CS_SS_BADAUTH, RO, "ss_badauth" }, /* 38 */ 376 { CS_SS_DECLINED, RO, "ss_declined" }, /* 39 */ 377 { CS_SS_RESTRICTED, RO, "ss_restricted" }, /* 40 */ 378 { CS_SS_LIMITED, RO, "ss_limited" }, /* 41 */ 379 { CS_SS_KODSENT, RO, "ss_kodsent" }, /* 42 */ 380 { CS_SS_PROCESSED, RO, "ss_processed" }, /* 43 */ 381 { CS_SS_LAMPORT, RO, "ss_lamport" }, /* 44 */ 382 { CS_SS_TSROUNDING, RO, "ss_tsrounding" }, /* 45 */ 383 { CS_PEERADR, RO, "peeradr" }, /* 46 */ 384 { CS_PEERMODE, RO, "peermode" }, /* 47 */ 385 { CS_BCASTDELAY, RO, "bcastdelay" }, /* 48 */ 386 { CS_AUTHDELAY, RO, "authdelay" }, /* 49 */ 387 { CS_AUTHKEYS, RO, "authkeys" }, /* 50 */ 388 { CS_AUTHFREEK, RO, "authfreek" }, /* 51 */ 389 { CS_AUTHKLOOKUPS, RO, "authklookups" }, /* 52 */ 390 { CS_AUTHKNOTFOUND, RO, "authknotfound" }, /* 53 */ 391 { CS_AUTHKUNCACHED, RO, "authkuncached" }, /* 54 */ 392 { CS_AUTHKEXPIRED, RO, "authkexpired" }, /* 55 */ 393 { CS_AUTHENCRYPTS, RO, "authencrypts" }, /* 56 */ 394 { CS_AUTHDECRYPTS, RO, "authdecrypts" }, /* 57 */ 395 { CS_AUTHRESET, RO, "authreset" }, /* 58 */ 396 { CS_K_OFFSET, RO, "koffset" }, /* 59 */ 397 { CS_K_FREQ, RO, "kfreq" }, /* 60 */ 398 { CS_K_MAXERR, RO, "kmaxerr" }, /* 61 */ 399 { CS_K_ESTERR, RO, "kesterr" }, /* 62 */ 400 { CS_K_STFLAGS, RO, "kstflags" }, /* 63 */ 401 { CS_K_TIMECONST, RO, "ktimeconst" }, /* 64 */ 402 { CS_K_PRECISION, RO, "kprecis" }, /* 65 */ 403 { CS_K_FREQTOL, RO, "kfreqtol" }, /* 66 */ 404 { CS_K_PPS_FREQ, RO, "kppsfreq" }, /* 67 */ 405 { CS_K_PPS_STABIL, RO, "kppsstab" }, /* 68 */ 406 { CS_K_PPS_JITTER, RO, "kppsjitter" }, /* 69 */ 407 { CS_K_PPS_CALIBDUR, RO, "kppscalibdur" }, /* 70 */ 408 { CS_K_PPS_CALIBS, RO, "kppscalibs" }, /* 71 */ 409 { CS_K_PPS_CALIBERRS, RO, "kppscaliberrs" }, /* 72 */ 410 { CS_K_PPS_JITEXC, RO, "kppsjitexc" }, /* 73 */ 411 { CS_K_PPS_STBEXC, RO, "kppsstbexc" }, /* 74 */ 412 { CS_IOSTATS_RESET, RO, "iostats_reset" }, /* 75 */ 413 { CS_TOTAL_RBUF, RO, "total_rbuf" }, /* 76 */ 414 { CS_FREE_RBUF, RO, "free_rbuf" }, /* 77 */ 415 { CS_USED_RBUF, RO, "used_rbuf" }, /* 78 */ 416 { CS_RBUF_LOWATER, RO, "rbuf_lowater" }, /* 79 */ 417 { CS_IO_DROPPED, RO, "io_dropped" }, /* 80 */ 418 { CS_IO_IGNORED, RO, "io_ignored" }, /* 81 */ 419 { CS_IO_RECEIVED, RO, "io_received" }, /* 82 */ 420 { CS_IO_SENT, RO, "io_sent" }, /* 83 */ 421 { CS_IO_SENDFAILED, RO, "io_sendfailed" }, /* 84 */ 422 { CS_IO_WAKEUPS, RO, "io_wakeups" }, /* 85 */ 423 { CS_IO_GOODWAKEUPS, RO, "io_goodwakeups" }, /* 86 */ 424 { CS_TIMERSTATS_RESET, RO, "timerstats_reset" },/* 87 */ 425 { CS_TIMER_OVERRUNS, RO, "timer_overruns" }, /* 88 */ 426 { CS_TIMER_XMTS, RO, "timer_xmts" }, /* 89 */ 427 { CS_FUZZ, RO, "fuzz" }, /* 90 */ 428 { CS_WANDER_THRESH, RO, "clk_wander_threshold" }, /* 91 */ 429 430 { CS_LEAPSMEARINTV, RO, "leapsmearinterval" }, /* 92 */ 431 { CS_LEAPSMEAROFFS, RO, "leapsmearoffset" }, /* 93 */ 432 433 #ifdef AUTOKEY 434 { CS_FLAGS, RO, "flags" }, /* 1 + CS_MAX_NOAUTOKEY */ 435 { CS_HOST, RO, "host" }, /* 2 + CS_MAX_NOAUTOKEY */ 436 { CS_PUBLIC, RO, "update" }, /* 3 + CS_MAX_NOAUTOKEY */ 437 { CS_CERTIF, RO, "cert" }, /* 4 + CS_MAX_NOAUTOKEY */ 438 { CS_SIGNATURE, RO, "signature" }, /* 5 + CS_MAX_NOAUTOKEY */ 439 { CS_REVTIME, RO, "until" }, /* 6 + CS_MAX_NOAUTOKEY */ 440 { CS_IDENT, RO, "ident" }, /* 7 + CS_MAX_NOAUTOKEY */ 441 { CS_DIGEST, RO, "digest" }, /* 8 + CS_MAX_NOAUTOKEY */ 442 #endif /* AUTOKEY */ 443 { 0, EOV, "" } /* 94/102 */ 444 }; 445 446 static struct ctl_var *ext_sys_var = NULL; 447 448 /* 449 * System variables we print by default (in fuzzball order, 450 * more-or-less) 451 */ 452 static const u_char def_sys_var[] = { 453 CS_VERSION, 454 CS_PROCESSOR, 455 CS_SYSTEM, 456 CS_LEAP, 457 CS_STRATUM, 458 CS_PRECISION, 459 CS_ROOTDELAY, 460 CS_ROOTDISPERSION, 461 CS_REFID, 462 CS_REFTIME, 463 CS_CLOCK, 464 CS_PEERID, 465 CS_POLL, 466 CS_RATE, 467 CS_OFFSET, 468 CS_DRIFT, 469 CS_JITTER, 470 CS_ERROR, 471 CS_STABIL, 472 CS_TAI, 473 CS_LEAPTAB, 474 CS_LEAPEND, 475 CS_LEAPSMEARINTV, 476 CS_LEAPSMEAROFFS, 477 #ifdef AUTOKEY 478 CS_HOST, 479 CS_IDENT, 480 CS_FLAGS, 481 CS_DIGEST, 482 CS_SIGNATURE, 483 CS_PUBLIC, 484 CS_CERTIF, 485 #endif /* AUTOKEY */ 486 0 487 }; 488 489 490 /* 491 * Peer variable list 492 */ 493 static const struct ctl_var peer_var[] = { 494 { 0, PADDING, "" }, /* 0 */ 495 { CP_CONFIG, RO, "config" }, /* 1 */ 496 { CP_AUTHENABLE, RO, "authenable" }, /* 2 */ 497 { CP_AUTHENTIC, RO, "authentic" }, /* 3 */ 498 { CP_SRCADR, RO, "srcadr" }, /* 4 */ 499 { CP_SRCPORT, RO, "srcport" }, /* 5 */ 500 { CP_DSTADR, RO, "dstadr" }, /* 6 */ 501 { CP_DSTPORT, RO, "dstport" }, /* 7 */ 502 { CP_LEAP, RO, "leap" }, /* 8 */ 503 { CP_HMODE, RO, "hmode" }, /* 9 */ 504 { CP_STRATUM, RO, "stratum" }, /* 10 */ 505 { CP_PPOLL, RO, "ppoll" }, /* 11 */ 506 { CP_HPOLL, RO, "hpoll" }, /* 12 */ 507 { CP_PRECISION, RO, "precision" }, /* 13 */ 508 { CP_ROOTDELAY, RO, "rootdelay" }, /* 14 */ 509 { CP_ROOTDISPERSION, RO, "rootdisp" }, /* 15 */ 510 { CP_REFID, RO, "refid" }, /* 16 */ 511 { CP_REFTIME, RO, "reftime" }, /* 17 */ 512 { CP_ORG, RO, "org" }, /* 18 */ 513 { CP_REC, RO, "rec" }, /* 19 */ 514 { CP_XMT, RO, "xleave" }, /* 20 */ 515 { CP_REACH, RO, "reach" }, /* 21 */ 516 { CP_UNREACH, RO, "unreach" }, /* 22 */ 517 { CP_TIMER, RO, "timer" }, /* 23 */ 518 { CP_DELAY, RO, "delay" }, /* 24 */ 519 { CP_OFFSET, RO, "offset" }, /* 25 */ 520 { CP_JITTER, RO, "jitter" }, /* 26 */ 521 { CP_DISPERSION, RO, "dispersion" }, /* 27 */ 522 { CP_KEYID, RO, "keyid" }, /* 28 */ 523 { CP_FILTDELAY, RO, "filtdelay" }, /* 29 */ 524 { CP_FILTOFFSET, RO, "filtoffset" }, /* 30 */ 525 { CP_PMODE, RO, "pmode" }, /* 31 */ 526 { CP_RECEIVED, RO, "received"}, /* 32 */ 527 { CP_SENT, RO, "sent" }, /* 33 */ 528 { CP_FILTERROR, RO, "filtdisp" }, /* 34 */ 529 { CP_FLASH, RO, "flash" }, /* 35 */ 530 { CP_TTL, RO, "ttl" }, /* 36 */ 531 { CP_VARLIST, RO, "peer_var_list" }, /* 37 */ 532 { CP_IN, RO, "in" }, /* 38 */ 533 { CP_OUT, RO, "out" }, /* 39 */ 534 { CP_RATE, RO, "headway" }, /* 40 */ 535 { CP_BIAS, RO, "bias" }, /* 41 */ 536 { CP_SRCHOST, RO, "srchost" }, /* 42 */ 537 { CP_TIMEREC, RO, "timerec" }, /* 43 */ 538 { CP_TIMEREACH, RO, "timereach" }, /* 44 */ 539 { CP_BADAUTH, RO, "badauth" }, /* 45 */ 540 { CP_BOGUSORG, RO, "bogusorg" }, /* 46 */ 541 { CP_OLDPKT, RO, "oldpkt" }, /* 47 */ 542 { CP_SELDISP, RO, "seldisp" }, /* 48 */ 543 { CP_SELBROKEN, RO, "selbroken" }, /* 49 */ 544 { CP_CANDIDATE, RO, "candidate" }, /* 50 */ 545 #ifdef AUTOKEY 546 { CP_FLAGS, RO, "flags" }, /* 1 + CP_MAX_NOAUTOKEY */ 547 { CP_HOST, RO, "host" }, /* 2 + CP_MAX_NOAUTOKEY */ 548 { CP_VALID, RO, "valid" }, /* 3 + CP_MAX_NOAUTOKEY */ 549 { CP_INITSEQ, RO, "initsequence" }, /* 4 + CP_MAX_NOAUTOKEY */ 550 { CP_INITKEY, RO, "initkey" }, /* 5 + CP_MAX_NOAUTOKEY */ 551 { CP_INITTSP, RO, "timestamp" }, /* 6 + CP_MAX_NOAUTOKEY */ 552 { CP_SIGNATURE, RO, "signature" }, /* 7 + CP_MAX_NOAUTOKEY */ 553 { CP_IDENT, RO, "ident" }, /* 8 + CP_MAX_NOAUTOKEY */ 554 #endif /* AUTOKEY */ 555 { 0, EOV, "" } /* 50/58 */ 556 }; 557 558 559 /* 560 * Peer variables we print by default 561 */ 562 static const u_char def_peer_var[] = { 563 CP_SRCADR, 564 CP_SRCPORT, 565 CP_SRCHOST, 566 CP_DSTADR, 567 CP_DSTPORT, 568 CP_OUT, 569 CP_IN, 570 CP_LEAP, 571 CP_STRATUM, 572 CP_PRECISION, 573 CP_ROOTDELAY, 574 CP_ROOTDISPERSION, 575 CP_REFID, 576 CP_REFTIME, 577 CP_REC, 578 CP_REACH, 579 CP_UNREACH, 580 CP_HMODE, 581 CP_PMODE, 582 CP_HPOLL, 583 CP_PPOLL, 584 CP_RATE, 585 CP_FLASH, 586 CP_KEYID, 587 CP_TTL, 588 CP_OFFSET, 589 CP_DELAY, 590 CP_DISPERSION, 591 CP_JITTER, 592 CP_XMT, 593 CP_BIAS, 594 CP_FILTDELAY, 595 CP_FILTOFFSET, 596 CP_FILTERROR, 597 #ifdef AUTOKEY 598 CP_HOST, 599 CP_FLAGS, 600 CP_SIGNATURE, 601 CP_VALID, 602 CP_INITSEQ, 603 CP_IDENT, 604 #endif /* AUTOKEY */ 605 0 606 }; 607 608 609 #ifdef REFCLOCK 610 /* 611 * Clock variable list 612 */ 613 static const struct ctl_var clock_var[] = { 614 { 0, PADDING, "" }, /* 0 */ 615 { CC_TYPE, RO, "type" }, /* 1 */ 616 { CC_TIMECODE, RO, "timecode" }, /* 2 */ 617 { CC_POLL, RO, "poll" }, /* 3 */ 618 { CC_NOREPLY, RO, "noreply" }, /* 4 */ 619 { CC_BADFORMAT, RO, "badformat" }, /* 5 */ 620 { CC_BADDATA, RO, "baddata" }, /* 6 */ 621 { CC_FUDGETIME1, RO, "fudgetime1" }, /* 7 */ 622 { CC_FUDGETIME2, RO, "fudgetime2" }, /* 8 */ 623 { CC_FUDGEVAL1, RO, "stratum" }, /* 9 */ 624 { CC_FUDGEVAL2, RO, "refid" }, /* 10 */ 625 { CC_FLAGS, RO, "flags" }, /* 11 */ 626 { CC_DEVICE, RO, "device" }, /* 12 */ 627 { CC_VARLIST, RO, "clock_var_list" }, /* 13 */ 628 { 0, EOV, "" } /* 14 */ 629 }; 630 631 632 /* 633 * Clock variables printed by default 634 */ 635 static const u_char def_clock_var[] = { 636 CC_DEVICE, 637 CC_TYPE, /* won't be output if device = known */ 638 CC_TIMECODE, 639 CC_POLL, 640 CC_NOREPLY, 641 CC_BADFORMAT, 642 CC_BADDATA, 643 CC_FUDGETIME1, 644 CC_FUDGETIME2, 645 CC_FUDGEVAL1, 646 CC_FUDGEVAL2, 647 CC_FLAGS, 648 0 649 }; 650 #endif 651 652 /* 653 * MRU string constants shared by send_mru_entry() and read_mru_list(). 654 */ 655 static const char addr_fmt[] = "addr.%d"; 656 static const char last_fmt[] = "last.%d"; 657 658 /* 659 * System and processor definitions. 660 */ 661 #ifndef HAVE_UNAME 662 # ifndef STR_SYSTEM 663 # define STR_SYSTEM "UNIX" 664 # endif 665 # ifndef STR_PROCESSOR 666 # define STR_PROCESSOR "unknown" 667 # endif 668 669 static const char str_system[] = STR_SYSTEM; 670 static const char str_processor[] = STR_PROCESSOR; 671 #else 672 # include <sys/utsname.h> 673 static struct utsname utsnamebuf; 674 #endif /* HAVE_UNAME */ 675 676 /* 677 * Trap structures. We only allow a few of these, and send a copy of 678 * each async message to each live one. Traps time out after an hour, it 679 * is up to the trap receipient to keep resetting it to avoid being 680 * timed out. 681 */ 682 /* ntp_request.c */ 683 struct ctl_trap ctl_traps[CTL_MAXTRAPS]; 684 int num_ctl_traps; 685 686 /* 687 * Type bits, for ctlsettrap() call. 688 */ 689 #define TRAP_TYPE_CONFIG 0 /* used by configuration code */ 690 #define TRAP_TYPE_PRIO 1 /* priority trap */ 691 #define TRAP_TYPE_NONPRIO 2 /* nonpriority trap */ 692 693 694 /* 695 * List relating reference clock types to control message time sources. 696 * Index by the reference clock type. This list will only be used iff 697 * the reference clock driver doesn't set peer->sstclktype to something 698 * different than CTL_SST_TS_UNSPEC. 699 */ 700 #ifdef REFCLOCK 701 static const u_char clocktypes[] = { 702 CTL_SST_TS_NTP, /* REFCLK_NONE (0) */ 703 CTL_SST_TS_LOCAL, /* REFCLK_LOCALCLOCK (1) */ 704 CTL_SST_TS_UHF, /* deprecated REFCLK_GPS_TRAK (2) */ 705 CTL_SST_TS_HF, /* REFCLK_WWV_PST (3) */ 706 CTL_SST_TS_LF, /* REFCLK_WWVB_SPECTRACOM (4) */ 707 CTL_SST_TS_UHF, /* REFCLK_TRUETIME (5) */ 708 CTL_SST_TS_UHF, /* REFCLK_IRIG_AUDIO (6) */ 709 CTL_SST_TS_HF, /* REFCLK_CHU (7) */ 710 CTL_SST_TS_LF, /* REFCLOCK_PARSE (default) (8) */ 711 CTL_SST_TS_LF, /* REFCLK_GPS_MX4200 (9) */ 712 CTL_SST_TS_UHF, /* REFCLK_GPS_AS2201 (10) */ 713 CTL_SST_TS_UHF, /* REFCLK_GPS_ARBITER (11) */ 714 CTL_SST_TS_UHF, /* REFCLK_IRIG_TPRO (12) */ 715 CTL_SST_TS_ATOM, /* REFCLK_ATOM_LEITCH (13) */ 716 CTL_SST_TS_LF, /* deprecated REFCLK_MSF_EES (14) */ 717 CTL_SST_TS_NTP, /* not used (15) */ 718 CTL_SST_TS_UHF, /* REFCLK_IRIG_BANCOMM (16) */ 719 CTL_SST_TS_UHF, /* REFCLK_GPS_DATU (17) */ 720 CTL_SST_TS_TELEPHONE, /* REFCLK_NIST_ACTS (18) */ 721 CTL_SST_TS_HF, /* REFCLK_WWV_HEATH (19) */ 722 CTL_SST_TS_UHF, /* REFCLK_GPS_NMEA (20) */ 723 CTL_SST_TS_UHF, /* REFCLK_GPS_VME (21) */ 724 CTL_SST_TS_ATOM, /* REFCLK_ATOM_PPS (22) */ 725 CTL_SST_TS_NTP, /* not used (23) */ 726 CTL_SST_TS_NTP, /* not used (24) */ 727 CTL_SST_TS_NTP, /* not used (25) */ 728 CTL_SST_TS_UHF, /* REFCLK_GPS_HP (26) */ 729 CTL_SST_TS_LF, /* REFCLK_ARCRON_MSF (27) */ 730 CTL_SST_TS_UHF, /* REFCLK_SHM (28) */ 731 CTL_SST_TS_UHF, /* REFCLK_PALISADE (29) */ 732 CTL_SST_TS_UHF, /* REFCLK_ONCORE (30) */ 733 CTL_SST_TS_UHF, /* REFCLK_JUPITER (31) */ 734 CTL_SST_TS_LF, /* REFCLK_CHRONOLOG (32) */ 735 CTL_SST_TS_LF, /* REFCLK_DUMBCLOCK (33) */ 736 CTL_SST_TS_LF, /* REFCLK_ULINK (34) */ 737 CTL_SST_TS_LF, /* REFCLK_PCF (35) */ 738 CTL_SST_TS_HF, /* REFCLK_WWV (36) */ 739 CTL_SST_TS_LF, /* REFCLK_FG (37) */ 740 CTL_SST_TS_UHF, /* REFCLK_HOPF_SERIAL (38) */ 741 CTL_SST_TS_UHF, /* REFCLK_HOPF_PCI (39) */ 742 CTL_SST_TS_LF, /* REFCLK_JJY (40) */ 743 CTL_SST_TS_UHF, /* REFCLK_TT560 (41) */ 744 CTL_SST_TS_UHF, /* REFCLK_ZYFER (42) */ 745 CTL_SST_TS_UHF, /* REFCLK_RIPENCC (43) */ 746 CTL_SST_TS_UHF, /* REFCLK_NEOCLOCK4X (44) */ 747 CTL_SST_TS_UHF, /* REFCLK_TSYNCPCI (45) */ 748 CTL_SST_TS_UHF /* REFCLK_GPSDJSON (46) */ 749 }; 750 #endif /* REFCLOCK */ 751 752 753 /* 754 * Keyid used for authenticating write requests. 755 */ 756 keyid_t ctl_auth_keyid; 757 758 /* 759 * We keep track of the last error reported by the system internally 760 */ 761 static u_char ctl_sys_last_event; 762 static u_char ctl_sys_num_events; 763 764 765 /* 766 * Statistic counters to keep track of requests and responses. 767 */ 768 u_long ctltimereset; /* time stats reset */ 769 u_long numctlreq; /* number of requests we've received */ 770 u_long numctlbadpkts; /* number of bad control packets */ 771 u_long numctlresponses; /* number of resp packets sent with data */ 772 u_long numctlfrags; /* number of fragments sent */ 773 u_long numctlerrors; /* number of error responses sent */ 774 u_long numctltooshort; /* number of too short input packets */ 775 u_long numctlinputresp; /* number of responses on input */ 776 u_long numctlinputfrag; /* number of fragments on input */ 777 u_long numctlinputerr; /* number of input pkts with err bit set */ 778 u_long numctlbadoffset; /* number of input pkts with nonzero offset */ 779 u_long numctlbadversion; /* number of input pkts with unknown version */ 780 u_long numctldatatooshort; /* data too short for count */ 781 u_long numctlbadop; /* bad op code found in packet */ 782 u_long numasyncmsgs; /* number of async messages we've sent */ 783 784 /* 785 * Response packet used by these routines. Also some state information 786 * so that we can handle packet formatting within a common set of 787 * subroutines. Note we try to enter data in place whenever possible, 788 * but the need to set the more bit correctly means we occasionally 789 * use the extra buffer and copy. 790 */ 791 static struct ntp_control rpkt; 792 static u_char res_version; 793 static u_char res_opcode; 794 static associd_t res_associd; 795 static u_short res_frags; /* datagrams in this response */ 796 static int res_offset; /* offset of payload in response */ 797 static u_char * datapt; 798 static u_char * dataend; 799 static int datalinelen; 800 static int datasent; /* flag to avoid initial ", " */ 801 static int datanotbinflag; 802 static sockaddr_u *rmt_addr; 803 static struct interface *lcl_inter; 804 805 static u_char res_authenticate; 806 static u_char res_authokay; 807 static keyid_t res_keyid; 808 809 #define MAXDATALINELEN (72) 810 811 static u_char res_async; /* sending async trap response? */ 812 813 /* 814 * Pointers for saving state when decoding request packets 815 */ 816 static char *reqpt; 817 static char *reqend; 818 819 #ifndef MIN 820 #define MIN(a, b) (((a) <= (b)) ? (a) : (b)) 821 #endif 822 823 /* 824 * init_control - initialize request data 825 */ 826 void 827 init_control(void) 828 { 829 size_t i; 830 831 #ifdef HAVE_UNAME 832 uname(&utsnamebuf); 833 #endif /* HAVE_UNAME */ 834 835 ctl_clr_stats(); 836 837 ctl_auth_keyid = 0; 838 ctl_sys_last_event = EVNT_UNSPEC; 839 ctl_sys_num_events = 0; 840 841 num_ctl_traps = 0; 842 for (i = 0; i < COUNTOF(ctl_traps); i++) 843 ctl_traps[i].tr_flags = 0; 844 } 845 846 847 /* 848 * ctl_error - send an error response for the current request 849 */ 850 static void 851 ctl_error( 852 u_char errcode 853 ) 854 { 855 size_t maclen; 856 857 numctlerrors++; 858 DPRINTF(3, ("sending control error %u\n", errcode)); 859 860 /* 861 * Fill in the fields. We assume rpkt.sequence and rpkt.associd 862 * have already been filled in. 863 */ 864 rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR | 865 (res_opcode & CTL_OP_MASK); 866 rpkt.status = htons((u_short)(errcode << 8) & 0xff00); 867 rpkt.count = 0; 868 869 /* 870 * send packet and bump counters 871 */ 872 if (res_authenticate && sys_authenticate) { 873 maclen = authencrypt(res_keyid, (u_int32 *)&rpkt, 874 CTL_HEADER_LEN); 875 sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt, 876 CTL_HEADER_LEN + maclen); 877 } else 878 sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt, 879 CTL_HEADER_LEN); 880 } 881 882 int/*BOOL*/ 883 is_safe_filename(const char * name) 884 { 885 /* We need a strict validation of filenames we should write: The 886 * daemon might run with special permissions and is remote 887 * controllable, so we better take care what we allow as file 888 * name! 889 * 890 * The first character must be digit or a letter from the ASCII 891 * base plane or a '_' ([_A-Za-z0-9]), the following characters 892 * must be from [-._+A-Za-z0-9]. 893 * 894 * We do not trust the character classification much here: Since 895 * the NTP protocol makes no provisions for UTF-8 or local code 896 * pages, we strictly require the 7bit ASCII code page. 897 * 898 * The following table is a packed bit field of 128 two-bit 899 * groups. The LSB in each group tells us if a character is 900 * acceptable at the first position, the MSB if the character is 901 * accepted at any other position. 902 * 903 * This does not ensure that the file name is syntactically 904 * correct (multiple dots will not work with VMS...) but it will 905 * exclude potential globbing bombs and directory traversal. It 906 * also rules out drive selection. (For systems that have this 907 * notion, like Windows or VMS.) 908 */ 909 static const uint32_t chclass[8] = { 910 0x00000000, 0x00000000, 911 0x28800000, 0x000FFFFF, 912 0xFFFFFFFC, 0xC03FFFFF, 913 0xFFFFFFFC, 0x003FFFFF 914 }; 915 916 u_int widx, bidx, mask; 917 if ( ! (name && *name)) 918 return FALSE; 919 920 mask = 1u; 921 while (0 != (widx = (u_char)*name++)) { 922 bidx = (widx & 15) << 1; 923 widx = widx >> 4; 924 if (widx >= sizeof(chclass)/sizeof(chclass[0])) 925 return FALSE; 926 if (0 == ((chclass[widx] >> bidx) & mask)) 927 return FALSE; 928 mask = 2u; 929 } 930 return TRUE; 931 } 932 933 934 /* 935 * save_config - Implements ntpq -c "saveconfig <filename>" 936 * Writes current configuration including any runtime 937 * changes by ntpq's :config or config-from-file 938 * 939 * Note: There should be no buffer overflow or truncation in the 940 * processing of file names -- both cause security problems. This is bit 941 * painful to code but essential here. 942 */ 943 void 944 save_config( 945 struct recvbuf *rbufp, 946 int restrict_mask 947 ) 948 { 949 /* block directory traversal by searching for characters that 950 * indicate directory components in a file path. 951 * 952 * Conceptually we should be searching for DIRSEP in filename, 953 * however Windows actually recognizes both forward and 954 * backslashes as equivalent directory separators at the API 955 * level. On POSIX systems we could allow '\\' but such 956 * filenames are tricky to manipulate from a shell, so just 957 * reject both types of slashes on all platforms. 958 */ 959 /* TALOS-CAN-0062: block directory traversal for VMS, too */ 960 static const char * illegal_in_filename = 961 #if defined(VMS) 962 ":[]" /* do not allow drive and path components here */ 963 #elif defined(SYS_WINNT) 964 ":\\/" /* path and drive separators */ 965 #else 966 "\\/" /* separator and critical char for POSIX */ 967 #endif 968 ; 969 char reply[128]; 970 #ifdef SAVECONFIG 971 static const char savedconfig_eq[] = "savedconfig="; 972 973 /* Build a safe open mode from the available mode flags. We want 974 * to create a new file and write it in text mode (when 975 * applicable -- only Windows does this...) 976 */ 977 static const int openmode = O_CREAT | O_TRUNC | O_WRONLY 978 # if defined(O_EXCL) /* posix, vms */ 979 | O_EXCL 980 # elif defined(_O_EXCL) /* windows is alway very special... */ 981 | _O_EXCL 982 # endif 983 # if defined(_O_TEXT) /* windows, again */ 984 | _O_TEXT 985 #endif 986 ; 987 988 char filespec[128]; 989 char filename[128]; 990 char fullpath[512]; 991 char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)]; 992 time_t now; 993 int fd; 994 FILE *fptr; 995 int prc; 996 size_t reqlen; 997 #endif 998 999 if (RES_NOMODIFY & restrict_mask) { 1000 ctl_printf("%s", "saveconfig prohibited by restrict ... nomodify"); 1001 ctl_flushpkt(0); 1002 NLOG(NLOG_SYSINFO) 1003 msyslog(LOG_NOTICE, 1004 "saveconfig from %s rejected due to nomodify restriction", 1005 stoa(&rbufp->recv_srcadr)); 1006 sys_restricted++; 1007 return; 1008 } 1009 1010 #ifdef SAVECONFIG 1011 if (NULL == saveconfigdir) { 1012 ctl_printf("%s", "saveconfig prohibited, no saveconfigdir configured"); 1013 ctl_flushpkt(0); 1014 NLOG(NLOG_SYSINFO) 1015 msyslog(LOG_NOTICE, 1016 "saveconfig from %s rejected, no saveconfigdir", 1017 stoa(&rbufp->recv_srcadr)); 1018 return; 1019 } 1020 1021 /* The length checking stuff gets serious. Do not assume a NUL 1022 * byte can be found, but if so, use it to calculate the needed 1023 * buffer size. If the available buffer is too short, bail out; 1024 * likewise if there is no file spec. (The latter will not 1025 * happen when using NTPQ, but there are other ways to craft a 1026 * network packet!) 1027 */ 1028 reqlen = (size_t)(reqend - reqpt); 1029 if (0 != reqlen) { 1030 char * nulpos = (char*)memchr(reqpt, 0, reqlen); 1031 if (NULL != nulpos) 1032 reqlen = (size_t)(nulpos - reqpt); 1033 } 1034 if (0 == reqlen) 1035 return; 1036 if (reqlen >= sizeof(filespec)) { 1037 ctl_printf("saveconfig exceeded maximum raw name length (%u)", 1038 (u_int)sizeof(filespec)); 1039 ctl_flushpkt(0); 1040 msyslog(LOG_NOTICE, 1041 "saveconfig exceeded maximum raw name length from %s", 1042 stoa(&rbufp->recv_srcadr)); 1043 return; 1044 } 1045 1046 /* copy data directly as we exactly know the size */ 1047 memcpy(filespec, reqpt, reqlen); 1048 filespec[reqlen] = '\0'; 1049 1050 /* 1051 * allow timestamping of the saved config filename with 1052 * strftime() format such as: 1053 * ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf" 1054 * XXX: Nice feature, but not too safe. 1055 * YYY: The check for permitted characters in file names should 1056 * weed out the worst. Let's hope 'strftime()' does not 1057 * develop pathological problems. 1058 */ 1059 time(&now); 1060 if (0 == strftime(filename, sizeof(filename), filespec, 1061 localtime(&now))) 1062 { 1063 /* 1064 * If we arrive here, 'strftime()' balked; most likely 1065 * the buffer was too short. (Or it encounterd an empty 1066 * format, or just a format that expands to an empty 1067 * string.) We try to use the original name, though this 1068 * is very likely to fail later if there are format 1069 * specs in the string. Note that truncation cannot 1070 * happen here as long as both buffers have the same 1071 * size! 1072 */ 1073 strlcpy(filename, filespec, sizeof(filename)); 1074 } 1075 1076 /* 1077 * Check the file name for sanity. This might/will rule out file 1078 * names that would be legal but problematic, and it blocks 1079 * directory traversal. 1080 */ 1081 if (!is_safe_filename(filename)) { 1082 ctl_printf("saveconfig rejects unsafe file name '%s'", 1083 filename); 1084 ctl_flushpkt(0); 1085 msyslog(LOG_NOTICE, 1086 "saveconfig rejects unsafe file name from %s", 1087 stoa(&rbufp->recv_srcadr)); 1088 return; 1089 } 1090 1091 /* 1092 * XXX: This next test may not be needed with is_safe_filename() 1093 */ 1094 1095 /* block directory/drive traversal */ 1096 /* TALOS-CAN-0062: block directory traversal for VMS, too */ 1097 if (NULL != strpbrk(filename, illegal_in_filename)) { 1098 snprintf(reply, sizeof(reply), 1099 "saveconfig does not allow directory in filename"); 1100 ctl_putdata(reply, strlen(reply), 0); 1101 ctl_flushpkt(0); 1102 msyslog(LOG_NOTICE, 1103 "saveconfig rejects unsafe file name from %s", 1104 stoa(&rbufp->recv_srcadr)); 1105 return; 1106 } 1107 1108 /* concatenation of directory and path can cause another 1109 * truncation... 1110 */ 1111 prc = snprintf(fullpath, sizeof(fullpath), "%s%s", 1112 saveconfigdir, filename); 1113 if (prc < 0 || (size_t)prc >= sizeof(fullpath)) { 1114 ctl_printf("saveconfig exceeded maximum path length (%u)", 1115 (u_int)sizeof(fullpath)); 1116 ctl_flushpkt(0); 1117 msyslog(LOG_NOTICE, 1118 "saveconfig exceeded maximum path length from %s", 1119 stoa(&rbufp->recv_srcadr)); 1120 return; 1121 } 1122 1123 fd = open(fullpath, openmode, S_IRUSR | S_IWUSR); 1124 if (-1 == fd) 1125 fptr = NULL; 1126 else 1127 fptr = fdopen(fd, "w"); 1128 1129 if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) { 1130 ctl_printf("Unable to save configuration to file '%s': %s", 1131 filename, strerror(errno)); 1132 msyslog(LOG_ERR, 1133 "saveconfig %s from %s failed", filename, 1134 stoa(&rbufp->recv_srcadr)); 1135 } else { 1136 ctl_printf("Configuration saved to '%s'", filename); 1137 msyslog(LOG_NOTICE, 1138 "Configuration saved to '%s' (requested by %s)", 1139 fullpath, stoa(&rbufp->recv_srcadr)); 1140 /* 1141 * save the output filename in system variable 1142 * savedconfig, retrieved with: 1143 * ntpq -c "rv 0 savedconfig" 1144 * Note: the way 'savedconfig' is defined makes overflow 1145 * checks unnecessary here. 1146 */ 1147 snprintf(savedconfig, sizeof(savedconfig), "%s%s", 1148 savedconfig_eq, filename); 1149 set_sys_var(savedconfig, strlen(savedconfig) + 1, RO); 1150 } 1151 1152 if (NULL != fptr) 1153 fclose(fptr); 1154 #else /* !SAVECONFIG follows */ 1155 ctl_printf("%s", 1156 "saveconfig unavailable, configured with --disable-saveconfig"); 1157 #endif 1158 ctl_flushpkt(0); 1159 } 1160 1161 1162 /* 1163 * process_control - process an incoming control message 1164 */ 1165 void 1166 process_control( 1167 struct recvbuf *rbufp, 1168 int restrict_mask 1169 ) 1170 { 1171 struct ntp_control *pkt; 1172 int req_count; 1173 int req_data; 1174 const struct ctl_proc *cc; 1175 keyid_t *pkid; 1176 int properlen; 1177 size_t maclen; 1178 1179 DPRINTF(3, ("in process_control()\n")); 1180 1181 /* 1182 * Save the addresses for error responses 1183 */ 1184 numctlreq++; 1185 rmt_addr = &rbufp->recv_srcadr; 1186 lcl_inter = rbufp->dstadr; 1187 pkt = (struct ntp_control *)&rbufp->recv_pkt; 1188 1189 /* 1190 * If the length is less than required for the header, or 1191 * it is a response or a fragment, ignore this. 1192 */ 1193 if (rbufp->recv_length < (int)CTL_HEADER_LEN 1194 || (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op 1195 || pkt->offset != 0) { 1196 DPRINTF(1, ("invalid format in control packet\n")); 1197 if (rbufp->recv_length < (int)CTL_HEADER_LEN) 1198 numctltooshort++; 1199 if (CTL_RESPONSE & pkt->r_m_e_op) 1200 numctlinputresp++; 1201 if (CTL_MORE & pkt->r_m_e_op) 1202 numctlinputfrag++; 1203 if (CTL_ERROR & pkt->r_m_e_op) 1204 numctlinputerr++; 1205 if (pkt->offset != 0) 1206 numctlbadoffset++; 1207 return; 1208 } 1209 res_version = PKT_VERSION(pkt->li_vn_mode); 1210 if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) { 1211 DPRINTF(1, ("unknown version %d in control packet\n", 1212 res_version)); 1213 numctlbadversion++; 1214 return; 1215 } 1216 1217 /* 1218 * Pull enough data from the packet to make intelligent 1219 * responses 1220 */ 1221 rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version, 1222 MODE_CONTROL); 1223 res_opcode = pkt->r_m_e_op; 1224 rpkt.sequence = pkt->sequence; 1225 rpkt.associd = pkt->associd; 1226 rpkt.status = 0; 1227 res_frags = 1; 1228 res_offset = 0; 1229 res_associd = htons(pkt->associd); 1230 res_async = FALSE; 1231 res_authenticate = FALSE; 1232 res_keyid = 0; 1233 res_authokay = FALSE; 1234 req_count = (int)ntohs(pkt->count); 1235 datanotbinflag = FALSE; 1236 datalinelen = 0; 1237 datasent = 0; 1238 datapt = rpkt.u.data; 1239 dataend = &rpkt.u.data[CTL_MAX_DATA_LEN]; 1240 1241 if ((rbufp->recv_length & 0x3) != 0) 1242 DPRINTF(3, ("Control packet length %d unrounded\n", 1243 rbufp->recv_length)); 1244 1245 /* 1246 * We're set up now. Make sure we've got at least enough 1247 * incoming data space to match the count. 1248 */ 1249 req_data = rbufp->recv_length - CTL_HEADER_LEN; 1250 if (req_data < req_count || rbufp->recv_length & 0x3) { 1251 ctl_error(CERR_BADFMT); 1252 numctldatatooshort++; 1253 return; 1254 } 1255 1256 properlen = req_count + CTL_HEADER_LEN; 1257 /* round up proper len to a 8 octet boundary */ 1258 1259 properlen = (properlen + 7) & ~7; 1260 maclen = rbufp->recv_length - properlen; 1261 if ((rbufp->recv_length & 3) == 0 && 1262 maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN && 1263 sys_authenticate) { 1264 res_authenticate = TRUE; 1265 pkid = (void *)((char *)pkt + properlen); 1266 res_keyid = ntohl(*pkid); 1267 DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n", 1268 rbufp->recv_length, properlen, res_keyid, 1269 maclen)); 1270 1271 if (!authistrustedip(res_keyid, &rbufp->recv_srcadr)) 1272 DPRINTF(3, ("invalid keyid %08x\n", res_keyid)); 1273 else if (authdecrypt(res_keyid, (u_int32 *)pkt, 1274 rbufp->recv_length - maclen, 1275 maclen)) { 1276 res_authokay = TRUE; 1277 DPRINTF(3, ("authenticated okay\n")); 1278 } else { 1279 res_keyid = 0; 1280 DPRINTF(3, ("authentication failed\n")); 1281 } 1282 } 1283 1284 /* 1285 * Set up translate pointers 1286 */ 1287 reqpt = (char *)pkt->u.data; 1288 reqend = reqpt + req_count; 1289 1290 /* 1291 * Look for the opcode processor 1292 */ 1293 for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) { 1294 if (cc->control_code == res_opcode) { 1295 DPRINTF(3, ("opcode %d, found command handler\n", 1296 res_opcode)); 1297 if (cc->flags == AUTH 1298 && (!res_authokay 1299 || res_keyid != ctl_auth_keyid)) { 1300 ctl_error(CERR_PERMISSION); 1301 return; 1302 } 1303 (cc->handler)(rbufp, restrict_mask); 1304 return; 1305 } 1306 } 1307 1308 /* 1309 * Can't find this one, return an error. 1310 */ 1311 numctlbadop++; 1312 ctl_error(CERR_BADOP); 1313 return; 1314 } 1315 1316 1317 /* 1318 * ctlpeerstatus - return a status word for this peer 1319 */ 1320 u_short 1321 ctlpeerstatus( 1322 register struct peer *p 1323 ) 1324 { 1325 u_short status; 1326 1327 status = p->status; 1328 if (FLAG_CONFIG & p->flags) 1329 status |= CTL_PST_CONFIG; 1330 if (p->keyid) 1331 status |= CTL_PST_AUTHENABLE; 1332 if (FLAG_AUTHENTIC & p->flags) 1333 status |= CTL_PST_AUTHENTIC; 1334 if (p->reach) 1335 status |= CTL_PST_REACH; 1336 if (MDF_TXONLY_MASK & p->cast_flags) 1337 status |= CTL_PST_BCAST; 1338 1339 return CTL_PEER_STATUS(status, p->num_events, p->last_event); 1340 } 1341 1342 1343 /* 1344 * ctlclkstatus - return a status word for this clock 1345 */ 1346 #ifdef REFCLOCK 1347 static u_short 1348 ctlclkstatus( 1349 struct refclockstat *pcs 1350 ) 1351 { 1352 return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus); 1353 } 1354 #endif 1355 1356 1357 /* 1358 * ctlsysstatus - return the system status word 1359 */ 1360 u_short 1361 ctlsysstatus(void) 1362 { 1363 register u_char this_clock; 1364 1365 this_clock = CTL_SST_TS_UNSPEC; 1366 #ifdef REFCLOCK 1367 if (sys_peer != NULL) { 1368 if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype) 1369 this_clock = sys_peer->sstclktype; 1370 else if (sys_peer->refclktype < COUNTOF(clocktypes)) 1371 this_clock = clocktypes[sys_peer->refclktype]; 1372 } 1373 #else /* REFCLOCK */ 1374 if (sys_peer != 0) 1375 this_clock = CTL_SST_TS_NTP; 1376 #endif /* REFCLOCK */ 1377 return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events, 1378 ctl_sys_last_event); 1379 } 1380 1381 1382 /* 1383 * ctl_flushpkt - write out the current packet and prepare 1384 * another if necessary. 1385 */ 1386 static void 1387 ctl_flushpkt( 1388 u_char more 1389 ) 1390 { 1391 size_t i; 1392 size_t dlen; 1393 size_t sendlen; 1394 size_t maclen; 1395 size_t totlen; 1396 keyid_t keyid; 1397 1398 dlen = datapt - rpkt.u.data; 1399 if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) { 1400 /* 1401 * Big hack, output a trailing \r\n 1402 */ 1403 *datapt++ = '\r'; 1404 *datapt++ = '\n'; 1405 dlen += 2; 1406 } 1407 sendlen = dlen + CTL_HEADER_LEN; 1408 1409 /* 1410 * Pad to a multiple of 32 bits 1411 */ 1412 while (sendlen & 0x3) { 1413 *datapt++ = '\0'; 1414 sendlen++; 1415 } 1416 1417 /* 1418 * Fill in the packet with the current info 1419 */ 1420 rpkt.r_m_e_op = CTL_RESPONSE | more | 1421 (res_opcode & CTL_OP_MASK); 1422 rpkt.count = htons((u_short)dlen); 1423 rpkt.offset = htons((u_short)res_offset); 1424 if (res_async) { 1425 for (i = 0; i < COUNTOF(ctl_traps); i++) { 1426 if (TRAP_INUSE & ctl_traps[i].tr_flags) { 1427 rpkt.li_vn_mode = 1428 PKT_LI_VN_MODE( 1429 sys_leap, 1430 ctl_traps[i].tr_version, 1431 MODE_CONTROL); 1432 rpkt.sequence = 1433 htons(ctl_traps[i].tr_sequence); 1434 sendpkt(&ctl_traps[i].tr_addr, 1435 ctl_traps[i].tr_localaddr, -4, 1436 (struct pkt *)&rpkt, sendlen); 1437 if (!more) 1438 ctl_traps[i].tr_sequence++; 1439 numasyncmsgs++; 1440 } 1441 } 1442 } else { 1443 if (res_authenticate && sys_authenticate) { 1444 totlen = sendlen; 1445 /* 1446 * If we are going to authenticate, then there 1447 * is an additional requirement that the MAC 1448 * begin on a 64 bit boundary. 1449 */ 1450 while (totlen & 7) { 1451 *datapt++ = '\0'; 1452 totlen++; 1453 } 1454 keyid = htonl(res_keyid); 1455 memcpy(datapt, &keyid, sizeof(keyid)); 1456 maclen = authencrypt(res_keyid, 1457 (u_int32 *)&rpkt, totlen); 1458 sendpkt(rmt_addr, lcl_inter, -5, 1459 (struct pkt *)&rpkt, totlen + maclen); 1460 } else { 1461 sendpkt(rmt_addr, lcl_inter, -6, 1462 (struct pkt *)&rpkt, sendlen); 1463 } 1464 if (more) 1465 numctlfrags++; 1466 else 1467 numctlresponses++; 1468 } 1469 1470 /* 1471 * Set us up for another go around. 1472 */ 1473 res_frags++; 1474 res_offset += dlen; 1475 datapt = rpkt.u.data; 1476 } 1477 1478 1479 /* -------------------------------------------------------------------- 1480 * block transfer API -- stream string/data fragments into xmit buffer 1481 * without additional copying 1482 */ 1483 1484 /* buffer descriptor: address & size of fragment 1485 * 'buf' may only be NULL when 'len' is zero! 1486 */ 1487 typedef struct { 1488 const void *buf; 1489 size_t len; 1490 } CtlMemBufT; 1491 1492 /* put ctl data in a gather-style operation */ 1493 static void 1494 ctl_putdata_ex( 1495 const CtlMemBufT * argv, 1496 size_t argc, 1497 int/*BOOL*/ bin /* set to 1 when data is binary */ 1498 ) 1499 { 1500 const char * src_ptr; 1501 size_t src_len, cur_len, add_len, argi; 1502 1503 /* text / binary preprocessing, possibly create new linefeed */ 1504 if (bin) { 1505 add_len = 0; 1506 } else { 1507 datanotbinflag = TRUE; 1508 add_len = 3; 1509 1510 if (datasent) { 1511 *datapt++ = ','; 1512 datalinelen++; 1513 1514 /* sum up total length */ 1515 for (argi = 0, src_len = 0; argi < argc; ++argi) 1516 src_len += argv[argi].len; 1517 /* possibly start a new line, assume no size_t overflow */ 1518 if ((src_len + datalinelen + 1) >= MAXDATALINELEN) { 1519 *datapt++ = '\r'; 1520 *datapt++ = '\n'; 1521 datalinelen = 0; 1522 } else { 1523 *datapt++ = ' '; 1524 datalinelen++; 1525 } 1526 } 1527 } 1528 1529 /* now stream out all buffers */ 1530 for (argi = 0; argi < argc; ++argi) { 1531 src_ptr = argv[argi].buf; 1532 src_len = argv[argi].len; 1533 1534 if ( ! (src_ptr && src_len)) 1535 continue; 1536 1537 cur_len = (size_t)(dataend - datapt); 1538 while ((src_len + add_len) > cur_len) { 1539 /* Not enough room in this one, flush it out. */ 1540 if (src_len < cur_len) 1541 cur_len = src_len; 1542 1543 memcpy(datapt, src_ptr, cur_len); 1544 datapt += cur_len; 1545 datalinelen += cur_len; 1546 1547 src_ptr += cur_len; 1548 src_len -= cur_len; 1549 1550 ctl_flushpkt(CTL_MORE); 1551 cur_len = (size_t)(dataend - datapt); 1552 } 1553 1554 memcpy(datapt, src_ptr, src_len); 1555 datapt += src_len; 1556 datalinelen += src_len; 1557 1558 datasent = TRUE; 1559 } 1560 } 1561 1562 /* 1563 * ctl_putdata - write data into the packet, fragmenting and starting 1564 * another if this one is full. 1565 */ 1566 static void 1567 ctl_putdata( 1568 const char *dp, 1569 unsigned int dlen, 1570 int bin /* set to 1 when data is binary */ 1571 ) 1572 { 1573 CtlMemBufT args[1]; 1574 1575 args[0].buf = dp; 1576 args[0].len = dlen; 1577 ctl_putdata_ex(args, 1, bin); 1578 } 1579 1580 /* 1581 * ctl_putstr - write a tagged string into the response packet 1582 * in the form: 1583 * 1584 * tag="data" 1585 * 1586 * len is the data length excluding the NUL terminator, 1587 * as in ctl_putstr("var", "value", strlen("value")); 1588 */ 1589 static void 1590 ctl_putstr( 1591 const char * tag, 1592 const char * data, 1593 size_t len 1594 ) 1595 { 1596 CtlMemBufT args[4]; 1597 1598 args[0].buf = tag; 1599 args[0].len = strlen(tag); 1600 if (data && len) { 1601 args[1].buf = "=\""; 1602 args[1].len = 2; 1603 args[2].buf = data; 1604 args[2].len = len; 1605 args[3].buf = "\""; 1606 args[3].len = 1; 1607 ctl_putdata_ex(args, 4, FALSE); 1608 } else { 1609 args[1].buf = "=\"\""; 1610 args[1].len = 3; 1611 ctl_putdata_ex(args, 2, FALSE); 1612 } 1613 } 1614 1615 1616 /* 1617 * ctl_putunqstr - write a tagged string into the response packet 1618 * in the form: 1619 * 1620 * tag=data 1621 * 1622 * len is the data length excluding the NUL terminator. 1623 * data must not contain a comma or whitespace. 1624 */ 1625 static void 1626 ctl_putunqstr( 1627 const char * tag, 1628 const char * data, 1629 size_t len 1630 ) 1631 { 1632 CtlMemBufT args[3]; 1633 1634 args[0].buf = tag; 1635 args[0].len = strlen(tag); 1636 args[1].buf = "="; 1637 args[1].len = 1; 1638 if (data && len) { 1639 args[2].buf = data; 1640 args[2].len = len; 1641 ctl_putdata_ex(args, 3, FALSE); 1642 } else { 1643 ctl_putdata_ex(args, 2, FALSE); 1644 } 1645 } 1646 1647 1648 /* 1649 * ctl_putdblf - write a tagged, signed double into the response packet 1650 */ 1651 static void 1652 ctl_putdblf( 1653 const char * tag, 1654 int use_f, 1655 int precision, 1656 double d 1657 ) 1658 { 1659 char buffer[40]; 1660 int rc; 1661 1662 rc = snprintf(buffer, sizeof(buffer), 1663 (use_f ? "%.*f" : "%.*g"), 1664 precision, d); 1665 INSIST(rc >= 0 && (size_t)rc < sizeof(buffer)); 1666 ctl_putunqstr(tag, buffer, rc); 1667 } 1668 1669 /* 1670 * ctl_putuint - write a tagged unsigned integer into the response 1671 */ 1672 static void 1673 ctl_putuint( 1674 const char *tag, 1675 u_long uval 1676 ) 1677 { 1678 char buffer[24]; /* needs to fit for 64 bits! */ 1679 int rc; 1680 1681 rc = snprintf(buffer, sizeof(buffer), "%lu", uval); 1682 INSIST(rc >= 0 && (size_t)rc < sizeof(buffer)); 1683 ctl_putunqstr(tag, buffer, rc); 1684 } 1685 1686 /* 1687 * ctl_putcal - write a decoded calendar data into the response. 1688 * only used with AUTOKEY currently, so compiled conditional 1689 */ 1690 #ifdef AUTOKEY 1691 static void 1692 ctl_putcal( 1693 const char *tag, 1694 const struct calendar *pcal 1695 ) 1696 { 1697 char buffer[16]; 1698 int rc; 1699 1700 rc = snprintf(buffer, sizeof(buffer), 1701 "%04d%02d%02d%02d%02d", 1702 pcal->year, pcal->month, pcal->monthday, 1703 pcal->hour, pcal->minute 1704 ); 1705 INSIST(rc >= 0 && (size_t)rc < sizeof(buffer)); 1706 ctl_putunqstr(tag, buffer, rc); 1707 } 1708 #endif 1709 1710 /* 1711 * ctl_putfs - write a decoded filestamp into the response 1712 */ 1713 static void 1714 ctl_putfs( 1715 const char *tag, 1716 tstamp_t uval 1717 ) 1718 { 1719 char buffer[16]; 1720 int rc; 1721 1722 time_t fstamp = (time_t)uval - JAN_1970; 1723 struct tm *tm = gmtime(&fstamp); 1724 1725 if (NULL == tm) 1726 return; 1727 1728 rc = snprintf(buffer, sizeof(buffer), 1729 "%04d%02d%02d%02d%02d", 1730 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, 1731 tm->tm_hour, tm->tm_min); 1732 INSIST(rc >= 0 && (size_t)rc < sizeof(buffer)); 1733 ctl_putunqstr(tag, buffer, rc); 1734 } 1735 1736 1737 /* 1738 * ctl_puthex - write a tagged unsigned integer, in hex, into the 1739 * response 1740 */ 1741 static void 1742 ctl_puthex( 1743 const char *tag, 1744 u_long uval 1745 ) 1746 { 1747 char buffer[24]; /* must fit 64bit int! */ 1748 int rc; 1749 1750 rc = snprintf(buffer, sizeof(buffer), "0x%lx", uval); 1751 INSIST(rc >= 0 && (size_t)rc < sizeof(buffer)); 1752 ctl_putunqstr(tag, buffer, rc); 1753 } 1754 1755 1756 /* 1757 * ctl_putint - write a tagged signed integer into the response 1758 */ 1759 static void 1760 ctl_putint( 1761 const char *tag, 1762 long ival 1763 ) 1764 { 1765 char buffer[24]; /*must fit 64bit int */ 1766 int rc; 1767 1768 rc = snprintf(buffer, sizeof(buffer), "%ld", ival); 1769 INSIST(rc >= 0 && (size_t)rc < sizeof(buffer)); 1770 ctl_putunqstr(tag, buffer, rc); 1771 } 1772 1773 1774 /* 1775 * ctl_putts - write a tagged timestamp, in hex, into the response 1776 */ 1777 static void 1778 ctl_putts( 1779 const char *tag, 1780 l_fp *ts 1781 ) 1782 { 1783 char buffer[24]; 1784 int rc; 1785 1786 rc = snprintf(buffer, sizeof(buffer), 1787 "0x%08lx.%08lx", 1788 (u_long)ts->l_ui, (u_long)ts->l_uf); 1789 INSIST(rc >= 0 && (size_t)rc < sizeof(buffer)); 1790 ctl_putunqstr(tag, buffer, rc); 1791 } 1792 1793 1794 /* 1795 * ctl_putadr - write an IP address into the response 1796 */ 1797 static void 1798 ctl_putadr( 1799 const char *tag, 1800 u_int32 addr32, 1801 sockaddr_u *addr 1802 ) 1803 { 1804 const char *cq; 1805 1806 if (NULL == addr) 1807 cq = numtoa(addr32); 1808 else 1809 cq = stoa(addr); 1810 ctl_putunqstr(tag, cq, strlen(cq)); 1811 } 1812 1813 1814 /* 1815 * ctl_putrefid - send a u_int32 refid as printable text 1816 */ 1817 static void 1818 ctl_putrefid( 1819 const char * tag, 1820 u_int32 refid 1821 ) 1822 { 1823 size_t nc; 1824 1825 union { 1826 uint32_t w; 1827 uint8_t b[sizeof(uint32_t)]; 1828 } bytes; 1829 1830 bytes.w = refid; 1831 for (nc = 0; nc < sizeof(bytes.b) && bytes.b[nc]; ++nc) 1832 if ( !isprint(bytes.b[nc]) 1833 || isspace(bytes.b[nc]) 1834 || bytes.b[nc] == ',' ) 1835 bytes.b[nc] = '.'; 1836 ctl_putunqstr(tag, (const char*)bytes.b, nc); 1837 } 1838 1839 1840 /* 1841 * ctl_putarray - write a tagged eight element double array into the response 1842 */ 1843 static void 1844 ctl_putarray( 1845 const char *tag, 1846 double *arr, 1847 int start 1848 ) 1849 { 1850 char *cp, *ep; 1851 char buffer[200]; 1852 int i, rc; 1853 1854 cp = buffer; 1855 ep = buffer + sizeof(buffer); 1856 i = start; 1857 do { 1858 if (i == 0) 1859 i = NTP_SHIFT; 1860 i--; 1861 rc = snprintf(cp, (size_t)(ep - cp), " %.2f", arr[i] * 1e3); 1862 INSIST(rc >= 0 && (size_t)rc < (size_t)(ep - cp)); 1863 cp += rc; 1864 } while (i != start); 1865 ctl_putunqstr(tag, buffer, (size_t)(cp - buffer)); 1866 } 1867 1868 /* 1869 * ctl_printf - put a formatted string into the data buffer 1870 */ 1871 static void 1872 ctl_printf( 1873 const char * fmt, 1874 ... 1875 ) 1876 { 1877 static const char * ellipsis = "[...]"; 1878 va_list va; 1879 char fmtbuf[128]; 1880 int rc; 1881 1882 va_start(va, fmt); 1883 rc = vsnprintf(fmtbuf, sizeof(fmtbuf), fmt, va); 1884 va_end(va); 1885 if (rc < 0 || (size_t)rc >= sizeof(fmtbuf)) 1886 strcpy(fmtbuf + sizeof(fmtbuf) - strlen(ellipsis) - 1, 1887 ellipsis); 1888 ctl_putdata(fmtbuf, strlen(fmtbuf), 0); 1889 } 1890 1891 1892 /* 1893 * ctl_putsys - output a system variable 1894 */ 1895 static void 1896 ctl_putsys( 1897 int varid 1898 ) 1899 { 1900 l_fp tmp; 1901 char str[256]; 1902 u_int u; 1903 double kb; 1904 double dtemp; 1905 const char *ss; 1906 #ifdef AUTOKEY 1907 struct cert_info *cp; 1908 #endif /* AUTOKEY */ 1909 #ifdef KERNEL_PLL 1910 static struct timex ntx; 1911 static u_long ntp_adjtime_time; 1912 1913 static const double to_ms = 1914 # ifdef STA_NANO 1915 1.0e-6; /* nsec to msec */ 1916 # else 1917 1.0e-3; /* usec to msec */ 1918 # endif 1919 1920 /* 1921 * CS_K_* variables depend on up-to-date output of ntp_adjtime() 1922 */ 1923 if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST && 1924 current_time != ntp_adjtime_time) { 1925 ZERO(ntx); 1926 if (ntp_adjtime(&ntx) < 0) 1927 msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m"); 1928 else 1929 ntp_adjtime_time = current_time; 1930 } 1931 #endif /* KERNEL_PLL */ 1932 1933 switch (varid) { 1934 1935 case CS_LEAP: 1936 ctl_putuint(sys_var[CS_LEAP].text, sys_leap); 1937 break; 1938 1939 case CS_STRATUM: 1940 ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum); 1941 break; 1942 1943 case CS_PRECISION: 1944 ctl_putint(sys_var[CS_PRECISION].text, sys_precision); 1945 break; 1946 1947 case CS_ROOTDELAY: 1948 ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay * 1949 1e3); 1950 break; 1951 1952 case CS_ROOTDISPERSION: 1953 ctl_putdbl(sys_var[CS_ROOTDISPERSION].text, 1954 sys_rootdisp * 1e3); 1955 break; 1956 1957 case CS_REFID: 1958 if (REFID_ISTEXT(sys_stratum)) 1959 ctl_putrefid(sys_var[varid].text, sys_refid); 1960 else 1961 ctl_putadr(sys_var[varid].text, sys_refid, NULL); 1962 break; 1963 1964 case CS_REFTIME: 1965 ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime); 1966 break; 1967 1968 case CS_POLL: 1969 ctl_putuint(sys_var[CS_POLL].text, sys_poll); 1970 break; 1971 1972 case CS_PEERID: 1973 if (sys_peer == NULL) 1974 ctl_putuint(sys_var[CS_PEERID].text, 0); 1975 else 1976 ctl_putuint(sys_var[CS_PEERID].text, 1977 sys_peer->associd); 1978 break; 1979 1980 case CS_PEERADR: 1981 if (sys_peer != NULL && sys_peer->dstadr != NULL) 1982 ss = sptoa(&sys_peer->srcadr); 1983 else 1984 ss = "0.0.0.0:0"; 1985 ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss)); 1986 break; 1987 1988 case CS_PEERMODE: 1989 u = (sys_peer != NULL) 1990 ? sys_peer->hmode 1991 : MODE_UNSPEC; 1992 ctl_putuint(sys_var[CS_PEERMODE].text, u); 1993 break; 1994 1995 case CS_OFFSET: 1996 ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3); 1997 break; 1998 1999 case CS_DRIFT: 2000 ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6); 2001 break; 2002 2003 case CS_JITTER: 2004 ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3); 2005 break; 2006 2007 case CS_ERROR: 2008 ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3); 2009 break; 2010 2011 case CS_CLOCK: 2012 get_systime(&tmp); 2013 ctl_putts(sys_var[CS_CLOCK].text, &tmp); 2014 break; 2015 2016 case CS_PROCESSOR: 2017 #ifndef HAVE_UNAME 2018 ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor, 2019 sizeof(str_processor) - 1); 2020 #else 2021 ctl_putstr(sys_var[CS_PROCESSOR].text, 2022 utsnamebuf.machine, strlen(utsnamebuf.machine)); 2023 #endif /* HAVE_UNAME */ 2024 break; 2025 2026 case CS_SYSTEM: 2027 #ifndef HAVE_UNAME 2028 ctl_putstr(sys_var[CS_SYSTEM].text, str_system, 2029 sizeof(str_system) - 1); 2030 #else 2031 snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname, 2032 utsnamebuf.release); 2033 ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str)); 2034 #endif /* HAVE_UNAME */ 2035 break; 2036 2037 case CS_VERSION: 2038 ctl_putstr(sys_var[CS_VERSION].text, Version, 2039 strlen(Version)); 2040 break; 2041 2042 case CS_STABIL: 2043 ctl_putdbl(sys_var[CS_STABIL].text, clock_stability * 2044 1e6); 2045 break; 2046 2047 case CS_VARLIST: 2048 { 2049 char buf[CTL_MAX_DATA_LEN]; 2050 //buffPointer, firstElementPointer, buffEndPointer 2051 char *buffp, *buffend; 2052 int firstVarName; 2053 const char *ss1; 2054 int len; 2055 const struct ctl_var *k; 2056 2057 buffp = buf; 2058 buffend = buf + sizeof(buf); 2059 if (strlen(sys_var[CS_VARLIST].text) > (sizeof(buf) - 4)) 2060 break; /* really long var name */ 2061 2062 snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text); 2063 buffp += strlen(buffp); 2064 firstVarName = TRUE; 2065 for (k = sys_var; !(k->flags & EOV); k++) { 2066 if (k->flags & PADDING) 2067 continue; 2068 len = strlen(k->text); 2069 if (len + 1 >= buffend - buffp) 2070 break; 2071 if (!firstVarName) 2072 *buffp++ = ','; 2073 else 2074 firstVarName = FALSE; 2075 memcpy(buffp, k->text, len); 2076 buffp += len; 2077 } 2078 2079 for (k = ext_sys_var; k && !(k->flags & EOV); k++) { 2080 if (k->flags & PADDING) 2081 continue; 2082 if (NULL == k->text) 2083 continue; 2084 ss1 = strchr(k->text, '='); 2085 if (NULL == ss1) 2086 len = strlen(k->text); 2087 else 2088 len = ss1 - k->text; 2089 if (len + 1 >= buffend - buffp) 2090 break; 2091 if (firstVarName) { 2092 *buffp++ = ','; 2093 firstVarName = FALSE; 2094 } 2095 memcpy(buffp, k->text,(unsigned)len); 2096 buffp += len; 2097 } 2098 if (2 >= buffend - buffp) 2099 break; 2100 2101 *buffp++ = '"'; 2102 *buffp = '\0'; 2103 2104 ctl_putdata(buf, (unsigned)( buffp - buf ), 0); 2105 break; 2106 } 2107 2108 case CS_TAI: 2109 if (sys_tai > 0) 2110 ctl_putuint(sys_var[CS_TAI].text, sys_tai); 2111 break; 2112 2113 case CS_LEAPTAB: 2114 { 2115 leap_signature_t lsig; 2116 leapsec_getsig(&lsig); 2117 if (lsig.ttime > 0) 2118 ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime); 2119 break; 2120 } 2121 2122 case CS_LEAPEND: 2123 { 2124 leap_signature_t lsig; 2125 leapsec_getsig(&lsig); 2126 if (lsig.etime > 0) 2127 ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime); 2128 break; 2129 } 2130 2131 #ifdef LEAP_SMEAR 2132 case CS_LEAPSMEARINTV: 2133 if (leap_smear_intv > 0) 2134 ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv); 2135 break; 2136 2137 case CS_LEAPSMEAROFFS: 2138 if (leap_smear_intv > 0) 2139 ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text, 2140 leap_smear.doffset * 1e3); 2141 break; 2142 #endif /* LEAP_SMEAR */ 2143 2144 case CS_RATE: 2145 ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll); 2146 break; 2147 2148 case CS_MRU_ENABLED: 2149 ctl_puthex(sys_var[varid].text, mon_enabled); 2150 break; 2151 2152 case CS_MRU_DEPTH: 2153 ctl_putuint(sys_var[varid].text, mru_entries); 2154 break; 2155 2156 case CS_MRU_MEM: 2157 kb = mru_entries * (sizeof(mon_entry) / 1024.); 2158 u = (u_int)kb; 2159 if (kb - u >= 0.5) 2160 u++; 2161 ctl_putuint(sys_var[varid].text, u); 2162 break; 2163 2164 case CS_MRU_DEEPEST: 2165 ctl_putuint(sys_var[varid].text, mru_peakentries); 2166 break; 2167 2168 case CS_MRU_MINDEPTH: 2169 ctl_putuint(sys_var[varid].text, mru_mindepth); 2170 break; 2171 2172 case CS_MRU_MAXAGE: 2173 ctl_putint(sys_var[varid].text, mru_maxage); 2174 break; 2175 2176 case CS_MRU_MAXDEPTH: 2177 ctl_putuint(sys_var[varid].text, mru_maxdepth); 2178 break; 2179 2180 case CS_MRU_MAXMEM: 2181 kb = mru_maxdepth * (sizeof(mon_entry) / 1024.); 2182 u = (u_int)kb; 2183 if (kb - u >= 0.5) 2184 u++; 2185 ctl_putuint(sys_var[varid].text, u); 2186 break; 2187 2188 case CS_SS_UPTIME: 2189 ctl_putuint(sys_var[varid].text, current_time); 2190 break; 2191 2192 case CS_SS_RESET: 2193 ctl_putuint(sys_var[varid].text, 2194 current_time - sys_stattime); 2195 break; 2196 2197 case CS_SS_RECEIVED: 2198 ctl_putuint(sys_var[varid].text, sys_received); 2199 break; 2200 2201 case CS_SS_THISVER: 2202 ctl_putuint(sys_var[varid].text, sys_newversion); 2203 break; 2204 2205 case CS_SS_OLDVER: 2206 ctl_putuint(sys_var[varid].text, sys_oldversion); 2207 break; 2208 2209 case CS_SS_BADFORMAT: 2210 ctl_putuint(sys_var[varid].text, sys_badlength); 2211 break; 2212 2213 case CS_SS_BADAUTH: 2214 ctl_putuint(sys_var[varid].text, sys_badauth); 2215 break; 2216 2217 case CS_SS_DECLINED: 2218 ctl_putuint(sys_var[varid].text, sys_declined); 2219 break; 2220 2221 case CS_SS_RESTRICTED: 2222 ctl_putuint(sys_var[varid].text, sys_restricted); 2223 break; 2224 2225 case CS_SS_LIMITED: 2226 ctl_putuint(sys_var[varid].text, sys_limitrejected); 2227 break; 2228 2229 case CS_SS_LAMPORT: 2230 ctl_putuint(sys_var[varid].text, sys_lamport); 2231 break; 2232 2233 case CS_SS_TSROUNDING: 2234 ctl_putuint(sys_var[varid].text, sys_tsrounding); 2235 break; 2236 2237 case CS_SS_KODSENT: 2238 ctl_putuint(sys_var[varid].text, sys_kodsent); 2239 break; 2240 2241 case CS_SS_PROCESSED: 2242 ctl_putuint(sys_var[varid].text, sys_processed); 2243 break; 2244 2245 case CS_BCASTDELAY: 2246 ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3); 2247 break; 2248 2249 case CS_AUTHDELAY: 2250 LFPTOD(&sys_authdelay, dtemp); 2251 ctl_putdbl(sys_var[varid].text, dtemp * 1e3); 2252 break; 2253 2254 case CS_AUTHKEYS: 2255 ctl_putuint(sys_var[varid].text, authnumkeys); 2256 break; 2257 2258 case CS_AUTHFREEK: 2259 ctl_putuint(sys_var[varid].text, authnumfreekeys); 2260 break; 2261 2262 case CS_AUTHKLOOKUPS: 2263 ctl_putuint(sys_var[varid].text, authkeylookups); 2264 break; 2265 2266 case CS_AUTHKNOTFOUND: 2267 ctl_putuint(sys_var[varid].text, authkeynotfound); 2268 break; 2269 2270 case CS_AUTHKUNCACHED: 2271 ctl_putuint(sys_var[varid].text, authkeyuncached); 2272 break; 2273 2274 case CS_AUTHKEXPIRED: 2275 ctl_putuint(sys_var[varid].text, authkeyexpired); 2276 break; 2277 2278 case CS_AUTHENCRYPTS: 2279 ctl_putuint(sys_var[varid].text, authencryptions); 2280 break; 2281 2282 case CS_AUTHDECRYPTS: 2283 ctl_putuint(sys_var[varid].text, authdecryptions); 2284 break; 2285 2286 case CS_AUTHRESET: 2287 ctl_putuint(sys_var[varid].text, 2288 current_time - auth_timereset); 2289 break; 2290 2291 /* 2292 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is 2293 * unavailable, otherwise calls putfunc with args. 2294 */ 2295 #ifndef KERNEL_PLL 2296 # define CTL_IF_KERNLOOP(putfunc, args) \ 2297 ctl_putint(sys_var[varid].text, 0) 2298 #else 2299 # define CTL_IF_KERNLOOP(putfunc, args) \ 2300 putfunc args 2301 #endif 2302 2303 /* 2304 * CTL_IF_KERNPPS() puts a zero if either the kernel 2305 * loop is unavailable, or kernel hard PPS is not 2306 * active, otherwise calls putfunc with args. 2307 */ 2308 #ifndef KERNEL_PLL 2309 # define CTL_IF_KERNPPS(putfunc, args) \ 2310 ctl_putint(sys_var[varid].text, 0) 2311 #else 2312 # define CTL_IF_KERNPPS(putfunc, args) \ 2313 if (0 == ntx.shift) \ 2314 ctl_putint(sys_var[varid].text, 0); \ 2315 else \ 2316 putfunc args /* no trailing ; */ 2317 #endif 2318 2319 case CS_K_OFFSET: 2320 CTL_IF_KERNLOOP( 2321 ctl_putdblf, 2322 (sys_var[varid].text, 0, -1, to_ms * ntx.offset) 2323 ); 2324 break; 2325 2326 case CS_K_FREQ: 2327 CTL_IF_KERNLOOP( 2328 ctl_putsfp, 2329 (sys_var[varid].text, ntx.freq) 2330 ); 2331 break; 2332 2333 case CS_K_MAXERR: 2334 CTL_IF_KERNLOOP( 2335 ctl_putdblf, 2336 (sys_var[varid].text, 0, 6, 2337 to_ms * ntx.maxerror) 2338 ); 2339 break; 2340 2341 case CS_K_ESTERR: 2342 CTL_IF_KERNLOOP( 2343 ctl_putdblf, 2344 (sys_var[varid].text, 0, 6, 2345 to_ms * ntx.esterror) 2346 ); 2347 break; 2348 2349 case CS_K_STFLAGS: 2350 #ifndef KERNEL_PLL 2351 ss = ""; 2352 #else 2353 ss = k_st_flags(ntx.status); 2354 #endif 2355 ctl_putstr(sys_var[varid].text, ss, strlen(ss)); 2356 break; 2357 2358 case CS_K_TIMECONST: 2359 CTL_IF_KERNLOOP( 2360 ctl_putint, 2361 (sys_var[varid].text, ntx.constant) 2362 ); 2363 break; 2364 2365 case CS_K_PRECISION: 2366 CTL_IF_KERNLOOP( 2367 ctl_putdblf, 2368 (sys_var[varid].text, 0, 6, 2369 to_ms * ntx.precision) 2370 ); 2371 break; 2372 2373 case CS_K_FREQTOL: 2374 CTL_IF_KERNLOOP( 2375 ctl_putsfp, 2376 (sys_var[varid].text, ntx.tolerance) 2377 ); 2378 break; 2379 2380 case CS_K_PPS_FREQ: 2381 CTL_IF_KERNPPS( 2382 ctl_putsfp, 2383 (sys_var[varid].text, ntx.ppsfreq) 2384 ); 2385 break; 2386 2387 case CS_K_PPS_STABIL: 2388 CTL_IF_KERNPPS( 2389 ctl_putsfp, 2390 (sys_var[varid].text, ntx.stabil) 2391 ); 2392 break; 2393 2394 case CS_K_PPS_JITTER: 2395 CTL_IF_KERNPPS( 2396 ctl_putdbl, 2397 (sys_var[varid].text, to_ms * ntx.jitter) 2398 ); 2399 break; 2400 2401 case CS_K_PPS_CALIBDUR: 2402 CTL_IF_KERNPPS( 2403 ctl_putint, 2404 (sys_var[varid].text, 1 << ntx.shift) 2405 ); 2406 break; 2407 2408 case CS_K_PPS_CALIBS: 2409 CTL_IF_KERNPPS( 2410 ctl_putint, 2411 (sys_var[varid].text, ntx.calcnt) 2412 ); 2413 break; 2414 2415 case CS_K_PPS_CALIBERRS: 2416 CTL_IF_KERNPPS( 2417 ctl_putint, 2418 (sys_var[varid].text, ntx.errcnt) 2419 ); 2420 break; 2421 2422 case CS_K_PPS_JITEXC: 2423 CTL_IF_KERNPPS( 2424 ctl_putint, 2425 (sys_var[varid].text, ntx.jitcnt) 2426 ); 2427 break; 2428 2429 case CS_K_PPS_STBEXC: 2430 CTL_IF_KERNPPS( 2431 ctl_putint, 2432 (sys_var[varid].text, ntx.stbcnt) 2433 ); 2434 break; 2435 2436 case CS_IOSTATS_RESET: 2437 ctl_putuint(sys_var[varid].text, 2438 current_time - io_timereset); 2439 break; 2440 2441 case CS_TOTAL_RBUF: 2442 ctl_putuint(sys_var[varid].text, total_recvbuffs()); 2443 break; 2444 2445 case CS_FREE_RBUF: 2446 ctl_putuint(sys_var[varid].text, free_recvbuffs()); 2447 break; 2448 2449 case CS_USED_RBUF: 2450 ctl_putuint(sys_var[varid].text, full_recvbuffs()); 2451 break; 2452 2453 case CS_RBUF_LOWATER: 2454 ctl_putuint(sys_var[varid].text, lowater_additions()); 2455 break; 2456 2457 case CS_IO_DROPPED: 2458 ctl_putuint(sys_var[varid].text, packets_dropped); 2459 break; 2460 2461 case CS_IO_IGNORED: 2462 ctl_putuint(sys_var[varid].text, packets_ignored); 2463 break; 2464 2465 case CS_IO_RECEIVED: 2466 ctl_putuint(sys_var[varid].text, packets_received); 2467 break; 2468 2469 case CS_IO_SENT: 2470 ctl_putuint(sys_var[varid].text, packets_sent); 2471 break; 2472 2473 case CS_IO_SENDFAILED: 2474 ctl_putuint(sys_var[varid].text, packets_notsent); 2475 break; 2476 2477 case CS_IO_WAKEUPS: 2478 ctl_putuint(sys_var[varid].text, handler_calls); 2479 break; 2480 2481 case CS_IO_GOODWAKEUPS: 2482 ctl_putuint(sys_var[varid].text, handler_pkts); 2483 break; 2484 2485 case CS_TIMERSTATS_RESET: 2486 ctl_putuint(sys_var[varid].text, 2487 current_time - timer_timereset); 2488 break; 2489 2490 case CS_TIMER_OVERRUNS: 2491 ctl_putuint(sys_var[varid].text, alarm_overflow); 2492 break; 2493 2494 case CS_TIMER_XMTS: 2495 ctl_putuint(sys_var[varid].text, timer_xmtcalls); 2496 break; 2497 2498 case CS_FUZZ: 2499 ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3); 2500 break; 2501 case CS_WANDER_THRESH: 2502 ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6); 2503 break; 2504 #ifdef AUTOKEY 2505 case CS_FLAGS: 2506 if (crypto_flags) 2507 ctl_puthex(sys_var[CS_FLAGS].text, 2508 crypto_flags); 2509 break; 2510 2511 case CS_DIGEST: 2512 if (crypto_flags) { 2513 strlcpy(str, OBJ_nid2ln(crypto_nid), 2514 COUNTOF(str)); 2515 ctl_putstr(sys_var[CS_DIGEST].text, str, 2516 strlen(str)); 2517 } 2518 break; 2519 2520 case CS_SIGNATURE: 2521 if (crypto_flags) { 2522 const EVP_MD *dp; 2523 2524 dp = EVP_get_digestbynid(crypto_flags >> 16); 2525 strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)), 2526 COUNTOF(str)); 2527 ctl_putstr(sys_var[CS_SIGNATURE].text, str, 2528 strlen(str)); 2529 } 2530 break; 2531 2532 case CS_HOST: 2533 if (hostval.ptr != NULL) 2534 ctl_putstr(sys_var[CS_HOST].text, hostval.ptr, 2535 strlen(hostval.ptr)); 2536 break; 2537 2538 case CS_IDENT: 2539 if (sys_ident != NULL) 2540 ctl_putstr(sys_var[CS_IDENT].text, sys_ident, 2541 strlen(sys_ident)); 2542 break; 2543 2544 case CS_CERTIF: 2545 for (cp = cinfo; cp != NULL; cp = cp->link) { 2546 snprintf(str, sizeof(str), "%s %s 0x%x", 2547 cp->subject, cp->issuer, cp->flags); 2548 ctl_putstr(sys_var[CS_CERTIF].text, str, 2549 strlen(str)); 2550 ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last)); 2551 } 2552 break; 2553 2554 case CS_PUBLIC: 2555 if (hostval.tstamp != 0) 2556 ctl_putfs(sys_var[CS_PUBLIC].text, 2557 ntohl(hostval.tstamp)); 2558 break; 2559 #endif /* AUTOKEY */ 2560 2561 default: 2562 break; 2563 } 2564 } 2565 2566 2567 /* 2568 * ctl_putpeer - output a peer variable 2569 */ 2570 static void 2571 ctl_putpeer( 2572 int id, 2573 struct peer *p 2574 ) 2575 { 2576 char buf[CTL_MAX_DATA_LEN]; 2577 char *s; 2578 char *t; 2579 char *be; 2580 int i; 2581 const struct ctl_var *k; 2582 #ifdef AUTOKEY 2583 struct autokey *ap; 2584 const EVP_MD *dp; 2585 const char *str; 2586 #endif /* AUTOKEY */ 2587 2588 switch (id) { 2589 2590 case CP_CONFIG: 2591 ctl_putuint(peer_var[id].text, 2592 !(FLAG_PREEMPT & p->flags)); 2593 break; 2594 2595 case CP_AUTHENABLE: 2596 ctl_putuint(peer_var[id].text, !(p->keyid)); 2597 break; 2598 2599 case CP_AUTHENTIC: 2600 ctl_putuint(peer_var[id].text, 2601 !!(FLAG_AUTHENTIC & p->flags)); 2602 break; 2603 2604 case CP_SRCADR: 2605 ctl_putadr(peer_var[id].text, 0, &p->srcadr); 2606 break; 2607 2608 case CP_SRCPORT: 2609 ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr)); 2610 break; 2611 2612 case CP_SRCHOST: 2613 if (p->hostname != NULL) 2614 ctl_putstr(peer_var[id].text, p->hostname, 2615 strlen(p->hostname)); 2616 break; 2617 2618 case CP_DSTADR: 2619 ctl_putadr(peer_var[id].text, 0, 2620 (p->dstadr != NULL) 2621 ? &p->dstadr->sin 2622 : NULL); 2623 break; 2624 2625 case CP_DSTPORT: 2626 ctl_putuint(peer_var[id].text, 2627 (p->dstadr != NULL) 2628 ? SRCPORT(&p->dstadr->sin) 2629 : 0); 2630 break; 2631 2632 case CP_IN: 2633 if (p->r21 > 0.) 2634 ctl_putdbl(peer_var[id].text, p->r21 / 1e3); 2635 break; 2636 2637 case CP_OUT: 2638 if (p->r34 > 0.) 2639 ctl_putdbl(peer_var[id].text, p->r34 / 1e3); 2640 break; 2641 2642 case CP_RATE: 2643 ctl_putuint(peer_var[id].text, p->throttle); 2644 break; 2645 2646 case CP_LEAP: 2647 ctl_putuint(peer_var[id].text, p->leap); 2648 break; 2649 2650 case CP_HMODE: 2651 ctl_putuint(peer_var[id].text, p->hmode); 2652 break; 2653 2654 case CP_STRATUM: 2655 ctl_putuint(peer_var[id].text, p->stratum); 2656 break; 2657 2658 case CP_PPOLL: 2659 ctl_putuint(peer_var[id].text, p->ppoll); 2660 break; 2661 2662 case CP_HPOLL: 2663 ctl_putuint(peer_var[id].text, p->hpoll); 2664 break; 2665 2666 case CP_PRECISION: 2667 ctl_putint(peer_var[id].text, p->precision); 2668 break; 2669 2670 case CP_ROOTDELAY: 2671 ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3); 2672 break; 2673 2674 case CP_ROOTDISPERSION: 2675 ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3); 2676 break; 2677 2678 case CP_REFID: 2679 #ifdef REFCLOCK 2680 if (p->flags & FLAG_REFCLOCK) { 2681 ctl_putrefid(peer_var[id].text, p->refid); 2682 break; 2683 } 2684 #endif 2685 if (REFID_ISTEXT(p->stratum)) 2686 ctl_putrefid(peer_var[id].text, p->refid); 2687 else 2688 ctl_putadr(peer_var[id].text, p->refid, NULL); 2689 break; 2690 2691 case CP_REFTIME: 2692 ctl_putts(peer_var[id].text, &p->reftime); 2693 break; 2694 2695 case CP_ORG: 2696 ctl_putts(peer_var[id].text, &p->aorg); 2697 break; 2698 2699 case CP_REC: 2700 ctl_putts(peer_var[id].text, &p->dst); 2701 break; 2702 2703 case CP_XMT: 2704 if (p->xleave) 2705 ctl_putdbl(peer_var[id].text, p->xleave * 1e3); 2706 break; 2707 2708 case CP_BIAS: 2709 if (p->bias != 0.) 2710 ctl_putdbl(peer_var[id].text, p->bias * 1e3); 2711 break; 2712 2713 case CP_REACH: 2714 ctl_puthex(peer_var[id].text, p->reach); 2715 break; 2716 2717 case CP_FLASH: 2718 ctl_puthex(peer_var[id].text, p->flash); 2719 break; 2720 2721 case CP_TTL: 2722 #ifdef REFCLOCK 2723 if (p->flags & FLAG_REFCLOCK) { 2724 ctl_putuint(peer_var[id].text, p->ttl); 2725 break; 2726 } 2727 #endif 2728 if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl)) 2729 ctl_putint(peer_var[id].text, 2730 sys_ttl[p->ttl]); 2731 break; 2732 2733 case CP_UNREACH: 2734 ctl_putuint(peer_var[id].text, p->unreach); 2735 break; 2736 2737 case CP_TIMER: 2738 ctl_putuint(peer_var[id].text, 2739 p->nextdate - current_time); 2740 break; 2741 2742 case CP_DELAY: 2743 ctl_putdbl(peer_var[id].text, p->delay * 1e3); 2744 break; 2745 2746 case CP_OFFSET: 2747 ctl_putdbl(peer_var[id].text, p->offset * 1e3); 2748 break; 2749 2750 case CP_JITTER: 2751 ctl_putdbl(peer_var[id].text, p->jitter * 1e3); 2752 break; 2753 2754 case CP_DISPERSION: 2755 ctl_putdbl(peer_var[id].text, p->disp * 1e3); 2756 break; 2757 2758 case CP_KEYID: 2759 if (p->keyid > NTP_MAXKEY) 2760 ctl_puthex(peer_var[id].text, p->keyid); 2761 else 2762 ctl_putuint(peer_var[id].text, p->keyid); 2763 break; 2764 2765 case CP_FILTDELAY: 2766 ctl_putarray(peer_var[id].text, p->filter_delay, 2767 p->filter_nextpt); 2768 break; 2769 2770 case CP_FILTOFFSET: 2771 ctl_putarray(peer_var[id].text, p->filter_offset, 2772 p->filter_nextpt); 2773 break; 2774 2775 case CP_FILTERROR: 2776 ctl_putarray(peer_var[id].text, p->filter_disp, 2777 p->filter_nextpt); 2778 break; 2779 2780 case CP_PMODE: 2781 ctl_putuint(peer_var[id].text, p->pmode); 2782 break; 2783 2784 case CP_RECEIVED: 2785 ctl_putuint(peer_var[id].text, p->received); 2786 break; 2787 2788 case CP_SENT: 2789 ctl_putuint(peer_var[id].text, p->sent); 2790 break; 2791 2792 case CP_VARLIST: 2793 s = buf; 2794 be = buf + sizeof(buf); 2795 if (strlen(peer_var[id].text) + 4 > sizeof(buf)) 2796 break; /* really long var name */ 2797 2798 snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text); 2799 s += strlen(s); 2800 t = s; 2801 for (k = peer_var; !(EOV & k->flags); k++) { 2802 if (PADDING & k->flags) 2803 continue; 2804 i = strlen(k->text); 2805 if (s + i + 1 >= be) 2806 break; 2807 if (s != t) 2808 *s++ = ','; 2809 memcpy(s, k->text, i); 2810 s += i; 2811 } 2812 if (s + 2 < be) { 2813 *s++ = '"'; 2814 *s = '\0'; 2815 ctl_putdata(buf, (u_int)(s - buf), 0); 2816 } 2817 break; 2818 2819 case CP_TIMEREC: 2820 ctl_putuint(peer_var[id].text, 2821 current_time - p->timereceived); 2822 break; 2823 2824 case CP_TIMEREACH: 2825 ctl_putuint(peer_var[id].text, 2826 current_time - p->timereachable); 2827 break; 2828 2829 case CP_BADAUTH: 2830 ctl_putuint(peer_var[id].text, p->badauth); 2831 break; 2832 2833 case CP_BOGUSORG: 2834 ctl_putuint(peer_var[id].text, p->bogusorg); 2835 break; 2836 2837 case CP_OLDPKT: 2838 ctl_putuint(peer_var[id].text, p->oldpkt); 2839 break; 2840 2841 case CP_SELDISP: 2842 ctl_putuint(peer_var[id].text, p->seldisptoolarge); 2843 break; 2844 2845 case CP_SELBROKEN: 2846 ctl_putuint(peer_var[id].text, p->selbroken); 2847 break; 2848 2849 case CP_CANDIDATE: 2850 ctl_putuint(peer_var[id].text, p->status); 2851 break; 2852 #ifdef AUTOKEY 2853 case CP_FLAGS: 2854 if (p->crypto) 2855 ctl_puthex(peer_var[id].text, p->crypto); 2856 break; 2857 2858 case CP_SIGNATURE: 2859 if (p->crypto) { 2860 dp = EVP_get_digestbynid(p->crypto >> 16); 2861 str = OBJ_nid2ln(EVP_MD_pkey_type(dp)); 2862 ctl_putstr(peer_var[id].text, str, strlen(str)); 2863 } 2864 break; 2865 2866 case CP_HOST: 2867 if (p->subject != NULL) 2868 ctl_putstr(peer_var[id].text, p->subject, 2869 strlen(p->subject)); 2870 break; 2871 2872 case CP_VALID: /* not used */ 2873 break; 2874 2875 case CP_INITSEQ: 2876 if (NULL == (ap = p->recval.ptr)) 2877 break; 2878 2879 ctl_putint(peer_var[CP_INITSEQ].text, ap->seq); 2880 ctl_puthex(peer_var[CP_INITKEY].text, ap->key); 2881 ctl_putfs(peer_var[CP_INITTSP].text, 2882 ntohl(p->recval.tstamp)); 2883 break; 2884 2885 case CP_IDENT: 2886 if (p->ident != NULL) 2887 ctl_putstr(peer_var[id].text, p->ident, 2888 strlen(p->ident)); 2889 break; 2890 2891 2892 #endif /* AUTOKEY */ 2893 } 2894 } 2895 2896 2897 #ifdef REFCLOCK 2898 /* 2899 * ctl_putclock - output clock variables 2900 */ 2901 static void 2902 ctl_putclock( 2903 int id, 2904 struct refclockstat *pcs, 2905 int mustput 2906 ) 2907 { 2908 char buf[CTL_MAX_DATA_LEN]; 2909 char *s, *t, *be; 2910 const char *ss; 2911 int i; 2912 const struct ctl_var *k; 2913 2914 switch (id) { 2915 2916 case CC_TYPE: 2917 if (mustput || pcs->clockdesc == NULL 2918 || *(pcs->clockdesc) == '\0') { 2919 ctl_putuint(clock_var[id].text, pcs->type); 2920 } 2921 break; 2922 case CC_TIMECODE: 2923 ctl_putstr(clock_var[id].text, 2924 pcs->p_lastcode, 2925 (unsigned)pcs->lencode); 2926 break; 2927 2928 case CC_POLL: 2929 ctl_putuint(clock_var[id].text, pcs->polls); 2930 break; 2931 2932 case CC_NOREPLY: 2933 ctl_putuint(clock_var[id].text, 2934 pcs->noresponse); 2935 break; 2936 2937 case CC_BADFORMAT: 2938 ctl_putuint(clock_var[id].text, 2939 pcs->badformat); 2940 break; 2941 2942 case CC_BADDATA: 2943 ctl_putuint(clock_var[id].text, 2944 pcs->baddata); 2945 break; 2946 2947 case CC_FUDGETIME1: 2948 if (mustput || (pcs->haveflags & CLK_HAVETIME1)) 2949 ctl_putdbl(clock_var[id].text, 2950 pcs->fudgetime1 * 1e3); 2951 break; 2952 2953 case CC_FUDGETIME2: 2954 if (mustput || (pcs->haveflags & CLK_HAVETIME2)) 2955 ctl_putdbl(clock_var[id].text, 2956 pcs->fudgetime2 * 1e3); 2957 break; 2958 2959 case CC_FUDGEVAL1: 2960 if (mustput || (pcs->haveflags & CLK_HAVEVAL1)) 2961 ctl_putint(clock_var[id].text, 2962 pcs->fudgeval1); 2963 break; 2964 2965 case CC_FUDGEVAL2: 2966 if (mustput || (pcs->haveflags & CLK_HAVEVAL2)) { 2967 if (pcs->fudgeval1 > 1) 2968 ctl_putadr(clock_var[id].text, 2969 pcs->fudgeval2, NULL); 2970 else 2971 ctl_putrefid(clock_var[id].text, 2972 pcs->fudgeval2); 2973 } 2974 break; 2975 2976 case CC_FLAGS: 2977 ctl_putuint(clock_var[id].text, pcs->flags); 2978 break; 2979 2980 case CC_DEVICE: 2981 if (pcs->clockdesc == NULL || 2982 *(pcs->clockdesc) == '\0') { 2983 if (mustput) 2984 ctl_putstr(clock_var[id].text, 2985 "", 0); 2986 } else { 2987 ctl_putstr(clock_var[id].text, 2988 pcs->clockdesc, 2989 strlen(pcs->clockdesc)); 2990 } 2991 break; 2992 2993 case CC_VARLIST: 2994 s = buf; 2995 be = buf + sizeof(buf); 2996 if (strlen(clock_var[CC_VARLIST].text) + 4 > 2997 sizeof(buf)) 2998 break; /* really long var name */ 2999 3000 snprintf(s, sizeof(buf), "%s=\"", 3001 clock_var[CC_VARLIST].text); 3002 s += strlen(s); 3003 t = s; 3004 3005 for (k = clock_var; !(EOV & k->flags); k++) { 3006 if (PADDING & k->flags) 3007 continue; 3008 3009 i = strlen(k->text); 3010 if (s + i + 1 >= be) 3011 break; 3012 3013 if (s != t) 3014 *s++ = ','; 3015 memcpy(s, k->text, i); 3016 s += i; 3017 } 3018 3019 for (k = pcs->kv_list; k && !(EOV & k->flags); k++) { 3020 if (PADDING & k->flags) 3021 continue; 3022 3023 ss = k->text; 3024 if (NULL == ss) 3025 continue; 3026 3027 while (*ss && *ss != '=') 3028 ss++; 3029 i = ss - k->text; 3030 if (s + i + 1 >= be) 3031 break; 3032 3033 if (s != t) 3034 *s++ = ','; 3035 memcpy(s, k->text, (unsigned)i); 3036 s += i; 3037 *s = '\0'; 3038 } 3039 if (s + 2 >= be) 3040 break; 3041 3042 *s++ = '"'; 3043 *s = '\0'; 3044 ctl_putdata(buf, (unsigned)(s - buf), 0); 3045 break; 3046 } 3047 } 3048 #endif 3049 3050 3051 3052 /* 3053 * ctl_getitem - get the next data item from the incoming packet 3054 */ 3055 static const struct ctl_var * 3056 ctl_getitem( 3057 const struct ctl_var *var_list, 3058 char **data 3059 ) 3060 { 3061 /* [Bug 3008] First check the packet data sanity, then search 3062 * the key. This improves the consistency of result values: If 3063 * the result is NULL once, it will never be EOV again for this 3064 * packet; If it's EOV, it will never be NULL again until the 3065 * variable is found and processed in a given 'var_list'. (That 3066 * is, a result is returned that is neither NULL nor EOV). 3067 */ 3068 static const struct ctl_var eol = { 0, EOV, NULL }; 3069 static char buf[128]; 3070 static u_long quiet_until; 3071 const struct ctl_var *v; 3072 char *cp; 3073 char *tp; 3074 3075 /* 3076 * Part One: Validate the packet state 3077 */ 3078 3079 /* Delete leading commas and white space */ 3080 while (reqpt < reqend && (*reqpt == ',' || 3081 isspace((unsigned char)*reqpt))) 3082 reqpt++; 3083 if (reqpt >= reqend) 3084 return NULL; 3085 3086 /* Scan the string in the packet until we hit comma or 3087 * EoB. Register position of first '=' on the fly. */ 3088 for (tp = NULL, cp = reqpt; cp != reqend; ++cp) { 3089 if (*cp == '=' && tp == NULL) 3090 tp = cp; 3091 if (*cp == ',') 3092 break; 3093 } 3094 3095 /* Process payload, if any. */ 3096 *data = NULL; 3097 if (NULL != tp) { 3098 /* eventually strip white space from argument. */ 3099 const char *plhead = tp + 1; /* skip the '=' */ 3100 const char *pltail = cp; 3101 size_t plsize; 3102 3103 while (plhead != pltail && isspace((u_char)plhead[0])) 3104 ++plhead; 3105 while (plhead != pltail && isspace((u_char)pltail[-1])) 3106 --pltail; 3107 3108 /* check payload size, terminate packet on overflow */ 3109 plsize = (size_t)(pltail - plhead); 3110 if (plsize >= sizeof(buf)) 3111 goto badpacket; 3112 3113 /* copy data, NUL terminate, and set result data ptr */ 3114 memcpy(buf, plhead, plsize); 3115 buf[plsize] = '\0'; 3116 *data = buf; 3117 } else { 3118 /* no payload, current end --> current name termination */ 3119 tp = cp; 3120 } 3121 3122 /* Part Two 3123 * 3124 * Now we're sure that the packet data itself is sane. Scan the 3125 * list now. Make sure a NULL list is properly treated by 3126 * returning a synthetic End-Of-Values record. We must not 3127 * return NULL pointers after this point, or the behaviour would 3128 * become inconsistent if called several times with different 3129 * variable lists after an EoV was returned. (Such a behavior 3130 * actually caused Bug 3008.) 3131 */ 3132 3133 if (NULL == var_list) 3134 return &eol; 3135 3136 for (v = var_list; !(EOV & v->flags); ++v) 3137 if (!(PADDING & v->flags)) { 3138 /* Check if the var name matches the buffer. The 3139 * name is bracketed by [reqpt..tp] and not NUL 3140 * terminated, and it contains no '=' char. The 3141 * lookup value IS NUL-terminated but might 3142 * include a '='... We have to look out for 3143 * that! 3144 */ 3145 const char *sp1 = reqpt; 3146 const char *sp2 = v->text; 3147 3148 /* [Bug 3412] do not compare past NUL byte in name */ 3149 while ( (sp1 != tp) 3150 && ('\0' != *sp2) && (*sp1 == *sp2)) { 3151 ++sp1; 3152 ++sp2; 3153 } 3154 if (sp1 == tp && (*sp2 == '\0' || *sp2 == '=')) 3155 break; 3156 } 3157 3158 /* See if we have found a valid entry or not. If found, advance 3159 * the request pointer for the next round; if not, clear the 3160 * data pointer so we have no dangling garbage here. 3161 */ 3162 if (EOV & v->flags) 3163 *data = NULL; 3164 else 3165 reqpt = cp + (cp != reqend); 3166 return v; 3167 3168 badpacket: 3169 /*TODO? somehow indicate this packet was bad, apart from syslog? */ 3170 numctlbadpkts++; 3171 NLOG(NLOG_SYSEVENT) 3172 if (quiet_until <= current_time) { 3173 quiet_until = current_time + 300; 3174 msyslog(LOG_WARNING, 3175 "Possible 'ntpdx' exploit from %s#%u (possibly spoofed)", 3176 stoa(rmt_addr), SRCPORT(rmt_addr)); 3177 } 3178 reqpt = reqend; /* never again for this packet! */ 3179 return NULL; 3180 } 3181 3182 3183 /* 3184 * control_unspec - response to an unspecified op-code 3185 */ 3186 /*ARGSUSED*/ 3187 static void 3188 control_unspec( 3189 struct recvbuf *rbufp, 3190 int restrict_mask 3191 ) 3192 { 3193 struct peer *peer; 3194 3195 /* 3196 * What is an appropriate response to an unspecified op-code? 3197 * I return no errors and no data, unless a specified assocation 3198 * doesn't exist. 3199 */ 3200 if (res_associd) { 3201 peer = findpeerbyassoc(res_associd); 3202 if (NULL == peer) { 3203 ctl_error(CERR_BADASSOC); 3204 return; 3205 } 3206 rpkt.status = htons(ctlpeerstatus(peer)); 3207 } else 3208 rpkt.status = htons(ctlsysstatus()); 3209 ctl_flushpkt(0); 3210 } 3211 3212 3213 /* 3214 * read_status - return either a list of associd's, or a particular 3215 * peer's status. 3216 */ 3217 /*ARGSUSED*/ 3218 static void 3219 read_status( 3220 struct recvbuf *rbufp, 3221 int restrict_mask 3222 ) 3223 { 3224 struct peer *peer; 3225 const u_char *cp; 3226 size_t n; 3227 /* a_st holds association ID, status pairs alternating */ 3228 u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)]; 3229 3230 #ifdef DEBUG 3231 if (debug > 2) 3232 printf("read_status: ID %d\n", res_associd); 3233 #endif 3234 /* 3235 * Two choices here. If the specified association ID is 3236 * zero we return all known assocation ID's. Otherwise 3237 * we return a bunch of stuff about the particular peer. 3238 */ 3239 if (res_associd) { 3240 peer = findpeerbyassoc(res_associd); 3241 if (NULL == peer) { 3242 ctl_error(CERR_BADASSOC); 3243 return; 3244 } 3245 rpkt.status = htons(ctlpeerstatus(peer)); 3246 if (res_authokay) 3247 peer->num_events = 0; 3248 /* 3249 * For now, output everything we know about the 3250 * peer. May be more selective later. 3251 */ 3252 for (cp = def_peer_var; *cp != 0; cp++) 3253 ctl_putpeer((int)*cp, peer); 3254 ctl_flushpkt(0); 3255 return; 3256 } 3257 n = 0; 3258 rpkt.status = htons(ctlsysstatus()); 3259 for (peer = peer_list; peer != NULL; peer = peer->p_link) { 3260 a_st[n++] = htons(peer->associd); 3261 a_st[n++] = htons(ctlpeerstatus(peer)); 3262 /* two entries each loop iteration, so n + 1 */ 3263 if (n + 1 >= COUNTOF(a_st)) { 3264 ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 3265 1); 3266 n = 0; 3267 } 3268 } 3269 if (n) 3270 ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1); 3271 ctl_flushpkt(0); 3272 } 3273 3274 3275 /* 3276 * read_peervars - half of read_variables() implementation 3277 */ 3278 static void 3279 read_peervars(void) 3280 { 3281 const struct ctl_var *v; 3282 struct peer *peer; 3283 const u_char *cp; 3284 size_t i; 3285 char * valuep; 3286 u_char wants[CP_MAXCODE + 1]; 3287 u_int gotvar; 3288 3289 /* 3290 * Wants info for a particular peer. See if we know 3291 * the guy. 3292 */ 3293 peer = findpeerbyassoc(res_associd); 3294 if (NULL == peer) { 3295 ctl_error(CERR_BADASSOC); 3296 return; 3297 } 3298 rpkt.status = htons(ctlpeerstatus(peer)); 3299 if (res_authokay) 3300 peer->num_events = 0; 3301 ZERO(wants); 3302 gotvar = 0; 3303 while (NULL != (v = ctl_getitem(peer_var, &valuep))) { 3304 if (v->flags & EOV) { 3305 ctl_error(CERR_UNKNOWNVAR); 3306 return; 3307 } 3308 INSIST(v->code < COUNTOF(wants)); 3309 wants[v->code] = 1; 3310 gotvar = 1; 3311 } 3312 if (gotvar) { 3313 for (i = 1; i < COUNTOF(wants); i++) 3314 if (wants[i]) 3315 ctl_putpeer(i, peer); 3316 } else 3317 for (cp = def_peer_var; *cp != 0; cp++) 3318 ctl_putpeer((int)*cp, peer); 3319 ctl_flushpkt(0); 3320 } 3321 3322 3323 /* 3324 * read_sysvars - half of read_variables() implementation 3325 */ 3326 static void 3327 read_sysvars(void) 3328 { 3329 const struct ctl_var *v; 3330 struct ctl_var *kv; 3331 u_int n; 3332 u_int gotvar; 3333 const u_char *cs; 3334 char * valuep; 3335 const char * pch; 3336 u_char *wants; 3337 size_t wants_count; 3338 3339 /* 3340 * Wants system variables. Figure out which he wants 3341 * and give them to him. 3342 */ 3343 rpkt.status = htons(ctlsysstatus()); 3344 if (res_authokay) 3345 ctl_sys_num_events = 0; 3346 wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var); 3347 wants = emalloc_zero(wants_count); 3348 gotvar = 0; 3349 while (NULL != (v = ctl_getitem(sys_var, &valuep))) { 3350 if (!(EOV & v->flags)) { 3351 INSIST(v->code < wants_count); 3352 wants[v->code] = 1; 3353 gotvar = 1; 3354 } else { 3355 v = ctl_getitem(ext_sys_var, &valuep); 3356 if (NULL == v) { 3357 ctl_error(CERR_BADVALUE); 3358 free(wants); 3359 return; 3360 } 3361 if (EOV & v->flags) { 3362 ctl_error(CERR_UNKNOWNVAR); 3363 free(wants); 3364 return; 3365 } 3366 n = v->code + CS_MAXCODE + 1; 3367 INSIST(n < wants_count); 3368 wants[n] = 1; 3369 gotvar = 1; 3370 } 3371 } 3372 if (gotvar) { 3373 for (n = 1; n <= CS_MAXCODE; n++) 3374 if (wants[n]) 3375 ctl_putsys(n); 3376 for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++) 3377 if (wants[n + CS_MAXCODE + 1]) { 3378 pch = ext_sys_var[n].text; 3379 ctl_putdata(pch, strlen(pch), 0); 3380 } 3381 } else { 3382 for (cs = def_sys_var; *cs != 0; cs++) 3383 ctl_putsys((int)*cs); 3384 for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++) 3385 if (DEF & kv->flags) 3386 ctl_putdata(kv->text, strlen(kv->text), 3387 0); 3388 } 3389 free(wants); 3390 ctl_flushpkt(0); 3391 } 3392 3393 3394 /* 3395 * read_variables - return the variables the caller asks for 3396 */ 3397 /*ARGSUSED*/ 3398 static void 3399 read_variables( 3400 struct recvbuf *rbufp, 3401 int restrict_mask 3402 ) 3403 { 3404 if (res_associd) 3405 read_peervars(); 3406 else 3407 read_sysvars(); 3408 } 3409 3410 3411 /* 3412 * write_variables - write into variables. We only allow leap bit 3413 * writing this way. 3414 */ 3415 /*ARGSUSED*/ 3416 static void 3417 write_variables( 3418 struct recvbuf *rbufp, 3419 int restrict_mask 3420 ) 3421 { 3422 const struct ctl_var *v; 3423 int ext_var; 3424 char *valuep; 3425 long val; 3426 size_t octets; 3427 char *vareqv; 3428 const char *t; 3429 char *tt; 3430 3431 val = 0; 3432 /* 3433 * If he's trying to write into a peer tell him no way 3434 */ 3435 if (res_associd != 0) { 3436 ctl_error(CERR_PERMISSION); 3437 return; 3438 } 3439 3440 /* 3441 * Set status 3442 */ 3443 rpkt.status = htons(ctlsysstatus()); 3444 3445 /* 3446 * Look through the variables. Dump out at the first sign of 3447 * trouble. 3448 */ 3449 while ((v = ctl_getitem(sys_var, &valuep)) != 0) { 3450 ext_var = 0; 3451 if (v->flags & EOV) { 3452 if ((v = ctl_getitem(ext_sys_var, &valuep)) != 3453 0) { 3454 if (v->flags & EOV) { 3455 ctl_error(CERR_UNKNOWNVAR); 3456 return; 3457 } 3458 ext_var = 1; 3459 } else { 3460 break; 3461 } 3462 } 3463 if (!(v->flags & CAN_WRITE)) { 3464 ctl_error(CERR_PERMISSION); 3465 return; 3466 } 3467 if (!ext_var && (*valuep == '\0' || !atoint(valuep, 3468 &val))) { 3469 ctl_error(CERR_BADFMT); 3470 return; 3471 } 3472 if (!ext_var && (val & ~LEAP_NOTINSYNC) != 0) { 3473 ctl_error(CERR_BADVALUE); 3474 return; 3475 } 3476 3477 if (ext_var) { 3478 octets = strlen(v->text) + strlen(valuep) + 2; 3479 vareqv = emalloc(octets); 3480 tt = vareqv; 3481 t = v->text; 3482 while (*t && *t != '=') 3483 *tt++ = *t++; 3484 *tt++ = '='; 3485 memcpy(tt, valuep, 1 + strlen(valuep)); 3486 set_sys_var(vareqv, 1 + strlen(vareqv), v->flags); 3487 free(vareqv); 3488 } else { 3489 ctl_error(CERR_UNSPEC); /* really */ 3490 return; 3491 } 3492 } 3493 3494 /* 3495 * If we got anything, do it. xxx nothing to do *** 3496 */ 3497 /* 3498 if (leapind != ~0 || leapwarn != ~0) { 3499 if (!leap_setleap((int)leapind, (int)leapwarn)) { 3500 ctl_error(CERR_PERMISSION); 3501 return; 3502 } 3503 } 3504 */ 3505 ctl_flushpkt(0); 3506 } 3507 3508 3509 /* 3510 * configure() processes ntpq :config/config-from-file, allowing 3511 * generic runtime reconfiguration. 3512 */ 3513 static void configure( 3514 struct recvbuf *rbufp, 3515 int restrict_mask 3516 ) 3517 { 3518 size_t data_count; 3519 int retval; 3520 3521 /* I haven't yet implemented changes to an existing association. 3522 * Hence check if the association id is 0 3523 */ 3524 if (res_associd != 0) { 3525 ctl_error(CERR_BADVALUE); 3526 return; 3527 } 3528 3529 if (RES_NOMODIFY & restrict_mask) { 3530 snprintf(remote_config.err_msg, 3531 sizeof(remote_config.err_msg), 3532 "runtime configuration prohibited by restrict ... nomodify"); 3533 ctl_putdata(remote_config.err_msg, 3534 strlen(remote_config.err_msg), 0); 3535 ctl_flushpkt(0); 3536 NLOG(NLOG_SYSINFO) 3537 msyslog(LOG_NOTICE, 3538 "runtime config from %s rejected due to nomodify restriction", 3539 stoa(&rbufp->recv_srcadr)); 3540 sys_restricted++; 3541 return; 3542 } 3543 3544 /* Initialize the remote config buffer */ 3545 data_count = remoteconfig_cmdlength(reqpt, reqend); 3546 3547 if (data_count > sizeof(remote_config.buffer) - 2) { 3548 snprintf(remote_config.err_msg, 3549 sizeof(remote_config.err_msg), 3550 "runtime configuration failed: request too long"); 3551 ctl_putdata(remote_config.err_msg, 3552 strlen(remote_config.err_msg), 0); 3553 ctl_flushpkt(0); 3554 msyslog(LOG_NOTICE, 3555 "runtime config from %s rejected: request too long", 3556 stoa(&rbufp->recv_srcadr)); 3557 return; 3558 } 3559 /* Bug 2853 -- check if all characters were acceptable */ 3560 if (data_count != (size_t)(reqend - reqpt)) { 3561 snprintf(remote_config.err_msg, 3562 sizeof(remote_config.err_msg), 3563 "runtime configuration failed: request contains an unprintable character"); 3564 ctl_putdata(remote_config.err_msg, 3565 strlen(remote_config.err_msg), 0); 3566 ctl_flushpkt(0); 3567 msyslog(LOG_NOTICE, 3568 "runtime config from %s rejected: request contains an unprintable character: %0x", 3569 stoa(&rbufp->recv_srcadr), 3570 reqpt[data_count]); 3571 return; 3572 } 3573 3574 memcpy(remote_config.buffer, reqpt, data_count); 3575 /* The buffer has no trailing linefeed or NUL right now. For 3576 * logging, we do not want a newline, so we do that first after 3577 * adding the necessary NUL byte. 3578 */ 3579 remote_config.buffer[data_count] = '\0'; 3580 DPRINTF(1, ("Got Remote Configuration Command: %s\n", 3581 remote_config.buffer)); 3582 msyslog(LOG_NOTICE, "%s config: %s", 3583 stoa(&rbufp->recv_srcadr), 3584 remote_config.buffer); 3585 3586 /* Now we have to make sure there is a NL/NUL sequence at the 3587 * end of the buffer before we parse it. 3588 */ 3589 remote_config.buffer[data_count++] = '\n'; 3590 remote_config.buffer[data_count] = '\0'; 3591 remote_config.pos = 0; 3592 remote_config.err_pos = 0; 3593 remote_config.no_errors = 0; 3594 config_remotely(&rbufp->recv_srcadr); 3595 3596 /* 3597 * Check if errors were reported. If not, output 'Config 3598 * Succeeded'. Else output the error count. It would be nice 3599 * to output any parser error messages. 3600 */ 3601 if (0 == remote_config.no_errors) { 3602 retval = snprintf(remote_config.err_msg, 3603 sizeof(remote_config.err_msg), 3604 "Config Succeeded"); 3605 if (retval > 0) 3606 remote_config.err_pos += retval; 3607 } 3608 3609 ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0); 3610 ctl_flushpkt(0); 3611 3612 DPRINTF(1, ("Reply: %s\n", remote_config.err_msg)); 3613 3614 if (remote_config.no_errors > 0) 3615 msyslog(LOG_NOTICE, "%d error in %s config", 3616 remote_config.no_errors, 3617 stoa(&rbufp->recv_srcadr)); 3618 } 3619 3620 3621 /* 3622 * derive_nonce - generate client-address-specific nonce value 3623 * associated with a given timestamp. 3624 */ 3625 static u_int32 derive_nonce( 3626 sockaddr_u * addr, 3627 u_int32 ts_i, 3628 u_int32 ts_f 3629 ) 3630 { 3631 static u_int32 salt[4]; 3632 static u_long last_salt_update; 3633 union d_tag { 3634 u_char digest[EVP_MAX_MD_SIZE]; 3635 u_int32 extract; 3636 } d; 3637 EVP_MD_CTX *ctx; 3638 u_int len; 3639 3640 while (!salt[0] || current_time - last_salt_update >= 3600) { 3641 salt[0] = ntp_random(); 3642 salt[1] = ntp_random(); 3643 salt[2] = ntp_random(); 3644 salt[3] = ntp_random(); 3645 last_salt_update = current_time; 3646 } 3647 3648 ctx = EVP_MD_CTX_new(); 3649 # if defined(OPENSSL) && defined(EVP_MD_CTX_FLAG_NON_FIPS_ALLOW) 3650 /* [Bug 3457] set flags and don't kill them again */ 3651 EVP_MD_CTX_set_flags(ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW); 3652 EVP_DigestInit_ex(ctx, EVP_get_digestbynid(NID_md5), NULL); 3653 # else 3654 EVP_DigestInit(ctx, EVP_get_digestbynid(NID_md5)); 3655 # endif 3656 EVP_DigestUpdate(ctx, salt, sizeof(salt)); 3657 EVP_DigestUpdate(ctx, &ts_i, sizeof(ts_i)); 3658 EVP_DigestUpdate(ctx, &ts_f, sizeof(ts_f)); 3659 if (IS_IPV4(addr)) 3660 EVP_DigestUpdate(ctx, &SOCK_ADDR4(addr), 3661 sizeof(SOCK_ADDR4(addr))); 3662 else 3663 EVP_DigestUpdate(ctx, &SOCK_ADDR6(addr), 3664 sizeof(SOCK_ADDR6(addr))); 3665 EVP_DigestUpdate(ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr))); 3666 EVP_DigestUpdate(ctx, salt, sizeof(salt)); 3667 EVP_DigestFinal(ctx, d.digest, &len); 3668 EVP_MD_CTX_free(ctx); 3669 3670 return d.extract; 3671 } 3672 3673 3674 /* 3675 * generate_nonce - generate client-address-specific nonce string. 3676 */ 3677 static void generate_nonce( 3678 struct recvbuf * rbufp, 3679 char * nonce, 3680 size_t nonce_octets 3681 ) 3682 { 3683 u_int32 derived; 3684 3685 derived = derive_nonce(&rbufp->recv_srcadr, 3686 rbufp->recv_time.l_ui, 3687 rbufp->recv_time.l_uf); 3688 snprintf(nonce, nonce_octets, "%08x%08x%08x", 3689 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived); 3690 } 3691 3692 3693 /* 3694 * validate_nonce - validate client-address-specific nonce string. 3695 * 3696 * Returns TRUE if the local calculation of the nonce matches the 3697 * client-provided value and the timestamp is recent enough. 3698 */ 3699 static int validate_nonce( 3700 const char * pnonce, 3701 struct recvbuf * rbufp 3702 ) 3703 { 3704 u_int ts_i; 3705 u_int ts_f; 3706 l_fp ts; 3707 l_fp now_delta; 3708 u_int supposed; 3709 u_int derived; 3710 3711 if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed)) 3712 return FALSE; 3713 3714 ts.l_ui = (u_int32)ts_i; 3715 ts.l_uf = (u_int32)ts_f; 3716 derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf); 3717 get_systime(&now_delta); 3718 L_SUB(&now_delta, &ts); 3719 3720 return (supposed == derived && now_delta.l_ui < 16); 3721 } 3722 3723 3724 /* 3725 * send_random_tag_value - send a randomly-generated three character 3726 * tag prefix, a '.', an index, a '=' and a 3727 * random integer value. 3728 * 3729 * To try to force clients to ignore unrecognized tags in mrulist, 3730 * reslist, and ifstats responses, the first and last rows are spiced 3731 * with randomly-generated tag names with correct .# index. Make it 3732 * three characters knowing that none of the currently-used subscripted 3733 * tags have that length, avoiding the need to test for 3734 * tag collision. 3735 */ 3736 static void 3737 send_random_tag_value( 3738 int indx 3739 ) 3740 { 3741 int noise; 3742 char buf[32]; 3743 3744 noise = rand() ^ (rand() << 16); 3745 buf[0] = 'a' + noise % 26; 3746 noise >>= 5; 3747 buf[1] = 'a' + noise % 26; 3748 noise >>= 5; 3749 buf[2] = 'a' + noise % 26; 3750 noise >>= 5; 3751 buf[3] = '.'; 3752 snprintf(&buf[4], sizeof(buf) - 4, "%d", indx); 3753 ctl_putuint(buf, noise); 3754 } 3755 3756 3757 /* 3758 * Send a MRU list entry in response to a "ntpq -c mrulist" operation. 3759 * 3760 * To keep clients honest about not depending on the order of values, 3761 * and thereby avoid being locked into ugly workarounds to maintain 3762 * backward compatibility later as new fields are added to the response, 3763 * the order is random. 3764 */ 3765 static void 3766 send_mru_entry( 3767 mon_entry * mon, 3768 int count 3769 ) 3770 { 3771 const char first_fmt[] = "first.%d"; 3772 const char ct_fmt[] = "ct.%d"; 3773 const char mv_fmt[] = "mv.%d"; 3774 const char rs_fmt[] = "rs.%d"; 3775 char tag[32]; 3776 u_char sent[6]; /* 6 tag=value pairs */ 3777 u_int32 noise; 3778 u_int which; 3779 u_int remaining; 3780 const char * pch; 3781 3782 remaining = COUNTOF(sent); 3783 ZERO(sent); 3784 noise = (u_int32)(rand() ^ (rand() << 16)); 3785 while (remaining > 0) { 3786 which = (noise & 7) % COUNTOF(sent); 3787 noise >>= 3; 3788 while (sent[which]) 3789 which = (which + 1) % COUNTOF(sent); 3790 3791 switch (which) { 3792 3793 case 0: 3794 snprintf(tag, sizeof(tag), addr_fmt, count); 3795 pch = sptoa(&mon->rmtadr); 3796 ctl_putunqstr(tag, pch, strlen(pch)); 3797 break; 3798 3799 case 1: 3800 snprintf(tag, sizeof(tag), last_fmt, count); 3801 ctl_putts(tag, &mon->last); 3802 break; 3803 3804 case 2: 3805 snprintf(tag, sizeof(tag), first_fmt, count); 3806 ctl_putts(tag, &mon->first); 3807 break; 3808 3809 case 3: 3810 snprintf(tag, sizeof(tag), ct_fmt, count); 3811 ctl_putint(tag, mon->count); 3812 break; 3813 3814 case 4: 3815 snprintf(tag, sizeof(tag), mv_fmt, count); 3816 ctl_putuint(tag, mon->vn_mode); 3817 break; 3818 3819 case 5: 3820 snprintf(tag, sizeof(tag), rs_fmt, count); 3821 ctl_puthex(tag, mon->flags); 3822 break; 3823 } 3824 sent[which] = TRUE; 3825 remaining--; 3826 } 3827 } 3828 3829 3830 /* 3831 * read_mru_list - supports ntpq's mrulist command. 3832 * 3833 * The challenge here is to match ntpdc's monlist functionality without 3834 * being limited to hundreds of entries returned total, and without 3835 * requiring state on the server. If state were required, ntpq's 3836 * mrulist command would require authentication. 3837 * 3838 * The approach was suggested by Ry Jones. A finite and variable number 3839 * of entries are retrieved per request, to avoid having responses with 3840 * such large numbers of packets that socket buffers are overflowed and 3841 * packets lost. The entries are retrieved oldest-first, taking into 3842 * account that the MRU list will be changing between each request. We 3843 * can expect to see duplicate entries for addresses updated in the MRU 3844 * list during the fetch operation. In the end, the client can assemble 3845 * a close approximation of the MRU list at the point in time the last 3846 * response was sent by ntpd. The only difference is it may be longer, 3847 * containing some number of oldest entries which have since been 3848 * reclaimed. If necessary, the protocol could be extended to zap those 3849 * from the client snapshot at the end, but so far that doesn't seem 3850 * useful. 3851 * 3852 * To accomodate the changing MRU list, the starting point for requests 3853 * after the first request is supplied as a series of last seen 3854 * timestamps and associated addresses, the newest ones the client has 3855 * received. As long as at least one of those entries hasn't been 3856 * bumped to the head of the MRU list, ntpd can pick up at that point. 3857 * Otherwise, the request is failed and it is up to ntpq to back up and 3858 * provide the next newest entry's timestamps and addresses, conceivably 3859 * backing up all the way to the starting point. 3860 * 3861 * input parameters: 3862 * nonce= Regurgitated nonce retrieved by the client 3863 * previously using CTL_OP_REQ_NONCE, demonstrating 3864 * ability to receive traffic sent to its address. 3865 * frags= Limit on datagrams (fragments) in response. Used 3866 * by newer ntpq versions instead of limit= when 3867 * retrieving multiple entries. 3868 * limit= Limit on MRU entries returned. One of frags= or 3869 * limit= must be provided. 3870 * limit=1 is a special case: Instead of fetching 3871 * beginning with the supplied starting point's 3872 * newer neighbor, fetch the supplied entry, and 3873 * in that case the #.last timestamp can be zero. 3874 * This enables fetching a single entry by IP 3875 * address. When limit is not one and frags= is 3876 * provided, the fragment limit controls. 3877 * mincount= (decimal) Return entries with count >= mincount. 3878 * laddr= Return entries associated with the server's IP 3879 * address given. No port specification is needed, 3880 * and any supplied is ignored. 3881 * resall= 0x-prefixed hex restrict bits which must all be 3882 * lit for an MRU entry to be included. 3883 * Has precedence over any resany=. 3884 * resany= 0x-prefixed hex restrict bits, at least one of 3885 * which must be list for an MRU entry to be 3886 * included. 3887 * last.0= 0x-prefixed hex l_fp timestamp of newest entry 3888 * which client previously received. 3889 * addr.0= text of newest entry's IP address and port, 3890 * IPv6 addresses in bracketed form: [::]:123 3891 * last.1= timestamp of 2nd newest entry client has. 3892 * addr.1= address of 2nd newest entry. 3893 * [...] 3894 * 3895 * ntpq provides as many last/addr pairs as will fit in a single request 3896 * packet, except for the first request in a MRU fetch operation. 3897 * 3898 * The response begins with a new nonce value to be used for any 3899 * followup request. Following the nonce is the next newer entry than 3900 * referred to by last.0 and addr.0, if the "0" entry has not been 3901 * bumped to the front. If it has, the first entry returned will be the 3902 * next entry newer than referred to by last.1 and addr.1, and so on. 3903 * If none of the referenced entries remain unchanged, the request fails 3904 * and ntpq backs up to the next earlier set of entries to resync. 3905 * 3906 * Except for the first response, the response begins with confirmation 3907 * of the entry that precedes the first additional entry provided: 3908 * 3909 * last.older= hex l_fp timestamp matching one of the input 3910 * .last timestamps, which entry now precedes the 3911 * response 0. entry in the MRU list. 3912 * addr.older= text of address corresponding to older.last. 3913 * 3914 * And in any case, a successful response contains sets of values 3915 * comprising entries, with the oldest numbered 0 and incrementing from 3916 * there: 3917 * 3918 * addr.# text of IPv4 or IPv6 address and port 3919 * last.# hex l_fp timestamp of last receipt 3920 * first.# hex l_fp timestamp of first receipt 3921 * ct.# count of packets received 3922 * mv.# mode and version 3923 * rs.# restriction mask (RES_* bits) 3924 * 3925 * Note the code currently assumes there are no valid three letter 3926 * tags sent with each row, and needs to be adjusted if that changes. 3927 * 3928 * The client should accept the values in any order, and ignore .# 3929 * values which it does not understand, to allow a smooth path to 3930 * future changes without requiring a new opcode. Clients can rely 3931 * on all *.0 values preceding any *.1 values, that is all values for 3932 * a given index number are together in the response. 3933 * 3934 * The end of the response list is noted with one or two tag=value 3935 * pairs. Unconditionally: 3936 * 3937 * now= 0x-prefixed l_fp timestamp at the server marking 3938 * the end of the operation. 3939 * 3940 * If any entries were returned, now= is followed by: 3941 * 3942 * last.newest= hex l_fp identical to last.# of the prior 3943 * entry. 3944 */ 3945 static void read_mru_list( 3946 struct recvbuf *rbufp, 3947 int restrict_mask 3948 ) 3949 { 3950 static const char nulltxt[1] = { '\0' }; 3951 static const char nonce_text[] = "nonce"; 3952 static const char frags_text[] = "frags"; 3953 static const char limit_text[] = "limit"; 3954 static const char mincount_text[] = "mincount"; 3955 static const char resall_text[] = "resall"; 3956 static const char resany_text[] = "resany"; 3957 static const char maxlstint_text[] = "maxlstint"; 3958 static const char laddr_text[] = "laddr"; 3959 static const char resaxx_fmt[] = "0x%hx"; 3960 3961 u_int limit; 3962 u_short frags; 3963 u_short resall; 3964 u_short resany; 3965 int mincount; 3966 u_int maxlstint; 3967 sockaddr_u laddr; 3968 struct interface * lcladr; 3969 u_int count; 3970 u_int ui; 3971 u_int uf; 3972 l_fp last[16]; 3973 sockaddr_u addr[COUNTOF(last)]; 3974 char buf[128]; 3975 struct ctl_var * in_parms; 3976 const struct ctl_var * v; 3977 const char * val; 3978 const char * pch; 3979 char * pnonce; 3980 int nonce_valid; 3981 size_t i; 3982 int priors; 3983 u_short hash; 3984 mon_entry * mon; 3985 mon_entry * prior_mon; 3986 l_fp now; 3987 3988 if (RES_NOMRULIST & restrict_mask) { 3989 ctl_error(CERR_PERMISSION); 3990 NLOG(NLOG_SYSINFO) 3991 msyslog(LOG_NOTICE, 3992 "mrulist from %s rejected due to nomrulist restriction", 3993 stoa(&rbufp->recv_srcadr)); 3994 sys_restricted++; 3995 return; 3996 } 3997 /* 3998 * fill in_parms var list with all possible input parameters. 3999 */ 4000 in_parms = NULL; 4001 set_var(&in_parms, nonce_text, sizeof(nonce_text), 0); 4002 set_var(&in_parms, frags_text, sizeof(frags_text), 0); 4003 set_var(&in_parms, limit_text, sizeof(limit_text), 0); 4004 set_var(&in_parms, mincount_text, sizeof(mincount_text), 0); 4005 set_var(&in_parms, resall_text, sizeof(resall_text), 0); 4006 set_var(&in_parms, resany_text, sizeof(resany_text), 0); 4007 set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0); 4008 set_var(&in_parms, laddr_text, sizeof(laddr_text), 0); 4009 for (i = 0; i < COUNTOF(last); i++) { 4010 snprintf(buf, sizeof(buf), last_fmt, (int)i); 4011 set_var(&in_parms, buf, strlen(buf) + 1, 0); 4012 snprintf(buf, sizeof(buf), addr_fmt, (int)i); 4013 set_var(&in_parms, buf, strlen(buf) + 1, 0); 4014 } 4015 4016 /* decode input parms */ 4017 pnonce = NULL; 4018 frags = 0; 4019 limit = 0; 4020 mincount = 0; 4021 resall = 0; 4022 resany = 0; 4023 maxlstint = 0; 4024 lcladr = NULL; 4025 priors = 0; 4026 ZERO(last); 4027 ZERO(addr); 4028 4029 /* have to go through '(void*)' to drop 'const' property from pointer. 4030 * ctl_getitem()' needs some cleanup, too.... perlinger@ntp.org 4031 */ 4032 while (NULL != (v = ctl_getitem(in_parms, (void*)&val)) && 4033 !(EOV & v->flags)) { 4034 int si; 4035 4036 if (NULL == val) 4037 val = nulltxt; 4038 4039 if (!strcmp(nonce_text, v->text)) { 4040 free(pnonce); 4041 pnonce = (*val) ? estrdup(val) : NULL; 4042 } else if (!strcmp(frags_text, v->text)) { 4043 if (1 != sscanf(val, "%hu", &frags)) 4044 goto blooper; 4045 } else if (!strcmp(limit_text, v->text)) { 4046 if (1 != sscanf(val, "%u", &limit)) 4047 goto blooper; 4048 } else if (!strcmp(mincount_text, v->text)) { 4049 if (1 != sscanf(val, "%d", &mincount)) 4050 goto blooper; 4051 if (mincount < 0) 4052 mincount = 0; 4053 } else if (!strcmp(resall_text, v->text)) { 4054 if (1 != sscanf(val, resaxx_fmt, &resall)) 4055 goto blooper; 4056 } else if (!strcmp(resany_text, v->text)) { 4057 if (1 != sscanf(val, resaxx_fmt, &resany)) 4058 goto blooper; 4059 } else if (!strcmp(maxlstint_text, v->text)) { 4060 if (1 != sscanf(val, "%u", &maxlstint)) 4061 goto blooper; 4062 } else if (!strcmp(laddr_text, v->text)) { 4063 if (!decodenetnum(val, &laddr)) 4064 goto blooper; 4065 lcladr = getinterface(&laddr, 0); 4066 } else if (1 == sscanf(v->text, last_fmt, &si) && 4067 (size_t)si < COUNTOF(last)) { 4068 if (2 != sscanf(val, "0x%08x.%08x", &ui, &uf)) 4069 goto blooper; 4070 last[si].l_ui = ui; 4071 last[si].l_uf = uf; 4072 if (!SOCK_UNSPEC(&addr[si]) && si == priors) 4073 priors++; 4074 } else if (1 == sscanf(v->text, addr_fmt, &si) && 4075 (size_t)si < COUNTOF(addr)) { 4076 if (!decodenetnum(val, &addr[si])) 4077 goto blooper; 4078 if (last[si].l_ui && last[si].l_uf && si == priors) 4079 priors++; 4080 } else { 4081 DPRINTF(1, ("read_mru_list: invalid key item: '%s' (ignored)\n", 4082 v->text)); 4083 continue; 4084 4085 blooper: 4086 DPRINTF(1, ("read_mru_list: invalid param for '%s': '%s' (bailing)\n", 4087 v->text, val)); 4088 free(pnonce); 4089 pnonce = NULL; 4090 break; 4091 } 4092 } 4093 free_varlist(in_parms); 4094 in_parms = NULL; 4095 4096 /* return no responses until the nonce is validated */ 4097 if (NULL == pnonce) 4098 return; 4099 4100 nonce_valid = validate_nonce(pnonce, rbufp); 4101 free(pnonce); 4102 if (!nonce_valid) 4103 return; 4104 4105 if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) || 4106 frags > MRU_FRAGS_LIMIT) { 4107 ctl_error(CERR_BADVALUE); 4108 return; 4109 } 4110 4111 /* 4112 * If either frags or limit is not given, use the max. 4113 */ 4114 if (0 != frags && 0 == limit) 4115 limit = UINT_MAX; 4116 else if (0 != limit && 0 == frags) 4117 frags = MRU_FRAGS_LIMIT; 4118 4119 /* 4120 * Find the starting point if one was provided. 4121 */ 4122 mon = NULL; 4123 for (i = 0; i < (size_t)priors; i++) { 4124 hash = MON_HASH(&addr[i]); 4125 for (mon = mon_hash[hash]; 4126 mon != NULL; 4127 mon = mon->hash_next) 4128 if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i])) 4129 break; 4130 if (mon != NULL) { 4131 if (L_ISEQU(&mon->last, &last[i])) 4132 break; 4133 mon = NULL; 4134 } 4135 } 4136 4137 /* If a starting point was provided... */ 4138 if (priors) { 4139 /* and none could be found unmodified... */ 4140 if (NULL == mon) { 4141 /* tell ntpq to try again with older entries */ 4142 ctl_error(CERR_UNKNOWNVAR); 4143 return; 4144 } 4145 /* confirm the prior entry used as starting point */ 4146 ctl_putts("last.older", &mon->last); 4147 pch = sptoa(&mon->rmtadr); 4148 ctl_putunqstr("addr.older", pch, strlen(pch)); 4149 4150 /* 4151 * Move on to the first entry the client doesn't have, 4152 * except in the special case of a limit of one. In 4153 * that case return the starting point entry. 4154 */ 4155 if (limit > 1) 4156 mon = PREV_DLIST(mon_mru_list, mon, mru); 4157 } else { /* start with the oldest */ 4158 mon = TAIL_DLIST(mon_mru_list, mru); 4159 } 4160 4161 /* 4162 * send up to limit= entries in up to frags= datagrams 4163 */ 4164 get_systime(&now); 4165 generate_nonce(rbufp, buf, sizeof(buf)); 4166 ctl_putunqstr("nonce", buf, strlen(buf)); 4167 prior_mon = NULL; 4168 for (count = 0; 4169 mon != NULL && res_frags < frags && count < limit; 4170 mon = PREV_DLIST(mon_mru_list, mon, mru)) { 4171 4172 if (mon->count < mincount) 4173 continue; 4174 if (resall && resall != (resall & mon->flags)) 4175 continue; 4176 if (resany && !(resany & mon->flags)) 4177 continue; 4178 if (maxlstint > 0 && now.l_ui - mon->last.l_ui > 4179 maxlstint) 4180 continue; 4181 if (lcladr != NULL && mon->lcladr != lcladr) 4182 continue; 4183 4184 send_mru_entry(mon, count); 4185 if (!count) 4186 send_random_tag_value(0); 4187 count++; 4188 prior_mon = mon; 4189 } 4190 4191 /* 4192 * If this batch completes the MRU list, say so explicitly with 4193 * a now= l_fp timestamp. 4194 */ 4195 if (NULL == mon) { 4196 if (count > 1) 4197 send_random_tag_value(count - 1); 4198 ctl_putts("now", &now); 4199 /* if any entries were returned confirm the last */ 4200 if (prior_mon != NULL) 4201 ctl_putts("last.newest", &prior_mon->last); 4202 } 4203 ctl_flushpkt(0); 4204 } 4205 4206 4207 /* 4208 * Send a ifstats entry in response to a "ntpq -c ifstats" request. 4209 * 4210 * To keep clients honest about not depending on the order of values, 4211 * and thereby avoid being locked into ugly workarounds to maintain 4212 * backward compatibility later as new fields are added to the response, 4213 * the order is random. 4214 */ 4215 static void 4216 send_ifstats_entry( 4217 endpt * la, 4218 u_int ifnum 4219 ) 4220 { 4221 const char addr_fmtu[] = "addr.%u"; 4222 const char bcast_fmt[] = "bcast.%u"; 4223 const char en_fmt[] = "en.%u"; /* enabled */ 4224 const char name_fmt[] = "name.%u"; 4225 const char flags_fmt[] = "flags.%u"; 4226 const char tl_fmt[] = "tl.%u"; /* ttl */ 4227 const char mc_fmt[] = "mc.%u"; /* mcast count */ 4228 const char rx_fmt[] = "rx.%u"; 4229 const char tx_fmt[] = "tx.%u"; 4230 const char txerr_fmt[] = "txerr.%u"; 4231 const char pc_fmt[] = "pc.%u"; /* peer count */ 4232 const char up_fmt[] = "up.%u"; /* uptime */ 4233 char tag[32]; 4234 u_char sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */ 4235 int noisebits; 4236 u_int32 noise; 4237 u_int which; 4238 u_int remaining; 4239 const char *pch; 4240 4241 remaining = COUNTOF(sent); 4242 ZERO(sent); 4243 noise = 0; 4244 noisebits = 0; 4245 while (remaining > 0) { 4246 if (noisebits < 4) { 4247 noise = rand() ^ (rand() << 16); 4248 noisebits = 31; 4249 } 4250 which = (noise & 0xf) % COUNTOF(sent); 4251 noise >>= 4; 4252 noisebits -= 4; 4253 4254 while (sent[which]) 4255 which = (which + 1) % COUNTOF(sent); 4256 4257 switch (which) { 4258 4259 case 0: 4260 snprintf(tag, sizeof(tag), addr_fmtu, ifnum); 4261 pch = sptoa(&la->sin); 4262 ctl_putunqstr(tag, pch, strlen(pch)); 4263 break; 4264 4265 case 1: 4266 snprintf(tag, sizeof(tag), bcast_fmt, ifnum); 4267 if (INT_BCASTOPEN & la->flags) 4268 pch = sptoa(&la->bcast); 4269 else 4270 pch = ""; 4271 ctl_putunqstr(tag, pch, strlen(pch)); 4272 break; 4273 4274 case 2: 4275 snprintf(tag, sizeof(tag), en_fmt, ifnum); 4276 ctl_putint(tag, !la->ignore_packets); 4277 break; 4278 4279 case 3: 4280 snprintf(tag, sizeof(tag), name_fmt, ifnum); 4281 ctl_putstr(tag, la->name, strlen(la->name)); 4282 break; 4283 4284 case 4: 4285 snprintf(tag, sizeof(tag), flags_fmt, ifnum); 4286 ctl_puthex(tag, (u_int)la->flags); 4287 break; 4288 4289 case 5: 4290 snprintf(tag, sizeof(tag), tl_fmt, ifnum); 4291 ctl_putint(tag, la->last_ttl); 4292 break; 4293 4294 case 6: 4295 snprintf(tag, sizeof(tag), mc_fmt, ifnum); 4296 ctl_putint(tag, la->num_mcast); 4297 break; 4298 4299 case 7: 4300 snprintf(tag, sizeof(tag), rx_fmt, ifnum); 4301 ctl_putint(tag, la->received); 4302 break; 4303 4304 case 8: 4305 snprintf(tag, sizeof(tag), tx_fmt, ifnum); 4306 ctl_putint(tag, la->sent); 4307 break; 4308 4309 case 9: 4310 snprintf(tag, sizeof(tag), txerr_fmt, ifnum); 4311 ctl_putint(tag, la->notsent); 4312 break; 4313 4314 case 10: 4315 snprintf(tag, sizeof(tag), pc_fmt, ifnum); 4316 ctl_putuint(tag, la->peercnt); 4317 break; 4318 4319 case 11: 4320 snprintf(tag, sizeof(tag), up_fmt, ifnum); 4321 ctl_putuint(tag, current_time - la->starttime); 4322 break; 4323 } 4324 sent[which] = TRUE; 4325 remaining--; 4326 } 4327 send_random_tag_value((int)ifnum); 4328 } 4329 4330 4331 /* 4332 * read_ifstats - send statistics for each local address, exposed by 4333 * ntpq -c ifstats 4334 */ 4335 static void 4336 read_ifstats( 4337 struct recvbuf * rbufp 4338 ) 4339 { 4340 u_int ifidx; 4341 endpt * la; 4342 4343 /* 4344 * loop over [0..sys_ifnum] searching ep_list for each 4345 * ifnum in turn. 4346 */ 4347 for (ifidx = 0; ifidx < sys_ifnum; ifidx++) { 4348 for (la = ep_list; la != NULL; la = la->elink) 4349 if (ifidx == la->ifnum) 4350 break; 4351 if (NULL == la) 4352 continue; 4353 /* return stats for one local address */ 4354 send_ifstats_entry(la, ifidx); 4355 } 4356 ctl_flushpkt(0); 4357 } 4358 4359 static void 4360 sockaddrs_from_restrict_u( 4361 sockaddr_u * psaA, 4362 sockaddr_u * psaM, 4363 restrict_u * pres, 4364 int ipv6 4365 ) 4366 { 4367 ZERO(*psaA); 4368 ZERO(*psaM); 4369 if (!ipv6) { 4370 psaA->sa.sa_family = AF_INET; 4371 psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr); 4372 psaM->sa.sa_family = AF_INET; 4373 psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask); 4374 } else { 4375 psaA->sa.sa_family = AF_INET6; 4376 memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr, 4377 sizeof(psaA->sa6.sin6_addr)); 4378 psaM->sa.sa_family = AF_INET6; 4379 memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask, 4380 sizeof(psaA->sa6.sin6_addr)); 4381 } 4382 } 4383 4384 4385 /* 4386 * Send a restrict entry in response to a "ntpq -c reslist" request. 4387 * 4388 * To keep clients honest about not depending on the order of values, 4389 * and thereby avoid being locked into ugly workarounds to maintain 4390 * backward compatibility later as new fields are added to the response, 4391 * the order is random. 4392 */ 4393 static void 4394 send_restrict_entry( 4395 restrict_u * pres, 4396 int ipv6, 4397 u_int idx 4398 ) 4399 { 4400 const char addr_fmtu[] = "addr.%u"; 4401 const char mask_fmtu[] = "mask.%u"; 4402 const char hits_fmt[] = "hits.%u"; 4403 const char flags_fmt[] = "flags.%u"; 4404 char tag[32]; 4405 u_char sent[RESLIST_FIELDS]; /* 4 tag=value pairs */ 4406 int noisebits; 4407 u_int32 noise; 4408 u_int which; 4409 u_int remaining; 4410 sockaddr_u addr; 4411 sockaddr_u mask; 4412 const char * pch; 4413 char * buf; 4414 const char * match_str; 4415 const char * access_str; 4416 4417 sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6); 4418 remaining = COUNTOF(sent); 4419 ZERO(sent); 4420 noise = 0; 4421 noisebits = 0; 4422 while (remaining > 0) { 4423 if (noisebits < 2) { 4424 noise = rand() ^ (rand() << 16); 4425 noisebits = 31; 4426 } 4427 which = (noise & 0x3) % COUNTOF(sent); 4428 noise >>= 2; 4429 noisebits -= 2; 4430 4431 while (sent[which]) 4432 which = (which + 1) % COUNTOF(sent); 4433 4434 /* XXX: Numbers? Really? */ 4435 switch (which) { 4436 4437 case 0: 4438 snprintf(tag, sizeof(tag), addr_fmtu, idx); 4439 pch = stoa(&addr); 4440 ctl_putunqstr(tag, pch, strlen(pch)); 4441 break; 4442 4443 case 1: 4444 snprintf(tag, sizeof(tag), mask_fmtu, idx); 4445 pch = stoa(&mask); 4446 ctl_putunqstr(tag, pch, strlen(pch)); 4447 break; 4448 4449 case 2: 4450 snprintf(tag, sizeof(tag), hits_fmt, idx); 4451 ctl_putuint(tag, pres->count); 4452 break; 4453 4454 case 3: 4455 snprintf(tag, sizeof(tag), flags_fmt, idx); 4456 match_str = res_match_flags(pres->mflags); 4457 access_str = res_access_flags(pres->rflags); 4458 if ('\0' == match_str[0]) { 4459 pch = access_str; 4460 } else { 4461 LIB_GETBUF(buf); 4462 snprintf(buf, LIB_BUFLENGTH, "%s %s", 4463 match_str, access_str); 4464 pch = buf; 4465 } 4466 ctl_putunqstr(tag, pch, strlen(pch)); 4467 break; 4468 } 4469 sent[which] = TRUE; 4470 remaining--; 4471 } 4472 send_random_tag_value((int)idx); 4473 } 4474 4475 4476 static void 4477 send_restrict_list( 4478 restrict_u * pres, 4479 int ipv6, 4480 u_int * pidx 4481 ) 4482 { 4483 for ( ; pres != NULL; pres = pres->link) { 4484 send_restrict_entry(pres, ipv6, *pidx); 4485 (*pidx)++; 4486 } 4487 } 4488 4489 4490 /* 4491 * read_addr_restrictions - returns IPv4 and IPv6 access control lists 4492 */ 4493 static void 4494 read_addr_restrictions( 4495 struct recvbuf * rbufp 4496 ) 4497 { 4498 u_int idx; 4499 4500 idx = 0; 4501 send_restrict_list(restrictlist4, FALSE, &idx); 4502 send_restrict_list(restrictlist6, TRUE, &idx); 4503 ctl_flushpkt(0); 4504 } 4505 4506 4507 /* 4508 * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist 4509 */ 4510 static void 4511 read_ordlist( 4512 struct recvbuf * rbufp, 4513 int restrict_mask 4514 ) 4515 { 4516 const char ifstats_s[] = "ifstats"; 4517 const size_t ifstats_chars = COUNTOF(ifstats_s) - 1; 4518 const char addr_rst_s[] = "addr_restrictions"; 4519 const size_t a_r_chars = COUNTOF(addr_rst_s) - 1; 4520 struct ntp_control * cpkt; 4521 u_short qdata_octets; 4522 4523 /* 4524 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and 4525 * used only for ntpq -c ifstats. With the addition of reslist 4526 * the same opcode was generalized to retrieve ordered lists 4527 * which require authentication. The request data is empty or 4528 * contains "ifstats" (not null terminated) to retrieve local 4529 * addresses and associated stats. It is "addr_restrictions" 4530 * to retrieve the IPv4 then IPv6 remote address restrictions, 4531 * which are access control lists. Other request data return 4532 * CERR_UNKNOWNVAR. 4533 */ 4534 cpkt = (struct ntp_control *)&rbufp->recv_pkt; 4535 qdata_octets = ntohs(cpkt->count); 4536 if (0 == qdata_octets || (ifstats_chars == qdata_octets && 4537 !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) { 4538 read_ifstats(rbufp); 4539 return; 4540 } 4541 if (a_r_chars == qdata_octets && 4542 !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) { 4543 read_addr_restrictions(rbufp); 4544 return; 4545 } 4546 ctl_error(CERR_UNKNOWNVAR); 4547 } 4548 4549 4550 /* 4551 * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite. 4552 */ 4553 static void req_nonce( 4554 struct recvbuf * rbufp, 4555 int restrict_mask 4556 ) 4557 { 4558 char buf[64]; 4559 4560 generate_nonce(rbufp, buf, sizeof(buf)); 4561 ctl_putunqstr("nonce", buf, strlen(buf)); 4562 ctl_flushpkt(0); 4563 } 4564 4565 4566 /* 4567 * read_clockstatus - return clock radio status 4568 */ 4569 /*ARGSUSED*/ 4570 static void 4571 read_clockstatus( 4572 struct recvbuf *rbufp, 4573 int restrict_mask 4574 ) 4575 { 4576 #ifndef REFCLOCK 4577 /* 4578 * If no refclock support, no data to return 4579 */ 4580 ctl_error(CERR_BADASSOC); 4581 #else 4582 const struct ctl_var * v; 4583 int i; 4584 struct peer * peer; 4585 char * valuep; 4586 u_char * wants; 4587 size_t wants_alloc; 4588 int gotvar; 4589 const u_char * cc; 4590 struct ctl_var * kv; 4591 struct refclockstat cs; 4592 4593 if (res_associd != 0) { 4594 peer = findpeerbyassoc(res_associd); 4595 } else { 4596 /* 4597 * Find a clock for this jerk. If the system peer 4598 * is a clock use it, else search peer_list for one. 4599 */ 4600 if (sys_peer != NULL && (FLAG_REFCLOCK & 4601 sys_peer->flags)) 4602 peer = sys_peer; 4603 else 4604 for (peer = peer_list; 4605 peer != NULL; 4606 peer = peer->p_link) 4607 if (FLAG_REFCLOCK & peer->flags) 4608 break; 4609 } 4610 if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) { 4611 ctl_error(CERR_BADASSOC); 4612 return; 4613 } 4614 /* 4615 * If we got here we have a peer which is a clock. Get his 4616 * status. 4617 */ 4618 cs.kv_list = NULL; 4619 refclock_control(&peer->srcadr, NULL, &cs); 4620 kv = cs.kv_list; 4621 /* 4622 * Look for variables in the packet. 4623 */ 4624 rpkt.status = htons(ctlclkstatus(&cs)); 4625 wants_alloc = CC_MAXCODE + 1 + count_var(kv); 4626 wants = emalloc_zero(wants_alloc); 4627 gotvar = FALSE; 4628 while (NULL != (v = ctl_getitem(clock_var, &valuep))) { 4629 if (!(EOV & v->flags)) { 4630 wants[v->code] = TRUE; 4631 gotvar = TRUE; 4632 } else { 4633 v = ctl_getitem(kv, &valuep); 4634 if (NULL == v) { 4635 ctl_error(CERR_BADVALUE); 4636 free(wants); 4637 free_varlist(cs.kv_list); 4638 return; 4639 } 4640 if (EOV & v->flags) { 4641 ctl_error(CERR_UNKNOWNVAR); 4642 free(wants); 4643 free_varlist(cs.kv_list); 4644 return; 4645 } 4646 wants[CC_MAXCODE + 1 + v->code] = TRUE; 4647 gotvar = TRUE; 4648 } 4649 } 4650 4651 if (gotvar) { 4652 for (i = 1; i <= CC_MAXCODE; i++) 4653 if (wants[i]) 4654 ctl_putclock(i, &cs, TRUE); 4655 if (kv != NULL) 4656 for (i = 0; !(EOV & kv[i].flags); i++) 4657 if (wants[i + CC_MAXCODE + 1]) 4658 ctl_putdata(kv[i].text, 4659 strlen(kv[i].text), 4660 FALSE); 4661 } else { 4662 for (cc = def_clock_var; *cc != 0; cc++) 4663 ctl_putclock((int)*cc, &cs, FALSE); 4664 for ( ; kv != NULL && !(EOV & kv->flags); kv++) 4665 if (DEF & kv->flags) 4666 ctl_putdata(kv->text, strlen(kv->text), 4667 FALSE); 4668 } 4669 4670 free(wants); 4671 free_varlist(cs.kv_list); 4672 4673 ctl_flushpkt(0); 4674 #endif 4675 } 4676 4677 4678 /* 4679 * write_clockstatus - we don't do this 4680 */ 4681 /*ARGSUSED*/ 4682 static void 4683 write_clockstatus( 4684 struct recvbuf *rbufp, 4685 int restrict_mask 4686 ) 4687 { 4688 ctl_error(CERR_PERMISSION); 4689 } 4690 4691 /* 4692 * Trap support from here on down. We send async trap messages when the 4693 * upper levels report trouble. Traps can by set either by control 4694 * messages or by configuration. 4695 */ 4696 /* 4697 * set_trap - set a trap in response to a control message 4698 */ 4699 static void 4700 set_trap( 4701 struct recvbuf *rbufp, 4702 int restrict_mask 4703 ) 4704 { 4705 int traptype; 4706 4707 /* 4708 * See if this guy is allowed 4709 */ 4710 if (restrict_mask & RES_NOTRAP) { 4711 ctl_error(CERR_PERMISSION); 4712 return; 4713 } 4714 4715 /* 4716 * Determine his allowed trap type. 4717 */ 4718 traptype = TRAP_TYPE_PRIO; 4719 if (restrict_mask & RES_LPTRAP) 4720 traptype = TRAP_TYPE_NONPRIO; 4721 4722 /* 4723 * Call ctlsettrap() to do the work. Return 4724 * an error if it can't assign the trap. 4725 */ 4726 if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype, 4727 (int)res_version)) 4728 ctl_error(CERR_NORESOURCE); 4729 ctl_flushpkt(0); 4730 } 4731 4732 4733 /* 4734 * unset_trap - unset a trap in response to a control message 4735 */ 4736 static void 4737 unset_trap( 4738 struct recvbuf *rbufp, 4739 int restrict_mask 4740 ) 4741 { 4742 int traptype; 4743 4744 /* 4745 * We don't prevent anyone from removing his own trap unless the 4746 * trap is configured. Note we also must be aware of the 4747 * possibility that restriction flags were changed since this 4748 * guy last set his trap. Set the trap type based on this. 4749 */ 4750 traptype = TRAP_TYPE_PRIO; 4751 if (restrict_mask & RES_LPTRAP) 4752 traptype = TRAP_TYPE_NONPRIO; 4753 4754 /* 4755 * Call ctlclrtrap() to clear this out. 4756 */ 4757 if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype)) 4758 ctl_error(CERR_BADASSOC); 4759 ctl_flushpkt(0); 4760 } 4761 4762 4763 /* 4764 * ctlsettrap - called to set a trap 4765 */ 4766 int 4767 ctlsettrap( 4768 sockaddr_u *raddr, 4769 struct interface *linter, 4770 int traptype, 4771 int version 4772 ) 4773 { 4774 size_t n; 4775 struct ctl_trap *tp; 4776 struct ctl_trap *tptouse; 4777 4778 /* 4779 * See if we can find this trap. If so, we only need update 4780 * the flags and the time. 4781 */ 4782 if ((tp = ctlfindtrap(raddr, linter)) != NULL) { 4783 switch (traptype) { 4784 4785 case TRAP_TYPE_CONFIG: 4786 tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED; 4787 break; 4788 4789 case TRAP_TYPE_PRIO: 4790 if (tp->tr_flags & TRAP_CONFIGURED) 4791 return (1); /* don't change anything */ 4792 tp->tr_flags = TRAP_INUSE; 4793 break; 4794 4795 case TRAP_TYPE_NONPRIO: 4796 if (tp->tr_flags & TRAP_CONFIGURED) 4797 return (1); /* don't change anything */ 4798 tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO; 4799 break; 4800 } 4801 tp->tr_settime = current_time; 4802 tp->tr_resets++; 4803 return (1); 4804 } 4805 4806 /* 4807 * First we heard of this guy. Try to find a trap structure 4808 * for him to use, clearing out lesser priority guys if we 4809 * have to. Clear out anyone who's expired while we're at it. 4810 */ 4811 tptouse = NULL; 4812 for (n = 0; n < COUNTOF(ctl_traps); n++) { 4813 tp = &ctl_traps[n]; 4814 if ((TRAP_INUSE & tp->tr_flags) && 4815 !(TRAP_CONFIGURED & tp->tr_flags) && 4816 ((tp->tr_settime + CTL_TRAPTIME) > current_time)) { 4817 tp->tr_flags = 0; 4818 num_ctl_traps--; 4819 } 4820 if (!(TRAP_INUSE & tp->tr_flags)) { 4821 tptouse = tp; 4822 } else if (!(TRAP_CONFIGURED & tp->tr_flags)) { 4823 switch (traptype) { 4824 4825 case TRAP_TYPE_CONFIG: 4826 if (tptouse == NULL) { 4827 tptouse = tp; 4828 break; 4829 } 4830 if ((TRAP_NONPRIO & tptouse->tr_flags) && 4831 !(TRAP_NONPRIO & tp->tr_flags)) 4832 break; 4833 4834 if (!(TRAP_NONPRIO & tptouse->tr_flags) 4835 && (TRAP_NONPRIO & tp->tr_flags)) { 4836 tptouse = tp; 4837 break; 4838 } 4839 if (tptouse->tr_origtime < 4840 tp->tr_origtime) 4841 tptouse = tp; 4842 break; 4843 4844 case TRAP_TYPE_PRIO: 4845 if ( TRAP_NONPRIO & tp->tr_flags) { 4846 if (tptouse == NULL || 4847 ((TRAP_INUSE & 4848 tptouse->tr_flags) && 4849 tptouse->tr_origtime < 4850 tp->tr_origtime)) 4851 tptouse = tp; 4852 } 4853 break; 4854 4855 case TRAP_TYPE_NONPRIO: 4856 break; 4857 } 4858 } 4859 } 4860 4861 /* 4862 * If we don't have room for him return an error. 4863 */ 4864 if (tptouse == NULL) 4865 return (0); 4866 4867 /* 4868 * Set up this structure for him. 4869 */ 4870 tptouse->tr_settime = tptouse->tr_origtime = current_time; 4871 tptouse->tr_count = tptouse->tr_resets = 0; 4872 tptouse->tr_sequence = 1; 4873 tptouse->tr_addr = *raddr; 4874 tptouse->tr_localaddr = linter; 4875 tptouse->tr_version = (u_char) version; 4876 tptouse->tr_flags = TRAP_INUSE; 4877 if (traptype == TRAP_TYPE_CONFIG) 4878 tptouse->tr_flags |= TRAP_CONFIGURED; 4879 else if (traptype == TRAP_TYPE_NONPRIO) 4880 tptouse->tr_flags |= TRAP_NONPRIO; 4881 num_ctl_traps++; 4882 return (1); 4883 } 4884 4885 4886 /* 4887 * ctlclrtrap - called to clear a trap 4888 */ 4889 int 4890 ctlclrtrap( 4891 sockaddr_u *raddr, 4892 struct interface *linter, 4893 int traptype 4894 ) 4895 { 4896 register struct ctl_trap *tp; 4897 4898 if ((tp = ctlfindtrap(raddr, linter)) == NULL) 4899 return (0); 4900 4901 if (tp->tr_flags & TRAP_CONFIGURED 4902 && traptype != TRAP_TYPE_CONFIG) 4903 return (0); 4904 4905 tp->tr_flags = 0; 4906 num_ctl_traps--; 4907 return (1); 4908 } 4909 4910 4911 /* 4912 * ctlfindtrap - find a trap given the remote and local addresses 4913 */ 4914 static struct ctl_trap * 4915 ctlfindtrap( 4916 sockaddr_u *raddr, 4917 struct interface *linter 4918 ) 4919 { 4920 size_t n; 4921 4922 for (n = 0; n < COUNTOF(ctl_traps); n++) 4923 if ((ctl_traps[n].tr_flags & TRAP_INUSE) 4924 && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr) 4925 && (linter == ctl_traps[n].tr_localaddr)) 4926 return &ctl_traps[n]; 4927 4928 return NULL; 4929 } 4930 4931 4932 /* 4933 * report_event - report an event to the trappers 4934 */ 4935 void 4936 report_event( 4937 int err, /* error code */ 4938 struct peer *peer, /* peer structure pointer */ 4939 const char *str /* protostats string */ 4940 ) 4941 { 4942 char statstr[NTP_MAXSTRLEN]; 4943 int i; 4944 size_t len; 4945 4946 /* 4947 * Report the error to the protostats file, system log and 4948 * trappers. 4949 */ 4950 if (peer == NULL) { 4951 4952 /* 4953 * Discard a system report if the number of reports of 4954 * the same type exceeds the maximum. 4955 */ 4956 if (ctl_sys_last_event != (u_char)err) 4957 ctl_sys_num_events= 0; 4958 if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS) 4959 return; 4960 4961 ctl_sys_last_event = (u_char)err; 4962 ctl_sys_num_events++; 4963 snprintf(statstr, sizeof(statstr), 4964 "0.0.0.0 %04x %02x %s", 4965 ctlsysstatus(), err, eventstr(err)); 4966 if (str != NULL) { 4967 len = strlen(statstr); 4968 snprintf(statstr + len, sizeof(statstr) - len, 4969 " %s", str); 4970 } 4971 NLOG(NLOG_SYSEVENT) 4972 msyslog(LOG_INFO, "%s", statstr); 4973 } else { 4974 4975 /* 4976 * Discard a peer report if the number of reports of 4977 * the same type exceeds the maximum for that peer. 4978 */ 4979 const char * src; 4980 u_char errlast; 4981 4982 errlast = (u_char)err & ~PEER_EVENT; 4983 if (peer->last_event != errlast) 4984 peer->num_events = 0; 4985 if (peer->num_events >= CTL_PEER_MAXEVENTS) 4986 return; 4987 4988 peer->last_event = errlast; 4989 peer->num_events++; 4990 if (ISREFCLOCKADR(&peer->srcadr)) 4991 src = refnumtoa(&peer->srcadr); 4992 else 4993 src = stoa(&peer->srcadr); 4994 4995 snprintf(statstr, sizeof(statstr), 4996 "%s %04x %02x %s", src, 4997 ctlpeerstatus(peer), err, eventstr(err)); 4998 if (str != NULL) { 4999 len = strlen(statstr); 5000 snprintf(statstr + len, sizeof(statstr) - len, 5001 " %s", str); 5002 } 5003 NLOG(NLOG_PEEREVENT) 5004 msyslog(LOG_INFO, "%s", statstr); 5005 } 5006 record_proto_stats(statstr); 5007 #if DEBUG 5008 if (debug) 5009 printf("event at %lu %s\n", current_time, statstr); 5010 #endif 5011 5012 /* 5013 * If no trappers, return. 5014 */ 5015 if (num_ctl_traps <= 0) 5016 return; 5017 5018 /* [Bug 3119] 5019 * Peer Events should be associated with a peer -- hence the 5020 * name. But there are instances where this function is called 5021 * *without* a valid peer. This happens e.g. with an unsolicited 5022 * CryptoNAK, or when a leap second alarm is going off while 5023 * currently without a system peer. 5024 * 5025 * The most sensible approach to this seems to bail out here if 5026 * this happens. Avoiding to call this function would also 5027 * bypass the log reporting in the first part of this function, 5028 * and this is probably not the best of all options. 5029 * -*-perlinger@ntp.org-*- 5030 */ 5031 if ((err & PEER_EVENT) && !peer) 5032 return; 5033 5034 /* 5035 * Set up the outgoing packet variables 5036 */ 5037 res_opcode = CTL_OP_ASYNCMSG; 5038 res_offset = 0; 5039 res_async = TRUE; 5040 res_authenticate = FALSE; 5041 datapt = rpkt.u.data; 5042 dataend = &rpkt.u.data[CTL_MAX_DATA_LEN]; 5043 if (!(err & PEER_EVENT)) { 5044 rpkt.associd = 0; 5045 rpkt.status = htons(ctlsysstatus()); 5046 5047 /* Include the core system variables and the list. */ 5048 for (i = 1; i <= CS_VARLIST; i++) 5049 ctl_putsys(i); 5050 } else if (NULL != peer) { /* paranoia -- skip output */ 5051 rpkt.associd = htons(peer->associd); 5052 rpkt.status = htons(ctlpeerstatus(peer)); 5053 5054 /* Dump it all. Later, maybe less. */ 5055 for (i = 1; i <= CP_MAX_NOAUTOKEY; i++) 5056 ctl_putpeer(i, peer); 5057 # ifdef REFCLOCK 5058 /* 5059 * for clock exception events: add clock variables to 5060 * reflect info on exception 5061 */ 5062 if (err == PEVNT_CLOCK) { 5063 struct refclockstat cs; 5064 struct ctl_var *kv; 5065 5066 cs.kv_list = NULL; 5067 refclock_control(&peer->srcadr, NULL, &cs); 5068 5069 ctl_puthex("refclockstatus", 5070 ctlclkstatus(&cs)); 5071 5072 for (i = 1; i <= CC_MAXCODE; i++) 5073 ctl_putclock(i, &cs, FALSE); 5074 for (kv = cs.kv_list; 5075 kv != NULL && !(EOV & kv->flags); 5076 kv++) 5077 if (DEF & kv->flags) 5078 ctl_putdata(kv->text, 5079 strlen(kv->text), 5080 FALSE); 5081 free_varlist(cs.kv_list); 5082 } 5083 # endif /* REFCLOCK */ 5084 } 5085 5086 /* 5087 * We're done, return. 5088 */ 5089 ctl_flushpkt(0); 5090 } 5091 5092 5093 /* 5094 * mprintf_event - printf-style varargs variant of report_event() 5095 */ 5096 int 5097 mprintf_event( 5098 int evcode, /* event code */ 5099 struct peer * p, /* may be NULL */ 5100 const char * fmt, /* msnprintf format */ 5101 ... 5102 ) 5103 { 5104 va_list ap; 5105 int rc; 5106 char msg[512]; 5107 5108 va_start(ap, fmt); 5109 rc = mvsnprintf(msg, sizeof(msg), fmt, ap); 5110 va_end(ap); 5111 report_event(evcode, p, msg); 5112 5113 return rc; 5114 } 5115 5116 5117 /* 5118 * ctl_clr_stats - clear stat counters 5119 */ 5120 void 5121 ctl_clr_stats(void) 5122 { 5123 ctltimereset = current_time; 5124 numctlreq = 0; 5125 numctlbadpkts = 0; 5126 numctlresponses = 0; 5127 numctlfrags = 0; 5128 numctlerrors = 0; 5129 numctlfrags = 0; 5130 numctltooshort = 0; 5131 numctlinputresp = 0; 5132 numctlinputfrag = 0; 5133 numctlinputerr = 0; 5134 numctlbadoffset = 0; 5135 numctlbadversion = 0; 5136 numctldatatooshort = 0; 5137 numctlbadop = 0; 5138 numasyncmsgs = 0; 5139 } 5140 5141 static u_short 5142 count_var( 5143 const struct ctl_var *k 5144 ) 5145 { 5146 u_int c; 5147 5148 if (NULL == k) 5149 return 0; 5150 5151 c = 0; 5152 while (!(EOV & (k++)->flags)) 5153 c++; 5154 5155 ENSURE(c <= USHRT_MAX); 5156 return (u_short)c; 5157 } 5158 5159 5160 char * 5161 add_var( 5162 struct ctl_var **kv, 5163 u_long size, 5164 u_short def 5165 ) 5166 { 5167 u_short c; 5168 struct ctl_var *k; 5169 char * buf; 5170 5171 c = count_var(*kv); 5172 *kv = erealloc(*kv, (c + 2) * sizeof(**kv)); 5173 k = *kv; 5174 buf = emalloc(size); 5175 k[c].code = c; 5176 k[c].text = buf; 5177 k[c].flags = def; 5178 k[c + 1].code = 0; 5179 k[c + 1].text = NULL; 5180 k[c + 1].flags = EOV; 5181 5182 return buf; 5183 } 5184 5185 5186 void 5187 set_var( 5188 struct ctl_var **kv, 5189 const char *data, 5190 u_long size, 5191 u_short def 5192 ) 5193 { 5194 struct ctl_var *k; 5195 const char *s; 5196 const char *t; 5197 char *td; 5198 5199 if (NULL == data || !size) 5200 return; 5201 5202 k = *kv; 5203 if (k != NULL) { 5204 while (!(EOV & k->flags)) { 5205 if (NULL == k->text) { 5206 td = emalloc(size); 5207 memcpy(td, data, size); 5208 k->text = td; 5209 k->flags = def; 5210 return; 5211 } else { 5212 s = data; 5213 t = k->text; 5214 while (*t != '=' && *s == *t) { 5215 s++; 5216 t++; 5217 } 5218 if (*s == *t && ((*t == '=') || !*t)) { 5219 td = erealloc((void *)(intptr_t)k->text, size); 5220 memcpy(td, data, size); 5221 k->text = td; 5222 k->flags = def; 5223 return; 5224 } 5225 } 5226 k++; 5227 } 5228 } 5229 td = add_var(kv, size, def); 5230 memcpy(td, data, size); 5231 } 5232 5233 5234 void 5235 set_sys_var( 5236 const char *data, 5237 u_long size, 5238 u_short def 5239 ) 5240 { 5241 set_var(&ext_sys_var, data, size, def); 5242 } 5243 5244 5245 /* 5246 * get_ext_sys_var() retrieves the value of a user-defined variable or 5247 * NULL if the variable has not been setvar'd. 5248 */ 5249 const char * 5250 get_ext_sys_var(const char *tag) 5251 { 5252 struct ctl_var * v; 5253 size_t c; 5254 const char * val; 5255 5256 val = NULL; 5257 c = strlen(tag); 5258 for (v = ext_sys_var; !(EOV & v->flags); v++) { 5259 if (NULL != v->text && !memcmp(tag, v->text, c)) { 5260 if ('=' == v->text[c]) { 5261 val = v->text + c + 1; 5262 break; 5263 } else if ('\0' == v->text[c]) { 5264 val = ""; 5265 break; 5266 } 5267 } 5268 } 5269 5270 return val; 5271 } 5272 5273 5274 void 5275 free_varlist( 5276 struct ctl_var *kv 5277 ) 5278 { 5279 struct ctl_var *k; 5280 if (kv) { 5281 for (k = kv; !(k->flags & EOV); k++) 5282 free((void *)(intptr_t)k->text); 5283 free((void *)kv); 5284 } 5285 } 5286