xref: /freebsd/contrib/ntp/ntpd/ntp_control.c (revision bd81e07d2761cf1c13063eb49a5c0cb4a6951318)
1 /*
2  * ntp_control.c - respond to mode 6 control messages and send async
3  *		   traps.  Provides service to ntpq and others.
4  */
5 
6 /*
7  * $FreeBSD: head/contrib/ntp/ntpd/ntp_control.c 276071 2014-12-22 18:54:55Z delphij $
8  */
9 
10 #ifdef HAVE_CONFIG_H
11 # include <config.h>
12 #endif
13 
14 #include <stdio.h>
15 #include <ctype.h>
16 #include <signal.h>
17 #include <sys/stat.h>
18 #ifdef HAVE_NETINET_IN_H
19 # include <netinet/in.h>
20 #endif
21 #include <arpa/inet.h>
22 
23 #include "ntpd.h"
24 #include "ntp_io.h"
25 #include "ntp_refclock.h"
26 #include "ntp_control.h"
27 #include "ntp_unixtime.h"
28 #include "ntp_stdlib.h"
29 #include "ntp_config.h"
30 #include "ntp_crypto.h"
31 #include "ntp_assert.h"
32 #include "ntp_leapsec.h"
33 #include "ntp_md5.h"	/* provides OpenSSL digest API */
34 #include "lib_strbuf.h"
35 #ifdef KERNEL_PLL
36 # include "ntp_syscall.h"
37 #endif
38 
39 extern size_t remoteconfig_cmdlength( const char *src_buf, const char *src_end );
40 
41 #ifndef MIN
42 #define MIN(a, b) (((a) <= (b)) ? (a) : (b))
43 #endif
44 
45 /*
46  * Structure to hold request procedure information
47  */
48 
49 struct ctl_proc {
50 	short control_code;		/* defined request code */
51 #define NO_REQUEST	(-1)
52 	u_short flags;			/* flags word */
53 	/* Only one flag.  Authentication required or not. */
54 #define NOAUTH	0
55 #define AUTH	1
56 	void (*handler) (struct recvbuf *, int); /* handle request */
57 };
58 
59 
60 /*
61  * Request processing routines
62  */
63 static	void	ctl_error	(u_char);
64 #ifdef REFCLOCK
65 static	u_short ctlclkstatus	(struct refclockstat *);
66 #endif
67 static	void	ctl_flushpkt	(u_char);
68 static	void	ctl_putdata	(const char *, unsigned int, int);
69 static	void	ctl_putstr	(const char *, const char *, size_t);
70 static	void	ctl_putdblf	(const char *, int, int, double);
71 #define	ctl_putdbl(tag, d)	ctl_putdblf(tag, 1, 3, d)
72 #define	ctl_putdbl6(tag, d)	ctl_putdblf(tag, 1, 6, d)
73 #define	ctl_putsfp(tag, sfp)	ctl_putdblf(tag, 0, -1, \
74 					    FPTOD(sfp))
75 static	void	ctl_putuint	(const char *, u_long);
76 static	void	ctl_puthex	(const char *, u_long);
77 static	void	ctl_putint	(const char *, long);
78 static	void	ctl_putts	(const char *, l_fp *);
79 static	void	ctl_putadr	(const char *, u_int32,
80 				 sockaddr_u *);
81 static	void	ctl_putrefid	(const char *, u_int32);
82 static	void	ctl_putarray	(const char *, double *, int);
83 static	void	ctl_putsys	(int);
84 static	void	ctl_putpeer	(int, struct peer *);
85 static	void	ctl_putfs	(const char *, tstamp_t);
86 #ifdef REFCLOCK
87 static	void	ctl_putclock	(int, struct refclockstat *, int);
88 #endif	/* REFCLOCK */
89 static	const struct ctl_var *ctl_getitem(const struct ctl_var *,
90 					  char **);
91 static	u_short	count_var	(const struct ctl_var *);
92 static	void	control_unspec	(struct recvbuf *, int);
93 static	void	read_status	(struct recvbuf *, int);
94 static	void	read_sysvars	(void);
95 static	void	read_peervars	(void);
96 static	void	read_variables	(struct recvbuf *, int);
97 static	void	write_variables (struct recvbuf *, int);
98 static	void	read_clockstatus(struct recvbuf *, int);
99 static	void	write_clockstatus(struct recvbuf *, int);
100 static	void	set_trap	(struct recvbuf *, int);
101 static	void	save_config	(struct recvbuf *, int);
102 static	void	configure	(struct recvbuf *, int);
103 static	void	send_mru_entry	(mon_entry *, int);
104 static	void	send_random_tag_value(int);
105 static	void	read_mru_list	(struct recvbuf *, int);
106 static	void	send_ifstats_entry(endpt *, u_int);
107 static	void	read_ifstats	(struct recvbuf *);
108 static	void	sockaddrs_from_restrict_u(sockaddr_u *,	sockaddr_u *,
109 					  restrict_u *, int);
110 static	void	send_restrict_entry(restrict_u *, int, u_int);
111 static	void	send_restrict_list(restrict_u *, int, u_int *);
112 static	void	read_addr_restrictions(struct recvbuf *);
113 static	void	read_ordlist	(struct recvbuf *, int);
114 static	u_int32	derive_nonce	(sockaddr_u *, u_int32, u_int32);
115 static	void	generate_nonce	(struct recvbuf *, char *, size_t);
116 static	int	validate_nonce	(const char *, struct recvbuf *);
117 static	void	req_nonce	(struct recvbuf *, int);
118 static	void	unset_trap	(struct recvbuf *, int);
119 static	struct ctl_trap *ctlfindtrap(sockaddr_u *,
120 				     struct interface *);
121 
122 static const struct ctl_proc control_codes[] = {
123 	{ CTL_OP_UNSPEC,		NOAUTH,	control_unspec },
124 	{ CTL_OP_READSTAT,		NOAUTH,	read_status },
125 	{ CTL_OP_READVAR,		NOAUTH,	read_variables },
126 	{ CTL_OP_WRITEVAR,		AUTH,	write_variables },
127 	{ CTL_OP_READCLOCK,		NOAUTH,	read_clockstatus },
128 	{ CTL_OP_WRITECLOCK,		NOAUTH,	write_clockstatus },
129 	{ CTL_OP_SETTRAP,		NOAUTH,	set_trap },
130 	{ CTL_OP_CONFIGURE,		AUTH,	configure },
131 	{ CTL_OP_SAVECONFIG,		AUTH,	save_config },
132 	{ CTL_OP_READ_MRU,		NOAUTH,	read_mru_list },
133 	{ CTL_OP_READ_ORDLIST_A,	AUTH,	read_ordlist },
134 	{ CTL_OP_REQ_NONCE,		NOAUTH,	req_nonce },
135 	{ CTL_OP_UNSETTRAP,		NOAUTH,	unset_trap },
136 	{ NO_REQUEST,			0,	NULL }
137 };
138 
139 /*
140  * System variables we understand
141  */
142 #define	CS_LEAP			1
143 #define	CS_STRATUM		2
144 #define	CS_PRECISION		3
145 #define	CS_ROOTDELAY		4
146 #define	CS_ROOTDISPERSION	5
147 #define	CS_REFID		6
148 #define	CS_REFTIME		7
149 #define	CS_POLL			8
150 #define	CS_PEERID		9
151 #define	CS_OFFSET		10
152 #define	CS_DRIFT		11
153 #define	CS_JITTER		12
154 #define	CS_ERROR		13
155 #define	CS_CLOCK		14
156 #define	CS_PROCESSOR		15
157 #define	CS_SYSTEM		16
158 #define	CS_VERSION		17
159 #define	CS_STABIL		18
160 #define	CS_VARLIST		19
161 #define	CS_TAI			20
162 #define	CS_LEAPTAB		21
163 #define	CS_LEAPEND		22
164 #define	CS_RATE			23
165 #define	CS_MRU_ENABLED		24
166 #define	CS_MRU_DEPTH		25
167 #define	CS_MRU_DEEPEST		26
168 #define	CS_MRU_MINDEPTH		27
169 #define	CS_MRU_MAXAGE		28
170 #define	CS_MRU_MAXDEPTH		29
171 #define	CS_MRU_MEM		30
172 #define	CS_MRU_MAXMEM		31
173 #define	CS_SS_UPTIME		32
174 #define	CS_SS_RESET		33
175 #define	CS_SS_RECEIVED		34
176 #define	CS_SS_THISVER		35
177 #define	CS_SS_OLDVER		36
178 #define	CS_SS_BADFORMAT		37
179 #define	CS_SS_BADAUTH		38
180 #define	CS_SS_DECLINED		39
181 #define	CS_SS_RESTRICTED	40
182 #define	CS_SS_LIMITED		41
183 #define	CS_SS_KODSENT		42
184 #define	CS_SS_PROCESSED		43
185 #define	CS_PEERADR		44
186 #define	CS_PEERMODE		45
187 #define	CS_BCASTDELAY		46
188 #define	CS_AUTHDELAY		47
189 #define	CS_AUTHKEYS		48
190 #define	CS_AUTHFREEK		49
191 #define	CS_AUTHKLOOKUPS		50
192 #define	CS_AUTHKNOTFOUND	51
193 #define	CS_AUTHKUNCACHED	52
194 #define	CS_AUTHKEXPIRED		53
195 #define	CS_AUTHENCRYPTS		54
196 #define	CS_AUTHDECRYPTS		55
197 #define	CS_AUTHRESET		56
198 #define	CS_K_OFFSET		57
199 #define	CS_K_FREQ		58
200 #define	CS_K_MAXERR		59
201 #define	CS_K_ESTERR		60
202 #define	CS_K_STFLAGS		61
203 #define	CS_K_TIMECONST		62
204 #define	CS_K_PRECISION		63
205 #define	CS_K_FREQTOL		64
206 #define	CS_K_PPS_FREQ		65
207 #define	CS_K_PPS_STABIL		66
208 #define	CS_K_PPS_JITTER		67
209 #define	CS_K_PPS_CALIBDUR	68
210 #define	CS_K_PPS_CALIBS		69
211 #define	CS_K_PPS_CALIBERRS	70
212 #define	CS_K_PPS_JITEXC		71
213 #define	CS_K_PPS_STBEXC		72
214 #define	CS_KERN_FIRST		CS_K_OFFSET
215 #define	CS_KERN_LAST		CS_K_PPS_STBEXC
216 #define	CS_IOSTATS_RESET	73
217 #define	CS_TOTAL_RBUF		74
218 #define	CS_FREE_RBUF		75
219 #define	CS_USED_RBUF		76
220 #define	CS_RBUF_LOWATER		77
221 #define	CS_IO_DROPPED		78
222 #define	CS_IO_IGNORED		79
223 #define	CS_IO_RECEIVED		80
224 #define	CS_IO_SENT		81
225 #define	CS_IO_SENDFAILED	82
226 #define	CS_IO_WAKEUPS		83
227 #define	CS_IO_GOODWAKEUPS	84
228 #define	CS_TIMERSTATS_RESET	85
229 #define	CS_TIMER_OVERRUNS	86
230 #define	CS_TIMER_XMTS		87
231 #define	CS_FUZZ			88
232 #define	CS_WANDER_THRESH	89
233 #define	CS_LEAPSMEARINTV	90
234 #define	CS_LEAPSMEAROFFS	91
235 #define	CS_MAX_NOAUTOKEY	CS_LEAPSMEAROFFS
236 #ifdef AUTOKEY
237 #define	CS_FLAGS		(1 + CS_MAX_NOAUTOKEY)
238 #define	CS_HOST			(2 + CS_MAX_NOAUTOKEY)
239 #define	CS_PUBLIC		(3 + CS_MAX_NOAUTOKEY)
240 #define	CS_CERTIF		(4 + CS_MAX_NOAUTOKEY)
241 #define	CS_SIGNATURE		(5 + CS_MAX_NOAUTOKEY)
242 #define	CS_REVTIME		(6 + CS_MAX_NOAUTOKEY)
243 #define	CS_IDENT		(7 + CS_MAX_NOAUTOKEY)
244 #define	CS_DIGEST		(8 + CS_MAX_NOAUTOKEY)
245 #define	CS_MAXCODE		CS_DIGEST
246 #else	/* !AUTOKEY follows */
247 #define	CS_MAXCODE		CS_MAX_NOAUTOKEY
248 #endif	/* !AUTOKEY */
249 
250 /*
251  * Peer variables we understand
252  */
253 #define	CP_CONFIG		1
254 #define	CP_AUTHENABLE		2
255 #define	CP_AUTHENTIC		3
256 #define	CP_SRCADR		4
257 #define	CP_SRCPORT		5
258 #define	CP_DSTADR		6
259 #define	CP_DSTPORT		7
260 #define	CP_LEAP			8
261 #define	CP_HMODE		9
262 #define	CP_STRATUM		10
263 #define	CP_PPOLL		11
264 #define	CP_HPOLL		12
265 #define	CP_PRECISION		13
266 #define	CP_ROOTDELAY		14
267 #define	CP_ROOTDISPERSION	15
268 #define	CP_REFID		16
269 #define	CP_REFTIME		17
270 #define	CP_ORG			18
271 #define	CP_REC			19
272 #define	CP_XMT			20
273 #define	CP_REACH		21
274 #define	CP_UNREACH		22
275 #define	CP_TIMER		23
276 #define	CP_DELAY		24
277 #define	CP_OFFSET		25
278 #define	CP_JITTER		26
279 #define	CP_DISPERSION		27
280 #define	CP_KEYID		28
281 #define	CP_FILTDELAY		29
282 #define	CP_FILTOFFSET		30
283 #define	CP_PMODE		31
284 #define	CP_RECEIVED		32
285 #define	CP_SENT			33
286 #define	CP_FILTERROR		34
287 #define	CP_FLASH		35
288 #define	CP_TTL			36
289 #define	CP_VARLIST		37
290 #define	CP_IN			38
291 #define	CP_OUT			39
292 #define	CP_RATE			40
293 #define	CP_BIAS			41
294 #define	CP_SRCHOST		42
295 #define	CP_TIMEREC		43
296 #define	CP_TIMEREACH		44
297 #define	CP_BADAUTH		45
298 #define	CP_BOGUSORG		46
299 #define	CP_OLDPKT		47
300 #define	CP_SELDISP		48
301 #define	CP_SELBROKEN		49
302 #define	CP_CANDIDATE		50
303 #define	CP_MAX_NOAUTOKEY	CP_CANDIDATE
304 #ifdef AUTOKEY
305 #define	CP_FLAGS		(1 + CP_MAX_NOAUTOKEY)
306 #define	CP_HOST			(2 + CP_MAX_NOAUTOKEY)
307 #define	CP_VALID		(3 + CP_MAX_NOAUTOKEY)
308 #define	CP_INITSEQ		(4 + CP_MAX_NOAUTOKEY)
309 #define	CP_INITKEY		(5 + CP_MAX_NOAUTOKEY)
310 #define	CP_INITTSP		(6 + CP_MAX_NOAUTOKEY)
311 #define	CP_SIGNATURE		(7 + CP_MAX_NOAUTOKEY)
312 #define	CP_IDENT		(8 + CP_MAX_NOAUTOKEY)
313 #define	CP_MAXCODE		CP_IDENT
314 #else	/* !AUTOKEY follows */
315 #define	CP_MAXCODE		CP_MAX_NOAUTOKEY
316 #endif	/* !AUTOKEY */
317 
318 /*
319  * Clock variables we understand
320  */
321 #define	CC_TYPE		1
322 #define	CC_TIMECODE	2
323 #define	CC_POLL		3
324 #define	CC_NOREPLY	4
325 #define	CC_BADFORMAT	5
326 #define	CC_BADDATA	6
327 #define	CC_FUDGETIME1	7
328 #define	CC_FUDGETIME2	8
329 #define	CC_FUDGEVAL1	9
330 #define	CC_FUDGEVAL2	10
331 #define	CC_FLAGS	11
332 #define	CC_DEVICE	12
333 #define	CC_VARLIST	13
334 #define	CC_MAXCODE	CC_VARLIST
335 
336 /*
337  * System variable values. The array can be indexed by the variable
338  * index to find the textual name.
339  */
340 static const struct ctl_var sys_var[] = {
341 	{ 0,		PADDING, "" },		/* 0 */
342 	{ CS_LEAP,	RW, "leap" },		/* 1 */
343 	{ CS_STRATUM,	RO, "stratum" },	/* 2 */
344 	{ CS_PRECISION, RO, "precision" },	/* 3 */
345 	{ CS_ROOTDELAY, RO, "rootdelay" },	/* 4 */
346 	{ CS_ROOTDISPERSION, RO, "rootdisp" },	/* 5 */
347 	{ CS_REFID,	RO, "refid" },		/* 6 */
348 	{ CS_REFTIME,	RO, "reftime" },	/* 7 */
349 	{ CS_POLL,	RO, "tc" },		/* 8 */
350 	{ CS_PEERID,	RO, "peer" },		/* 9 */
351 	{ CS_OFFSET,	RO, "offset" },		/* 10 */
352 	{ CS_DRIFT,	RO, "frequency" },	/* 11 */
353 	{ CS_JITTER,	RO, "sys_jitter" },	/* 12 */
354 	{ CS_ERROR,	RO, "clk_jitter" },	/* 13 */
355 	{ CS_CLOCK,	RO, "clock" },		/* 14 */
356 	{ CS_PROCESSOR, RO, "processor" },	/* 15 */
357 	{ CS_SYSTEM,	RO, "system" },		/* 16 */
358 	{ CS_VERSION,	RO, "version" },	/* 17 */
359 	{ CS_STABIL,	RO, "clk_wander" },	/* 18 */
360 	{ CS_VARLIST,	RO, "sys_var_list" },	/* 19 */
361 	{ CS_TAI,	RO, "tai" },		/* 20 */
362 	{ CS_LEAPTAB,	RO, "leapsec" },	/* 21 */
363 	{ CS_LEAPEND,	RO, "expire" },		/* 22 */
364 	{ CS_RATE,	RO, "mintc" },		/* 23 */
365 	{ CS_MRU_ENABLED,	RO, "mru_enabled" },	/* 24 */
366 	{ CS_MRU_DEPTH,		RO, "mru_depth" },	/* 25 */
367 	{ CS_MRU_DEEPEST,	RO, "mru_deepest" },	/* 26 */
368 	{ CS_MRU_MINDEPTH,	RO, "mru_mindepth" },	/* 27 */
369 	{ CS_MRU_MAXAGE,	RO, "mru_maxage" },	/* 28 */
370 	{ CS_MRU_MAXDEPTH,	RO, "mru_maxdepth" },	/* 29 */
371 	{ CS_MRU_MEM,		RO, "mru_mem" },	/* 30 */
372 	{ CS_MRU_MAXMEM,	RO, "mru_maxmem" },	/* 31 */
373 	{ CS_SS_UPTIME,		RO, "ss_uptime" },	/* 32 */
374 	{ CS_SS_RESET,		RO, "ss_reset" },	/* 33 */
375 	{ CS_SS_RECEIVED,	RO, "ss_received" },	/* 34 */
376 	{ CS_SS_THISVER,	RO, "ss_thisver" },	/* 35 */
377 	{ CS_SS_OLDVER,		RO, "ss_oldver" },	/* 36 */
378 	{ CS_SS_BADFORMAT,	RO, "ss_badformat" },	/* 37 */
379 	{ CS_SS_BADAUTH,	RO, "ss_badauth" },	/* 38 */
380 	{ CS_SS_DECLINED,	RO, "ss_declined" },	/* 39 */
381 	{ CS_SS_RESTRICTED,	RO, "ss_restricted" },	/* 40 */
382 	{ CS_SS_LIMITED,	RO, "ss_limited" },	/* 41 */
383 	{ CS_SS_KODSENT,	RO, "ss_kodsent" },	/* 42 */
384 	{ CS_SS_PROCESSED,	RO, "ss_processed" },	/* 43 */
385 	{ CS_PEERADR,		RO, "peeradr" },	/* 44 */
386 	{ CS_PEERMODE,		RO, "peermode" },	/* 45 */
387 	{ CS_BCASTDELAY,	RO, "bcastdelay" },	/* 46 */
388 	{ CS_AUTHDELAY,		RO, "authdelay" },	/* 47 */
389 	{ CS_AUTHKEYS,		RO, "authkeys" },	/* 48 */
390 	{ CS_AUTHFREEK,		RO, "authfreek" },	/* 49 */
391 	{ CS_AUTHKLOOKUPS,	RO, "authklookups" },	/* 50 */
392 	{ CS_AUTHKNOTFOUND,	RO, "authknotfound" },	/* 51 */
393 	{ CS_AUTHKUNCACHED,	RO, "authkuncached" },	/* 52 */
394 	{ CS_AUTHKEXPIRED,	RO, "authkexpired" },	/* 53 */
395 	{ CS_AUTHENCRYPTS,	RO, "authencrypts" },	/* 54 */
396 	{ CS_AUTHDECRYPTS,	RO, "authdecrypts" },	/* 55 */
397 	{ CS_AUTHRESET,		RO, "authreset" },	/* 56 */
398 	{ CS_K_OFFSET,		RO, "koffset" },	/* 57 */
399 	{ CS_K_FREQ,		RO, "kfreq" },		/* 58 */
400 	{ CS_K_MAXERR,		RO, "kmaxerr" },	/* 59 */
401 	{ CS_K_ESTERR,		RO, "kesterr" },	/* 60 */
402 	{ CS_K_STFLAGS,		RO, "kstflags" },	/* 61 */
403 	{ CS_K_TIMECONST,	RO, "ktimeconst" },	/* 62 */
404 	{ CS_K_PRECISION,	RO, "kprecis" },	/* 63 */
405 	{ CS_K_FREQTOL,		RO, "kfreqtol" },	/* 64 */
406 	{ CS_K_PPS_FREQ,	RO, "kppsfreq" },	/* 65 */
407 	{ CS_K_PPS_STABIL,	RO, "kppsstab" },	/* 66 */
408 	{ CS_K_PPS_JITTER,	RO, "kppsjitter" },	/* 67 */
409 	{ CS_K_PPS_CALIBDUR,	RO, "kppscalibdur" },	/* 68 */
410 	{ CS_K_PPS_CALIBS,	RO, "kppscalibs" },	/* 69 */
411 	{ CS_K_PPS_CALIBERRS,	RO, "kppscaliberrs" },	/* 70 */
412 	{ CS_K_PPS_JITEXC,	RO, "kppsjitexc" },	/* 71 */
413 	{ CS_K_PPS_STBEXC,	RO, "kppsstbexc" },	/* 72 */
414 	{ CS_IOSTATS_RESET,	RO, "iostats_reset" },	/* 73 */
415 	{ CS_TOTAL_RBUF,	RO, "total_rbuf" },	/* 74 */
416 	{ CS_FREE_RBUF,		RO, "free_rbuf" },	/* 75 */
417 	{ CS_USED_RBUF,		RO, "used_rbuf" },	/* 76 */
418 	{ CS_RBUF_LOWATER,	RO, "rbuf_lowater" },	/* 77 */
419 	{ CS_IO_DROPPED,	RO, "io_dropped" },	/* 78 */
420 	{ CS_IO_IGNORED,	RO, "io_ignored" },	/* 79 */
421 	{ CS_IO_RECEIVED,	RO, "io_received" },	/* 80 */
422 	{ CS_IO_SENT,		RO, "io_sent" },	/* 81 */
423 	{ CS_IO_SENDFAILED,	RO, "io_sendfailed" },	/* 82 */
424 	{ CS_IO_WAKEUPS,	RO, "io_wakeups" },	/* 83 */
425 	{ CS_IO_GOODWAKEUPS,	RO, "io_goodwakeups" },	/* 84 */
426 	{ CS_TIMERSTATS_RESET,	RO, "timerstats_reset" },/* 85 */
427 	{ CS_TIMER_OVERRUNS,	RO, "timer_overruns" },	/* 86 */
428 	{ CS_TIMER_XMTS,	RO, "timer_xmts" },	/* 87 */
429 	{ CS_FUZZ,		RO, "fuzz" },		/* 88 */
430 	{ CS_WANDER_THRESH,	RO, "clk_wander_threshold" }, /* 89 */
431 #ifdef LEAP_SMEAR
432 	{ CS_LEAPSMEARINTV,	RO, "leapsmearinterval" },    /* 90 */
433 	{ CS_LEAPSMEAROFFS,	RO, "leapsmearoffset" },      /* 91 */
434 #endif	 /* LEAP_SMEAR */
435 #ifdef AUTOKEY
436 	{ CS_FLAGS,	RO, "flags" },		/* 1 + CS_MAX_NOAUTOKEY */
437 	{ CS_HOST,	RO, "host" },		/* 2 + CS_MAX_NOAUTOKEY */
438 	{ CS_PUBLIC,	RO, "update" },		/* 3 + CS_MAX_NOAUTOKEY */
439 	{ CS_CERTIF,	RO, "cert" },		/* 4 + CS_MAX_NOAUTOKEY */
440 	{ CS_SIGNATURE,	RO, "signature" },	/* 5 + CS_MAX_NOAUTOKEY */
441 	{ CS_REVTIME,	RO, "until" },		/* 6 + CS_MAX_NOAUTOKEY */
442 	{ CS_IDENT,	RO, "ident" },		/* 7 + CS_MAX_NOAUTOKEY */
443 	{ CS_DIGEST,	RO, "digest" },		/* 8 + CS_MAX_NOAUTOKEY */
444 #endif	/* AUTOKEY */
445 	{ 0,		EOV, "" }		/* 87/95 */
446 };
447 
448 static struct ctl_var *ext_sys_var = NULL;
449 
450 /*
451  * System variables we print by default (in fuzzball order,
452  * more-or-less)
453  */
454 static const u_char def_sys_var[] = {
455 	CS_VERSION,
456 	CS_PROCESSOR,
457 	CS_SYSTEM,
458 	CS_LEAP,
459 	CS_STRATUM,
460 	CS_PRECISION,
461 	CS_ROOTDELAY,
462 	CS_ROOTDISPERSION,
463 	CS_REFID,
464 	CS_REFTIME,
465 	CS_CLOCK,
466 	CS_PEERID,
467 	CS_POLL,
468 	CS_RATE,
469 	CS_OFFSET,
470 	CS_DRIFT,
471 	CS_JITTER,
472 	CS_ERROR,
473 	CS_STABIL,
474 	CS_TAI,
475 	CS_LEAPTAB,
476 	CS_LEAPEND,
477 	CS_LEAPSMEARINTV,
478 	CS_LEAPSMEAROFFS,
479 #ifdef AUTOKEY
480 	CS_HOST,
481 	CS_IDENT,
482 	CS_FLAGS,
483 	CS_DIGEST,
484 	CS_SIGNATURE,
485 	CS_PUBLIC,
486 	CS_CERTIF,
487 #endif	/* AUTOKEY */
488 	0
489 };
490 
491 
492 /*
493  * Peer variable list
494  */
495 static const struct ctl_var peer_var[] = {
496 	{ 0,		PADDING, "" },		/* 0 */
497 	{ CP_CONFIG,	RO, "config" },		/* 1 */
498 	{ CP_AUTHENABLE, RO,	"authenable" },	/* 2 */
499 	{ CP_AUTHENTIC, RO, "authentic" },	/* 3 */
500 	{ CP_SRCADR,	RO, "srcadr" },		/* 4 */
501 	{ CP_SRCPORT,	RO, "srcport" },	/* 5 */
502 	{ CP_DSTADR,	RO, "dstadr" },		/* 6 */
503 	{ CP_DSTPORT,	RO, "dstport" },	/* 7 */
504 	{ CP_LEAP,	RO, "leap" },		/* 8 */
505 	{ CP_HMODE,	RO, "hmode" },		/* 9 */
506 	{ CP_STRATUM,	RO, "stratum" },	/* 10 */
507 	{ CP_PPOLL,	RO, "ppoll" },		/* 11 */
508 	{ CP_HPOLL,	RO, "hpoll" },		/* 12 */
509 	{ CP_PRECISION,	RO, "precision" },	/* 13 */
510 	{ CP_ROOTDELAY,	RO, "rootdelay" },	/* 14 */
511 	{ CP_ROOTDISPERSION, RO, "rootdisp" },	/* 15 */
512 	{ CP_REFID,	RO, "refid" },		/* 16 */
513 	{ CP_REFTIME,	RO, "reftime" },	/* 17 */
514 	{ CP_ORG,	RO, "org" },		/* 18 */
515 	{ CP_REC,	RO, "rec" },		/* 19 */
516 	{ CP_XMT,	RO, "xleave" },		/* 20 */
517 	{ CP_REACH,	RO, "reach" },		/* 21 */
518 	{ CP_UNREACH,	RO, "unreach" },	/* 22 */
519 	{ CP_TIMER,	RO, "timer" },		/* 23 */
520 	{ CP_DELAY,	RO, "delay" },		/* 24 */
521 	{ CP_OFFSET,	RO, "offset" },		/* 25 */
522 	{ CP_JITTER,	RO, "jitter" },		/* 26 */
523 	{ CP_DISPERSION, RO, "dispersion" },	/* 27 */
524 	{ CP_KEYID,	RO, "keyid" },		/* 28 */
525 	{ CP_FILTDELAY,	RO, "filtdelay" },	/* 29 */
526 	{ CP_FILTOFFSET, RO, "filtoffset" },	/* 30 */
527 	{ CP_PMODE,	RO, "pmode" },		/* 31 */
528 	{ CP_RECEIVED,	RO, "received"},	/* 32 */
529 	{ CP_SENT,	RO, "sent" },		/* 33 */
530 	{ CP_FILTERROR,	RO, "filtdisp" },	/* 34 */
531 	{ CP_FLASH,	RO, "flash" },		/* 35 */
532 	{ CP_TTL,	RO, "ttl" },		/* 36 */
533 	{ CP_VARLIST,	RO, "peer_var_list" },	/* 37 */
534 	{ CP_IN,	RO, "in" },		/* 38 */
535 	{ CP_OUT,	RO, "out" },		/* 39 */
536 	{ CP_RATE,	RO, "headway" },	/* 40 */
537 	{ CP_BIAS,	RO, "bias" },		/* 41 */
538 	{ CP_SRCHOST,	RO, "srchost" },	/* 42 */
539 	{ CP_TIMEREC,	RO, "timerec" },	/* 43 */
540 	{ CP_TIMEREACH,	RO, "timereach" },	/* 44 */
541 	{ CP_BADAUTH,	RO, "badauth" },	/* 45 */
542 	{ CP_BOGUSORG,	RO, "bogusorg" },	/* 46 */
543 	{ CP_OLDPKT,	RO, "oldpkt" },		/* 47 */
544 	{ CP_SELDISP,	RO, "seldisp" },	/* 48 */
545 	{ CP_SELBROKEN,	RO, "selbroken" },	/* 49 */
546 	{ CP_CANDIDATE, RO, "candidate" },	/* 50 */
547 #ifdef AUTOKEY
548 	{ CP_FLAGS,	RO, "flags" },		/* 1 + CP_MAX_NOAUTOKEY */
549 	{ CP_HOST,	RO, "host" },		/* 2 + CP_MAX_NOAUTOKEY */
550 	{ CP_VALID,	RO, "valid" },		/* 3 + CP_MAX_NOAUTOKEY */
551 	{ CP_INITSEQ,	RO, "initsequence" },	/* 4 + CP_MAX_NOAUTOKEY */
552 	{ CP_INITKEY,	RO, "initkey" },	/* 5 + CP_MAX_NOAUTOKEY */
553 	{ CP_INITTSP,	RO, "timestamp" },	/* 6 + CP_MAX_NOAUTOKEY */
554 	{ CP_SIGNATURE,	RO, "signature" },	/* 7 + CP_MAX_NOAUTOKEY */
555 	{ CP_IDENT,	RO, "ident" },		/* 8 + CP_MAX_NOAUTOKEY */
556 #endif	/* AUTOKEY */
557 	{ 0,		EOV, "" }		/* 50/58 */
558 };
559 
560 
561 /*
562  * Peer variables we print by default
563  */
564 static const u_char def_peer_var[] = {
565 	CP_SRCADR,
566 	CP_SRCPORT,
567 	CP_SRCHOST,
568 	CP_DSTADR,
569 	CP_DSTPORT,
570 	CP_OUT,
571 	CP_IN,
572 	CP_LEAP,
573 	CP_STRATUM,
574 	CP_PRECISION,
575 	CP_ROOTDELAY,
576 	CP_ROOTDISPERSION,
577 	CP_REFID,
578 	CP_REFTIME,
579 	CP_REC,
580 	CP_REACH,
581 	CP_UNREACH,
582 	CP_HMODE,
583 	CP_PMODE,
584 	CP_HPOLL,
585 	CP_PPOLL,
586 	CP_RATE,
587 	CP_FLASH,
588 	CP_KEYID,
589 	CP_TTL,
590 	CP_OFFSET,
591 	CP_DELAY,
592 	CP_DISPERSION,
593 	CP_JITTER,
594 	CP_XMT,
595 	CP_BIAS,
596 	CP_FILTDELAY,
597 	CP_FILTOFFSET,
598 	CP_FILTERROR,
599 #ifdef AUTOKEY
600 	CP_HOST,
601 	CP_FLAGS,
602 	CP_SIGNATURE,
603 	CP_VALID,
604 	CP_INITSEQ,
605 	CP_IDENT,
606 #endif	/* AUTOKEY */
607 	0
608 };
609 
610 
611 #ifdef REFCLOCK
612 /*
613  * Clock variable list
614  */
615 static const struct ctl_var clock_var[] = {
616 	{ 0,		PADDING, "" },		/* 0 */
617 	{ CC_TYPE,	RO, "type" },		/* 1 */
618 	{ CC_TIMECODE,	RO, "timecode" },	/* 2 */
619 	{ CC_POLL,	RO, "poll" },		/* 3 */
620 	{ CC_NOREPLY,	RO, "noreply" },	/* 4 */
621 	{ CC_BADFORMAT, RO, "badformat" },	/* 5 */
622 	{ CC_BADDATA,	RO, "baddata" },	/* 6 */
623 	{ CC_FUDGETIME1, RO, "fudgetime1" },	/* 7 */
624 	{ CC_FUDGETIME2, RO, "fudgetime2" },	/* 8 */
625 	{ CC_FUDGEVAL1, RO, "stratum" },	/* 9 */
626 	{ CC_FUDGEVAL2, RO, "refid" },		/* 10 */
627 	{ CC_FLAGS,	RO, "flags" },		/* 11 */
628 	{ CC_DEVICE,	RO, "device" },		/* 12 */
629 	{ CC_VARLIST,	RO, "clock_var_list" },	/* 13 */
630 	{ 0,		EOV, ""  }		/* 14 */
631 };
632 
633 
634 /*
635  * Clock variables printed by default
636  */
637 static const u_char def_clock_var[] = {
638 	CC_DEVICE,
639 	CC_TYPE,	/* won't be output if device = known */
640 	CC_TIMECODE,
641 	CC_POLL,
642 	CC_NOREPLY,
643 	CC_BADFORMAT,
644 	CC_BADDATA,
645 	CC_FUDGETIME1,
646 	CC_FUDGETIME2,
647 	CC_FUDGEVAL1,
648 	CC_FUDGEVAL2,
649 	CC_FLAGS,
650 	0
651 };
652 #endif
653 
654 /*
655  * MRU string constants shared by send_mru_entry() and read_mru_list().
656  */
657 static const char addr_fmt[] =		"addr.%d";
658 static const char last_fmt[] =		"last.%d";
659 
660 /*
661  * System and processor definitions.
662  */
663 #ifndef HAVE_UNAME
664 # ifndef STR_SYSTEM
665 #  define		STR_SYSTEM	"UNIX"
666 # endif
667 # ifndef STR_PROCESSOR
668 #  define		STR_PROCESSOR	"unknown"
669 # endif
670 
671 static const char str_system[] = STR_SYSTEM;
672 static const char str_processor[] = STR_PROCESSOR;
673 #else
674 # include <sys/utsname.h>
675 static struct utsname utsnamebuf;
676 #endif /* HAVE_UNAME */
677 
678 /*
679  * Trap structures. We only allow a few of these, and send a copy of
680  * each async message to each live one. Traps time out after an hour, it
681  * is up to the trap receipient to keep resetting it to avoid being
682  * timed out.
683  */
684 /* ntp_request.c */
685 struct ctl_trap ctl_traps[CTL_MAXTRAPS];
686 int num_ctl_traps;
687 
688 /*
689  * Type bits, for ctlsettrap() call.
690  */
691 #define TRAP_TYPE_CONFIG	0	/* used by configuration code */
692 #define TRAP_TYPE_PRIO		1	/* priority trap */
693 #define TRAP_TYPE_NONPRIO	2	/* nonpriority trap */
694 
695 
696 /*
697  * List relating reference clock types to control message time sources.
698  * Index by the reference clock type. This list will only be used iff
699  * the reference clock driver doesn't set peer->sstclktype to something
700  * different than CTL_SST_TS_UNSPEC.
701  */
702 #ifdef REFCLOCK
703 static const u_char clocktypes[] = {
704 	CTL_SST_TS_NTP,		/* REFCLK_NONE (0) */
705 	CTL_SST_TS_LOCAL,	/* REFCLK_LOCALCLOCK (1) */
706 	CTL_SST_TS_UHF,		/* deprecated REFCLK_GPS_TRAK (2) */
707 	CTL_SST_TS_HF,		/* REFCLK_WWV_PST (3) */
708 	CTL_SST_TS_LF,		/* REFCLK_WWVB_SPECTRACOM (4) */
709 	CTL_SST_TS_UHF,		/* REFCLK_TRUETIME (5) */
710 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_AUDIO (6) */
711 	CTL_SST_TS_HF,		/* REFCLK_CHU (7) */
712 	CTL_SST_TS_LF,		/* REFCLOCK_PARSE (default) (8) */
713 	CTL_SST_TS_LF,		/* REFCLK_GPS_MX4200 (9) */
714 	CTL_SST_TS_UHF,		/* REFCLK_GPS_AS2201 (10) */
715 	CTL_SST_TS_UHF,		/* REFCLK_GPS_ARBITER (11) */
716 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_TPRO (12) */
717 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_LEITCH (13) */
718 	CTL_SST_TS_LF,		/* deprecated REFCLK_MSF_EES (14) */
719 	CTL_SST_TS_NTP,		/* not used (15) */
720 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_BANCOMM (16) */
721 	CTL_SST_TS_UHF,		/* REFCLK_GPS_DATU (17) */
722 	CTL_SST_TS_TELEPHONE,	/* REFCLK_NIST_ACTS (18) */
723 	CTL_SST_TS_HF,		/* REFCLK_WWV_HEATH (19) */
724 	CTL_SST_TS_UHF,		/* REFCLK_GPS_NMEA (20) */
725 	CTL_SST_TS_UHF,		/* REFCLK_GPS_VME (21) */
726 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_PPS (22) */
727 	CTL_SST_TS_NTP,		/* not used (23) */
728 	CTL_SST_TS_NTP,		/* not used (24) */
729 	CTL_SST_TS_NTP,		/* not used (25) */
730 	CTL_SST_TS_UHF,		/* REFCLK_GPS_HP (26) */
731 	CTL_SST_TS_LF,		/* REFCLK_ARCRON_MSF (27) */
732 	CTL_SST_TS_UHF,		/* REFCLK_SHM (28) */
733 	CTL_SST_TS_UHF,		/* REFCLK_PALISADE (29) */
734 	CTL_SST_TS_UHF,		/* REFCLK_ONCORE (30) */
735 	CTL_SST_TS_UHF,		/* REFCLK_JUPITER (31) */
736 	CTL_SST_TS_LF,		/* REFCLK_CHRONOLOG (32) */
737 	CTL_SST_TS_LF,		/* REFCLK_DUMBCLOCK (33) */
738 	CTL_SST_TS_LF,		/* REFCLK_ULINK (34) */
739 	CTL_SST_TS_LF,		/* REFCLK_PCF (35) */
740 	CTL_SST_TS_HF,		/* REFCLK_WWV (36) */
741 	CTL_SST_TS_LF,		/* REFCLK_FG (37) */
742 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_SERIAL (38) */
743 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_PCI (39) */
744 	CTL_SST_TS_LF,		/* REFCLK_JJY (40) */
745 	CTL_SST_TS_UHF,		/* REFCLK_TT560 (41) */
746 	CTL_SST_TS_UHF,		/* REFCLK_ZYFER (42) */
747 	CTL_SST_TS_UHF,		/* REFCLK_RIPENCC (43) */
748 	CTL_SST_TS_UHF,		/* REFCLK_NEOCLOCK4X (44) */
749 	CTL_SST_TS_UHF,		/* REFCLK_TSYNCPCI (45) */
750 	CTL_SST_TS_UHF		/* REFCLK_GPSDJSON (46) */
751 };
752 #endif  /* REFCLOCK */
753 
754 
755 /*
756  * Keyid used for authenticating write requests.
757  */
758 keyid_t ctl_auth_keyid;
759 
760 /*
761  * We keep track of the last error reported by the system internally
762  */
763 static	u_char ctl_sys_last_event;
764 static	u_char ctl_sys_num_events;
765 
766 
767 /*
768  * Statistic counters to keep track of requests and responses.
769  */
770 u_long ctltimereset;		/* time stats reset */
771 u_long numctlreq;		/* number of requests we've received */
772 u_long numctlbadpkts;		/* number of bad control packets */
773 u_long numctlresponses;		/* number of resp packets sent with data */
774 u_long numctlfrags;		/* number of fragments sent */
775 u_long numctlerrors;		/* number of error responses sent */
776 u_long numctltooshort;		/* number of too short input packets */
777 u_long numctlinputresp;		/* number of responses on input */
778 u_long numctlinputfrag;		/* number of fragments on input */
779 u_long numctlinputerr;		/* number of input pkts with err bit set */
780 u_long numctlbadoffset;		/* number of input pkts with nonzero offset */
781 u_long numctlbadversion;	/* number of input pkts with unknown version */
782 u_long numctldatatooshort;	/* data too short for count */
783 u_long numctlbadop;		/* bad op code found in packet */
784 u_long numasyncmsgs;		/* number of async messages we've sent */
785 
786 /*
787  * Response packet used by these routines. Also some state information
788  * so that we can handle packet formatting within a common set of
789  * subroutines.  Note we try to enter data in place whenever possible,
790  * but the need to set the more bit correctly means we occasionally
791  * use the extra buffer and copy.
792  */
793 static struct ntp_control rpkt;
794 static u_char	res_version;
795 static u_char	res_opcode;
796 static associd_t res_associd;
797 static u_short	res_frags;	/* datagrams in this response */
798 static int	res_offset;	/* offset of payload in response */
799 static u_char * datapt;
800 static u_char * dataend;
801 static int	datalinelen;
802 static int	datasent;	/* flag to avoid initial ", " */
803 static int	datanotbinflag;
804 static sockaddr_u *rmt_addr;
805 static struct interface *lcl_inter;
806 
807 static u_char	res_authenticate;
808 static u_char	res_authokay;
809 static keyid_t	res_keyid;
810 
811 #define MAXDATALINELEN	(72)
812 
813 static u_char	res_async;	/* sending async trap response? */
814 
815 /*
816  * Pointers for saving state when decoding request packets
817  */
818 static	char *reqpt;
819 static	char *reqend;
820 
821 #ifndef MIN
822 #define MIN(a, b) (((a) <= (b)) ? (a) : (b))
823 #endif
824 
825 /*
826  * init_control - initialize request data
827  */
828 void
829 init_control(void)
830 {
831 	size_t i;
832 
833 #ifdef HAVE_UNAME
834 	uname(&utsnamebuf);
835 #endif /* HAVE_UNAME */
836 
837 	ctl_clr_stats();
838 
839 	ctl_auth_keyid = 0;
840 	ctl_sys_last_event = EVNT_UNSPEC;
841 	ctl_sys_num_events = 0;
842 
843 	num_ctl_traps = 0;
844 	for (i = 0; i < COUNTOF(ctl_traps); i++)
845 		ctl_traps[i].tr_flags = 0;
846 }
847 
848 
849 /*
850  * ctl_error - send an error response for the current request
851  */
852 static void
853 ctl_error(
854 	u_char errcode
855 	)
856 {
857 	int		maclen;
858 
859 	numctlerrors++;
860 	DPRINTF(3, ("sending control error %u\n", errcode));
861 
862 	/*
863 	 * Fill in the fields. We assume rpkt.sequence and rpkt.associd
864 	 * have already been filled in.
865 	 */
866 	rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
867 			(res_opcode & CTL_OP_MASK);
868 	rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
869 	rpkt.count = 0;
870 
871 	/*
872 	 * send packet and bump counters
873 	 */
874 	if (res_authenticate && sys_authenticate) {
875 		maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
876 				     CTL_HEADER_LEN);
877 		sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
878 			CTL_HEADER_LEN + maclen);
879 	} else
880 		sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
881 			CTL_HEADER_LEN);
882 }
883 
884 /*
885  * save_config - Implements ntpq -c "saveconfig <filename>"
886  *		 Writes current configuration including any runtime
887  *		 changes by ntpq's :config or config-from-file
888  */
889 void
890 save_config(
891 	struct recvbuf *rbufp,
892 	int restrict_mask
893 	)
894 {
895 	char reply[128];
896 #ifdef SAVECONFIG
897 	char filespec[128];
898 	char filename[128];
899 	char fullpath[512];
900 	const char savedconfig_eq[] = "savedconfig=";
901 	char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
902 	time_t now;
903 	int fd;
904 	FILE *fptr;
905 #endif
906 
907 	if (RES_NOMODIFY & restrict_mask) {
908 		snprintf(reply, sizeof(reply),
909 			 "saveconfig prohibited by restrict ... nomodify");
910 		ctl_putdata(reply, strlen(reply), 0);
911 		ctl_flushpkt(0);
912 		NLOG(NLOG_SYSINFO)
913 			msyslog(LOG_NOTICE,
914 				"saveconfig from %s rejected due to nomodify restriction",
915 				stoa(&rbufp->recv_srcadr));
916 		sys_restricted++;
917 		return;
918 	}
919 
920 #ifdef SAVECONFIG
921 	if (NULL == saveconfigdir) {
922 		snprintf(reply, sizeof(reply),
923 			 "saveconfig prohibited, no saveconfigdir configured");
924 		ctl_putdata(reply, strlen(reply), 0);
925 		ctl_flushpkt(0);
926 		NLOG(NLOG_SYSINFO)
927 			msyslog(LOG_NOTICE,
928 				"saveconfig from %s rejected, no saveconfigdir",
929 				stoa(&rbufp->recv_srcadr));
930 		return;
931 	}
932 
933 	if (0 == reqend - reqpt)
934 		return;
935 
936 	strlcpy(filespec, reqpt, sizeof(filespec));
937 	time(&now);
938 
939 	/*
940 	 * allow timestamping of the saved config filename with
941 	 * strftime() format such as:
942 	 *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
943 	 * XXX: Nice feature, but not too safe.
944 	 */
945 	if (0 == strftime(filename, sizeof(filename), filespec,
946 			       localtime(&now)))
947 		strlcpy(filename, filespec, sizeof(filename));
948 
949 	/*
950 	 * Conceptually we should be searching for DIRSEP in filename,
951 	 * however Windows actually recognizes both forward and
952 	 * backslashes as equivalent directory separators at the API
953 	 * level.  On POSIX systems we could allow '\\' but such
954 	 * filenames are tricky to manipulate from a shell, so just
955 	 * reject both types of slashes on all platforms.
956 	 */
957 	if (strchr(filename, '\\') || strchr(filename, '/')) {
958 		snprintf(reply, sizeof(reply),
959 			 "saveconfig does not allow directory in filename");
960 		ctl_putdata(reply, strlen(reply), 0);
961 		ctl_flushpkt(0);
962 		msyslog(LOG_NOTICE,
963 			"saveconfig with path from %s rejected",
964 			stoa(&rbufp->recv_srcadr));
965 		return;
966 	}
967 
968 	snprintf(fullpath, sizeof(fullpath), "%s%s",
969 		 saveconfigdir, filename);
970 
971 	fd = open(fullpath, O_CREAT | O_TRUNC | O_WRONLY,
972 		  S_IRUSR | S_IWUSR);
973 	if (-1 == fd)
974 		fptr = NULL;
975 	else
976 		fptr = fdopen(fd, "w");
977 
978 	if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
979 		snprintf(reply, sizeof(reply),
980 			 "Unable to save configuration to file %s",
981 			 filename);
982 		msyslog(LOG_ERR,
983 			"saveconfig %s from %s failed", filename,
984 			stoa(&rbufp->recv_srcadr));
985 	} else {
986 		snprintf(reply, sizeof(reply),
987 			 "Configuration saved to %s", filename);
988 		msyslog(LOG_NOTICE,
989 			"Configuration saved to %s (requested by %s)",
990 			fullpath, stoa(&rbufp->recv_srcadr));
991 		/*
992 		 * save the output filename in system variable
993 		 * savedconfig, retrieved with:
994 		 *   ntpq -c "rv 0 savedconfig"
995 		 */
996 		snprintf(savedconfig, sizeof(savedconfig), "%s%s",
997 			 savedconfig_eq, filename);
998 		set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
999 	}
1000 
1001 	if (NULL != fptr)
1002 		fclose(fptr);
1003 #else	/* !SAVECONFIG follows */
1004 	snprintf(reply, sizeof(reply),
1005 		 "saveconfig unavailable, configured with --disable-saveconfig");
1006 #endif
1007 
1008 	ctl_putdata(reply, strlen(reply), 0);
1009 	ctl_flushpkt(0);
1010 }
1011 
1012 
1013 /*
1014  * process_control - process an incoming control message
1015  */
1016 void
1017 process_control(
1018 	struct recvbuf *rbufp,
1019 	int restrict_mask
1020 	)
1021 {
1022 	struct ntp_control *pkt;
1023 	int req_count;
1024 	int req_data;
1025 	const struct ctl_proc *cc;
1026 	keyid_t *pkid;
1027 	int properlen;
1028 	size_t maclen;
1029 
1030 	DPRINTF(3, ("in process_control()\n"));
1031 
1032 	/*
1033 	 * Save the addresses for error responses
1034 	 */
1035 	numctlreq++;
1036 	rmt_addr = &rbufp->recv_srcadr;
1037 	lcl_inter = rbufp->dstadr;
1038 	pkt = (struct ntp_control *)&rbufp->recv_pkt;
1039 
1040 	/*
1041 	 * If the length is less than required for the header, or
1042 	 * it is a response or a fragment, ignore this.
1043 	 */
1044 	if (rbufp->recv_length < (int)CTL_HEADER_LEN
1045 	    || (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1046 	    || pkt->offset != 0) {
1047 		DPRINTF(1, ("invalid format in control packet\n"));
1048 		if (rbufp->recv_length < (int)CTL_HEADER_LEN)
1049 			numctltooshort++;
1050 		if (CTL_RESPONSE & pkt->r_m_e_op)
1051 			numctlinputresp++;
1052 		if (CTL_MORE & pkt->r_m_e_op)
1053 			numctlinputfrag++;
1054 		if (CTL_ERROR & pkt->r_m_e_op)
1055 			numctlinputerr++;
1056 		if (pkt->offset != 0)
1057 			numctlbadoffset++;
1058 		return;
1059 	}
1060 	res_version = PKT_VERSION(pkt->li_vn_mode);
1061 	if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1062 		DPRINTF(1, ("unknown version %d in control packet\n",
1063 			    res_version));
1064 		numctlbadversion++;
1065 		return;
1066 	}
1067 
1068 	/*
1069 	 * Pull enough data from the packet to make intelligent
1070 	 * responses
1071 	 */
1072 	rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1073 					 MODE_CONTROL);
1074 	res_opcode = pkt->r_m_e_op;
1075 	rpkt.sequence = pkt->sequence;
1076 	rpkt.associd = pkt->associd;
1077 	rpkt.status = 0;
1078 	res_frags = 1;
1079 	res_offset = 0;
1080 	res_associd = htons(pkt->associd);
1081 	res_async = FALSE;
1082 	res_authenticate = FALSE;
1083 	res_keyid = 0;
1084 	res_authokay = FALSE;
1085 	req_count = (int)ntohs(pkt->count);
1086 	datanotbinflag = FALSE;
1087 	datalinelen = 0;
1088 	datasent = 0;
1089 	datapt = rpkt.u.data;
1090 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1091 
1092 	if ((rbufp->recv_length & 0x3) != 0)
1093 		DPRINTF(3, ("Control packet length %d unrounded\n",
1094 			    rbufp->recv_length));
1095 
1096 	/*
1097 	 * We're set up now. Make sure we've got at least enough
1098 	 * incoming data space to match the count.
1099 	 */
1100 	req_data = rbufp->recv_length - CTL_HEADER_LEN;
1101 	if (req_data < req_count || rbufp->recv_length & 0x3) {
1102 		ctl_error(CERR_BADFMT);
1103 		numctldatatooshort++;
1104 		return;
1105 	}
1106 
1107 	properlen = req_count + CTL_HEADER_LEN;
1108 	/* round up proper len to a 8 octet boundary */
1109 
1110 	properlen = (properlen + 7) & ~7;
1111 	maclen = rbufp->recv_length - properlen;
1112 	if ((rbufp->recv_length & 3) == 0 &&
1113 	    maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1114 	    sys_authenticate) {
1115 		res_authenticate = TRUE;
1116 		pkid = (void *)((char *)pkt + properlen);
1117 		res_keyid = ntohl(*pkid);
1118 		DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1119 			    rbufp->recv_length, properlen, res_keyid,
1120 			    maclen));
1121 
1122 		if (!authistrusted(res_keyid))
1123 			DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1124 		else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1125 				     rbufp->recv_length - maclen,
1126 				     maclen)) {
1127 			res_authokay = TRUE;
1128 			DPRINTF(3, ("authenticated okay\n"));
1129 		} else {
1130 			res_keyid = 0;
1131 			DPRINTF(3, ("authentication failed\n"));
1132 		}
1133 	}
1134 
1135 	/*
1136 	 * Set up translate pointers
1137 	 */
1138 	reqpt = (char *)pkt->u.data;
1139 	reqend = reqpt + req_count;
1140 
1141 	/*
1142 	 * Look for the opcode processor
1143 	 */
1144 	for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1145 		if (cc->control_code == res_opcode) {
1146 			DPRINTF(3, ("opcode %d, found command handler\n",
1147 				    res_opcode));
1148 			if (cc->flags == AUTH
1149 			    && (!res_authokay
1150 				|| res_keyid != ctl_auth_keyid)) {
1151 				ctl_error(CERR_PERMISSION);
1152 				return;
1153 			}
1154 			(cc->handler)(rbufp, restrict_mask);
1155 			return;
1156 		}
1157 	}
1158 
1159 	/*
1160 	 * Can't find this one, return an error.
1161 	 */
1162 	numctlbadop++;
1163 	ctl_error(CERR_BADOP);
1164 	return;
1165 }
1166 
1167 
1168 /*
1169  * ctlpeerstatus - return a status word for this peer
1170  */
1171 u_short
1172 ctlpeerstatus(
1173 	register struct peer *p
1174 	)
1175 {
1176 	u_short status;
1177 
1178 	status = p->status;
1179 	if (FLAG_CONFIG & p->flags)
1180 		status |= CTL_PST_CONFIG;
1181 	if (p->keyid)
1182 		status |= CTL_PST_AUTHENABLE;
1183 	if (FLAG_AUTHENTIC & p->flags)
1184 		status |= CTL_PST_AUTHENTIC;
1185 	if (p->reach)
1186 		status |= CTL_PST_REACH;
1187 	if (MDF_TXONLY_MASK & p->cast_flags)
1188 		status |= CTL_PST_BCAST;
1189 
1190 	return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1191 }
1192 
1193 
1194 /*
1195  * ctlclkstatus - return a status word for this clock
1196  */
1197 #ifdef REFCLOCK
1198 static u_short
1199 ctlclkstatus(
1200 	struct refclockstat *pcs
1201 	)
1202 {
1203 	return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1204 }
1205 #endif
1206 
1207 
1208 /*
1209  * ctlsysstatus - return the system status word
1210  */
1211 u_short
1212 ctlsysstatus(void)
1213 {
1214 	register u_char this_clock;
1215 
1216 	this_clock = CTL_SST_TS_UNSPEC;
1217 #ifdef REFCLOCK
1218 	if (sys_peer != NULL) {
1219 		if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1220 			this_clock = sys_peer->sstclktype;
1221 		else if (sys_peer->refclktype < COUNTOF(clocktypes))
1222 			this_clock = clocktypes[sys_peer->refclktype];
1223 	}
1224 #else /* REFCLOCK */
1225 	if (sys_peer != 0)
1226 		this_clock = CTL_SST_TS_NTP;
1227 #endif /* REFCLOCK */
1228 	return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1229 			      ctl_sys_last_event);
1230 }
1231 
1232 
1233 /*
1234  * ctl_flushpkt - write out the current packet and prepare
1235  *		  another if necessary.
1236  */
1237 static void
1238 ctl_flushpkt(
1239 	u_char more
1240 	)
1241 {
1242 	size_t i;
1243 	int dlen;
1244 	int sendlen;
1245 	int maclen;
1246 	int totlen;
1247 	keyid_t keyid;
1248 
1249 	dlen = datapt - rpkt.u.data;
1250 	if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1251 		/*
1252 		 * Big hack, output a trailing \r\n
1253 		 */
1254 		*datapt++ = '\r';
1255 		*datapt++ = '\n';
1256 		dlen += 2;
1257 	}
1258 	sendlen = dlen + CTL_HEADER_LEN;
1259 
1260 	/*
1261 	 * Pad to a multiple of 32 bits
1262 	 */
1263 	while (sendlen & 0x3) {
1264 		*datapt++ = '\0';
1265 		sendlen++;
1266 	}
1267 
1268 	/*
1269 	 * Fill in the packet with the current info
1270 	 */
1271 	rpkt.r_m_e_op = CTL_RESPONSE | more |
1272 			(res_opcode & CTL_OP_MASK);
1273 	rpkt.count = htons((u_short)dlen);
1274 	rpkt.offset = htons((u_short)res_offset);
1275 	if (res_async) {
1276 		for (i = 0; i < COUNTOF(ctl_traps); i++) {
1277 			if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1278 				rpkt.li_vn_mode =
1279 				    PKT_LI_VN_MODE(
1280 					sys_leap,
1281 					ctl_traps[i].tr_version,
1282 					MODE_CONTROL);
1283 				rpkt.sequence =
1284 				    htons(ctl_traps[i].tr_sequence);
1285 				sendpkt(&ctl_traps[i].tr_addr,
1286 					ctl_traps[i].tr_localaddr, -4,
1287 					(struct pkt *)&rpkt, sendlen);
1288 				if (!more)
1289 					ctl_traps[i].tr_sequence++;
1290 				numasyncmsgs++;
1291 			}
1292 		}
1293 	} else {
1294 		if (res_authenticate && sys_authenticate) {
1295 			totlen = sendlen;
1296 			/*
1297 			 * If we are going to authenticate, then there
1298 			 * is an additional requirement that the MAC
1299 			 * begin on a 64 bit boundary.
1300 			 */
1301 			while (totlen & 7) {
1302 				*datapt++ = '\0';
1303 				totlen++;
1304 			}
1305 			keyid = htonl(res_keyid);
1306 			memcpy(datapt, &keyid, sizeof(keyid));
1307 			maclen = authencrypt(res_keyid,
1308 					     (u_int32 *)&rpkt, totlen);
1309 			sendpkt(rmt_addr, lcl_inter, -5,
1310 				(struct pkt *)&rpkt, totlen + maclen);
1311 		} else {
1312 			sendpkt(rmt_addr, lcl_inter, -6,
1313 				(struct pkt *)&rpkt, sendlen);
1314 		}
1315 		if (more)
1316 			numctlfrags++;
1317 		else
1318 			numctlresponses++;
1319 	}
1320 
1321 	/*
1322 	 * Set us up for another go around.
1323 	 */
1324 	res_frags++;
1325 	res_offset += dlen;
1326 	datapt = rpkt.u.data;
1327 }
1328 
1329 
1330 /*
1331  * ctl_putdata - write data into the packet, fragmenting and starting
1332  * another if this one is full.
1333  */
1334 static void
1335 ctl_putdata(
1336 	const char *dp,
1337 	unsigned int dlen,
1338 	int bin			/* set to 1 when data is binary */
1339 	)
1340 {
1341 	int overhead;
1342 	unsigned int currentlen;
1343 
1344 	overhead = 0;
1345 	if (!bin) {
1346 		datanotbinflag = TRUE;
1347 		overhead = 3;
1348 		if (datasent) {
1349 			*datapt++ = ',';
1350 			datalinelen++;
1351 			if ((dlen + datalinelen + 1) >= MAXDATALINELEN) {
1352 				*datapt++ = '\r';
1353 				*datapt++ = '\n';
1354 				datalinelen = 0;
1355 			} else {
1356 				*datapt++ = ' ';
1357 				datalinelen++;
1358 			}
1359 		}
1360 	}
1361 
1362 	/*
1363 	 * Save room for trailing junk
1364 	 */
1365 	while (dlen + overhead + datapt > dataend) {
1366 		/*
1367 		 * Not enough room in this one, flush it out.
1368 		 */
1369 		currentlen = MIN(dlen, (unsigned int)(dataend - datapt));
1370 
1371 		memcpy(datapt, dp, currentlen);
1372 
1373 		datapt += currentlen;
1374 		dp += currentlen;
1375 		dlen -= currentlen;
1376 		datalinelen += currentlen;
1377 
1378 		ctl_flushpkt(CTL_MORE);
1379 	}
1380 
1381 	memcpy(datapt, dp, dlen);
1382 	datapt += dlen;
1383 	datalinelen += dlen;
1384 	datasent = TRUE;
1385 }
1386 
1387 
1388 /*
1389  * ctl_putstr - write a tagged string into the response packet
1390  *		in the form:
1391  *
1392  *		tag="data"
1393  *
1394  *		len is the data length excluding the NUL terminator,
1395  *		as in ctl_putstr("var", "value", strlen("value"));
1396  */
1397 static void
1398 ctl_putstr(
1399 	const char *	tag,
1400 	const char *	data,
1401 	size_t		len
1402 	)
1403 {
1404 	char buffer[512];
1405 	char *cp;
1406 	size_t tl;
1407 
1408 	tl = strlen(tag);
1409 	memcpy(buffer, tag, tl);
1410 	cp = buffer + tl;
1411 	if (len > 0) {
1412 		NTP_INSIST(tl + 3 + len <= sizeof(buffer));
1413 		*cp++ = '=';
1414 		*cp++ = '"';
1415 		memcpy(cp, data, len);
1416 		cp += len;
1417 		*cp++ = '"';
1418 	}
1419 	ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1420 }
1421 
1422 
1423 /*
1424  * ctl_putunqstr - write a tagged string into the response packet
1425  *		   in the form:
1426  *
1427  *		   tag=data
1428  *
1429  *	len is the data length excluding the NUL terminator.
1430  *	data must not contain a comma or whitespace.
1431  */
1432 static void
1433 ctl_putunqstr(
1434 	const char *	tag,
1435 	const char *	data,
1436 	size_t		len
1437 	)
1438 {
1439 	char buffer[512];
1440 	char *cp;
1441 	size_t tl;
1442 
1443 	tl = strlen(tag);
1444 	memcpy(buffer, tag, tl);
1445 	cp = buffer + tl;
1446 	if (len > 0) {
1447 		NTP_INSIST(tl + 1 + len <= sizeof(buffer));
1448 		*cp++ = '=';
1449 		memcpy(cp, data, len);
1450 		cp += len;
1451 	}
1452 	ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1453 }
1454 
1455 
1456 /*
1457  * ctl_putdblf - write a tagged, signed double into the response packet
1458  */
1459 static void
1460 ctl_putdblf(
1461 	const char *	tag,
1462 	int		use_f,
1463 	int		precision,
1464 	double		d
1465 	)
1466 {
1467 	char *cp;
1468 	const char *cq;
1469 	char buffer[200];
1470 
1471 	cp = buffer;
1472 	cq = tag;
1473 	while (*cq != '\0')
1474 		*cp++ = *cq++;
1475 	*cp++ = '=';
1476 	NTP_INSIST((size_t)(cp - buffer) < sizeof(buffer));
1477 	snprintf(cp, sizeof(buffer) - (cp - buffer), use_f ? "%.*f" : "%.*g",
1478 	    precision, d);
1479 	cp += strlen(cp);
1480 	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1481 }
1482 
1483 /*
1484  * ctl_putuint - write a tagged unsigned integer into the response
1485  */
1486 static void
1487 ctl_putuint(
1488 	const char *tag,
1489 	u_long uval
1490 	)
1491 {
1492 	register char *cp;
1493 	register const char *cq;
1494 	char buffer[200];
1495 
1496 	cp = buffer;
1497 	cq = tag;
1498 	while (*cq != '\0')
1499 		*cp++ = *cq++;
1500 
1501 	*cp++ = '=';
1502 	NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1503 	snprintf(cp, sizeof(buffer) - (cp - buffer), "%lu", uval);
1504 	cp += strlen(cp);
1505 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1506 }
1507 
1508 /*
1509  * ctl_putcal - write a decoded calendar data into the response
1510  */
1511 static void
1512 ctl_putcal(
1513 	const char *tag,
1514 	const struct calendar *pcal
1515 	)
1516 {
1517 	char buffer[100];
1518 	unsigned numch;
1519 
1520 	numch = snprintf(buffer, sizeof(buffer),
1521 			"%s=%04d%02d%02d%02d%02d",
1522 			tag,
1523 			pcal->year,
1524 			pcal->month,
1525 			pcal->monthday,
1526 			pcal->hour,
1527 			pcal->minute
1528 			);
1529 	NTP_INSIST(numch < sizeof(buffer));
1530 	ctl_putdata(buffer, numch, 0);
1531 
1532 	return;
1533 }
1534 
1535 /*
1536  * ctl_putfs - write a decoded filestamp into the response
1537  */
1538 static void
1539 ctl_putfs(
1540 	const char *tag,
1541 	tstamp_t uval
1542 	)
1543 {
1544 	register char *cp;
1545 	register const char *cq;
1546 	char buffer[200];
1547 	struct tm *tm = NULL;
1548 	time_t fstamp;
1549 
1550 	cp = buffer;
1551 	cq = tag;
1552 	while (*cq != '\0')
1553 		*cp++ = *cq++;
1554 
1555 	*cp++ = '=';
1556 	fstamp = uval - JAN_1970;
1557 	tm = gmtime(&fstamp);
1558 	if (NULL ==  tm)
1559 		return;
1560 	NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1561 	snprintf(cp, sizeof(buffer) - (cp - buffer),
1562 		 "%04d%02d%02d%02d%02d", tm->tm_year + 1900,
1563 		 tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min);
1564 	cp += strlen(cp);
1565 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1566 }
1567 
1568 
1569 /*
1570  * ctl_puthex - write a tagged unsigned integer, in hex, into the
1571  * response
1572  */
1573 static void
1574 ctl_puthex(
1575 	const char *tag,
1576 	u_long uval
1577 	)
1578 {
1579 	register char *cp;
1580 	register const char *cq;
1581 	char buffer[200];
1582 
1583 	cp = buffer;
1584 	cq = tag;
1585 	while (*cq != '\0')
1586 		*cp++ = *cq++;
1587 
1588 	*cp++ = '=';
1589 	NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1590 	snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%lx", uval);
1591 	cp += strlen(cp);
1592 	ctl_putdata(buffer,(unsigned)( cp - buffer ), 0);
1593 }
1594 
1595 
1596 /*
1597  * ctl_putint - write a tagged signed integer into the response
1598  */
1599 static void
1600 ctl_putint(
1601 	const char *tag,
1602 	long ival
1603 	)
1604 {
1605 	register char *cp;
1606 	register const char *cq;
1607 	char buffer[200];
1608 
1609 	cp = buffer;
1610 	cq = tag;
1611 	while (*cq != '\0')
1612 		*cp++ = *cq++;
1613 
1614 	*cp++ = '=';
1615 	NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1616 	snprintf(cp, sizeof(buffer) - (cp - buffer), "%ld", ival);
1617 	cp += strlen(cp);
1618 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1619 }
1620 
1621 
1622 /*
1623  * ctl_putts - write a tagged timestamp, in hex, into the response
1624  */
1625 static void
1626 ctl_putts(
1627 	const char *tag,
1628 	l_fp *ts
1629 	)
1630 {
1631 	register char *cp;
1632 	register const char *cq;
1633 	char buffer[200];
1634 
1635 	cp = buffer;
1636 	cq = tag;
1637 	while (*cq != '\0')
1638 		*cp++ = *cq++;
1639 
1640 	*cp++ = '=';
1641 	NTP_INSIST((size_t)(cp - buffer) < sizeof(buffer));
1642 	snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%08x.%08x",
1643 		 (u_int)ts->l_ui, (u_int)ts->l_uf);
1644 	cp += strlen(cp);
1645 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1646 }
1647 
1648 
1649 /*
1650  * ctl_putadr - write an IP address into the response
1651  */
1652 static void
1653 ctl_putadr(
1654 	const char *tag,
1655 	u_int32 addr32,
1656 	sockaddr_u *addr
1657 	)
1658 {
1659 	register char *cp;
1660 	register const char *cq;
1661 	char buffer[200];
1662 
1663 	cp = buffer;
1664 	cq = tag;
1665 	while (*cq != '\0')
1666 		*cp++ = *cq++;
1667 
1668 	*cp++ = '=';
1669 	if (NULL == addr)
1670 		cq = numtoa(addr32);
1671 	else
1672 		cq = stoa(addr);
1673 	NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1674 	snprintf(cp, sizeof(buffer) - (cp - buffer), "%s", cq);
1675 	cp += strlen(cp);
1676 	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1677 }
1678 
1679 
1680 /*
1681  * ctl_putrefid - send a u_int32 refid as printable text
1682  */
1683 static void
1684 ctl_putrefid(
1685 	const char *	tag,
1686 	u_int32		refid
1687 	)
1688 {
1689 	char	output[16];
1690 	char *	optr;
1691 	char *	oplim;
1692 	char *	iptr;
1693 	char *	iplim;
1694 	char *	past_eq;
1695 
1696 	optr = output;
1697 	oplim = output + sizeof(output);
1698 	while (optr < oplim && '\0' != *tag)
1699 		*optr++ = *tag++;
1700 	if (optr < oplim) {
1701 		*optr++ = '=';
1702 		past_eq = optr;
1703 	}
1704 	if (!(optr < oplim))
1705 		return;
1706 	iptr = (char *)&refid;
1707 	iplim = iptr + sizeof(refid);
1708 	for ( ; optr < oplim && iptr < iplim && '\0' != *iptr;
1709 	     iptr++, optr++)
1710 		if (isprint((int)*iptr))
1711 			*optr = *iptr;
1712 		else
1713 			*optr = '.';
1714 	if (!(optr <= oplim))
1715 		optr = past_eq;
1716 	ctl_putdata(output, (u_int)(optr - output), FALSE);
1717 }
1718 
1719 
1720 /*
1721  * ctl_putarray - write a tagged eight element double array into the response
1722  */
1723 static void
1724 ctl_putarray(
1725 	const char *tag,
1726 	double *arr,
1727 	int start
1728 	)
1729 {
1730 	register char *cp;
1731 	register const char *cq;
1732 	char buffer[200];
1733 	int i;
1734 	cp = buffer;
1735 	cq = tag;
1736 	while (*cq != '\0')
1737 		*cp++ = *cq++;
1738 	*cp++ = '=';
1739 	i = start;
1740 	do {
1741 		if (i == 0)
1742 			i = NTP_SHIFT;
1743 		i--;
1744 		NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1745 		snprintf(cp, sizeof(buffer) - (cp - buffer),
1746 			 " %.2f", arr[i] * 1e3);
1747 		cp += strlen(cp);
1748 	} while (i != start);
1749 	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1750 }
1751 
1752 
1753 /*
1754  * ctl_putsys - output a system variable
1755  */
1756 static void
1757 ctl_putsys(
1758 	int varid
1759 	)
1760 {
1761 	l_fp tmp;
1762 	char str[256];
1763 	u_int u;
1764 	double kb;
1765 	double dtemp;
1766 	const char *ss;
1767 #ifdef AUTOKEY
1768 	struct cert_info *cp;
1769 #endif	/* AUTOKEY */
1770 #ifdef KERNEL_PLL
1771 	static struct timex ntx;
1772 	static u_long ntp_adjtime_time;
1773 
1774 	static const double to_ms =
1775 # ifdef STA_NANO
1776 		1.0e-6; /* nsec to msec */
1777 # else
1778 		1.0e-3; /* usec to msec */
1779 # endif
1780 
1781 	/*
1782 	 * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1783 	 */
1784 	if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1785 	    current_time != ntp_adjtime_time) {
1786 		ZERO(ntx);
1787 		if (ntp_adjtime(&ntx) < 0)
1788 			msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1789 		else
1790 			ntp_adjtime_time = current_time;
1791 	}
1792 #endif	/* KERNEL_PLL */
1793 
1794 	switch (varid) {
1795 
1796 	case CS_LEAP:
1797 		ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1798 		break;
1799 
1800 	case CS_STRATUM:
1801 		ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1802 		break;
1803 
1804 	case CS_PRECISION:
1805 		ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1806 		break;
1807 
1808 	case CS_ROOTDELAY:
1809 		ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1810 			   1e3);
1811 		break;
1812 
1813 	case CS_ROOTDISPERSION:
1814 		ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1815 			   sys_rootdisp * 1e3);
1816 		break;
1817 
1818 	case CS_REFID:
1819 		if (sys_stratum > 1 && sys_stratum < STRATUM_UNSPEC)
1820 			ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1821 		else
1822 			ctl_putrefid(sys_var[varid].text, sys_refid);
1823 		break;
1824 
1825 	case CS_REFTIME:
1826 		ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
1827 		break;
1828 
1829 	case CS_POLL:
1830 		ctl_putuint(sys_var[CS_POLL].text, sys_poll);
1831 		break;
1832 
1833 	case CS_PEERID:
1834 		if (sys_peer == NULL)
1835 			ctl_putuint(sys_var[CS_PEERID].text, 0);
1836 		else
1837 			ctl_putuint(sys_var[CS_PEERID].text,
1838 				    sys_peer->associd);
1839 		break;
1840 
1841 	case CS_PEERADR:
1842 		if (sys_peer != NULL && sys_peer->dstadr != NULL)
1843 			ss = sptoa(&sys_peer->srcadr);
1844 		else
1845 			ss = "0.0.0.0:0";
1846 		ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
1847 		break;
1848 
1849 	case CS_PEERMODE:
1850 		u = (sys_peer != NULL)
1851 			? sys_peer->hmode
1852 			: MODE_UNSPEC;
1853 		ctl_putuint(sys_var[CS_PEERMODE].text, u);
1854 		break;
1855 
1856 	case CS_OFFSET:
1857 		ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
1858 		break;
1859 
1860 	case CS_DRIFT:
1861 		ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
1862 		break;
1863 
1864 	case CS_JITTER:
1865 		ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
1866 		break;
1867 
1868 	case CS_ERROR:
1869 		ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
1870 		break;
1871 
1872 	case CS_CLOCK:
1873 		get_systime(&tmp);
1874 		ctl_putts(sys_var[CS_CLOCK].text, &tmp);
1875 		break;
1876 
1877 	case CS_PROCESSOR:
1878 #ifndef HAVE_UNAME
1879 		ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
1880 			   sizeof(str_processor) - 1);
1881 #else
1882 		ctl_putstr(sys_var[CS_PROCESSOR].text,
1883 			   utsnamebuf.machine, strlen(utsnamebuf.machine));
1884 #endif /* HAVE_UNAME */
1885 		break;
1886 
1887 	case CS_SYSTEM:
1888 #ifndef HAVE_UNAME
1889 		ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
1890 			   sizeof(str_system) - 1);
1891 #else
1892 		snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
1893 			 utsnamebuf.release);
1894 		ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
1895 #endif /* HAVE_UNAME */
1896 		break;
1897 
1898 	case CS_VERSION:
1899 		ctl_putstr(sys_var[CS_VERSION].text, Version,
1900 			   strlen(Version));
1901 		break;
1902 
1903 	case CS_STABIL:
1904 		ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
1905 			   1e6);
1906 		break;
1907 
1908 	case CS_VARLIST:
1909 	{
1910 		char buf[CTL_MAX_DATA_LEN];
1911 		//buffPointer, firstElementPointer, buffEndPointer
1912 		char *buffp, *buffend;
1913 		int firstVarName;
1914 		const char *ss1;
1915 		int len;
1916 		const struct ctl_var *k;
1917 
1918 		buffp = buf;
1919 		buffend = buf + sizeof(buf);
1920 		if (buffp + strlen(sys_var[CS_VARLIST].text) + 4 > buffend)
1921 			break;	/* really long var name */
1922 
1923 		snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
1924 		buffp += strlen(buffp);
1925 		firstVarName = TRUE;
1926 		for (k = sys_var; !(k->flags & EOV); k++) {
1927 			if (k->flags & PADDING)
1928 				continue;
1929 			len = strlen(k->text);
1930 			if (buffp + len + 1 >= buffend)
1931 				break;
1932 			if (!firstVarName)
1933 				*buffp++ = ',';
1934 			else
1935 				firstVarName = FALSE;
1936 			memcpy(buffp, k->text, len);
1937 			buffp += len;
1938 		}
1939 
1940 		for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
1941 			if (k->flags & PADDING)
1942 				continue;
1943 			if (NULL == k->text)
1944 				continue;
1945 			ss1 = strchr(k->text, '=');
1946 			if (NULL == ss1)
1947 				len = strlen(k->text);
1948 			else
1949 				len = ss1 - k->text;
1950 			if (buffp + len + 1 >= buffend)
1951 				break;
1952 			if (firstVarName) {
1953 				*buffp++ = ',';
1954 				firstVarName = FALSE;
1955 			}
1956 			memcpy(buffp, k->text,(unsigned)len);
1957 			buffp += len;
1958 		}
1959 		if (buffp + 2 >= buffend)
1960 			break;
1961 
1962 		*buffp++ = '"';
1963 		*buffp = '\0';
1964 
1965 		ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
1966 		break;
1967 	}
1968 
1969 	case CS_TAI:
1970 		if (sys_tai > 0)
1971 			ctl_putuint(sys_var[CS_TAI].text, sys_tai);
1972 		break;
1973 
1974 	case CS_LEAPTAB:
1975 	{
1976 		leap_signature_t lsig;
1977 		leapsec_getsig(&lsig);
1978 		if (lsig.ttime > 0)
1979 			ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
1980 		break;
1981 	}
1982 
1983 	case CS_LEAPEND:
1984 	{
1985 		leap_signature_t lsig;
1986 		leapsec_getsig(&lsig);
1987 		if (lsig.etime > 0)
1988 			ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
1989 		break;
1990 	}
1991 
1992 #ifdef LEAP_SMEAR
1993 	case CS_LEAPSMEARINTV:
1994 		if (leap_smear_intv > 0)
1995 			ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv);
1996 		break;
1997 
1998 	case CS_LEAPSMEAROFFS:
1999 		if (leap_smear_intv > 0)
2000 			ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text,
2001 				   leap_smear.doffset * 1e3);
2002 		break;
2003 #endif	/* LEAP_SMEAR */
2004 
2005 	case CS_RATE:
2006 		ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
2007 		break;
2008 
2009 	case CS_MRU_ENABLED:
2010 		ctl_puthex(sys_var[varid].text, mon_enabled);
2011 		break;
2012 
2013 	case CS_MRU_DEPTH:
2014 		ctl_putuint(sys_var[varid].text, mru_entries);
2015 		break;
2016 
2017 	case CS_MRU_MEM:
2018 		kb = mru_entries * (sizeof(mon_entry) / 1024.);
2019 		u = (u_int)kb;
2020 		if (kb - u >= 0.5)
2021 			u++;
2022 		ctl_putuint(sys_var[varid].text, u);
2023 		break;
2024 
2025 	case CS_MRU_DEEPEST:
2026 		ctl_putuint(sys_var[varid].text, mru_peakentries);
2027 		break;
2028 
2029 	case CS_MRU_MINDEPTH:
2030 		ctl_putuint(sys_var[varid].text, mru_mindepth);
2031 		break;
2032 
2033 	case CS_MRU_MAXAGE:
2034 		ctl_putint(sys_var[varid].text, mru_maxage);
2035 		break;
2036 
2037 	case CS_MRU_MAXDEPTH:
2038 		ctl_putuint(sys_var[varid].text, mru_maxdepth);
2039 		break;
2040 
2041 	case CS_MRU_MAXMEM:
2042 		kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
2043 		u = (u_int)kb;
2044 		if (kb - u >= 0.5)
2045 			u++;
2046 		ctl_putuint(sys_var[varid].text, u);
2047 		break;
2048 
2049 	case CS_SS_UPTIME:
2050 		ctl_putuint(sys_var[varid].text, current_time);
2051 		break;
2052 
2053 	case CS_SS_RESET:
2054 		ctl_putuint(sys_var[varid].text,
2055 			    current_time - sys_stattime);
2056 		break;
2057 
2058 	case CS_SS_RECEIVED:
2059 		ctl_putuint(sys_var[varid].text, sys_received);
2060 		break;
2061 
2062 	case CS_SS_THISVER:
2063 		ctl_putuint(sys_var[varid].text, sys_newversion);
2064 		break;
2065 
2066 	case CS_SS_OLDVER:
2067 		ctl_putuint(sys_var[varid].text, sys_oldversion);
2068 		break;
2069 
2070 	case CS_SS_BADFORMAT:
2071 		ctl_putuint(sys_var[varid].text, sys_badlength);
2072 		break;
2073 
2074 	case CS_SS_BADAUTH:
2075 		ctl_putuint(sys_var[varid].text, sys_badauth);
2076 		break;
2077 
2078 	case CS_SS_DECLINED:
2079 		ctl_putuint(sys_var[varid].text, sys_declined);
2080 		break;
2081 
2082 	case CS_SS_RESTRICTED:
2083 		ctl_putuint(sys_var[varid].text, sys_restricted);
2084 		break;
2085 
2086 	case CS_SS_LIMITED:
2087 		ctl_putuint(sys_var[varid].text, sys_limitrejected);
2088 		break;
2089 
2090 	case CS_SS_KODSENT:
2091 		ctl_putuint(sys_var[varid].text, sys_kodsent);
2092 		break;
2093 
2094 	case CS_SS_PROCESSED:
2095 		ctl_putuint(sys_var[varid].text, sys_processed);
2096 		break;
2097 
2098 	case CS_BCASTDELAY:
2099 		ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2100 		break;
2101 
2102 	case CS_AUTHDELAY:
2103 		LFPTOD(&sys_authdelay, dtemp);
2104 		ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2105 		break;
2106 
2107 	case CS_AUTHKEYS:
2108 		ctl_putuint(sys_var[varid].text, authnumkeys);
2109 		break;
2110 
2111 	case CS_AUTHFREEK:
2112 		ctl_putuint(sys_var[varid].text, authnumfreekeys);
2113 		break;
2114 
2115 	case CS_AUTHKLOOKUPS:
2116 		ctl_putuint(sys_var[varid].text, authkeylookups);
2117 		break;
2118 
2119 	case CS_AUTHKNOTFOUND:
2120 		ctl_putuint(sys_var[varid].text, authkeynotfound);
2121 		break;
2122 
2123 	case CS_AUTHKUNCACHED:
2124 		ctl_putuint(sys_var[varid].text, authkeyuncached);
2125 		break;
2126 
2127 	case CS_AUTHKEXPIRED:
2128 		ctl_putuint(sys_var[varid].text, authkeyexpired);
2129 		break;
2130 
2131 	case CS_AUTHENCRYPTS:
2132 		ctl_putuint(sys_var[varid].text, authencryptions);
2133 		break;
2134 
2135 	case CS_AUTHDECRYPTS:
2136 		ctl_putuint(sys_var[varid].text, authdecryptions);
2137 		break;
2138 
2139 	case CS_AUTHRESET:
2140 		ctl_putuint(sys_var[varid].text,
2141 			    current_time - auth_timereset);
2142 		break;
2143 
2144 		/*
2145 		 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2146 		 * unavailable, otherwise calls putfunc with args.
2147 		 */
2148 #ifndef KERNEL_PLL
2149 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2150 		ctl_putint(sys_var[varid].text, 0)
2151 #else
2152 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2153 		putfunc args
2154 #endif
2155 
2156 		/*
2157 		 * CTL_IF_KERNPPS() puts a zero if either the kernel
2158 		 * loop is unavailable, or kernel hard PPS is not
2159 		 * active, otherwise calls putfunc with args.
2160 		 */
2161 #ifndef KERNEL_PLL
2162 # define	CTL_IF_KERNPPS(putfunc, args)	\
2163 		ctl_putint(sys_var[varid].text, 0)
2164 #else
2165 # define	CTL_IF_KERNPPS(putfunc, args)			\
2166 		if (0 == ntx.shift)				\
2167 			ctl_putint(sys_var[varid].text, 0);	\
2168 		else						\
2169 			putfunc args	/* no trailing ; */
2170 #endif
2171 
2172 	case CS_K_OFFSET:
2173 		CTL_IF_KERNLOOP(
2174 			ctl_putdblf,
2175 			(sys_var[varid].text, 0, -1, to_ms * ntx.offset)
2176 		);
2177 		break;
2178 
2179 	case CS_K_FREQ:
2180 		CTL_IF_KERNLOOP(
2181 			ctl_putsfp,
2182 			(sys_var[varid].text, ntx.freq)
2183 		);
2184 		break;
2185 
2186 	case CS_K_MAXERR:
2187 		CTL_IF_KERNLOOP(
2188 			ctl_putdblf,
2189 			(sys_var[varid].text, 0, 6,
2190 			 to_ms * ntx.maxerror)
2191 		);
2192 		break;
2193 
2194 	case CS_K_ESTERR:
2195 		CTL_IF_KERNLOOP(
2196 			ctl_putdblf,
2197 			(sys_var[varid].text, 0, 6,
2198 			 to_ms * ntx.esterror)
2199 		);
2200 		break;
2201 
2202 	case CS_K_STFLAGS:
2203 #ifndef KERNEL_PLL
2204 		ss = "";
2205 #else
2206 		ss = k_st_flags(ntx.status);
2207 #endif
2208 		ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2209 		break;
2210 
2211 	case CS_K_TIMECONST:
2212 		CTL_IF_KERNLOOP(
2213 			ctl_putint,
2214 			(sys_var[varid].text, ntx.constant)
2215 		);
2216 		break;
2217 
2218 	case CS_K_PRECISION:
2219 		CTL_IF_KERNLOOP(
2220 			ctl_putdblf,
2221 			(sys_var[varid].text, 0, 6,
2222 			    to_ms * ntx.precision)
2223 		);
2224 		break;
2225 
2226 	case CS_K_FREQTOL:
2227 		CTL_IF_KERNLOOP(
2228 			ctl_putsfp,
2229 			(sys_var[varid].text, ntx.tolerance)
2230 		);
2231 		break;
2232 
2233 	case CS_K_PPS_FREQ:
2234 		CTL_IF_KERNPPS(
2235 			ctl_putsfp,
2236 			(sys_var[varid].text, ntx.ppsfreq)
2237 		);
2238 		break;
2239 
2240 	case CS_K_PPS_STABIL:
2241 		CTL_IF_KERNPPS(
2242 			ctl_putsfp,
2243 			(sys_var[varid].text, ntx.stabil)
2244 		);
2245 		break;
2246 
2247 	case CS_K_PPS_JITTER:
2248 		CTL_IF_KERNPPS(
2249 			ctl_putdbl,
2250 			(sys_var[varid].text, to_ms * ntx.jitter)
2251 		);
2252 		break;
2253 
2254 	case CS_K_PPS_CALIBDUR:
2255 		CTL_IF_KERNPPS(
2256 			ctl_putint,
2257 			(sys_var[varid].text, 1 << ntx.shift)
2258 		);
2259 		break;
2260 
2261 	case CS_K_PPS_CALIBS:
2262 		CTL_IF_KERNPPS(
2263 			ctl_putint,
2264 			(sys_var[varid].text, ntx.calcnt)
2265 		);
2266 		break;
2267 
2268 	case CS_K_PPS_CALIBERRS:
2269 		CTL_IF_KERNPPS(
2270 			ctl_putint,
2271 			(sys_var[varid].text, ntx.errcnt)
2272 		);
2273 		break;
2274 
2275 	case CS_K_PPS_JITEXC:
2276 		CTL_IF_KERNPPS(
2277 			ctl_putint,
2278 			(sys_var[varid].text, ntx.jitcnt)
2279 		);
2280 		break;
2281 
2282 	case CS_K_PPS_STBEXC:
2283 		CTL_IF_KERNPPS(
2284 			ctl_putint,
2285 			(sys_var[varid].text, ntx.stbcnt)
2286 		);
2287 		break;
2288 
2289 	case CS_IOSTATS_RESET:
2290 		ctl_putuint(sys_var[varid].text,
2291 			    current_time - io_timereset);
2292 		break;
2293 
2294 	case CS_TOTAL_RBUF:
2295 		ctl_putuint(sys_var[varid].text, total_recvbuffs());
2296 		break;
2297 
2298 	case CS_FREE_RBUF:
2299 		ctl_putuint(sys_var[varid].text, free_recvbuffs());
2300 		break;
2301 
2302 	case CS_USED_RBUF:
2303 		ctl_putuint(sys_var[varid].text, full_recvbuffs());
2304 		break;
2305 
2306 	case CS_RBUF_LOWATER:
2307 		ctl_putuint(sys_var[varid].text, lowater_additions());
2308 		break;
2309 
2310 	case CS_IO_DROPPED:
2311 		ctl_putuint(sys_var[varid].text, packets_dropped);
2312 		break;
2313 
2314 	case CS_IO_IGNORED:
2315 		ctl_putuint(sys_var[varid].text, packets_ignored);
2316 		break;
2317 
2318 	case CS_IO_RECEIVED:
2319 		ctl_putuint(sys_var[varid].text, packets_received);
2320 		break;
2321 
2322 	case CS_IO_SENT:
2323 		ctl_putuint(sys_var[varid].text, packets_sent);
2324 		break;
2325 
2326 	case CS_IO_SENDFAILED:
2327 		ctl_putuint(sys_var[varid].text, packets_notsent);
2328 		break;
2329 
2330 	case CS_IO_WAKEUPS:
2331 		ctl_putuint(sys_var[varid].text, handler_calls);
2332 		break;
2333 
2334 	case CS_IO_GOODWAKEUPS:
2335 		ctl_putuint(sys_var[varid].text, handler_pkts);
2336 		break;
2337 
2338 	case CS_TIMERSTATS_RESET:
2339 		ctl_putuint(sys_var[varid].text,
2340 			    current_time - timer_timereset);
2341 		break;
2342 
2343 	case CS_TIMER_OVERRUNS:
2344 		ctl_putuint(sys_var[varid].text, alarm_overflow);
2345 		break;
2346 
2347 	case CS_TIMER_XMTS:
2348 		ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2349 		break;
2350 
2351 	case CS_FUZZ:
2352 		ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2353 		break;
2354 	case CS_WANDER_THRESH:
2355 		ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
2356 		break;
2357 #ifdef AUTOKEY
2358 	case CS_FLAGS:
2359 		if (crypto_flags)
2360 			ctl_puthex(sys_var[CS_FLAGS].text,
2361 			    crypto_flags);
2362 		break;
2363 
2364 	case CS_DIGEST:
2365 		if (crypto_flags) {
2366 			strlcpy(str, OBJ_nid2ln(crypto_nid),
2367 			    COUNTOF(str));
2368 			ctl_putstr(sys_var[CS_DIGEST].text, str,
2369 			    strlen(str));
2370 		}
2371 		break;
2372 
2373 	case CS_SIGNATURE:
2374 		if (crypto_flags) {
2375 			const EVP_MD *dp;
2376 
2377 			dp = EVP_get_digestbynid(crypto_flags >> 16);
2378 			strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2379 			    COUNTOF(str));
2380 			ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2381 			    strlen(str));
2382 		}
2383 		break;
2384 
2385 	case CS_HOST:
2386 		if (hostval.ptr != NULL)
2387 			ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2388 			    strlen(hostval.ptr));
2389 		break;
2390 
2391 	case CS_IDENT:
2392 		if (sys_ident != NULL)
2393 			ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2394 			    strlen(sys_ident));
2395 		break;
2396 
2397 	case CS_CERTIF:
2398 		for (cp = cinfo; cp != NULL; cp = cp->link) {
2399 			snprintf(str, sizeof(str), "%s %s 0x%x",
2400 			    cp->subject, cp->issuer, cp->flags);
2401 			ctl_putstr(sys_var[CS_CERTIF].text, str,
2402 			    strlen(str));
2403 			ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
2404 		}
2405 		break;
2406 
2407 	case CS_PUBLIC:
2408 		if (hostval.tstamp != 0)
2409 			ctl_putfs(sys_var[CS_PUBLIC].text,
2410 			    ntohl(hostval.tstamp));
2411 		break;
2412 #endif	/* AUTOKEY */
2413 	}
2414 }
2415 
2416 
2417 /*
2418  * ctl_putpeer - output a peer variable
2419  */
2420 static void
2421 ctl_putpeer(
2422 	int id,
2423 	struct peer *p
2424 	)
2425 {
2426 	char buf[CTL_MAX_DATA_LEN];
2427 	char *s;
2428 	char *t;
2429 	char *be;
2430 	int i;
2431 	const struct ctl_var *k;
2432 #ifdef AUTOKEY
2433 	struct autokey *ap;
2434 	const EVP_MD *dp;
2435 	const char *str;
2436 #endif	/* AUTOKEY */
2437 
2438 	switch (id) {
2439 
2440 	case CP_CONFIG:
2441 		ctl_putuint(peer_var[id].text,
2442 			    !(FLAG_PREEMPT & p->flags));
2443 		break;
2444 
2445 	case CP_AUTHENABLE:
2446 		ctl_putuint(peer_var[id].text, !(p->keyid));
2447 		break;
2448 
2449 	case CP_AUTHENTIC:
2450 		ctl_putuint(peer_var[id].text,
2451 			    !!(FLAG_AUTHENTIC & p->flags));
2452 		break;
2453 
2454 	case CP_SRCADR:
2455 		ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2456 		break;
2457 
2458 	case CP_SRCPORT:
2459 		ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2460 		break;
2461 
2462 	case CP_SRCHOST:
2463 		if (p->hostname != NULL)
2464 			ctl_putstr(peer_var[id].text, p->hostname,
2465 				   strlen(p->hostname));
2466 		break;
2467 
2468 	case CP_DSTADR:
2469 		ctl_putadr(peer_var[id].text, 0,
2470 			   (p->dstadr != NULL)
2471 				? &p->dstadr->sin
2472 				: NULL);
2473 		break;
2474 
2475 	case CP_DSTPORT:
2476 		ctl_putuint(peer_var[id].text,
2477 			    (p->dstadr != NULL)
2478 				? SRCPORT(&p->dstadr->sin)
2479 				: 0);
2480 		break;
2481 
2482 	case CP_IN:
2483 		if (p->r21 > 0.)
2484 			ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2485 		break;
2486 
2487 	case CP_OUT:
2488 		if (p->r34 > 0.)
2489 			ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2490 		break;
2491 
2492 	case CP_RATE:
2493 		ctl_putuint(peer_var[id].text, p->throttle);
2494 		break;
2495 
2496 	case CP_LEAP:
2497 		ctl_putuint(peer_var[id].text, p->leap);
2498 		break;
2499 
2500 	case CP_HMODE:
2501 		ctl_putuint(peer_var[id].text, p->hmode);
2502 		break;
2503 
2504 	case CP_STRATUM:
2505 		ctl_putuint(peer_var[id].text, p->stratum);
2506 		break;
2507 
2508 	case CP_PPOLL:
2509 		ctl_putuint(peer_var[id].text, p->ppoll);
2510 		break;
2511 
2512 	case CP_HPOLL:
2513 		ctl_putuint(peer_var[id].text, p->hpoll);
2514 		break;
2515 
2516 	case CP_PRECISION:
2517 		ctl_putint(peer_var[id].text, p->precision);
2518 		break;
2519 
2520 	case CP_ROOTDELAY:
2521 		ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2522 		break;
2523 
2524 	case CP_ROOTDISPERSION:
2525 		ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2526 		break;
2527 
2528 	case CP_REFID:
2529 #ifdef REFCLOCK
2530 		if (p->flags & FLAG_REFCLOCK) {
2531 			ctl_putrefid(peer_var[id].text, p->refid);
2532 			break;
2533 		}
2534 #endif
2535 		if (p->stratum > 1 && p->stratum < STRATUM_UNSPEC)
2536 			ctl_putadr(peer_var[id].text, p->refid,
2537 				   NULL);
2538 		else
2539 			ctl_putrefid(peer_var[id].text, p->refid);
2540 		break;
2541 
2542 	case CP_REFTIME:
2543 		ctl_putts(peer_var[id].text, &p->reftime);
2544 		break;
2545 
2546 	case CP_ORG:
2547 		ctl_putts(peer_var[id].text, &p->aorg);
2548 		break;
2549 
2550 	case CP_REC:
2551 		ctl_putts(peer_var[id].text, &p->dst);
2552 		break;
2553 
2554 	case CP_XMT:
2555 		if (p->xleave)
2556 			ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2557 		break;
2558 
2559 	case CP_BIAS:
2560 		if (p->bias != 0.)
2561 			ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2562 		break;
2563 
2564 	case CP_REACH:
2565 		ctl_puthex(peer_var[id].text, p->reach);
2566 		break;
2567 
2568 	case CP_FLASH:
2569 		ctl_puthex(peer_var[id].text, p->flash);
2570 		break;
2571 
2572 	case CP_TTL:
2573 #ifdef REFCLOCK
2574 		if (p->flags & FLAG_REFCLOCK) {
2575 			ctl_putuint(peer_var[id].text, p->ttl);
2576 			break;
2577 		}
2578 #endif
2579 		if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2580 			ctl_putint(peer_var[id].text,
2581 				   sys_ttl[p->ttl]);
2582 		break;
2583 
2584 	case CP_UNREACH:
2585 		ctl_putuint(peer_var[id].text, p->unreach);
2586 		break;
2587 
2588 	case CP_TIMER:
2589 		ctl_putuint(peer_var[id].text,
2590 			    p->nextdate - current_time);
2591 		break;
2592 
2593 	case CP_DELAY:
2594 		ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2595 		break;
2596 
2597 	case CP_OFFSET:
2598 		ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2599 		break;
2600 
2601 	case CP_JITTER:
2602 		ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2603 		break;
2604 
2605 	case CP_DISPERSION:
2606 		ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2607 		break;
2608 
2609 	case CP_KEYID:
2610 		if (p->keyid > NTP_MAXKEY)
2611 			ctl_puthex(peer_var[id].text, p->keyid);
2612 		else
2613 			ctl_putuint(peer_var[id].text, p->keyid);
2614 		break;
2615 
2616 	case CP_FILTDELAY:
2617 		ctl_putarray(peer_var[id].text, p->filter_delay,
2618 			     p->filter_nextpt);
2619 		break;
2620 
2621 	case CP_FILTOFFSET:
2622 		ctl_putarray(peer_var[id].text, p->filter_offset,
2623 			     p->filter_nextpt);
2624 		break;
2625 
2626 	case CP_FILTERROR:
2627 		ctl_putarray(peer_var[id].text, p->filter_disp,
2628 			     p->filter_nextpt);
2629 		break;
2630 
2631 	case CP_PMODE:
2632 		ctl_putuint(peer_var[id].text, p->pmode);
2633 		break;
2634 
2635 	case CP_RECEIVED:
2636 		ctl_putuint(peer_var[id].text, p->received);
2637 		break;
2638 
2639 	case CP_SENT:
2640 		ctl_putuint(peer_var[id].text, p->sent);
2641 		break;
2642 
2643 	case CP_VARLIST:
2644 		s = buf;
2645 		be = buf + sizeof(buf);
2646 		if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2647 			break;	/* really long var name */
2648 
2649 		snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2650 		s += strlen(s);
2651 		t = s;
2652 		for (k = peer_var; !(EOV & k->flags); k++) {
2653 			if (PADDING & k->flags)
2654 				continue;
2655 			i = strlen(k->text);
2656 			if (s + i + 1 >= be)
2657 				break;
2658 			if (s != t)
2659 				*s++ = ',';
2660 			memcpy(s, k->text, i);
2661 			s += i;
2662 		}
2663 		if (s + 2 < be) {
2664 			*s++ = '"';
2665 			*s = '\0';
2666 			ctl_putdata(buf, (u_int)(s - buf), 0);
2667 		}
2668 		break;
2669 
2670 	case CP_TIMEREC:
2671 		ctl_putuint(peer_var[id].text,
2672 			    current_time - p->timereceived);
2673 		break;
2674 
2675 	case CP_TIMEREACH:
2676 		ctl_putuint(peer_var[id].text,
2677 			    current_time - p->timereachable);
2678 		break;
2679 
2680 	case CP_BADAUTH:
2681 		ctl_putuint(peer_var[id].text, p->badauth);
2682 		break;
2683 
2684 	case CP_BOGUSORG:
2685 		ctl_putuint(peer_var[id].text, p->bogusorg);
2686 		break;
2687 
2688 	case CP_OLDPKT:
2689 		ctl_putuint(peer_var[id].text, p->oldpkt);
2690 		break;
2691 
2692 	case CP_SELDISP:
2693 		ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2694 		break;
2695 
2696 	case CP_SELBROKEN:
2697 		ctl_putuint(peer_var[id].text, p->selbroken);
2698 		break;
2699 
2700 	case CP_CANDIDATE:
2701 		ctl_putuint(peer_var[id].text, p->status);
2702 		break;
2703 #ifdef AUTOKEY
2704 	case CP_FLAGS:
2705 		if (p->crypto)
2706 			ctl_puthex(peer_var[id].text, p->crypto);
2707 		break;
2708 
2709 	case CP_SIGNATURE:
2710 		if (p->crypto) {
2711 			dp = EVP_get_digestbynid(p->crypto >> 16);
2712 			str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2713 			ctl_putstr(peer_var[id].text, str, strlen(str));
2714 		}
2715 		break;
2716 
2717 	case CP_HOST:
2718 		if (p->subject != NULL)
2719 			ctl_putstr(peer_var[id].text, p->subject,
2720 			    strlen(p->subject));
2721 		break;
2722 
2723 	case CP_VALID:		/* not used */
2724 		break;
2725 
2726 	case CP_INITSEQ:
2727 		if (NULL == (ap = p->recval.ptr))
2728 			break;
2729 
2730 		ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2731 		ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2732 		ctl_putfs(peer_var[CP_INITTSP].text,
2733 			  ntohl(p->recval.tstamp));
2734 		break;
2735 
2736 	case CP_IDENT:
2737 		if (p->ident != NULL)
2738 			ctl_putstr(peer_var[id].text, p->ident,
2739 			    strlen(p->ident));
2740 		break;
2741 
2742 
2743 #endif	/* AUTOKEY */
2744 	}
2745 }
2746 
2747 
2748 #ifdef REFCLOCK
2749 /*
2750  * ctl_putclock - output clock variables
2751  */
2752 static void
2753 ctl_putclock(
2754 	int id,
2755 	struct refclockstat *pcs,
2756 	int mustput
2757 	)
2758 {
2759 	char buf[CTL_MAX_DATA_LEN];
2760 	char *s, *t, *be;
2761 	const char *ss;
2762 	int i;
2763 	const struct ctl_var *k;
2764 
2765 	switch (id) {
2766 
2767 	case CC_TYPE:
2768 		if (mustput || pcs->clockdesc == NULL
2769 		    || *(pcs->clockdesc) == '\0') {
2770 			ctl_putuint(clock_var[id].text, pcs->type);
2771 		}
2772 		break;
2773 	case CC_TIMECODE:
2774 		ctl_putstr(clock_var[id].text,
2775 			   pcs->p_lastcode,
2776 			   (unsigned)pcs->lencode);
2777 		break;
2778 
2779 	case CC_POLL:
2780 		ctl_putuint(clock_var[id].text, pcs->polls);
2781 		break;
2782 
2783 	case CC_NOREPLY:
2784 		ctl_putuint(clock_var[id].text,
2785 			    pcs->noresponse);
2786 		break;
2787 
2788 	case CC_BADFORMAT:
2789 		ctl_putuint(clock_var[id].text,
2790 			    pcs->badformat);
2791 		break;
2792 
2793 	case CC_BADDATA:
2794 		ctl_putuint(clock_var[id].text,
2795 			    pcs->baddata);
2796 		break;
2797 
2798 	case CC_FUDGETIME1:
2799 		if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2800 			ctl_putdbl(clock_var[id].text,
2801 				   pcs->fudgetime1 * 1e3);
2802 		break;
2803 
2804 	case CC_FUDGETIME2:
2805 		if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2806 			ctl_putdbl(clock_var[id].text,
2807 				   pcs->fudgetime2 * 1e3);
2808 		break;
2809 
2810 	case CC_FUDGEVAL1:
2811 		if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2812 			ctl_putint(clock_var[id].text,
2813 				   pcs->fudgeval1);
2814 		break;
2815 
2816 	case CC_FUDGEVAL2:
2817 		if (mustput || (pcs->haveflags & CLK_HAVEVAL2)) {
2818 			if (pcs->fudgeval1 > 1)
2819 				ctl_putadr(clock_var[id].text,
2820 					   pcs->fudgeval2, NULL);
2821 			else
2822 				ctl_putrefid(clock_var[id].text,
2823 					     pcs->fudgeval2);
2824 		}
2825 		break;
2826 
2827 	case CC_FLAGS:
2828 		ctl_putuint(clock_var[id].text, pcs->flags);
2829 		break;
2830 
2831 	case CC_DEVICE:
2832 		if (pcs->clockdesc == NULL ||
2833 		    *(pcs->clockdesc) == '\0') {
2834 			if (mustput)
2835 				ctl_putstr(clock_var[id].text,
2836 					   "", 0);
2837 		} else {
2838 			ctl_putstr(clock_var[id].text,
2839 				   pcs->clockdesc,
2840 				   strlen(pcs->clockdesc));
2841 		}
2842 		break;
2843 
2844 	case CC_VARLIST:
2845 		s = buf;
2846 		be = buf + sizeof(buf);
2847 		if (strlen(clock_var[CC_VARLIST].text) + 4 >
2848 		    sizeof(buf))
2849 			break;	/* really long var name */
2850 
2851 		snprintf(s, sizeof(buf), "%s=\"",
2852 			 clock_var[CC_VARLIST].text);
2853 		s += strlen(s);
2854 		t = s;
2855 
2856 		for (k = clock_var; !(EOV & k->flags); k++) {
2857 			if (PADDING & k->flags)
2858 				continue;
2859 
2860 			i = strlen(k->text);
2861 			if (s + i + 1 >= be)
2862 				break;
2863 
2864 			if (s != t)
2865 				*s++ = ',';
2866 			memcpy(s, k->text, i);
2867 			s += i;
2868 		}
2869 
2870 		for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
2871 			if (PADDING & k->flags)
2872 				continue;
2873 
2874 			ss = k->text;
2875 			if (NULL == ss)
2876 				continue;
2877 
2878 			while (*ss && *ss != '=')
2879 				ss++;
2880 			i = ss - k->text;
2881 			if (s + i + 1 >= be)
2882 				break;
2883 
2884 			if (s != t)
2885 				*s++ = ',';
2886 			memcpy(s, k->text, (unsigned)i);
2887 			s += i;
2888 			*s = '\0';
2889 		}
2890 		if (s + 2 >= be)
2891 			break;
2892 
2893 		*s++ = '"';
2894 		*s = '\0';
2895 		ctl_putdata(buf, (unsigned)(s - buf), 0);
2896 		break;
2897 	}
2898 }
2899 #endif
2900 
2901 
2902 
2903 /*
2904  * ctl_getitem - get the next data item from the incoming packet
2905  */
2906 static const struct ctl_var *
2907 ctl_getitem(
2908 	const struct ctl_var *var_list,
2909 	char **data
2910 	)
2911 {
2912 	static const struct ctl_var eol = { 0, EOV, NULL };
2913 	static char buf[128];
2914 	static u_long quiet_until;
2915 	const struct ctl_var *v;
2916 	const char *pch;
2917 	char *cp;
2918 	char *tp;
2919 
2920 	/*
2921 	 * Delete leading commas and white space
2922 	 */
2923 	while (reqpt < reqend && (*reqpt == ',' ||
2924 				  isspace((unsigned char)*reqpt)))
2925 		reqpt++;
2926 	if (reqpt >= reqend)
2927 		return NULL;
2928 
2929 	if (NULL == var_list)
2930 		return &eol;
2931 
2932 	/*
2933 	 * Look for a first character match on the tag.  If we find
2934 	 * one, see if it is a full match.
2935 	 */
2936 	v = var_list;
2937 	cp = reqpt;
2938 	for (v = var_list; !(EOV & v->flags); v++) {
2939 		if (!(PADDING & v->flags) && *cp == *(v->text)) {
2940 			pch = v->text;
2941 			while ('\0' != *pch && '=' != *pch && cp < reqend
2942 			       && *cp == *pch) {
2943 				cp++;
2944 				pch++;
2945 			}
2946 			if ('\0' == *pch || '=' == *pch) {
2947 				while (cp < reqend && isspace((u_char)*cp))
2948 					cp++;
2949 				if (cp == reqend || ',' == *cp) {
2950 					buf[0] = '\0';
2951 					*data = buf;
2952 					if (cp < reqend)
2953 						cp++;
2954 					reqpt = cp;
2955 					return v;
2956 				}
2957 				if ('=' == *cp) {
2958 					cp++;
2959 					tp = buf;
2960 					while (cp < reqend && isspace((u_char)*cp))
2961 						cp++;
2962 					while (cp < reqend && *cp != ',') {
2963 						*tp++ = *cp++;
2964 						if ((size_t)(tp - buf) >= sizeof(buf)) {
2965 							ctl_error(CERR_BADFMT);
2966 							numctlbadpkts++;
2967 							NLOG(NLOG_SYSEVENT)
2968 								if (quiet_until <= current_time) {
2969 									quiet_until = current_time + 300;
2970 									msyslog(LOG_WARNING,
2971 "Possible 'ntpdx' exploit from %s#%u (possibly spoofed)", stoa(rmt_addr), SRCPORT(rmt_addr));
2972 								}
2973 							return NULL;
2974 						}
2975 					}
2976 					if (cp < reqend)
2977 						cp++;
2978 					*tp-- = '\0';
2979 					while (tp >= buf && isspace((u_char)*tp))
2980 						*tp-- = '\0';
2981 					reqpt = cp;
2982 					*data = buf;
2983 					return v;
2984 				}
2985 			}
2986 			cp = reqpt;
2987 		}
2988 	}
2989 	return v;
2990 }
2991 
2992 
2993 /*
2994  * control_unspec - response to an unspecified op-code
2995  */
2996 /*ARGSUSED*/
2997 static void
2998 control_unspec(
2999 	struct recvbuf *rbufp,
3000 	int restrict_mask
3001 	)
3002 {
3003 	struct peer *peer;
3004 
3005 	/*
3006 	 * What is an appropriate response to an unspecified op-code?
3007 	 * I return no errors and no data, unless a specified assocation
3008 	 * doesn't exist.
3009 	 */
3010 	if (res_associd) {
3011 		peer = findpeerbyassoc(res_associd);
3012 		if (NULL == peer) {
3013 			ctl_error(CERR_BADASSOC);
3014 			return;
3015 		}
3016 		rpkt.status = htons(ctlpeerstatus(peer));
3017 	} else
3018 		rpkt.status = htons(ctlsysstatus());
3019 	ctl_flushpkt(0);
3020 }
3021 
3022 
3023 /*
3024  * read_status - return either a list of associd's, or a particular
3025  * peer's status.
3026  */
3027 /*ARGSUSED*/
3028 static void
3029 read_status(
3030 	struct recvbuf *rbufp,
3031 	int restrict_mask
3032 	)
3033 {
3034 	struct peer *peer;
3035 	const u_char *cp;
3036 	size_t n;
3037 	/* a_st holds association ID, status pairs alternating */
3038 	u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
3039 
3040 #ifdef DEBUG
3041 	if (debug > 2)
3042 		printf("read_status: ID %d\n", res_associd);
3043 #endif
3044 	/*
3045 	 * Two choices here. If the specified association ID is
3046 	 * zero we return all known assocation ID's.  Otherwise
3047 	 * we return a bunch of stuff about the particular peer.
3048 	 */
3049 	if (res_associd) {
3050 		peer = findpeerbyassoc(res_associd);
3051 		if (NULL == peer) {
3052 			ctl_error(CERR_BADASSOC);
3053 			return;
3054 		}
3055 		rpkt.status = htons(ctlpeerstatus(peer));
3056 		if (res_authokay)
3057 			peer->num_events = 0;
3058 		/*
3059 		 * For now, output everything we know about the
3060 		 * peer. May be more selective later.
3061 		 */
3062 		for (cp = def_peer_var; *cp != 0; cp++)
3063 			ctl_putpeer((int)*cp, peer);
3064 		ctl_flushpkt(0);
3065 		return;
3066 	}
3067 	n = 0;
3068 	rpkt.status = htons(ctlsysstatus());
3069 	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3070 		a_st[n++] = htons(peer->associd);
3071 		a_st[n++] = htons(ctlpeerstatus(peer));
3072 		/* two entries each loop iteration, so n + 1 */
3073 		if (n + 1 >= COUNTOF(a_st)) {
3074 			ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
3075 				    1);
3076 			n = 0;
3077 		}
3078 	}
3079 	if (n)
3080 		ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3081 	ctl_flushpkt(0);
3082 }
3083 
3084 
3085 /*
3086  * read_peervars - half of read_variables() implementation
3087  */
3088 static void
3089 read_peervars(void)
3090 {
3091 	const struct ctl_var *v;
3092 	struct peer *peer;
3093 	const u_char *cp;
3094 	size_t i;
3095 	char *	valuep;
3096 	u_char	wants[CP_MAXCODE + 1];
3097 	u_int	gotvar;
3098 
3099 	/*
3100 	 * Wants info for a particular peer. See if we know
3101 	 * the guy.
3102 	 */
3103 	peer = findpeerbyassoc(res_associd);
3104 	if (NULL == peer) {
3105 		ctl_error(CERR_BADASSOC);
3106 		return;
3107 	}
3108 	rpkt.status = htons(ctlpeerstatus(peer));
3109 	if (res_authokay)
3110 		peer->num_events = 0;
3111 	ZERO(wants);
3112 	gotvar = 0;
3113 	while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3114 		if (v->flags & EOV) {
3115 			ctl_error(CERR_UNKNOWNVAR);
3116 			return;
3117 		}
3118 		NTP_INSIST(v->code < COUNTOF(wants));
3119 		wants[v->code] = 1;
3120 		gotvar = 1;
3121 	}
3122 	if (gotvar) {
3123 		for (i = 1; i < COUNTOF(wants); i++)
3124 			if (wants[i])
3125 				ctl_putpeer(i, peer);
3126 	} else
3127 		for (cp = def_peer_var; *cp != 0; cp++)
3128 			ctl_putpeer((int)*cp, peer);
3129 	ctl_flushpkt(0);
3130 }
3131 
3132 
3133 /*
3134  * read_sysvars - half of read_variables() implementation
3135  */
3136 static void
3137 read_sysvars(void)
3138 {
3139 	const struct ctl_var *v;
3140 	struct ctl_var *kv;
3141 	u_int	n;
3142 	u_int	gotvar;
3143 	const u_char *cs;
3144 	char *	valuep;
3145 	const char * pch;
3146 	u_char *wants;
3147 	size_t	wants_count;
3148 
3149 	/*
3150 	 * Wants system variables. Figure out which he wants
3151 	 * and give them to him.
3152 	 */
3153 	rpkt.status = htons(ctlsysstatus());
3154 	if (res_authokay)
3155 		ctl_sys_num_events = 0;
3156 	wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3157 	wants = emalloc_zero(wants_count);
3158 	gotvar = 0;
3159 	while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3160 		if (!(EOV & v->flags)) {
3161 			NTP_INSIST(v->code < wants_count);
3162 			wants[v->code] = 1;
3163 			gotvar = 1;
3164 		} else {
3165 			v = ctl_getitem(ext_sys_var, &valuep);
3166 			NTP_INSIST(v != NULL);
3167 			if (EOV & v->flags) {
3168 				ctl_error(CERR_UNKNOWNVAR);
3169 				free(wants);
3170 				return;
3171 			}
3172 			n = v->code + CS_MAXCODE + 1;
3173 			NTP_INSIST(n < wants_count);
3174 			wants[n] = 1;
3175 			gotvar = 1;
3176 		}
3177 	}
3178 	if (gotvar) {
3179 		for (n = 1; n <= CS_MAXCODE; n++)
3180 			if (wants[n])
3181 				ctl_putsys(n);
3182 		for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3183 			if (wants[n + CS_MAXCODE + 1]) {
3184 				pch = ext_sys_var[n].text;
3185 				ctl_putdata(pch, strlen(pch), 0);
3186 			}
3187 	} else {
3188 		for (cs = def_sys_var; *cs != 0; cs++)
3189 			ctl_putsys((int)*cs);
3190 		for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3191 			if (DEF & kv->flags)
3192 				ctl_putdata(kv->text, strlen(kv->text),
3193 					    0);
3194 	}
3195 	free(wants);
3196 	ctl_flushpkt(0);
3197 }
3198 
3199 
3200 /*
3201  * read_variables - return the variables the caller asks for
3202  */
3203 /*ARGSUSED*/
3204 static void
3205 read_variables(
3206 	struct recvbuf *rbufp,
3207 	int restrict_mask
3208 	)
3209 {
3210 	if (res_associd)
3211 		read_peervars();
3212 	else
3213 		read_sysvars();
3214 }
3215 
3216 
3217 /*
3218  * write_variables - write into variables. We only allow leap bit
3219  * writing this way.
3220  */
3221 /*ARGSUSED*/
3222 static void
3223 write_variables(
3224 	struct recvbuf *rbufp,
3225 	int restrict_mask
3226 	)
3227 {
3228 	const struct ctl_var *v;
3229 	int ext_var;
3230 	char *valuep;
3231 	long val;
3232 	size_t octets;
3233 	char *vareqv;
3234 	const char *t;
3235 	char *tt;
3236 
3237 	val = 0;
3238 	/*
3239 	 * If he's trying to write into a peer tell him no way
3240 	 */
3241 	if (res_associd != 0) {
3242 		ctl_error(CERR_PERMISSION);
3243 		return;
3244 	}
3245 
3246 	/*
3247 	 * Set status
3248 	 */
3249 	rpkt.status = htons(ctlsysstatus());
3250 
3251 	/*
3252 	 * Look through the variables. Dump out at the first sign of
3253 	 * trouble.
3254 	 */
3255 	while ((v = ctl_getitem(sys_var, &valuep)) != 0) {
3256 		ext_var = 0;
3257 		if (v->flags & EOV) {
3258 			if ((v = ctl_getitem(ext_sys_var, &valuep)) !=
3259 			    0) {
3260 				if (v->flags & EOV) {
3261 					ctl_error(CERR_UNKNOWNVAR);
3262 					return;
3263 				}
3264 				ext_var = 1;
3265 			} else {
3266 				break;
3267 			}
3268 		}
3269 		if (!(v->flags & CAN_WRITE)) {
3270 			ctl_error(CERR_PERMISSION);
3271 			return;
3272 		}
3273 		if (!ext_var && (*valuep == '\0' || !atoint(valuep,
3274 							    &val))) {
3275 			ctl_error(CERR_BADFMT);
3276 			return;
3277 		}
3278 		if (!ext_var && (val & ~LEAP_NOTINSYNC) != 0) {
3279 			ctl_error(CERR_BADVALUE);
3280 			return;
3281 		}
3282 
3283 		if (ext_var) {
3284 			octets = strlen(v->text) + strlen(valuep) + 2;
3285 			vareqv = emalloc(octets);
3286 			tt = vareqv;
3287 			t = v->text;
3288 			while (*t && *t != '=')
3289 				*tt++ = *t++;
3290 			*tt++ = '=';
3291 			memcpy(tt, valuep, 1 + strlen(valuep));
3292 			set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3293 			free(vareqv);
3294 		} else {
3295 			ctl_error(CERR_UNSPEC); /* really */
3296 			return;
3297 		}
3298 	}
3299 
3300 	/*
3301 	 * If we got anything, do it. xxx nothing to do ***
3302 	 */
3303 	/*
3304 	  if (leapind != ~0 || leapwarn != ~0) {
3305 	  if (!leap_setleap((int)leapind, (int)leapwarn)) {
3306 	  ctl_error(CERR_PERMISSION);
3307 	  return;
3308 	  }
3309 	  }
3310 	*/
3311 	ctl_flushpkt(0);
3312 }
3313 
3314 
3315 /*
3316  * configure() processes ntpq :config/config-from-file, allowing
3317  *		generic runtime reconfiguration.
3318  */
3319 static void configure(
3320 	struct recvbuf *rbufp,
3321 	int restrict_mask
3322 	)
3323 {
3324 	size_t data_count;
3325 	int retval;
3326 
3327 	/* I haven't yet implemented changes to an existing association.
3328 	 * Hence check if the association id is 0
3329 	 */
3330 	if (res_associd != 0) {
3331 		ctl_error(CERR_BADVALUE);
3332 		return;
3333 	}
3334 
3335 	if (RES_NOMODIFY & restrict_mask) {
3336 		snprintf(remote_config.err_msg,
3337 			 sizeof(remote_config.err_msg),
3338 			 "runtime configuration prohibited by restrict ... nomodify");
3339 		ctl_putdata(remote_config.err_msg,
3340 			    strlen(remote_config.err_msg), 0);
3341 		ctl_flushpkt(0);
3342 		NLOG(NLOG_SYSINFO)
3343 			msyslog(LOG_NOTICE,
3344 				"runtime config from %s rejected due to nomodify restriction",
3345 				stoa(&rbufp->recv_srcadr));
3346 		sys_restricted++;
3347 		return;
3348 	}
3349 
3350 	/* Initialize the remote config buffer */
3351 	data_count = remoteconfig_cmdlength(reqpt, reqend);
3352 
3353 	if (data_count > sizeof(remote_config.buffer) - 2) {
3354 		snprintf(remote_config.err_msg,
3355 			 sizeof(remote_config.err_msg),
3356 			 "runtime configuration failed: request too long");
3357 		ctl_putdata(remote_config.err_msg,
3358 			    strlen(remote_config.err_msg), 0);
3359 		ctl_flushpkt(0);
3360 		msyslog(LOG_NOTICE,
3361 			"runtime config from %s rejected: request too long",
3362 			stoa(&rbufp->recv_srcadr));
3363 		return;
3364 	}
3365 	/* Bug 2853 -- check if all characters were acceptable */
3366 	if (data_count != (size_t)(reqend - reqpt)) {
3367 		snprintf(remote_config.err_msg,
3368 			 sizeof(remote_config.err_msg),
3369 			 "runtime configuration failed: request contains an unprintable character");
3370 		ctl_putdata(remote_config.err_msg,
3371 			    strlen(remote_config.err_msg), 0);
3372 		ctl_flushpkt(0);
3373 		msyslog(LOG_NOTICE,
3374 			"runtime config from %s rejected: request contains an unprintable character: %0x",
3375 			stoa(&rbufp->recv_srcadr),
3376 			reqpt[data_count]);
3377 		return;
3378 	}
3379 
3380 	memcpy(remote_config.buffer, reqpt, data_count);
3381 	/* The buffer has no trailing linefeed or NUL right now. For
3382 	 * logging, we do not want a newline, so we do that first after
3383 	 * adding the necessary NUL byte.
3384 	 */
3385 	remote_config.buffer[data_count] = '\0';
3386 	DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3387 		remote_config.buffer));
3388 	msyslog(LOG_NOTICE, "%s config: %s",
3389 		stoa(&rbufp->recv_srcadr),
3390 		remote_config.buffer);
3391 
3392 	/* Now we have to make sure there is a NL/NUL sequence at the
3393 	 * end of the buffer before we parse it.
3394 	 */
3395 	remote_config.buffer[data_count++] = '\n';
3396 	remote_config.buffer[data_count] = '\0';
3397 	remote_config.pos = 0;
3398 	remote_config.err_pos = 0;
3399 	remote_config.no_errors = 0;
3400 	config_remotely(&rbufp->recv_srcadr);
3401 
3402 	/*
3403 	 * Check if errors were reported. If not, output 'Config
3404 	 * Succeeded'.  Else output the error count.  It would be nice
3405 	 * to output any parser error messages.
3406 	 */
3407 	if (0 == remote_config.no_errors) {
3408 		retval = snprintf(remote_config.err_msg,
3409 				  sizeof(remote_config.err_msg),
3410 				  "Config Succeeded");
3411 		if (retval > 0)
3412 			remote_config.err_pos += retval;
3413 	}
3414 
3415 	ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3416 	ctl_flushpkt(0);
3417 
3418 	DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3419 
3420 	if (remote_config.no_errors > 0)
3421 		msyslog(LOG_NOTICE, "%d error in %s config",
3422 			remote_config.no_errors,
3423 			stoa(&rbufp->recv_srcadr));
3424 }
3425 
3426 
3427 /*
3428  * derive_nonce - generate client-address-specific nonce value
3429  *		  associated with a given timestamp.
3430  */
3431 static u_int32 derive_nonce(
3432 	sockaddr_u *	addr,
3433 	u_int32		ts_i,
3434 	u_int32		ts_f
3435 	)
3436 {
3437 	static u_int32	salt[4];
3438 	static u_long	last_salt_update;
3439 	union d_tag {
3440 		u_char	digest[EVP_MAX_MD_SIZE];
3441 		u_int32 extract;
3442 	}		d;
3443 	EVP_MD_CTX	ctx;
3444 	u_int		len;
3445 
3446 	while (!salt[0] || current_time - last_salt_update >= 3600) {
3447 		salt[0] = ntp_random();
3448 		salt[1] = ntp_random();
3449 		salt[2] = ntp_random();
3450 		salt[3] = ntp_random();
3451 		last_salt_update = current_time;
3452 	}
3453 
3454 	EVP_DigestInit(&ctx, EVP_get_digestbynid(NID_md5));
3455 	EVP_DigestUpdate(&ctx, salt, sizeof(salt));
3456 	EVP_DigestUpdate(&ctx, &ts_i, sizeof(ts_i));
3457 	EVP_DigestUpdate(&ctx, &ts_f, sizeof(ts_f));
3458 	if (IS_IPV4(addr))
3459 		EVP_DigestUpdate(&ctx, &SOCK_ADDR4(addr),
3460 			         sizeof(SOCK_ADDR4(addr)));
3461 	else
3462 		EVP_DigestUpdate(&ctx, &SOCK_ADDR6(addr),
3463 			         sizeof(SOCK_ADDR6(addr)));
3464 	EVP_DigestUpdate(&ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
3465 	EVP_DigestUpdate(&ctx, salt, sizeof(salt));
3466 	EVP_DigestFinal(&ctx, d.digest, &len);
3467 
3468 	return d.extract;
3469 }
3470 
3471 
3472 /*
3473  * generate_nonce - generate client-address-specific nonce string.
3474  */
3475 static void generate_nonce(
3476 	struct recvbuf *	rbufp,
3477 	char *			nonce,
3478 	size_t			nonce_octets
3479 	)
3480 {
3481 	u_int32 derived;
3482 
3483 	derived = derive_nonce(&rbufp->recv_srcadr,
3484 			       rbufp->recv_time.l_ui,
3485 			       rbufp->recv_time.l_uf);
3486 	snprintf(nonce, nonce_octets, "%08x%08x%08x",
3487 		 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3488 }
3489 
3490 
3491 /*
3492  * validate_nonce - validate client-address-specific nonce string.
3493  *
3494  * Returns TRUE if the local calculation of the nonce matches the
3495  * client-provided value and the timestamp is recent enough.
3496  */
3497 static int validate_nonce(
3498 	const char *		pnonce,
3499 	struct recvbuf *	rbufp
3500 	)
3501 {
3502 	u_int	ts_i;
3503 	u_int	ts_f;
3504 	l_fp	ts;
3505 	l_fp	now_delta;
3506 	u_int	supposed;
3507 	u_int	derived;
3508 
3509 	if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3510 		return FALSE;
3511 
3512 	ts.l_ui = (u_int32)ts_i;
3513 	ts.l_uf = (u_int32)ts_f;
3514 	derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3515 	get_systime(&now_delta);
3516 	L_SUB(&now_delta, &ts);
3517 
3518 	return (supposed == derived && now_delta.l_ui < 16);
3519 }
3520 
3521 
3522 /*
3523  * send_random_tag_value - send a randomly-generated three character
3524  *			   tag prefix, a '.', an index, a '=' and a
3525  *			   random integer value.
3526  *
3527  * To try to force clients to ignore unrecognized tags in mrulist,
3528  * reslist, and ifstats responses, the first and last rows are spiced
3529  * with randomly-generated tag names with correct .# index.  Make it
3530  * three characters knowing that none of the currently-used subscripted
3531  * tags have that length, avoiding the need to test for
3532  * tag collision.
3533  */
3534 static void
3535 send_random_tag_value(
3536 	int	indx
3537 	)
3538 {
3539 	int	noise;
3540 	char	buf[32];
3541 
3542 	noise = rand() ^ (rand() << 16);
3543 	buf[0] = 'a' + noise % 26;
3544 	noise >>= 5;
3545 	buf[1] = 'a' + noise % 26;
3546 	noise >>= 5;
3547 	buf[2] = 'a' + noise % 26;
3548 	noise >>= 5;
3549 	buf[3] = '.';
3550 	snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3551 	ctl_putuint(buf, noise);
3552 }
3553 
3554 
3555 /*
3556  * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3557  *
3558  * To keep clients honest about not depending on the order of values,
3559  * and thereby avoid being locked into ugly workarounds to maintain
3560  * backward compatibility later as new fields are added to the response,
3561  * the order is random.
3562  */
3563 static void
3564 send_mru_entry(
3565 	mon_entry *	mon,
3566 	int		count
3567 	)
3568 {
3569 	const char first_fmt[] =	"first.%d";
3570 	const char ct_fmt[] =		"ct.%d";
3571 	const char mv_fmt[] =		"mv.%d";
3572 	const char rs_fmt[] =		"rs.%d";
3573 	char	tag[32];
3574 	u_char	sent[6]; /* 6 tag=value pairs */
3575 	u_int32 noise;
3576 	u_int	which;
3577 	u_int	remaining;
3578 	const char * pch;
3579 
3580 	remaining = COUNTOF(sent);
3581 	ZERO(sent);
3582 	noise = (u_int32)(rand() ^ (rand() << 16));
3583 	while (remaining > 0) {
3584 		which = (noise & 7) % COUNTOF(sent);
3585 		noise >>= 3;
3586 		while (sent[which])
3587 			which = (which + 1) % COUNTOF(sent);
3588 
3589 		switch (which) {
3590 
3591 		case 0:
3592 			snprintf(tag, sizeof(tag), addr_fmt, count);
3593 			pch = sptoa(&mon->rmtadr);
3594 			ctl_putunqstr(tag, pch, strlen(pch));
3595 			break;
3596 
3597 		case 1:
3598 			snprintf(tag, sizeof(tag), last_fmt, count);
3599 			ctl_putts(tag, &mon->last);
3600 			break;
3601 
3602 		case 2:
3603 			snprintf(tag, sizeof(tag), first_fmt, count);
3604 			ctl_putts(tag, &mon->first);
3605 			break;
3606 
3607 		case 3:
3608 			snprintf(tag, sizeof(tag), ct_fmt, count);
3609 			ctl_putint(tag, mon->count);
3610 			break;
3611 
3612 		case 4:
3613 			snprintf(tag, sizeof(tag), mv_fmt, count);
3614 			ctl_putuint(tag, mon->vn_mode);
3615 			break;
3616 
3617 		case 5:
3618 			snprintf(tag, sizeof(tag), rs_fmt, count);
3619 			ctl_puthex(tag, mon->flags);
3620 			break;
3621 		}
3622 		sent[which] = TRUE;
3623 		remaining--;
3624 	}
3625 }
3626 
3627 
3628 /*
3629  * read_mru_list - supports ntpq's mrulist command.
3630  *
3631  * The challenge here is to match ntpdc's monlist functionality without
3632  * being limited to hundreds of entries returned total, and without
3633  * requiring state on the server.  If state were required, ntpq's
3634  * mrulist command would require authentication.
3635  *
3636  * The approach was suggested by Ry Jones.  A finite and variable number
3637  * of entries are retrieved per request, to avoid having responses with
3638  * such large numbers of packets that socket buffers are overflowed and
3639  * packets lost.  The entries are retrieved oldest-first, taking into
3640  * account that the MRU list will be changing between each request.  We
3641  * can expect to see duplicate entries for addresses updated in the MRU
3642  * list during the fetch operation.  In the end, the client can assemble
3643  * a close approximation of the MRU list at the point in time the last
3644  * response was sent by ntpd.  The only difference is it may be longer,
3645  * containing some number of oldest entries which have since been
3646  * reclaimed.  If necessary, the protocol could be extended to zap those
3647  * from the client snapshot at the end, but so far that doesn't seem
3648  * useful.
3649  *
3650  * To accomodate the changing MRU list, the starting point for requests
3651  * after the first request is supplied as a series of last seen
3652  * timestamps and associated addresses, the newest ones the client has
3653  * received.  As long as at least one of those entries hasn't been
3654  * bumped to the head of the MRU list, ntpd can pick up at that point.
3655  * Otherwise, the request is failed and it is up to ntpq to back up and
3656  * provide the next newest entry's timestamps and addresses, conceivably
3657  * backing up all the way to the starting point.
3658  *
3659  * input parameters:
3660  *	nonce=		Regurgitated nonce retrieved by the client
3661  *			previously using CTL_OP_REQ_NONCE, demonstrating
3662  *			ability to receive traffic sent to its address.
3663  *	frags=		Limit on datagrams (fragments) in response.  Used
3664  *			by newer ntpq versions instead of limit= when
3665  *			retrieving multiple entries.
3666  *	limit=		Limit on MRU entries returned.  One of frags= or
3667  *			limit= must be provided.
3668  *			limit=1 is a special case:  Instead of fetching
3669  *			beginning with the supplied starting point's
3670  *			newer neighbor, fetch the supplied entry, and
3671  *			in that case the #.last timestamp can be zero.
3672  *			This enables fetching a single entry by IP
3673  *			address.  When limit is not one and frags= is
3674  *			provided, the fragment limit controls.
3675  *	mincount=	(decimal) Return entries with count >= mincount.
3676  *	laddr=		Return entries associated with the server's IP
3677  *			address given.  No port specification is needed,
3678  *			and any supplied is ignored.
3679  *	resall=		0x-prefixed hex restrict bits which must all be
3680  *			lit for an MRU entry to be included.
3681  *			Has precedence over any resany=.
3682  *	resany=		0x-prefixed hex restrict bits, at least one of
3683  *			which must be list for an MRU entry to be
3684  *			included.
3685  *	last.0=		0x-prefixed hex l_fp timestamp of newest entry
3686  *			which client previously received.
3687  *	addr.0=		text of newest entry's IP address and port,
3688  *			IPv6 addresses in bracketed form: [::]:123
3689  *	last.1=		timestamp of 2nd newest entry client has.
3690  *	addr.1=		address of 2nd newest entry.
3691  *	[...]
3692  *
3693  * ntpq provides as many last/addr pairs as will fit in a single request
3694  * packet, except for the first request in a MRU fetch operation.
3695  *
3696  * The response begins with a new nonce value to be used for any
3697  * followup request.  Following the nonce is the next newer entry than
3698  * referred to by last.0 and addr.0, if the "0" entry has not been
3699  * bumped to the front.  If it has, the first entry returned will be the
3700  * next entry newer than referred to by last.1 and addr.1, and so on.
3701  * If none of the referenced entries remain unchanged, the request fails
3702  * and ntpq backs up to the next earlier set of entries to resync.
3703  *
3704  * Except for the first response, the response begins with confirmation
3705  * of the entry that precedes the first additional entry provided:
3706  *
3707  *	last.older=	hex l_fp timestamp matching one of the input
3708  *			.last timestamps, which entry now precedes the
3709  *			response 0. entry in the MRU list.
3710  *	addr.older=	text of address corresponding to older.last.
3711  *
3712  * And in any case, a successful response contains sets of values
3713  * comprising entries, with the oldest numbered 0 and incrementing from
3714  * there:
3715  *
3716  *	addr.#		text of IPv4 or IPv6 address and port
3717  *	last.#		hex l_fp timestamp of last receipt
3718  *	first.#		hex l_fp timestamp of first receipt
3719  *	ct.#		count of packets received
3720  *	mv.#		mode and version
3721  *	rs.#		restriction mask (RES_* bits)
3722  *
3723  * Note the code currently assumes there are no valid three letter
3724  * tags sent with each row, and needs to be adjusted if that changes.
3725  *
3726  * The client should accept the values in any order, and ignore .#
3727  * values which it does not understand, to allow a smooth path to
3728  * future changes without requiring a new opcode.  Clients can rely
3729  * on all *.0 values preceding any *.1 values, that is all values for
3730  * a given index number are together in the response.
3731  *
3732  * The end of the response list is noted with one or two tag=value
3733  * pairs.  Unconditionally:
3734  *
3735  *	now=		0x-prefixed l_fp timestamp at the server marking
3736  *			the end of the operation.
3737  *
3738  * If any entries were returned, now= is followed by:
3739  *
3740  *	last.newest=	hex l_fp identical to last.# of the prior
3741  *			entry.
3742  */
3743 static void read_mru_list(
3744 	struct recvbuf *rbufp,
3745 	int restrict_mask
3746 	)
3747 {
3748 	const char		nonce_text[] =		"nonce";
3749 	const char		frags_text[] =		"frags";
3750 	const char		limit_text[] =		"limit";
3751 	const char		mincount_text[] =	"mincount";
3752 	const char		resall_text[] =		"resall";
3753 	const char		resany_text[] =		"resany";
3754 	const char		maxlstint_text[] =	"maxlstint";
3755 	const char		laddr_text[] =		"laddr";
3756 	const char		resaxx_fmt[] =		"0x%hx";
3757 	u_int			limit;
3758 	u_short			frags;
3759 	u_short			resall;
3760 	u_short			resany;
3761 	int			mincount;
3762 	u_int			maxlstint;
3763 	sockaddr_u		laddr;
3764 	struct interface *	lcladr;
3765 	u_int			count;
3766 	u_int			ui;
3767 	u_int			uf;
3768 	l_fp			last[16];
3769 	sockaddr_u		addr[COUNTOF(last)];
3770 	char			buf[128];
3771 	struct ctl_var *	in_parms;
3772 	const struct ctl_var *	v;
3773 	char *			val;
3774 	const char *		pch;
3775 	char *			pnonce;
3776 	int			nonce_valid;
3777 	size_t			i;
3778 	int			priors;
3779 	u_short			hash;
3780 	mon_entry *		mon;
3781 	mon_entry *		prior_mon;
3782 	l_fp			now;
3783 
3784 	if (RES_NOMRULIST & restrict_mask) {
3785 		ctl_error(CERR_PERMISSION);
3786 		NLOG(NLOG_SYSINFO)
3787 			msyslog(LOG_NOTICE,
3788 				"mrulist from %s rejected due to nomrulist restriction",
3789 				stoa(&rbufp->recv_srcadr));
3790 		sys_restricted++;
3791 		return;
3792 	}
3793 	/*
3794 	 * fill in_parms var list with all possible input parameters.
3795 	 */
3796 	in_parms = NULL;
3797 	set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
3798 	set_var(&in_parms, frags_text, sizeof(frags_text), 0);
3799 	set_var(&in_parms, limit_text, sizeof(limit_text), 0);
3800 	set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
3801 	set_var(&in_parms, resall_text, sizeof(resall_text), 0);
3802 	set_var(&in_parms, resany_text, sizeof(resany_text), 0);
3803 	set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
3804 	set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
3805 	for (i = 0; i < COUNTOF(last); i++) {
3806 		snprintf(buf, sizeof(buf), last_fmt, (int)i);
3807 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
3808 		snprintf(buf, sizeof(buf), addr_fmt, (int)i);
3809 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
3810 	}
3811 
3812 	/* decode input parms */
3813 	pnonce = NULL;
3814 	frags = 0;
3815 	limit = 0;
3816 	mincount = 0;
3817 	resall = 0;
3818 	resany = 0;
3819 	maxlstint = 0;
3820 	lcladr = NULL;
3821 	priors = 0;
3822 	ZERO(last);
3823 	ZERO(addr);
3824 
3825 	while (NULL != (v = ctl_getitem(in_parms, &val)) &&
3826 	       !(EOV & v->flags)) {
3827 		int si;
3828 
3829 		if (!strcmp(nonce_text, v->text)) {
3830 			if (NULL != pnonce)
3831 				free(pnonce);
3832 			pnonce = estrdup(val);
3833 		} else if (!strcmp(frags_text, v->text)) {
3834 			sscanf(val, "%hu", &frags);
3835 		} else if (!strcmp(limit_text, v->text)) {
3836 			sscanf(val, "%u", &limit);
3837 		} else if (!strcmp(mincount_text, v->text)) {
3838 			if (1 != sscanf(val, "%d", &mincount) ||
3839 			    mincount < 0)
3840 				mincount = 0;
3841 		} else if (!strcmp(resall_text, v->text)) {
3842 			sscanf(val, resaxx_fmt, &resall);
3843 		} else if (!strcmp(resany_text, v->text)) {
3844 			sscanf(val, resaxx_fmt, &resany);
3845 		} else if (!strcmp(maxlstint_text, v->text)) {
3846 			sscanf(val, "%u", &maxlstint);
3847 		} else if (!strcmp(laddr_text, v->text)) {
3848 			if (decodenetnum(val, &laddr))
3849 				lcladr = getinterface(&laddr, 0);
3850 		} else if (1 == sscanf(v->text, last_fmt, &si) &&
3851 			   (size_t)si < COUNTOF(last)) {
3852 			if (2 == sscanf(val, "0x%08x.%08x", &ui, &uf)) {
3853 				last[si].l_ui = ui;
3854 				last[si].l_uf = uf;
3855 				if (!SOCK_UNSPEC(&addr[si]) &&
3856 				    si == priors)
3857 					priors++;
3858 			}
3859 		} else if (1 == sscanf(v->text, addr_fmt, &si) &&
3860 			   (size_t)si < COUNTOF(addr)) {
3861 			if (decodenetnum(val, &addr[si])
3862 			    && last[si].l_ui && last[si].l_uf &&
3863 			    si == priors)
3864 				priors++;
3865 		}
3866 	}
3867 	free_varlist(in_parms);
3868 	in_parms = NULL;
3869 
3870 	/* return no responses until the nonce is validated */
3871 	if (NULL == pnonce)
3872 		return;
3873 
3874 	nonce_valid = validate_nonce(pnonce, rbufp);
3875 	free(pnonce);
3876 	if (!nonce_valid)
3877 		return;
3878 
3879 	if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
3880 	    frags > MRU_FRAGS_LIMIT) {
3881 		ctl_error(CERR_BADVALUE);
3882 		return;
3883 	}
3884 
3885 	/*
3886 	 * If either frags or limit is not given, use the max.
3887 	 */
3888 	if (0 != frags && 0 == limit)
3889 		limit = UINT_MAX;
3890 	else if (0 != limit && 0 == frags)
3891 		frags = MRU_FRAGS_LIMIT;
3892 
3893 	/*
3894 	 * Find the starting point if one was provided.
3895 	 */
3896 	mon = NULL;
3897 	for (i = 0; i < (size_t)priors; i++) {
3898 		hash = MON_HASH(&addr[i]);
3899 		for (mon = mon_hash[hash];
3900 		     mon != NULL;
3901 		     mon = mon->hash_next)
3902 			if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
3903 				break;
3904 		if (mon != NULL) {
3905 			if (L_ISEQU(&mon->last, &last[i]))
3906 				break;
3907 			mon = NULL;
3908 		}
3909 	}
3910 
3911 	/* If a starting point was provided... */
3912 	if (priors) {
3913 		/* and none could be found unmodified... */
3914 		if (NULL == mon) {
3915 			/* tell ntpq to try again with older entries */
3916 			ctl_error(CERR_UNKNOWNVAR);
3917 			return;
3918 		}
3919 		/* confirm the prior entry used as starting point */
3920 		ctl_putts("last.older", &mon->last);
3921 		pch = sptoa(&mon->rmtadr);
3922 		ctl_putunqstr("addr.older", pch, strlen(pch));
3923 
3924 		/*
3925 		 * Move on to the first entry the client doesn't have,
3926 		 * except in the special case of a limit of one.  In
3927 		 * that case return the starting point entry.
3928 		 */
3929 		if (limit > 1)
3930 			mon = PREV_DLIST(mon_mru_list, mon, mru);
3931 	} else {	/* start with the oldest */
3932 		mon = TAIL_DLIST(mon_mru_list, mru);
3933 	}
3934 
3935 	/*
3936 	 * send up to limit= entries in up to frags= datagrams
3937 	 */
3938 	get_systime(&now);
3939 	generate_nonce(rbufp, buf, sizeof(buf));
3940 	ctl_putunqstr("nonce", buf, strlen(buf));
3941 	prior_mon = NULL;
3942 	for (count = 0;
3943 	     mon != NULL && res_frags < frags && count < limit;
3944 	     mon = PREV_DLIST(mon_mru_list, mon, mru)) {
3945 
3946 		if (mon->count < mincount)
3947 			continue;
3948 		if (resall && resall != (resall & mon->flags))
3949 			continue;
3950 		if (resany && !(resany & mon->flags))
3951 			continue;
3952 		if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
3953 		    maxlstint)
3954 			continue;
3955 		if (lcladr != NULL && mon->lcladr != lcladr)
3956 			continue;
3957 
3958 		send_mru_entry(mon, count);
3959 		if (!count)
3960 			send_random_tag_value(0);
3961 		count++;
3962 		prior_mon = mon;
3963 	}
3964 
3965 	/*
3966 	 * If this batch completes the MRU list, say so explicitly with
3967 	 * a now= l_fp timestamp.
3968 	 */
3969 	if (NULL == mon) {
3970 		if (count > 1)
3971 			send_random_tag_value(count - 1);
3972 		ctl_putts("now", &now);
3973 		/* if any entries were returned confirm the last */
3974 		if (prior_mon != NULL)
3975 			ctl_putts("last.newest", &prior_mon->last);
3976 	}
3977 	ctl_flushpkt(0);
3978 }
3979 
3980 
3981 /*
3982  * Send a ifstats entry in response to a "ntpq -c ifstats" request.
3983  *
3984  * To keep clients honest about not depending on the order of values,
3985  * and thereby avoid being locked into ugly workarounds to maintain
3986  * backward compatibility later as new fields are added to the response,
3987  * the order is random.
3988  */
3989 static void
3990 send_ifstats_entry(
3991 	endpt *	la,
3992 	u_int	ifnum
3993 	)
3994 {
3995 	const char addr_fmtu[] =	"addr.%u";
3996 	const char bcast_fmt[] =	"bcast.%u";
3997 	const char en_fmt[] =		"en.%u";	/* enabled */
3998 	const char name_fmt[] =		"name.%u";
3999 	const char flags_fmt[] =	"flags.%u";
4000 	const char tl_fmt[] =		"tl.%u";	/* ttl */
4001 	const char mc_fmt[] =		"mc.%u";	/* mcast count */
4002 	const char rx_fmt[] =		"rx.%u";
4003 	const char tx_fmt[] =		"tx.%u";
4004 	const char txerr_fmt[] =	"txerr.%u";
4005 	const char pc_fmt[] =		"pc.%u";	/* peer count */
4006 	const char up_fmt[] =		"up.%u";	/* uptime */
4007 	char	tag[32];
4008 	u_char	sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
4009 	int	noisebits;
4010 	u_int32 noise;
4011 	u_int	which;
4012 	u_int	remaining;
4013 	const char *pch;
4014 
4015 	remaining = COUNTOF(sent);
4016 	ZERO(sent);
4017 	noise = 0;
4018 	noisebits = 0;
4019 	while (remaining > 0) {
4020 		if (noisebits < 4) {
4021 			noise = rand() ^ (rand() << 16);
4022 			noisebits = 31;
4023 		}
4024 		which = (noise & 0xf) % COUNTOF(sent);
4025 		noise >>= 4;
4026 		noisebits -= 4;
4027 
4028 		while (sent[which])
4029 			which = (which + 1) % COUNTOF(sent);
4030 
4031 		switch (which) {
4032 
4033 		case 0:
4034 			snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
4035 			pch = sptoa(&la->sin);
4036 			ctl_putunqstr(tag, pch, strlen(pch));
4037 			break;
4038 
4039 		case 1:
4040 			snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
4041 			if (INT_BCASTOPEN & la->flags)
4042 				pch = sptoa(&la->bcast);
4043 			else
4044 				pch = "";
4045 			ctl_putunqstr(tag, pch, strlen(pch));
4046 			break;
4047 
4048 		case 2:
4049 			snprintf(tag, sizeof(tag), en_fmt, ifnum);
4050 			ctl_putint(tag, !la->ignore_packets);
4051 			break;
4052 
4053 		case 3:
4054 			snprintf(tag, sizeof(tag), name_fmt, ifnum);
4055 			ctl_putstr(tag, la->name, strlen(la->name));
4056 			break;
4057 
4058 		case 4:
4059 			snprintf(tag, sizeof(tag), flags_fmt, ifnum);
4060 			ctl_puthex(tag, (u_int)la->flags);
4061 			break;
4062 
4063 		case 5:
4064 			snprintf(tag, sizeof(tag), tl_fmt, ifnum);
4065 			ctl_putint(tag, la->last_ttl);
4066 			break;
4067 
4068 		case 6:
4069 			snprintf(tag, sizeof(tag), mc_fmt, ifnum);
4070 			ctl_putint(tag, la->num_mcast);
4071 			break;
4072 
4073 		case 7:
4074 			snprintf(tag, sizeof(tag), rx_fmt, ifnum);
4075 			ctl_putint(tag, la->received);
4076 			break;
4077 
4078 		case 8:
4079 			snprintf(tag, sizeof(tag), tx_fmt, ifnum);
4080 			ctl_putint(tag, la->sent);
4081 			break;
4082 
4083 		case 9:
4084 			snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
4085 			ctl_putint(tag, la->notsent);
4086 			break;
4087 
4088 		case 10:
4089 			snprintf(tag, sizeof(tag), pc_fmt, ifnum);
4090 			ctl_putuint(tag, la->peercnt);
4091 			break;
4092 
4093 		case 11:
4094 			snprintf(tag, sizeof(tag), up_fmt, ifnum);
4095 			ctl_putuint(tag, current_time - la->starttime);
4096 			break;
4097 		}
4098 		sent[which] = TRUE;
4099 		remaining--;
4100 	}
4101 	send_random_tag_value((int)ifnum);
4102 }
4103 
4104 
4105 /*
4106  * read_ifstats - send statistics for each local address, exposed by
4107  *		  ntpq -c ifstats
4108  */
4109 static void
4110 read_ifstats(
4111 	struct recvbuf *	rbufp
4112 	)
4113 {
4114 	u_int	ifidx;
4115 	endpt *	la;
4116 
4117 	/*
4118 	 * loop over [0..sys_ifnum] searching ep_list for each
4119 	 * ifnum in turn.
4120 	 */
4121 	for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4122 		for (la = ep_list; la != NULL; la = la->elink)
4123 			if (ifidx == la->ifnum)
4124 				break;
4125 		if (NULL == la)
4126 			continue;
4127 		/* return stats for one local address */
4128 		send_ifstats_entry(la, ifidx);
4129 	}
4130 	ctl_flushpkt(0);
4131 }
4132 
4133 static void
4134 sockaddrs_from_restrict_u(
4135 	sockaddr_u *	psaA,
4136 	sockaddr_u *	psaM,
4137 	restrict_u *	pres,
4138 	int		ipv6
4139 	)
4140 {
4141 	ZERO(*psaA);
4142 	ZERO(*psaM);
4143 	if (!ipv6) {
4144 		psaA->sa.sa_family = AF_INET;
4145 		psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
4146 		psaM->sa.sa_family = AF_INET;
4147 		psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
4148 	} else {
4149 		psaA->sa.sa_family = AF_INET6;
4150 		memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
4151 		       sizeof(psaA->sa6.sin6_addr));
4152 		psaM->sa.sa_family = AF_INET6;
4153 		memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
4154 		       sizeof(psaA->sa6.sin6_addr));
4155 	}
4156 }
4157 
4158 
4159 /*
4160  * Send a restrict entry in response to a "ntpq -c reslist" request.
4161  *
4162  * To keep clients honest about not depending on the order of values,
4163  * and thereby avoid being locked into ugly workarounds to maintain
4164  * backward compatibility later as new fields are added to the response,
4165  * the order is random.
4166  */
4167 static void
4168 send_restrict_entry(
4169 	restrict_u *	pres,
4170 	int		ipv6,
4171 	u_int		idx
4172 	)
4173 {
4174 	const char addr_fmtu[] =	"addr.%u";
4175 	const char mask_fmtu[] =	"mask.%u";
4176 	const char hits_fmt[] =		"hits.%u";
4177 	const char flags_fmt[] =	"flags.%u";
4178 	char		tag[32];
4179 	u_char		sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4180 	int		noisebits;
4181 	u_int32		noise;
4182 	u_int		which;
4183 	u_int		remaining;
4184 	sockaddr_u	addr;
4185 	sockaddr_u	mask;
4186 	const char *	pch;
4187 	char *		buf;
4188 	const char *	match_str;
4189 	const char *	access_str;
4190 
4191 	sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
4192 	remaining = COUNTOF(sent);
4193 	ZERO(sent);
4194 	noise = 0;
4195 	noisebits = 0;
4196 	while (remaining > 0) {
4197 		if (noisebits < 2) {
4198 			noise = rand() ^ (rand() << 16);
4199 			noisebits = 31;
4200 		}
4201 		which = (noise & 0x3) % COUNTOF(sent);
4202 		noise >>= 2;
4203 		noisebits -= 2;
4204 
4205 		while (sent[which])
4206 			which = (which + 1) % COUNTOF(sent);
4207 
4208 		switch (which) {
4209 
4210 		case 0:
4211 			snprintf(tag, sizeof(tag), addr_fmtu, idx);
4212 			pch = stoa(&addr);
4213 			ctl_putunqstr(tag, pch, strlen(pch));
4214 			break;
4215 
4216 		case 1:
4217 			snprintf(tag, sizeof(tag), mask_fmtu, idx);
4218 			pch = stoa(&mask);
4219 			ctl_putunqstr(tag, pch, strlen(pch));
4220 			break;
4221 
4222 		case 2:
4223 			snprintf(tag, sizeof(tag), hits_fmt, idx);
4224 			ctl_putuint(tag, pres->count);
4225 			break;
4226 
4227 		case 3:
4228 			snprintf(tag, sizeof(tag), flags_fmt, idx);
4229 			match_str = res_match_flags(pres->mflags);
4230 			access_str = res_access_flags(pres->flags);
4231 			if ('\0' == match_str[0]) {
4232 				pch = access_str;
4233 			} else {
4234 				LIB_GETBUF(buf);
4235 				snprintf(buf, LIB_BUFLENGTH, "%s %s",
4236 					 match_str, access_str);
4237 				pch = buf;
4238 			}
4239 			ctl_putunqstr(tag, pch, strlen(pch));
4240 			break;
4241 		}
4242 		sent[which] = TRUE;
4243 		remaining--;
4244 	}
4245 	send_random_tag_value((int)idx);
4246 }
4247 
4248 
4249 static void
4250 send_restrict_list(
4251 	restrict_u *	pres,
4252 	int		ipv6,
4253 	u_int *		pidx
4254 	)
4255 {
4256 	for ( ; pres != NULL; pres = pres->link) {
4257 		send_restrict_entry(pres, ipv6, *pidx);
4258 		(*pidx)++;
4259 	}
4260 }
4261 
4262 
4263 /*
4264  * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4265  */
4266 static void
4267 read_addr_restrictions(
4268 	struct recvbuf *	rbufp
4269 )
4270 {
4271 	u_int idx;
4272 
4273 	idx = 0;
4274 	send_restrict_list(restrictlist4, FALSE, &idx);
4275 	send_restrict_list(restrictlist6, TRUE, &idx);
4276 	ctl_flushpkt(0);
4277 }
4278 
4279 
4280 /*
4281  * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4282  */
4283 static void
4284 read_ordlist(
4285 	struct recvbuf *	rbufp,
4286 	int			restrict_mask
4287 	)
4288 {
4289 	const char ifstats_s[] = "ifstats";
4290 	const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4291 	const char addr_rst_s[] = "addr_restrictions";
4292 	const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4293 	struct ntp_control *	cpkt;
4294 	u_short			qdata_octets;
4295 
4296 	/*
4297 	 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4298 	 * used only for ntpq -c ifstats.  With the addition of reslist
4299 	 * the same opcode was generalized to retrieve ordered lists
4300 	 * which require authentication.  The request data is empty or
4301 	 * contains "ifstats" (not null terminated) to retrieve local
4302 	 * addresses and associated stats.  It is "addr_restrictions"
4303 	 * to retrieve the IPv4 then IPv6 remote address restrictions,
4304 	 * which are access control lists.  Other request data return
4305 	 * CERR_UNKNOWNVAR.
4306 	 */
4307 	cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4308 	qdata_octets = ntohs(cpkt->count);
4309 	if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4310 	    !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4311 		read_ifstats(rbufp);
4312 		return;
4313 	}
4314 	if (a_r_chars == qdata_octets &&
4315 	    !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4316 		read_addr_restrictions(rbufp);
4317 		return;
4318 	}
4319 	ctl_error(CERR_UNKNOWNVAR);
4320 }
4321 
4322 
4323 /*
4324  * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4325  */
4326 static void req_nonce(
4327 	struct recvbuf *	rbufp,
4328 	int			restrict_mask
4329 	)
4330 {
4331 	char	buf[64];
4332 
4333 	generate_nonce(rbufp, buf, sizeof(buf));
4334 	ctl_putunqstr("nonce", buf, strlen(buf));
4335 	ctl_flushpkt(0);
4336 }
4337 
4338 
4339 /*
4340  * read_clockstatus - return clock radio status
4341  */
4342 /*ARGSUSED*/
4343 static void
4344 read_clockstatus(
4345 	struct recvbuf *rbufp,
4346 	int restrict_mask
4347 	)
4348 {
4349 #ifndef REFCLOCK
4350 	/*
4351 	 * If no refclock support, no data to return
4352 	 */
4353 	ctl_error(CERR_BADASSOC);
4354 #else
4355 	const struct ctl_var *	v;
4356 	int			i;
4357 	struct peer *		peer;
4358 	char *			valuep;
4359 	u_char *		wants;
4360 	size_t			wants_alloc;
4361 	int			gotvar;
4362 	const u_char *		cc;
4363 	struct ctl_var *	kv;
4364 	struct refclockstat	cs;
4365 
4366 	if (res_associd != 0) {
4367 		peer = findpeerbyassoc(res_associd);
4368 	} else {
4369 		/*
4370 		 * Find a clock for this jerk.	If the system peer
4371 		 * is a clock use it, else search peer_list for one.
4372 		 */
4373 		if (sys_peer != NULL && (FLAG_REFCLOCK &
4374 		    sys_peer->flags))
4375 			peer = sys_peer;
4376 		else
4377 			for (peer = peer_list;
4378 			     peer != NULL;
4379 			     peer = peer->p_link)
4380 				if (FLAG_REFCLOCK & peer->flags)
4381 					break;
4382 	}
4383 	if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4384 		ctl_error(CERR_BADASSOC);
4385 		return;
4386 	}
4387 	/*
4388 	 * If we got here we have a peer which is a clock. Get his
4389 	 * status.
4390 	 */
4391 	cs.kv_list = NULL;
4392 	refclock_control(&peer->srcadr, NULL, &cs);
4393 	kv = cs.kv_list;
4394 	/*
4395 	 * Look for variables in the packet.
4396 	 */
4397 	rpkt.status = htons(ctlclkstatus(&cs));
4398 	wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4399 	wants = emalloc_zero(wants_alloc);
4400 	gotvar = FALSE;
4401 	while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4402 		if (!(EOV & v->flags)) {
4403 			wants[v->code] = TRUE;
4404 			gotvar = TRUE;
4405 		} else {
4406 			v = ctl_getitem(kv, &valuep);
4407 			NTP_INSIST(NULL != v);
4408 			if (EOV & v->flags) {
4409 				ctl_error(CERR_UNKNOWNVAR);
4410 				free(wants);
4411 				free_varlist(cs.kv_list);
4412 				return;
4413 			}
4414 			wants[CC_MAXCODE + 1 + v->code] = TRUE;
4415 			gotvar = TRUE;
4416 		}
4417 	}
4418 
4419 	if (gotvar) {
4420 		for (i = 1; i <= CC_MAXCODE; i++)
4421 			if (wants[i])
4422 				ctl_putclock(i, &cs, TRUE);
4423 		if (kv != NULL)
4424 			for (i = 0; !(EOV & kv[i].flags); i++)
4425 				if (wants[i + CC_MAXCODE + 1])
4426 					ctl_putdata(kv[i].text,
4427 						    strlen(kv[i].text),
4428 						    FALSE);
4429 	} else {
4430 		for (cc = def_clock_var; *cc != 0; cc++)
4431 			ctl_putclock((int)*cc, &cs, FALSE);
4432 		for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4433 			if (DEF & kv->flags)
4434 				ctl_putdata(kv->text, strlen(kv->text),
4435 					    FALSE);
4436 	}
4437 
4438 	free(wants);
4439 	free_varlist(cs.kv_list);
4440 
4441 	ctl_flushpkt(0);
4442 #endif
4443 }
4444 
4445 
4446 /*
4447  * write_clockstatus - we don't do this
4448  */
4449 /*ARGSUSED*/
4450 static void
4451 write_clockstatus(
4452 	struct recvbuf *rbufp,
4453 	int restrict_mask
4454 	)
4455 {
4456 	ctl_error(CERR_PERMISSION);
4457 }
4458 
4459 /*
4460  * Trap support from here on down. We send async trap messages when the
4461  * upper levels report trouble. Traps can by set either by control
4462  * messages or by configuration.
4463  */
4464 /*
4465  * set_trap - set a trap in response to a control message
4466  */
4467 static void
4468 set_trap(
4469 	struct recvbuf *rbufp,
4470 	int restrict_mask
4471 	)
4472 {
4473 	int traptype;
4474 
4475 	/*
4476 	 * See if this guy is allowed
4477 	 */
4478 	if (restrict_mask & RES_NOTRAP) {
4479 		ctl_error(CERR_PERMISSION);
4480 		return;
4481 	}
4482 
4483 	/*
4484 	 * Determine his allowed trap type.
4485 	 */
4486 	traptype = TRAP_TYPE_PRIO;
4487 	if (restrict_mask & RES_LPTRAP)
4488 		traptype = TRAP_TYPE_NONPRIO;
4489 
4490 	/*
4491 	 * Call ctlsettrap() to do the work.  Return
4492 	 * an error if it can't assign the trap.
4493 	 */
4494 	if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4495 			(int)res_version))
4496 		ctl_error(CERR_NORESOURCE);
4497 	ctl_flushpkt(0);
4498 }
4499 
4500 
4501 /*
4502  * unset_trap - unset a trap in response to a control message
4503  */
4504 static void
4505 unset_trap(
4506 	struct recvbuf *rbufp,
4507 	int restrict_mask
4508 	)
4509 {
4510 	int traptype;
4511 
4512 	/*
4513 	 * We don't prevent anyone from removing his own trap unless the
4514 	 * trap is configured. Note we also must be aware of the
4515 	 * possibility that restriction flags were changed since this
4516 	 * guy last set his trap. Set the trap type based on this.
4517 	 */
4518 	traptype = TRAP_TYPE_PRIO;
4519 	if (restrict_mask & RES_LPTRAP)
4520 		traptype = TRAP_TYPE_NONPRIO;
4521 
4522 	/*
4523 	 * Call ctlclrtrap() to clear this out.
4524 	 */
4525 	if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4526 		ctl_error(CERR_BADASSOC);
4527 	ctl_flushpkt(0);
4528 }
4529 
4530 
4531 /*
4532  * ctlsettrap - called to set a trap
4533  */
4534 int
4535 ctlsettrap(
4536 	sockaddr_u *raddr,
4537 	struct interface *linter,
4538 	int traptype,
4539 	int version
4540 	)
4541 {
4542 	size_t n;
4543 	struct ctl_trap *tp;
4544 	struct ctl_trap *tptouse;
4545 
4546 	/*
4547 	 * See if we can find this trap.  If so, we only need update
4548 	 * the flags and the time.
4549 	 */
4550 	if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4551 		switch (traptype) {
4552 
4553 		case TRAP_TYPE_CONFIG:
4554 			tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4555 			break;
4556 
4557 		case TRAP_TYPE_PRIO:
4558 			if (tp->tr_flags & TRAP_CONFIGURED)
4559 				return (1); /* don't change anything */
4560 			tp->tr_flags = TRAP_INUSE;
4561 			break;
4562 
4563 		case TRAP_TYPE_NONPRIO:
4564 			if (tp->tr_flags & TRAP_CONFIGURED)
4565 				return (1); /* don't change anything */
4566 			tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4567 			break;
4568 		}
4569 		tp->tr_settime = current_time;
4570 		tp->tr_resets++;
4571 		return (1);
4572 	}
4573 
4574 	/*
4575 	 * First we heard of this guy.	Try to find a trap structure
4576 	 * for him to use, clearing out lesser priority guys if we
4577 	 * have to. Clear out anyone who's expired while we're at it.
4578 	 */
4579 	tptouse = NULL;
4580 	for (n = 0; n < COUNTOF(ctl_traps); n++) {
4581 		tp = &ctl_traps[n];
4582 		if ((TRAP_INUSE & tp->tr_flags) &&
4583 		    !(TRAP_CONFIGURED & tp->tr_flags) &&
4584 		    ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4585 			tp->tr_flags = 0;
4586 			num_ctl_traps--;
4587 		}
4588 		if (!(TRAP_INUSE & tp->tr_flags)) {
4589 			tptouse = tp;
4590 		} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4591 			switch (traptype) {
4592 
4593 			case TRAP_TYPE_CONFIG:
4594 				if (tptouse == NULL) {
4595 					tptouse = tp;
4596 					break;
4597 				}
4598 				if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4599 				    !(TRAP_NONPRIO & tp->tr_flags))
4600 					break;
4601 
4602 				if (!(TRAP_NONPRIO & tptouse->tr_flags)
4603 				    && (TRAP_NONPRIO & tp->tr_flags)) {
4604 					tptouse = tp;
4605 					break;
4606 				}
4607 				if (tptouse->tr_origtime <
4608 				    tp->tr_origtime)
4609 					tptouse = tp;
4610 				break;
4611 
4612 			case TRAP_TYPE_PRIO:
4613 				if ( TRAP_NONPRIO & tp->tr_flags) {
4614 					if (tptouse == NULL ||
4615 					    ((TRAP_INUSE &
4616 					      tptouse->tr_flags) &&
4617 					     tptouse->tr_origtime <
4618 					     tp->tr_origtime))
4619 						tptouse = tp;
4620 				}
4621 				break;
4622 
4623 			case TRAP_TYPE_NONPRIO:
4624 				break;
4625 			}
4626 		}
4627 	}
4628 
4629 	/*
4630 	 * If we don't have room for him return an error.
4631 	 */
4632 	if (tptouse == NULL)
4633 		return (0);
4634 
4635 	/*
4636 	 * Set up this structure for him.
4637 	 */
4638 	tptouse->tr_settime = tptouse->tr_origtime = current_time;
4639 	tptouse->tr_count = tptouse->tr_resets = 0;
4640 	tptouse->tr_sequence = 1;
4641 	tptouse->tr_addr = *raddr;
4642 	tptouse->tr_localaddr = linter;
4643 	tptouse->tr_version = (u_char) version;
4644 	tptouse->tr_flags = TRAP_INUSE;
4645 	if (traptype == TRAP_TYPE_CONFIG)
4646 		tptouse->tr_flags |= TRAP_CONFIGURED;
4647 	else if (traptype == TRAP_TYPE_NONPRIO)
4648 		tptouse->tr_flags |= TRAP_NONPRIO;
4649 	num_ctl_traps++;
4650 	return (1);
4651 }
4652 
4653 
4654 /*
4655  * ctlclrtrap - called to clear a trap
4656  */
4657 int
4658 ctlclrtrap(
4659 	sockaddr_u *raddr,
4660 	struct interface *linter,
4661 	int traptype
4662 	)
4663 {
4664 	register struct ctl_trap *tp;
4665 
4666 	if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4667 		return (0);
4668 
4669 	if (tp->tr_flags & TRAP_CONFIGURED
4670 	    && traptype != TRAP_TYPE_CONFIG)
4671 		return (0);
4672 
4673 	tp->tr_flags = 0;
4674 	num_ctl_traps--;
4675 	return (1);
4676 }
4677 
4678 
4679 /*
4680  * ctlfindtrap - find a trap given the remote and local addresses
4681  */
4682 static struct ctl_trap *
4683 ctlfindtrap(
4684 	sockaddr_u *raddr,
4685 	struct interface *linter
4686 	)
4687 {
4688 	size_t	n;
4689 
4690 	for (n = 0; n < COUNTOF(ctl_traps); n++)
4691 		if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4692 		    && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4693 		    && (linter == ctl_traps[n].tr_localaddr))
4694 			return &ctl_traps[n];
4695 
4696 	return NULL;
4697 }
4698 
4699 
4700 /*
4701  * report_event - report an event to the trappers
4702  */
4703 void
4704 report_event(
4705 	int	err,		/* error code */
4706 	struct peer *peer,	/* peer structure pointer */
4707 	const char *str		/* protostats string */
4708 	)
4709 {
4710 	char	statstr[NTP_MAXSTRLEN];
4711 	int	i;
4712 	size_t	len;
4713 
4714 	/*
4715 	 * Report the error to the protostats file, system log and
4716 	 * trappers.
4717 	 */
4718 	if (peer == NULL) {
4719 
4720 		/*
4721 		 * Discard a system report if the number of reports of
4722 		 * the same type exceeds the maximum.
4723 		 */
4724 		if (ctl_sys_last_event != (u_char)err)
4725 			ctl_sys_num_events= 0;
4726 		if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
4727 			return;
4728 
4729 		ctl_sys_last_event = (u_char)err;
4730 		ctl_sys_num_events++;
4731 		snprintf(statstr, sizeof(statstr),
4732 		    "0.0.0.0 %04x %02x %s",
4733 		    ctlsysstatus(), err, eventstr(err));
4734 		if (str != NULL) {
4735 			len = strlen(statstr);
4736 			snprintf(statstr + len, sizeof(statstr) - len,
4737 			    " %s", str);
4738 		}
4739 		NLOG(NLOG_SYSEVENT)
4740 			msyslog(LOG_INFO, "%s", statstr);
4741 	} else {
4742 
4743 		/*
4744 		 * Discard a peer report if the number of reports of
4745 		 * the same type exceeds the maximum for that peer.
4746 		 */
4747 		const char *	src;
4748 		u_char		errlast;
4749 
4750 		errlast = (u_char)err & ~PEER_EVENT;
4751 		if (peer->last_event == errlast)
4752 			peer->num_events = 0;
4753 		if (peer->num_events >= CTL_PEER_MAXEVENTS)
4754 			return;
4755 
4756 		peer->last_event = errlast;
4757 		peer->num_events++;
4758 		if (ISREFCLOCKADR(&peer->srcadr))
4759 			src = refnumtoa(&peer->srcadr);
4760 		else
4761 			src = stoa(&peer->srcadr);
4762 
4763 		snprintf(statstr, sizeof(statstr),
4764 		    "%s %04x %02x %s", src,
4765 		    ctlpeerstatus(peer), err, eventstr(err));
4766 		if (str != NULL) {
4767 			len = strlen(statstr);
4768 			snprintf(statstr + len, sizeof(statstr) - len,
4769 			    " %s", str);
4770 		}
4771 		NLOG(NLOG_PEEREVENT)
4772 			msyslog(LOG_INFO, "%s", statstr);
4773 	}
4774 	record_proto_stats(statstr);
4775 #if DEBUG
4776 	if (debug)
4777 		printf("event at %lu %s\n", current_time, statstr);
4778 #endif
4779 
4780 	/*
4781 	 * If no trappers, return.
4782 	 */
4783 	if (num_ctl_traps <= 0)
4784 		return;
4785 
4786 	/*
4787 	 * Set up the outgoing packet variables
4788 	 */
4789 	res_opcode = CTL_OP_ASYNCMSG;
4790 	res_offset = 0;
4791 	res_async = TRUE;
4792 	res_authenticate = FALSE;
4793 	datapt = rpkt.u.data;
4794 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
4795 	if (!(err & PEER_EVENT)) {
4796 		rpkt.associd = 0;
4797 		rpkt.status = htons(ctlsysstatus());
4798 
4799 		/* Include the core system variables and the list. */
4800 		for (i = 1; i <= CS_VARLIST; i++)
4801 			ctl_putsys(i);
4802 	} else {
4803 		NTP_INSIST(peer != NULL);
4804 		rpkt.associd = htons(peer->associd);
4805 		rpkt.status = htons(ctlpeerstatus(peer));
4806 
4807 		/* Dump it all. Later, maybe less. */
4808 		for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
4809 			ctl_putpeer(i, peer);
4810 #ifdef REFCLOCK
4811 		/*
4812 		 * for clock exception events: add clock variables to
4813 		 * reflect info on exception
4814 		 */
4815 		if (err == PEVNT_CLOCK) {
4816 			struct refclockstat cs;
4817 			struct ctl_var *kv;
4818 
4819 			cs.kv_list = NULL;
4820 			refclock_control(&peer->srcadr, NULL, &cs);
4821 
4822 			ctl_puthex("refclockstatus",
4823 				   ctlclkstatus(&cs));
4824 
4825 			for (i = 1; i <= CC_MAXCODE; i++)
4826 				ctl_putclock(i, &cs, FALSE);
4827 			for (kv = cs.kv_list;
4828 			     kv != NULL && !(EOV & kv->flags);
4829 			     kv++)
4830 				if (DEF & kv->flags)
4831 					ctl_putdata(kv->text,
4832 						    strlen(kv->text),
4833 						    FALSE);
4834 			free_varlist(cs.kv_list);
4835 		}
4836 #endif /* REFCLOCK */
4837 	}
4838 
4839 	/*
4840 	 * We're done, return.
4841 	 */
4842 	ctl_flushpkt(0);
4843 }
4844 
4845 
4846 /*
4847  * mprintf_event - printf-style varargs variant of report_event()
4848  */
4849 int
4850 mprintf_event(
4851 	int		evcode,		/* event code */
4852 	struct peer *	p,		/* may be NULL */
4853 	const char *	fmt,		/* msnprintf format */
4854 	...
4855 	)
4856 {
4857 	va_list	ap;
4858 	int	rc;
4859 	char	msg[512];
4860 
4861 	va_start(ap, fmt);
4862 	rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
4863 	va_end(ap);
4864 	report_event(evcode, p, msg);
4865 
4866 	return rc;
4867 }
4868 
4869 
4870 /*
4871  * ctl_clr_stats - clear stat counters
4872  */
4873 void
4874 ctl_clr_stats(void)
4875 {
4876 	ctltimereset = current_time;
4877 	numctlreq = 0;
4878 	numctlbadpkts = 0;
4879 	numctlresponses = 0;
4880 	numctlfrags = 0;
4881 	numctlerrors = 0;
4882 	numctlfrags = 0;
4883 	numctltooshort = 0;
4884 	numctlinputresp = 0;
4885 	numctlinputfrag = 0;
4886 	numctlinputerr = 0;
4887 	numctlbadoffset = 0;
4888 	numctlbadversion = 0;
4889 	numctldatatooshort = 0;
4890 	numctlbadop = 0;
4891 	numasyncmsgs = 0;
4892 }
4893 
4894 static u_short
4895 count_var(
4896 	const struct ctl_var *k
4897 	)
4898 {
4899 	u_int c;
4900 
4901 	if (NULL == k)
4902 		return 0;
4903 
4904 	c = 0;
4905 	while (!(EOV & (k++)->flags))
4906 		c++;
4907 
4908 	NTP_ENSURE(c <= USHRT_MAX);
4909 	return (u_short)c;
4910 }
4911 
4912 
4913 char *
4914 add_var(
4915 	struct ctl_var **kv,
4916 	u_long size,
4917 	u_short def
4918 	)
4919 {
4920 	u_short		c;
4921 	struct ctl_var *k;
4922 	char *		buf;
4923 
4924 	c = count_var(*kv);
4925 	*kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
4926 	k = *kv;
4927 	buf = emalloc(size);
4928 	k[c].code  = c;
4929 	k[c].text  = buf;
4930 	k[c].flags = def;
4931 	k[c + 1].code  = 0;
4932 	k[c + 1].text  = NULL;
4933 	k[c + 1].flags = EOV;
4934 
4935 	return buf;
4936 }
4937 
4938 
4939 void
4940 set_var(
4941 	struct ctl_var **kv,
4942 	const char *data,
4943 	u_long size,
4944 	u_short def
4945 	)
4946 {
4947 	struct ctl_var *k;
4948 	const char *s;
4949 	const char *t;
4950 	char *td;
4951 
4952 	if (NULL == data || !size)
4953 		return;
4954 
4955 	k = *kv;
4956 	if (k != NULL) {
4957 		while (!(EOV & k->flags)) {
4958 			if (NULL == k->text)	{
4959 				td = emalloc(size);
4960 				memcpy(td, data, size);
4961 				k->text = td;
4962 				k->flags = def;
4963 				return;
4964 			} else {
4965 				s = data;
4966 				t = k->text;
4967 				while (*t != '=' && *s == *t) {
4968 					s++;
4969 					t++;
4970 				}
4971 				if (*s == *t && ((*t == '=') || !*t)) {
4972 					td = erealloc((void *)(intptr_t)k->text, size);
4973 					memcpy(td, data, size);
4974 					k->text = td;
4975 					k->flags = def;
4976 					return;
4977 				}
4978 			}
4979 			k++;
4980 		}
4981 	}
4982 	td = add_var(kv, size, def);
4983 	memcpy(td, data, size);
4984 }
4985 
4986 
4987 void
4988 set_sys_var(
4989 	const char *data,
4990 	u_long size,
4991 	u_short def
4992 	)
4993 {
4994 	set_var(&ext_sys_var, data, size, def);
4995 }
4996 
4997 
4998 /*
4999  * get_ext_sys_var() retrieves the value of a user-defined variable or
5000  * NULL if the variable has not been setvar'd.
5001  */
5002 const char *
5003 get_ext_sys_var(const char *tag)
5004 {
5005 	struct ctl_var *	v;
5006 	size_t			c;
5007 	const char *		val;
5008 
5009 	val = NULL;
5010 	c = strlen(tag);
5011 	for (v = ext_sys_var; !(EOV & v->flags); v++) {
5012 		if (NULL != v->text && !memcmp(tag, v->text, c)) {
5013 			if ('=' == v->text[c]) {
5014 				val = v->text + c + 1;
5015 				break;
5016 			} else if ('\0' == v->text[c]) {
5017 				val = "";
5018 				break;
5019 			}
5020 		}
5021 	}
5022 
5023 	return val;
5024 }
5025 
5026 
5027 void
5028 free_varlist(
5029 	struct ctl_var *kv
5030 	)
5031 {
5032 	struct ctl_var *k;
5033 	if (kv) {
5034 		for (k = kv; !(k->flags & EOV); k++)
5035 			free((void *)(intptr_t)k->text);
5036 		free((void *)kv);
5037 	}
5038 }
5039