xref: /freebsd/contrib/ntp/ntpd/ntp_control.c (revision b78ee15e9f04ae15c3e1200df974473167524d17)
1 /*
2  * ntp_control.c - respond to mode 6 control messages and send async
3  *		   traps.  Provides service to ntpq and others.
4  */
5 
6 /*
7  * $FreeBSD: head/contrib/ntp/ntpd/ntp_control.c 276071 2014-12-22 18:54:55Z delphij $
8  */
9 
10 #ifdef HAVE_CONFIG_H
11 # include <config.h>
12 #endif
13 
14 #include <stdio.h>
15 #include <ctype.h>
16 #include <signal.h>
17 #include <sys/stat.h>
18 #ifdef HAVE_NETINET_IN_H
19 # include <netinet/in.h>
20 #endif
21 #include <arpa/inet.h>
22 
23 #include "ntpd.h"
24 #include "ntp_io.h"
25 #include "ntp_refclock.h"
26 #include "ntp_control.h"
27 #include "ntp_unixtime.h"
28 #include "ntp_stdlib.h"
29 #include "ntp_config.h"
30 #include "ntp_crypto.h"
31 #include "ntp_assert.h"
32 #include "ntp_leapsec.h"
33 #include "ntp_md5.h"	/* provides OpenSSL digest API */
34 #include "lib_strbuf.h"
35 #ifdef KERNEL_PLL
36 # include "ntp_syscall.h"
37 #endif
38 
39 
40 #ifndef MIN
41 #define MIN(a, b) (((a) <= (b)) ? (a) : (b))
42 #endif
43 
44 /*
45  * Structure to hold request procedure information
46  */
47 
48 struct ctl_proc {
49 	short control_code;		/* defined request code */
50 #define NO_REQUEST	(-1)
51 	u_short flags;			/* flags word */
52 	/* Only one flag.  Authentication required or not. */
53 #define NOAUTH	0
54 #define AUTH	1
55 	void (*handler) (struct recvbuf *, int); /* handle request */
56 };
57 
58 
59 /*
60  * Request processing routines
61  */
62 static	void	ctl_error	(u_char);
63 #ifdef REFCLOCK
64 static	u_short ctlclkstatus	(struct refclockstat *);
65 #endif
66 static	void	ctl_flushpkt	(u_char);
67 static	void	ctl_putdata	(const char *, unsigned int, int);
68 static	void	ctl_putstr	(const char *, const char *, size_t);
69 static	void	ctl_putdblf	(const char *, int, int, double);
70 #define	ctl_putdbl(tag, d)	ctl_putdblf(tag, 1, 3, d)
71 #define	ctl_putdbl6(tag, d)	ctl_putdblf(tag, 1, 6, d)
72 #define	ctl_putsfp(tag, sfp)	ctl_putdblf(tag, 0, -1, \
73 					    FPTOD(sfp))
74 static	void	ctl_putuint	(const char *, u_long);
75 static	void	ctl_puthex	(const char *, u_long);
76 static	void	ctl_putint	(const char *, long);
77 static	void	ctl_putts	(const char *, l_fp *);
78 static	void	ctl_putadr	(const char *, u_int32,
79 				 sockaddr_u *);
80 static	void	ctl_putrefid	(const char *, u_int32);
81 static	void	ctl_putarray	(const char *, double *, int);
82 static	void	ctl_putsys	(int);
83 static	void	ctl_putpeer	(int, struct peer *);
84 static	void	ctl_putfs	(const char *, tstamp_t);
85 #ifdef REFCLOCK
86 static	void	ctl_putclock	(int, struct refclockstat *, int);
87 #endif	/* REFCLOCK */
88 static	const struct ctl_var *ctl_getitem(const struct ctl_var *,
89 					  char **);
90 static	u_short	count_var	(const struct ctl_var *);
91 static	void	control_unspec	(struct recvbuf *, int);
92 static	void	read_status	(struct recvbuf *, int);
93 static	void	read_sysvars	(void);
94 static	void	read_peervars	(void);
95 static	void	read_variables	(struct recvbuf *, int);
96 static	void	write_variables (struct recvbuf *, int);
97 static	void	read_clockstatus(struct recvbuf *, int);
98 static	void	write_clockstatus(struct recvbuf *, int);
99 static	void	set_trap	(struct recvbuf *, int);
100 static	void	save_config	(struct recvbuf *, int);
101 static	void	configure	(struct recvbuf *, int);
102 static	void	send_mru_entry	(mon_entry *, int);
103 static	void	send_random_tag_value(int);
104 static	void	read_mru_list	(struct recvbuf *, int);
105 static	void	send_ifstats_entry(endpt *, u_int);
106 static	void	read_ifstats	(struct recvbuf *);
107 static	void	sockaddrs_from_restrict_u(sockaddr_u *,	sockaddr_u *,
108 					  restrict_u *, int);
109 static	void	send_restrict_entry(restrict_u *, int, u_int);
110 static	void	send_restrict_list(restrict_u *, int, u_int *);
111 static	void	read_addr_restrictions(struct recvbuf *);
112 static	void	read_ordlist	(struct recvbuf *, int);
113 static	u_int32	derive_nonce	(sockaddr_u *, u_int32, u_int32);
114 static	void	generate_nonce	(struct recvbuf *, char *, size_t);
115 static	int	validate_nonce	(const char *, struct recvbuf *);
116 static	void	req_nonce	(struct recvbuf *, int);
117 static	void	unset_trap	(struct recvbuf *, int);
118 static	struct ctl_trap *ctlfindtrap(sockaddr_u *,
119 				     struct interface *);
120 
121 static const struct ctl_proc control_codes[] = {
122 	{ CTL_OP_UNSPEC,		NOAUTH,	control_unspec },
123 	{ CTL_OP_READSTAT,		NOAUTH,	read_status },
124 	{ CTL_OP_READVAR,		NOAUTH,	read_variables },
125 	{ CTL_OP_WRITEVAR,		AUTH,	write_variables },
126 	{ CTL_OP_READCLOCK,		NOAUTH,	read_clockstatus },
127 	{ CTL_OP_WRITECLOCK,		NOAUTH,	write_clockstatus },
128 	{ CTL_OP_SETTRAP,		NOAUTH,	set_trap },
129 	{ CTL_OP_CONFIGURE,		AUTH,	configure },
130 	{ CTL_OP_SAVECONFIG,		AUTH,	save_config },
131 	{ CTL_OP_READ_MRU,		NOAUTH,	read_mru_list },
132 	{ CTL_OP_READ_ORDLIST_A,	AUTH,	read_ordlist },
133 	{ CTL_OP_REQ_NONCE,		NOAUTH,	req_nonce },
134 	{ CTL_OP_UNSETTRAP,		NOAUTH,	unset_trap },
135 	{ NO_REQUEST,			0,	NULL }
136 };
137 
138 /*
139  * System variables we understand
140  */
141 #define	CS_LEAP			1
142 #define	CS_STRATUM		2
143 #define	CS_PRECISION		3
144 #define	CS_ROOTDELAY		4
145 #define	CS_ROOTDISPERSION	5
146 #define	CS_REFID		6
147 #define	CS_REFTIME		7
148 #define	CS_POLL			8
149 #define	CS_PEERID		9
150 #define	CS_OFFSET		10
151 #define	CS_DRIFT		11
152 #define	CS_JITTER		12
153 #define	CS_ERROR		13
154 #define	CS_CLOCK		14
155 #define	CS_PROCESSOR		15
156 #define	CS_SYSTEM		16
157 #define	CS_VERSION		17
158 #define	CS_STABIL		18
159 #define	CS_VARLIST		19
160 #define	CS_TAI			20
161 #define	CS_LEAPTAB		21
162 #define	CS_LEAPEND		22
163 #define	CS_RATE			23
164 #define	CS_MRU_ENABLED		24
165 #define	CS_MRU_DEPTH		25
166 #define	CS_MRU_DEEPEST		26
167 #define	CS_MRU_MINDEPTH		27
168 #define	CS_MRU_MAXAGE		28
169 #define	CS_MRU_MAXDEPTH		29
170 #define	CS_MRU_MEM		30
171 #define	CS_MRU_MAXMEM		31
172 #define	CS_SS_UPTIME		32
173 #define	CS_SS_RESET		33
174 #define	CS_SS_RECEIVED		34
175 #define	CS_SS_THISVER		35
176 #define	CS_SS_OLDVER		36
177 #define	CS_SS_BADFORMAT		37
178 #define	CS_SS_BADAUTH		38
179 #define	CS_SS_DECLINED		39
180 #define	CS_SS_RESTRICTED	40
181 #define	CS_SS_LIMITED		41
182 #define	CS_SS_KODSENT		42
183 #define	CS_SS_PROCESSED		43
184 #define	CS_PEERADR		44
185 #define	CS_PEERMODE		45
186 #define	CS_BCASTDELAY		46
187 #define	CS_AUTHDELAY		47
188 #define	CS_AUTHKEYS		48
189 #define	CS_AUTHFREEK		49
190 #define	CS_AUTHKLOOKUPS		50
191 #define	CS_AUTHKNOTFOUND	51
192 #define	CS_AUTHKUNCACHED	52
193 #define	CS_AUTHKEXPIRED		53
194 #define	CS_AUTHENCRYPTS		54
195 #define	CS_AUTHDECRYPTS		55
196 #define	CS_AUTHRESET		56
197 #define	CS_K_OFFSET		57
198 #define	CS_K_FREQ		58
199 #define	CS_K_MAXERR		59
200 #define	CS_K_ESTERR		60
201 #define	CS_K_STFLAGS		61
202 #define	CS_K_TIMECONST		62
203 #define	CS_K_PRECISION		63
204 #define	CS_K_FREQTOL		64
205 #define	CS_K_PPS_FREQ		65
206 #define	CS_K_PPS_STABIL		66
207 #define	CS_K_PPS_JITTER		67
208 #define	CS_K_PPS_CALIBDUR	68
209 #define	CS_K_PPS_CALIBS		69
210 #define	CS_K_PPS_CALIBERRS	70
211 #define	CS_K_PPS_JITEXC		71
212 #define	CS_K_PPS_STBEXC		72
213 #define	CS_KERN_FIRST		CS_K_OFFSET
214 #define	CS_KERN_LAST		CS_K_PPS_STBEXC
215 #define	CS_IOSTATS_RESET	73
216 #define	CS_TOTAL_RBUF		74
217 #define	CS_FREE_RBUF		75
218 #define	CS_USED_RBUF		76
219 #define	CS_RBUF_LOWATER		77
220 #define	CS_IO_DROPPED		78
221 #define	CS_IO_IGNORED		79
222 #define	CS_IO_RECEIVED		80
223 #define	CS_IO_SENT		81
224 #define	CS_IO_SENDFAILED	82
225 #define	CS_IO_WAKEUPS		83
226 #define	CS_IO_GOODWAKEUPS	84
227 #define	CS_TIMERSTATS_RESET	85
228 #define	CS_TIMER_OVERRUNS	86
229 #define	CS_TIMER_XMTS		87
230 #define	CS_FUZZ			88
231 #define	CS_WANDER_THRESH	89
232 #define	CS_MAX_NOAUTOKEY	CS_WANDER_THRESH
233 #ifdef AUTOKEY
234 #define	CS_FLAGS		(1 + CS_MAX_NOAUTOKEY)
235 #define	CS_HOST			(2 + CS_MAX_NOAUTOKEY)
236 #define	CS_PUBLIC		(3 + CS_MAX_NOAUTOKEY)
237 #define	CS_CERTIF		(4 + CS_MAX_NOAUTOKEY)
238 #define	CS_SIGNATURE		(5 + CS_MAX_NOAUTOKEY)
239 #define	CS_REVTIME		(6 + CS_MAX_NOAUTOKEY)
240 #define	CS_IDENT		(7 + CS_MAX_NOAUTOKEY)
241 #define	CS_DIGEST		(8 + CS_MAX_NOAUTOKEY)
242 #define	CS_MAXCODE		CS_DIGEST
243 #else	/* !AUTOKEY follows */
244 #define	CS_MAXCODE		CS_MAX_NOAUTOKEY
245 #endif	/* !AUTOKEY */
246 
247 /*
248  * Peer variables we understand
249  */
250 #define	CP_CONFIG		1
251 #define	CP_AUTHENABLE		2
252 #define	CP_AUTHENTIC		3
253 #define	CP_SRCADR		4
254 #define	CP_SRCPORT		5
255 #define	CP_DSTADR		6
256 #define	CP_DSTPORT		7
257 #define	CP_LEAP			8
258 #define	CP_HMODE		9
259 #define	CP_STRATUM		10
260 #define	CP_PPOLL		11
261 #define	CP_HPOLL		12
262 #define	CP_PRECISION		13
263 #define	CP_ROOTDELAY		14
264 #define	CP_ROOTDISPERSION	15
265 #define	CP_REFID		16
266 #define	CP_REFTIME		17
267 #define	CP_ORG			18
268 #define	CP_REC			19
269 #define	CP_XMT			20
270 #define	CP_REACH		21
271 #define	CP_UNREACH		22
272 #define	CP_TIMER		23
273 #define	CP_DELAY		24
274 #define	CP_OFFSET		25
275 #define	CP_JITTER		26
276 #define	CP_DISPERSION		27
277 #define	CP_KEYID		28
278 #define	CP_FILTDELAY		29
279 #define	CP_FILTOFFSET		30
280 #define	CP_PMODE		31
281 #define	CP_RECEIVED		32
282 #define	CP_SENT			33
283 #define	CP_FILTERROR		34
284 #define	CP_FLASH		35
285 #define	CP_TTL			36
286 #define	CP_VARLIST		37
287 #define	CP_IN			38
288 #define	CP_OUT			39
289 #define	CP_RATE			40
290 #define	CP_BIAS			41
291 #define	CP_SRCHOST		42
292 #define	CP_TIMEREC		43
293 #define	CP_TIMEREACH		44
294 #define	CP_BADAUTH		45
295 #define	CP_BOGUSORG		46
296 #define	CP_OLDPKT		47
297 #define	CP_SELDISP		48
298 #define	CP_SELBROKEN		49
299 #define	CP_CANDIDATE		50
300 #define	CP_MAX_NOAUTOKEY	CP_CANDIDATE
301 #ifdef AUTOKEY
302 #define	CP_FLAGS		(1 + CP_MAX_NOAUTOKEY)
303 #define	CP_HOST			(2 + CP_MAX_NOAUTOKEY)
304 #define	CP_VALID		(3 + CP_MAX_NOAUTOKEY)
305 #define	CP_INITSEQ		(4 + CP_MAX_NOAUTOKEY)
306 #define	CP_INITKEY		(5 + CP_MAX_NOAUTOKEY)
307 #define	CP_INITTSP		(6 + CP_MAX_NOAUTOKEY)
308 #define	CP_SIGNATURE		(7 + CP_MAX_NOAUTOKEY)
309 #define	CP_IDENT		(8 + CP_MAX_NOAUTOKEY)
310 #define	CP_MAXCODE		CP_IDENT
311 #else	/* !AUTOKEY follows */
312 #define	CP_MAXCODE		CP_MAX_NOAUTOKEY
313 #endif	/* !AUTOKEY */
314 
315 /*
316  * Clock variables we understand
317  */
318 #define	CC_TYPE		1
319 #define	CC_TIMECODE	2
320 #define	CC_POLL		3
321 #define	CC_NOREPLY	4
322 #define	CC_BADFORMAT	5
323 #define	CC_BADDATA	6
324 #define	CC_FUDGETIME1	7
325 #define	CC_FUDGETIME2	8
326 #define	CC_FUDGEVAL1	9
327 #define	CC_FUDGEVAL2	10
328 #define	CC_FLAGS	11
329 #define	CC_DEVICE	12
330 #define	CC_VARLIST	13
331 #define	CC_MAXCODE	CC_VARLIST
332 
333 /*
334  * System variable values. The array can be indexed by the variable
335  * index to find the textual name.
336  */
337 static const struct ctl_var sys_var[] = {
338 	{ 0,		PADDING, "" },		/* 0 */
339 	{ CS_LEAP,	RW, "leap" },		/* 1 */
340 	{ CS_STRATUM,	RO, "stratum" },	/* 2 */
341 	{ CS_PRECISION, RO, "precision" },	/* 3 */
342 	{ CS_ROOTDELAY, RO, "rootdelay" },	/* 4 */
343 	{ CS_ROOTDISPERSION, RO, "rootdisp" },	/* 5 */
344 	{ CS_REFID,	RO, "refid" },		/* 6 */
345 	{ CS_REFTIME,	RO, "reftime" },	/* 7 */
346 	{ CS_POLL,	RO, "tc" },		/* 8 */
347 	{ CS_PEERID,	RO, "peer" },		/* 9 */
348 	{ CS_OFFSET,	RO, "offset" },		/* 10 */
349 	{ CS_DRIFT,	RO, "frequency" },	/* 11 */
350 	{ CS_JITTER,	RO, "sys_jitter" },	/* 12 */
351 	{ CS_ERROR,	RO, "clk_jitter" },	/* 13 */
352 	{ CS_CLOCK,	RO, "clock" },		/* 14 */
353 	{ CS_PROCESSOR, RO, "processor" },	/* 15 */
354 	{ CS_SYSTEM,	RO, "system" },		/* 16 */
355 	{ CS_VERSION,	RO, "version" },	/* 17 */
356 	{ CS_STABIL,	RO, "clk_wander" },	/* 18 */
357 	{ CS_VARLIST,	RO, "sys_var_list" },	/* 19 */
358 	{ CS_TAI,	RO, "tai" },		/* 20 */
359 	{ CS_LEAPTAB,	RO, "leapsec" },	/* 21 */
360 	{ CS_LEAPEND,	RO, "expire" },		/* 22 */
361 	{ CS_RATE,	RO, "mintc" },		/* 23 */
362 	{ CS_MRU_ENABLED,	RO, "mru_enabled" },	/* 24 */
363 	{ CS_MRU_DEPTH,		RO, "mru_depth" },	/* 25 */
364 	{ CS_MRU_DEEPEST,	RO, "mru_deepest" },	/* 26 */
365 	{ CS_MRU_MINDEPTH,	RO, "mru_mindepth" },	/* 27 */
366 	{ CS_MRU_MAXAGE,	RO, "mru_maxage" },	/* 28 */
367 	{ CS_MRU_MAXDEPTH,	RO, "mru_maxdepth" },	/* 29 */
368 	{ CS_MRU_MEM,		RO, "mru_mem" },	/* 30 */
369 	{ CS_MRU_MAXMEM,	RO, "mru_maxmem" },	/* 31 */
370 	{ CS_SS_UPTIME,		RO, "ss_uptime" },	/* 32 */
371 	{ CS_SS_RESET,		RO, "ss_reset" },	/* 33 */
372 	{ CS_SS_RECEIVED,	RO, "ss_received" },	/* 34 */
373 	{ CS_SS_THISVER,	RO, "ss_thisver" },	/* 35 */
374 	{ CS_SS_OLDVER,		RO, "ss_oldver" },	/* 36 */
375 	{ CS_SS_BADFORMAT,	RO, "ss_badformat" },	/* 37 */
376 	{ CS_SS_BADAUTH,	RO, "ss_badauth" },	/* 38 */
377 	{ CS_SS_DECLINED,	RO, "ss_declined" },	/* 39 */
378 	{ CS_SS_RESTRICTED,	RO, "ss_restricted" },	/* 40 */
379 	{ CS_SS_LIMITED,	RO, "ss_limited" },	/* 41 */
380 	{ CS_SS_KODSENT,	RO, "ss_kodsent" },	/* 42 */
381 	{ CS_SS_PROCESSED,	RO, "ss_processed" },	/* 43 */
382 	{ CS_PEERADR,		RO, "peeradr" },	/* 44 */
383 	{ CS_PEERMODE,		RO, "peermode" },	/* 45 */
384 	{ CS_BCASTDELAY,	RO, "bcastdelay" },	/* 46 */
385 	{ CS_AUTHDELAY,		RO, "authdelay" },	/* 47 */
386 	{ CS_AUTHKEYS,		RO, "authkeys" },	/* 48 */
387 	{ CS_AUTHFREEK,		RO, "authfreek" },	/* 49 */
388 	{ CS_AUTHKLOOKUPS,	RO, "authklookups" },	/* 50 */
389 	{ CS_AUTHKNOTFOUND,	RO, "authknotfound" },	/* 51 */
390 	{ CS_AUTHKUNCACHED,	RO, "authkuncached" },	/* 52 */
391 	{ CS_AUTHKEXPIRED,	RO, "authkexpired" },	/* 53 */
392 	{ CS_AUTHENCRYPTS,	RO, "authencrypts" },	/* 54 */
393 	{ CS_AUTHDECRYPTS,	RO, "authdecrypts" },	/* 55 */
394 	{ CS_AUTHRESET,		RO, "authreset" },	/* 56 */
395 	{ CS_K_OFFSET,		RO, "koffset" },	/* 57 */
396 	{ CS_K_FREQ,		RO, "kfreq" },		/* 58 */
397 	{ CS_K_MAXERR,		RO, "kmaxerr" },	/* 59 */
398 	{ CS_K_ESTERR,		RO, "kesterr" },	/* 60 */
399 	{ CS_K_STFLAGS,		RO, "kstflags" },	/* 61 */
400 	{ CS_K_TIMECONST,	RO, "ktimeconst" },	/* 62 */
401 	{ CS_K_PRECISION,	RO, "kprecis" },	/* 63 */
402 	{ CS_K_FREQTOL,		RO, "kfreqtol" },	/* 64 */
403 	{ CS_K_PPS_FREQ,	RO, "kppsfreq" },	/* 65 */
404 	{ CS_K_PPS_STABIL,	RO, "kppsstab" },	/* 66 */
405 	{ CS_K_PPS_JITTER,	RO, "kppsjitter" },	/* 67 */
406 	{ CS_K_PPS_CALIBDUR,	RO, "kppscalibdur" },	/* 68 */
407 	{ CS_K_PPS_CALIBS,	RO, "kppscalibs" },	/* 69 */
408 	{ CS_K_PPS_CALIBERRS,	RO, "kppscaliberrs" },	/* 70 */
409 	{ CS_K_PPS_JITEXC,	RO, "kppsjitexc" },	/* 71 */
410 	{ CS_K_PPS_STBEXC,	RO, "kppsstbexc" },	/* 72 */
411 	{ CS_IOSTATS_RESET,	RO, "iostats_reset" },	/* 73 */
412 	{ CS_TOTAL_RBUF,	RO, "total_rbuf" },	/* 74 */
413 	{ CS_FREE_RBUF,		RO, "free_rbuf" },	/* 75 */
414 	{ CS_USED_RBUF,		RO, "used_rbuf" },	/* 76 */
415 	{ CS_RBUF_LOWATER,	RO, "rbuf_lowater" },	/* 77 */
416 	{ CS_IO_DROPPED,	RO, "io_dropped" },	/* 78 */
417 	{ CS_IO_IGNORED,	RO, "io_ignored" },	/* 79 */
418 	{ CS_IO_RECEIVED,	RO, "io_received" },	/* 80 */
419 	{ CS_IO_SENT,		RO, "io_sent" },	/* 81 */
420 	{ CS_IO_SENDFAILED,	RO, "io_sendfailed" },	/* 82 */
421 	{ CS_IO_WAKEUPS,	RO, "io_wakeups" },	/* 83 */
422 	{ CS_IO_GOODWAKEUPS,	RO, "io_goodwakeups" },	/* 84 */
423 	{ CS_TIMERSTATS_RESET,	RO, "timerstats_reset" },/* 85 */
424 	{ CS_TIMER_OVERRUNS,	RO, "timer_overruns" },	/* 86 */
425 	{ CS_TIMER_XMTS,	RO, "timer_xmts" },	/* 87 */
426 	{ CS_FUZZ,		RO, "fuzz" },		/* 88 */
427 	{ CS_WANDER_THRESH,	RO, "clk_wander_threshold" }, /* 89 */
428 #ifdef AUTOKEY
429 	{ CS_FLAGS,	RO, "flags" },		/* 1 + CS_MAX_NOAUTOKEY */
430 	{ CS_HOST,	RO, "host" },		/* 2 + CS_MAX_NOAUTOKEY */
431 	{ CS_PUBLIC,	RO, "update" },		/* 3 + CS_MAX_NOAUTOKEY */
432 	{ CS_CERTIF,	RO, "cert" },		/* 4 + CS_MAX_NOAUTOKEY */
433 	{ CS_SIGNATURE,	RO, "signature" },	/* 5 + CS_MAX_NOAUTOKEY */
434 	{ CS_REVTIME,	RO, "until" },		/* 6 + CS_MAX_NOAUTOKEY */
435 	{ CS_IDENT,	RO, "ident" },		/* 7 + CS_MAX_NOAUTOKEY */
436 	{ CS_DIGEST,	RO, "digest" },		/* 8 + CS_MAX_NOAUTOKEY */
437 #endif	/* AUTOKEY */
438 	{ 0,		EOV, "" }		/* 87/95 */
439 };
440 
441 static struct ctl_var *ext_sys_var = NULL;
442 
443 /*
444  * System variables we print by default (in fuzzball order,
445  * more-or-less)
446  */
447 static const u_char def_sys_var[] = {
448 	CS_VERSION,
449 	CS_PROCESSOR,
450 	CS_SYSTEM,
451 	CS_LEAP,
452 	CS_STRATUM,
453 	CS_PRECISION,
454 	CS_ROOTDELAY,
455 	CS_ROOTDISPERSION,
456 	CS_REFID,
457 	CS_REFTIME,
458 	CS_CLOCK,
459 	CS_PEERID,
460 	CS_POLL,
461 	CS_RATE,
462 	CS_OFFSET,
463 	CS_DRIFT,
464 	CS_JITTER,
465 	CS_ERROR,
466 	CS_STABIL,
467 	CS_TAI,
468 	CS_LEAPTAB,
469 	CS_LEAPEND,
470 #ifdef AUTOKEY
471 	CS_HOST,
472 	CS_IDENT,
473 	CS_FLAGS,
474 	CS_DIGEST,
475 	CS_SIGNATURE,
476 	CS_PUBLIC,
477 	CS_CERTIF,
478 #endif	/* AUTOKEY */
479 	0
480 };
481 
482 
483 /*
484  * Peer variable list
485  */
486 static const struct ctl_var peer_var[] = {
487 	{ 0,		PADDING, "" },		/* 0 */
488 	{ CP_CONFIG,	RO, "config" },		/* 1 */
489 	{ CP_AUTHENABLE, RO,	"authenable" },	/* 2 */
490 	{ CP_AUTHENTIC, RO, "authentic" },	/* 3 */
491 	{ CP_SRCADR,	RO, "srcadr" },		/* 4 */
492 	{ CP_SRCPORT,	RO, "srcport" },	/* 5 */
493 	{ CP_DSTADR,	RO, "dstadr" },		/* 6 */
494 	{ CP_DSTPORT,	RO, "dstport" },	/* 7 */
495 	{ CP_LEAP,	RO, "leap" },		/* 8 */
496 	{ CP_HMODE,	RO, "hmode" },		/* 9 */
497 	{ CP_STRATUM,	RO, "stratum" },	/* 10 */
498 	{ CP_PPOLL,	RO, "ppoll" },		/* 11 */
499 	{ CP_HPOLL,	RO, "hpoll" },		/* 12 */
500 	{ CP_PRECISION,	RO, "precision" },	/* 13 */
501 	{ CP_ROOTDELAY,	RO, "rootdelay" },	/* 14 */
502 	{ CP_ROOTDISPERSION, RO, "rootdisp" },	/* 15 */
503 	{ CP_REFID,	RO, "refid" },		/* 16 */
504 	{ CP_REFTIME,	RO, "reftime" },	/* 17 */
505 	{ CP_ORG,	RO, "org" },		/* 18 */
506 	{ CP_REC,	RO, "rec" },		/* 19 */
507 	{ CP_XMT,	RO, "xleave" },		/* 20 */
508 	{ CP_REACH,	RO, "reach" },		/* 21 */
509 	{ CP_UNREACH,	RO, "unreach" },	/* 22 */
510 	{ CP_TIMER,	RO, "timer" },		/* 23 */
511 	{ CP_DELAY,	RO, "delay" },		/* 24 */
512 	{ CP_OFFSET,	RO, "offset" },		/* 25 */
513 	{ CP_JITTER,	RO, "jitter" },		/* 26 */
514 	{ CP_DISPERSION, RO, "dispersion" },	/* 27 */
515 	{ CP_KEYID,	RO, "keyid" },		/* 28 */
516 	{ CP_FILTDELAY,	RO, "filtdelay" },	/* 29 */
517 	{ CP_FILTOFFSET, RO, "filtoffset" },	/* 30 */
518 	{ CP_PMODE,	RO, "pmode" },		/* 31 */
519 	{ CP_RECEIVED,	RO, "received"},	/* 32 */
520 	{ CP_SENT,	RO, "sent" },		/* 33 */
521 	{ CP_FILTERROR,	RO, "filtdisp" },	/* 34 */
522 	{ CP_FLASH,	RO, "flash" },		/* 35 */
523 	{ CP_TTL,	RO, "ttl" },		/* 36 */
524 	{ CP_VARLIST,	RO, "peer_var_list" },	/* 37 */
525 	{ CP_IN,	RO, "in" },		/* 38 */
526 	{ CP_OUT,	RO, "out" },		/* 39 */
527 	{ CP_RATE,	RO, "headway" },	/* 40 */
528 	{ CP_BIAS,	RO, "bias" },		/* 41 */
529 	{ CP_SRCHOST,	RO, "srchost" },	/* 42 */
530 	{ CP_TIMEREC,	RO, "timerec" },	/* 43 */
531 	{ CP_TIMEREACH,	RO, "timereach" },	/* 44 */
532 	{ CP_BADAUTH,	RO, "badauth" },	/* 45 */
533 	{ CP_BOGUSORG,	RO, "bogusorg" },	/* 46 */
534 	{ CP_OLDPKT,	RO, "oldpkt" },		/* 47 */
535 	{ CP_SELDISP,	RO, "seldisp" },	/* 48 */
536 	{ CP_SELBROKEN,	RO, "selbroken" },	/* 49 */
537 	{ CP_CANDIDATE, RO, "candidate" },	/* 50 */
538 #ifdef AUTOKEY
539 	{ CP_FLAGS,	RO, "flags" },		/* 1 + CP_MAX_NOAUTOKEY */
540 	{ CP_HOST,	RO, "host" },		/* 2 + CP_MAX_NOAUTOKEY */
541 	{ CP_VALID,	RO, "valid" },		/* 3 + CP_MAX_NOAUTOKEY */
542 	{ CP_INITSEQ,	RO, "initsequence" },	/* 4 + CP_MAX_NOAUTOKEY */
543 	{ CP_INITKEY,	RO, "initkey" },	/* 5 + CP_MAX_NOAUTOKEY */
544 	{ CP_INITTSP,	RO, "timestamp" },	/* 6 + CP_MAX_NOAUTOKEY */
545 	{ CP_SIGNATURE,	RO, "signature" },	/* 7 + CP_MAX_NOAUTOKEY */
546 	{ CP_IDENT,	RO, "ident" },		/* 8 + CP_MAX_NOAUTOKEY */
547 #endif	/* AUTOKEY */
548 	{ 0,		EOV, "" }		/* 50/58 */
549 };
550 
551 
552 /*
553  * Peer variables we print by default
554  */
555 static const u_char def_peer_var[] = {
556 	CP_SRCADR,
557 	CP_SRCPORT,
558 	CP_SRCHOST,
559 	CP_DSTADR,
560 	CP_DSTPORT,
561 	CP_OUT,
562 	CP_IN,
563 	CP_LEAP,
564 	CP_STRATUM,
565 	CP_PRECISION,
566 	CP_ROOTDELAY,
567 	CP_ROOTDISPERSION,
568 	CP_REFID,
569 	CP_REFTIME,
570 	CP_REC,
571 	CP_REACH,
572 	CP_UNREACH,
573 	CP_HMODE,
574 	CP_PMODE,
575 	CP_HPOLL,
576 	CP_PPOLL,
577 	CP_RATE,
578 	CP_FLASH,
579 	CP_KEYID,
580 	CP_TTL,
581 	CP_OFFSET,
582 	CP_DELAY,
583 	CP_DISPERSION,
584 	CP_JITTER,
585 	CP_XMT,
586 	CP_BIAS,
587 	CP_FILTDELAY,
588 	CP_FILTOFFSET,
589 	CP_FILTERROR,
590 #ifdef AUTOKEY
591 	CP_HOST,
592 	CP_FLAGS,
593 	CP_SIGNATURE,
594 	CP_VALID,
595 	CP_INITSEQ,
596 	CP_IDENT,
597 #endif	/* AUTOKEY */
598 	0
599 };
600 
601 
602 #ifdef REFCLOCK
603 /*
604  * Clock variable list
605  */
606 static const struct ctl_var clock_var[] = {
607 	{ 0,		PADDING, "" },		/* 0 */
608 	{ CC_TYPE,	RO, "type" },		/* 1 */
609 	{ CC_TIMECODE,	RO, "timecode" },	/* 2 */
610 	{ CC_POLL,	RO, "poll" },		/* 3 */
611 	{ CC_NOREPLY,	RO, "noreply" },	/* 4 */
612 	{ CC_BADFORMAT, RO, "badformat" },	/* 5 */
613 	{ CC_BADDATA,	RO, "baddata" },	/* 6 */
614 	{ CC_FUDGETIME1, RO, "fudgetime1" },	/* 7 */
615 	{ CC_FUDGETIME2, RO, "fudgetime2" },	/* 8 */
616 	{ CC_FUDGEVAL1, RO, "stratum" },	/* 9 */
617 	{ CC_FUDGEVAL2, RO, "refid" },		/* 10 */
618 	{ CC_FLAGS,	RO, "flags" },		/* 11 */
619 	{ CC_DEVICE,	RO, "device" },		/* 12 */
620 	{ CC_VARLIST,	RO, "clock_var_list" },	/* 13 */
621 	{ 0,		EOV, ""  }		/* 14 */
622 };
623 
624 
625 /*
626  * Clock variables printed by default
627  */
628 static const u_char def_clock_var[] = {
629 	CC_DEVICE,
630 	CC_TYPE,	/* won't be output if device = known */
631 	CC_TIMECODE,
632 	CC_POLL,
633 	CC_NOREPLY,
634 	CC_BADFORMAT,
635 	CC_BADDATA,
636 	CC_FUDGETIME1,
637 	CC_FUDGETIME2,
638 	CC_FUDGEVAL1,
639 	CC_FUDGEVAL2,
640 	CC_FLAGS,
641 	0
642 };
643 #endif
644 
645 /*
646  * MRU string constants shared by send_mru_entry() and read_mru_list().
647  */
648 static const char addr_fmt[] =		"addr.%d";
649 static const char last_fmt[] =		"last.%d";
650 
651 /*
652  * System and processor definitions.
653  */
654 #ifndef HAVE_UNAME
655 # ifndef STR_SYSTEM
656 #  define		STR_SYSTEM	"UNIX"
657 # endif
658 # ifndef STR_PROCESSOR
659 #  define		STR_PROCESSOR	"unknown"
660 # endif
661 
662 static const char str_system[] = STR_SYSTEM;
663 static const char str_processor[] = STR_PROCESSOR;
664 #else
665 # include <sys/utsname.h>
666 static struct utsname utsnamebuf;
667 #endif /* HAVE_UNAME */
668 
669 /*
670  * Trap structures. We only allow a few of these, and send a copy of
671  * each async message to each live one. Traps time out after an hour, it
672  * is up to the trap receipient to keep resetting it to avoid being
673  * timed out.
674  */
675 /* ntp_request.c */
676 struct ctl_trap ctl_traps[CTL_MAXTRAPS];
677 int num_ctl_traps;
678 
679 /*
680  * Type bits, for ctlsettrap() call.
681  */
682 #define TRAP_TYPE_CONFIG	0	/* used by configuration code */
683 #define TRAP_TYPE_PRIO		1	/* priority trap */
684 #define TRAP_TYPE_NONPRIO	2	/* nonpriority trap */
685 
686 
687 /*
688  * List relating reference clock types to control message time sources.
689  * Index by the reference clock type. This list will only be used iff
690  * the reference clock driver doesn't set peer->sstclktype to something
691  * different than CTL_SST_TS_UNSPEC.
692  */
693 #ifdef REFCLOCK
694 static const u_char clocktypes[] = {
695 	CTL_SST_TS_NTP,		/* REFCLK_NONE (0) */
696 	CTL_SST_TS_LOCAL,	/* REFCLK_LOCALCLOCK (1) */
697 	CTL_SST_TS_UHF,		/* deprecated REFCLK_GPS_TRAK (2) */
698 	CTL_SST_TS_HF,		/* REFCLK_WWV_PST (3) */
699 	CTL_SST_TS_LF,		/* REFCLK_WWVB_SPECTRACOM (4) */
700 	CTL_SST_TS_UHF,		/* REFCLK_TRUETIME (5) */
701 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_AUDIO (6) */
702 	CTL_SST_TS_HF,		/* REFCLK_CHU (7) */
703 	CTL_SST_TS_LF,		/* REFCLOCK_PARSE (default) (8) */
704 	CTL_SST_TS_LF,		/* REFCLK_GPS_MX4200 (9) */
705 	CTL_SST_TS_UHF,		/* REFCLK_GPS_AS2201 (10) */
706 	CTL_SST_TS_UHF,		/* REFCLK_GPS_ARBITER (11) */
707 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_TPRO (12) */
708 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_LEITCH (13) */
709 	CTL_SST_TS_LF,		/* deprecated REFCLK_MSF_EES (14) */
710 	CTL_SST_TS_NTP,		/* not used (15) */
711 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_BANCOMM (16) */
712 	CTL_SST_TS_UHF,		/* REFCLK_GPS_DATU (17) */
713 	CTL_SST_TS_TELEPHONE,	/* REFCLK_NIST_ACTS (18) */
714 	CTL_SST_TS_HF,		/* REFCLK_WWV_HEATH (19) */
715 	CTL_SST_TS_UHF,		/* REFCLK_GPS_NMEA (20) */
716 	CTL_SST_TS_UHF,		/* REFCLK_GPS_VME (21) */
717 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_PPS (22) */
718 	CTL_SST_TS_NTP,		/* not used (23) */
719 	CTL_SST_TS_NTP,		/* not used (24) */
720 	CTL_SST_TS_NTP,		/* not used (25) */
721 	CTL_SST_TS_UHF,		/* REFCLK_GPS_HP (26) */
722 	CTL_SST_TS_LF,		/* REFCLK_ARCRON_MSF (27) */
723 	CTL_SST_TS_UHF,		/* REFCLK_SHM (28) */
724 	CTL_SST_TS_UHF,		/* REFCLK_PALISADE (29) */
725 	CTL_SST_TS_UHF,		/* REFCLK_ONCORE (30) */
726 	CTL_SST_TS_UHF,		/* REFCLK_JUPITER (31) */
727 	CTL_SST_TS_LF,		/* REFCLK_CHRONOLOG (32) */
728 	CTL_SST_TS_LF,		/* REFCLK_DUMBCLOCK (33) */
729 	CTL_SST_TS_LF,		/* REFCLK_ULINK (34) */
730 	CTL_SST_TS_LF,		/* REFCLK_PCF (35) */
731 	CTL_SST_TS_HF,		/* REFCLK_WWV (36) */
732 	CTL_SST_TS_LF,		/* REFCLK_FG (37) */
733 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_SERIAL (38) */
734 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_PCI (39) */
735 	CTL_SST_TS_LF,		/* REFCLK_JJY (40) */
736 	CTL_SST_TS_UHF,		/* REFCLK_TT560 (41) */
737 	CTL_SST_TS_UHF,		/* REFCLK_ZYFER (42) */
738 	CTL_SST_TS_UHF,		/* REFCLK_RIPENCC (43) */
739 	CTL_SST_TS_UHF,		/* REFCLK_NEOCLOCK4X (44) */
740 	CTL_SST_TS_UHF,		/* REFCLK_TSYNCPCI (45) */
741 	CTL_SST_TS_UHF		/* REFCLK_GPSDJSON (46) */
742 };
743 #endif  /* REFCLOCK */
744 
745 
746 /*
747  * Keyid used for authenticating write requests.
748  */
749 keyid_t ctl_auth_keyid;
750 
751 /*
752  * We keep track of the last error reported by the system internally
753  */
754 static	u_char ctl_sys_last_event;
755 static	u_char ctl_sys_num_events;
756 
757 
758 /*
759  * Statistic counters to keep track of requests and responses.
760  */
761 u_long ctltimereset;		/* time stats reset */
762 u_long numctlreq;		/* number of requests we've received */
763 u_long numctlbadpkts;		/* number of bad control packets */
764 u_long numctlresponses;		/* number of resp packets sent with data */
765 u_long numctlfrags;		/* number of fragments sent */
766 u_long numctlerrors;		/* number of error responses sent */
767 u_long numctltooshort;		/* number of too short input packets */
768 u_long numctlinputresp;		/* number of responses on input */
769 u_long numctlinputfrag;		/* number of fragments on input */
770 u_long numctlinputerr;		/* number of input pkts with err bit set */
771 u_long numctlbadoffset;		/* number of input pkts with nonzero offset */
772 u_long numctlbadversion;	/* number of input pkts with unknown version */
773 u_long numctldatatooshort;	/* data too short for count */
774 u_long numctlbadop;		/* bad op code found in packet */
775 u_long numasyncmsgs;		/* number of async messages we've sent */
776 
777 /*
778  * Response packet used by these routines. Also some state information
779  * so that we can handle packet formatting within a common set of
780  * subroutines.  Note we try to enter data in place whenever possible,
781  * but the need to set the more bit correctly means we occasionally
782  * use the extra buffer and copy.
783  */
784 static struct ntp_control rpkt;
785 static u_char	res_version;
786 static u_char	res_opcode;
787 static associd_t res_associd;
788 static u_short	res_frags;	/* datagrams in this response */
789 static int	res_offset;	/* offset of payload in response */
790 static u_char * datapt;
791 static u_char * dataend;
792 static int	datalinelen;
793 static int	datasent;	/* flag to avoid initial ", " */
794 static int	datanotbinflag;
795 static sockaddr_u *rmt_addr;
796 static struct interface *lcl_inter;
797 
798 static u_char	res_authenticate;
799 static u_char	res_authokay;
800 static keyid_t	res_keyid;
801 
802 #define MAXDATALINELEN	(72)
803 
804 static u_char	res_async;	/* sending async trap response? */
805 
806 /*
807  * Pointers for saving state when decoding request packets
808  */
809 static	char *reqpt;
810 static	char *reqend;
811 
812 #ifndef MIN
813 #define MIN(a, b) (((a) <= (b)) ? (a) : (b))
814 #endif
815 
816 /*
817  * init_control - initialize request data
818  */
819 void
820 init_control(void)
821 {
822 	size_t i;
823 
824 #ifdef HAVE_UNAME
825 	uname(&utsnamebuf);
826 #endif /* HAVE_UNAME */
827 
828 	ctl_clr_stats();
829 
830 	ctl_auth_keyid = 0;
831 	ctl_sys_last_event = EVNT_UNSPEC;
832 	ctl_sys_num_events = 0;
833 
834 	num_ctl_traps = 0;
835 	for (i = 0; i < COUNTOF(ctl_traps); i++)
836 		ctl_traps[i].tr_flags = 0;
837 }
838 
839 
840 /*
841  * ctl_error - send an error response for the current request
842  */
843 static void
844 ctl_error(
845 	u_char errcode
846 	)
847 {
848 	int		maclen;
849 
850 	numctlerrors++;
851 	DPRINTF(3, ("sending control error %u\n", errcode));
852 
853 	/*
854 	 * Fill in the fields. We assume rpkt.sequence and rpkt.associd
855 	 * have already been filled in.
856 	 */
857 	rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
858 			(res_opcode & CTL_OP_MASK);
859 	rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
860 	rpkt.count = 0;
861 
862 	/*
863 	 * send packet and bump counters
864 	 */
865 	if (res_authenticate && sys_authenticate) {
866 		maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
867 				     CTL_HEADER_LEN);
868 		sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
869 			CTL_HEADER_LEN + maclen);
870 	} else
871 		sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
872 			CTL_HEADER_LEN);
873 }
874 
875 /*
876  * save_config - Implements ntpq -c "saveconfig <filename>"
877  *		 Writes current configuration including any runtime
878  *		 changes by ntpq's :config or config-from-file
879  */
880 void
881 save_config(
882 	struct recvbuf *rbufp,
883 	int restrict_mask
884 	)
885 {
886 	char reply[128];
887 #ifdef SAVECONFIG
888 	char filespec[128];
889 	char filename[128];
890 	char fullpath[512];
891 	const char savedconfig_eq[] = "savedconfig=";
892 	char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
893 	time_t now;
894 	int fd;
895 	FILE *fptr;
896 #endif
897 
898 	if (RES_NOMODIFY & restrict_mask) {
899 		snprintf(reply, sizeof(reply),
900 			 "saveconfig prohibited by restrict ... nomodify");
901 		ctl_putdata(reply, strlen(reply), 0);
902 		ctl_flushpkt(0);
903 		NLOG(NLOG_SYSINFO)
904 			msyslog(LOG_NOTICE,
905 				"saveconfig from %s rejected due to nomodify restriction",
906 				stoa(&rbufp->recv_srcadr));
907 		sys_restricted++;
908 		return;
909 	}
910 
911 #ifdef SAVECONFIG
912 	if (NULL == saveconfigdir) {
913 		snprintf(reply, sizeof(reply),
914 			 "saveconfig prohibited, no saveconfigdir configured");
915 		ctl_putdata(reply, strlen(reply), 0);
916 		ctl_flushpkt(0);
917 		NLOG(NLOG_SYSINFO)
918 			msyslog(LOG_NOTICE,
919 				"saveconfig from %s rejected, no saveconfigdir",
920 				stoa(&rbufp->recv_srcadr));
921 		return;
922 	}
923 
924 	if (0 == reqend - reqpt)
925 		return;
926 
927 	strlcpy(filespec, reqpt, sizeof(filespec));
928 	time(&now);
929 
930 	/*
931 	 * allow timestamping of the saved config filename with
932 	 * strftime() format such as:
933 	 *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
934 	 * XXX: Nice feature, but not too safe.
935 	 */
936 	if (0 == strftime(filename, sizeof(filename), filespec,
937 			       localtime(&now)))
938 		strlcpy(filename, filespec, sizeof(filename));
939 
940 	/*
941 	 * Conceptually we should be searching for DIRSEP in filename,
942 	 * however Windows actually recognizes both forward and
943 	 * backslashes as equivalent directory separators at the API
944 	 * level.  On POSIX systems we could allow '\\' but such
945 	 * filenames are tricky to manipulate from a shell, so just
946 	 * reject both types of slashes on all platforms.
947 	 */
948 	if (strchr(filename, '\\') || strchr(filename, '/')) {
949 		snprintf(reply, sizeof(reply),
950 			 "saveconfig does not allow directory in filename");
951 		ctl_putdata(reply, strlen(reply), 0);
952 		ctl_flushpkt(0);
953 		msyslog(LOG_NOTICE,
954 			"saveconfig with path from %s rejected",
955 			stoa(&rbufp->recv_srcadr));
956 		return;
957 	}
958 
959 	snprintf(fullpath, sizeof(fullpath), "%s%s",
960 		 saveconfigdir, filename);
961 
962 	fd = open(fullpath, O_CREAT | O_TRUNC | O_WRONLY,
963 		  S_IRUSR | S_IWUSR);
964 	if (-1 == fd)
965 		fptr = NULL;
966 	else
967 		fptr = fdopen(fd, "w");
968 
969 	if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
970 		snprintf(reply, sizeof(reply),
971 			 "Unable to save configuration to file %s",
972 			 filename);
973 		msyslog(LOG_ERR,
974 			"saveconfig %s from %s failed", filename,
975 			stoa(&rbufp->recv_srcadr));
976 	} else {
977 		snprintf(reply, sizeof(reply),
978 			 "Configuration saved to %s", filename);
979 		msyslog(LOG_NOTICE,
980 			"Configuration saved to %s (requested by %s)",
981 			fullpath, stoa(&rbufp->recv_srcadr));
982 		/*
983 		 * save the output filename in system variable
984 		 * savedconfig, retrieved with:
985 		 *   ntpq -c "rv 0 savedconfig"
986 		 */
987 		snprintf(savedconfig, sizeof(savedconfig), "%s%s",
988 			 savedconfig_eq, filename);
989 		set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
990 	}
991 
992 	if (NULL != fptr)
993 		fclose(fptr);
994 #else	/* !SAVECONFIG follows */
995 	snprintf(reply, sizeof(reply),
996 		 "saveconfig unavailable, configured with --disable-saveconfig");
997 #endif
998 
999 	ctl_putdata(reply, strlen(reply), 0);
1000 	ctl_flushpkt(0);
1001 }
1002 
1003 
1004 /*
1005  * process_control - process an incoming control message
1006  */
1007 void
1008 process_control(
1009 	struct recvbuf *rbufp,
1010 	int restrict_mask
1011 	)
1012 {
1013 	struct ntp_control *pkt;
1014 	int req_count;
1015 	int req_data;
1016 	const struct ctl_proc *cc;
1017 	keyid_t *pkid;
1018 	int properlen;
1019 	size_t maclen;
1020 
1021 	DPRINTF(3, ("in process_control()\n"));
1022 
1023 	/*
1024 	 * Save the addresses for error responses
1025 	 */
1026 	numctlreq++;
1027 	rmt_addr = &rbufp->recv_srcadr;
1028 	lcl_inter = rbufp->dstadr;
1029 	pkt = (struct ntp_control *)&rbufp->recv_pkt;
1030 
1031 	/*
1032 	 * If the length is less than required for the header, or
1033 	 * it is a response or a fragment, ignore this.
1034 	 */
1035 	if (rbufp->recv_length < (int)CTL_HEADER_LEN
1036 	    || (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1037 	    || pkt->offset != 0) {
1038 		DPRINTF(1, ("invalid format in control packet\n"));
1039 		if (rbufp->recv_length < (int)CTL_HEADER_LEN)
1040 			numctltooshort++;
1041 		if (CTL_RESPONSE & pkt->r_m_e_op)
1042 			numctlinputresp++;
1043 		if (CTL_MORE & pkt->r_m_e_op)
1044 			numctlinputfrag++;
1045 		if (CTL_ERROR & pkt->r_m_e_op)
1046 			numctlinputerr++;
1047 		if (pkt->offset != 0)
1048 			numctlbadoffset++;
1049 		return;
1050 	}
1051 	res_version = PKT_VERSION(pkt->li_vn_mode);
1052 	if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1053 		DPRINTF(1, ("unknown version %d in control packet\n",
1054 			    res_version));
1055 		numctlbadversion++;
1056 		return;
1057 	}
1058 
1059 	/*
1060 	 * Pull enough data from the packet to make intelligent
1061 	 * responses
1062 	 */
1063 	rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1064 					 MODE_CONTROL);
1065 	res_opcode = pkt->r_m_e_op;
1066 	rpkt.sequence = pkt->sequence;
1067 	rpkt.associd = pkt->associd;
1068 	rpkt.status = 0;
1069 	res_frags = 1;
1070 	res_offset = 0;
1071 	res_associd = htons(pkt->associd);
1072 	res_async = FALSE;
1073 	res_authenticate = FALSE;
1074 	res_keyid = 0;
1075 	res_authokay = FALSE;
1076 	req_count = (int)ntohs(pkt->count);
1077 	datanotbinflag = FALSE;
1078 	datalinelen = 0;
1079 	datasent = 0;
1080 	datapt = rpkt.u.data;
1081 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1082 
1083 	if ((rbufp->recv_length & 0x3) != 0)
1084 		DPRINTF(3, ("Control packet length %d unrounded\n",
1085 			    rbufp->recv_length));
1086 
1087 	/*
1088 	 * We're set up now. Make sure we've got at least enough
1089 	 * incoming data space to match the count.
1090 	 */
1091 	req_data = rbufp->recv_length - CTL_HEADER_LEN;
1092 	if (req_data < req_count || rbufp->recv_length & 0x3) {
1093 		ctl_error(CERR_BADFMT);
1094 		numctldatatooshort++;
1095 		return;
1096 	}
1097 
1098 	properlen = req_count + CTL_HEADER_LEN;
1099 	/* round up proper len to a 8 octet boundary */
1100 
1101 	properlen = (properlen + 7) & ~7;
1102 	maclen = rbufp->recv_length - properlen;
1103 	if ((rbufp->recv_length & 3) == 0 &&
1104 	    maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1105 	    sys_authenticate) {
1106 		res_authenticate = TRUE;
1107 		pkid = (void *)((char *)pkt + properlen);
1108 		res_keyid = ntohl(*pkid);
1109 		DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1110 			    rbufp->recv_length, properlen, res_keyid,
1111 			    maclen));
1112 
1113 		if (!authistrusted(res_keyid))
1114 			DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1115 		else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1116 				     rbufp->recv_length - maclen,
1117 				     maclen)) {
1118 			res_authokay = TRUE;
1119 			DPRINTF(3, ("authenticated okay\n"));
1120 		} else {
1121 			res_keyid = 0;
1122 			DPRINTF(3, ("authentication failed\n"));
1123 		}
1124 	}
1125 
1126 	/*
1127 	 * Set up translate pointers
1128 	 */
1129 	reqpt = (char *)pkt->u.data;
1130 	reqend = reqpt + req_count;
1131 
1132 	/*
1133 	 * Look for the opcode processor
1134 	 */
1135 	for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1136 		if (cc->control_code == res_opcode) {
1137 			DPRINTF(3, ("opcode %d, found command handler\n",
1138 				    res_opcode));
1139 			if (cc->flags == AUTH
1140 			    && (!res_authokay
1141 				|| res_keyid != ctl_auth_keyid)) {
1142 				ctl_error(CERR_PERMISSION);
1143 				return;
1144 			}
1145 			(cc->handler)(rbufp, restrict_mask);
1146 			return;
1147 		}
1148 	}
1149 
1150 	/*
1151 	 * Can't find this one, return an error.
1152 	 */
1153 	numctlbadop++;
1154 	ctl_error(CERR_BADOP);
1155 	return;
1156 }
1157 
1158 
1159 /*
1160  * ctlpeerstatus - return a status word for this peer
1161  */
1162 u_short
1163 ctlpeerstatus(
1164 	register struct peer *p
1165 	)
1166 {
1167 	u_short status;
1168 
1169 	status = p->status;
1170 	if (FLAG_CONFIG & p->flags)
1171 		status |= CTL_PST_CONFIG;
1172 	if (p->keyid)
1173 		status |= CTL_PST_AUTHENABLE;
1174 	if (FLAG_AUTHENTIC & p->flags)
1175 		status |= CTL_PST_AUTHENTIC;
1176 	if (p->reach)
1177 		status |= CTL_PST_REACH;
1178 	if (MDF_TXONLY_MASK & p->cast_flags)
1179 		status |= CTL_PST_BCAST;
1180 
1181 	return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1182 }
1183 
1184 
1185 /*
1186  * ctlclkstatus - return a status word for this clock
1187  */
1188 #ifdef REFCLOCK
1189 static u_short
1190 ctlclkstatus(
1191 	struct refclockstat *pcs
1192 	)
1193 {
1194 	return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1195 }
1196 #endif
1197 
1198 
1199 /*
1200  * ctlsysstatus - return the system status word
1201  */
1202 u_short
1203 ctlsysstatus(void)
1204 {
1205 	register u_char this_clock;
1206 
1207 	this_clock = CTL_SST_TS_UNSPEC;
1208 #ifdef REFCLOCK
1209 	if (sys_peer != NULL) {
1210 		if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1211 			this_clock = sys_peer->sstclktype;
1212 		else if (sys_peer->refclktype < COUNTOF(clocktypes))
1213 			this_clock = clocktypes[sys_peer->refclktype];
1214 	}
1215 #else /* REFCLOCK */
1216 	if (sys_peer != 0)
1217 		this_clock = CTL_SST_TS_NTP;
1218 #endif /* REFCLOCK */
1219 	return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1220 			      ctl_sys_last_event);
1221 }
1222 
1223 
1224 /*
1225  * ctl_flushpkt - write out the current packet and prepare
1226  *		  another if necessary.
1227  */
1228 static void
1229 ctl_flushpkt(
1230 	u_char more
1231 	)
1232 {
1233 	size_t i;
1234 	int dlen;
1235 	int sendlen;
1236 	int maclen;
1237 	int totlen;
1238 	keyid_t keyid;
1239 
1240 	dlen = datapt - rpkt.u.data;
1241 	if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1242 		/*
1243 		 * Big hack, output a trailing \r\n
1244 		 */
1245 		*datapt++ = '\r';
1246 		*datapt++ = '\n';
1247 		dlen += 2;
1248 	}
1249 	sendlen = dlen + CTL_HEADER_LEN;
1250 
1251 	/*
1252 	 * Pad to a multiple of 32 bits
1253 	 */
1254 	while (sendlen & 0x3) {
1255 		*datapt++ = '\0';
1256 		sendlen++;
1257 	}
1258 
1259 	/*
1260 	 * Fill in the packet with the current info
1261 	 */
1262 	rpkt.r_m_e_op = CTL_RESPONSE | more |
1263 			(res_opcode & CTL_OP_MASK);
1264 	rpkt.count = htons((u_short)dlen);
1265 	rpkt.offset = htons((u_short)res_offset);
1266 	if (res_async) {
1267 		for (i = 0; i < COUNTOF(ctl_traps); i++) {
1268 			if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1269 				rpkt.li_vn_mode =
1270 				    PKT_LI_VN_MODE(
1271 					sys_leap,
1272 					ctl_traps[i].tr_version,
1273 					MODE_CONTROL);
1274 				rpkt.sequence =
1275 				    htons(ctl_traps[i].tr_sequence);
1276 				sendpkt(&ctl_traps[i].tr_addr,
1277 					ctl_traps[i].tr_localaddr, -4,
1278 					(struct pkt *)&rpkt, sendlen);
1279 				if (!more)
1280 					ctl_traps[i].tr_sequence++;
1281 				numasyncmsgs++;
1282 			}
1283 		}
1284 	} else {
1285 		if (res_authenticate && sys_authenticate) {
1286 			totlen = sendlen;
1287 			/*
1288 			 * If we are going to authenticate, then there
1289 			 * is an additional requirement that the MAC
1290 			 * begin on a 64 bit boundary.
1291 			 */
1292 			while (totlen & 7) {
1293 				*datapt++ = '\0';
1294 				totlen++;
1295 			}
1296 			keyid = htonl(res_keyid);
1297 			memcpy(datapt, &keyid, sizeof(keyid));
1298 			maclen = authencrypt(res_keyid,
1299 					     (u_int32 *)&rpkt, totlen);
1300 			sendpkt(rmt_addr, lcl_inter, -5,
1301 				(struct pkt *)&rpkt, totlen + maclen);
1302 		} else {
1303 			sendpkt(rmt_addr, lcl_inter, -6,
1304 				(struct pkt *)&rpkt, sendlen);
1305 		}
1306 		if (more)
1307 			numctlfrags++;
1308 		else
1309 			numctlresponses++;
1310 	}
1311 
1312 	/*
1313 	 * Set us up for another go around.
1314 	 */
1315 	res_frags++;
1316 	res_offset += dlen;
1317 	datapt = rpkt.u.data;
1318 }
1319 
1320 
1321 /*
1322  * ctl_putdata - write data into the packet, fragmenting and starting
1323  * another if this one is full.
1324  */
1325 static void
1326 ctl_putdata(
1327 	const char *dp,
1328 	unsigned int dlen,
1329 	int bin			/* set to 1 when data is binary */
1330 	)
1331 {
1332 	int overhead;
1333 	unsigned int currentlen;
1334 
1335 	overhead = 0;
1336 	if (!bin) {
1337 		datanotbinflag = TRUE;
1338 		overhead = 3;
1339 		if (datasent) {
1340 			*datapt++ = ',';
1341 			datalinelen++;
1342 			if ((dlen + datalinelen + 1) >= MAXDATALINELEN) {
1343 				*datapt++ = '\r';
1344 				*datapt++ = '\n';
1345 				datalinelen = 0;
1346 			} else {
1347 				*datapt++ = ' ';
1348 				datalinelen++;
1349 			}
1350 		}
1351 	}
1352 
1353 	/*
1354 	 * Save room for trailing junk
1355 	 */
1356 	while (dlen + overhead + datapt > dataend) {
1357 		/*
1358 		 * Not enough room in this one, flush it out.
1359 		 */
1360 		currentlen = MIN(dlen, (unsigned int)(dataend - datapt));
1361 
1362 		memcpy(datapt, dp, currentlen);
1363 
1364 		datapt += currentlen;
1365 		dp += currentlen;
1366 		dlen -= currentlen;
1367 		datalinelen += currentlen;
1368 
1369 		ctl_flushpkt(CTL_MORE);
1370 	}
1371 
1372 	memcpy(datapt, dp, dlen);
1373 	datapt += dlen;
1374 	datalinelen += dlen;
1375 	datasent = TRUE;
1376 }
1377 
1378 
1379 /*
1380  * ctl_putstr - write a tagged string into the response packet
1381  *		in the form:
1382  *
1383  *		tag="data"
1384  *
1385  *		len is the data length excluding the NUL terminator,
1386  *		as in ctl_putstr("var", "value", strlen("value"));
1387  */
1388 static void
1389 ctl_putstr(
1390 	const char *	tag,
1391 	const char *	data,
1392 	size_t		len
1393 	)
1394 {
1395 	char buffer[512];
1396 	char *cp;
1397 	size_t tl;
1398 
1399 	tl = strlen(tag);
1400 	memcpy(buffer, tag, tl);
1401 	cp = buffer + tl;
1402 	if (len > 0) {
1403 		NTP_INSIST(tl + 3 + len <= sizeof(buffer));
1404 		*cp++ = '=';
1405 		*cp++ = '"';
1406 		memcpy(cp, data, len);
1407 		cp += len;
1408 		*cp++ = '"';
1409 	}
1410 	ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1411 }
1412 
1413 
1414 /*
1415  * ctl_putunqstr - write a tagged string into the response packet
1416  *		   in the form:
1417  *
1418  *		   tag=data
1419  *
1420  *	len is the data length excluding the NUL terminator.
1421  *	data must not contain a comma or whitespace.
1422  */
1423 static void
1424 ctl_putunqstr(
1425 	const char *	tag,
1426 	const char *	data,
1427 	size_t		len
1428 	)
1429 {
1430 	char buffer[512];
1431 	char *cp;
1432 	size_t tl;
1433 
1434 	tl = strlen(tag);
1435 	memcpy(buffer, tag, tl);
1436 	cp = buffer + tl;
1437 	if (len > 0) {
1438 		NTP_INSIST(tl + 1 + len <= sizeof(buffer));
1439 		*cp++ = '=';
1440 		memcpy(cp, data, len);
1441 		cp += len;
1442 	}
1443 	ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1444 }
1445 
1446 
1447 /*
1448  * ctl_putdblf - write a tagged, signed double into the response packet
1449  */
1450 static void
1451 ctl_putdblf(
1452 	const char *	tag,
1453 	int		use_f,
1454 	int		precision,
1455 	double		d
1456 	)
1457 {
1458 	char *cp;
1459 	const char *cq;
1460 	char buffer[200];
1461 
1462 	cp = buffer;
1463 	cq = tag;
1464 	while (*cq != '\0')
1465 		*cp++ = *cq++;
1466 	*cp++ = '=';
1467 	NTP_INSIST((size_t)(cp - buffer) < sizeof(buffer));
1468 	snprintf(cp, sizeof(buffer) - (cp - buffer), use_f ? "%.*f" : "%.*g",
1469 	    precision, d);
1470 	cp += strlen(cp);
1471 	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1472 }
1473 
1474 /*
1475  * ctl_putuint - write a tagged unsigned integer into the response
1476  */
1477 static void
1478 ctl_putuint(
1479 	const char *tag,
1480 	u_long uval
1481 	)
1482 {
1483 	register char *cp;
1484 	register const char *cq;
1485 	char buffer[200];
1486 
1487 	cp = buffer;
1488 	cq = tag;
1489 	while (*cq != '\0')
1490 		*cp++ = *cq++;
1491 
1492 	*cp++ = '=';
1493 	NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1494 	snprintf(cp, sizeof(buffer) - (cp - buffer), "%lu", uval);
1495 	cp += strlen(cp);
1496 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1497 }
1498 
1499 /*
1500  * ctl_putcal - write a decoded calendar data into the response
1501  */
1502 static void
1503 ctl_putcal(
1504 	const char *tag,
1505 	const struct calendar *pcal
1506 	)
1507 {
1508 	char buffer[100];
1509 	unsigned numch;
1510 
1511 	numch = snprintf(buffer, sizeof(buffer),
1512 			"%s=%04d%02d%02d%02d%02d",
1513 			tag,
1514 			pcal->year,
1515 			pcal->month,
1516 			pcal->monthday,
1517 			pcal->hour,
1518 			pcal->minute
1519 			);
1520 	NTP_INSIST(numch < sizeof(buffer));
1521 	ctl_putdata(buffer, numch, 0);
1522 
1523 	return;
1524 }
1525 
1526 /*
1527  * ctl_putfs - write a decoded filestamp into the response
1528  */
1529 static void
1530 ctl_putfs(
1531 	const char *tag,
1532 	tstamp_t uval
1533 	)
1534 {
1535 	register char *cp;
1536 	register const char *cq;
1537 	char buffer[200];
1538 	struct tm *tm = NULL;
1539 	time_t fstamp;
1540 
1541 	cp = buffer;
1542 	cq = tag;
1543 	while (*cq != '\0')
1544 		*cp++ = *cq++;
1545 
1546 	*cp++ = '=';
1547 	fstamp = uval - JAN_1970;
1548 	tm = gmtime(&fstamp);
1549 	if (NULL ==  tm)
1550 		return;
1551 	NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1552 	snprintf(cp, sizeof(buffer) - (cp - buffer),
1553 		 "%04d%02d%02d%02d%02d", tm->tm_year + 1900,
1554 		 tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min);
1555 	cp += strlen(cp);
1556 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1557 }
1558 
1559 
1560 /*
1561  * ctl_puthex - write a tagged unsigned integer, in hex, into the
1562  * response
1563  */
1564 static void
1565 ctl_puthex(
1566 	const char *tag,
1567 	u_long uval
1568 	)
1569 {
1570 	register char *cp;
1571 	register const char *cq;
1572 	char buffer[200];
1573 
1574 	cp = buffer;
1575 	cq = tag;
1576 	while (*cq != '\0')
1577 		*cp++ = *cq++;
1578 
1579 	*cp++ = '=';
1580 	NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1581 	snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%lx", uval);
1582 	cp += strlen(cp);
1583 	ctl_putdata(buffer,(unsigned)( cp - buffer ), 0);
1584 }
1585 
1586 
1587 /*
1588  * ctl_putint - write a tagged signed integer into the response
1589  */
1590 static void
1591 ctl_putint(
1592 	const char *tag,
1593 	long ival
1594 	)
1595 {
1596 	register char *cp;
1597 	register const char *cq;
1598 	char buffer[200];
1599 
1600 	cp = buffer;
1601 	cq = tag;
1602 	while (*cq != '\0')
1603 		*cp++ = *cq++;
1604 
1605 	*cp++ = '=';
1606 	NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1607 	snprintf(cp, sizeof(buffer) - (cp - buffer), "%ld", ival);
1608 	cp += strlen(cp);
1609 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1610 }
1611 
1612 
1613 /*
1614  * ctl_putts - write a tagged timestamp, in hex, into the response
1615  */
1616 static void
1617 ctl_putts(
1618 	const char *tag,
1619 	l_fp *ts
1620 	)
1621 {
1622 	register char *cp;
1623 	register const char *cq;
1624 	char buffer[200];
1625 
1626 	cp = buffer;
1627 	cq = tag;
1628 	while (*cq != '\0')
1629 		*cp++ = *cq++;
1630 
1631 	*cp++ = '=';
1632 	NTP_INSIST((size_t)(cp - buffer) < sizeof(buffer));
1633 	snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%08x.%08x",
1634 		 (u_int)ts->l_ui, (u_int)ts->l_uf);
1635 	cp += strlen(cp);
1636 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1637 }
1638 
1639 
1640 /*
1641  * ctl_putadr - write an IP address into the response
1642  */
1643 static void
1644 ctl_putadr(
1645 	const char *tag,
1646 	u_int32 addr32,
1647 	sockaddr_u *addr
1648 	)
1649 {
1650 	register char *cp;
1651 	register const char *cq;
1652 	char buffer[200];
1653 
1654 	cp = buffer;
1655 	cq = tag;
1656 	while (*cq != '\0')
1657 		*cp++ = *cq++;
1658 
1659 	*cp++ = '=';
1660 	if (NULL == addr)
1661 		cq = numtoa(addr32);
1662 	else
1663 		cq = stoa(addr);
1664 	NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1665 	snprintf(cp, sizeof(buffer) - (cp - buffer), "%s", cq);
1666 	cp += strlen(cp);
1667 	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1668 }
1669 
1670 
1671 /*
1672  * ctl_putrefid - send a u_int32 refid as printable text
1673  */
1674 static void
1675 ctl_putrefid(
1676 	const char *	tag,
1677 	u_int32		refid
1678 	)
1679 {
1680 	char	output[16];
1681 	char *	optr;
1682 	char *	oplim;
1683 	char *	iptr;
1684 	char *	iplim;
1685 	char *	past_eq;
1686 
1687 	optr = output;
1688 	oplim = output + sizeof(output);
1689 	while (optr < oplim && '\0' != *tag)
1690 		*optr++ = *tag++;
1691 	if (optr < oplim) {
1692 		*optr++ = '=';
1693 		past_eq = optr;
1694 	}
1695 	if (!(optr < oplim))
1696 		return;
1697 	iptr = (char *)&refid;
1698 	iplim = iptr + sizeof(refid);
1699 	for ( ; optr < oplim && iptr < iplim && '\0' != *iptr;
1700 	     iptr++, optr++)
1701 		if (isprint((int)*iptr))
1702 			*optr = *iptr;
1703 		else
1704 			*optr = '.';
1705 	if (!(optr <= oplim))
1706 		optr = past_eq;
1707 	ctl_putdata(output, (u_int)(optr - output), FALSE);
1708 }
1709 
1710 
1711 /*
1712  * ctl_putarray - write a tagged eight element double array into the response
1713  */
1714 static void
1715 ctl_putarray(
1716 	const char *tag,
1717 	double *arr,
1718 	int start
1719 	)
1720 {
1721 	register char *cp;
1722 	register const char *cq;
1723 	char buffer[200];
1724 	int i;
1725 	cp = buffer;
1726 	cq = tag;
1727 	while (*cq != '\0')
1728 		*cp++ = *cq++;
1729 	*cp++ = '=';
1730 	i = start;
1731 	do {
1732 		if (i == 0)
1733 			i = NTP_SHIFT;
1734 		i--;
1735 		NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1736 		snprintf(cp, sizeof(buffer) - (cp - buffer),
1737 			 " %.2f", arr[i] * 1e3);
1738 		cp += strlen(cp);
1739 	} while (i != start);
1740 	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1741 }
1742 
1743 
1744 /*
1745  * ctl_putsys - output a system variable
1746  */
1747 static void
1748 ctl_putsys(
1749 	int varid
1750 	)
1751 {
1752 	l_fp tmp;
1753 	char str[256];
1754 	u_int u;
1755 	double kb;
1756 	double dtemp;
1757 	const char *ss;
1758 #ifdef AUTOKEY
1759 	struct cert_info *cp;
1760 #endif	/* AUTOKEY */
1761 #ifdef KERNEL_PLL
1762 	static struct timex ntx;
1763 	static u_long ntp_adjtime_time;
1764 
1765 	static const double to_ms =
1766 # ifdef STA_NANO
1767 		1.0e-6; /* nsec to msec */
1768 # else
1769 		1.0e-3; /* usec to msec */
1770 # endif
1771 
1772 	/*
1773 	 * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1774 	 */
1775 	if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1776 	    current_time != ntp_adjtime_time) {
1777 		ZERO(ntx);
1778 		if (ntp_adjtime(&ntx) < 0)
1779 			msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1780 		else
1781 			ntp_adjtime_time = current_time;
1782 	}
1783 #endif	/* KERNEL_PLL */
1784 
1785 	switch (varid) {
1786 
1787 	case CS_LEAP:
1788 		ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1789 		break;
1790 
1791 	case CS_STRATUM:
1792 		ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1793 		break;
1794 
1795 	case CS_PRECISION:
1796 		ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1797 		break;
1798 
1799 	case CS_ROOTDELAY:
1800 		ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1801 			   1e3);
1802 		break;
1803 
1804 	case CS_ROOTDISPERSION:
1805 		ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1806 			   sys_rootdisp * 1e3);
1807 		break;
1808 
1809 	case CS_REFID:
1810 		if (sys_stratum > 1 && sys_stratum < STRATUM_UNSPEC)
1811 			ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1812 		else
1813 			ctl_putrefid(sys_var[varid].text, sys_refid);
1814 		break;
1815 
1816 	case CS_REFTIME:
1817 		ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
1818 		break;
1819 
1820 	case CS_POLL:
1821 		ctl_putuint(sys_var[CS_POLL].text, sys_poll);
1822 		break;
1823 
1824 	case CS_PEERID:
1825 		if (sys_peer == NULL)
1826 			ctl_putuint(sys_var[CS_PEERID].text, 0);
1827 		else
1828 			ctl_putuint(sys_var[CS_PEERID].text,
1829 				    sys_peer->associd);
1830 		break;
1831 
1832 	case CS_PEERADR:
1833 		if (sys_peer != NULL && sys_peer->dstadr != NULL)
1834 			ss = sptoa(&sys_peer->srcadr);
1835 		else
1836 			ss = "0.0.0.0:0";
1837 		ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
1838 		break;
1839 
1840 	case CS_PEERMODE:
1841 		u = (sys_peer != NULL)
1842 			? sys_peer->hmode
1843 			: MODE_UNSPEC;
1844 		ctl_putuint(sys_var[CS_PEERMODE].text, u);
1845 		break;
1846 
1847 	case CS_OFFSET:
1848 		ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
1849 		break;
1850 
1851 	case CS_DRIFT:
1852 		ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
1853 		break;
1854 
1855 	case CS_JITTER:
1856 		ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
1857 		break;
1858 
1859 	case CS_ERROR:
1860 		ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
1861 		break;
1862 
1863 	case CS_CLOCK:
1864 		get_systime(&tmp);
1865 		ctl_putts(sys_var[CS_CLOCK].text, &tmp);
1866 		break;
1867 
1868 	case CS_PROCESSOR:
1869 #ifndef HAVE_UNAME
1870 		ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
1871 			   sizeof(str_processor) - 1);
1872 #else
1873 		ctl_putstr(sys_var[CS_PROCESSOR].text,
1874 			   utsnamebuf.machine, strlen(utsnamebuf.machine));
1875 #endif /* HAVE_UNAME */
1876 		break;
1877 
1878 	case CS_SYSTEM:
1879 #ifndef HAVE_UNAME
1880 		ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
1881 			   sizeof(str_system) - 1);
1882 #else
1883 		snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
1884 			 utsnamebuf.release);
1885 		ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
1886 #endif /* HAVE_UNAME */
1887 		break;
1888 
1889 	case CS_VERSION:
1890 		ctl_putstr(sys_var[CS_VERSION].text, Version,
1891 			   strlen(Version));
1892 		break;
1893 
1894 	case CS_STABIL:
1895 		ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
1896 			   1e6);
1897 		break;
1898 
1899 	case CS_VARLIST:
1900 	{
1901 		char buf[CTL_MAX_DATA_LEN];
1902 		//buffPointer, firstElementPointer, buffEndPointer
1903 		char *buffp, *buffend;
1904 		int firstVarName;
1905 		const char *ss1;
1906 		int len;
1907 		const struct ctl_var *k;
1908 
1909 		buffp = buf;
1910 		buffend = buf + sizeof(buf);
1911 		if (buffp + strlen(sys_var[CS_VARLIST].text) + 4 > buffend)
1912 			break;	/* really long var name */
1913 
1914 		snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
1915 		buffp += strlen(buffp);
1916 		firstVarName = TRUE;
1917 		for (k = sys_var; !(k->flags & EOV); k++) {
1918 			if (k->flags & PADDING)
1919 				continue;
1920 			len = strlen(k->text);
1921 			if (buffp + len + 1 >= buffend)
1922 				break;
1923 			if (!firstVarName)
1924 				*buffp++ = ',';
1925 			else
1926 				firstVarName = FALSE;
1927 			memcpy(buffp, k->text, len);
1928 			buffp += len;
1929 		}
1930 
1931 		for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
1932 			if (k->flags & PADDING)
1933 				continue;
1934 			if (NULL == k->text)
1935 				continue;
1936 			ss1 = strchr(k->text, '=');
1937 			if (NULL == ss1)
1938 				len = strlen(k->text);
1939 			else
1940 				len = ss1 - k->text;
1941 			if (buffp + len + 1 >= buffend)
1942 				break;
1943 			if (firstVarName) {
1944 				*buffp++ = ',';
1945 				firstVarName = FALSE;
1946 			}
1947 			memcpy(buffp, k->text,(unsigned)len);
1948 			buffp += len;
1949 		}
1950 		if (buffp + 2 >= buffend)
1951 			break;
1952 
1953 		*buffp++ = '"';
1954 		*buffp = '\0';
1955 
1956 		ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
1957 		break;
1958 	}
1959 
1960 	case CS_TAI:
1961 		if (sys_tai > 0)
1962 			ctl_putuint(sys_var[CS_TAI].text, sys_tai);
1963 		break;
1964 
1965 	case CS_LEAPTAB:
1966 	{
1967 		leap_signature_t lsig;
1968 		leapsec_getsig(&lsig);
1969 		if (lsig.ttime > 0)
1970 			ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
1971 		break;
1972 	}
1973 
1974 	case CS_LEAPEND:
1975 	{
1976 		leap_signature_t lsig;
1977 		leapsec_getsig(&lsig);
1978 		if (lsig.etime > 0)
1979 			ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
1980 		break;
1981 	}
1982 
1983 	case CS_RATE:
1984 		ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
1985 		break;
1986 
1987 	case CS_MRU_ENABLED:
1988 		ctl_puthex(sys_var[varid].text, mon_enabled);
1989 		break;
1990 
1991 	case CS_MRU_DEPTH:
1992 		ctl_putuint(sys_var[varid].text, mru_entries);
1993 		break;
1994 
1995 	case CS_MRU_MEM:
1996 		kb = mru_entries * (sizeof(mon_entry) / 1024.);
1997 		u = (u_int)kb;
1998 		if (kb - u >= 0.5)
1999 			u++;
2000 		ctl_putuint(sys_var[varid].text, u);
2001 		break;
2002 
2003 	case CS_MRU_DEEPEST:
2004 		ctl_putuint(sys_var[varid].text, mru_peakentries);
2005 		break;
2006 
2007 	case CS_MRU_MINDEPTH:
2008 		ctl_putuint(sys_var[varid].text, mru_mindepth);
2009 		break;
2010 
2011 	case CS_MRU_MAXAGE:
2012 		ctl_putint(sys_var[varid].text, mru_maxage);
2013 		break;
2014 
2015 	case CS_MRU_MAXDEPTH:
2016 		ctl_putuint(sys_var[varid].text, mru_maxdepth);
2017 		break;
2018 
2019 	case CS_MRU_MAXMEM:
2020 		kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
2021 		u = (u_int)kb;
2022 		if (kb - u >= 0.5)
2023 			u++;
2024 		ctl_putuint(sys_var[varid].text, u);
2025 		break;
2026 
2027 	case CS_SS_UPTIME:
2028 		ctl_putuint(sys_var[varid].text, current_time);
2029 		break;
2030 
2031 	case CS_SS_RESET:
2032 		ctl_putuint(sys_var[varid].text,
2033 			    current_time - sys_stattime);
2034 		break;
2035 
2036 	case CS_SS_RECEIVED:
2037 		ctl_putuint(sys_var[varid].text, sys_received);
2038 		break;
2039 
2040 	case CS_SS_THISVER:
2041 		ctl_putuint(sys_var[varid].text, sys_newversion);
2042 		break;
2043 
2044 	case CS_SS_OLDVER:
2045 		ctl_putuint(sys_var[varid].text, sys_oldversion);
2046 		break;
2047 
2048 	case CS_SS_BADFORMAT:
2049 		ctl_putuint(sys_var[varid].text, sys_badlength);
2050 		break;
2051 
2052 	case CS_SS_BADAUTH:
2053 		ctl_putuint(sys_var[varid].text, sys_badauth);
2054 		break;
2055 
2056 	case CS_SS_DECLINED:
2057 		ctl_putuint(sys_var[varid].text, sys_declined);
2058 		break;
2059 
2060 	case CS_SS_RESTRICTED:
2061 		ctl_putuint(sys_var[varid].text, sys_restricted);
2062 		break;
2063 
2064 	case CS_SS_LIMITED:
2065 		ctl_putuint(sys_var[varid].text, sys_limitrejected);
2066 		break;
2067 
2068 	case CS_SS_KODSENT:
2069 		ctl_putuint(sys_var[varid].text, sys_kodsent);
2070 		break;
2071 
2072 	case CS_SS_PROCESSED:
2073 		ctl_putuint(sys_var[varid].text, sys_processed);
2074 		break;
2075 
2076 	case CS_BCASTDELAY:
2077 		ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2078 		break;
2079 
2080 	case CS_AUTHDELAY:
2081 		LFPTOD(&sys_authdelay, dtemp);
2082 		ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2083 		break;
2084 
2085 	case CS_AUTHKEYS:
2086 		ctl_putuint(sys_var[varid].text, authnumkeys);
2087 		break;
2088 
2089 	case CS_AUTHFREEK:
2090 		ctl_putuint(sys_var[varid].text, authnumfreekeys);
2091 		break;
2092 
2093 	case CS_AUTHKLOOKUPS:
2094 		ctl_putuint(sys_var[varid].text, authkeylookups);
2095 		break;
2096 
2097 	case CS_AUTHKNOTFOUND:
2098 		ctl_putuint(sys_var[varid].text, authkeynotfound);
2099 		break;
2100 
2101 	case CS_AUTHKUNCACHED:
2102 		ctl_putuint(sys_var[varid].text, authkeyuncached);
2103 		break;
2104 
2105 	case CS_AUTHKEXPIRED:
2106 		ctl_putuint(sys_var[varid].text, authkeyexpired);
2107 		break;
2108 
2109 	case CS_AUTHENCRYPTS:
2110 		ctl_putuint(sys_var[varid].text, authencryptions);
2111 		break;
2112 
2113 	case CS_AUTHDECRYPTS:
2114 		ctl_putuint(sys_var[varid].text, authdecryptions);
2115 		break;
2116 
2117 	case CS_AUTHRESET:
2118 		ctl_putuint(sys_var[varid].text,
2119 			    current_time - auth_timereset);
2120 		break;
2121 
2122 		/*
2123 		 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2124 		 * unavailable, otherwise calls putfunc with args.
2125 		 */
2126 #ifndef KERNEL_PLL
2127 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2128 		ctl_putint(sys_var[varid].text, 0)
2129 #else
2130 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2131 		putfunc args
2132 #endif
2133 
2134 		/*
2135 		 * CTL_IF_KERNPPS() puts a zero if either the kernel
2136 		 * loop is unavailable, or kernel hard PPS is not
2137 		 * active, otherwise calls putfunc with args.
2138 		 */
2139 #ifndef KERNEL_PLL
2140 # define	CTL_IF_KERNPPS(putfunc, args)	\
2141 		ctl_putint(sys_var[varid].text, 0)
2142 #else
2143 # define	CTL_IF_KERNPPS(putfunc, args)			\
2144 		if (0 == ntx.shift)				\
2145 			ctl_putint(sys_var[varid].text, 0);	\
2146 		else						\
2147 			putfunc args	/* no trailing ; */
2148 #endif
2149 
2150 	case CS_K_OFFSET:
2151 		CTL_IF_KERNLOOP(
2152 			ctl_putdblf,
2153 			(sys_var[varid].text, 0, -1, to_ms * ntx.offset)
2154 		);
2155 		break;
2156 
2157 	case CS_K_FREQ:
2158 		CTL_IF_KERNLOOP(
2159 			ctl_putsfp,
2160 			(sys_var[varid].text, ntx.freq)
2161 		);
2162 		break;
2163 
2164 	case CS_K_MAXERR:
2165 		CTL_IF_KERNLOOP(
2166 			ctl_putdblf,
2167 			(sys_var[varid].text, 0, 6,
2168 			 to_ms * ntx.maxerror)
2169 		);
2170 		break;
2171 
2172 	case CS_K_ESTERR:
2173 		CTL_IF_KERNLOOP(
2174 			ctl_putdblf,
2175 			(sys_var[varid].text, 0, 6,
2176 			 to_ms * ntx.esterror)
2177 		);
2178 		break;
2179 
2180 	case CS_K_STFLAGS:
2181 #ifndef KERNEL_PLL
2182 		ss = "";
2183 #else
2184 		ss = k_st_flags(ntx.status);
2185 #endif
2186 		ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2187 		break;
2188 
2189 	case CS_K_TIMECONST:
2190 		CTL_IF_KERNLOOP(
2191 			ctl_putint,
2192 			(sys_var[varid].text, ntx.constant)
2193 		);
2194 		break;
2195 
2196 	case CS_K_PRECISION:
2197 		CTL_IF_KERNLOOP(
2198 			ctl_putdblf,
2199 			(sys_var[varid].text, 0, 6,
2200 			    to_ms * ntx.precision)
2201 		);
2202 		break;
2203 
2204 	case CS_K_FREQTOL:
2205 		CTL_IF_KERNLOOP(
2206 			ctl_putsfp,
2207 			(sys_var[varid].text, ntx.tolerance)
2208 		);
2209 		break;
2210 
2211 	case CS_K_PPS_FREQ:
2212 		CTL_IF_KERNPPS(
2213 			ctl_putsfp,
2214 			(sys_var[varid].text, ntx.ppsfreq)
2215 		);
2216 		break;
2217 
2218 	case CS_K_PPS_STABIL:
2219 		CTL_IF_KERNPPS(
2220 			ctl_putsfp,
2221 			(sys_var[varid].text, ntx.stabil)
2222 		);
2223 		break;
2224 
2225 	case CS_K_PPS_JITTER:
2226 		CTL_IF_KERNPPS(
2227 			ctl_putdbl,
2228 			(sys_var[varid].text, to_ms * ntx.jitter)
2229 		);
2230 		break;
2231 
2232 	case CS_K_PPS_CALIBDUR:
2233 		CTL_IF_KERNPPS(
2234 			ctl_putint,
2235 			(sys_var[varid].text, 1 << ntx.shift)
2236 		);
2237 		break;
2238 
2239 	case CS_K_PPS_CALIBS:
2240 		CTL_IF_KERNPPS(
2241 			ctl_putint,
2242 			(sys_var[varid].text, ntx.calcnt)
2243 		);
2244 		break;
2245 
2246 	case CS_K_PPS_CALIBERRS:
2247 		CTL_IF_KERNPPS(
2248 			ctl_putint,
2249 			(sys_var[varid].text, ntx.errcnt)
2250 		);
2251 		break;
2252 
2253 	case CS_K_PPS_JITEXC:
2254 		CTL_IF_KERNPPS(
2255 			ctl_putint,
2256 			(sys_var[varid].text, ntx.jitcnt)
2257 		);
2258 		break;
2259 
2260 	case CS_K_PPS_STBEXC:
2261 		CTL_IF_KERNPPS(
2262 			ctl_putint,
2263 			(sys_var[varid].text, ntx.stbcnt)
2264 		);
2265 		break;
2266 
2267 	case CS_IOSTATS_RESET:
2268 		ctl_putuint(sys_var[varid].text,
2269 			    current_time - io_timereset);
2270 		break;
2271 
2272 	case CS_TOTAL_RBUF:
2273 		ctl_putuint(sys_var[varid].text, total_recvbuffs());
2274 		break;
2275 
2276 	case CS_FREE_RBUF:
2277 		ctl_putuint(sys_var[varid].text, free_recvbuffs());
2278 		break;
2279 
2280 	case CS_USED_RBUF:
2281 		ctl_putuint(sys_var[varid].text, full_recvbuffs());
2282 		break;
2283 
2284 	case CS_RBUF_LOWATER:
2285 		ctl_putuint(sys_var[varid].text, lowater_additions());
2286 		break;
2287 
2288 	case CS_IO_DROPPED:
2289 		ctl_putuint(sys_var[varid].text, packets_dropped);
2290 		break;
2291 
2292 	case CS_IO_IGNORED:
2293 		ctl_putuint(sys_var[varid].text, packets_ignored);
2294 		break;
2295 
2296 	case CS_IO_RECEIVED:
2297 		ctl_putuint(sys_var[varid].text, packets_received);
2298 		break;
2299 
2300 	case CS_IO_SENT:
2301 		ctl_putuint(sys_var[varid].text, packets_sent);
2302 		break;
2303 
2304 	case CS_IO_SENDFAILED:
2305 		ctl_putuint(sys_var[varid].text, packets_notsent);
2306 		break;
2307 
2308 	case CS_IO_WAKEUPS:
2309 		ctl_putuint(sys_var[varid].text, handler_calls);
2310 		break;
2311 
2312 	case CS_IO_GOODWAKEUPS:
2313 		ctl_putuint(sys_var[varid].text, handler_pkts);
2314 		break;
2315 
2316 	case CS_TIMERSTATS_RESET:
2317 		ctl_putuint(sys_var[varid].text,
2318 			    current_time - timer_timereset);
2319 		break;
2320 
2321 	case CS_TIMER_OVERRUNS:
2322 		ctl_putuint(sys_var[varid].text, alarm_overflow);
2323 		break;
2324 
2325 	case CS_TIMER_XMTS:
2326 		ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2327 		break;
2328 
2329 	case CS_FUZZ:
2330 		ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2331 		break;
2332 	case CS_WANDER_THRESH:
2333 		ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
2334 		break;
2335 #ifdef AUTOKEY
2336 	case CS_FLAGS:
2337 		if (crypto_flags)
2338 			ctl_puthex(sys_var[CS_FLAGS].text,
2339 			    crypto_flags);
2340 		break;
2341 
2342 	case CS_DIGEST:
2343 		if (crypto_flags) {
2344 			strlcpy(str, OBJ_nid2ln(crypto_nid),
2345 			    COUNTOF(str));
2346 			ctl_putstr(sys_var[CS_DIGEST].text, str,
2347 			    strlen(str));
2348 		}
2349 		break;
2350 
2351 	case CS_SIGNATURE:
2352 		if (crypto_flags) {
2353 			const EVP_MD *dp;
2354 
2355 			dp = EVP_get_digestbynid(crypto_flags >> 16);
2356 			strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2357 			    COUNTOF(str));
2358 			ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2359 			    strlen(str));
2360 		}
2361 		break;
2362 
2363 	case CS_HOST:
2364 		if (hostval.ptr != NULL)
2365 			ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2366 			    strlen(hostval.ptr));
2367 		break;
2368 
2369 	case CS_IDENT:
2370 		if (sys_ident != NULL)
2371 			ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2372 			    strlen(sys_ident));
2373 		break;
2374 
2375 	case CS_CERTIF:
2376 		for (cp = cinfo; cp != NULL; cp = cp->link) {
2377 			snprintf(str, sizeof(str), "%s %s 0x%x",
2378 			    cp->subject, cp->issuer, cp->flags);
2379 			ctl_putstr(sys_var[CS_CERTIF].text, str,
2380 			    strlen(str));
2381 			ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
2382 		}
2383 		break;
2384 
2385 	case CS_PUBLIC:
2386 		if (hostval.tstamp != 0)
2387 			ctl_putfs(sys_var[CS_PUBLIC].text,
2388 			    ntohl(hostval.tstamp));
2389 		break;
2390 #endif	/* AUTOKEY */
2391 	}
2392 }
2393 
2394 
2395 /*
2396  * ctl_putpeer - output a peer variable
2397  */
2398 static void
2399 ctl_putpeer(
2400 	int id,
2401 	struct peer *p
2402 	)
2403 {
2404 	char buf[CTL_MAX_DATA_LEN];
2405 	char *s;
2406 	char *t;
2407 	char *be;
2408 	int i;
2409 	const struct ctl_var *k;
2410 #ifdef AUTOKEY
2411 	struct autokey *ap;
2412 	const EVP_MD *dp;
2413 	const char *str;
2414 #endif	/* AUTOKEY */
2415 
2416 	switch (id) {
2417 
2418 	case CP_CONFIG:
2419 		ctl_putuint(peer_var[id].text,
2420 			    !(FLAG_PREEMPT & p->flags));
2421 		break;
2422 
2423 	case CP_AUTHENABLE:
2424 		ctl_putuint(peer_var[id].text, !(p->keyid));
2425 		break;
2426 
2427 	case CP_AUTHENTIC:
2428 		ctl_putuint(peer_var[id].text,
2429 			    !!(FLAG_AUTHENTIC & p->flags));
2430 		break;
2431 
2432 	case CP_SRCADR:
2433 		ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2434 		break;
2435 
2436 	case CP_SRCPORT:
2437 		ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2438 		break;
2439 
2440 	case CP_SRCHOST:
2441 		if (p->hostname != NULL)
2442 			ctl_putstr(peer_var[id].text, p->hostname,
2443 				   strlen(p->hostname));
2444 		break;
2445 
2446 	case CP_DSTADR:
2447 		ctl_putadr(peer_var[id].text, 0,
2448 			   (p->dstadr != NULL)
2449 				? &p->dstadr->sin
2450 				: NULL);
2451 		break;
2452 
2453 	case CP_DSTPORT:
2454 		ctl_putuint(peer_var[id].text,
2455 			    (p->dstadr != NULL)
2456 				? SRCPORT(&p->dstadr->sin)
2457 				: 0);
2458 		break;
2459 
2460 	case CP_IN:
2461 		if (p->r21 > 0.)
2462 			ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2463 		break;
2464 
2465 	case CP_OUT:
2466 		if (p->r34 > 0.)
2467 			ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2468 		break;
2469 
2470 	case CP_RATE:
2471 		ctl_putuint(peer_var[id].text, p->throttle);
2472 		break;
2473 
2474 	case CP_LEAP:
2475 		ctl_putuint(peer_var[id].text, p->leap);
2476 		break;
2477 
2478 	case CP_HMODE:
2479 		ctl_putuint(peer_var[id].text, p->hmode);
2480 		break;
2481 
2482 	case CP_STRATUM:
2483 		ctl_putuint(peer_var[id].text, p->stratum);
2484 		break;
2485 
2486 	case CP_PPOLL:
2487 		ctl_putuint(peer_var[id].text, p->ppoll);
2488 		break;
2489 
2490 	case CP_HPOLL:
2491 		ctl_putuint(peer_var[id].text, p->hpoll);
2492 		break;
2493 
2494 	case CP_PRECISION:
2495 		ctl_putint(peer_var[id].text, p->precision);
2496 		break;
2497 
2498 	case CP_ROOTDELAY:
2499 		ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2500 		break;
2501 
2502 	case CP_ROOTDISPERSION:
2503 		ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2504 		break;
2505 
2506 	case CP_REFID:
2507 #ifdef REFCLOCK
2508 		if (p->flags & FLAG_REFCLOCK) {
2509 			ctl_putrefid(peer_var[id].text, p->refid);
2510 			break;
2511 		}
2512 #endif
2513 		if (p->stratum > 1 && p->stratum < STRATUM_UNSPEC)
2514 			ctl_putadr(peer_var[id].text, p->refid,
2515 				   NULL);
2516 		else
2517 			ctl_putrefid(peer_var[id].text, p->refid);
2518 		break;
2519 
2520 	case CP_REFTIME:
2521 		ctl_putts(peer_var[id].text, &p->reftime);
2522 		break;
2523 
2524 	case CP_ORG:
2525 		ctl_putts(peer_var[id].text, &p->aorg);
2526 		break;
2527 
2528 	case CP_REC:
2529 		ctl_putts(peer_var[id].text, &p->dst);
2530 		break;
2531 
2532 	case CP_XMT:
2533 		if (p->xleave)
2534 			ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2535 		break;
2536 
2537 	case CP_BIAS:
2538 		if (p->bias != 0.)
2539 			ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2540 		break;
2541 
2542 	case CP_REACH:
2543 		ctl_puthex(peer_var[id].text, p->reach);
2544 		break;
2545 
2546 	case CP_FLASH:
2547 		ctl_puthex(peer_var[id].text, p->flash);
2548 		break;
2549 
2550 	case CP_TTL:
2551 #ifdef REFCLOCK
2552 		if (p->flags & FLAG_REFCLOCK) {
2553 			ctl_putuint(peer_var[id].text, p->ttl);
2554 			break;
2555 		}
2556 #endif
2557 		if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2558 			ctl_putint(peer_var[id].text,
2559 				   sys_ttl[p->ttl]);
2560 		break;
2561 
2562 	case CP_UNREACH:
2563 		ctl_putuint(peer_var[id].text, p->unreach);
2564 		break;
2565 
2566 	case CP_TIMER:
2567 		ctl_putuint(peer_var[id].text,
2568 			    p->nextdate - current_time);
2569 		break;
2570 
2571 	case CP_DELAY:
2572 		ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2573 		break;
2574 
2575 	case CP_OFFSET:
2576 		ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2577 		break;
2578 
2579 	case CP_JITTER:
2580 		ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2581 		break;
2582 
2583 	case CP_DISPERSION:
2584 		ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2585 		break;
2586 
2587 	case CP_KEYID:
2588 		if (p->keyid > NTP_MAXKEY)
2589 			ctl_puthex(peer_var[id].text, p->keyid);
2590 		else
2591 			ctl_putuint(peer_var[id].text, p->keyid);
2592 		break;
2593 
2594 	case CP_FILTDELAY:
2595 		ctl_putarray(peer_var[id].text, p->filter_delay,
2596 			     p->filter_nextpt);
2597 		break;
2598 
2599 	case CP_FILTOFFSET:
2600 		ctl_putarray(peer_var[id].text, p->filter_offset,
2601 			     p->filter_nextpt);
2602 		break;
2603 
2604 	case CP_FILTERROR:
2605 		ctl_putarray(peer_var[id].text, p->filter_disp,
2606 			     p->filter_nextpt);
2607 		break;
2608 
2609 	case CP_PMODE:
2610 		ctl_putuint(peer_var[id].text, p->pmode);
2611 		break;
2612 
2613 	case CP_RECEIVED:
2614 		ctl_putuint(peer_var[id].text, p->received);
2615 		break;
2616 
2617 	case CP_SENT:
2618 		ctl_putuint(peer_var[id].text, p->sent);
2619 		break;
2620 
2621 	case CP_VARLIST:
2622 		s = buf;
2623 		be = buf + sizeof(buf);
2624 		if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2625 			break;	/* really long var name */
2626 
2627 		snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2628 		s += strlen(s);
2629 		t = s;
2630 		for (k = peer_var; !(EOV & k->flags); k++) {
2631 			if (PADDING & k->flags)
2632 				continue;
2633 			i = strlen(k->text);
2634 			if (s + i + 1 >= be)
2635 				break;
2636 			if (s != t)
2637 				*s++ = ',';
2638 			memcpy(s, k->text, i);
2639 			s += i;
2640 		}
2641 		if (s + 2 < be) {
2642 			*s++ = '"';
2643 			*s = '\0';
2644 			ctl_putdata(buf, (u_int)(s - buf), 0);
2645 		}
2646 		break;
2647 
2648 	case CP_TIMEREC:
2649 		ctl_putuint(peer_var[id].text,
2650 			    current_time - p->timereceived);
2651 		break;
2652 
2653 	case CP_TIMEREACH:
2654 		ctl_putuint(peer_var[id].text,
2655 			    current_time - p->timereachable);
2656 		break;
2657 
2658 	case CP_BADAUTH:
2659 		ctl_putuint(peer_var[id].text, p->badauth);
2660 		break;
2661 
2662 	case CP_BOGUSORG:
2663 		ctl_putuint(peer_var[id].text, p->bogusorg);
2664 		break;
2665 
2666 	case CP_OLDPKT:
2667 		ctl_putuint(peer_var[id].text, p->oldpkt);
2668 		break;
2669 
2670 	case CP_SELDISP:
2671 		ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2672 		break;
2673 
2674 	case CP_SELBROKEN:
2675 		ctl_putuint(peer_var[id].text, p->selbroken);
2676 		break;
2677 
2678 	case CP_CANDIDATE:
2679 		ctl_putuint(peer_var[id].text, p->status);
2680 		break;
2681 #ifdef AUTOKEY
2682 	case CP_FLAGS:
2683 		if (p->crypto)
2684 			ctl_puthex(peer_var[id].text, p->crypto);
2685 		break;
2686 
2687 	case CP_SIGNATURE:
2688 		if (p->crypto) {
2689 			dp = EVP_get_digestbynid(p->crypto >> 16);
2690 			str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2691 			ctl_putstr(peer_var[id].text, str, strlen(str));
2692 		}
2693 		break;
2694 
2695 	case CP_HOST:
2696 		if (p->subject != NULL)
2697 			ctl_putstr(peer_var[id].text, p->subject,
2698 			    strlen(p->subject));
2699 		break;
2700 
2701 	case CP_VALID:		/* not used */
2702 		break;
2703 
2704 	case CP_INITSEQ:
2705 		if (NULL == (ap = p->recval.ptr))
2706 			break;
2707 
2708 		ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2709 		ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2710 		ctl_putfs(peer_var[CP_INITTSP].text,
2711 			  ntohl(p->recval.tstamp));
2712 		break;
2713 
2714 	case CP_IDENT:
2715 		if (p->ident != NULL)
2716 			ctl_putstr(peer_var[id].text, p->ident,
2717 			    strlen(p->ident));
2718 		break;
2719 
2720 
2721 #endif	/* AUTOKEY */
2722 	}
2723 }
2724 
2725 
2726 #ifdef REFCLOCK
2727 /*
2728  * ctl_putclock - output clock variables
2729  */
2730 static void
2731 ctl_putclock(
2732 	int id,
2733 	struct refclockstat *pcs,
2734 	int mustput
2735 	)
2736 {
2737 	char buf[CTL_MAX_DATA_LEN];
2738 	char *s, *t, *be;
2739 	const char *ss;
2740 	int i;
2741 	const struct ctl_var *k;
2742 
2743 	switch (id) {
2744 
2745 	case CC_TYPE:
2746 		if (mustput || pcs->clockdesc == NULL
2747 		    || *(pcs->clockdesc) == '\0') {
2748 			ctl_putuint(clock_var[id].text, pcs->type);
2749 		}
2750 		break;
2751 	case CC_TIMECODE:
2752 		ctl_putstr(clock_var[id].text,
2753 			   pcs->p_lastcode,
2754 			   (unsigned)pcs->lencode);
2755 		break;
2756 
2757 	case CC_POLL:
2758 		ctl_putuint(clock_var[id].text, pcs->polls);
2759 		break;
2760 
2761 	case CC_NOREPLY:
2762 		ctl_putuint(clock_var[id].text,
2763 			    pcs->noresponse);
2764 		break;
2765 
2766 	case CC_BADFORMAT:
2767 		ctl_putuint(clock_var[id].text,
2768 			    pcs->badformat);
2769 		break;
2770 
2771 	case CC_BADDATA:
2772 		ctl_putuint(clock_var[id].text,
2773 			    pcs->baddata);
2774 		break;
2775 
2776 	case CC_FUDGETIME1:
2777 		if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2778 			ctl_putdbl(clock_var[id].text,
2779 				   pcs->fudgetime1 * 1e3);
2780 		break;
2781 
2782 	case CC_FUDGETIME2:
2783 		if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2784 			ctl_putdbl(clock_var[id].text,
2785 				   pcs->fudgetime2 * 1e3);
2786 		break;
2787 
2788 	case CC_FUDGEVAL1:
2789 		if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2790 			ctl_putint(clock_var[id].text,
2791 				   pcs->fudgeval1);
2792 		break;
2793 
2794 	case CC_FUDGEVAL2:
2795 		if (mustput || (pcs->haveflags & CLK_HAVEVAL2)) {
2796 			if (pcs->fudgeval1 > 1)
2797 				ctl_putadr(clock_var[id].text,
2798 					   pcs->fudgeval2, NULL);
2799 			else
2800 				ctl_putrefid(clock_var[id].text,
2801 					     pcs->fudgeval2);
2802 		}
2803 		break;
2804 
2805 	case CC_FLAGS:
2806 		ctl_putuint(clock_var[id].text, pcs->flags);
2807 		break;
2808 
2809 	case CC_DEVICE:
2810 		if (pcs->clockdesc == NULL ||
2811 		    *(pcs->clockdesc) == '\0') {
2812 			if (mustput)
2813 				ctl_putstr(clock_var[id].text,
2814 					   "", 0);
2815 		} else {
2816 			ctl_putstr(clock_var[id].text,
2817 				   pcs->clockdesc,
2818 				   strlen(pcs->clockdesc));
2819 		}
2820 		break;
2821 
2822 	case CC_VARLIST:
2823 		s = buf;
2824 		be = buf + sizeof(buf);
2825 		if (strlen(clock_var[CC_VARLIST].text) + 4 >
2826 		    sizeof(buf))
2827 			break;	/* really long var name */
2828 
2829 		snprintf(s, sizeof(buf), "%s=\"",
2830 			 clock_var[CC_VARLIST].text);
2831 		s += strlen(s);
2832 		t = s;
2833 
2834 		for (k = clock_var; !(EOV & k->flags); k++) {
2835 			if (PADDING & k->flags)
2836 				continue;
2837 
2838 			i = strlen(k->text);
2839 			if (s + i + 1 >= be)
2840 				break;
2841 
2842 			if (s != t)
2843 				*s++ = ',';
2844 			memcpy(s, k->text, i);
2845 			s += i;
2846 		}
2847 
2848 		for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
2849 			if (PADDING & k->flags)
2850 				continue;
2851 
2852 			ss = k->text;
2853 			if (NULL == ss)
2854 				continue;
2855 
2856 			while (*ss && *ss != '=')
2857 				ss++;
2858 			i = ss - k->text;
2859 			if (s + i + 1 >= be)
2860 				break;
2861 
2862 			if (s != t)
2863 				*s++ = ',';
2864 			memcpy(s, k->text, (unsigned)i);
2865 			s += i;
2866 			*s = '\0';
2867 		}
2868 		if (s + 2 >= be)
2869 			break;
2870 
2871 		*s++ = '"';
2872 		*s = '\0';
2873 		ctl_putdata(buf, (unsigned)(s - buf), 0);
2874 		break;
2875 	}
2876 }
2877 #endif
2878 
2879 
2880 
2881 /*
2882  * ctl_getitem - get the next data item from the incoming packet
2883  */
2884 static const struct ctl_var *
2885 ctl_getitem(
2886 	const struct ctl_var *var_list,
2887 	char **data
2888 	)
2889 {
2890 	static const struct ctl_var eol = { 0, EOV, NULL };
2891 	static char buf[128];
2892 	static u_long quiet_until;
2893 	const struct ctl_var *v;
2894 	const char *pch;
2895 	char *cp;
2896 	char *tp;
2897 
2898 	/*
2899 	 * Delete leading commas and white space
2900 	 */
2901 	while (reqpt < reqend && (*reqpt == ',' ||
2902 				  isspace((unsigned char)*reqpt)))
2903 		reqpt++;
2904 	if (reqpt >= reqend)
2905 		return NULL;
2906 
2907 	if (NULL == var_list)
2908 		return &eol;
2909 
2910 	/*
2911 	 * Look for a first character match on the tag.  If we find
2912 	 * one, see if it is a full match.
2913 	 */
2914 	v = var_list;
2915 	cp = reqpt;
2916 	for (v = var_list; !(EOV & v->flags); v++) {
2917 		if (!(PADDING & v->flags) && *cp == *(v->text)) {
2918 			pch = v->text;
2919 			while ('\0' != *pch && '=' != *pch && cp < reqend
2920 			       && *cp == *pch) {
2921 				cp++;
2922 				pch++;
2923 			}
2924 			if ('\0' == *pch || '=' == *pch) {
2925 				while (cp < reqend && isspace((u_char)*cp))
2926 					cp++;
2927 				if (cp == reqend || ',' == *cp) {
2928 					buf[0] = '\0';
2929 					*data = buf;
2930 					if (cp < reqend)
2931 						cp++;
2932 					reqpt = cp;
2933 					return v;
2934 				}
2935 				if ('=' == *cp) {
2936 					cp++;
2937 					tp = buf;
2938 					while (cp < reqend && isspace((u_char)*cp))
2939 						cp++;
2940 					while (cp < reqend && *cp != ',') {
2941 						*tp++ = *cp++;
2942 						if ((size_t)(tp - buf) >= sizeof(buf)) {
2943 							ctl_error(CERR_BADFMT);
2944 							numctlbadpkts++;
2945 							NLOG(NLOG_SYSEVENT)
2946 								if (quiet_until <= current_time) {
2947 									quiet_until = current_time + 300;
2948 									msyslog(LOG_WARNING,
2949 "Possible 'ntpdx' exploit from %s#%u (possibly spoofed)", stoa(rmt_addr), SRCPORT(rmt_addr));
2950 								}
2951 							return NULL;
2952 						}
2953 					}
2954 					if (cp < reqend)
2955 						cp++;
2956 					*tp-- = '\0';
2957 					while (tp >= buf && isspace((u_char)*tp))
2958 						*tp-- = '\0';
2959 					reqpt = cp;
2960 					*data = buf;
2961 					return v;
2962 				}
2963 			}
2964 			cp = reqpt;
2965 		}
2966 	}
2967 	return v;
2968 }
2969 
2970 
2971 /*
2972  * control_unspec - response to an unspecified op-code
2973  */
2974 /*ARGSUSED*/
2975 static void
2976 control_unspec(
2977 	struct recvbuf *rbufp,
2978 	int restrict_mask
2979 	)
2980 {
2981 	struct peer *peer;
2982 
2983 	/*
2984 	 * What is an appropriate response to an unspecified op-code?
2985 	 * I return no errors and no data, unless a specified assocation
2986 	 * doesn't exist.
2987 	 */
2988 	if (res_associd) {
2989 		peer = findpeerbyassoc(res_associd);
2990 		if (NULL == peer) {
2991 			ctl_error(CERR_BADASSOC);
2992 			return;
2993 		}
2994 		rpkt.status = htons(ctlpeerstatus(peer));
2995 	} else
2996 		rpkt.status = htons(ctlsysstatus());
2997 	ctl_flushpkt(0);
2998 }
2999 
3000 
3001 /*
3002  * read_status - return either a list of associd's, or a particular
3003  * peer's status.
3004  */
3005 /*ARGSUSED*/
3006 static void
3007 read_status(
3008 	struct recvbuf *rbufp,
3009 	int restrict_mask
3010 	)
3011 {
3012 	struct peer *peer;
3013 	const u_char *cp;
3014 	size_t n;
3015 	/* a_st holds association ID, status pairs alternating */
3016 	u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
3017 
3018 #ifdef DEBUG
3019 	if (debug > 2)
3020 		printf("read_status: ID %d\n", res_associd);
3021 #endif
3022 	/*
3023 	 * Two choices here. If the specified association ID is
3024 	 * zero we return all known assocation ID's.  Otherwise
3025 	 * we return a bunch of stuff about the particular peer.
3026 	 */
3027 	if (res_associd) {
3028 		peer = findpeerbyassoc(res_associd);
3029 		if (NULL == peer) {
3030 			ctl_error(CERR_BADASSOC);
3031 			return;
3032 		}
3033 		rpkt.status = htons(ctlpeerstatus(peer));
3034 		if (res_authokay)
3035 			peer->num_events = 0;
3036 		/*
3037 		 * For now, output everything we know about the
3038 		 * peer. May be more selective later.
3039 		 */
3040 		for (cp = def_peer_var; *cp != 0; cp++)
3041 			ctl_putpeer((int)*cp, peer);
3042 		ctl_flushpkt(0);
3043 		return;
3044 	}
3045 	n = 0;
3046 	rpkt.status = htons(ctlsysstatus());
3047 	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3048 		a_st[n++] = htons(peer->associd);
3049 		a_st[n++] = htons(ctlpeerstatus(peer));
3050 		/* two entries each loop iteration, so n + 1 */
3051 		if (n + 1 >= COUNTOF(a_st)) {
3052 			ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
3053 				    1);
3054 			n = 0;
3055 		}
3056 	}
3057 	if (n)
3058 		ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3059 	ctl_flushpkt(0);
3060 }
3061 
3062 
3063 /*
3064  * read_peervars - half of read_variables() implementation
3065  */
3066 static void
3067 read_peervars(void)
3068 {
3069 	const struct ctl_var *v;
3070 	struct peer *peer;
3071 	const u_char *cp;
3072 	size_t i;
3073 	char *	valuep;
3074 	u_char	wants[CP_MAXCODE + 1];
3075 	u_int	gotvar;
3076 
3077 	/*
3078 	 * Wants info for a particular peer. See if we know
3079 	 * the guy.
3080 	 */
3081 	peer = findpeerbyassoc(res_associd);
3082 	if (NULL == peer) {
3083 		ctl_error(CERR_BADASSOC);
3084 		return;
3085 	}
3086 	rpkt.status = htons(ctlpeerstatus(peer));
3087 	if (res_authokay)
3088 		peer->num_events = 0;
3089 	ZERO(wants);
3090 	gotvar = 0;
3091 	while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3092 		if (v->flags & EOV) {
3093 			ctl_error(CERR_UNKNOWNVAR);
3094 			return;
3095 		}
3096 		NTP_INSIST(v->code < COUNTOF(wants));
3097 		wants[v->code] = 1;
3098 		gotvar = 1;
3099 	}
3100 	if (gotvar) {
3101 		for (i = 1; i < COUNTOF(wants); i++)
3102 			if (wants[i])
3103 				ctl_putpeer(i, peer);
3104 	} else
3105 		for (cp = def_peer_var; *cp != 0; cp++)
3106 			ctl_putpeer((int)*cp, peer);
3107 	ctl_flushpkt(0);
3108 }
3109 
3110 
3111 /*
3112  * read_sysvars - half of read_variables() implementation
3113  */
3114 static void
3115 read_sysvars(void)
3116 {
3117 	const struct ctl_var *v;
3118 	struct ctl_var *kv;
3119 	u_int	n;
3120 	u_int	gotvar;
3121 	const u_char *cs;
3122 	char *	valuep;
3123 	const char * pch;
3124 	u_char *wants;
3125 	size_t	wants_count;
3126 
3127 	/*
3128 	 * Wants system variables. Figure out which he wants
3129 	 * and give them to him.
3130 	 */
3131 	rpkt.status = htons(ctlsysstatus());
3132 	if (res_authokay)
3133 		ctl_sys_num_events = 0;
3134 	wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3135 	wants = emalloc_zero(wants_count);
3136 	gotvar = 0;
3137 	while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3138 		if (!(EOV & v->flags)) {
3139 			NTP_INSIST(v->code < wants_count);
3140 			wants[v->code] = 1;
3141 			gotvar = 1;
3142 		} else {
3143 			v = ctl_getitem(ext_sys_var, &valuep);
3144 			NTP_INSIST(v != NULL);
3145 			if (EOV & v->flags) {
3146 				ctl_error(CERR_UNKNOWNVAR);
3147 				free(wants);
3148 				return;
3149 			}
3150 			n = v->code + CS_MAXCODE + 1;
3151 			NTP_INSIST(n < wants_count);
3152 			wants[n] = 1;
3153 			gotvar = 1;
3154 		}
3155 	}
3156 	if (gotvar) {
3157 		for (n = 1; n <= CS_MAXCODE; n++)
3158 			if (wants[n])
3159 				ctl_putsys(n);
3160 		for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3161 			if (wants[n + CS_MAXCODE + 1]) {
3162 				pch = ext_sys_var[n].text;
3163 				ctl_putdata(pch, strlen(pch), 0);
3164 			}
3165 	} else {
3166 		for (cs = def_sys_var; *cs != 0; cs++)
3167 			ctl_putsys((int)*cs);
3168 		for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3169 			if (DEF & kv->flags)
3170 				ctl_putdata(kv->text, strlen(kv->text),
3171 					    0);
3172 	}
3173 	free(wants);
3174 	ctl_flushpkt(0);
3175 }
3176 
3177 
3178 /*
3179  * read_variables - return the variables the caller asks for
3180  */
3181 /*ARGSUSED*/
3182 static void
3183 read_variables(
3184 	struct recvbuf *rbufp,
3185 	int restrict_mask
3186 	)
3187 {
3188 	if (res_associd)
3189 		read_peervars();
3190 	else
3191 		read_sysvars();
3192 }
3193 
3194 
3195 /*
3196  * write_variables - write into variables. We only allow leap bit
3197  * writing this way.
3198  */
3199 /*ARGSUSED*/
3200 static void
3201 write_variables(
3202 	struct recvbuf *rbufp,
3203 	int restrict_mask
3204 	)
3205 {
3206 	const struct ctl_var *v;
3207 	int ext_var;
3208 	char *valuep;
3209 	long val;
3210 	size_t octets;
3211 	char *vareqv;
3212 	const char *t;
3213 	char *tt;
3214 
3215 	val = 0;
3216 	/*
3217 	 * If he's trying to write into a peer tell him no way
3218 	 */
3219 	if (res_associd != 0) {
3220 		ctl_error(CERR_PERMISSION);
3221 		return;
3222 	}
3223 
3224 	/*
3225 	 * Set status
3226 	 */
3227 	rpkt.status = htons(ctlsysstatus());
3228 
3229 	/*
3230 	 * Look through the variables. Dump out at the first sign of
3231 	 * trouble.
3232 	 */
3233 	while ((v = ctl_getitem(sys_var, &valuep)) != 0) {
3234 		ext_var = 0;
3235 		if (v->flags & EOV) {
3236 			if ((v = ctl_getitem(ext_sys_var, &valuep)) !=
3237 			    0) {
3238 				if (v->flags & EOV) {
3239 					ctl_error(CERR_UNKNOWNVAR);
3240 					return;
3241 				}
3242 				ext_var = 1;
3243 			} else {
3244 				break;
3245 			}
3246 		}
3247 		if (!(v->flags & CAN_WRITE)) {
3248 			ctl_error(CERR_PERMISSION);
3249 			return;
3250 		}
3251 		if (!ext_var && (*valuep == '\0' || !atoint(valuep,
3252 							    &val))) {
3253 			ctl_error(CERR_BADFMT);
3254 			return;
3255 		}
3256 		if (!ext_var && (val & ~LEAP_NOTINSYNC) != 0) {
3257 			ctl_error(CERR_BADVALUE);
3258 			return;
3259 		}
3260 
3261 		if (ext_var) {
3262 			octets = strlen(v->text) + strlen(valuep) + 2;
3263 			vareqv = emalloc(octets);
3264 			tt = vareqv;
3265 			t = v->text;
3266 			while (*t && *t != '=')
3267 				*tt++ = *t++;
3268 			*tt++ = '=';
3269 			memcpy(tt, valuep, 1 + strlen(valuep));
3270 			set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3271 			free(vareqv);
3272 		} else {
3273 			ctl_error(CERR_UNSPEC); /* really */
3274 			return;
3275 		}
3276 	}
3277 
3278 	/*
3279 	 * If we got anything, do it. xxx nothing to do ***
3280 	 */
3281 	/*
3282 	  if (leapind != ~0 || leapwarn != ~0) {
3283 	  if (!leap_setleap((int)leapind, (int)leapwarn)) {
3284 	  ctl_error(CERR_PERMISSION);
3285 	  return;
3286 	  }
3287 	  }
3288 	*/
3289 	ctl_flushpkt(0);
3290 }
3291 
3292 /*
3293  * configure() processes ntpq :config/config-from-file, allowing
3294  *		generic runtime reconfiguration.
3295  */
3296 static void configure(
3297 	struct recvbuf *rbufp,
3298 	int restrict_mask
3299 	)
3300 {
3301 	size_t data_count;
3302 	int retval;
3303 	int replace_nl;
3304 
3305 	/* I haven't yet implemented changes to an existing association.
3306 	 * Hence check if the association id is 0
3307 	 */
3308 	if (res_associd != 0) {
3309 		ctl_error(CERR_BADVALUE);
3310 		return;
3311 	}
3312 
3313 	if (RES_NOMODIFY & restrict_mask) {
3314 		snprintf(remote_config.err_msg,
3315 			 sizeof(remote_config.err_msg),
3316 			 "runtime configuration prohibited by restrict ... nomodify");
3317 		ctl_putdata(remote_config.err_msg,
3318 			    strlen(remote_config.err_msg), 0);
3319 		ctl_flushpkt(0);
3320 		NLOG(NLOG_SYSINFO)
3321 			msyslog(LOG_NOTICE,
3322 				"runtime config from %s rejected due to nomodify restriction",
3323 				stoa(&rbufp->recv_srcadr));
3324 		sys_restricted++;
3325 		return;
3326 	}
3327 
3328 	/* Initialize the remote config buffer */
3329 	data_count = reqend - reqpt;
3330 
3331 	if (data_count > sizeof(remote_config.buffer) - 2) {
3332 		snprintf(remote_config.err_msg,
3333 			 sizeof(remote_config.err_msg),
3334 			 "runtime configuration failed: request too long");
3335 		ctl_putdata(remote_config.err_msg,
3336 			    strlen(remote_config.err_msg), 0);
3337 		ctl_flushpkt(0);
3338 		msyslog(LOG_NOTICE,
3339 			"runtime config from %s rejected: request too long",
3340 			stoa(&rbufp->recv_srcadr));
3341 		return;
3342 	}
3343 
3344 	memcpy(remote_config.buffer, reqpt, data_count);
3345 	if (data_count > 0
3346 	    && '\n' != remote_config.buffer[data_count - 1])
3347 		remote_config.buffer[data_count++] = '\n';
3348 	remote_config.buffer[data_count] = '\0';
3349 	remote_config.pos = 0;
3350 	remote_config.err_pos = 0;
3351 	remote_config.no_errors = 0;
3352 
3353 	/* do not include terminating newline in log */
3354 	if (data_count > 0
3355 	    && '\n' == remote_config.buffer[data_count - 1]) {
3356 		remote_config.buffer[data_count - 1] = '\0';
3357 		replace_nl = TRUE;
3358 	} else {
3359 		replace_nl = FALSE;
3360 	}
3361 
3362 	DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3363 		remote_config.buffer));
3364 	msyslog(LOG_NOTICE, "%s config: %s",
3365 		stoa(&rbufp->recv_srcadr),
3366 		remote_config.buffer);
3367 
3368 	if (replace_nl)
3369 		remote_config.buffer[data_count - 1] = '\n';
3370 
3371 	config_remotely(&rbufp->recv_srcadr);
3372 
3373 	/*
3374 	 * Check if errors were reported. If not, output 'Config
3375 	 * Succeeded'.  Else output the error count.  It would be nice
3376 	 * to output any parser error messages.
3377 	 */
3378 	if (0 == remote_config.no_errors) {
3379 		retval = snprintf(remote_config.err_msg,
3380 				  sizeof(remote_config.err_msg),
3381 				  "Config Succeeded");
3382 		if (retval > 0)
3383 			remote_config.err_pos += retval;
3384 	}
3385 
3386 	ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3387 	ctl_flushpkt(0);
3388 
3389 	DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3390 
3391 	if (remote_config.no_errors > 0)
3392 		msyslog(LOG_NOTICE, "%d error in %s config",
3393 			remote_config.no_errors,
3394 			stoa(&rbufp->recv_srcadr));
3395 }
3396 
3397 
3398 /*
3399  * derive_nonce - generate client-address-specific nonce value
3400  *		  associated with a given timestamp.
3401  */
3402 static u_int32 derive_nonce(
3403 	sockaddr_u *	addr,
3404 	u_int32		ts_i,
3405 	u_int32		ts_f
3406 	)
3407 {
3408 	static u_int32	salt[4];
3409 	static u_long	last_salt_update;
3410 	union d_tag {
3411 		u_char	digest[EVP_MAX_MD_SIZE];
3412 		u_int32 extract;
3413 	}		d;
3414 	EVP_MD_CTX	ctx;
3415 	u_int		len;
3416 
3417 	while (!salt[0] || current_time - last_salt_update >= 3600) {
3418 		salt[0] = ntp_random();
3419 		salt[1] = ntp_random();
3420 		salt[2] = ntp_random();
3421 		salt[3] = ntp_random();
3422 		last_salt_update = current_time;
3423 	}
3424 
3425 	EVP_DigestInit(&ctx, EVP_get_digestbynid(NID_md5));
3426 	EVP_DigestUpdate(&ctx, salt, sizeof(salt));
3427 	EVP_DigestUpdate(&ctx, &ts_i, sizeof(ts_i));
3428 	EVP_DigestUpdate(&ctx, &ts_f, sizeof(ts_f));
3429 	if (IS_IPV4(addr))
3430 		EVP_DigestUpdate(&ctx, &SOCK_ADDR4(addr),
3431 			         sizeof(SOCK_ADDR4(addr)));
3432 	else
3433 		EVP_DigestUpdate(&ctx, &SOCK_ADDR6(addr),
3434 			         sizeof(SOCK_ADDR6(addr)));
3435 	EVP_DigestUpdate(&ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
3436 	EVP_DigestUpdate(&ctx, salt, sizeof(salt));
3437 	EVP_DigestFinal(&ctx, d.digest, &len);
3438 
3439 	return d.extract;
3440 }
3441 
3442 
3443 /*
3444  * generate_nonce - generate client-address-specific nonce string.
3445  */
3446 static void generate_nonce(
3447 	struct recvbuf *	rbufp,
3448 	char *			nonce,
3449 	size_t			nonce_octets
3450 	)
3451 {
3452 	u_int32 derived;
3453 
3454 	derived = derive_nonce(&rbufp->recv_srcadr,
3455 			       rbufp->recv_time.l_ui,
3456 			       rbufp->recv_time.l_uf);
3457 	snprintf(nonce, nonce_octets, "%08x%08x%08x",
3458 		 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3459 }
3460 
3461 
3462 /*
3463  * validate_nonce - validate client-address-specific nonce string.
3464  *
3465  * Returns TRUE if the local calculation of the nonce matches the
3466  * client-provided value and the timestamp is recent enough.
3467  */
3468 static int validate_nonce(
3469 	const char *		pnonce,
3470 	struct recvbuf *	rbufp
3471 	)
3472 {
3473 	u_int	ts_i;
3474 	u_int	ts_f;
3475 	l_fp	ts;
3476 	l_fp	now_delta;
3477 	u_int	supposed;
3478 	u_int	derived;
3479 
3480 	if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3481 		return FALSE;
3482 
3483 	ts.l_ui = (u_int32)ts_i;
3484 	ts.l_uf = (u_int32)ts_f;
3485 	derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3486 	get_systime(&now_delta);
3487 	L_SUB(&now_delta, &ts);
3488 
3489 	return (supposed == derived && now_delta.l_ui < 16);
3490 }
3491 
3492 
3493 /*
3494  * send_random_tag_value - send a randomly-generated three character
3495  *			   tag prefix, a '.', an index, a '=' and a
3496  *			   random integer value.
3497  *
3498  * To try to force clients to ignore unrecognized tags in mrulist,
3499  * reslist, and ifstats responses, the first and last rows are spiced
3500  * with randomly-generated tag names with correct .# index.  Make it
3501  * three characters knowing that none of the currently-used subscripted
3502  * tags have that length, avoiding the need to test for
3503  * tag collision.
3504  */
3505 static void
3506 send_random_tag_value(
3507 	int	indx
3508 	)
3509 {
3510 	int	noise;
3511 	char	buf[32];
3512 
3513 	noise = rand() ^ (rand() << 16);
3514 	buf[0] = 'a' + noise % 26;
3515 	noise >>= 5;
3516 	buf[1] = 'a' + noise % 26;
3517 	noise >>= 5;
3518 	buf[2] = 'a' + noise % 26;
3519 	noise >>= 5;
3520 	buf[3] = '.';
3521 	snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3522 	ctl_putuint(buf, noise);
3523 }
3524 
3525 
3526 /*
3527  * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3528  *
3529  * To keep clients honest about not depending on the order of values,
3530  * and thereby avoid being locked into ugly workarounds to maintain
3531  * backward compatibility later as new fields are added to the response,
3532  * the order is random.
3533  */
3534 static void
3535 send_mru_entry(
3536 	mon_entry *	mon,
3537 	int		count
3538 	)
3539 {
3540 	const char first_fmt[] =	"first.%d";
3541 	const char ct_fmt[] =		"ct.%d";
3542 	const char mv_fmt[] =		"mv.%d";
3543 	const char rs_fmt[] =		"rs.%d";
3544 	char	tag[32];
3545 	u_char	sent[6]; /* 6 tag=value pairs */
3546 	u_int32 noise;
3547 	u_int	which;
3548 	u_int	remaining;
3549 	const char * pch;
3550 
3551 	remaining = COUNTOF(sent);
3552 	ZERO(sent);
3553 	noise = (u_int32)(rand() ^ (rand() << 16));
3554 	while (remaining > 0) {
3555 		which = (noise & 7) % COUNTOF(sent);
3556 		noise >>= 3;
3557 		while (sent[which])
3558 			which = (which + 1) % COUNTOF(sent);
3559 
3560 		switch (which) {
3561 
3562 		case 0:
3563 			snprintf(tag, sizeof(tag), addr_fmt, count);
3564 			pch = sptoa(&mon->rmtadr);
3565 			ctl_putunqstr(tag, pch, strlen(pch));
3566 			break;
3567 
3568 		case 1:
3569 			snprintf(tag, sizeof(tag), last_fmt, count);
3570 			ctl_putts(tag, &mon->last);
3571 			break;
3572 
3573 		case 2:
3574 			snprintf(tag, sizeof(tag), first_fmt, count);
3575 			ctl_putts(tag, &mon->first);
3576 			break;
3577 
3578 		case 3:
3579 			snprintf(tag, sizeof(tag), ct_fmt, count);
3580 			ctl_putint(tag, mon->count);
3581 			break;
3582 
3583 		case 4:
3584 			snprintf(tag, sizeof(tag), mv_fmt, count);
3585 			ctl_putuint(tag, mon->vn_mode);
3586 			break;
3587 
3588 		case 5:
3589 			snprintf(tag, sizeof(tag), rs_fmt, count);
3590 			ctl_puthex(tag, mon->flags);
3591 			break;
3592 		}
3593 		sent[which] = TRUE;
3594 		remaining--;
3595 	}
3596 }
3597 
3598 
3599 /*
3600  * read_mru_list - supports ntpq's mrulist command.
3601  *
3602  * The challenge here is to match ntpdc's monlist functionality without
3603  * being limited to hundreds of entries returned total, and without
3604  * requiring state on the server.  If state were required, ntpq's
3605  * mrulist command would require authentication.
3606  *
3607  * The approach was suggested by Ry Jones.  A finite and variable number
3608  * of entries are retrieved per request, to avoid having responses with
3609  * such large numbers of packets that socket buffers are overflowed and
3610  * packets lost.  The entries are retrieved oldest-first, taking into
3611  * account that the MRU list will be changing between each request.  We
3612  * can expect to see duplicate entries for addresses updated in the MRU
3613  * list during the fetch operation.  In the end, the client can assemble
3614  * a close approximation of the MRU list at the point in time the last
3615  * response was sent by ntpd.  The only difference is it may be longer,
3616  * containing some number of oldest entries which have since been
3617  * reclaimed.  If necessary, the protocol could be extended to zap those
3618  * from the client snapshot at the end, but so far that doesn't seem
3619  * useful.
3620  *
3621  * To accomodate the changing MRU list, the starting point for requests
3622  * after the first request is supplied as a series of last seen
3623  * timestamps and associated addresses, the newest ones the client has
3624  * received.  As long as at least one of those entries hasn't been
3625  * bumped to the head of the MRU list, ntpd can pick up at that point.
3626  * Otherwise, the request is failed and it is up to ntpq to back up and
3627  * provide the next newest entry's timestamps and addresses, conceivably
3628  * backing up all the way to the starting point.
3629  *
3630  * input parameters:
3631  *	nonce=		Regurgitated nonce retrieved by the client
3632  *			previously using CTL_OP_REQ_NONCE, demonstrating
3633  *			ability to receive traffic sent to its address.
3634  *	frags=		Limit on datagrams (fragments) in response.  Used
3635  *			by newer ntpq versions instead of limit= when
3636  *			retrieving multiple entries.
3637  *	limit=		Limit on MRU entries returned.  One of frags= or
3638  *			limit= must be provided.
3639  *			limit=1 is a special case:  Instead of fetching
3640  *			beginning with the supplied starting point's
3641  *			newer neighbor, fetch the supplied entry, and
3642  *			in that case the #.last timestamp can be zero.
3643  *			This enables fetching a single entry by IP
3644  *			address.  When limit is not one and frags= is
3645  *			provided, the fragment limit controls.
3646  *	mincount=	(decimal) Return entries with count >= mincount.
3647  *	laddr=		Return entries associated with the server's IP
3648  *			address given.  No port specification is needed,
3649  *			and any supplied is ignored.
3650  *	resall=		0x-prefixed hex restrict bits which must all be
3651  *			lit for an MRU entry to be included.
3652  *			Has precedence over any resany=.
3653  *	resany=		0x-prefixed hex restrict bits, at least one of
3654  *			which must be list for an MRU entry to be
3655  *			included.
3656  *	last.0=		0x-prefixed hex l_fp timestamp of newest entry
3657  *			which client previously received.
3658  *	addr.0=		text of newest entry's IP address and port,
3659  *			IPv6 addresses in bracketed form: [::]:123
3660  *	last.1=		timestamp of 2nd newest entry client has.
3661  *	addr.1=		address of 2nd newest entry.
3662  *	[...]
3663  *
3664  * ntpq provides as many last/addr pairs as will fit in a single request
3665  * packet, except for the first request in a MRU fetch operation.
3666  *
3667  * The response begins with a new nonce value to be used for any
3668  * followup request.  Following the nonce is the next newer entry than
3669  * referred to by last.0 and addr.0, if the "0" entry has not been
3670  * bumped to the front.  If it has, the first entry returned will be the
3671  * next entry newer than referred to by last.1 and addr.1, and so on.
3672  * If none of the referenced entries remain unchanged, the request fails
3673  * and ntpq backs up to the next earlier set of entries to resync.
3674  *
3675  * Except for the first response, the response begins with confirmation
3676  * of the entry that precedes the first additional entry provided:
3677  *
3678  *	last.older=	hex l_fp timestamp matching one of the input
3679  *			.last timestamps, which entry now precedes the
3680  *			response 0. entry in the MRU list.
3681  *	addr.older=	text of address corresponding to older.last.
3682  *
3683  * And in any case, a successful response contains sets of values
3684  * comprising entries, with the oldest numbered 0 and incrementing from
3685  * there:
3686  *
3687  *	addr.#		text of IPv4 or IPv6 address and port
3688  *	last.#		hex l_fp timestamp of last receipt
3689  *	first.#		hex l_fp timestamp of first receipt
3690  *	ct.#		count of packets received
3691  *	mv.#		mode and version
3692  *	rs.#		restriction mask (RES_* bits)
3693  *
3694  * Note the code currently assumes there are no valid three letter
3695  * tags sent with each row, and needs to be adjusted if that changes.
3696  *
3697  * The client should accept the values in any order, and ignore .#
3698  * values which it does not understand, to allow a smooth path to
3699  * future changes without requiring a new opcode.  Clients can rely
3700  * on all *.0 values preceding any *.1 values, that is all values for
3701  * a given index number are together in the response.
3702  *
3703  * The end of the response list is noted with one or two tag=value
3704  * pairs.  Unconditionally:
3705  *
3706  *	now=		0x-prefixed l_fp timestamp at the server marking
3707  *			the end of the operation.
3708  *
3709  * If any entries were returned, now= is followed by:
3710  *
3711  *	last.newest=	hex l_fp identical to last.# of the prior
3712  *			entry.
3713  */
3714 static void read_mru_list(
3715 	struct recvbuf *rbufp,
3716 	int restrict_mask
3717 	)
3718 {
3719 	const char		nonce_text[] =		"nonce";
3720 	const char		frags_text[] =		"frags";
3721 	const char		limit_text[] =		"limit";
3722 	const char		mincount_text[] =	"mincount";
3723 	const char		resall_text[] =		"resall";
3724 	const char		resany_text[] =		"resany";
3725 	const char		maxlstint_text[] =	"maxlstint";
3726 	const char		laddr_text[] =		"laddr";
3727 	const char		resaxx_fmt[] =		"0x%hx";
3728 	u_int			limit;
3729 	u_short			frags;
3730 	u_short			resall;
3731 	u_short			resany;
3732 	int			mincount;
3733 	u_int			maxlstint;
3734 	sockaddr_u		laddr;
3735 	struct interface *	lcladr;
3736 	u_int			count;
3737 	u_int			ui;
3738 	u_int			uf;
3739 	l_fp			last[16];
3740 	sockaddr_u		addr[COUNTOF(last)];
3741 	char			buf[128];
3742 	struct ctl_var *	in_parms;
3743 	const struct ctl_var *	v;
3744 	char *			val;
3745 	const char *		pch;
3746 	char *			pnonce;
3747 	int			nonce_valid;
3748 	size_t			i;
3749 	int			priors;
3750 	u_short			hash;
3751 	mon_entry *		mon;
3752 	mon_entry *		prior_mon;
3753 	l_fp			now;
3754 
3755 	if (RES_NOMRULIST & restrict_mask) {
3756 		ctl_error(CERR_PERMISSION);
3757 		NLOG(NLOG_SYSINFO)
3758 			msyslog(LOG_NOTICE,
3759 				"mrulist from %s rejected due to nomrulist restriction",
3760 				stoa(&rbufp->recv_srcadr));
3761 		sys_restricted++;
3762 		return;
3763 	}
3764 	/*
3765 	 * fill in_parms var list with all possible input parameters.
3766 	 */
3767 	in_parms = NULL;
3768 	set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
3769 	set_var(&in_parms, frags_text, sizeof(frags_text), 0);
3770 	set_var(&in_parms, limit_text, sizeof(limit_text), 0);
3771 	set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
3772 	set_var(&in_parms, resall_text, sizeof(resall_text), 0);
3773 	set_var(&in_parms, resany_text, sizeof(resany_text), 0);
3774 	set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
3775 	set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
3776 	for (i = 0; i < COUNTOF(last); i++) {
3777 		snprintf(buf, sizeof(buf), last_fmt, (int)i);
3778 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
3779 		snprintf(buf, sizeof(buf), addr_fmt, (int)i);
3780 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
3781 	}
3782 
3783 	/* decode input parms */
3784 	pnonce = NULL;
3785 	frags = 0;
3786 	limit = 0;
3787 	mincount = 0;
3788 	resall = 0;
3789 	resany = 0;
3790 	maxlstint = 0;
3791 	lcladr = NULL;
3792 	priors = 0;
3793 	ZERO(last);
3794 	ZERO(addr);
3795 
3796 	while (NULL != (v = ctl_getitem(in_parms, &val)) &&
3797 	       !(EOV & v->flags)) {
3798 		int si;
3799 
3800 		if (!strcmp(nonce_text, v->text)) {
3801 			if (NULL != pnonce)
3802 				free(pnonce);
3803 			pnonce = estrdup(val);
3804 		} else if (!strcmp(frags_text, v->text)) {
3805 			sscanf(val, "%hu", &frags);
3806 		} else if (!strcmp(limit_text, v->text)) {
3807 			sscanf(val, "%u", &limit);
3808 		} else if (!strcmp(mincount_text, v->text)) {
3809 			if (1 != sscanf(val, "%d", &mincount) ||
3810 			    mincount < 0)
3811 				mincount = 0;
3812 		} else if (!strcmp(resall_text, v->text)) {
3813 			sscanf(val, resaxx_fmt, &resall);
3814 		} else if (!strcmp(resany_text, v->text)) {
3815 			sscanf(val, resaxx_fmt, &resany);
3816 		} else if (!strcmp(maxlstint_text, v->text)) {
3817 			sscanf(val, "%u", &maxlstint);
3818 		} else if (!strcmp(laddr_text, v->text)) {
3819 			if (decodenetnum(val, &laddr))
3820 				lcladr = getinterface(&laddr, 0);
3821 		} else if (1 == sscanf(v->text, last_fmt, &si) &&
3822 			   (size_t)si < COUNTOF(last)) {
3823 			if (2 == sscanf(val, "0x%08x.%08x", &ui, &uf)) {
3824 				last[si].l_ui = ui;
3825 				last[si].l_uf = uf;
3826 				if (!SOCK_UNSPEC(&addr[si]) &&
3827 				    si == priors)
3828 					priors++;
3829 			}
3830 		} else if (1 == sscanf(v->text, addr_fmt, &si) &&
3831 			   (size_t)si < COUNTOF(addr)) {
3832 			if (decodenetnum(val, &addr[si])
3833 			    && last[si].l_ui && last[si].l_uf &&
3834 			    si == priors)
3835 				priors++;
3836 		}
3837 	}
3838 	free_varlist(in_parms);
3839 	in_parms = NULL;
3840 
3841 	/* return no responses until the nonce is validated */
3842 	if (NULL == pnonce)
3843 		return;
3844 
3845 	nonce_valid = validate_nonce(pnonce, rbufp);
3846 	free(pnonce);
3847 	if (!nonce_valid)
3848 		return;
3849 
3850 	if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
3851 	    frags > MRU_FRAGS_LIMIT) {
3852 		ctl_error(CERR_BADVALUE);
3853 		return;
3854 	}
3855 
3856 	/*
3857 	 * If either frags or limit is not given, use the max.
3858 	 */
3859 	if (0 != frags && 0 == limit)
3860 		limit = UINT_MAX;
3861 	else if (0 != limit && 0 == frags)
3862 		frags = MRU_FRAGS_LIMIT;
3863 
3864 	/*
3865 	 * Find the starting point if one was provided.
3866 	 */
3867 	mon = NULL;
3868 	for (i = 0; i < (size_t)priors; i++) {
3869 		hash = MON_HASH(&addr[i]);
3870 		for (mon = mon_hash[hash];
3871 		     mon != NULL;
3872 		     mon = mon->hash_next)
3873 			if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
3874 				break;
3875 		if (mon != NULL) {
3876 			if (L_ISEQU(&mon->last, &last[i]))
3877 				break;
3878 			mon = NULL;
3879 		}
3880 	}
3881 
3882 	/* If a starting point was provided... */
3883 	if (priors) {
3884 		/* and none could be found unmodified... */
3885 		if (NULL == mon) {
3886 			/* tell ntpq to try again with older entries */
3887 			ctl_error(CERR_UNKNOWNVAR);
3888 			return;
3889 		}
3890 		/* confirm the prior entry used as starting point */
3891 		ctl_putts("last.older", &mon->last);
3892 		pch = sptoa(&mon->rmtadr);
3893 		ctl_putunqstr("addr.older", pch, strlen(pch));
3894 
3895 		/*
3896 		 * Move on to the first entry the client doesn't have,
3897 		 * except in the special case of a limit of one.  In
3898 		 * that case return the starting point entry.
3899 		 */
3900 		if (limit > 1)
3901 			mon = PREV_DLIST(mon_mru_list, mon, mru);
3902 	} else {	/* start with the oldest */
3903 		mon = TAIL_DLIST(mon_mru_list, mru);
3904 	}
3905 
3906 	/*
3907 	 * send up to limit= entries in up to frags= datagrams
3908 	 */
3909 	get_systime(&now);
3910 	generate_nonce(rbufp, buf, sizeof(buf));
3911 	ctl_putunqstr("nonce", buf, strlen(buf));
3912 	prior_mon = NULL;
3913 	for (count = 0;
3914 	     mon != NULL && res_frags < frags && count < limit;
3915 	     mon = PREV_DLIST(mon_mru_list, mon, mru)) {
3916 
3917 		if (mon->count < mincount)
3918 			continue;
3919 		if (resall && resall != (resall & mon->flags))
3920 			continue;
3921 		if (resany && !(resany & mon->flags))
3922 			continue;
3923 		if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
3924 		    maxlstint)
3925 			continue;
3926 		if (lcladr != NULL && mon->lcladr != lcladr)
3927 			continue;
3928 
3929 		send_mru_entry(mon, count);
3930 		if (!count)
3931 			send_random_tag_value(0);
3932 		count++;
3933 		prior_mon = mon;
3934 	}
3935 
3936 	/*
3937 	 * If this batch completes the MRU list, say so explicitly with
3938 	 * a now= l_fp timestamp.
3939 	 */
3940 	if (NULL == mon) {
3941 		if (count > 1)
3942 			send_random_tag_value(count - 1);
3943 		ctl_putts("now", &now);
3944 		/* if any entries were returned confirm the last */
3945 		if (prior_mon != NULL)
3946 			ctl_putts("last.newest", &prior_mon->last);
3947 	}
3948 	ctl_flushpkt(0);
3949 }
3950 
3951 
3952 /*
3953  * Send a ifstats entry in response to a "ntpq -c ifstats" request.
3954  *
3955  * To keep clients honest about not depending on the order of values,
3956  * and thereby avoid being locked into ugly workarounds to maintain
3957  * backward compatibility later as new fields are added to the response,
3958  * the order is random.
3959  */
3960 static void
3961 send_ifstats_entry(
3962 	endpt *	la,
3963 	u_int	ifnum
3964 	)
3965 {
3966 	const char addr_fmtu[] =	"addr.%u";
3967 	const char bcast_fmt[] =	"bcast.%u";
3968 	const char en_fmt[] =		"en.%u";	/* enabled */
3969 	const char name_fmt[] =		"name.%u";
3970 	const char flags_fmt[] =	"flags.%u";
3971 	const char tl_fmt[] =		"tl.%u";	/* ttl */
3972 	const char mc_fmt[] =		"mc.%u";	/* mcast count */
3973 	const char rx_fmt[] =		"rx.%u";
3974 	const char tx_fmt[] =		"tx.%u";
3975 	const char txerr_fmt[] =	"txerr.%u";
3976 	const char pc_fmt[] =		"pc.%u";	/* peer count */
3977 	const char up_fmt[] =		"up.%u";	/* uptime */
3978 	char	tag[32];
3979 	u_char	sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
3980 	int	noisebits;
3981 	u_int32 noise;
3982 	u_int	which;
3983 	u_int	remaining;
3984 	const char *pch;
3985 
3986 	remaining = COUNTOF(sent);
3987 	ZERO(sent);
3988 	noise = 0;
3989 	noisebits = 0;
3990 	while (remaining > 0) {
3991 		if (noisebits < 4) {
3992 			noise = rand() ^ (rand() << 16);
3993 			noisebits = 31;
3994 		}
3995 		which = (noise & 0xf) % COUNTOF(sent);
3996 		noise >>= 4;
3997 		noisebits -= 4;
3998 
3999 		while (sent[which])
4000 			which = (which + 1) % COUNTOF(sent);
4001 
4002 		switch (which) {
4003 
4004 		case 0:
4005 			snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
4006 			pch = sptoa(&la->sin);
4007 			ctl_putunqstr(tag, pch, strlen(pch));
4008 			break;
4009 
4010 		case 1:
4011 			snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
4012 			if (INT_BCASTOPEN & la->flags)
4013 				pch = sptoa(&la->bcast);
4014 			else
4015 				pch = "";
4016 			ctl_putunqstr(tag, pch, strlen(pch));
4017 			break;
4018 
4019 		case 2:
4020 			snprintf(tag, sizeof(tag), en_fmt, ifnum);
4021 			ctl_putint(tag, !la->ignore_packets);
4022 			break;
4023 
4024 		case 3:
4025 			snprintf(tag, sizeof(tag), name_fmt, ifnum);
4026 			ctl_putstr(tag, la->name, strlen(la->name));
4027 			break;
4028 
4029 		case 4:
4030 			snprintf(tag, sizeof(tag), flags_fmt, ifnum);
4031 			ctl_puthex(tag, (u_int)la->flags);
4032 			break;
4033 
4034 		case 5:
4035 			snprintf(tag, sizeof(tag), tl_fmt, ifnum);
4036 			ctl_putint(tag, la->last_ttl);
4037 			break;
4038 
4039 		case 6:
4040 			snprintf(tag, sizeof(tag), mc_fmt, ifnum);
4041 			ctl_putint(tag, la->num_mcast);
4042 			break;
4043 
4044 		case 7:
4045 			snprintf(tag, sizeof(tag), rx_fmt, ifnum);
4046 			ctl_putint(tag, la->received);
4047 			break;
4048 
4049 		case 8:
4050 			snprintf(tag, sizeof(tag), tx_fmt, ifnum);
4051 			ctl_putint(tag, la->sent);
4052 			break;
4053 
4054 		case 9:
4055 			snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
4056 			ctl_putint(tag, la->notsent);
4057 			break;
4058 
4059 		case 10:
4060 			snprintf(tag, sizeof(tag), pc_fmt, ifnum);
4061 			ctl_putuint(tag, la->peercnt);
4062 			break;
4063 
4064 		case 11:
4065 			snprintf(tag, sizeof(tag), up_fmt, ifnum);
4066 			ctl_putuint(tag, current_time - la->starttime);
4067 			break;
4068 		}
4069 		sent[which] = TRUE;
4070 		remaining--;
4071 	}
4072 	send_random_tag_value((int)ifnum);
4073 }
4074 
4075 
4076 /*
4077  * read_ifstats - send statistics for each local address, exposed by
4078  *		  ntpq -c ifstats
4079  */
4080 static void
4081 read_ifstats(
4082 	struct recvbuf *	rbufp
4083 	)
4084 {
4085 	u_int	ifidx;
4086 	endpt *	la;
4087 
4088 	/*
4089 	 * loop over [0..sys_ifnum] searching ep_list for each
4090 	 * ifnum in turn.
4091 	 */
4092 	for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4093 		for (la = ep_list; la != NULL; la = la->elink)
4094 			if (ifidx == la->ifnum)
4095 				break;
4096 		if (NULL == la)
4097 			continue;
4098 		/* return stats for one local address */
4099 		send_ifstats_entry(la, ifidx);
4100 	}
4101 	ctl_flushpkt(0);
4102 }
4103 
4104 static void
4105 sockaddrs_from_restrict_u(
4106 	sockaddr_u *	psaA,
4107 	sockaddr_u *	psaM,
4108 	restrict_u *	pres,
4109 	int		ipv6
4110 	)
4111 {
4112 	ZERO(*psaA);
4113 	ZERO(*psaM);
4114 	if (!ipv6) {
4115 		psaA->sa.sa_family = AF_INET;
4116 		psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
4117 		psaM->sa.sa_family = AF_INET;
4118 		psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
4119 	} else {
4120 		psaA->sa.sa_family = AF_INET6;
4121 		memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
4122 		       sizeof(psaA->sa6.sin6_addr));
4123 		psaM->sa.sa_family = AF_INET6;
4124 		memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
4125 		       sizeof(psaA->sa6.sin6_addr));
4126 	}
4127 }
4128 
4129 
4130 /*
4131  * Send a restrict entry in response to a "ntpq -c reslist" request.
4132  *
4133  * To keep clients honest about not depending on the order of values,
4134  * and thereby avoid being locked into ugly workarounds to maintain
4135  * backward compatibility later as new fields are added to the response,
4136  * the order is random.
4137  */
4138 static void
4139 send_restrict_entry(
4140 	restrict_u *	pres,
4141 	int		ipv6,
4142 	u_int		idx
4143 	)
4144 {
4145 	const char addr_fmtu[] =	"addr.%u";
4146 	const char mask_fmtu[] =	"mask.%u";
4147 	const char hits_fmt[] =		"hits.%u";
4148 	const char flags_fmt[] =	"flags.%u";
4149 	char		tag[32];
4150 	u_char		sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4151 	int		noisebits;
4152 	u_int32		noise;
4153 	u_int		which;
4154 	u_int		remaining;
4155 	sockaddr_u	addr;
4156 	sockaddr_u	mask;
4157 	const char *	pch;
4158 	char *		buf;
4159 	const char *	match_str;
4160 	const char *	access_str;
4161 
4162 	sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
4163 	remaining = COUNTOF(sent);
4164 	ZERO(sent);
4165 	noise = 0;
4166 	noisebits = 0;
4167 	while (remaining > 0) {
4168 		if (noisebits < 2) {
4169 			noise = rand() ^ (rand() << 16);
4170 			noisebits = 31;
4171 		}
4172 		which = (noise & 0x3) % COUNTOF(sent);
4173 		noise >>= 2;
4174 		noisebits -= 2;
4175 
4176 		while (sent[which])
4177 			which = (which + 1) % COUNTOF(sent);
4178 
4179 		switch (which) {
4180 
4181 		case 0:
4182 			snprintf(tag, sizeof(tag), addr_fmtu, idx);
4183 			pch = stoa(&addr);
4184 			ctl_putunqstr(tag, pch, strlen(pch));
4185 			break;
4186 
4187 		case 1:
4188 			snprintf(tag, sizeof(tag), mask_fmtu, idx);
4189 			pch = stoa(&mask);
4190 			ctl_putunqstr(tag, pch, strlen(pch));
4191 			break;
4192 
4193 		case 2:
4194 			snprintf(tag, sizeof(tag), hits_fmt, idx);
4195 			ctl_putuint(tag, pres->count);
4196 			break;
4197 
4198 		case 3:
4199 			snprintf(tag, sizeof(tag), flags_fmt, idx);
4200 			match_str = res_match_flags(pres->mflags);
4201 			access_str = res_access_flags(pres->flags);
4202 			if ('\0' == match_str[0]) {
4203 				pch = access_str;
4204 			} else {
4205 				LIB_GETBUF(buf);
4206 				snprintf(buf, LIB_BUFLENGTH, "%s %s",
4207 					 match_str, access_str);
4208 				pch = buf;
4209 			}
4210 			ctl_putunqstr(tag, pch, strlen(pch));
4211 			break;
4212 		}
4213 		sent[which] = TRUE;
4214 		remaining--;
4215 	}
4216 	send_random_tag_value((int)idx);
4217 }
4218 
4219 
4220 static void
4221 send_restrict_list(
4222 	restrict_u *	pres,
4223 	int		ipv6,
4224 	u_int *		pidx
4225 	)
4226 {
4227 	for ( ; pres != NULL; pres = pres->link) {
4228 		send_restrict_entry(pres, ipv6, *pidx);
4229 		(*pidx)++;
4230 	}
4231 }
4232 
4233 
4234 /*
4235  * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4236  */
4237 static void
4238 read_addr_restrictions(
4239 	struct recvbuf *	rbufp
4240 )
4241 {
4242 	u_int idx;
4243 
4244 	idx = 0;
4245 	send_restrict_list(restrictlist4, FALSE, &idx);
4246 	send_restrict_list(restrictlist6, TRUE, &idx);
4247 	ctl_flushpkt(0);
4248 }
4249 
4250 
4251 /*
4252  * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4253  */
4254 static void
4255 read_ordlist(
4256 	struct recvbuf *	rbufp,
4257 	int			restrict_mask
4258 	)
4259 {
4260 	const char ifstats_s[] = "ifstats";
4261 	const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4262 	const char addr_rst_s[] = "addr_restrictions";
4263 	const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4264 	struct ntp_control *	cpkt;
4265 	u_short			qdata_octets;
4266 
4267 	/*
4268 	 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4269 	 * used only for ntpq -c ifstats.  With the addition of reslist
4270 	 * the same opcode was generalized to retrieve ordered lists
4271 	 * which require authentication.  The request data is empty or
4272 	 * contains "ifstats" (not null terminated) to retrieve local
4273 	 * addresses and associated stats.  It is "addr_restrictions"
4274 	 * to retrieve the IPv4 then IPv6 remote address restrictions,
4275 	 * which are access control lists.  Other request data return
4276 	 * CERR_UNKNOWNVAR.
4277 	 */
4278 	cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4279 	qdata_octets = ntohs(cpkt->count);
4280 	if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4281 	    !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4282 		read_ifstats(rbufp);
4283 		return;
4284 	}
4285 	if (a_r_chars == qdata_octets &&
4286 	    !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4287 		read_addr_restrictions(rbufp);
4288 		return;
4289 	}
4290 	ctl_error(CERR_UNKNOWNVAR);
4291 }
4292 
4293 
4294 /*
4295  * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4296  */
4297 static void req_nonce(
4298 	struct recvbuf *	rbufp,
4299 	int			restrict_mask
4300 	)
4301 {
4302 	char	buf[64];
4303 
4304 	generate_nonce(rbufp, buf, sizeof(buf));
4305 	ctl_putunqstr("nonce", buf, strlen(buf));
4306 	ctl_flushpkt(0);
4307 }
4308 
4309 
4310 /*
4311  * read_clockstatus - return clock radio status
4312  */
4313 /*ARGSUSED*/
4314 static void
4315 read_clockstatus(
4316 	struct recvbuf *rbufp,
4317 	int restrict_mask
4318 	)
4319 {
4320 #ifndef REFCLOCK
4321 	/*
4322 	 * If no refclock support, no data to return
4323 	 */
4324 	ctl_error(CERR_BADASSOC);
4325 #else
4326 	const struct ctl_var *	v;
4327 	int			i;
4328 	struct peer *		peer;
4329 	char *			valuep;
4330 	u_char *		wants;
4331 	size_t			wants_alloc;
4332 	int			gotvar;
4333 	const u_char *		cc;
4334 	struct ctl_var *	kv;
4335 	struct refclockstat	cs;
4336 
4337 	if (res_associd != 0) {
4338 		peer = findpeerbyassoc(res_associd);
4339 	} else {
4340 		/*
4341 		 * Find a clock for this jerk.	If the system peer
4342 		 * is a clock use it, else search peer_list for one.
4343 		 */
4344 		if (sys_peer != NULL && (FLAG_REFCLOCK &
4345 		    sys_peer->flags))
4346 			peer = sys_peer;
4347 		else
4348 			for (peer = peer_list;
4349 			     peer != NULL;
4350 			     peer = peer->p_link)
4351 				if (FLAG_REFCLOCK & peer->flags)
4352 					break;
4353 	}
4354 	if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4355 		ctl_error(CERR_BADASSOC);
4356 		return;
4357 	}
4358 	/*
4359 	 * If we got here we have a peer which is a clock. Get his
4360 	 * status.
4361 	 */
4362 	cs.kv_list = NULL;
4363 	refclock_control(&peer->srcadr, NULL, &cs);
4364 	kv = cs.kv_list;
4365 	/*
4366 	 * Look for variables in the packet.
4367 	 */
4368 	rpkt.status = htons(ctlclkstatus(&cs));
4369 	wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4370 	wants = emalloc_zero(wants_alloc);
4371 	gotvar = FALSE;
4372 	while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4373 		if (!(EOV & v->flags)) {
4374 			wants[v->code] = TRUE;
4375 			gotvar = TRUE;
4376 		} else {
4377 			v = ctl_getitem(kv, &valuep);
4378 			NTP_INSIST(NULL != v);
4379 			if (EOV & v->flags) {
4380 				ctl_error(CERR_UNKNOWNVAR);
4381 				free(wants);
4382 				free_varlist(cs.kv_list);
4383 				return;
4384 			}
4385 			wants[CC_MAXCODE + 1 + v->code] = TRUE;
4386 			gotvar = TRUE;
4387 		}
4388 	}
4389 
4390 	if (gotvar) {
4391 		for (i = 1; i <= CC_MAXCODE; i++)
4392 			if (wants[i])
4393 				ctl_putclock(i, &cs, TRUE);
4394 		if (kv != NULL)
4395 			for (i = 0; !(EOV & kv[i].flags); i++)
4396 				if (wants[i + CC_MAXCODE + 1])
4397 					ctl_putdata(kv[i].text,
4398 						    strlen(kv[i].text),
4399 						    FALSE);
4400 	} else {
4401 		for (cc = def_clock_var; *cc != 0; cc++)
4402 			ctl_putclock((int)*cc, &cs, FALSE);
4403 		for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4404 			if (DEF & kv->flags)
4405 				ctl_putdata(kv->text, strlen(kv->text),
4406 					    FALSE);
4407 	}
4408 
4409 	free(wants);
4410 	free_varlist(cs.kv_list);
4411 
4412 	ctl_flushpkt(0);
4413 #endif
4414 }
4415 
4416 
4417 /*
4418  * write_clockstatus - we don't do this
4419  */
4420 /*ARGSUSED*/
4421 static void
4422 write_clockstatus(
4423 	struct recvbuf *rbufp,
4424 	int restrict_mask
4425 	)
4426 {
4427 	ctl_error(CERR_PERMISSION);
4428 }
4429 
4430 /*
4431  * Trap support from here on down. We send async trap messages when the
4432  * upper levels report trouble. Traps can by set either by control
4433  * messages or by configuration.
4434  */
4435 /*
4436  * set_trap - set a trap in response to a control message
4437  */
4438 static void
4439 set_trap(
4440 	struct recvbuf *rbufp,
4441 	int restrict_mask
4442 	)
4443 {
4444 	int traptype;
4445 
4446 	/*
4447 	 * See if this guy is allowed
4448 	 */
4449 	if (restrict_mask & RES_NOTRAP) {
4450 		ctl_error(CERR_PERMISSION);
4451 		return;
4452 	}
4453 
4454 	/*
4455 	 * Determine his allowed trap type.
4456 	 */
4457 	traptype = TRAP_TYPE_PRIO;
4458 	if (restrict_mask & RES_LPTRAP)
4459 		traptype = TRAP_TYPE_NONPRIO;
4460 
4461 	/*
4462 	 * Call ctlsettrap() to do the work.  Return
4463 	 * an error if it can't assign the trap.
4464 	 */
4465 	if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4466 			(int)res_version))
4467 		ctl_error(CERR_NORESOURCE);
4468 	ctl_flushpkt(0);
4469 }
4470 
4471 
4472 /*
4473  * unset_trap - unset a trap in response to a control message
4474  */
4475 static void
4476 unset_trap(
4477 	struct recvbuf *rbufp,
4478 	int restrict_mask
4479 	)
4480 {
4481 	int traptype;
4482 
4483 	/*
4484 	 * We don't prevent anyone from removing his own trap unless the
4485 	 * trap is configured. Note we also must be aware of the
4486 	 * possibility that restriction flags were changed since this
4487 	 * guy last set his trap. Set the trap type based on this.
4488 	 */
4489 	traptype = TRAP_TYPE_PRIO;
4490 	if (restrict_mask & RES_LPTRAP)
4491 		traptype = TRAP_TYPE_NONPRIO;
4492 
4493 	/*
4494 	 * Call ctlclrtrap() to clear this out.
4495 	 */
4496 	if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4497 		ctl_error(CERR_BADASSOC);
4498 	ctl_flushpkt(0);
4499 }
4500 
4501 
4502 /*
4503  * ctlsettrap - called to set a trap
4504  */
4505 int
4506 ctlsettrap(
4507 	sockaddr_u *raddr,
4508 	struct interface *linter,
4509 	int traptype,
4510 	int version
4511 	)
4512 {
4513 	size_t n;
4514 	struct ctl_trap *tp;
4515 	struct ctl_trap *tptouse;
4516 
4517 	/*
4518 	 * See if we can find this trap.  If so, we only need update
4519 	 * the flags and the time.
4520 	 */
4521 	if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4522 		switch (traptype) {
4523 
4524 		case TRAP_TYPE_CONFIG:
4525 			tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4526 			break;
4527 
4528 		case TRAP_TYPE_PRIO:
4529 			if (tp->tr_flags & TRAP_CONFIGURED)
4530 				return (1); /* don't change anything */
4531 			tp->tr_flags = TRAP_INUSE;
4532 			break;
4533 
4534 		case TRAP_TYPE_NONPRIO:
4535 			if (tp->tr_flags & TRAP_CONFIGURED)
4536 				return (1); /* don't change anything */
4537 			tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4538 			break;
4539 		}
4540 		tp->tr_settime = current_time;
4541 		tp->tr_resets++;
4542 		return (1);
4543 	}
4544 
4545 	/*
4546 	 * First we heard of this guy.	Try to find a trap structure
4547 	 * for him to use, clearing out lesser priority guys if we
4548 	 * have to. Clear out anyone who's expired while we're at it.
4549 	 */
4550 	tptouse = NULL;
4551 	for (n = 0; n < COUNTOF(ctl_traps); n++) {
4552 		tp = &ctl_traps[n];
4553 		if ((TRAP_INUSE & tp->tr_flags) &&
4554 		    !(TRAP_CONFIGURED & tp->tr_flags) &&
4555 		    ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4556 			tp->tr_flags = 0;
4557 			num_ctl_traps--;
4558 		}
4559 		if (!(TRAP_INUSE & tp->tr_flags)) {
4560 			tptouse = tp;
4561 		} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4562 			switch (traptype) {
4563 
4564 			case TRAP_TYPE_CONFIG:
4565 				if (tptouse == NULL) {
4566 					tptouse = tp;
4567 					break;
4568 				}
4569 				if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4570 				    !(TRAP_NONPRIO & tp->tr_flags))
4571 					break;
4572 
4573 				if (!(TRAP_NONPRIO & tptouse->tr_flags)
4574 				    && (TRAP_NONPRIO & tp->tr_flags)) {
4575 					tptouse = tp;
4576 					break;
4577 				}
4578 				if (tptouse->tr_origtime <
4579 				    tp->tr_origtime)
4580 					tptouse = tp;
4581 				break;
4582 
4583 			case TRAP_TYPE_PRIO:
4584 				if ( TRAP_NONPRIO & tp->tr_flags) {
4585 					if (tptouse == NULL ||
4586 					    ((TRAP_INUSE &
4587 					      tptouse->tr_flags) &&
4588 					     tptouse->tr_origtime <
4589 					     tp->tr_origtime))
4590 						tptouse = tp;
4591 				}
4592 				break;
4593 
4594 			case TRAP_TYPE_NONPRIO:
4595 				break;
4596 			}
4597 		}
4598 	}
4599 
4600 	/*
4601 	 * If we don't have room for him return an error.
4602 	 */
4603 	if (tptouse == NULL)
4604 		return (0);
4605 
4606 	/*
4607 	 * Set up this structure for him.
4608 	 */
4609 	tptouse->tr_settime = tptouse->tr_origtime = current_time;
4610 	tptouse->tr_count = tptouse->tr_resets = 0;
4611 	tptouse->tr_sequence = 1;
4612 	tptouse->tr_addr = *raddr;
4613 	tptouse->tr_localaddr = linter;
4614 	tptouse->tr_version = (u_char) version;
4615 	tptouse->tr_flags = TRAP_INUSE;
4616 	if (traptype == TRAP_TYPE_CONFIG)
4617 		tptouse->tr_flags |= TRAP_CONFIGURED;
4618 	else if (traptype == TRAP_TYPE_NONPRIO)
4619 		tptouse->tr_flags |= TRAP_NONPRIO;
4620 	num_ctl_traps++;
4621 	return (1);
4622 }
4623 
4624 
4625 /*
4626  * ctlclrtrap - called to clear a trap
4627  */
4628 int
4629 ctlclrtrap(
4630 	sockaddr_u *raddr,
4631 	struct interface *linter,
4632 	int traptype
4633 	)
4634 {
4635 	register struct ctl_trap *tp;
4636 
4637 	if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4638 		return (0);
4639 
4640 	if (tp->tr_flags & TRAP_CONFIGURED
4641 	    && traptype != TRAP_TYPE_CONFIG)
4642 		return (0);
4643 
4644 	tp->tr_flags = 0;
4645 	num_ctl_traps--;
4646 	return (1);
4647 }
4648 
4649 
4650 /*
4651  * ctlfindtrap - find a trap given the remote and local addresses
4652  */
4653 static struct ctl_trap *
4654 ctlfindtrap(
4655 	sockaddr_u *raddr,
4656 	struct interface *linter
4657 	)
4658 {
4659 	size_t	n;
4660 
4661 	for (n = 0; n < COUNTOF(ctl_traps); n++)
4662 		if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4663 		    && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4664 		    && (linter == ctl_traps[n].tr_localaddr))
4665 			return &ctl_traps[n];
4666 
4667 	return NULL;
4668 }
4669 
4670 
4671 /*
4672  * report_event - report an event to the trappers
4673  */
4674 void
4675 report_event(
4676 	int	err,		/* error code */
4677 	struct peer *peer,	/* peer structure pointer */
4678 	const char *str		/* protostats string */
4679 	)
4680 {
4681 	char	statstr[NTP_MAXSTRLEN];
4682 	int	i;
4683 	size_t	len;
4684 
4685 	/*
4686 	 * Report the error to the protostats file, system log and
4687 	 * trappers.
4688 	 */
4689 	if (peer == NULL) {
4690 
4691 		/*
4692 		 * Discard a system report if the number of reports of
4693 		 * the same type exceeds the maximum.
4694 		 */
4695 		if (ctl_sys_last_event != (u_char)err)
4696 			ctl_sys_num_events= 0;
4697 		if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
4698 			return;
4699 
4700 		ctl_sys_last_event = (u_char)err;
4701 		ctl_sys_num_events++;
4702 		snprintf(statstr, sizeof(statstr),
4703 		    "0.0.0.0 %04x %02x %s",
4704 		    ctlsysstatus(), err, eventstr(err));
4705 		if (str != NULL) {
4706 			len = strlen(statstr);
4707 			snprintf(statstr + len, sizeof(statstr) - len,
4708 			    " %s", str);
4709 		}
4710 		NLOG(NLOG_SYSEVENT)
4711 			msyslog(LOG_INFO, "%s", statstr);
4712 	} else {
4713 
4714 		/*
4715 		 * Discard a peer report if the number of reports of
4716 		 * the same type exceeds the maximum for that peer.
4717 		 */
4718 		const char *	src;
4719 		u_char		errlast;
4720 
4721 		errlast = (u_char)err & ~PEER_EVENT;
4722 		if (peer->last_event == errlast)
4723 			peer->num_events = 0;
4724 		if (peer->num_events >= CTL_PEER_MAXEVENTS)
4725 			return;
4726 
4727 		peer->last_event = errlast;
4728 		peer->num_events++;
4729 		if (ISREFCLOCKADR(&peer->srcadr))
4730 			src = refnumtoa(&peer->srcadr);
4731 		else
4732 			src = stoa(&peer->srcadr);
4733 
4734 		snprintf(statstr, sizeof(statstr),
4735 		    "%s %04x %02x %s", src,
4736 		    ctlpeerstatus(peer), err, eventstr(err));
4737 		if (str != NULL) {
4738 			len = strlen(statstr);
4739 			snprintf(statstr + len, sizeof(statstr) - len,
4740 			    " %s", str);
4741 		}
4742 		NLOG(NLOG_PEEREVENT)
4743 			msyslog(LOG_INFO, "%s", statstr);
4744 	}
4745 	record_proto_stats(statstr);
4746 #if DEBUG
4747 	if (debug)
4748 		printf("event at %lu %s\n", current_time, statstr);
4749 #endif
4750 
4751 	/*
4752 	 * If no trappers, return.
4753 	 */
4754 	if (num_ctl_traps <= 0)
4755 		return;
4756 
4757 	/*
4758 	 * Set up the outgoing packet variables
4759 	 */
4760 	res_opcode = CTL_OP_ASYNCMSG;
4761 	res_offset = 0;
4762 	res_async = TRUE;
4763 	res_authenticate = FALSE;
4764 	datapt = rpkt.u.data;
4765 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
4766 	if (!(err & PEER_EVENT)) {
4767 		rpkt.associd = 0;
4768 		rpkt.status = htons(ctlsysstatus());
4769 
4770 		/* Include the core system variables and the list. */
4771 		for (i = 1; i <= CS_VARLIST; i++)
4772 			ctl_putsys(i);
4773 	} else {
4774 		NTP_INSIST(peer != NULL);
4775 		rpkt.associd = htons(peer->associd);
4776 		rpkt.status = htons(ctlpeerstatus(peer));
4777 
4778 		/* Dump it all. Later, maybe less. */
4779 		for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
4780 			ctl_putpeer(i, peer);
4781 #ifdef REFCLOCK
4782 		/*
4783 		 * for clock exception events: add clock variables to
4784 		 * reflect info on exception
4785 		 */
4786 		if (err == PEVNT_CLOCK) {
4787 			struct refclockstat cs;
4788 			struct ctl_var *kv;
4789 
4790 			cs.kv_list = NULL;
4791 			refclock_control(&peer->srcadr, NULL, &cs);
4792 
4793 			ctl_puthex("refclockstatus",
4794 				   ctlclkstatus(&cs));
4795 
4796 			for (i = 1; i <= CC_MAXCODE; i++)
4797 				ctl_putclock(i, &cs, FALSE);
4798 			for (kv = cs.kv_list;
4799 			     kv != NULL && !(EOV & kv->flags);
4800 			     kv++)
4801 				if (DEF & kv->flags)
4802 					ctl_putdata(kv->text,
4803 						    strlen(kv->text),
4804 						    FALSE);
4805 			free_varlist(cs.kv_list);
4806 		}
4807 #endif /* REFCLOCK */
4808 	}
4809 
4810 	/*
4811 	 * We're done, return.
4812 	 */
4813 	ctl_flushpkt(0);
4814 }
4815 
4816 
4817 /*
4818  * mprintf_event - printf-style varargs variant of report_event()
4819  */
4820 int
4821 mprintf_event(
4822 	int		evcode,		/* event code */
4823 	struct peer *	p,		/* may be NULL */
4824 	const char *	fmt,		/* msnprintf format */
4825 	...
4826 	)
4827 {
4828 	va_list	ap;
4829 	int	rc;
4830 	char	msg[512];
4831 
4832 	va_start(ap, fmt);
4833 	rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
4834 	va_end(ap);
4835 	report_event(evcode, p, msg);
4836 
4837 	return rc;
4838 }
4839 
4840 
4841 /*
4842  * ctl_clr_stats - clear stat counters
4843  */
4844 void
4845 ctl_clr_stats(void)
4846 {
4847 	ctltimereset = current_time;
4848 	numctlreq = 0;
4849 	numctlbadpkts = 0;
4850 	numctlresponses = 0;
4851 	numctlfrags = 0;
4852 	numctlerrors = 0;
4853 	numctlfrags = 0;
4854 	numctltooshort = 0;
4855 	numctlinputresp = 0;
4856 	numctlinputfrag = 0;
4857 	numctlinputerr = 0;
4858 	numctlbadoffset = 0;
4859 	numctlbadversion = 0;
4860 	numctldatatooshort = 0;
4861 	numctlbadop = 0;
4862 	numasyncmsgs = 0;
4863 }
4864 
4865 static u_short
4866 count_var(
4867 	const struct ctl_var *k
4868 	)
4869 {
4870 	u_int c;
4871 
4872 	if (NULL == k)
4873 		return 0;
4874 
4875 	c = 0;
4876 	while (!(EOV & (k++)->flags))
4877 		c++;
4878 
4879 	NTP_ENSURE(c <= USHRT_MAX);
4880 	return (u_short)c;
4881 }
4882 
4883 
4884 char *
4885 add_var(
4886 	struct ctl_var **kv,
4887 	u_long size,
4888 	u_short def
4889 	)
4890 {
4891 	u_short		c;
4892 	struct ctl_var *k;
4893 	char *		buf;
4894 
4895 	c = count_var(*kv);
4896 	*kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
4897 	k = *kv;
4898 	buf = emalloc(size);
4899 	k[c].code  = c;
4900 	k[c].text  = buf;
4901 	k[c].flags = def;
4902 	k[c + 1].code  = 0;
4903 	k[c + 1].text  = NULL;
4904 	k[c + 1].flags = EOV;
4905 
4906 	return buf;
4907 }
4908 
4909 
4910 void
4911 set_var(
4912 	struct ctl_var **kv,
4913 	const char *data,
4914 	u_long size,
4915 	u_short def
4916 	)
4917 {
4918 	struct ctl_var *k;
4919 	const char *s;
4920 	const char *t;
4921 	char *td;
4922 
4923 	if (NULL == data || !size)
4924 		return;
4925 
4926 	k = *kv;
4927 	if (k != NULL) {
4928 		while (!(EOV & k->flags)) {
4929 			if (NULL == k->text)	{
4930 				td = emalloc(size);
4931 				memcpy(td, data, size);
4932 				k->text = td;
4933 				k->flags = def;
4934 				return;
4935 			} else {
4936 				s = data;
4937 				t = k->text;
4938 				while (*t != '=' && *s == *t) {
4939 					s++;
4940 					t++;
4941 				}
4942 				if (*s == *t && ((*t == '=') || !*t)) {
4943 					td = erealloc((void *)(intptr_t)k->text, size);
4944 					memcpy(td, data, size);
4945 					k->text = td;
4946 					k->flags = def;
4947 					return;
4948 				}
4949 			}
4950 			k++;
4951 		}
4952 	}
4953 	td = add_var(kv, size, def);
4954 	memcpy(td, data, size);
4955 }
4956 
4957 
4958 void
4959 set_sys_var(
4960 	const char *data,
4961 	u_long size,
4962 	u_short def
4963 	)
4964 {
4965 	set_var(&ext_sys_var, data, size, def);
4966 }
4967 
4968 
4969 /*
4970  * get_ext_sys_var() retrieves the value of a user-defined variable or
4971  * NULL if the variable has not been setvar'd.
4972  */
4973 const char *
4974 get_ext_sys_var(const char *tag)
4975 {
4976 	struct ctl_var *	v;
4977 	size_t			c;
4978 	const char *		val;
4979 
4980 	val = NULL;
4981 	c = strlen(tag);
4982 	for (v = ext_sys_var; !(EOV & v->flags); v++) {
4983 		if (NULL != v->text && !memcmp(tag, v->text, c)) {
4984 			if ('=' == v->text[c]) {
4985 				val = v->text + c + 1;
4986 				break;
4987 			} else if ('\0' == v->text[c]) {
4988 				val = "";
4989 				break;
4990 			}
4991 		}
4992 	}
4993 
4994 	return val;
4995 }
4996 
4997 
4998 void
4999 free_varlist(
5000 	struct ctl_var *kv
5001 	)
5002 {
5003 	struct ctl_var *k;
5004 	if (kv) {
5005 		for (k = kv; !(k->flags & EOV); k++)
5006 			free((void *)(intptr_t)k->text);
5007 		free((void *)kv);
5008 	}
5009 }
5010