xref: /freebsd/contrib/ntp/ntpd/ntp_control.c (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 /*
2  * ntp_control.c - respond to mode 6 control messages and send async
3  *		   traps.  Provides service to ntpq and others.
4  */
5 
6 #ifdef HAVE_CONFIG_H
7 # include <config.h>
8 #endif
9 
10 #include <stdio.h>
11 #include <ctype.h>
12 #include <signal.h>
13 #include <sys/stat.h>
14 #ifdef HAVE_NETINET_IN_H
15 # include <netinet/in.h>
16 #endif
17 #include <arpa/inet.h>
18 
19 #include "ntpd.h"
20 #include "ntp_io.h"
21 #include "ntp_refclock.h"
22 #include "ntp_control.h"
23 #include "ntp_unixtime.h"
24 #include "ntp_stdlib.h"
25 #include "ntp_config.h"
26 #include "ntp_crypto.h"
27 #include "ntp_assert.h"
28 #include "ntp_leapsec.h"
29 #include "lib_strbuf.h"
30 #include "timexsup.h"
31 
32 #include <rc_cmdlength.h>
33 #ifdef KERNEL_PLL
34 # include "ntp_syscall.h"
35 #endif
36 
37 /*
38  * Structure to hold request procedure information
39  */
40 
41 struct ctl_proc {
42 	short control_code;		/* defined request code */
43 #define NO_REQUEST	(-1)
44 	u_short flags;			/* flags word */
45 	/* Only one flag.  Authentication required or not. */
46 #define NOAUTH	0
47 #define AUTH	1
48 	void (*handler) (struct recvbuf *, int); /* handle request */
49 };
50 
51 
52 /*
53  * Request processing routines
54  */
55 static	void	ctl_error	(u_char);
56 #ifdef REFCLOCK
57 static	u_short ctlclkstatus	(struct refclockstat *);
58 #endif
59 static	void	ctl_flushpkt	(u_char);
60 static	void	ctl_putdata	(const char *, unsigned int, int);
61 static	void	ctl_putstr	(const char *, const char *, size_t);
62 static	void	ctl_putdblf	(const char *, int, int, double);
63 #define	ctl_putdbl(tag, d)	ctl_putdblf(tag, 1, 3, d)
64 #define	ctl_putdbl6(tag, d)	ctl_putdblf(tag, 1, 6, d)
65 #define	ctl_putsfp(tag, sfp)	ctl_putdblf(tag, 0, -1, \
66 					    FPTOD(sfp))
67 static	void	ctl_putuint	(const char *, u_long);
68 static	void	ctl_puthex	(const char *, u_long);
69 static	void	ctl_putint	(const char *, long);
70 static	void	ctl_putts	(const char *, l_fp *);
71 static	void	ctl_putadr	(const char *, u_int32,
72 				 sockaddr_u *);
73 static	void	ctl_putrefid	(const char *, u_int32);
74 static	void	ctl_putarray	(const char *, double *, int);
75 static	void	ctl_putsys	(int);
76 static	void	ctl_putpeer	(int, struct peer *);
77 static	void	ctl_putfs	(const char *, tstamp_t);
78 static	void	ctl_printf	(const char *, ...) NTP_PRINTF(1, 2);
79 #ifdef REFCLOCK
80 static	void	ctl_putclock	(int, struct refclockstat *, int);
81 #endif	/* REFCLOCK */
82 static	const struct ctl_var *ctl_getitem(const struct ctl_var *,
83 					  char **);
84 static	u_short	count_var	(const struct ctl_var *);
85 static	void	control_unspec	(struct recvbuf *, int);
86 static	void	read_status	(struct recvbuf *, int);
87 static	void	read_sysvars	(void);
88 static	void	read_peervars	(void);
89 static	void	read_variables	(struct recvbuf *, int);
90 static	void	write_variables (struct recvbuf *, int);
91 static	void	read_clockstatus(struct recvbuf *, int);
92 static	void	write_clockstatus(struct recvbuf *, int);
93 static	void	set_trap	(struct recvbuf *, int);
94 static	void	save_config	(struct recvbuf *, int);
95 static	void	configure	(struct recvbuf *, int);
96 static	void	send_mru_entry	(mon_entry *, int);
97 static	void	send_random_tag_value(int);
98 static	void	read_mru_list	(struct recvbuf *, int);
99 static	void	send_ifstats_entry(endpt *, u_int);
100 static	void	read_ifstats	(struct recvbuf *);
101 static	void	sockaddrs_from_restrict_u(sockaddr_u *,	sockaddr_u *,
102 					  restrict_u *, int);
103 static	void	send_restrict_entry(restrict_u *, int, u_int);
104 static	void	send_restrict_list(restrict_u *, int, u_int *);
105 static	void	read_addr_restrictions(struct recvbuf *);
106 static	void	read_ordlist	(struct recvbuf *, int);
107 static	u_int32	derive_nonce	(sockaddr_u *, u_int32, u_int32);
108 static	void	generate_nonce	(struct recvbuf *, char *, size_t);
109 static	int	validate_nonce	(const char *, struct recvbuf *);
110 static	void	req_nonce	(struct recvbuf *, int);
111 static	void	unset_trap	(struct recvbuf *, int);
112 static	struct ctl_trap *ctlfindtrap(sockaddr_u *,
113 				     struct interface *);
114 
115 int/*BOOL*/ is_safe_filename(const char * name);
116 
117 static const struct ctl_proc control_codes[] = {
118 	{ CTL_OP_UNSPEC,		NOAUTH,	control_unspec },
119 	{ CTL_OP_READSTAT,		NOAUTH,	read_status },
120 	{ CTL_OP_READVAR,		NOAUTH,	read_variables },
121 	{ CTL_OP_WRITEVAR,		AUTH,	write_variables },
122 	{ CTL_OP_READCLOCK,		NOAUTH,	read_clockstatus },
123 	{ CTL_OP_WRITECLOCK,		AUTH,	write_clockstatus },
124 	{ CTL_OP_SETTRAP,		AUTH,	set_trap },
125 	{ CTL_OP_CONFIGURE,		AUTH,	configure },
126 	{ CTL_OP_SAVECONFIG,		AUTH,	save_config },
127 	{ CTL_OP_READ_MRU,		NOAUTH,	read_mru_list },
128 	{ CTL_OP_READ_ORDLIST_A,	AUTH,	read_ordlist },
129 	{ CTL_OP_REQ_NONCE,		NOAUTH,	req_nonce },
130 	{ CTL_OP_UNSETTRAP,		AUTH,	unset_trap },
131 	{ NO_REQUEST,			0,	NULL }
132 };
133 
134 /*
135  * System variables we understand
136  */
137 #define	CS_LEAP			1
138 #define	CS_STRATUM		2
139 #define	CS_PRECISION		3
140 #define	CS_ROOTDELAY		4
141 #define	CS_ROOTDISPERSION	5
142 #define	CS_REFID		6
143 #define	CS_REFTIME		7
144 #define	CS_POLL			8
145 #define	CS_PEERID		9
146 #define	CS_OFFSET		10
147 #define	CS_DRIFT		11
148 #define	CS_JITTER		12
149 #define	CS_ERROR		13
150 #define	CS_CLOCK		14
151 #define	CS_PROCESSOR		15
152 #define	CS_SYSTEM		16
153 #define	CS_VERSION		17
154 #define	CS_STABIL		18
155 #define	CS_VARLIST		19
156 #define	CS_TAI			20
157 #define	CS_LEAPTAB		21
158 #define	CS_LEAPEND		22
159 #define	CS_RATE			23
160 #define	CS_MRU_ENABLED		24
161 #define	CS_MRU_DEPTH		25
162 #define	CS_MRU_DEEPEST		26
163 #define	CS_MRU_MINDEPTH		27
164 #define	CS_MRU_MAXAGE		28
165 #define	CS_MRU_MAXDEPTH		29
166 #define	CS_MRU_MEM		30
167 #define	CS_MRU_MAXMEM		31
168 #define	CS_SS_UPTIME		32
169 #define	CS_SS_RESET		33
170 #define	CS_SS_RECEIVED		34
171 #define	CS_SS_THISVER		35
172 #define	CS_SS_OLDVER		36
173 #define	CS_SS_BADFORMAT		37
174 #define	CS_SS_BADAUTH		38
175 #define	CS_SS_DECLINED		39
176 #define	CS_SS_RESTRICTED	40
177 #define	CS_SS_LIMITED		41
178 #define	CS_SS_KODSENT		42
179 #define	CS_SS_PROCESSED		43
180 #define	CS_SS_LAMPORT		44
181 #define	CS_SS_TSROUNDING	45
182 #define	CS_PEERADR		46
183 #define	CS_PEERMODE		47
184 #define	CS_BCASTDELAY		48
185 #define	CS_AUTHDELAY		49
186 #define	CS_AUTHKEYS		50
187 #define	CS_AUTHFREEK		51
188 #define	CS_AUTHKLOOKUPS		52
189 #define	CS_AUTHKNOTFOUND	53
190 #define	CS_AUTHKUNCACHED	54
191 #define	CS_AUTHKEXPIRED		55
192 #define	CS_AUTHENCRYPTS		56
193 #define	CS_AUTHDECRYPTS		57
194 #define	CS_AUTHRESET		58
195 #define	CS_K_OFFSET		59
196 #define	CS_K_FREQ		60
197 #define	CS_K_MAXERR		61
198 #define	CS_K_ESTERR		62
199 #define	CS_K_STFLAGS		63
200 #define	CS_K_TIMECONST		64
201 #define	CS_K_PRECISION		65
202 #define	CS_K_FREQTOL		66
203 #define	CS_K_PPS_FREQ		67
204 #define	CS_K_PPS_STABIL		68
205 #define	CS_K_PPS_JITTER		69
206 #define	CS_K_PPS_CALIBDUR	70
207 #define	CS_K_PPS_CALIBS		71
208 #define	CS_K_PPS_CALIBERRS	72
209 #define	CS_K_PPS_JITEXC		73
210 #define	CS_K_PPS_STBEXC		74
211 #define	CS_KERN_FIRST		CS_K_OFFSET
212 #define	CS_KERN_LAST		CS_K_PPS_STBEXC
213 #define	CS_IOSTATS_RESET	75
214 #define	CS_TOTAL_RBUF		76
215 #define	CS_FREE_RBUF		77
216 #define	CS_USED_RBUF		78
217 #define	CS_RBUF_LOWATER		79
218 #define	CS_IO_DROPPED		80
219 #define	CS_IO_IGNORED		81
220 #define	CS_IO_RECEIVED		82
221 #define	CS_IO_SENT		83
222 #define	CS_IO_SENDFAILED	84
223 #define	CS_IO_WAKEUPS		85
224 #define	CS_IO_GOODWAKEUPS	86
225 #define	CS_TIMERSTATS_RESET	87
226 #define	CS_TIMER_OVERRUNS	88
227 #define	CS_TIMER_XMTS		89
228 #define	CS_FUZZ			90
229 #define	CS_WANDER_THRESH	91
230 #define	CS_LEAPSMEARINTV	92
231 #define	CS_LEAPSMEAROFFS	93
232 #define	CS_MAX_NOAUTOKEY	CS_LEAPSMEAROFFS
233 #ifdef AUTOKEY
234 #define	CS_FLAGS		(1 + CS_MAX_NOAUTOKEY)
235 #define	CS_HOST			(2 + CS_MAX_NOAUTOKEY)
236 #define	CS_PUBLIC		(3 + CS_MAX_NOAUTOKEY)
237 #define	CS_CERTIF		(4 + CS_MAX_NOAUTOKEY)
238 #define	CS_SIGNATURE		(5 + CS_MAX_NOAUTOKEY)
239 #define	CS_REVTIME		(6 + CS_MAX_NOAUTOKEY)
240 #define	CS_IDENT		(7 + CS_MAX_NOAUTOKEY)
241 #define	CS_DIGEST		(8 + CS_MAX_NOAUTOKEY)
242 #define	CS_MAXCODE		CS_DIGEST
243 #else	/* !AUTOKEY follows */
244 #define	CS_MAXCODE		CS_MAX_NOAUTOKEY
245 #endif	/* !AUTOKEY */
246 
247 /*
248  * Peer variables we understand
249  */
250 #define	CP_CONFIG		1
251 #define	CP_AUTHENABLE		2
252 #define	CP_AUTHENTIC		3
253 #define	CP_SRCADR		4
254 #define	CP_SRCPORT		5
255 #define	CP_DSTADR		6
256 #define	CP_DSTPORT		7
257 #define	CP_LEAP			8
258 #define	CP_HMODE		9
259 #define	CP_STRATUM		10
260 #define	CP_PPOLL		11
261 #define	CP_HPOLL		12
262 #define	CP_PRECISION		13
263 #define	CP_ROOTDELAY		14
264 #define	CP_ROOTDISPERSION	15
265 #define	CP_REFID		16
266 #define	CP_REFTIME		17
267 #define	CP_ORG			18
268 #define	CP_REC			19
269 #define	CP_XMT			20
270 #define	CP_REACH		21
271 #define	CP_UNREACH		22
272 #define	CP_TIMER		23
273 #define	CP_DELAY		24
274 #define	CP_OFFSET		25
275 #define	CP_JITTER		26
276 #define	CP_DISPERSION		27
277 #define	CP_KEYID		28
278 #define	CP_FILTDELAY		29
279 #define	CP_FILTOFFSET		30
280 #define	CP_PMODE		31
281 #define	CP_RECEIVED		32
282 #define	CP_SENT			33
283 #define	CP_FILTERROR		34
284 #define	CP_FLASH		35
285 #define	CP_TTL			36
286 #define	CP_VARLIST		37
287 #define	CP_IN			38
288 #define	CP_OUT			39
289 #define	CP_RATE			40
290 #define	CP_BIAS			41
291 #define	CP_SRCHOST		42
292 #define	CP_TIMEREC		43
293 #define	CP_TIMEREACH		44
294 #define	CP_BADAUTH		45
295 #define	CP_BOGUSORG		46
296 #define	CP_OLDPKT		47
297 #define	CP_SELDISP		48
298 #define	CP_SELBROKEN		49
299 #define	CP_CANDIDATE		50
300 #define	CP_MAX_NOAUTOKEY	CP_CANDIDATE
301 #ifdef AUTOKEY
302 #define	CP_FLAGS		(1 + CP_MAX_NOAUTOKEY)
303 #define	CP_HOST			(2 + CP_MAX_NOAUTOKEY)
304 #define	CP_VALID		(3 + CP_MAX_NOAUTOKEY)
305 #define	CP_INITSEQ		(4 + CP_MAX_NOAUTOKEY)
306 #define	CP_INITKEY		(5 + CP_MAX_NOAUTOKEY)
307 #define	CP_INITTSP		(6 + CP_MAX_NOAUTOKEY)
308 #define	CP_SIGNATURE		(7 + CP_MAX_NOAUTOKEY)
309 #define	CP_IDENT		(8 + CP_MAX_NOAUTOKEY)
310 #define	CP_MAXCODE		CP_IDENT
311 #else	/* !AUTOKEY follows */
312 #define	CP_MAXCODE		CP_MAX_NOAUTOKEY
313 #endif	/* !AUTOKEY */
314 
315 /*
316  * Clock variables we understand
317  */
318 #define	CC_TYPE		1
319 #define	CC_TIMECODE	2
320 #define	CC_POLL		3
321 #define	CC_NOREPLY	4
322 #define	CC_BADFORMAT	5
323 #define	CC_BADDATA	6
324 #define	CC_FUDGETIME1	7
325 #define	CC_FUDGETIME2	8
326 #define	CC_FUDGEVAL1	9
327 #define	CC_FUDGEVAL2	10
328 #define	CC_FLAGS	11
329 #define	CC_DEVICE	12
330 #define	CC_VARLIST	13
331 #define	CC_FUDGEMINJIT	14
332 #define	CC_MAXCODE	CC_FUDGEMINJIT
333 
334 /*
335  * System variable values. The array can be indexed by the variable
336  * index to find the textual name.
337  */
338 static const struct ctl_var sys_var[] = {
339 	{ 0,		PADDING, "" },		/* 0 */
340 	{ CS_LEAP,	RW, "leap" },		/* 1 */
341 	{ CS_STRATUM,	RO, "stratum" },	/* 2 */
342 	{ CS_PRECISION, RO, "precision" },	/* 3 */
343 	{ CS_ROOTDELAY, RO, "rootdelay" },	/* 4 */
344 	{ CS_ROOTDISPERSION, RO, "rootdisp" },	/* 5 */
345 	{ CS_REFID,	RO, "refid" },		/* 6 */
346 	{ CS_REFTIME,	RO, "reftime" },	/* 7 */
347 	{ CS_POLL,	RO, "tc" },		/* 8 */
348 	{ CS_PEERID,	RO, "peer" },		/* 9 */
349 	{ CS_OFFSET,	RO, "offset" },		/* 10 */
350 	{ CS_DRIFT,	RO, "frequency" },	/* 11 */
351 	{ CS_JITTER,	RO, "sys_jitter" },	/* 12 */
352 	{ CS_ERROR,	RO, "clk_jitter" },	/* 13 */
353 	{ CS_CLOCK,	RO, "clock" },		/* 14 */
354 	{ CS_PROCESSOR, RO, "processor" },	/* 15 */
355 	{ CS_SYSTEM,	RO, "system" },		/* 16 */
356 	{ CS_VERSION,	RO, "version" },	/* 17 */
357 	{ CS_STABIL,	RO, "clk_wander" },	/* 18 */
358 	{ CS_VARLIST,	RO, "sys_var_list" },	/* 19 */
359 	{ CS_TAI,	RO, "tai" },		/* 20 */
360 	{ CS_LEAPTAB,	RO, "leapsec" },	/* 21 */
361 	{ CS_LEAPEND,	RO, "expire" },		/* 22 */
362 	{ CS_RATE,	RO, "mintc" },		/* 23 */
363 	{ CS_MRU_ENABLED,	RO, "mru_enabled" },	/* 24 */
364 	{ CS_MRU_DEPTH,		RO, "mru_depth" },	/* 25 */
365 	{ CS_MRU_DEEPEST,	RO, "mru_deepest" },	/* 26 */
366 	{ CS_MRU_MINDEPTH,	RO, "mru_mindepth" },	/* 27 */
367 	{ CS_MRU_MAXAGE,	RO, "mru_maxage" },	/* 28 */
368 	{ CS_MRU_MAXDEPTH,	RO, "mru_maxdepth" },	/* 29 */
369 	{ CS_MRU_MEM,		RO, "mru_mem" },	/* 30 */
370 	{ CS_MRU_MAXMEM,	RO, "mru_maxmem" },	/* 31 */
371 	{ CS_SS_UPTIME,		RO, "ss_uptime" },	/* 32 */
372 	{ CS_SS_RESET,		RO, "ss_reset" },	/* 33 */
373 	{ CS_SS_RECEIVED,	RO, "ss_received" },	/* 34 */
374 	{ CS_SS_THISVER,	RO, "ss_thisver" },	/* 35 */
375 	{ CS_SS_OLDVER,		RO, "ss_oldver" },	/* 36 */
376 	{ CS_SS_BADFORMAT,	RO, "ss_badformat" },	/* 37 */
377 	{ CS_SS_BADAUTH,	RO, "ss_badauth" },	/* 38 */
378 	{ CS_SS_DECLINED,	RO, "ss_declined" },	/* 39 */
379 	{ CS_SS_RESTRICTED,	RO, "ss_restricted" },	/* 40 */
380 	{ CS_SS_LIMITED,	RO, "ss_limited" },	/* 41 */
381 	{ CS_SS_KODSENT,	RO, "ss_kodsent" },	/* 42 */
382 	{ CS_SS_PROCESSED,	RO, "ss_processed" },	/* 43 */
383 	{ CS_SS_LAMPORT,	RO, "ss_lamport" },	/* 44 */
384 	{ CS_SS_TSROUNDING,	RO, "ss_tsrounding" },	/* 45 */
385 	{ CS_PEERADR,		RO, "peeradr" },	/* 46 */
386 	{ CS_PEERMODE,		RO, "peermode" },	/* 47 */
387 	{ CS_BCASTDELAY,	RO, "bcastdelay" },	/* 48 */
388 	{ CS_AUTHDELAY,		RO, "authdelay" },	/* 49 */
389 	{ CS_AUTHKEYS,		RO, "authkeys" },	/* 50 */
390 	{ CS_AUTHFREEK,		RO, "authfreek" },	/* 51 */
391 	{ CS_AUTHKLOOKUPS,	RO, "authklookups" },	/* 52 */
392 	{ CS_AUTHKNOTFOUND,	RO, "authknotfound" },	/* 53 */
393 	{ CS_AUTHKUNCACHED,	RO, "authkuncached" },	/* 54 */
394 	{ CS_AUTHKEXPIRED,	RO, "authkexpired" },	/* 55 */
395 	{ CS_AUTHENCRYPTS,	RO, "authencrypts" },	/* 56 */
396 	{ CS_AUTHDECRYPTS,	RO, "authdecrypts" },	/* 57 */
397 	{ CS_AUTHRESET,		RO, "authreset" },	/* 58 */
398 	{ CS_K_OFFSET,		RO, "koffset" },	/* 59 */
399 	{ CS_K_FREQ,		RO, "kfreq" },		/* 60 */
400 	{ CS_K_MAXERR,		RO, "kmaxerr" },	/* 61 */
401 	{ CS_K_ESTERR,		RO, "kesterr" },	/* 62 */
402 	{ CS_K_STFLAGS,		RO, "kstflags" },	/* 63 */
403 	{ CS_K_TIMECONST,	RO, "ktimeconst" },	/* 64 */
404 	{ CS_K_PRECISION,	RO, "kprecis" },	/* 65 */
405 	{ CS_K_FREQTOL,		RO, "kfreqtol" },	/* 66 */
406 	{ CS_K_PPS_FREQ,	RO, "kppsfreq" },	/* 67 */
407 	{ CS_K_PPS_STABIL,	RO, "kppsstab" },	/* 68 */
408 	{ CS_K_PPS_JITTER,	RO, "kppsjitter" },	/* 69 */
409 	{ CS_K_PPS_CALIBDUR,	RO, "kppscalibdur" },	/* 70 */
410 	{ CS_K_PPS_CALIBS,	RO, "kppscalibs" },	/* 71 */
411 	{ CS_K_PPS_CALIBERRS,	RO, "kppscaliberrs" },	/* 72 */
412 	{ CS_K_PPS_JITEXC,	RO, "kppsjitexc" },	/* 73 */
413 	{ CS_K_PPS_STBEXC,	RO, "kppsstbexc" },	/* 74 */
414 	{ CS_IOSTATS_RESET,	RO, "iostats_reset" },	/* 75 */
415 	{ CS_TOTAL_RBUF,	RO, "total_rbuf" },	/* 76 */
416 	{ CS_FREE_RBUF,		RO, "free_rbuf" },	/* 77 */
417 	{ CS_USED_RBUF,		RO, "used_rbuf" },	/* 78 */
418 	{ CS_RBUF_LOWATER,	RO, "rbuf_lowater" },	/* 79 */
419 	{ CS_IO_DROPPED,	RO, "io_dropped" },	/* 80 */
420 	{ CS_IO_IGNORED,	RO, "io_ignored" },	/* 81 */
421 	{ CS_IO_RECEIVED,	RO, "io_received" },	/* 82 */
422 	{ CS_IO_SENT,		RO, "io_sent" },	/* 83 */
423 	{ CS_IO_SENDFAILED,	RO, "io_sendfailed" },	/* 84 */
424 	{ CS_IO_WAKEUPS,	RO, "io_wakeups" },	/* 85 */
425 	{ CS_IO_GOODWAKEUPS,	RO, "io_goodwakeups" },	/* 86 */
426 	{ CS_TIMERSTATS_RESET,	RO, "timerstats_reset" },/* 87 */
427 	{ CS_TIMER_OVERRUNS,	RO, "timer_overruns" },	/* 88 */
428 	{ CS_TIMER_XMTS,	RO, "timer_xmts" },	/* 89 */
429 	{ CS_FUZZ,		RO, "fuzz" },		/* 90 */
430 	{ CS_WANDER_THRESH,	RO, "clk_wander_threshold" }, /* 91 */
431 
432 	{ CS_LEAPSMEARINTV,	RO, "leapsmearinterval" },    /* 92 */
433 	{ CS_LEAPSMEAROFFS,	RO, "leapsmearoffset" },      /* 93 */
434 
435 #ifdef AUTOKEY
436 	{ CS_FLAGS,	RO, "flags" },		/* 1 + CS_MAX_NOAUTOKEY */
437 	{ CS_HOST,	RO, "host" },		/* 2 + CS_MAX_NOAUTOKEY */
438 	{ CS_PUBLIC,	RO, "update" },		/* 3 + CS_MAX_NOAUTOKEY */
439 	{ CS_CERTIF,	RO, "cert" },		/* 4 + CS_MAX_NOAUTOKEY */
440 	{ CS_SIGNATURE,	RO, "signature" },	/* 5 + CS_MAX_NOAUTOKEY */
441 	{ CS_REVTIME,	RO, "until" },		/* 6 + CS_MAX_NOAUTOKEY */
442 	{ CS_IDENT,	RO, "ident" },		/* 7 + CS_MAX_NOAUTOKEY */
443 	{ CS_DIGEST,	RO, "digest" },		/* 8 + CS_MAX_NOAUTOKEY */
444 #endif	/* AUTOKEY */
445 	{ 0,		EOV, "" }		/* 94/102 */
446 };
447 
448 static struct ctl_var *ext_sys_var = NULL;
449 
450 /*
451  * System variables we print by default (in fuzzball order,
452  * more-or-less)
453  */
454 static const u_char def_sys_var[] = {
455 	CS_VERSION,
456 	CS_PROCESSOR,
457 	CS_SYSTEM,
458 	CS_LEAP,
459 	CS_STRATUM,
460 	CS_PRECISION,
461 	CS_ROOTDELAY,
462 	CS_ROOTDISPERSION,
463 	CS_REFID,
464 	CS_REFTIME,
465 	CS_CLOCK,
466 	CS_PEERID,
467 	CS_POLL,
468 	CS_RATE,
469 	CS_OFFSET,
470 	CS_DRIFT,
471 	CS_JITTER,
472 	CS_ERROR,
473 	CS_STABIL,
474 	CS_TAI,
475 	CS_LEAPTAB,
476 	CS_LEAPEND,
477 	CS_LEAPSMEARINTV,
478 	CS_LEAPSMEAROFFS,
479 #ifdef AUTOKEY
480 	CS_HOST,
481 	CS_IDENT,
482 	CS_FLAGS,
483 	CS_DIGEST,
484 	CS_SIGNATURE,
485 	CS_PUBLIC,
486 	CS_CERTIF,
487 #endif	/* AUTOKEY */
488 	0
489 };
490 
491 
492 /*
493  * Peer variable list
494  */
495 static const struct ctl_var peer_var[] = {
496 	{ 0,		PADDING, "" },		/* 0 */
497 	{ CP_CONFIG,	RO, "config" },		/* 1 */
498 	{ CP_AUTHENABLE, RO,	"authenable" },	/* 2 */
499 	{ CP_AUTHENTIC, RO, "authentic" },	/* 3 */
500 	{ CP_SRCADR,	RO, "srcadr" },		/* 4 */
501 	{ CP_SRCPORT,	RO, "srcport" },	/* 5 */
502 	{ CP_DSTADR,	RO, "dstadr" },		/* 6 */
503 	{ CP_DSTPORT,	RO, "dstport" },	/* 7 */
504 	{ CP_LEAP,	RO, "leap" },		/* 8 */
505 	{ CP_HMODE,	RO, "hmode" },		/* 9 */
506 	{ CP_STRATUM,	RO, "stratum" },	/* 10 */
507 	{ CP_PPOLL,	RO, "ppoll" },		/* 11 */
508 	{ CP_HPOLL,	RO, "hpoll" },		/* 12 */
509 	{ CP_PRECISION,	RO, "precision" },	/* 13 */
510 	{ CP_ROOTDELAY,	RO, "rootdelay" },	/* 14 */
511 	{ CP_ROOTDISPERSION, RO, "rootdisp" },	/* 15 */
512 	{ CP_REFID,	RO, "refid" },		/* 16 */
513 	{ CP_REFTIME,	RO, "reftime" },	/* 17 */
514 	{ CP_ORG,	RO, "org" },		/* 18 */
515 	{ CP_REC,	RO, "rec" },		/* 19 */
516 	{ CP_XMT,	RO, "xleave" },		/* 20 */
517 	{ CP_REACH,	RO, "reach" },		/* 21 */
518 	{ CP_UNREACH,	RO, "unreach" },	/* 22 */
519 	{ CP_TIMER,	RO, "timer" },		/* 23 */
520 	{ CP_DELAY,	RO, "delay" },		/* 24 */
521 	{ CP_OFFSET,	RO, "offset" },		/* 25 */
522 	{ CP_JITTER,	RO, "jitter" },		/* 26 */
523 	{ CP_DISPERSION, RO, "dispersion" },	/* 27 */
524 	{ CP_KEYID,	RO, "keyid" },		/* 28 */
525 	{ CP_FILTDELAY,	RO, "filtdelay" },	/* 29 */
526 	{ CP_FILTOFFSET, RO, "filtoffset" },	/* 30 */
527 	{ CP_PMODE,	RO, "pmode" },		/* 31 */
528 	{ CP_RECEIVED,	RO, "received"},	/* 32 */
529 	{ CP_SENT,	RO, "sent" },		/* 33 */
530 	{ CP_FILTERROR,	RO, "filtdisp" },	/* 34 */
531 	{ CP_FLASH,	RO, "flash" },		/* 35 */
532 	{ CP_TTL,	RO, "ttl" },		/* 36 */
533 	{ CP_VARLIST,	RO, "peer_var_list" },	/* 37 */
534 	{ CP_IN,	RO, "in" },		/* 38 */
535 	{ CP_OUT,	RO, "out" },		/* 39 */
536 	{ CP_RATE,	RO, "headway" },	/* 40 */
537 	{ CP_BIAS,	RO, "bias" },		/* 41 */
538 	{ CP_SRCHOST,	RO, "srchost" },	/* 42 */
539 	{ CP_TIMEREC,	RO, "timerec" },	/* 43 */
540 	{ CP_TIMEREACH,	RO, "timereach" },	/* 44 */
541 	{ CP_BADAUTH,	RO, "badauth" },	/* 45 */
542 	{ CP_BOGUSORG,	RO, "bogusorg" },	/* 46 */
543 	{ CP_OLDPKT,	RO, "oldpkt" },		/* 47 */
544 	{ CP_SELDISP,	RO, "seldisp" },	/* 48 */
545 	{ CP_SELBROKEN,	RO, "selbroken" },	/* 49 */
546 	{ CP_CANDIDATE, RO, "candidate" },	/* 50 */
547 #ifdef AUTOKEY
548 	{ CP_FLAGS,	RO, "flags" },		/* 1 + CP_MAX_NOAUTOKEY */
549 	{ CP_HOST,	RO, "host" },		/* 2 + CP_MAX_NOAUTOKEY */
550 	{ CP_VALID,	RO, "valid" },		/* 3 + CP_MAX_NOAUTOKEY */
551 	{ CP_INITSEQ,	RO, "initsequence" },	/* 4 + CP_MAX_NOAUTOKEY */
552 	{ CP_INITKEY,	RO, "initkey" },	/* 5 + CP_MAX_NOAUTOKEY */
553 	{ CP_INITTSP,	RO, "timestamp" },	/* 6 + CP_MAX_NOAUTOKEY */
554 	{ CP_SIGNATURE,	RO, "signature" },	/* 7 + CP_MAX_NOAUTOKEY */
555 	{ CP_IDENT,	RO, "ident" },		/* 8 + CP_MAX_NOAUTOKEY */
556 #endif	/* AUTOKEY */
557 	{ 0,		EOV, "" }		/* 50/58 */
558 };
559 
560 
561 /*
562  * Peer variables we print by default
563  */
564 static const u_char def_peer_var[] = {
565 	CP_SRCADR,
566 	CP_SRCPORT,
567 	CP_SRCHOST,
568 	CP_DSTADR,
569 	CP_DSTPORT,
570 	CP_OUT,
571 	CP_IN,
572 	CP_LEAP,
573 	CP_STRATUM,
574 	CP_PRECISION,
575 	CP_ROOTDELAY,
576 	CP_ROOTDISPERSION,
577 	CP_REFID,
578 	CP_REFTIME,
579 	CP_REC,
580 	CP_REACH,
581 	CP_UNREACH,
582 	CP_HMODE,
583 	CP_PMODE,
584 	CP_HPOLL,
585 	CP_PPOLL,
586 	CP_RATE,
587 	CP_FLASH,
588 	CP_KEYID,
589 	CP_TTL,
590 	CP_OFFSET,
591 	CP_DELAY,
592 	CP_DISPERSION,
593 	CP_JITTER,
594 	CP_XMT,
595 	CP_BIAS,
596 	CP_FILTDELAY,
597 	CP_FILTOFFSET,
598 	CP_FILTERROR,
599 #ifdef AUTOKEY
600 	CP_HOST,
601 	CP_FLAGS,
602 	CP_SIGNATURE,
603 	CP_VALID,
604 	CP_INITSEQ,
605 	CP_IDENT,
606 #endif	/* AUTOKEY */
607 	0
608 };
609 
610 
611 #ifdef REFCLOCK
612 /*
613  * Clock variable list
614  */
615 static const struct ctl_var clock_var[] = {
616 	{ 0,		PADDING, "" },		/* 0 */
617 	{ CC_TYPE,	RO, "type" },		/* 1 */
618 	{ CC_TIMECODE,	RO, "timecode" },	/* 2 */
619 	{ CC_POLL,	RO, "poll" },		/* 3 */
620 	{ CC_NOREPLY,	RO, "noreply" },	/* 4 */
621 	{ CC_BADFORMAT, RO, "badformat" },	/* 5 */
622 	{ CC_BADDATA,	RO, "baddata" },	/* 6 */
623 	{ CC_FUDGETIME1, RO, "fudgetime1" },	/* 7 */
624 	{ CC_FUDGETIME2, RO, "fudgetime2" },	/* 8 */
625 	{ CC_FUDGEVAL1, RO, "stratum" },	/* 9 */
626 	{ CC_FUDGEVAL2, RO, "refid" },		/* 10 */
627 	{ CC_FLAGS,	RO, "flags" },		/* 11 */
628 	{ CC_DEVICE,	RO, "device" },		/* 12 */
629 	{ CC_VARLIST,	RO, "clock_var_list" },	/* 13 */
630 	{ CC_FUDGEMINJIT, RO, "minjitter" },	/* 14 */
631 	{ 0,		EOV, ""  }		/* 15 */
632 };
633 
634 
635 /*
636  * Clock variables printed by default
637  */
638 static const u_char def_clock_var[] = {
639 	CC_DEVICE,
640 	CC_TYPE,	/* won't be output if device = known */
641 	CC_TIMECODE,
642 	CC_POLL,
643 	CC_NOREPLY,
644 	CC_BADFORMAT,
645 	CC_BADDATA,
646 	CC_FUDGEMINJIT,
647 	CC_FUDGETIME1,
648 	CC_FUDGETIME2,
649 	CC_FUDGEVAL1,
650 	CC_FUDGEVAL2,
651 	CC_FLAGS,
652 	0
653 };
654 #endif
655 
656 /*
657  * MRU string constants shared by send_mru_entry() and read_mru_list().
658  */
659 static const char addr_fmt[] =		"addr.%d";
660 static const char last_fmt[] =		"last.%d";
661 
662 /*
663  * System and processor definitions.
664  */
665 #ifndef HAVE_UNAME
666 # ifndef STR_SYSTEM
667 #  define		STR_SYSTEM	"UNIX"
668 # endif
669 # ifndef STR_PROCESSOR
670 #  define		STR_PROCESSOR	"unknown"
671 # endif
672 
673 static const char str_system[] = STR_SYSTEM;
674 static const char str_processor[] = STR_PROCESSOR;
675 #else
676 # include <sys/utsname.h>
677 static struct utsname utsnamebuf;
678 #endif /* HAVE_UNAME */
679 
680 /*
681  * Trap structures. We only allow a few of these, and send a copy of
682  * each async message to each live one. Traps time out after an hour, it
683  * is up to the trap receipient to keep resetting it to avoid being
684  * timed out.
685  */
686 /* ntp_request.c */
687 struct ctl_trap ctl_traps[CTL_MAXTRAPS];
688 int num_ctl_traps;
689 
690 /*
691  * Type bits, for ctlsettrap() call.
692  */
693 #define TRAP_TYPE_CONFIG	0	/* used by configuration code */
694 #define TRAP_TYPE_PRIO		1	/* priority trap */
695 #define TRAP_TYPE_NONPRIO	2	/* nonpriority trap */
696 
697 
698 /*
699  * List relating reference clock types to control message time sources.
700  * Index by the reference clock type. This list will only be used iff
701  * the reference clock driver doesn't set peer->sstclktype to something
702  * different than CTL_SST_TS_UNSPEC.
703  */
704 #ifdef REFCLOCK
705 static const u_char clocktypes[] = {
706 	CTL_SST_TS_NTP,		/* REFCLK_NONE (0) */
707 	CTL_SST_TS_LOCAL,	/* REFCLK_LOCALCLOCK (1) */
708 	CTL_SST_TS_UHF,		/* deprecated REFCLK_GPS_TRAK (2) */
709 	CTL_SST_TS_HF,		/* REFCLK_WWV_PST (3) */
710 	CTL_SST_TS_LF,		/* REFCLK_WWVB_SPECTRACOM (4) */
711 	CTL_SST_TS_UHF,		/* REFCLK_TRUETIME (5) */
712 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_AUDIO (6) */
713 	CTL_SST_TS_HF,		/* REFCLK_CHU (7) */
714 	CTL_SST_TS_LF,		/* REFCLOCK_PARSE (default) (8) */
715 	CTL_SST_TS_LF,		/* REFCLK_GPS_MX4200 (9) */
716 	CTL_SST_TS_UHF,		/* REFCLK_GPS_AS2201 (10) */
717 	CTL_SST_TS_UHF,		/* REFCLK_GPS_ARBITER (11) */
718 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_TPRO (12) */
719 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_LEITCH (13) */
720 	CTL_SST_TS_LF,		/* deprecated REFCLK_MSF_EES (14) */
721 	CTL_SST_TS_NTP,		/* not used (15) */
722 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_BANCOMM (16) */
723 	CTL_SST_TS_UHF,		/* REFCLK_GPS_DATU (17) */
724 	CTL_SST_TS_TELEPHONE,	/* REFCLK_NIST_ACTS (18) */
725 	CTL_SST_TS_HF,		/* REFCLK_WWV_HEATH (19) */
726 	CTL_SST_TS_UHF,		/* REFCLK_GPS_NMEA (20) */
727 	CTL_SST_TS_UHF,		/* REFCLK_GPS_VME (21) */
728 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_PPS (22) */
729 	CTL_SST_TS_NTP,		/* not used (23) */
730 	CTL_SST_TS_NTP,		/* not used (24) */
731 	CTL_SST_TS_NTP,		/* not used (25) */
732 	CTL_SST_TS_UHF,		/* REFCLK_GPS_HP (26) */
733 	CTL_SST_TS_LF,		/* REFCLK_ARCRON_MSF (27) */
734 	CTL_SST_TS_UHF,		/* REFCLK_SHM (28) */
735 	CTL_SST_TS_UHF,		/* REFCLK_PALISADE (29) */
736 	CTL_SST_TS_UHF,		/* REFCLK_ONCORE (30) */
737 	CTL_SST_TS_UHF,		/* REFCLK_JUPITER (31) */
738 	CTL_SST_TS_LF,		/* REFCLK_CHRONOLOG (32) */
739 	CTL_SST_TS_LF,		/* REFCLK_DUMBCLOCK (33) */
740 	CTL_SST_TS_LF,		/* REFCLK_ULINK (34) */
741 	CTL_SST_TS_LF,		/* REFCLK_PCF (35) */
742 	CTL_SST_TS_HF,		/* REFCLK_WWV (36) */
743 	CTL_SST_TS_LF,		/* REFCLK_FG (37) */
744 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_SERIAL (38) */
745 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_PCI (39) */
746 	CTL_SST_TS_LF,		/* REFCLK_JJY (40) */
747 	CTL_SST_TS_UHF,		/* REFCLK_TT560 (41) */
748 	CTL_SST_TS_UHF,		/* REFCLK_ZYFER (42) */
749 	CTL_SST_TS_UHF,		/* REFCLK_RIPENCC (43) */
750 	CTL_SST_TS_UHF,		/* REFCLK_NEOCLOCK4X (44) */
751 	CTL_SST_TS_UHF,		/* REFCLK_TSYNCPCI (45) */
752 	CTL_SST_TS_UHF		/* REFCLK_GPSDJSON (46) */
753 };
754 #endif  /* REFCLOCK */
755 
756 
757 /*
758  * Keyid used for authenticating write requests.
759  */
760 keyid_t ctl_auth_keyid;
761 
762 /*
763  * We keep track of the last error reported by the system internally
764  */
765 static	u_char ctl_sys_last_event;
766 static	u_char ctl_sys_num_events;
767 
768 
769 /*
770  * Statistic counters to keep track of requests and responses.
771  */
772 u_long ctltimereset;		/* time stats reset */
773 u_long numctlreq;		/* number of requests we've received */
774 u_long numctlbadpkts;		/* number of bad control packets */
775 u_long numctlresponses;		/* number of resp packets sent with data */
776 u_long numctlfrags;		/* number of fragments sent */
777 u_long numctlerrors;		/* number of error responses sent */
778 u_long numctltooshort;		/* number of too short input packets */
779 u_long numctlinputresp;		/* number of responses on input */
780 u_long numctlinputfrag;		/* number of fragments on input */
781 u_long numctlinputerr;		/* number of input pkts with err bit set */
782 u_long numctlbadoffset;		/* number of input pkts with nonzero offset */
783 u_long numctlbadversion;	/* number of input pkts with unknown version */
784 u_long numctldatatooshort;	/* data too short for count */
785 u_long numctlbadop;		/* bad op code found in packet */
786 u_long numasyncmsgs;		/* number of async messages we've sent */
787 
788 /*
789  * Response packet used by these routines. Also some state information
790  * so that we can handle packet formatting within a common set of
791  * subroutines.  Note we try to enter data in place whenever possible,
792  * but the need to set the more bit correctly means we occasionally
793  * use the extra buffer and copy.
794  */
795 static struct ntp_control rpkt;
796 static u_char	res_version;
797 static u_char	res_opcode;
798 static associd_t res_associd;
799 static u_short	res_frags;	/* datagrams in this response */
800 static int	res_offset;	/* offset of payload in response */
801 static u_char * datapt;
802 static u_char * dataend;
803 static int	datalinelen;
804 static int	datasent;	/* flag to avoid initial ", " */
805 static int	datanotbinflag;
806 static sockaddr_u *rmt_addr;
807 static struct interface *lcl_inter;
808 
809 static u_char	res_authenticate;
810 static u_char	res_authokay;
811 static keyid_t	res_keyid;
812 
813 #define MAXDATALINELEN	(72)
814 
815 static u_char	res_async;	/* sending async trap response? */
816 
817 /*
818  * Pointers for saving state when decoding request packets
819  */
820 static	char *reqpt;
821 static	char *reqend;
822 
823 /*
824  * init_control - initialize request data
825  */
826 void
827 init_control(void)
828 {
829 	size_t i;
830 
831 #ifdef HAVE_UNAME
832 	uname(&utsnamebuf);
833 #endif /* HAVE_UNAME */
834 
835 	ctl_clr_stats();
836 
837 	ctl_auth_keyid = 0;
838 	ctl_sys_last_event = EVNT_UNSPEC;
839 	ctl_sys_num_events = 0;
840 
841 	num_ctl_traps = 0;
842 	for (i = 0; i < COUNTOF(ctl_traps); i++)
843 		ctl_traps[i].tr_flags = 0;
844 }
845 
846 
847 /*
848  * ctl_error - send an error response for the current request
849  */
850 static void
851 ctl_error(
852 	u_char errcode
853 	)
854 {
855 	size_t		maclen;
856 
857 	numctlerrors++;
858 	DPRINTF(3, ("sending control error %u\n", errcode));
859 
860 	/*
861 	 * Fill in the fields. We assume rpkt.sequence and rpkt.associd
862 	 * have already been filled in.
863 	 */
864 	rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
865 			(res_opcode & CTL_OP_MASK);
866 	rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
867 	rpkt.count = 0;
868 
869 	/*
870 	 * send packet and bump counters
871 	 */
872 	if (res_authenticate && sys_authenticate) {
873 		maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
874 				     CTL_HEADER_LEN);
875 		sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
876 			CTL_HEADER_LEN + maclen);
877 	} else
878 		sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
879 			CTL_HEADER_LEN);
880 }
881 
882 int/*BOOL*/
883 is_safe_filename(const char * name)
884 {
885 	/* We need a strict validation of filenames we should write: The
886 	 * daemon might run with special permissions and is remote
887 	 * controllable, so we better take care what we allow as file
888 	 * name!
889 	 *
890 	 * The first character must be digit or a letter from the ASCII
891 	 * base plane or a '_' ([_A-Za-z0-9]), the following characters
892 	 * must be from [-._+A-Za-z0-9].
893 	 *
894 	 * We do not trust the character classification much here: Since
895 	 * the NTP protocol makes no provisions for UTF-8 or local code
896 	 * pages, we strictly require the 7bit ASCII code page.
897 	 *
898 	 * The following table is a packed bit field of 128 two-bit
899 	 * groups. The LSB in each group tells us if a character is
900 	 * acceptable at the first position, the MSB if the character is
901 	 * accepted at any other position.
902 	 *
903 	 * This does not ensure that the file name is syntactically
904 	 * correct (multiple dots will not work with VMS...) but it will
905 	 * exclude potential globbing bombs and directory traversal. It
906 	 * also rules out drive selection. (For systems that have this
907 	 * notion, like Windows or VMS.)
908 	 */
909 	static const uint32_t chclass[8] = {
910 		0x00000000, 0x00000000,
911 		0x28800000, 0x000FFFFF,
912 		0xFFFFFFFC, 0xC03FFFFF,
913 		0xFFFFFFFC, 0x003FFFFF
914 	};
915 
916 	u_int widx, bidx, mask;
917 	if ( ! (name && *name))
918 		return FALSE;
919 
920 	mask = 1u;
921 	while (0 != (widx = (u_char)*name++)) {
922 		bidx = (widx & 15) << 1;
923 		widx = widx >> 4;
924 		if (widx >= sizeof(chclass)/sizeof(chclass[0]))
925 			return FALSE;
926 		if (0 == ((chclass[widx] >> bidx) & mask))
927 			return FALSE;
928 		mask = 2u;
929 	}
930 	return TRUE;
931 }
932 
933 
934 /*
935  * save_config - Implements ntpq -c "saveconfig <filename>"
936  *		 Writes current configuration including any runtime
937  *		 changes by ntpq's :config or config-from-file
938  *
939  * Note: There should be no buffer overflow or truncation in the
940  * processing of file names -- both cause security problems. This is bit
941  * painful to code but essential here.
942  */
943 void
944 save_config(
945 	struct recvbuf *rbufp,
946 	int restrict_mask
947 	)
948 {
949 	/* block directory traversal by searching for characters that
950 	 * indicate directory components in a file path.
951 	 *
952 	 * Conceptually we should be searching for DIRSEP in filename,
953 	 * however Windows actually recognizes both forward and
954 	 * backslashes as equivalent directory separators at the API
955 	 * level.  On POSIX systems we could allow '\\' but such
956 	 * filenames are tricky to manipulate from a shell, so just
957 	 * reject both types of slashes on all platforms.
958 	 */
959 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
960 	static const char * illegal_in_filename =
961 #if defined(VMS)
962 	    ":[]"	/* do not allow drive and path components here */
963 #elif defined(SYS_WINNT)
964 	    ":\\/"	/* path and drive separators */
965 #else
966 	    "\\/"	/* separator and critical char for POSIX */
967 #endif
968 	    ;
969 	char reply[128];
970 #ifdef SAVECONFIG
971 	static const char savedconfig_eq[] = "savedconfig=";
972 
973 	/* Build a safe open mode from the available mode flags. We want
974 	 * to create a new file and write it in text mode (when
975 	 * applicable -- only Windows does this...)
976 	 */
977 	static const int openmode = O_CREAT | O_TRUNC | O_WRONLY
978 #  if defined(O_EXCL)		/* posix, vms */
979 	    | O_EXCL
980 #  elif defined(_O_EXCL)	/* windows is alway very special... */
981 	    | _O_EXCL
982 #  endif
983 #  if defined(_O_TEXT)		/* windows, again */
984 	    | _O_TEXT
985 #endif
986 	    ;
987 
988 	char filespec[128];
989 	char filename[128];
990 	char fullpath[512];
991 	char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
992 	time_t now;
993 	int fd;
994 	FILE *fptr;
995 	int prc;
996 	size_t reqlen;
997 #endif
998 
999 	if (RES_NOMODIFY & restrict_mask) {
1000 		ctl_printf("%s", "saveconfig prohibited by restrict ... nomodify");
1001 		ctl_flushpkt(0);
1002 		NLOG(NLOG_SYSINFO)
1003 			msyslog(LOG_NOTICE,
1004 				"saveconfig from %s rejected due to nomodify restriction",
1005 				stoa(&rbufp->recv_srcadr));
1006 		sys_restricted++;
1007 		return;
1008 	}
1009 
1010 #ifdef SAVECONFIG
1011 	if (NULL == saveconfigdir) {
1012 		ctl_printf("%s", "saveconfig prohibited, no saveconfigdir configured");
1013 		ctl_flushpkt(0);
1014 		NLOG(NLOG_SYSINFO)
1015 			msyslog(LOG_NOTICE,
1016 				"saveconfig from %s rejected, no saveconfigdir",
1017 				stoa(&rbufp->recv_srcadr));
1018 		return;
1019 	}
1020 
1021 	/* The length checking stuff gets serious. Do not assume a NUL
1022 	 * byte can be found, but if so, use it to calculate the needed
1023 	 * buffer size. If the available buffer is too short, bail out;
1024 	 * likewise if there is no file spec. (The latter will not
1025 	 * happen when using NTPQ, but there are other ways to craft a
1026 	 * network packet!)
1027 	 */
1028 	reqlen = (size_t)(reqend - reqpt);
1029 	if (0 != reqlen) {
1030 		char * nulpos = (char*)memchr(reqpt, 0, reqlen);
1031 		if (NULL != nulpos)
1032 			reqlen = (size_t)(nulpos - reqpt);
1033 	}
1034 	if (0 == reqlen)
1035 		return;
1036 	if (reqlen >= sizeof(filespec)) {
1037 		ctl_printf("saveconfig exceeded maximum raw name length (%u)",
1038 			   (u_int)sizeof(filespec));
1039 		ctl_flushpkt(0);
1040 		msyslog(LOG_NOTICE,
1041 			"saveconfig exceeded maximum raw name length from %s",
1042 			stoa(&rbufp->recv_srcadr));
1043 		return;
1044 	}
1045 
1046 	/* copy data directly as we exactly know the size */
1047 	memcpy(filespec, reqpt, reqlen);
1048 	filespec[reqlen] = '\0';
1049 
1050 	/*
1051 	 * allow timestamping of the saved config filename with
1052 	 * strftime() format such as:
1053 	 *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
1054 	 * XXX: Nice feature, but not too safe.
1055 	 * YYY: The check for permitted characters in file names should
1056 	 *      weed out the worst. Let's hope 'strftime()' does not
1057 	 *      develop pathological problems.
1058 	 */
1059 	time(&now);
1060 	if (0 == strftime(filename, sizeof(filename), filespec,
1061 			  localtime(&now)))
1062 	{
1063 		/*
1064 		 * If we arrive here, 'strftime()' balked; most likely
1065 		 * the buffer was too short. (Or it encounterd an empty
1066 		 * format, or just a format that expands to an empty
1067 		 * string.) We try to use the original name, though this
1068 		 * is very likely to fail later if there are format
1069 		 * specs in the string. Note that truncation cannot
1070 		 * happen here as long as both buffers have the same
1071 		 * size!
1072 		 */
1073 		strlcpy(filename, filespec, sizeof(filename));
1074 	}
1075 
1076 	/*
1077 	 * Check the file name for sanity. This might/will rule out file
1078 	 * names that would be legal but problematic, and it blocks
1079 	 * directory traversal.
1080 	 */
1081 	if (!is_safe_filename(filename)) {
1082 		ctl_printf("saveconfig rejects unsafe file name '%s'",
1083 			   filename);
1084 		ctl_flushpkt(0);
1085 		msyslog(LOG_NOTICE,
1086 			"saveconfig rejects unsafe file name from %s",
1087 			stoa(&rbufp->recv_srcadr));
1088 		return;
1089 	}
1090 
1091 	/*
1092 	 * XXX: This next test may not be needed with is_safe_filename()
1093 	 */
1094 
1095 	/* block directory/drive traversal */
1096 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
1097 	if (NULL != strpbrk(filename, illegal_in_filename)) {
1098 		snprintf(reply, sizeof(reply),
1099 			 "saveconfig does not allow directory in filename");
1100 		ctl_putdata(reply, strlen(reply), 0);
1101 		ctl_flushpkt(0);
1102 		msyslog(LOG_NOTICE,
1103 			"saveconfig rejects unsafe file name from %s",
1104 			stoa(&rbufp->recv_srcadr));
1105 		return;
1106 	}
1107 
1108 	/* concatenation of directory and path can cause another
1109 	 * truncation...
1110 	 */
1111 	prc = snprintf(fullpath, sizeof(fullpath), "%s%s",
1112 		       saveconfigdir, filename);
1113 	if (prc < 0 || (size_t)prc >= sizeof(fullpath)) {
1114 		ctl_printf("saveconfig exceeded maximum path length (%u)",
1115 			   (u_int)sizeof(fullpath));
1116 		ctl_flushpkt(0);
1117 		msyslog(LOG_NOTICE,
1118 			"saveconfig exceeded maximum path length from %s",
1119 			stoa(&rbufp->recv_srcadr));
1120 		return;
1121 	}
1122 
1123 	fd = open(fullpath, openmode, S_IRUSR | S_IWUSR);
1124 	if (-1 == fd)
1125 		fptr = NULL;
1126 	else
1127 		fptr = fdopen(fd, "w");
1128 
1129 	if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
1130 		ctl_printf("Unable to save configuration to file '%s': %s",
1131 			   filename, strerror(errno));
1132 		msyslog(LOG_ERR,
1133 			"saveconfig %s from %s failed", filename,
1134 			stoa(&rbufp->recv_srcadr));
1135 	} else {
1136 		ctl_printf("Configuration saved to '%s'", filename);
1137 		msyslog(LOG_NOTICE,
1138 			"Configuration saved to '%s' (requested by %s)",
1139 			fullpath, stoa(&rbufp->recv_srcadr));
1140 		/*
1141 		 * save the output filename in system variable
1142 		 * savedconfig, retrieved with:
1143 		 *   ntpq -c "rv 0 savedconfig"
1144 		 * Note: the way 'savedconfig' is defined makes overflow
1145 		 * checks unnecessary here.
1146 		 */
1147 		snprintf(savedconfig, sizeof(savedconfig), "%s%s",
1148 			 savedconfig_eq, filename);
1149 		set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
1150 	}
1151 
1152 	if (NULL != fptr)
1153 		fclose(fptr);
1154 #else	/* !SAVECONFIG follows */
1155 	ctl_printf("%s",
1156 		   "saveconfig unavailable, configured with --disable-saveconfig");
1157 #endif
1158 	ctl_flushpkt(0);
1159 }
1160 
1161 
1162 /*
1163  * process_control - process an incoming control message
1164  */
1165 void
1166 process_control(
1167 	struct recvbuf *rbufp,
1168 	int restrict_mask
1169 	)
1170 {
1171 	struct ntp_control *pkt;
1172 	int req_count;
1173 	int req_data;
1174 	const struct ctl_proc *cc;
1175 	keyid_t *pkid;
1176 	int properlen;
1177 	size_t maclen;
1178 
1179 	DPRINTF(3, ("in process_control()\n"));
1180 
1181 	/*
1182 	 * Save the addresses for error responses
1183 	 */
1184 	numctlreq++;
1185 	rmt_addr = &rbufp->recv_srcadr;
1186 	lcl_inter = rbufp->dstadr;
1187 	pkt = (struct ntp_control *)&rbufp->recv_pkt;
1188 
1189 	/*
1190 	 * If the length is less than required for the header,
1191 	 * ignore it.
1192 	 */
1193 	if (rbufp->recv_length < (int)CTL_HEADER_LEN) {
1194 		DPRINTF(1, ("Short control packet\n"));
1195 		numctltooshort++;
1196 		return;
1197 	}
1198 
1199 	/*
1200 	 * If this packet is a response or a fragment, ignore it.
1201 	 */
1202 	if (   (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1203 	    || pkt->offset != 0) {
1204 		DPRINTF(1, ("invalid format in control packet\n"));
1205 		if (CTL_RESPONSE & pkt->r_m_e_op)
1206 			numctlinputresp++;
1207 		if (CTL_MORE & pkt->r_m_e_op)
1208 			numctlinputfrag++;
1209 		if (CTL_ERROR & pkt->r_m_e_op)
1210 			numctlinputerr++;
1211 		if (pkt->offset != 0)
1212 			numctlbadoffset++;
1213 		return;
1214 	}
1215 
1216 	res_version = PKT_VERSION(pkt->li_vn_mode);
1217 	if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1218 		DPRINTF(1, ("unknown version %d in control packet\n",
1219 			    res_version));
1220 		numctlbadversion++;
1221 		return;
1222 	}
1223 
1224 	/*
1225 	 * Pull enough data from the packet to make intelligent
1226 	 * responses
1227 	 */
1228 	rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1229 					 MODE_CONTROL);
1230 	res_opcode = pkt->r_m_e_op;
1231 	rpkt.sequence = pkt->sequence;
1232 	rpkt.associd = pkt->associd;
1233 	rpkt.status = 0;
1234 	res_frags = 1;
1235 	res_offset = 0;
1236 	res_associd = htons(pkt->associd);
1237 	res_async = FALSE;
1238 	res_authenticate = FALSE;
1239 	res_keyid = 0;
1240 	res_authokay = FALSE;
1241 	req_count = (int)ntohs(pkt->count);
1242 	datanotbinflag = FALSE;
1243 	datalinelen = 0;
1244 	datasent = 0;
1245 	datapt = rpkt.u.data;
1246 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1247 
1248 	if ((rbufp->recv_length & 0x3) != 0)
1249 		DPRINTF(3, ("Control packet length %d unrounded\n",
1250 			    rbufp->recv_length));
1251 
1252 	/*
1253 	 * We're set up now. Make sure we've got at least enough
1254 	 * incoming data space to match the count.
1255 	 */
1256 	req_data = rbufp->recv_length - CTL_HEADER_LEN;
1257 	if (req_data < req_count || rbufp->recv_length & 0x3) {
1258 		ctl_error(CERR_BADFMT);
1259 		numctldatatooshort++;
1260 		return;
1261 	}
1262 
1263 	properlen = req_count + CTL_HEADER_LEN;
1264 	/* round up proper len to a 8 octet boundary */
1265 
1266 	properlen = (properlen + 7) & ~7;
1267 	maclen = rbufp->recv_length - properlen;
1268 	if ((rbufp->recv_length & 3) == 0 &&
1269 	    maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1270 	    sys_authenticate) {
1271 		res_authenticate = TRUE;
1272 		pkid = (void *)((char *)pkt + properlen);
1273 		res_keyid = ntohl(*pkid);
1274 		DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1275 			    rbufp->recv_length, properlen, res_keyid,
1276 			    maclen));
1277 
1278 		if (!authistrustedip(res_keyid, &rbufp->recv_srcadr))
1279 			DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1280 		else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1281 				     rbufp->recv_length - maclen,
1282 				     maclen)) {
1283 			res_authokay = TRUE;
1284 			DPRINTF(3, ("authenticated okay\n"));
1285 		} else {
1286 			res_keyid = 0;
1287 			DPRINTF(3, ("authentication failed\n"));
1288 		}
1289 	}
1290 
1291 	/*
1292 	 * Set up translate pointers
1293 	 */
1294 	reqpt = (char *)pkt->u.data;
1295 	reqend = reqpt + req_count;
1296 
1297 	/*
1298 	 * Look for the opcode processor
1299 	 */
1300 	for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1301 		if (cc->control_code == res_opcode) {
1302 			DPRINTF(3, ("opcode %d, found command handler\n",
1303 				    res_opcode));
1304 			if (cc->flags == AUTH
1305 			    && (!res_authokay
1306 				|| res_keyid != ctl_auth_keyid)) {
1307 				ctl_error(CERR_PERMISSION);
1308 				return;
1309 			}
1310 			(cc->handler)(rbufp, restrict_mask);
1311 			return;
1312 		}
1313 	}
1314 
1315 	/*
1316 	 * Can't find this one, return an error.
1317 	 */
1318 	numctlbadop++;
1319 	ctl_error(CERR_BADOP);
1320 	return;
1321 }
1322 
1323 
1324 /*
1325  * ctlpeerstatus - return a status word for this peer
1326  */
1327 u_short
1328 ctlpeerstatus(
1329 	register struct peer *p
1330 	)
1331 {
1332 	u_short status;
1333 
1334 	status = p->status;
1335 	if (FLAG_CONFIG & p->flags)
1336 		status |= CTL_PST_CONFIG;
1337 	if (p->keyid)
1338 		status |= CTL_PST_AUTHENABLE;
1339 	if (FLAG_AUTHENTIC & p->flags)
1340 		status |= CTL_PST_AUTHENTIC;
1341 	if (p->reach)
1342 		status |= CTL_PST_REACH;
1343 	if (MDF_TXONLY_MASK & p->cast_flags)
1344 		status |= CTL_PST_BCAST;
1345 
1346 	return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1347 }
1348 
1349 
1350 /*
1351  * ctlclkstatus - return a status word for this clock
1352  */
1353 #ifdef REFCLOCK
1354 static u_short
1355 ctlclkstatus(
1356 	struct refclockstat *pcs
1357 	)
1358 {
1359 	return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1360 }
1361 #endif
1362 
1363 
1364 /*
1365  * ctlsysstatus - return the system status word
1366  */
1367 u_short
1368 ctlsysstatus(void)
1369 {
1370 	register u_char this_clock;
1371 
1372 	this_clock = CTL_SST_TS_UNSPEC;
1373 #ifdef REFCLOCK
1374 	if (sys_peer != NULL) {
1375 		if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1376 			this_clock = sys_peer->sstclktype;
1377 		else if (sys_peer->refclktype < COUNTOF(clocktypes))
1378 			this_clock = clocktypes[sys_peer->refclktype];
1379 	}
1380 #else /* REFCLOCK */
1381 	if (sys_peer != 0)
1382 		this_clock = CTL_SST_TS_NTP;
1383 #endif /* REFCLOCK */
1384 	return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1385 			      ctl_sys_last_event);
1386 }
1387 
1388 
1389 /*
1390  * ctl_flushpkt - write out the current packet and prepare
1391  *		  another if necessary.
1392  */
1393 static void
1394 ctl_flushpkt(
1395 	u_char more
1396 	)
1397 {
1398 	size_t i;
1399 	size_t dlen;
1400 	size_t sendlen;
1401 	size_t maclen;
1402 	size_t totlen;
1403 	keyid_t keyid;
1404 
1405 	dlen = datapt - rpkt.u.data;
1406 	if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1407 		/*
1408 		 * Big hack, output a trailing \r\n
1409 		 */
1410 		*datapt++ = '\r';
1411 		*datapt++ = '\n';
1412 		dlen += 2;
1413 	}
1414 	sendlen = dlen + CTL_HEADER_LEN;
1415 
1416 	/*
1417 	 * Pad to a multiple of 32 bits
1418 	 */
1419 	while (sendlen & 0x3) {
1420 		*datapt++ = '\0';
1421 		sendlen++;
1422 	}
1423 
1424 	/*
1425 	 * Fill in the packet with the current info
1426 	 */
1427 	rpkt.r_m_e_op = CTL_RESPONSE | more |
1428 			(res_opcode & CTL_OP_MASK);
1429 	rpkt.count = htons((u_short)dlen);
1430 	rpkt.offset = htons((u_short)res_offset);
1431 	if (res_async) {
1432 		for (i = 0; i < COUNTOF(ctl_traps); i++) {
1433 			if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1434 				rpkt.li_vn_mode =
1435 				    PKT_LI_VN_MODE(
1436 					sys_leap,
1437 					ctl_traps[i].tr_version,
1438 					MODE_CONTROL);
1439 				rpkt.sequence =
1440 				    htons(ctl_traps[i].tr_sequence);
1441 				sendpkt(&ctl_traps[i].tr_addr,
1442 					ctl_traps[i].tr_localaddr, -4,
1443 					(struct pkt *)&rpkt, sendlen);
1444 				if (!more)
1445 					ctl_traps[i].tr_sequence++;
1446 				numasyncmsgs++;
1447 			}
1448 		}
1449 	} else {
1450 		if (res_authenticate && sys_authenticate) {
1451 			totlen = sendlen;
1452 			/*
1453 			 * If we are going to authenticate, then there
1454 			 * is an additional requirement that the MAC
1455 			 * begin on a 64 bit boundary.
1456 			 */
1457 			while (totlen & 7) {
1458 				*datapt++ = '\0';
1459 				totlen++;
1460 			}
1461 			keyid = htonl(res_keyid);
1462 			memcpy(datapt, &keyid, sizeof(keyid));
1463 			maclen = authencrypt(res_keyid,
1464 					     (u_int32 *)&rpkt, totlen);
1465 			sendpkt(rmt_addr, lcl_inter, -5,
1466 				(struct pkt *)&rpkt, totlen + maclen);
1467 		} else {
1468 			sendpkt(rmt_addr, lcl_inter, -6,
1469 				(struct pkt *)&rpkt, sendlen);
1470 		}
1471 		if (more)
1472 			numctlfrags++;
1473 		else
1474 			numctlresponses++;
1475 	}
1476 
1477 	/*
1478 	 * Set us up for another go around.
1479 	 */
1480 	res_frags++;
1481 	res_offset += dlen;
1482 	datapt = rpkt.u.data;
1483 }
1484 
1485 
1486 /* --------------------------------------------------------------------
1487  * block transfer API -- stream string/data fragments into xmit buffer
1488  * without additional copying
1489  */
1490 
1491 /* buffer descriptor: address & size of fragment
1492  * 'buf' may only be NULL when 'len' is zero!
1493  */
1494 typedef struct {
1495 	const void  *buf;
1496 	size_t       len;
1497 } CtlMemBufT;
1498 
1499 /* put ctl data in a gather-style operation */
1500 static void
1501 ctl_putdata_ex(
1502 	const CtlMemBufT * argv,
1503 	size_t             argc,
1504 	int/*BOOL*/        bin		/* set to 1 when data is binary */
1505 	)
1506 {
1507 	const char * src_ptr;
1508 	size_t       src_len, cur_len, add_len, argi;
1509 
1510 	/* text / binary preprocessing, possibly create new linefeed */
1511 	if (bin) {
1512 		add_len = 0;
1513 	} else {
1514 		datanotbinflag = TRUE;
1515 		add_len = 3;
1516 
1517 		if (datasent) {
1518 			*datapt++ = ',';
1519 			datalinelen++;
1520 
1521 			/* sum up total length */
1522 			for (argi = 0, src_len = 0; argi < argc; ++argi)
1523 				src_len += argv[argi].len;
1524 			/* possibly start a new line, assume no size_t overflow */
1525 			if ((src_len + datalinelen + 1) >= MAXDATALINELEN) {
1526 				*datapt++ = '\r';
1527 				*datapt++ = '\n';
1528 				datalinelen = 0;
1529 			} else {
1530 				*datapt++ = ' ';
1531 				datalinelen++;
1532 			}
1533 		}
1534 	}
1535 
1536 	/* now stream out all buffers */
1537 	for (argi = 0; argi < argc; ++argi) {
1538 		src_ptr = argv[argi].buf;
1539 		src_len = argv[argi].len;
1540 
1541 		if ( ! (src_ptr && src_len))
1542 			continue;
1543 
1544 		cur_len = (size_t)(dataend - datapt);
1545 		while ((src_len + add_len) > cur_len) {
1546 			/* Not enough room in this one, flush it out. */
1547 			if (src_len < cur_len)
1548 				cur_len = src_len;
1549 
1550 			memcpy(datapt, src_ptr, cur_len);
1551 			datapt      += cur_len;
1552 			datalinelen += cur_len;
1553 
1554 			src_ptr     += cur_len;
1555 			src_len     -= cur_len;
1556 
1557 			ctl_flushpkt(CTL_MORE);
1558 			cur_len = (size_t)(dataend - datapt);
1559 		}
1560 
1561 		memcpy(datapt, src_ptr, src_len);
1562 		datapt      += src_len;
1563 		datalinelen += src_len;
1564 
1565 		datasent = TRUE;
1566 	}
1567 }
1568 
1569 /*
1570  * ctl_putdata - write data into the packet, fragmenting and starting
1571  * another if this one is full.
1572  */
1573 static void
1574 ctl_putdata(
1575 	const char *dp,
1576 	unsigned int dlen,
1577 	int bin			/* set to 1 when data is binary */
1578 	)
1579 {
1580 	CtlMemBufT args[1];
1581 
1582 	args[0].buf = dp;
1583 	args[0].len = dlen;
1584 	ctl_putdata_ex(args, 1, bin);
1585 }
1586 
1587 /*
1588  * ctl_putstr - write a tagged string into the response packet
1589  *		in the form:
1590  *
1591  *		tag="data"
1592  *
1593  *		len is the data length excluding the NUL terminator,
1594  *		as in ctl_putstr("var", "value", strlen("value"));
1595  */
1596 static void
1597 ctl_putstr(
1598 	const char *	tag,
1599 	const char *	data,
1600 	size_t		len
1601 	)
1602 {
1603 	CtlMemBufT args[4];
1604 
1605 	args[0].buf = tag;
1606 	args[0].len = strlen(tag);
1607 	if (data && len) {
1608 	    args[1].buf = "=\"";
1609 	    args[1].len = 2;
1610 	    args[2].buf = data;
1611 	    args[2].len = len;
1612 	    args[3].buf = "\"";
1613 	    args[3].len = 1;
1614 	    ctl_putdata_ex(args, 4, FALSE);
1615 	} else {
1616 	    args[1].buf = "=\"\"";
1617 	    args[1].len = 3;
1618 	    ctl_putdata_ex(args, 2, FALSE);
1619 	}
1620 }
1621 
1622 
1623 /*
1624  * ctl_putunqstr - write a tagged string into the response packet
1625  *		   in the form:
1626  *
1627  *		   tag=data
1628  *
1629  *	len is the data length excluding the NUL terminator.
1630  *	data must not contain a comma or whitespace.
1631  */
1632 static void
1633 ctl_putunqstr(
1634 	const char *	tag,
1635 	const char *	data,
1636 	size_t		len
1637 	)
1638 {
1639 	CtlMemBufT args[3];
1640 
1641 	args[0].buf = tag;
1642 	args[0].len = strlen(tag);
1643 	args[1].buf = "=";
1644 	args[1].len = 1;
1645 	if (data && len) {
1646 		args[2].buf = data;
1647 		args[2].len = len;
1648 		ctl_putdata_ex(args, 3, FALSE);
1649 	} else {
1650 		ctl_putdata_ex(args, 2, FALSE);
1651 	}
1652 }
1653 
1654 
1655 /*
1656  * ctl_putdblf - write a tagged, signed double into the response packet
1657  */
1658 static void
1659 ctl_putdblf(
1660 	const char *	tag,
1661 	int		use_f,
1662 	int		precision,
1663 	double		d
1664 	)
1665 {
1666 	char buffer[40];
1667 	int  rc;
1668 
1669 	rc = snprintf(buffer, sizeof(buffer),
1670 		      (use_f ? "%.*f" : "%.*g"),
1671 		      precision, d);
1672 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1673 	ctl_putunqstr(tag, buffer, rc);
1674 }
1675 
1676 /*
1677  * ctl_putuint - write a tagged unsigned integer into the response
1678  */
1679 static void
1680 ctl_putuint(
1681 	const char *tag,
1682 	u_long uval
1683 	)
1684 {
1685 	char buffer[24]; /* needs to fit for 64 bits! */
1686 	int  rc;
1687 
1688 	rc = snprintf(buffer, sizeof(buffer), "%lu", uval);
1689 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1690 	ctl_putunqstr(tag, buffer, rc);
1691 }
1692 
1693 /*
1694  * ctl_putcal - write a decoded calendar data into the response.
1695  * only used with AUTOKEY currently, so compiled conditional
1696  */
1697 #ifdef AUTOKEY
1698 static void
1699 ctl_putcal(
1700 	const char *tag,
1701 	const struct calendar *pcal
1702 	)
1703 {
1704 	char buffer[16];
1705 	int  rc;
1706 
1707 	rc = snprintf(buffer, sizeof(buffer),
1708 		      "%04d%02d%02d%02d%02d",
1709 		      pcal->year, pcal->month, pcal->monthday,
1710 		      pcal->hour, pcal->minute
1711 		);
1712 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1713 	ctl_putunqstr(tag, buffer, rc);
1714 }
1715 #endif
1716 
1717 /*
1718  * ctl_putfs - write a decoded filestamp into the response
1719  */
1720 static void
1721 ctl_putfs(
1722 	const char *tag,
1723 	tstamp_t uval
1724 	)
1725 {
1726 	char buffer[16];
1727 	int  rc;
1728 
1729 	time_t fstamp = (time_t)uval - JAN_1970;
1730 	struct tm *tm = gmtime(&fstamp);
1731 
1732 	if (NULL == tm)
1733 		return;
1734 
1735 	rc = snprintf(buffer, sizeof(buffer),
1736 		      "%04d%02d%02d%02d%02d",
1737 		      tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
1738 		      tm->tm_hour, tm->tm_min);
1739 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1740 	ctl_putunqstr(tag, buffer, rc);
1741 }
1742 
1743 
1744 /*
1745  * ctl_puthex - write a tagged unsigned integer, in hex, into the
1746  * response
1747  */
1748 static void
1749 ctl_puthex(
1750 	const char *tag,
1751 	u_long uval
1752 	)
1753 {
1754 	char buffer[24];	/* must fit 64bit int! */
1755 	int  rc;
1756 
1757 	rc = snprintf(buffer, sizeof(buffer), "0x%lx", uval);
1758 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1759 	ctl_putunqstr(tag, buffer, rc);
1760 }
1761 
1762 
1763 /*
1764  * ctl_putint - write a tagged signed integer into the response
1765  */
1766 static void
1767 ctl_putint(
1768 	const char *tag,
1769 	long ival
1770 	)
1771 {
1772 	char buffer[24];	/*must fit 64bit int */
1773 	int  rc;
1774 
1775 	rc = snprintf(buffer, sizeof(buffer), "%ld", ival);
1776 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1777 	ctl_putunqstr(tag, buffer, rc);
1778 }
1779 
1780 
1781 /*
1782  * ctl_putts - write a tagged timestamp, in hex, into the response
1783  */
1784 static void
1785 ctl_putts(
1786 	const char *tag,
1787 	l_fp *ts
1788 	)
1789 {
1790 	char buffer[24];
1791 	int  rc;
1792 
1793 	rc = snprintf(buffer, sizeof(buffer),
1794 		      "0x%08lx.%08lx",
1795 		      (u_long)ts->l_ui, (u_long)ts->l_uf);
1796 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1797 	ctl_putunqstr(tag, buffer, rc);
1798 }
1799 
1800 
1801 /*
1802  * ctl_putadr - write an IP address into the response
1803  */
1804 static void
1805 ctl_putadr(
1806 	const char *tag,
1807 	u_int32 addr32,
1808 	sockaddr_u *addr
1809 	)
1810 {
1811 	const char *cq;
1812 
1813 	if (NULL == addr)
1814 		cq = numtoa(addr32);
1815 	else
1816 		cq = stoa(addr);
1817 	ctl_putunqstr(tag, cq, strlen(cq));
1818 }
1819 
1820 
1821 /*
1822  * ctl_putrefid - send a u_int32 refid as printable text
1823  */
1824 static void
1825 ctl_putrefid(
1826 	const char *	tag,
1827 	u_int32		refid
1828 	)
1829 {
1830 	size_t nc;
1831 
1832 	union {
1833 		uint32_t w;
1834 		uint8_t  b[sizeof(uint32_t)];
1835 	} bytes;
1836 
1837 	bytes.w = refid;
1838 	for (nc = 0; nc < sizeof(bytes.b) && bytes.b[nc]; ++nc)
1839 		if (  !isprint(bytes.b[nc])
1840 		    || isspace(bytes.b[nc])
1841 		    || bytes.b[nc] == ','  )
1842 			bytes.b[nc] = '.';
1843 	ctl_putunqstr(tag, (const char*)bytes.b, nc);
1844 }
1845 
1846 
1847 /*
1848  * ctl_putarray - write a tagged eight element double array into the response
1849  */
1850 static void
1851 ctl_putarray(
1852 	const char *tag,
1853 	double *arr,
1854 	int start
1855 	)
1856 {
1857 	char *cp, *ep;
1858 	char buffer[200];
1859 	int  i, rc;
1860 
1861 	cp = buffer;
1862 	ep = buffer + sizeof(buffer);
1863 	i  = start;
1864 	do {
1865 		if (i == 0)
1866 			i = NTP_SHIFT;
1867 		i--;
1868 		rc = snprintf(cp, (size_t)(ep - cp), " %.2f", arr[i] * 1e3);
1869 		INSIST(rc >= 0 && (size_t)rc < (size_t)(ep - cp));
1870 		cp += rc;
1871 	} while (i != start);
1872 	ctl_putunqstr(tag, buffer, (size_t)(cp - buffer));
1873 }
1874 
1875 /*
1876  * ctl_printf - put a formatted string into the data buffer
1877  */
1878 static void
1879 ctl_printf(
1880 	const char * fmt,
1881 	...
1882 	)
1883 {
1884 	static const char * ellipsis = "[...]";
1885 	va_list va;
1886 	char    fmtbuf[128];
1887 	int     rc;
1888 
1889 	va_start(va, fmt);
1890 	rc = vsnprintf(fmtbuf, sizeof(fmtbuf), fmt, va);
1891 	va_end(va);
1892 	if (rc < 0 || (size_t)rc >= sizeof(fmtbuf))
1893 		strcpy(fmtbuf + sizeof(fmtbuf) - strlen(ellipsis) - 1,
1894 		       ellipsis);
1895 	ctl_putdata(fmtbuf, strlen(fmtbuf), 0);
1896 }
1897 
1898 
1899 /*
1900  * ctl_putsys - output a system variable
1901  */
1902 static void
1903 ctl_putsys(
1904 	int varid
1905 	)
1906 {
1907 	l_fp tmp;
1908 	char str[256];
1909 	u_int u;
1910 	double kb;
1911 	double dtemp;
1912 	const char *ss;
1913 #ifdef AUTOKEY
1914 	struct cert_info *cp;
1915 #endif	/* AUTOKEY */
1916 #ifdef KERNEL_PLL
1917 	static struct timex ntx;
1918 	static u_long ntp_adjtime_time;
1919 
1920 	/*
1921 	 * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1922 	 */
1923 	if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1924 	    current_time != ntp_adjtime_time) {
1925 		ZERO(ntx);
1926 		if (ntp_adjtime(&ntx) < 0)
1927 			msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1928 		else
1929 			ntp_adjtime_time = current_time;
1930 	}
1931 #endif	/* KERNEL_PLL */
1932 
1933 	switch (varid) {
1934 
1935 	case CS_LEAP:
1936 		ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1937 		break;
1938 
1939 	case CS_STRATUM:
1940 		ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1941 		break;
1942 
1943 	case CS_PRECISION:
1944 		ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1945 		break;
1946 
1947 	case CS_ROOTDELAY:
1948 		ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1949 			   1e3);
1950 		break;
1951 
1952 	case CS_ROOTDISPERSION:
1953 		ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1954 			   sys_rootdisp * 1e3);
1955 		break;
1956 
1957 	case CS_REFID:
1958 		if (REFID_ISTEXT(sys_stratum))
1959 			ctl_putrefid(sys_var[varid].text, sys_refid);
1960 		else
1961 			ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1962 		break;
1963 
1964 	case CS_REFTIME:
1965 		ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
1966 		break;
1967 
1968 	case CS_POLL:
1969 		ctl_putuint(sys_var[CS_POLL].text, sys_poll);
1970 		break;
1971 
1972 	case CS_PEERID:
1973 		if (sys_peer == NULL)
1974 			ctl_putuint(sys_var[CS_PEERID].text, 0);
1975 		else
1976 			ctl_putuint(sys_var[CS_PEERID].text,
1977 				    sys_peer->associd);
1978 		break;
1979 
1980 	case CS_PEERADR:
1981 		if (sys_peer != NULL && sys_peer->dstadr != NULL)
1982 			ss = sptoa(&sys_peer->srcadr);
1983 		else
1984 			ss = "0.0.0.0:0";
1985 		ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
1986 		break;
1987 
1988 	case CS_PEERMODE:
1989 		u = (sys_peer != NULL)
1990 			? sys_peer->hmode
1991 			: MODE_UNSPEC;
1992 		ctl_putuint(sys_var[CS_PEERMODE].text, u);
1993 		break;
1994 
1995 	case CS_OFFSET:
1996 		ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
1997 		break;
1998 
1999 	case CS_DRIFT:
2000 		ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
2001 		break;
2002 
2003 	case CS_JITTER:
2004 		ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
2005 		break;
2006 
2007 	case CS_ERROR:
2008 		ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
2009 		break;
2010 
2011 	case CS_CLOCK:
2012 		get_systime(&tmp);
2013 		ctl_putts(sys_var[CS_CLOCK].text, &tmp);
2014 		break;
2015 
2016 	case CS_PROCESSOR:
2017 #ifndef HAVE_UNAME
2018 		ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
2019 			   sizeof(str_processor) - 1);
2020 #else
2021 		ctl_putstr(sys_var[CS_PROCESSOR].text,
2022 			   utsnamebuf.machine, strlen(utsnamebuf.machine));
2023 #endif /* HAVE_UNAME */
2024 		break;
2025 
2026 	case CS_SYSTEM:
2027 #ifndef HAVE_UNAME
2028 		ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
2029 			   sizeof(str_system) - 1);
2030 #else
2031 		snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
2032 			 utsnamebuf.release);
2033 		ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
2034 #endif /* HAVE_UNAME */
2035 		break;
2036 
2037 	case CS_VERSION:
2038 		ctl_putstr(sys_var[CS_VERSION].text, Version,
2039 			   strlen(Version));
2040 		break;
2041 
2042 	case CS_STABIL:
2043 		ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
2044 			   1e6);
2045 		break;
2046 
2047 	case CS_VARLIST:
2048 	{
2049 		char buf[CTL_MAX_DATA_LEN];
2050 		//buffPointer, firstElementPointer, buffEndPointer
2051 		char *buffp, *buffend;
2052 		int firstVarName;
2053 		const char *ss1;
2054 		int len;
2055 		const struct ctl_var *k;
2056 
2057 		buffp = buf;
2058 		buffend = buf + sizeof(buf);
2059 		if (strlen(sys_var[CS_VARLIST].text) > (sizeof(buf) - 4))
2060 			break;	/* really long var name */
2061 
2062 		snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
2063 		buffp += strlen(buffp);
2064 		firstVarName = TRUE;
2065 		for (k = sys_var; !(k->flags & EOV); k++) {
2066 			if (k->flags & PADDING)
2067 				continue;
2068 			len = strlen(k->text);
2069 			if (len + 1 >= buffend - buffp)
2070 				break;
2071 			if (!firstVarName)
2072 				*buffp++ = ',';
2073 			else
2074 				firstVarName = FALSE;
2075 			memcpy(buffp, k->text, len);
2076 			buffp += len;
2077 		}
2078 
2079 		for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
2080 			if (k->flags & PADDING)
2081 				continue;
2082 			if (NULL == k->text)
2083 				continue;
2084 			ss1 = strchr(k->text, '=');
2085 			if (NULL == ss1)
2086 				len = strlen(k->text);
2087 			else
2088 				len = ss1 - k->text;
2089 			if (len + 1 >= buffend - buffp)
2090 				break;
2091 			if (firstVarName) {
2092 				*buffp++ = ',';
2093 				firstVarName = FALSE;
2094 			}
2095 			memcpy(buffp, k->text,(unsigned)len);
2096 			buffp += len;
2097 		}
2098 		if (2 >= buffend - buffp)
2099 			break;
2100 
2101 		*buffp++ = '"';
2102 		*buffp = '\0';
2103 
2104 		ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
2105 		break;
2106 	}
2107 
2108 	case CS_TAI:
2109 		if (sys_tai > 0)
2110 			ctl_putuint(sys_var[CS_TAI].text, sys_tai);
2111 		break;
2112 
2113 	case CS_LEAPTAB:
2114 	{
2115 		leap_signature_t lsig;
2116 		leapsec_getsig(&lsig);
2117 		if (lsig.ttime > 0)
2118 			ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
2119 		break;
2120 	}
2121 
2122 	case CS_LEAPEND:
2123 	{
2124 		leap_signature_t lsig;
2125 		leapsec_getsig(&lsig);
2126 		if (lsig.etime > 0)
2127 			ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
2128 		break;
2129 	}
2130 
2131 #ifdef LEAP_SMEAR
2132 	case CS_LEAPSMEARINTV:
2133 		if (leap_smear_intv > 0)
2134 			ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv);
2135 		break;
2136 
2137 	case CS_LEAPSMEAROFFS:
2138 		if (leap_smear_intv > 0)
2139 			ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text,
2140 				   leap_smear.doffset * 1e3);
2141 		break;
2142 #endif	/* LEAP_SMEAR */
2143 
2144 	case CS_RATE:
2145 		ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
2146 		break;
2147 
2148 	case CS_MRU_ENABLED:
2149 		ctl_puthex(sys_var[varid].text, mon_enabled);
2150 		break;
2151 
2152 	case CS_MRU_DEPTH:
2153 		ctl_putuint(sys_var[varid].text, mru_entries);
2154 		break;
2155 
2156 	case CS_MRU_MEM:
2157 		kb = mru_entries * (sizeof(mon_entry) / 1024.);
2158 		u = (u_int)kb;
2159 		if (kb - u >= 0.5)
2160 			u++;
2161 		ctl_putuint(sys_var[varid].text, u);
2162 		break;
2163 
2164 	case CS_MRU_DEEPEST:
2165 		ctl_putuint(sys_var[varid].text, mru_peakentries);
2166 		break;
2167 
2168 	case CS_MRU_MINDEPTH:
2169 		ctl_putuint(sys_var[varid].text, mru_mindepth);
2170 		break;
2171 
2172 	case CS_MRU_MAXAGE:
2173 		ctl_putint(sys_var[varid].text, mru_maxage);
2174 		break;
2175 
2176 	case CS_MRU_MAXDEPTH:
2177 		ctl_putuint(sys_var[varid].text, mru_maxdepth);
2178 		break;
2179 
2180 	case CS_MRU_MAXMEM:
2181 		kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
2182 		u = (u_int)kb;
2183 		if (kb - u >= 0.5)
2184 			u++;
2185 		ctl_putuint(sys_var[varid].text, u);
2186 		break;
2187 
2188 	case CS_SS_UPTIME:
2189 		ctl_putuint(sys_var[varid].text, current_time);
2190 		break;
2191 
2192 	case CS_SS_RESET:
2193 		ctl_putuint(sys_var[varid].text,
2194 			    current_time - sys_stattime);
2195 		break;
2196 
2197 	case CS_SS_RECEIVED:
2198 		ctl_putuint(sys_var[varid].text, sys_received);
2199 		break;
2200 
2201 	case CS_SS_THISVER:
2202 		ctl_putuint(sys_var[varid].text, sys_newversion);
2203 		break;
2204 
2205 	case CS_SS_OLDVER:
2206 		ctl_putuint(sys_var[varid].text, sys_oldversion);
2207 		break;
2208 
2209 	case CS_SS_BADFORMAT:
2210 		ctl_putuint(sys_var[varid].text, sys_badlength);
2211 		break;
2212 
2213 	case CS_SS_BADAUTH:
2214 		ctl_putuint(sys_var[varid].text, sys_badauth);
2215 		break;
2216 
2217 	case CS_SS_DECLINED:
2218 		ctl_putuint(sys_var[varid].text, sys_declined);
2219 		break;
2220 
2221 	case CS_SS_RESTRICTED:
2222 		ctl_putuint(sys_var[varid].text, sys_restricted);
2223 		break;
2224 
2225 	case CS_SS_LIMITED:
2226 		ctl_putuint(sys_var[varid].text, sys_limitrejected);
2227 		break;
2228 
2229 	case CS_SS_LAMPORT:
2230 		ctl_putuint(sys_var[varid].text, sys_lamport);
2231 		break;
2232 
2233 	case CS_SS_TSROUNDING:
2234 		ctl_putuint(sys_var[varid].text, sys_tsrounding);
2235 		break;
2236 
2237 	case CS_SS_KODSENT:
2238 		ctl_putuint(sys_var[varid].text, sys_kodsent);
2239 		break;
2240 
2241 	case CS_SS_PROCESSED:
2242 		ctl_putuint(sys_var[varid].text, sys_processed);
2243 		break;
2244 
2245 	case CS_BCASTDELAY:
2246 		ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2247 		break;
2248 
2249 	case CS_AUTHDELAY:
2250 		LFPTOD(&sys_authdelay, dtemp);
2251 		ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2252 		break;
2253 
2254 	case CS_AUTHKEYS:
2255 		ctl_putuint(sys_var[varid].text, authnumkeys);
2256 		break;
2257 
2258 	case CS_AUTHFREEK:
2259 		ctl_putuint(sys_var[varid].text, authnumfreekeys);
2260 		break;
2261 
2262 	case CS_AUTHKLOOKUPS:
2263 		ctl_putuint(sys_var[varid].text, authkeylookups);
2264 		break;
2265 
2266 	case CS_AUTHKNOTFOUND:
2267 		ctl_putuint(sys_var[varid].text, authkeynotfound);
2268 		break;
2269 
2270 	case CS_AUTHKUNCACHED:
2271 		ctl_putuint(sys_var[varid].text, authkeyuncached);
2272 		break;
2273 
2274 	case CS_AUTHKEXPIRED:
2275 		ctl_putuint(sys_var[varid].text, authkeyexpired);
2276 		break;
2277 
2278 	case CS_AUTHENCRYPTS:
2279 		ctl_putuint(sys_var[varid].text, authencryptions);
2280 		break;
2281 
2282 	case CS_AUTHDECRYPTS:
2283 		ctl_putuint(sys_var[varid].text, authdecryptions);
2284 		break;
2285 
2286 	case CS_AUTHRESET:
2287 		ctl_putuint(sys_var[varid].text,
2288 			    current_time - auth_timereset);
2289 		break;
2290 
2291 		/*
2292 		 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2293 		 * unavailable, otherwise calls putfunc with args.
2294 		 */
2295 #ifndef KERNEL_PLL
2296 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2297 		ctl_putint(sys_var[varid].text, 0)
2298 #else
2299 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2300 		putfunc args
2301 #endif
2302 
2303 		/*
2304 		 * CTL_IF_KERNPPS() puts a zero if either the kernel
2305 		 * loop is unavailable, or kernel hard PPS is not
2306 		 * active, otherwise calls putfunc with args.
2307 		 */
2308 #ifndef KERNEL_PLL
2309 # define	CTL_IF_KERNPPS(putfunc, args)	\
2310 		ctl_putint(sys_var[varid].text, 0)
2311 #else
2312 # define	CTL_IF_KERNPPS(putfunc, args)			\
2313 		if (0 == ntx.shift)				\
2314 			ctl_putint(sys_var[varid].text, 0);	\
2315 		else						\
2316 			putfunc args	/* no trailing ; */
2317 #endif
2318 
2319 	case CS_K_OFFSET:
2320 		CTL_IF_KERNLOOP(
2321 			ctl_putdblf,
2322 			(sys_var[varid].text, 0, -1,
2323 			 1000 * dbl_from_var_long(ntx.offset, ntx.status))
2324 		);
2325 		break;
2326 
2327 	case CS_K_FREQ:
2328 		CTL_IF_KERNLOOP(
2329 			ctl_putsfp,
2330 			(sys_var[varid].text, ntx.freq)
2331 		);
2332 		break;
2333 
2334 	case CS_K_MAXERR:
2335 		CTL_IF_KERNLOOP(
2336 			ctl_putdblf,
2337 			(sys_var[varid].text, 0, 6,
2338 			 1000 * dbl_from_usec_long(ntx.maxerror))
2339 		);
2340 		break;
2341 
2342 	case CS_K_ESTERR:
2343 		CTL_IF_KERNLOOP(
2344 			ctl_putdblf,
2345 			(sys_var[varid].text, 0, 6,
2346 			 1000 * dbl_from_usec_long(ntx.esterror))
2347 		);
2348 		break;
2349 
2350 	case CS_K_STFLAGS:
2351 #ifndef KERNEL_PLL
2352 		ss = "";
2353 #else
2354 		ss = k_st_flags(ntx.status);
2355 #endif
2356 		ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2357 		break;
2358 
2359 	case CS_K_TIMECONST:
2360 		CTL_IF_KERNLOOP(
2361 			ctl_putint,
2362 			(sys_var[varid].text, ntx.constant)
2363 		);
2364 		break;
2365 
2366 	case CS_K_PRECISION:
2367 		CTL_IF_KERNLOOP(
2368 			ctl_putdblf,
2369 			(sys_var[varid].text, 0, 6,
2370 			 1000 * dbl_from_var_long(ntx.precision, ntx.status))
2371 		);
2372 		break;
2373 
2374 	case CS_K_FREQTOL:
2375 		CTL_IF_KERNLOOP(
2376 			ctl_putsfp,
2377 			(sys_var[varid].text, ntx.tolerance)
2378 		);
2379 		break;
2380 
2381 	case CS_K_PPS_FREQ:
2382 		CTL_IF_KERNPPS(
2383 			ctl_putsfp,
2384 			(sys_var[varid].text, ntx.ppsfreq)
2385 		);
2386 		break;
2387 
2388 	case CS_K_PPS_STABIL:
2389 		CTL_IF_KERNPPS(
2390 			ctl_putsfp,
2391 			(sys_var[varid].text, ntx.stabil)
2392 		);
2393 		break;
2394 
2395 	case CS_K_PPS_JITTER:
2396 		CTL_IF_KERNPPS(
2397 			ctl_putdbl,
2398 			(sys_var[varid].text,
2399 			 1000 * dbl_from_var_long(ntx.jitter, ntx.status))
2400 		);
2401 		break;
2402 
2403 	case CS_K_PPS_CALIBDUR:
2404 		CTL_IF_KERNPPS(
2405 			ctl_putint,
2406 			(sys_var[varid].text, 1 << ntx.shift)
2407 		);
2408 		break;
2409 
2410 	case CS_K_PPS_CALIBS:
2411 		CTL_IF_KERNPPS(
2412 			ctl_putint,
2413 			(sys_var[varid].text, ntx.calcnt)
2414 		);
2415 		break;
2416 
2417 	case CS_K_PPS_CALIBERRS:
2418 		CTL_IF_KERNPPS(
2419 			ctl_putint,
2420 			(sys_var[varid].text, ntx.errcnt)
2421 		);
2422 		break;
2423 
2424 	case CS_K_PPS_JITEXC:
2425 		CTL_IF_KERNPPS(
2426 			ctl_putint,
2427 			(sys_var[varid].text, ntx.jitcnt)
2428 		);
2429 		break;
2430 
2431 	case CS_K_PPS_STBEXC:
2432 		CTL_IF_KERNPPS(
2433 			ctl_putint,
2434 			(sys_var[varid].text, ntx.stbcnt)
2435 		);
2436 		break;
2437 
2438 	case CS_IOSTATS_RESET:
2439 		ctl_putuint(sys_var[varid].text,
2440 			    current_time - io_timereset);
2441 		break;
2442 
2443 	case CS_TOTAL_RBUF:
2444 		ctl_putuint(sys_var[varid].text, total_recvbuffs());
2445 		break;
2446 
2447 	case CS_FREE_RBUF:
2448 		ctl_putuint(sys_var[varid].text, free_recvbuffs());
2449 		break;
2450 
2451 	case CS_USED_RBUF:
2452 		ctl_putuint(sys_var[varid].text, full_recvbuffs());
2453 		break;
2454 
2455 	case CS_RBUF_LOWATER:
2456 		ctl_putuint(sys_var[varid].text, lowater_additions());
2457 		break;
2458 
2459 	case CS_IO_DROPPED:
2460 		ctl_putuint(sys_var[varid].text, packets_dropped);
2461 		break;
2462 
2463 	case CS_IO_IGNORED:
2464 		ctl_putuint(sys_var[varid].text, packets_ignored);
2465 		break;
2466 
2467 	case CS_IO_RECEIVED:
2468 		ctl_putuint(sys_var[varid].text, packets_received);
2469 		break;
2470 
2471 	case CS_IO_SENT:
2472 		ctl_putuint(sys_var[varid].text, packets_sent);
2473 		break;
2474 
2475 	case CS_IO_SENDFAILED:
2476 		ctl_putuint(sys_var[varid].text, packets_notsent);
2477 		break;
2478 
2479 	case CS_IO_WAKEUPS:
2480 		ctl_putuint(sys_var[varid].text, handler_calls);
2481 		break;
2482 
2483 	case CS_IO_GOODWAKEUPS:
2484 		ctl_putuint(sys_var[varid].text, handler_pkts);
2485 		break;
2486 
2487 	case CS_TIMERSTATS_RESET:
2488 		ctl_putuint(sys_var[varid].text,
2489 			    current_time - timer_timereset);
2490 		break;
2491 
2492 	case CS_TIMER_OVERRUNS:
2493 		ctl_putuint(sys_var[varid].text, alarm_overflow);
2494 		break;
2495 
2496 	case CS_TIMER_XMTS:
2497 		ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2498 		break;
2499 
2500 	case CS_FUZZ:
2501 		ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2502 		break;
2503 	case CS_WANDER_THRESH:
2504 		ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
2505 		break;
2506 #ifdef AUTOKEY
2507 	case CS_FLAGS:
2508 		if (crypto_flags)
2509 			ctl_puthex(sys_var[CS_FLAGS].text,
2510 			    crypto_flags);
2511 		break;
2512 
2513 	case CS_DIGEST:
2514 		if (crypto_flags) {
2515 			strlcpy(str, OBJ_nid2ln(crypto_nid),
2516 			    COUNTOF(str));
2517 			ctl_putstr(sys_var[CS_DIGEST].text, str,
2518 			    strlen(str));
2519 		}
2520 		break;
2521 
2522 	case CS_SIGNATURE:
2523 		if (crypto_flags) {
2524 			const EVP_MD *dp;
2525 
2526 			dp = EVP_get_digestbynid(crypto_flags >> 16);
2527 			strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2528 			    COUNTOF(str));
2529 			ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2530 			    strlen(str));
2531 		}
2532 		break;
2533 
2534 	case CS_HOST:
2535 		if (hostval.ptr != NULL)
2536 			ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2537 			    strlen(hostval.ptr));
2538 		break;
2539 
2540 	case CS_IDENT:
2541 		if (sys_ident != NULL)
2542 			ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2543 			    strlen(sys_ident));
2544 		break;
2545 
2546 	case CS_CERTIF:
2547 		for (cp = cinfo; cp != NULL; cp = cp->link) {
2548 			snprintf(str, sizeof(str), "%s %s 0x%x",
2549 			    cp->subject, cp->issuer, cp->flags);
2550 			ctl_putstr(sys_var[CS_CERTIF].text, str,
2551 			    strlen(str));
2552 			ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
2553 		}
2554 		break;
2555 
2556 	case CS_PUBLIC:
2557 		if (hostval.tstamp != 0)
2558 			ctl_putfs(sys_var[CS_PUBLIC].text,
2559 			    ntohl(hostval.tstamp));
2560 		break;
2561 #endif	/* AUTOKEY */
2562 
2563 	default:
2564 		break;
2565 	}
2566 }
2567 
2568 
2569 /*
2570  * ctl_putpeer - output a peer variable
2571  */
2572 static void
2573 ctl_putpeer(
2574 	int id,
2575 	struct peer *p
2576 	)
2577 {
2578 	char buf[CTL_MAX_DATA_LEN];
2579 	char *s;
2580 	char *t;
2581 	char *be;
2582 	int i;
2583 	const struct ctl_var *k;
2584 #ifdef AUTOKEY
2585 	struct autokey *ap;
2586 	const EVP_MD *dp;
2587 	const char *str;
2588 #endif	/* AUTOKEY */
2589 
2590 	switch (id) {
2591 
2592 	case CP_CONFIG:
2593 		ctl_putuint(peer_var[id].text,
2594 			    !(FLAG_PREEMPT & p->flags));
2595 		break;
2596 
2597 	case CP_AUTHENABLE:
2598 		ctl_putuint(peer_var[id].text, !(p->keyid));
2599 		break;
2600 
2601 	case CP_AUTHENTIC:
2602 		ctl_putuint(peer_var[id].text,
2603 			    !!(FLAG_AUTHENTIC & p->flags));
2604 		break;
2605 
2606 	case CP_SRCADR:
2607 		ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2608 		break;
2609 
2610 	case CP_SRCPORT:
2611 		ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2612 		break;
2613 
2614 	case CP_SRCHOST:
2615 		if (p->hostname != NULL)
2616 			ctl_putstr(peer_var[id].text, p->hostname,
2617 				   strlen(p->hostname));
2618 		break;
2619 
2620 	case CP_DSTADR:
2621 		ctl_putadr(peer_var[id].text, 0,
2622 			   (p->dstadr != NULL)
2623 				? &p->dstadr->sin
2624 				: NULL);
2625 		break;
2626 
2627 	case CP_DSTPORT:
2628 		ctl_putuint(peer_var[id].text,
2629 			    (p->dstadr != NULL)
2630 				? SRCPORT(&p->dstadr->sin)
2631 				: 0);
2632 		break;
2633 
2634 	case CP_IN:
2635 		if (p->r21 > 0.)
2636 			ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2637 		break;
2638 
2639 	case CP_OUT:
2640 		if (p->r34 > 0.)
2641 			ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2642 		break;
2643 
2644 	case CP_RATE:
2645 		ctl_putuint(peer_var[id].text, p->throttle);
2646 		break;
2647 
2648 	case CP_LEAP:
2649 		ctl_putuint(peer_var[id].text, p->leap);
2650 		break;
2651 
2652 	case CP_HMODE:
2653 		ctl_putuint(peer_var[id].text, p->hmode);
2654 		break;
2655 
2656 	case CP_STRATUM:
2657 		ctl_putuint(peer_var[id].text, p->stratum);
2658 		break;
2659 
2660 	case CP_PPOLL:
2661 		ctl_putuint(peer_var[id].text, p->ppoll);
2662 		break;
2663 
2664 	case CP_HPOLL:
2665 		ctl_putuint(peer_var[id].text, p->hpoll);
2666 		break;
2667 
2668 	case CP_PRECISION:
2669 		ctl_putint(peer_var[id].text, p->precision);
2670 		break;
2671 
2672 	case CP_ROOTDELAY:
2673 		ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2674 		break;
2675 
2676 	case CP_ROOTDISPERSION:
2677 		ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2678 		break;
2679 
2680 	case CP_REFID:
2681 #ifdef REFCLOCK
2682 		if (p->flags & FLAG_REFCLOCK) {
2683 			ctl_putrefid(peer_var[id].text, p->refid);
2684 			break;
2685 		}
2686 #endif
2687 		if (REFID_ISTEXT(p->stratum))
2688 			ctl_putrefid(peer_var[id].text, p->refid);
2689 		else
2690 			ctl_putadr(peer_var[id].text, p->refid, NULL);
2691 		break;
2692 
2693 	case CP_REFTIME:
2694 		ctl_putts(peer_var[id].text, &p->reftime);
2695 		break;
2696 
2697 	case CP_ORG:
2698 		ctl_putts(peer_var[id].text, &p->aorg);
2699 		break;
2700 
2701 	case CP_REC:
2702 		ctl_putts(peer_var[id].text, &p->dst);
2703 		break;
2704 
2705 	case CP_XMT:
2706 		if (p->xleave)
2707 			ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2708 		break;
2709 
2710 	case CP_BIAS:
2711 		if (p->bias != 0.)
2712 			ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2713 		break;
2714 
2715 	case CP_REACH:
2716 		ctl_puthex(peer_var[id].text, p->reach);
2717 		break;
2718 
2719 	case CP_FLASH:
2720 		ctl_puthex(peer_var[id].text, p->flash);
2721 		break;
2722 
2723 	case CP_TTL:
2724 #ifdef REFCLOCK
2725 		if (p->flags & FLAG_REFCLOCK) {
2726 			ctl_putuint(peer_var[id].text, p->ttl);
2727 			break;
2728 		}
2729 #endif
2730 		if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2731 			ctl_putint(peer_var[id].text,
2732 				   sys_ttl[p->ttl]);
2733 		break;
2734 
2735 	case CP_UNREACH:
2736 		ctl_putuint(peer_var[id].text, p->unreach);
2737 		break;
2738 
2739 	case CP_TIMER:
2740 		ctl_putuint(peer_var[id].text,
2741 			    p->nextdate - current_time);
2742 		break;
2743 
2744 	case CP_DELAY:
2745 		ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2746 		break;
2747 
2748 	case CP_OFFSET:
2749 		ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2750 		break;
2751 
2752 	case CP_JITTER:
2753 		ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2754 		break;
2755 
2756 	case CP_DISPERSION:
2757 		ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2758 		break;
2759 
2760 	case CP_KEYID:
2761 		if (p->keyid > NTP_MAXKEY)
2762 			ctl_puthex(peer_var[id].text, p->keyid);
2763 		else
2764 			ctl_putuint(peer_var[id].text, p->keyid);
2765 		break;
2766 
2767 	case CP_FILTDELAY:
2768 		ctl_putarray(peer_var[id].text, p->filter_delay,
2769 			     p->filter_nextpt);
2770 		break;
2771 
2772 	case CP_FILTOFFSET:
2773 		ctl_putarray(peer_var[id].text, p->filter_offset,
2774 			     p->filter_nextpt);
2775 		break;
2776 
2777 	case CP_FILTERROR:
2778 		ctl_putarray(peer_var[id].text, p->filter_disp,
2779 			     p->filter_nextpt);
2780 		break;
2781 
2782 	case CP_PMODE:
2783 		ctl_putuint(peer_var[id].text, p->pmode);
2784 		break;
2785 
2786 	case CP_RECEIVED:
2787 		ctl_putuint(peer_var[id].text, p->received);
2788 		break;
2789 
2790 	case CP_SENT:
2791 		ctl_putuint(peer_var[id].text, p->sent);
2792 		break;
2793 
2794 	case CP_VARLIST:
2795 		s = buf;
2796 		be = buf + sizeof(buf);
2797 		if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2798 			break;	/* really long var name */
2799 
2800 		snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2801 		s += strlen(s);
2802 		t = s;
2803 		for (k = peer_var; !(EOV & k->flags); k++) {
2804 			if (PADDING & k->flags)
2805 				continue;
2806 			i = strlen(k->text);
2807 			if (s + i + 1 >= be)
2808 				break;
2809 			if (s != t)
2810 				*s++ = ',';
2811 			memcpy(s, k->text, i);
2812 			s += i;
2813 		}
2814 		if (s + 2 < be) {
2815 			*s++ = '"';
2816 			*s = '\0';
2817 			ctl_putdata(buf, (u_int)(s - buf), 0);
2818 		}
2819 		break;
2820 
2821 	case CP_TIMEREC:
2822 		ctl_putuint(peer_var[id].text,
2823 			    current_time - p->timereceived);
2824 		break;
2825 
2826 	case CP_TIMEREACH:
2827 		ctl_putuint(peer_var[id].text,
2828 			    current_time - p->timereachable);
2829 		break;
2830 
2831 	case CP_BADAUTH:
2832 		ctl_putuint(peer_var[id].text, p->badauth);
2833 		break;
2834 
2835 	case CP_BOGUSORG:
2836 		ctl_putuint(peer_var[id].text, p->bogusorg);
2837 		break;
2838 
2839 	case CP_OLDPKT:
2840 		ctl_putuint(peer_var[id].text, p->oldpkt);
2841 		break;
2842 
2843 	case CP_SELDISP:
2844 		ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2845 		break;
2846 
2847 	case CP_SELBROKEN:
2848 		ctl_putuint(peer_var[id].text, p->selbroken);
2849 		break;
2850 
2851 	case CP_CANDIDATE:
2852 		ctl_putuint(peer_var[id].text, p->status);
2853 		break;
2854 #ifdef AUTOKEY
2855 	case CP_FLAGS:
2856 		if (p->crypto)
2857 			ctl_puthex(peer_var[id].text, p->crypto);
2858 		break;
2859 
2860 	case CP_SIGNATURE:
2861 		if (p->crypto) {
2862 			dp = EVP_get_digestbynid(p->crypto >> 16);
2863 			str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2864 			ctl_putstr(peer_var[id].text, str, strlen(str));
2865 		}
2866 		break;
2867 
2868 	case CP_HOST:
2869 		if (p->subject != NULL)
2870 			ctl_putstr(peer_var[id].text, p->subject,
2871 			    strlen(p->subject));
2872 		break;
2873 
2874 	case CP_VALID:		/* not used */
2875 		break;
2876 
2877 	case CP_INITSEQ:
2878 		if (NULL == (ap = p->recval.ptr))
2879 			break;
2880 
2881 		ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2882 		ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2883 		ctl_putfs(peer_var[CP_INITTSP].text,
2884 			  ntohl(p->recval.tstamp));
2885 		break;
2886 
2887 	case CP_IDENT:
2888 		if (p->ident != NULL)
2889 			ctl_putstr(peer_var[id].text, p->ident,
2890 			    strlen(p->ident));
2891 		break;
2892 
2893 
2894 #endif	/* AUTOKEY */
2895 	}
2896 }
2897 
2898 
2899 #ifdef REFCLOCK
2900 /*
2901  * ctl_putclock - output clock variables
2902  */
2903 static void
2904 ctl_putclock(
2905 	int id,
2906 	struct refclockstat *pcs,
2907 	int mustput
2908 	)
2909 {
2910 	char buf[CTL_MAX_DATA_LEN];
2911 	char *s, *t, *be;
2912 	const char *ss;
2913 	int i;
2914 	const struct ctl_var *k;
2915 
2916 	switch (id) {
2917 
2918 	case CC_TYPE:
2919 		if (mustput || pcs->clockdesc == NULL
2920 		    || *(pcs->clockdesc) == '\0') {
2921 			ctl_putuint(clock_var[id].text, pcs->type);
2922 		}
2923 		break;
2924 	case CC_TIMECODE:
2925 		ctl_putstr(clock_var[id].text,
2926 			   pcs->p_lastcode,
2927 			   (unsigned)pcs->lencode);
2928 		break;
2929 
2930 	case CC_POLL:
2931 		ctl_putuint(clock_var[id].text, pcs->polls);
2932 		break;
2933 
2934 	case CC_NOREPLY:
2935 		ctl_putuint(clock_var[id].text,
2936 			    pcs->noresponse);
2937 		break;
2938 
2939 	case CC_BADFORMAT:
2940 		ctl_putuint(clock_var[id].text,
2941 			    pcs->badformat);
2942 		break;
2943 
2944 	case CC_BADDATA:
2945 		ctl_putuint(clock_var[id].text,
2946 			    pcs->baddata);
2947 		break;
2948 
2949 	case CC_FUDGETIME1:
2950 		if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2951 			ctl_putdbl(clock_var[id].text,
2952 				   pcs->fudgetime1 * 1e3);
2953 		break;
2954 
2955 	case CC_FUDGETIME2:
2956 		if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2957 			ctl_putdbl(clock_var[id].text,
2958 				   pcs->fudgetime2 * 1e3);
2959 		break;
2960 
2961 	case CC_FUDGEVAL1:
2962 		if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2963 			ctl_putint(clock_var[id].text,
2964 				   pcs->fudgeval1);
2965 		break;
2966 
2967 	case CC_FUDGEVAL2:
2968 		/* RefID of clocks are always text even if stratum is fudged */
2969 		if (mustput || (pcs->haveflags & CLK_HAVEVAL2))
2970 			ctl_putrefid(clock_var[id].text, pcs->fudgeval2);
2971 		break;
2972 
2973 	case CC_FLAGS:
2974 		ctl_putuint(clock_var[id].text, pcs->flags);
2975 		break;
2976 
2977 	case CC_DEVICE:
2978 		if (pcs->clockdesc == NULL ||
2979 		    *(pcs->clockdesc) == '\0') {
2980 			if (mustput)
2981 				ctl_putstr(clock_var[id].text,
2982 					   "", 0);
2983 		} else {
2984 			ctl_putstr(clock_var[id].text,
2985 				   pcs->clockdesc,
2986 				   strlen(pcs->clockdesc));
2987 		}
2988 		break;
2989 
2990 	case CC_VARLIST:
2991 		s = buf;
2992 		be = buf + sizeof(buf);
2993 		if (strlen(clock_var[CC_VARLIST].text) + 4 >
2994 		    sizeof(buf))
2995 			break;	/* really long var name */
2996 
2997 		snprintf(s, sizeof(buf), "%s=\"",
2998 			 clock_var[CC_VARLIST].text);
2999 		s += strlen(s);
3000 		t = s;
3001 
3002 		for (k = clock_var; !(EOV & k->flags); k++) {
3003 			if (PADDING & k->flags)
3004 				continue;
3005 
3006 			i = strlen(k->text);
3007 			if (s + i + 1 >= be)
3008 				break;
3009 
3010 			if (s != t)
3011 				*s++ = ',';
3012 			memcpy(s, k->text, i);
3013 			s += i;
3014 		}
3015 
3016 		for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
3017 			if (PADDING & k->flags)
3018 				continue;
3019 
3020 			ss = k->text;
3021 			if (NULL == ss)
3022 				continue;
3023 
3024 			while (*ss && *ss != '=')
3025 				ss++;
3026 			i = ss - k->text;
3027 			if (s + i + 1 >= be)
3028 				break;
3029 
3030 			if (s != t)
3031 				*s++ = ',';
3032 			memcpy(s, k->text, (unsigned)i);
3033 			s += i;
3034 			*s = '\0';
3035 		}
3036 		if (s + 2 >= be)
3037 			break;
3038 
3039 		*s++ = '"';
3040 		*s = '\0';
3041 		ctl_putdata(buf, (unsigned)(s - buf), 0);
3042 		break;
3043 
3044 	case CC_FUDGEMINJIT:
3045 		if (mustput || (pcs->haveflags & CLK_HAVEMINJIT))
3046 			ctl_putdbl(clock_var[id].text,
3047 				   pcs->fudgeminjitter * 1e3);
3048 		break;
3049 
3050 	default:
3051 		break;
3052 
3053 	}
3054 }
3055 #endif
3056 
3057 
3058 
3059 /*
3060  * ctl_getitem - get the next data item from the incoming packet
3061  */
3062 static const struct ctl_var *
3063 ctl_getitem(
3064 	const struct ctl_var *var_list,
3065 	char **data
3066 	)
3067 {
3068 	/* [Bug 3008] First check the packet data sanity, then search
3069 	 * the key. This improves the consistency of result values: If
3070 	 * the result is NULL once, it will never be EOV again for this
3071 	 * packet; If it's EOV, it will never be NULL again until the
3072 	 * variable is found and processed in a given 'var_list'. (That
3073 	 * is, a result is returned that is neither NULL nor EOV).
3074 	 */
3075 	static const struct ctl_var eol = { 0, EOV, NULL };
3076 	static char buf[128];
3077 	static u_long quiet_until;
3078 	const struct ctl_var *v;
3079 	char *cp;
3080 	char *tp;
3081 
3082 	/*
3083 	 * Part One: Validate the packet state
3084 	 */
3085 
3086 	/* Delete leading commas and white space */
3087 	while (reqpt < reqend && (*reqpt == ',' ||
3088 				  isspace((unsigned char)*reqpt)))
3089 		reqpt++;
3090 	if (reqpt >= reqend)
3091 		return NULL;
3092 
3093 	/* Scan the string in the packet until we hit comma or
3094 	 * EoB. Register position of first '=' on the fly. */
3095 	for (tp = NULL, cp = reqpt; cp != reqend; ++cp) {
3096 		if (*cp == '=' && tp == NULL)
3097 			tp = cp;
3098 		if (*cp == ',')
3099 			break;
3100 	}
3101 
3102 	/* Process payload, if any. */
3103 	*data = NULL;
3104 	if (NULL != tp) {
3105 		/* eventually strip white space from argument. */
3106 		const char *plhead = tp + 1; /* skip the '=' */
3107 		const char *pltail = cp;
3108 		size_t      plsize;
3109 
3110 		while (plhead != pltail && isspace((u_char)plhead[0]))
3111 			++plhead;
3112 		while (plhead != pltail && isspace((u_char)pltail[-1]))
3113 			--pltail;
3114 
3115 		/* check payload size, terminate packet on overflow */
3116 		plsize = (size_t)(pltail - plhead);
3117 		if (plsize >= sizeof(buf))
3118 			goto badpacket;
3119 
3120 		/* copy data, NUL terminate, and set result data ptr */
3121 		memcpy(buf, plhead, plsize);
3122 		buf[plsize] = '\0';
3123 		*data = buf;
3124 	} else {
3125 		/* no payload, current end --> current name termination */
3126 		tp = cp;
3127 	}
3128 
3129 	/* Part Two
3130 	 *
3131 	 * Now we're sure that the packet data itself is sane. Scan the
3132 	 * list now. Make sure a NULL list is properly treated by
3133 	 * returning a synthetic End-Of-Values record. We must not
3134 	 * return NULL pointers after this point, or the behaviour would
3135 	 * become inconsistent if called several times with different
3136 	 * variable lists after an EoV was returned.  (Such a behavior
3137 	 * actually caused Bug 3008.)
3138 	 */
3139 
3140 	if (NULL == var_list)
3141 		return &eol;
3142 
3143 	for (v = var_list; !(EOV & v->flags); ++v)
3144 		if (!(PADDING & v->flags)) {
3145 			/* Check if the var name matches the buffer. The
3146 			 * name is bracketed by [reqpt..tp] and not NUL
3147 			 * terminated, and it contains no '=' char. The
3148 			 * lookup value IS NUL-terminated but might
3149 			 * include a '='... We have to look out for
3150 			 * that!
3151 			 */
3152 			const char *sp1 = reqpt;
3153 			const char *sp2 = v->text;
3154 
3155 			/* [Bug 3412] do not compare past NUL byte in name */
3156 			while (   (sp1 != tp)
3157 			       && ('\0' != *sp2) && (*sp1 == *sp2)) {
3158 				++sp1;
3159 				++sp2;
3160 			}
3161 			if (sp1 == tp && (*sp2 == '\0' || *sp2 == '='))
3162 				break;
3163 		}
3164 
3165 	/* See if we have found a valid entry or not. If found, advance
3166 	 * the request pointer for the next round; if not, clear the
3167 	 * data pointer so we have no dangling garbage here.
3168 	 */
3169 	if (EOV & v->flags)
3170 		*data = NULL;
3171 	else
3172 		reqpt = cp + (cp != reqend);
3173 	return v;
3174 
3175   badpacket:
3176 	/*TODO? somehow indicate this packet was bad, apart from syslog? */
3177 	numctlbadpkts++;
3178 	NLOG(NLOG_SYSEVENT)
3179 	    if (quiet_until <= current_time) {
3180 		    quiet_until = current_time + 300;
3181 		    msyslog(LOG_WARNING,
3182 			    "Possible 'ntpdx' exploit from %s#%u (possibly spoofed)",
3183 			    stoa(rmt_addr), SRCPORT(rmt_addr));
3184 	    }
3185 	reqpt = reqend; /* never again for this packet! */
3186 	return NULL;
3187 }
3188 
3189 
3190 /*
3191  * control_unspec - response to an unspecified op-code
3192  */
3193 /*ARGSUSED*/
3194 static void
3195 control_unspec(
3196 	struct recvbuf *rbufp,
3197 	int restrict_mask
3198 	)
3199 {
3200 	struct peer *peer;
3201 
3202 	/*
3203 	 * What is an appropriate response to an unspecified op-code?
3204 	 * I return no errors and no data, unless a specified assocation
3205 	 * doesn't exist.
3206 	 */
3207 	if (res_associd) {
3208 		peer = findpeerbyassoc(res_associd);
3209 		if (NULL == peer) {
3210 			ctl_error(CERR_BADASSOC);
3211 			return;
3212 		}
3213 		rpkt.status = htons(ctlpeerstatus(peer));
3214 	} else
3215 		rpkt.status = htons(ctlsysstatus());
3216 	ctl_flushpkt(0);
3217 }
3218 
3219 
3220 /*
3221  * read_status - return either a list of associd's, or a particular
3222  * peer's status.
3223  */
3224 /*ARGSUSED*/
3225 static void
3226 read_status(
3227 	struct recvbuf *rbufp,
3228 	int restrict_mask
3229 	)
3230 {
3231 	struct peer *peer;
3232 	const u_char *cp;
3233 	size_t n;
3234 	/* a_st holds association ID, status pairs alternating */
3235 	u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
3236 
3237 #ifdef DEBUG
3238 	if (debug > 2)
3239 		printf("read_status: ID %d\n", res_associd);
3240 #endif
3241 	/*
3242 	 * Two choices here. If the specified association ID is
3243 	 * zero we return all known assocation ID's.  Otherwise
3244 	 * we return a bunch of stuff about the particular peer.
3245 	 */
3246 	if (res_associd) {
3247 		peer = findpeerbyassoc(res_associd);
3248 		if (NULL == peer) {
3249 			ctl_error(CERR_BADASSOC);
3250 			return;
3251 		}
3252 		rpkt.status = htons(ctlpeerstatus(peer));
3253 		if (res_authokay)
3254 			peer->num_events = 0;
3255 		/*
3256 		 * For now, output everything we know about the
3257 		 * peer. May be more selective later.
3258 		 */
3259 		for (cp = def_peer_var; *cp != 0; cp++)
3260 			ctl_putpeer((int)*cp, peer);
3261 		ctl_flushpkt(0);
3262 		return;
3263 	}
3264 	n = 0;
3265 	rpkt.status = htons(ctlsysstatus());
3266 	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3267 		a_st[n++] = htons(peer->associd);
3268 		a_st[n++] = htons(ctlpeerstatus(peer));
3269 		/* two entries each loop iteration, so n + 1 */
3270 		if (n + 1 >= COUNTOF(a_st)) {
3271 			ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
3272 				    1);
3273 			n = 0;
3274 		}
3275 	}
3276 	if (n)
3277 		ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3278 	ctl_flushpkt(0);
3279 }
3280 
3281 
3282 /*
3283  * read_peervars - half of read_variables() implementation
3284  */
3285 static void
3286 read_peervars(void)
3287 {
3288 	const struct ctl_var *v;
3289 	struct peer *peer;
3290 	const u_char *cp;
3291 	size_t i;
3292 	char *	valuep;
3293 	u_char	wants[CP_MAXCODE + 1];
3294 	u_int	gotvar;
3295 
3296 	/*
3297 	 * Wants info for a particular peer. See if we know
3298 	 * the guy.
3299 	 */
3300 	peer = findpeerbyassoc(res_associd);
3301 	if (NULL == peer) {
3302 		ctl_error(CERR_BADASSOC);
3303 		return;
3304 	}
3305 	rpkt.status = htons(ctlpeerstatus(peer));
3306 	if (res_authokay)
3307 		peer->num_events = 0;
3308 	ZERO(wants);
3309 	gotvar = 0;
3310 	while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3311 		if (v->flags & EOV) {
3312 			ctl_error(CERR_UNKNOWNVAR);
3313 			return;
3314 		}
3315 		INSIST(v->code < COUNTOF(wants));
3316 		wants[v->code] = 1;
3317 		gotvar = 1;
3318 	}
3319 	if (gotvar) {
3320 		for (i = 1; i < COUNTOF(wants); i++)
3321 			if (wants[i])
3322 				ctl_putpeer(i, peer);
3323 	} else
3324 		for (cp = def_peer_var; *cp != 0; cp++)
3325 			ctl_putpeer((int)*cp, peer);
3326 	ctl_flushpkt(0);
3327 }
3328 
3329 
3330 /*
3331  * read_sysvars - half of read_variables() implementation
3332  */
3333 static void
3334 read_sysvars(void)
3335 {
3336 	const struct ctl_var *v;
3337 	struct ctl_var *kv;
3338 	u_int	n;
3339 	u_int	gotvar;
3340 	const u_char *cs;
3341 	char *	valuep;
3342 	const char * pch;
3343 	u_char *wants;
3344 	size_t	wants_count;
3345 
3346 	/*
3347 	 * Wants system variables. Figure out which he wants
3348 	 * and give them to him.
3349 	 */
3350 	rpkt.status = htons(ctlsysstatus());
3351 	if (res_authokay)
3352 		ctl_sys_num_events = 0;
3353 	wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3354 	wants = emalloc_zero(wants_count);
3355 	gotvar = 0;
3356 	while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3357 		if (!(EOV & v->flags)) {
3358 			INSIST(v->code < wants_count);
3359 			wants[v->code] = 1;
3360 			gotvar = 1;
3361 		} else {
3362 			v = ctl_getitem(ext_sys_var, &valuep);
3363 			if (NULL == v) {
3364 				ctl_error(CERR_BADVALUE);
3365 				free(wants);
3366 				return;
3367 			}
3368 			if (EOV & v->flags) {
3369 				ctl_error(CERR_UNKNOWNVAR);
3370 				free(wants);
3371 				return;
3372 			}
3373 			n = v->code + CS_MAXCODE + 1;
3374 			INSIST(n < wants_count);
3375 			wants[n] = 1;
3376 			gotvar = 1;
3377 		}
3378 	}
3379 	if (gotvar) {
3380 		for (n = 1; n <= CS_MAXCODE; n++)
3381 			if (wants[n])
3382 				ctl_putsys(n);
3383 		for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3384 			if (wants[n + CS_MAXCODE + 1]) {
3385 				pch = ext_sys_var[n].text;
3386 				ctl_putdata(pch, strlen(pch), 0);
3387 			}
3388 	} else {
3389 		for (cs = def_sys_var; *cs != 0; cs++)
3390 			ctl_putsys((int)*cs);
3391 		for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3392 			if (DEF & kv->flags)
3393 				ctl_putdata(kv->text, strlen(kv->text),
3394 					    0);
3395 	}
3396 	free(wants);
3397 	ctl_flushpkt(0);
3398 }
3399 
3400 
3401 /*
3402  * read_variables - return the variables the caller asks for
3403  */
3404 /*ARGSUSED*/
3405 static void
3406 read_variables(
3407 	struct recvbuf *rbufp,
3408 	int restrict_mask
3409 	)
3410 {
3411 	if (res_associd)
3412 		read_peervars();
3413 	else
3414 		read_sysvars();
3415 }
3416 
3417 
3418 /*
3419  * write_variables - write into variables. We only allow leap bit
3420  * writing this way.
3421  */
3422 /*ARGSUSED*/
3423 static void
3424 write_variables(
3425 	struct recvbuf *rbufp,
3426 	int restrict_mask
3427 	)
3428 {
3429 	const struct ctl_var *v;
3430 	int ext_var;
3431 	char *valuep;
3432 	long val;
3433 	size_t octets;
3434 	char *vareqv;
3435 	const char *t;
3436 	char *tt;
3437 
3438 	val = 0;
3439 	/*
3440 	 * If he's trying to write into a peer tell him no way
3441 	 */
3442 	if (res_associd != 0) {
3443 		ctl_error(CERR_PERMISSION);
3444 		return;
3445 	}
3446 
3447 	/*
3448 	 * Set status
3449 	 */
3450 	rpkt.status = htons(ctlsysstatus());
3451 
3452 	/*
3453 	 * Look through the variables. Dump out at the first sign of
3454 	 * trouble.
3455 	 */
3456 	while ((v = ctl_getitem(sys_var, &valuep)) != NULL) {
3457 		ext_var = 0;
3458 		if (v->flags & EOV) {
3459 			v = ctl_getitem(ext_sys_var, &valuep);
3460 			if (v != NULL) {
3461 				if (v->flags & EOV) {
3462 					ctl_error(CERR_UNKNOWNVAR);
3463 					return;
3464 				}
3465 				ext_var = 1;
3466 			} else {
3467 				break;
3468 			}
3469 		}
3470 		if (!(v->flags & CAN_WRITE)) {
3471 			ctl_error(CERR_PERMISSION);
3472 			return;
3473 		}
3474 		/* [bug 3565] writing makes sense only if we *have* a
3475 		 * value in the packet!
3476 		 */
3477 		if (valuep == NULL) {
3478 			ctl_error(CERR_BADFMT);
3479 			return;
3480 		}
3481 		if (!ext_var) {
3482 			if ( !(*valuep && atoint(valuep, &val))) {
3483 				ctl_error(CERR_BADFMT);
3484 				return;
3485 			}
3486 			if ((val & ~LEAP_NOTINSYNC) != 0) {
3487 				ctl_error(CERR_BADVALUE);
3488 				return;
3489 			}
3490 		}
3491 
3492 		if (ext_var) {
3493 			octets = strlen(v->text) + strlen(valuep) + 2;
3494 			vareqv = emalloc(octets);
3495 			tt = vareqv;
3496 			t = v->text;
3497 			while (*t && *t != '=')
3498 				*tt++ = *t++;
3499 			*tt++ = '=';
3500 			memcpy(tt, valuep, 1 + strlen(valuep));
3501 			set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3502 			free(vareqv);
3503 		} else {
3504 			ctl_error(CERR_UNSPEC); /* really */
3505 			return;
3506 		}
3507 	}
3508 
3509 	/*
3510 	 * If we got anything, do it. xxx nothing to do ***
3511 	 */
3512 	/*
3513 	  if (leapind != ~0 || leapwarn != ~0) {
3514 	  if (!leap_setleap((int)leapind, (int)leapwarn)) {
3515 	  ctl_error(CERR_PERMISSION);
3516 	  return;
3517 	  }
3518 	  }
3519 	*/
3520 	ctl_flushpkt(0);
3521 }
3522 
3523 
3524 /*
3525  * configure() processes ntpq :config/config-from-file, allowing
3526  *		generic runtime reconfiguration.
3527  */
3528 static void configure(
3529 	struct recvbuf *rbufp,
3530 	int restrict_mask
3531 	)
3532 {
3533 	size_t data_count;
3534 	int retval;
3535 
3536 	/* I haven't yet implemented changes to an existing association.
3537 	 * Hence check if the association id is 0
3538 	 */
3539 	if (res_associd != 0) {
3540 		ctl_error(CERR_BADVALUE);
3541 		return;
3542 	}
3543 
3544 	if (RES_NOMODIFY & restrict_mask) {
3545 		snprintf(remote_config.err_msg,
3546 			 sizeof(remote_config.err_msg),
3547 			 "runtime configuration prohibited by restrict ... nomodify");
3548 		ctl_putdata(remote_config.err_msg,
3549 			    strlen(remote_config.err_msg), 0);
3550 		ctl_flushpkt(0);
3551 		NLOG(NLOG_SYSINFO)
3552 			msyslog(LOG_NOTICE,
3553 				"runtime config from %s rejected due to nomodify restriction",
3554 				stoa(&rbufp->recv_srcadr));
3555 		sys_restricted++;
3556 		return;
3557 	}
3558 
3559 	/* Initialize the remote config buffer */
3560 	data_count = remoteconfig_cmdlength(reqpt, reqend);
3561 
3562 	if (data_count > sizeof(remote_config.buffer) - 2) {
3563 		snprintf(remote_config.err_msg,
3564 			 sizeof(remote_config.err_msg),
3565 			 "runtime configuration failed: request too long");
3566 		ctl_putdata(remote_config.err_msg,
3567 			    strlen(remote_config.err_msg), 0);
3568 		ctl_flushpkt(0);
3569 		msyslog(LOG_NOTICE,
3570 			"runtime config from %s rejected: request too long",
3571 			stoa(&rbufp->recv_srcadr));
3572 		return;
3573 	}
3574 	/* Bug 2853 -- check if all characters were acceptable */
3575 	if (data_count != (size_t)(reqend - reqpt)) {
3576 		snprintf(remote_config.err_msg,
3577 			 sizeof(remote_config.err_msg),
3578 			 "runtime configuration failed: request contains an unprintable character");
3579 		ctl_putdata(remote_config.err_msg,
3580 			    strlen(remote_config.err_msg), 0);
3581 		ctl_flushpkt(0);
3582 		msyslog(LOG_NOTICE,
3583 			"runtime config from %s rejected: request contains an unprintable character: %0x",
3584 			stoa(&rbufp->recv_srcadr),
3585 			reqpt[data_count]);
3586 		return;
3587 	}
3588 
3589 	memcpy(remote_config.buffer, reqpt, data_count);
3590 	/* The buffer has no trailing linefeed or NUL right now. For
3591 	 * logging, we do not want a newline, so we do that first after
3592 	 * adding the necessary NUL byte.
3593 	 */
3594 	remote_config.buffer[data_count] = '\0';
3595 	DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3596 		remote_config.buffer));
3597 	msyslog(LOG_NOTICE, "%s config: %s",
3598 		stoa(&rbufp->recv_srcadr),
3599 		remote_config.buffer);
3600 
3601 	/* Now we have to make sure there is a NL/NUL sequence at the
3602 	 * end of the buffer before we parse it.
3603 	 */
3604 	remote_config.buffer[data_count++] = '\n';
3605 	remote_config.buffer[data_count] = '\0';
3606 	remote_config.pos = 0;
3607 	remote_config.err_pos = 0;
3608 	remote_config.no_errors = 0;
3609 	config_remotely(&rbufp->recv_srcadr);
3610 
3611 	/*
3612 	 * Check if errors were reported. If not, output 'Config
3613 	 * Succeeded'.  Else output the error count.  It would be nice
3614 	 * to output any parser error messages.
3615 	 */
3616 	if (0 == remote_config.no_errors) {
3617 		retval = snprintf(remote_config.err_msg,
3618 				  sizeof(remote_config.err_msg),
3619 				  "Config Succeeded");
3620 		if (retval > 0)
3621 			remote_config.err_pos += retval;
3622 	}
3623 
3624 	ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3625 	ctl_flushpkt(0);
3626 
3627 	DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3628 
3629 	if (remote_config.no_errors > 0)
3630 		msyslog(LOG_NOTICE, "%d error in %s config",
3631 			remote_config.no_errors,
3632 			stoa(&rbufp->recv_srcadr));
3633 }
3634 
3635 
3636 /*
3637  * derive_nonce - generate client-address-specific nonce value
3638  *		  associated with a given timestamp.
3639  */
3640 static u_int32 derive_nonce(
3641 	sockaddr_u *	addr,
3642 	u_int32		ts_i,
3643 	u_int32		ts_f
3644 	)
3645 {
3646 	static u_int32	salt[4];
3647 	static u_long	last_salt_update;
3648 	union d_tag {
3649 		u_char	digest[EVP_MAX_MD_SIZE];
3650 		u_int32 extract;
3651 	}		d;
3652 	EVP_MD_CTX	*ctx;
3653 	u_int		len;
3654 	int rc;
3655 
3656 	while (!salt[0] || current_time - last_salt_update >= 3600) {
3657 		salt[0] = ntp_random();
3658 		salt[1] = ntp_random();
3659 		salt[2] = ntp_random();
3660 		salt[3] = ntp_random();
3661 		last_salt_update = current_time;
3662 	}
3663 
3664 	ctx = EVP_MD_CTX_new();
3665 #   if defined(OPENSSL) && defined(EVP_MD_CTX_FLAG_NON_FIPS_ALLOW)
3666 	/* [Bug 3457] set flags and don't kill them again */
3667 	EVP_MD_CTX_set_flags(ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
3668 	rc = EVP_DigestInit_ex(ctx, EVP_get_digestbynid(NID_md5), NULL);
3669 #   else
3670 	rc = EVP_DigestInit(ctx, EVP_get_digestbynid(NID_md5));
3671 #   endif
3672 	if (!rc) {
3673 		msyslog(LOG_ERR, "EVP_DigestInit failed in '%s'", __func__);
3674 		return (0);
3675 	}
3676 
3677 	EVP_DigestUpdate(ctx, salt, sizeof(salt));
3678 	EVP_DigestUpdate(ctx, &ts_i, sizeof(ts_i));
3679 	EVP_DigestUpdate(ctx, &ts_f, sizeof(ts_f));
3680 	if (IS_IPV4(addr))
3681 		EVP_DigestUpdate(ctx, &SOCK_ADDR4(addr),
3682 			         sizeof(SOCK_ADDR4(addr)));
3683 	else
3684 		EVP_DigestUpdate(ctx, &SOCK_ADDR6(addr),
3685 			         sizeof(SOCK_ADDR6(addr)));
3686 	EVP_DigestUpdate(ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
3687 	EVP_DigestUpdate(ctx, salt, sizeof(salt));
3688 	EVP_DigestFinal(ctx, d.digest, &len);
3689 	EVP_MD_CTX_free(ctx);
3690 
3691 	return d.extract;
3692 }
3693 
3694 
3695 /*
3696  * generate_nonce - generate client-address-specific nonce string.
3697  */
3698 static void generate_nonce(
3699 	struct recvbuf *	rbufp,
3700 	char *			nonce,
3701 	size_t			nonce_octets
3702 	)
3703 {
3704 	u_int32 derived;
3705 
3706 	derived = derive_nonce(&rbufp->recv_srcadr,
3707 			       rbufp->recv_time.l_ui,
3708 			       rbufp->recv_time.l_uf);
3709 	snprintf(nonce, nonce_octets, "%08x%08x%08x",
3710 		 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3711 }
3712 
3713 
3714 /*
3715  * validate_nonce - validate client-address-specific nonce string.
3716  *
3717  * Returns TRUE if the local calculation of the nonce matches the
3718  * client-provided value and the timestamp is recent enough.
3719  */
3720 static int validate_nonce(
3721 	const char *		pnonce,
3722 	struct recvbuf *	rbufp
3723 	)
3724 {
3725 	u_int	ts_i;
3726 	u_int	ts_f;
3727 	l_fp	ts;
3728 	l_fp	now_delta;
3729 	u_int	supposed;
3730 	u_int	derived;
3731 
3732 	if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3733 		return FALSE;
3734 
3735 	ts.l_ui = (u_int32)ts_i;
3736 	ts.l_uf = (u_int32)ts_f;
3737 	derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3738 	get_systime(&now_delta);
3739 	L_SUB(&now_delta, &ts);
3740 
3741 	return (supposed == derived && now_delta.l_ui < 16);
3742 }
3743 
3744 
3745 /*
3746  * send_random_tag_value - send a randomly-generated three character
3747  *			   tag prefix, a '.', an index, a '=' and a
3748  *			   random integer value.
3749  *
3750  * To try to force clients to ignore unrecognized tags in mrulist,
3751  * reslist, and ifstats responses, the first and last rows are spiced
3752  * with randomly-generated tag names with correct .# index.  Make it
3753  * three characters knowing that none of the currently-used subscripted
3754  * tags have that length, avoiding the need to test for
3755  * tag collision.
3756  */
3757 static void
3758 send_random_tag_value(
3759 	int	indx
3760 	)
3761 {
3762 	int	noise;
3763 	char	buf[32];
3764 
3765 	noise = rand() ^ (rand() << 16);
3766 	buf[0] = 'a' + noise % 26;
3767 	noise >>= 5;
3768 	buf[1] = 'a' + noise % 26;
3769 	noise >>= 5;
3770 	buf[2] = 'a' + noise % 26;
3771 	noise >>= 5;
3772 	buf[3] = '.';
3773 	snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3774 	ctl_putuint(buf, noise);
3775 }
3776 
3777 
3778 /*
3779  * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3780  *
3781  * To keep clients honest about not depending on the order of values,
3782  * and thereby avoid being locked into ugly workarounds to maintain
3783  * backward compatibility later as new fields are added to the response,
3784  * the order is random.
3785  */
3786 static void
3787 send_mru_entry(
3788 	mon_entry *	mon,
3789 	int		count
3790 	)
3791 {
3792 	const char first_fmt[] =	"first.%d";
3793 	const char ct_fmt[] =		"ct.%d";
3794 	const char mv_fmt[] =		"mv.%d";
3795 	const char rs_fmt[] =		"rs.%d";
3796 	char	tag[32];
3797 	u_char	sent[6]; /* 6 tag=value pairs */
3798 	u_int32 noise;
3799 	u_int	which;
3800 	u_int	remaining;
3801 	const char * pch;
3802 
3803 	remaining = COUNTOF(sent);
3804 	ZERO(sent);
3805 	noise = (u_int32)(rand() ^ (rand() << 16));
3806 	while (remaining > 0) {
3807 		which = (noise & 7) % COUNTOF(sent);
3808 		noise >>= 3;
3809 		while (sent[which])
3810 			which = (which + 1) % COUNTOF(sent);
3811 
3812 		switch (which) {
3813 
3814 		case 0:
3815 			snprintf(tag, sizeof(tag), addr_fmt, count);
3816 			pch = sptoa(&mon->rmtadr);
3817 			ctl_putunqstr(tag, pch, strlen(pch));
3818 			break;
3819 
3820 		case 1:
3821 			snprintf(tag, sizeof(tag), last_fmt, count);
3822 			ctl_putts(tag, &mon->last);
3823 			break;
3824 
3825 		case 2:
3826 			snprintf(tag, sizeof(tag), first_fmt, count);
3827 			ctl_putts(tag, &mon->first);
3828 			break;
3829 
3830 		case 3:
3831 			snprintf(tag, sizeof(tag), ct_fmt, count);
3832 			ctl_putint(tag, mon->count);
3833 			break;
3834 
3835 		case 4:
3836 			snprintf(tag, sizeof(tag), mv_fmt, count);
3837 			ctl_putuint(tag, mon->vn_mode);
3838 			break;
3839 
3840 		case 5:
3841 			snprintf(tag, sizeof(tag), rs_fmt, count);
3842 			ctl_puthex(tag, mon->flags);
3843 			break;
3844 		}
3845 		sent[which] = TRUE;
3846 		remaining--;
3847 	}
3848 }
3849 
3850 
3851 /*
3852  * read_mru_list - supports ntpq's mrulist command.
3853  *
3854  * The challenge here is to match ntpdc's monlist functionality without
3855  * being limited to hundreds of entries returned total, and without
3856  * requiring state on the server.  If state were required, ntpq's
3857  * mrulist command would require authentication.
3858  *
3859  * The approach was suggested by Ry Jones.  A finite and variable number
3860  * of entries are retrieved per request, to avoid having responses with
3861  * such large numbers of packets that socket buffers are overflowed and
3862  * packets lost.  The entries are retrieved oldest-first, taking into
3863  * account that the MRU list will be changing between each request.  We
3864  * can expect to see duplicate entries for addresses updated in the MRU
3865  * list during the fetch operation.  In the end, the client can assemble
3866  * a close approximation of the MRU list at the point in time the last
3867  * response was sent by ntpd.  The only difference is it may be longer,
3868  * containing some number of oldest entries which have since been
3869  * reclaimed.  If necessary, the protocol could be extended to zap those
3870  * from the client snapshot at the end, but so far that doesn't seem
3871  * useful.
3872  *
3873  * To accomodate the changing MRU list, the starting point for requests
3874  * after the first request is supplied as a series of last seen
3875  * timestamps and associated addresses, the newest ones the client has
3876  * received.  As long as at least one of those entries hasn't been
3877  * bumped to the head of the MRU list, ntpd can pick up at that point.
3878  * Otherwise, the request is failed and it is up to ntpq to back up and
3879  * provide the next newest entry's timestamps and addresses, conceivably
3880  * backing up all the way to the starting point.
3881  *
3882  * input parameters:
3883  *	nonce=		Regurgitated nonce retrieved by the client
3884  *			previously using CTL_OP_REQ_NONCE, demonstrating
3885  *			ability to receive traffic sent to its address.
3886  *	frags=		Limit on datagrams (fragments) in response.  Used
3887  *			by newer ntpq versions instead of limit= when
3888  *			retrieving multiple entries.
3889  *	limit=		Limit on MRU entries returned.  One of frags= or
3890  *			limit= must be provided.
3891  *			limit=1 is a special case:  Instead of fetching
3892  *			beginning with the supplied starting point's
3893  *			newer neighbor, fetch the supplied entry, and
3894  *			in that case the #.last timestamp can be zero.
3895  *			This enables fetching a single entry by IP
3896  *			address.  When limit is not one and frags= is
3897  *			provided, the fragment limit controls.
3898  *	mincount=	(decimal) Return entries with count >= mincount.
3899  *	laddr=		Return entries associated with the server's IP
3900  *			address given.  No port specification is needed,
3901  *			and any supplied is ignored.
3902  *	resall=		0x-prefixed hex restrict bits which must all be
3903  *			lit for an MRU entry to be included.
3904  *			Has precedence over any resany=.
3905  *	resany=		0x-prefixed hex restrict bits, at least one of
3906  *			which must be list for an MRU entry to be
3907  *			included.
3908  *	last.0=		0x-prefixed hex l_fp timestamp of newest entry
3909  *			which client previously received.
3910  *	addr.0=		text of newest entry's IP address and port,
3911  *			IPv6 addresses in bracketed form: [::]:123
3912  *	last.1=		timestamp of 2nd newest entry client has.
3913  *	addr.1=		address of 2nd newest entry.
3914  *	[...]
3915  *
3916  * ntpq provides as many last/addr pairs as will fit in a single request
3917  * packet, except for the first request in a MRU fetch operation.
3918  *
3919  * The response begins with a new nonce value to be used for any
3920  * followup request.  Following the nonce is the next newer entry than
3921  * referred to by last.0 and addr.0, if the "0" entry has not been
3922  * bumped to the front.  If it has, the first entry returned will be the
3923  * next entry newer than referred to by last.1 and addr.1, and so on.
3924  * If none of the referenced entries remain unchanged, the request fails
3925  * and ntpq backs up to the next earlier set of entries to resync.
3926  *
3927  * Except for the first response, the response begins with confirmation
3928  * of the entry that precedes the first additional entry provided:
3929  *
3930  *	last.older=	hex l_fp timestamp matching one of the input
3931  *			.last timestamps, which entry now precedes the
3932  *			response 0. entry in the MRU list.
3933  *	addr.older=	text of address corresponding to older.last.
3934  *
3935  * And in any case, a successful response contains sets of values
3936  * comprising entries, with the oldest numbered 0 and incrementing from
3937  * there:
3938  *
3939  *	addr.#		text of IPv4 or IPv6 address and port
3940  *	last.#		hex l_fp timestamp of last receipt
3941  *	first.#		hex l_fp timestamp of first receipt
3942  *	ct.#		count of packets received
3943  *	mv.#		mode and version
3944  *	rs.#		restriction mask (RES_* bits)
3945  *
3946  * Note the code currently assumes there are no valid three letter
3947  * tags sent with each row, and needs to be adjusted if that changes.
3948  *
3949  * The client should accept the values in any order, and ignore .#
3950  * values which it does not understand, to allow a smooth path to
3951  * future changes without requiring a new opcode.  Clients can rely
3952  * on all *.0 values preceding any *.1 values, that is all values for
3953  * a given index number are together in the response.
3954  *
3955  * The end of the response list is noted with one or two tag=value
3956  * pairs.  Unconditionally:
3957  *
3958  *	now=		0x-prefixed l_fp timestamp at the server marking
3959  *			the end of the operation.
3960  *
3961  * If any entries were returned, now= is followed by:
3962  *
3963  *	last.newest=	hex l_fp identical to last.# of the prior
3964  *			entry.
3965  */
3966 static void read_mru_list(
3967 	struct recvbuf *rbufp,
3968 	int restrict_mask
3969 	)
3970 {
3971 	static const char	nulltxt[1] = 		{ '\0' };
3972 	static const char	nonce_text[] =		"nonce";
3973 	static const char	frags_text[] =		"frags";
3974 	static const char	limit_text[] =		"limit";
3975 	static const char	mincount_text[] =	"mincount";
3976 	static const char	resall_text[] =		"resall";
3977 	static const char	resany_text[] =		"resany";
3978 	static const char	maxlstint_text[] =	"maxlstint";
3979 	static const char	laddr_text[] =		"laddr";
3980 	static const char	resaxx_fmt[] =		"0x%hx";
3981 
3982 	u_int			limit;
3983 	u_short			frags;
3984 	u_short			resall;
3985 	u_short			resany;
3986 	int			mincount;
3987 	u_int			maxlstint;
3988 	sockaddr_u		laddr;
3989 	struct interface *	lcladr;
3990 	u_int			count;
3991 	u_int			ui;
3992 	u_int			uf;
3993 	l_fp			last[16];
3994 	sockaddr_u		addr[COUNTOF(last)];
3995 	char			buf[128];
3996 	struct ctl_var *	in_parms;
3997 	const struct ctl_var *	v;
3998 	const char *		val;
3999 	const char *		pch;
4000 	char *			pnonce;
4001 	int			nonce_valid;
4002 	size_t			i;
4003 	int			priors;
4004 	u_short			hash;
4005 	mon_entry *		mon;
4006 	mon_entry *		prior_mon;
4007 	l_fp			now;
4008 
4009 	if (RES_NOMRULIST & restrict_mask) {
4010 		ctl_error(CERR_PERMISSION);
4011 		NLOG(NLOG_SYSINFO)
4012 			msyslog(LOG_NOTICE,
4013 				"mrulist from %s rejected due to nomrulist restriction",
4014 				stoa(&rbufp->recv_srcadr));
4015 		sys_restricted++;
4016 		return;
4017 	}
4018 	/*
4019 	 * fill in_parms var list with all possible input parameters.
4020 	 */
4021 	in_parms = NULL;
4022 	set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
4023 	set_var(&in_parms, frags_text, sizeof(frags_text), 0);
4024 	set_var(&in_parms, limit_text, sizeof(limit_text), 0);
4025 	set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
4026 	set_var(&in_parms, resall_text, sizeof(resall_text), 0);
4027 	set_var(&in_parms, resany_text, sizeof(resany_text), 0);
4028 	set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
4029 	set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
4030 	for (i = 0; i < COUNTOF(last); i++) {
4031 		snprintf(buf, sizeof(buf), last_fmt, (int)i);
4032 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4033 		snprintf(buf, sizeof(buf), addr_fmt, (int)i);
4034 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4035 	}
4036 
4037 	/* decode input parms */
4038 	pnonce = NULL;
4039 	frags = 0;
4040 	limit = 0;
4041 	mincount = 0;
4042 	resall = 0;
4043 	resany = 0;
4044 	maxlstint = 0;
4045 	lcladr = NULL;
4046 	priors = 0;
4047 	ZERO(last);
4048 	ZERO(addr);
4049 
4050 	/* have to go through '(void*)' to drop 'const' property from pointer.
4051 	 * ctl_getitem()' needs some cleanup, too.... perlinger@ntp.org
4052 	 */
4053 	while (NULL != (v = ctl_getitem(in_parms, (void*)&val)) &&
4054 	       !(EOV & v->flags)) {
4055 		int si;
4056 
4057 		if (NULL == val)
4058 			val = nulltxt;
4059 
4060 		if (!strcmp(nonce_text, v->text)) {
4061 			free(pnonce);
4062 			pnonce = (*val) ? estrdup(val) : NULL;
4063 		} else if (!strcmp(frags_text, v->text)) {
4064 			if (1 != sscanf(val, "%hu", &frags))
4065 				goto blooper;
4066 		} else if (!strcmp(limit_text, v->text)) {
4067 			if (1 != sscanf(val, "%u", &limit))
4068 				goto blooper;
4069 		} else if (!strcmp(mincount_text, v->text)) {
4070 			if (1 != sscanf(val, "%d", &mincount))
4071 				goto blooper;
4072 			if (mincount < 0)
4073 				mincount = 0;
4074 		} else if (!strcmp(resall_text, v->text)) {
4075 			if (1 != sscanf(val, resaxx_fmt, &resall))
4076 				goto blooper;
4077 		} else if (!strcmp(resany_text, v->text)) {
4078 			if (1 != sscanf(val, resaxx_fmt, &resany))
4079 				goto blooper;
4080 		} else if (!strcmp(maxlstint_text, v->text)) {
4081 			if (1 != sscanf(val, "%u", &maxlstint))
4082 				goto blooper;
4083 		} else if (!strcmp(laddr_text, v->text)) {
4084 			if (!decodenetnum(val, &laddr))
4085 				goto blooper;
4086 			lcladr = getinterface(&laddr, 0);
4087 		} else if (1 == sscanf(v->text, last_fmt, &si) &&
4088 			   (size_t)si < COUNTOF(last)) {
4089 			if (2 != sscanf(val, "0x%08x.%08x", &ui, &uf))
4090 				goto blooper;
4091 			last[si].l_ui = ui;
4092 			last[si].l_uf = uf;
4093 			if (!SOCK_UNSPEC(&addr[si]) && si == priors)
4094 				priors++;
4095 		} else if (1 == sscanf(v->text, addr_fmt, &si) &&
4096 			   (size_t)si < COUNTOF(addr)) {
4097 			if (!decodenetnum(val, &addr[si]))
4098 				goto blooper;
4099 			if (last[si].l_ui && last[si].l_uf && si == priors)
4100 				priors++;
4101 		} else {
4102 			DPRINTF(1, ("read_mru_list: invalid key item: '%s' (ignored)\n",
4103 				    v->text));
4104 			continue;
4105 
4106 		blooper:
4107 			DPRINTF(1, ("read_mru_list: invalid param for '%s': '%s' (bailing)\n",
4108 				    v->text, val));
4109 			free(pnonce);
4110 			pnonce = NULL;
4111 			break;
4112 		}
4113 	}
4114 	free_varlist(in_parms);
4115 	in_parms = NULL;
4116 
4117 	/* return no responses until the nonce is validated */
4118 	if (NULL == pnonce)
4119 		return;
4120 
4121 	nonce_valid = validate_nonce(pnonce, rbufp);
4122 	free(pnonce);
4123 	if (!nonce_valid)
4124 		return;
4125 
4126 	if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
4127 	    frags > MRU_FRAGS_LIMIT) {
4128 		ctl_error(CERR_BADVALUE);
4129 		return;
4130 	}
4131 
4132 	/*
4133 	 * If either frags or limit is not given, use the max.
4134 	 */
4135 	if (0 != frags && 0 == limit)
4136 		limit = UINT_MAX;
4137 	else if (0 != limit && 0 == frags)
4138 		frags = MRU_FRAGS_LIMIT;
4139 
4140 	/*
4141 	 * Find the starting point if one was provided.
4142 	 */
4143 	mon = NULL;
4144 	for (i = 0; i < (size_t)priors; i++) {
4145 		hash = MON_HASH(&addr[i]);
4146 		for (mon = mon_hash[hash];
4147 		     mon != NULL;
4148 		     mon = mon->hash_next)
4149 			if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
4150 				break;
4151 		if (mon != NULL) {
4152 			if (L_ISEQU(&mon->last, &last[i]))
4153 				break;
4154 			mon = NULL;
4155 		}
4156 	}
4157 
4158 	/* If a starting point was provided... */
4159 	if (priors) {
4160 		/* and none could be found unmodified... */
4161 		if (NULL == mon) {
4162 			/* tell ntpq to try again with older entries */
4163 			ctl_error(CERR_UNKNOWNVAR);
4164 			return;
4165 		}
4166 		/* confirm the prior entry used as starting point */
4167 		ctl_putts("last.older", &mon->last);
4168 		pch = sptoa(&mon->rmtadr);
4169 		ctl_putunqstr("addr.older", pch, strlen(pch));
4170 
4171 		/*
4172 		 * Move on to the first entry the client doesn't have,
4173 		 * except in the special case of a limit of one.  In
4174 		 * that case return the starting point entry.
4175 		 */
4176 		if (limit > 1)
4177 			mon = PREV_DLIST(mon_mru_list, mon, mru);
4178 	} else {	/* start with the oldest */
4179 		mon = TAIL_DLIST(mon_mru_list, mru);
4180 	}
4181 
4182 	/*
4183 	 * send up to limit= entries in up to frags= datagrams
4184 	 */
4185 	get_systime(&now);
4186 	generate_nonce(rbufp, buf, sizeof(buf));
4187 	ctl_putunqstr("nonce", buf, strlen(buf));
4188 	prior_mon = NULL;
4189 	for (count = 0;
4190 	     mon != NULL && res_frags < frags && count < limit;
4191 	     mon = PREV_DLIST(mon_mru_list, mon, mru)) {
4192 
4193 		if (mon->count < mincount)
4194 			continue;
4195 		if (resall && resall != (resall & mon->flags))
4196 			continue;
4197 		if (resany && !(resany & mon->flags))
4198 			continue;
4199 		if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
4200 		    maxlstint)
4201 			continue;
4202 		if (lcladr != NULL && mon->lcladr != lcladr)
4203 			continue;
4204 
4205 		send_mru_entry(mon, count);
4206 		if (!count)
4207 			send_random_tag_value(0);
4208 		count++;
4209 		prior_mon = mon;
4210 	}
4211 
4212 	/*
4213 	 * If this batch completes the MRU list, say so explicitly with
4214 	 * a now= l_fp timestamp.
4215 	 */
4216 	if (NULL == mon) {
4217 		if (count > 1)
4218 			send_random_tag_value(count - 1);
4219 		ctl_putts("now", &now);
4220 		/* if any entries were returned confirm the last */
4221 		if (prior_mon != NULL)
4222 			ctl_putts("last.newest", &prior_mon->last);
4223 	}
4224 	ctl_flushpkt(0);
4225 }
4226 
4227 
4228 /*
4229  * Send a ifstats entry in response to a "ntpq -c ifstats" request.
4230  *
4231  * To keep clients honest about not depending on the order of values,
4232  * and thereby avoid being locked into ugly workarounds to maintain
4233  * backward compatibility later as new fields are added to the response,
4234  * the order is random.
4235  */
4236 static void
4237 send_ifstats_entry(
4238 	endpt *	la,
4239 	u_int	ifnum
4240 	)
4241 {
4242 	const char addr_fmtu[] =	"addr.%u";
4243 	const char bcast_fmt[] =	"bcast.%u";
4244 	const char en_fmt[] =		"en.%u";	/* enabled */
4245 	const char name_fmt[] =		"name.%u";
4246 	const char flags_fmt[] =	"flags.%u";
4247 	const char tl_fmt[] =		"tl.%u";	/* ttl */
4248 	const char mc_fmt[] =		"mc.%u";	/* mcast count */
4249 	const char rx_fmt[] =		"rx.%u";
4250 	const char tx_fmt[] =		"tx.%u";
4251 	const char txerr_fmt[] =	"txerr.%u";
4252 	const char pc_fmt[] =		"pc.%u";	/* peer count */
4253 	const char up_fmt[] =		"up.%u";	/* uptime */
4254 	char	tag[32];
4255 	u_char	sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
4256 	int	noisebits;
4257 	u_int32 noise;
4258 	u_int	which;
4259 	u_int	remaining;
4260 	const char *pch;
4261 
4262 	remaining = COUNTOF(sent);
4263 	ZERO(sent);
4264 	noise = 0;
4265 	noisebits = 0;
4266 	while (remaining > 0) {
4267 		if (noisebits < 4) {
4268 			noise = rand() ^ (rand() << 16);
4269 			noisebits = 31;
4270 		}
4271 		which = (noise & 0xf) % COUNTOF(sent);
4272 		noise >>= 4;
4273 		noisebits -= 4;
4274 
4275 		while (sent[which])
4276 			which = (which + 1) % COUNTOF(sent);
4277 
4278 		switch (which) {
4279 
4280 		case 0:
4281 			snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
4282 			pch = sptoa(&la->sin);
4283 			ctl_putunqstr(tag, pch, strlen(pch));
4284 			break;
4285 
4286 		case 1:
4287 			snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
4288 			if (INT_BCASTOPEN & la->flags)
4289 				pch = sptoa(&la->bcast);
4290 			else
4291 				pch = "";
4292 			ctl_putunqstr(tag, pch, strlen(pch));
4293 			break;
4294 
4295 		case 2:
4296 			snprintf(tag, sizeof(tag), en_fmt, ifnum);
4297 			ctl_putint(tag, !la->ignore_packets);
4298 			break;
4299 
4300 		case 3:
4301 			snprintf(tag, sizeof(tag), name_fmt, ifnum);
4302 			ctl_putstr(tag, la->name, strlen(la->name));
4303 			break;
4304 
4305 		case 4:
4306 			snprintf(tag, sizeof(tag), flags_fmt, ifnum);
4307 			ctl_puthex(tag, (u_int)la->flags);
4308 			break;
4309 
4310 		case 5:
4311 			snprintf(tag, sizeof(tag), tl_fmt, ifnum);
4312 			ctl_putint(tag, la->last_ttl);
4313 			break;
4314 
4315 		case 6:
4316 			snprintf(tag, sizeof(tag), mc_fmt, ifnum);
4317 			ctl_putint(tag, la->num_mcast);
4318 			break;
4319 
4320 		case 7:
4321 			snprintf(tag, sizeof(tag), rx_fmt, ifnum);
4322 			ctl_putint(tag, la->received);
4323 			break;
4324 
4325 		case 8:
4326 			snprintf(tag, sizeof(tag), tx_fmt, ifnum);
4327 			ctl_putint(tag, la->sent);
4328 			break;
4329 
4330 		case 9:
4331 			snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
4332 			ctl_putint(tag, la->notsent);
4333 			break;
4334 
4335 		case 10:
4336 			snprintf(tag, sizeof(tag), pc_fmt, ifnum);
4337 			ctl_putuint(tag, la->peercnt);
4338 			break;
4339 
4340 		case 11:
4341 			snprintf(tag, sizeof(tag), up_fmt, ifnum);
4342 			ctl_putuint(tag, current_time - la->starttime);
4343 			break;
4344 		}
4345 		sent[which] = TRUE;
4346 		remaining--;
4347 	}
4348 	send_random_tag_value((int)ifnum);
4349 }
4350 
4351 
4352 /*
4353  * read_ifstats - send statistics for each local address, exposed by
4354  *		  ntpq -c ifstats
4355  */
4356 static void
4357 read_ifstats(
4358 	struct recvbuf *	rbufp
4359 	)
4360 {
4361 	u_int	ifidx;
4362 	endpt *	la;
4363 
4364 	/*
4365 	 * loop over [0..sys_ifnum] searching ep_list for each
4366 	 * ifnum in turn.
4367 	 */
4368 	for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4369 		for (la = ep_list; la != NULL; la = la->elink)
4370 			if (ifidx == la->ifnum)
4371 				break;
4372 		if (NULL == la)
4373 			continue;
4374 		/* return stats for one local address */
4375 		send_ifstats_entry(la, ifidx);
4376 	}
4377 	ctl_flushpkt(0);
4378 }
4379 
4380 static void
4381 sockaddrs_from_restrict_u(
4382 	sockaddr_u *	psaA,
4383 	sockaddr_u *	psaM,
4384 	restrict_u *	pres,
4385 	int		ipv6
4386 	)
4387 {
4388 	ZERO(*psaA);
4389 	ZERO(*psaM);
4390 	if (!ipv6) {
4391 		psaA->sa.sa_family = AF_INET;
4392 		psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
4393 		psaM->sa.sa_family = AF_INET;
4394 		psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
4395 	} else {
4396 		psaA->sa.sa_family = AF_INET6;
4397 		memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
4398 		       sizeof(psaA->sa6.sin6_addr));
4399 		psaM->sa.sa_family = AF_INET6;
4400 		memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
4401 		       sizeof(psaA->sa6.sin6_addr));
4402 	}
4403 }
4404 
4405 
4406 /*
4407  * Send a restrict entry in response to a "ntpq -c reslist" request.
4408  *
4409  * To keep clients honest about not depending on the order of values,
4410  * and thereby avoid being locked into ugly workarounds to maintain
4411  * backward compatibility later as new fields are added to the response,
4412  * the order is random.
4413  */
4414 static void
4415 send_restrict_entry(
4416 	restrict_u *	pres,
4417 	int		ipv6,
4418 	u_int		idx
4419 	)
4420 {
4421 	const char addr_fmtu[] =	"addr.%u";
4422 	const char mask_fmtu[] =	"mask.%u";
4423 	const char hits_fmt[] =		"hits.%u";
4424 	const char flags_fmt[] =	"flags.%u";
4425 	char		tag[32];
4426 	u_char		sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4427 	int		noisebits;
4428 	u_int32		noise;
4429 	u_int		which;
4430 	u_int		remaining;
4431 	sockaddr_u	addr;
4432 	sockaddr_u	mask;
4433 	const char *	pch;
4434 	char *		buf;
4435 	const char *	match_str;
4436 	const char *	access_str;
4437 
4438 	sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
4439 	remaining = COUNTOF(sent);
4440 	ZERO(sent);
4441 	noise = 0;
4442 	noisebits = 0;
4443 	while (remaining > 0) {
4444 		if (noisebits < 2) {
4445 			noise = rand() ^ (rand() << 16);
4446 			noisebits = 31;
4447 		}
4448 		which = (noise & 0x3) % COUNTOF(sent);
4449 		noise >>= 2;
4450 		noisebits -= 2;
4451 
4452 		while (sent[which])
4453 			which = (which + 1) % COUNTOF(sent);
4454 
4455 		/* XXX: Numbers?  Really? */
4456 		switch (which) {
4457 
4458 		case 0:
4459 			snprintf(tag, sizeof(tag), addr_fmtu, idx);
4460 			pch = stoa(&addr);
4461 			ctl_putunqstr(tag, pch, strlen(pch));
4462 			break;
4463 
4464 		case 1:
4465 			snprintf(tag, sizeof(tag), mask_fmtu, idx);
4466 			pch = stoa(&mask);
4467 			ctl_putunqstr(tag, pch, strlen(pch));
4468 			break;
4469 
4470 		case 2:
4471 			snprintf(tag, sizeof(tag), hits_fmt, idx);
4472 			ctl_putuint(tag, pres->count);
4473 			break;
4474 
4475 		case 3:
4476 			snprintf(tag, sizeof(tag), flags_fmt, idx);
4477 			match_str = res_match_flags(pres->mflags);
4478 			access_str = res_access_flags(pres->rflags);
4479 			if ('\0' == match_str[0]) {
4480 				pch = access_str;
4481 			} else {
4482 				LIB_GETBUF(buf);
4483 				snprintf(buf, LIB_BUFLENGTH, "%s %s",
4484 					 match_str, access_str);
4485 				pch = buf;
4486 			}
4487 			ctl_putunqstr(tag, pch, strlen(pch));
4488 			break;
4489 		}
4490 		sent[which] = TRUE;
4491 		remaining--;
4492 	}
4493 	send_random_tag_value((int)idx);
4494 }
4495 
4496 
4497 static void
4498 send_restrict_list(
4499 	restrict_u *	pres,
4500 	int		ipv6,
4501 	u_int *		pidx
4502 	)
4503 {
4504 	for ( ; pres != NULL; pres = pres->link) {
4505 		send_restrict_entry(pres, ipv6, *pidx);
4506 		(*pidx)++;
4507 	}
4508 }
4509 
4510 
4511 /*
4512  * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4513  */
4514 static void
4515 read_addr_restrictions(
4516 	struct recvbuf *	rbufp
4517 )
4518 {
4519 	u_int idx;
4520 
4521 	idx = 0;
4522 	send_restrict_list(restrictlist4, FALSE, &idx);
4523 	send_restrict_list(restrictlist6, TRUE, &idx);
4524 	ctl_flushpkt(0);
4525 }
4526 
4527 
4528 /*
4529  * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4530  */
4531 static void
4532 read_ordlist(
4533 	struct recvbuf *	rbufp,
4534 	int			restrict_mask
4535 	)
4536 {
4537 	const char ifstats_s[] = "ifstats";
4538 	const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4539 	const char addr_rst_s[] = "addr_restrictions";
4540 	const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4541 	struct ntp_control *	cpkt;
4542 	u_short			qdata_octets;
4543 
4544 	/*
4545 	 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4546 	 * used only for ntpq -c ifstats.  With the addition of reslist
4547 	 * the same opcode was generalized to retrieve ordered lists
4548 	 * which require authentication.  The request data is empty or
4549 	 * contains "ifstats" (not null terminated) to retrieve local
4550 	 * addresses and associated stats.  It is "addr_restrictions"
4551 	 * to retrieve the IPv4 then IPv6 remote address restrictions,
4552 	 * which are access control lists.  Other request data return
4553 	 * CERR_UNKNOWNVAR.
4554 	 */
4555 	cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4556 	qdata_octets = ntohs(cpkt->count);
4557 	if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4558 	    !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4559 		read_ifstats(rbufp);
4560 		return;
4561 	}
4562 	if (a_r_chars == qdata_octets &&
4563 	    !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4564 		read_addr_restrictions(rbufp);
4565 		return;
4566 	}
4567 	ctl_error(CERR_UNKNOWNVAR);
4568 }
4569 
4570 
4571 /*
4572  * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4573  */
4574 static void req_nonce(
4575 	struct recvbuf *	rbufp,
4576 	int			restrict_mask
4577 	)
4578 {
4579 	char	buf[64];
4580 
4581 	generate_nonce(rbufp, buf, sizeof(buf));
4582 	ctl_putunqstr("nonce", buf, strlen(buf));
4583 	ctl_flushpkt(0);
4584 }
4585 
4586 
4587 /*
4588  * read_clockstatus - return clock radio status
4589  */
4590 /*ARGSUSED*/
4591 static void
4592 read_clockstatus(
4593 	struct recvbuf *rbufp,
4594 	int restrict_mask
4595 	)
4596 {
4597 #ifndef REFCLOCK
4598 	/*
4599 	 * If no refclock support, no data to return
4600 	 */
4601 	ctl_error(CERR_BADASSOC);
4602 #else
4603 	const struct ctl_var *	v;
4604 	int			i;
4605 	struct peer *		peer;
4606 	char *			valuep;
4607 	u_char *		wants;
4608 	size_t			wants_alloc;
4609 	int			gotvar;
4610 	const u_char *		cc;
4611 	struct ctl_var *	kv;
4612 	struct refclockstat	cs;
4613 
4614 	if (res_associd != 0) {
4615 		peer = findpeerbyassoc(res_associd);
4616 	} else {
4617 		/*
4618 		 * Find a clock for this jerk.	If the system peer
4619 		 * is a clock use it, else search peer_list for one.
4620 		 */
4621 		if (sys_peer != NULL && (FLAG_REFCLOCK &
4622 		    sys_peer->flags))
4623 			peer = sys_peer;
4624 		else
4625 			for (peer = peer_list;
4626 			     peer != NULL;
4627 			     peer = peer->p_link)
4628 				if (FLAG_REFCLOCK & peer->flags)
4629 					break;
4630 	}
4631 	if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4632 		ctl_error(CERR_BADASSOC);
4633 		return;
4634 	}
4635 	/*
4636 	 * If we got here we have a peer which is a clock. Get his
4637 	 * status.
4638 	 */
4639 	cs.kv_list = NULL;
4640 	refclock_control(&peer->srcadr, NULL, &cs);
4641 	kv = cs.kv_list;
4642 	/*
4643 	 * Look for variables in the packet.
4644 	 */
4645 	rpkt.status = htons(ctlclkstatus(&cs));
4646 	wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4647 	wants = emalloc_zero(wants_alloc);
4648 	gotvar = FALSE;
4649 	while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4650 		if (!(EOV & v->flags)) {
4651 			wants[v->code] = TRUE;
4652 			gotvar = TRUE;
4653 		} else {
4654 			v = ctl_getitem(kv, &valuep);
4655 			if (NULL == v) {
4656 				ctl_error(CERR_BADVALUE);
4657 				free(wants);
4658 				free_varlist(cs.kv_list);
4659 				return;
4660 			}
4661 			if (EOV & v->flags) {
4662 				ctl_error(CERR_UNKNOWNVAR);
4663 				free(wants);
4664 				free_varlist(cs.kv_list);
4665 				return;
4666 			}
4667 			wants[CC_MAXCODE + 1 + v->code] = TRUE;
4668 			gotvar = TRUE;
4669 		}
4670 	}
4671 
4672 	if (gotvar) {
4673 		for (i = 1; i <= CC_MAXCODE; i++)
4674 			if (wants[i])
4675 				ctl_putclock(i, &cs, TRUE);
4676 		if (kv != NULL)
4677 			for (i = 0; !(EOV & kv[i].flags); i++)
4678 				if (wants[i + CC_MAXCODE + 1])
4679 					ctl_putdata(kv[i].text,
4680 						    strlen(kv[i].text),
4681 						    FALSE);
4682 	} else {
4683 		for (cc = def_clock_var; *cc != 0; cc++)
4684 			ctl_putclock((int)*cc, &cs, FALSE);
4685 		for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4686 			if (DEF & kv->flags)
4687 				ctl_putdata(kv->text, strlen(kv->text),
4688 					    FALSE);
4689 	}
4690 
4691 	free(wants);
4692 	free_varlist(cs.kv_list);
4693 
4694 	ctl_flushpkt(0);
4695 #endif
4696 }
4697 
4698 
4699 /*
4700  * write_clockstatus - we don't do this
4701  */
4702 /*ARGSUSED*/
4703 static void
4704 write_clockstatus(
4705 	struct recvbuf *rbufp,
4706 	int restrict_mask
4707 	)
4708 {
4709 	ctl_error(CERR_PERMISSION);
4710 }
4711 
4712 /*
4713  * Trap support from here on down. We send async trap messages when the
4714  * upper levels report trouble. Traps can by set either by control
4715  * messages or by configuration.
4716  */
4717 /*
4718  * set_trap - set a trap in response to a control message
4719  */
4720 static void
4721 set_trap(
4722 	struct recvbuf *rbufp,
4723 	int restrict_mask
4724 	)
4725 {
4726 	int traptype;
4727 
4728 	/*
4729 	 * See if this guy is allowed
4730 	 */
4731 	if (restrict_mask & RES_NOTRAP) {
4732 		ctl_error(CERR_PERMISSION);
4733 		return;
4734 	}
4735 
4736 	/*
4737 	 * Determine his allowed trap type.
4738 	 */
4739 	traptype = TRAP_TYPE_PRIO;
4740 	if (restrict_mask & RES_LPTRAP)
4741 		traptype = TRAP_TYPE_NONPRIO;
4742 
4743 	/*
4744 	 * Call ctlsettrap() to do the work.  Return
4745 	 * an error if it can't assign the trap.
4746 	 */
4747 	if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4748 			(int)res_version))
4749 		ctl_error(CERR_NORESOURCE);
4750 	ctl_flushpkt(0);
4751 }
4752 
4753 
4754 /*
4755  * unset_trap - unset a trap in response to a control message
4756  */
4757 static void
4758 unset_trap(
4759 	struct recvbuf *rbufp,
4760 	int restrict_mask
4761 	)
4762 {
4763 	int traptype;
4764 
4765 	/*
4766 	 * We don't prevent anyone from removing his own trap unless the
4767 	 * trap is configured. Note we also must be aware of the
4768 	 * possibility that restriction flags were changed since this
4769 	 * guy last set his trap. Set the trap type based on this.
4770 	 */
4771 	traptype = TRAP_TYPE_PRIO;
4772 	if (restrict_mask & RES_LPTRAP)
4773 		traptype = TRAP_TYPE_NONPRIO;
4774 
4775 	/*
4776 	 * Call ctlclrtrap() to clear this out.
4777 	 */
4778 	if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4779 		ctl_error(CERR_BADASSOC);
4780 	ctl_flushpkt(0);
4781 }
4782 
4783 
4784 /*
4785  * ctlsettrap - called to set a trap
4786  */
4787 int
4788 ctlsettrap(
4789 	sockaddr_u *raddr,
4790 	struct interface *linter,
4791 	int traptype,
4792 	int version
4793 	)
4794 {
4795 	size_t n;
4796 	struct ctl_trap *tp;
4797 	struct ctl_trap *tptouse;
4798 
4799 	/*
4800 	 * See if we can find this trap.  If so, we only need update
4801 	 * the flags and the time.
4802 	 */
4803 	if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4804 		switch (traptype) {
4805 
4806 		case TRAP_TYPE_CONFIG:
4807 			tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4808 			break;
4809 
4810 		case TRAP_TYPE_PRIO:
4811 			if (tp->tr_flags & TRAP_CONFIGURED)
4812 				return (1); /* don't change anything */
4813 			tp->tr_flags = TRAP_INUSE;
4814 			break;
4815 
4816 		case TRAP_TYPE_NONPRIO:
4817 			if (tp->tr_flags & TRAP_CONFIGURED)
4818 				return (1); /* don't change anything */
4819 			tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4820 			break;
4821 		}
4822 		tp->tr_settime = current_time;
4823 		tp->tr_resets++;
4824 		return (1);
4825 	}
4826 
4827 	/*
4828 	 * First we heard of this guy.	Try to find a trap structure
4829 	 * for him to use, clearing out lesser priority guys if we
4830 	 * have to. Clear out anyone who's expired while we're at it.
4831 	 */
4832 	tptouse = NULL;
4833 	for (n = 0; n < COUNTOF(ctl_traps); n++) {
4834 		tp = &ctl_traps[n];
4835 		if ((TRAP_INUSE & tp->tr_flags) &&
4836 		    !(TRAP_CONFIGURED & tp->tr_flags) &&
4837 		    ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4838 			tp->tr_flags = 0;
4839 			num_ctl_traps--;
4840 		}
4841 		if (!(TRAP_INUSE & tp->tr_flags)) {
4842 			tptouse = tp;
4843 		} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4844 			switch (traptype) {
4845 
4846 			case TRAP_TYPE_CONFIG:
4847 				if (tptouse == NULL) {
4848 					tptouse = tp;
4849 					break;
4850 				}
4851 				if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4852 				    !(TRAP_NONPRIO & tp->tr_flags))
4853 					break;
4854 
4855 				if (!(TRAP_NONPRIO & tptouse->tr_flags)
4856 				    && (TRAP_NONPRIO & tp->tr_flags)) {
4857 					tptouse = tp;
4858 					break;
4859 				}
4860 				if (tptouse->tr_origtime <
4861 				    tp->tr_origtime)
4862 					tptouse = tp;
4863 				break;
4864 
4865 			case TRAP_TYPE_PRIO:
4866 				if ( TRAP_NONPRIO & tp->tr_flags) {
4867 					if (tptouse == NULL ||
4868 					    ((TRAP_INUSE &
4869 					      tptouse->tr_flags) &&
4870 					     tptouse->tr_origtime <
4871 					     tp->tr_origtime))
4872 						tptouse = tp;
4873 				}
4874 				break;
4875 
4876 			case TRAP_TYPE_NONPRIO:
4877 				break;
4878 			}
4879 		}
4880 	}
4881 
4882 	/*
4883 	 * If we don't have room for him return an error.
4884 	 */
4885 	if (tptouse == NULL)
4886 		return (0);
4887 
4888 	/*
4889 	 * Set up this structure for him.
4890 	 */
4891 	tptouse->tr_settime = tptouse->tr_origtime = current_time;
4892 	tptouse->tr_count = tptouse->tr_resets = 0;
4893 	tptouse->tr_sequence = 1;
4894 	tptouse->tr_addr = *raddr;
4895 	tptouse->tr_localaddr = linter;
4896 	tptouse->tr_version = (u_char) version;
4897 	tptouse->tr_flags = TRAP_INUSE;
4898 	if (traptype == TRAP_TYPE_CONFIG)
4899 		tptouse->tr_flags |= TRAP_CONFIGURED;
4900 	else if (traptype == TRAP_TYPE_NONPRIO)
4901 		tptouse->tr_flags |= TRAP_NONPRIO;
4902 	num_ctl_traps++;
4903 	return (1);
4904 }
4905 
4906 
4907 /*
4908  * ctlclrtrap - called to clear a trap
4909  */
4910 int
4911 ctlclrtrap(
4912 	sockaddr_u *raddr,
4913 	struct interface *linter,
4914 	int traptype
4915 	)
4916 {
4917 	register struct ctl_trap *tp;
4918 
4919 	if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4920 		return (0);
4921 
4922 	if (tp->tr_flags & TRAP_CONFIGURED
4923 	    && traptype != TRAP_TYPE_CONFIG)
4924 		return (0);
4925 
4926 	tp->tr_flags = 0;
4927 	num_ctl_traps--;
4928 	return (1);
4929 }
4930 
4931 
4932 /*
4933  * ctlfindtrap - find a trap given the remote and local addresses
4934  */
4935 static struct ctl_trap *
4936 ctlfindtrap(
4937 	sockaddr_u *raddr,
4938 	struct interface *linter
4939 	)
4940 {
4941 	size_t	n;
4942 
4943 	for (n = 0; n < COUNTOF(ctl_traps); n++)
4944 		if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4945 		    && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4946 		    && (linter == ctl_traps[n].tr_localaddr))
4947 			return &ctl_traps[n];
4948 
4949 	return NULL;
4950 }
4951 
4952 
4953 /*
4954  * report_event - report an event to the trappers
4955  */
4956 void
4957 report_event(
4958 	int	err,		/* error code */
4959 	struct peer *peer,	/* peer structure pointer */
4960 	const char *str		/* protostats string */
4961 	)
4962 {
4963 	char	statstr[NTP_MAXSTRLEN];
4964 	int	i;
4965 	size_t	len;
4966 
4967 	/*
4968 	 * Report the error to the protostats file, system log and
4969 	 * trappers.
4970 	 */
4971 	if (peer == NULL) {
4972 
4973 		/*
4974 		 * Discard a system report if the number of reports of
4975 		 * the same type exceeds the maximum.
4976 		 */
4977 		if (ctl_sys_last_event != (u_char)err)
4978 			ctl_sys_num_events= 0;
4979 		if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
4980 			return;
4981 
4982 		ctl_sys_last_event = (u_char)err;
4983 		ctl_sys_num_events++;
4984 		snprintf(statstr, sizeof(statstr),
4985 		    "0.0.0.0 %04x %02x %s",
4986 		    ctlsysstatus(), err, eventstr(err));
4987 		if (str != NULL) {
4988 			len = strlen(statstr);
4989 			snprintf(statstr + len, sizeof(statstr) - len,
4990 			    " %s", str);
4991 		}
4992 		NLOG(NLOG_SYSEVENT)
4993 			msyslog(LOG_INFO, "%s", statstr);
4994 	} else {
4995 
4996 		/*
4997 		 * Discard a peer report if the number of reports of
4998 		 * the same type exceeds the maximum for that peer.
4999 		 */
5000 		const char *	src;
5001 		u_char		errlast;
5002 
5003 		errlast = (u_char)err & ~PEER_EVENT;
5004 		if (peer->last_event != errlast)
5005 			peer->num_events = 0;
5006 		if (peer->num_events >= CTL_PEER_MAXEVENTS)
5007 			return;
5008 
5009 		peer->last_event = errlast;
5010 		peer->num_events++;
5011 		if (ISREFCLOCKADR(&peer->srcadr))
5012 			src = refnumtoa(&peer->srcadr);
5013 		else
5014 			src = stoa(&peer->srcadr);
5015 
5016 		snprintf(statstr, sizeof(statstr),
5017 		    "%s %04x %02x %s", src,
5018 		    ctlpeerstatus(peer), err, eventstr(err));
5019 		if (str != NULL) {
5020 			len = strlen(statstr);
5021 			snprintf(statstr + len, sizeof(statstr) - len,
5022 			    " %s", str);
5023 		}
5024 		NLOG(NLOG_PEEREVENT)
5025 			msyslog(LOG_INFO, "%s", statstr);
5026 	}
5027 	record_proto_stats(statstr);
5028 #if DEBUG
5029 	if (debug)
5030 		printf("event at %lu %s\n", current_time, statstr);
5031 #endif
5032 
5033 	/*
5034 	 * If no trappers, return.
5035 	 */
5036 	if (num_ctl_traps <= 0)
5037 		return;
5038 
5039 	/* [Bug 3119]
5040 	 * Peer Events should be associated with a peer -- hence the
5041 	 * name. But there are instances where this function is called
5042 	 * *without* a valid peer. This happens e.g. with an unsolicited
5043 	 * CryptoNAK, or when a leap second alarm is going off while
5044 	 * currently without a system peer.
5045 	 *
5046 	 * The most sensible approach to this seems to bail out here if
5047 	 * this happens. Avoiding to call this function would also
5048 	 * bypass the log reporting in the first part of this function,
5049 	 * and this is probably not the best of all options.
5050 	 *   -*-perlinger@ntp.org-*-
5051 	 */
5052 	if ((err & PEER_EVENT) && !peer)
5053 		return;
5054 
5055 	/*
5056 	 * Set up the outgoing packet variables
5057 	 */
5058 	res_opcode = CTL_OP_ASYNCMSG;
5059 	res_offset = 0;
5060 	res_async = TRUE;
5061 	res_authenticate = FALSE;
5062 	datapt = rpkt.u.data;
5063 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
5064 	if (!(err & PEER_EVENT)) {
5065 		rpkt.associd = 0;
5066 		rpkt.status = htons(ctlsysstatus());
5067 
5068 		/* Include the core system variables and the list. */
5069 		for (i = 1; i <= CS_VARLIST; i++)
5070 			ctl_putsys(i);
5071 	} else if (NULL != peer) { /* paranoia -- skip output */
5072 		rpkt.associd = htons(peer->associd);
5073 		rpkt.status = htons(ctlpeerstatus(peer));
5074 
5075 		/* Dump it all. Later, maybe less. */
5076 		for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
5077 			ctl_putpeer(i, peer);
5078 #	    ifdef REFCLOCK
5079 		/*
5080 		 * for clock exception events: add clock variables to
5081 		 * reflect info on exception
5082 		 */
5083 		if (err == PEVNT_CLOCK) {
5084 			struct refclockstat cs;
5085 			struct ctl_var *kv;
5086 
5087 			cs.kv_list = NULL;
5088 			refclock_control(&peer->srcadr, NULL, &cs);
5089 
5090 			ctl_puthex("refclockstatus",
5091 				   ctlclkstatus(&cs));
5092 
5093 			for (i = 1; i <= CC_MAXCODE; i++)
5094 				ctl_putclock(i, &cs, FALSE);
5095 			for (kv = cs.kv_list;
5096 			     kv != NULL && !(EOV & kv->flags);
5097 			     kv++)
5098 				if (DEF & kv->flags)
5099 					ctl_putdata(kv->text,
5100 						    strlen(kv->text),
5101 						    FALSE);
5102 			free_varlist(cs.kv_list);
5103 		}
5104 #	    endif /* REFCLOCK */
5105 	}
5106 
5107 	/*
5108 	 * We're done, return.
5109 	 */
5110 	ctl_flushpkt(0);
5111 }
5112 
5113 
5114 /*
5115  * mprintf_event - printf-style varargs variant of report_event()
5116  */
5117 int
5118 mprintf_event(
5119 	int		evcode,		/* event code */
5120 	struct peer *	p,		/* may be NULL */
5121 	const char *	fmt,		/* msnprintf format */
5122 	...
5123 	)
5124 {
5125 	va_list	ap;
5126 	int	rc;
5127 	char	msg[512];
5128 
5129 	va_start(ap, fmt);
5130 	rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
5131 	va_end(ap);
5132 	report_event(evcode, p, msg);
5133 
5134 	return rc;
5135 }
5136 
5137 
5138 /*
5139  * ctl_clr_stats - clear stat counters
5140  */
5141 void
5142 ctl_clr_stats(void)
5143 {
5144 	ctltimereset = current_time;
5145 	numctlreq = 0;
5146 	numctlbadpkts = 0;
5147 	numctlresponses = 0;
5148 	numctlfrags = 0;
5149 	numctlerrors = 0;
5150 	numctlfrags = 0;
5151 	numctltooshort = 0;
5152 	numctlinputresp = 0;
5153 	numctlinputfrag = 0;
5154 	numctlinputerr = 0;
5155 	numctlbadoffset = 0;
5156 	numctlbadversion = 0;
5157 	numctldatatooshort = 0;
5158 	numctlbadop = 0;
5159 	numasyncmsgs = 0;
5160 }
5161 
5162 static u_short
5163 count_var(
5164 	const struct ctl_var *k
5165 	)
5166 {
5167 	u_int c;
5168 
5169 	if (NULL == k)
5170 		return 0;
5171 
5172 	c = 0;
5173 	while (!(EOV & (k++)->flags))
5174 		c++;
5175 
5176 	ENSURE(c <= USHRT_MAX);
5177 	return (u_short)c;
5178 }
5179 
5180 
5181 char *
5182 add_var(
5183 	struct ctl_var **kv,
5184 	u_long size,
5185 	u_short def
5186 	)
5187 {
5188 	u_short		c;
5189 	struct ctl_var *k;
5190 	char *		buf;
5191 
5192 	c = count_var(*kv);
5193 	*kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
5194 	k = *kv;
5195 	buf = emalloc(size);
5196 	k[c].code  = c;
5197 	k[c].text  = buf;
5198 	k[c].flags = def;
5199 	k[c + 1].code  = 0;
5200 	k[c + 1].text  = NULL;
5201 	k[c + 1].flags = EOV;
5202 
5203 	return buf;
5204 }
5205 
5206 
5207 void
5208 set_var(
5209 	struct ctl_var **kv,
5210 	const char *data,
5211 	u_long size,
5212 	u_short def
5213 	)
5214 {
5215 	struct ctl_var *k;
5216 	const char *s;
5217 	const char *t;
5218 	char *td;
5219 
5220 	if (NULL == data || !size)
5221 		return;
5222 
5223 	k = *kv;
5224 	if (k != NULL) {
5225 		while (!(EOV & k->flags)) {
5226 			if (NULL == k->text)	{
5227 				td = emalloc(size);
5228 				memcpy(td, data, size);
5229 				k->text = td;
5230 				k->flags = def;
5231 				return;
5232 			} else {
5233 				s = data;
5234 				t = k->text;
5235 				while (*t != '=' && *s == *t) {
5236 					s++;
5237 					t++;
5238 				}
5239 				if (*s == *t && ((*t == '=') || !*t)) {
5240 					td = erealloc((void *)(intptr_t)k->text, size);
5241 					memcpy(td, data, size);
5242 					k->text = td;
5243 					k->flags = def;
5244 					return;
5245 				}
5246 			}
5247 			k++;
5248 		}
5249 	}
5250 	td = add_var(kv, size, def);
5251 	memcpy(td, data, size);
5252 }
5253 
5254 
5255 void
5256 set_sys_var(
5257 	const char *data,
5258 	u_long size,
5259 	u_short def
5260 	)
5261 {
5262 	set_var(&ext_sys_var, data, size, def);
5263 }
5264 
5265 
5266 /*
5267  * get_ext_sys_var() retrieves the value of a user-defined variable or
5268  * NULL if the variable has not been setvar'd.
5269  */
5270 const char *
5271 get_ext_sys_var(const char *tag)
5272 {
5273 	struct ctl_var *	v;
5274 	size_t			c;
5275 	const char *		val;
5276 
5277 	val = NULL;
5278 	c = strlen(tag);
5279 	for (v = ext_sys_var; !(EOV & v->flags); v++) {
5280 		if (NULL != v->text && !memcmp(tag, v->text, c)) {
5281 			if ('=' == v->text[c]) {
5282 				val = v->text + c + 1;
5283 				break;
5284 			} else if ('\0' == v->text[c]) {
5285 				val = "";
5286 				break;
5287 			}
5288 		}
5289 	}
5290 
5291 	return val;
5292 }
5293 
5294 
5295 void
5296 free_varlist(
5297 	struct ctl_var *kv
5298 	)
5299 {
5300 	struct ctl_var *k;
5301 	if (kv) {
5302 		for (k = kv; !(k->flags & EOV); k++)
5303 			free((void *)(intptr_t)k->text);
5304 		free((void *)kv);
5305 	}
5306 }
5307