xref: /freebsd/contrib/ntp/ntpd/ntp_control.c (revision 807b6a646a0a0dbc258bf239468b5d9f901d1f92)
1 /*
2  * ntp_control.c - respond to mode 6 control messages and send async
3  *		   traps.  Provides service to ntpq and others.
4  */
5 
6 #ifdef HAVE_CONFIG_H
7 # include <config.h>
8 #endif
9 
10 #include <stdio.h>
11 #include <ctype.h>
12 #include <signal.h>
13 #include <sys/stat.h>
14 #ifdef HAVE_NETINET_IN_H
15 # include <netinet/in.h>
16 #endif
17 #include <arpa/inet.h>
18 
19 #include "ntpd.h"
20 #include "ntp_io.h"
21 #include "ntp_refclock.h"
22 #include "ntp_control.h"
23 #include "ntp_unixtime.h"
24 #include "ntp_stdlib.h"
25 #include "ntp_config.h"
26 #include "ntp_crypto.h"
27 #include "ntp_assert.h"
28 #include "ntp_leapsec.h"
29 #include "ntp_md5.h"	/* provides OpenSSL digest API */
30 #include "lib_strbuf.h"
31 #include <rc_cmdlength.h>
32 #ifdef KERNEL_PLL
33 # include "ntp_syscall.h"
34 #endif
35 
36 
37 /*
38  * Structure to hold request procedure information
39  */
40 
41 struct ctl_proc {
42 	short control_code;		/* defined request code */
43 #define NO_REQUEST	(-1)
44 	u_short flags;			/* flags word */
45 	/* Only one flag.  Authentication required or not. */
46 #define NOAUTH	0
47 #define AUTH	1
48 	void (*handler) (struct recvbuf *, int); /* handle request */
49 };
50 
51 
52 /*
53  * Request processing routines
54  */
55 static	void	ctl_error	(u_char);
56 #ifdef REFCLOCK
57 static	u_short ctlclkstatus	(struct refclockstat *);
58 #endif
59 static	void	ctl_flushpkt	(u_char);
60 static	void	ctl_putdata	(const char *, unsigned int, int);
61 static	void	ctl_putstr	(const char *, const char *, size_t);
62 static	void	ctl_putdblf	(const char *, int, int, double);
63 #define	ctl_putdbl(tag, d)	ctl_putdblf(tag, 1, 3, d)
64 #define	ctl_putdbl6(tag, d)	ctl_putdblf(tag, 1, 6, d)
65 #define	ctl_putsfp(tag, sfp)	ctl_putdblf(tag, 0, -1, \
66 					    FPTOD(sfp))
67 static	void	ctl_putuint	(const char *, u_long);
68 static	void	ctl_puthex	(const char *, u_long);
69 static	void	ctl_putint	(const char *, long);
70 static	void	ctl_putts	(const char *, l_fp *);
71 static	void	ctl_putadr	(const char *, u_int32,
72 				 sockaddr_u *);
73 static	void	ctl_putrefid	(const char *, u_int32);
74 static	void	ctl_putarray	(const char *, double *, int);
75 static	void	ctl_putsys	(int);
76 static	void	ctl_putpeer	(int, struct peer *);
77 static	void	ctl_putfs	(const char *, tstamp_t);
78 #ifdef REFCLOCK
79 static	void	ctl_putclock	(int, struct refclockstat *, int);
80 #endif	/* REFCLOCK */
81 static	const struct ctl_var *ctl_getitem(const struct ctl_var *,
82 					  char **);
83 static	u_short	count_var	(const struct ctl_var *);
84 static	void	control_unspec	(struct recvbuf *, int);
85 static	void	read_status	(struct recvbuf *, int);
86 static	void	read_sysvars	(void);
87 static	void	read_peervars	(void);
88 static	void	read_variables	(struct recvbuf *, int);
89 static	void	write_variables (struct recvbuf *, int);
90 static	void	read_clockstatus(struct recvbuf *, int);
91 static	void	write_clockstatus(struct recvbuf *, int);
92 static	void	set_trap	(struct recvbuf *, int);
93 static	void	save_config	(struct recvbuf *, int);
94 static	void	configure	(struct recvbuf *, int);
95 static	void	send_mru_entry	(mon_entry *, int);
96 static	void	send_random_tag_value(int);
97 static	void	read_mru_list	(struct recvbuf *, int);
98 static	void	send_ifstats_entry(endpt *, u_int);
99 static	void	read_ifstats	(struct recvbuf *);
100 static	void	sockaddrs_from_restrict_u(sockaddr_u *,	sockaddr_u *,
101 					  restrict_u *, int);
102 static	void	send_restrict_entry(restrict_u *, int, u_int);
103 static	void	send_restrict_list(restrict_u *, int, u_int *);
104 static	void	read_addr_restrictions(struct recvbuf *);
105 static	void	read_ordlist	(struct recvbuf *, int);
106 static	u_int32	derive_nonce	(sockaddr_u *, u_int32, u_int32);
107 static	void	generate_nonce	(struct recvbuf *, char *, size_t);
108 static	int	validate_nonce	(const char *, struct recvbuf *);
109 static	void	req_nonce	(struct recvbuf *, int);
110 static	void	unset_trap	(struct recvbuf *, int);
111 static	struct ctl_trap *ctlfindtrap(sockaddr_u *,
112 				     struct interface *);
113 
114 static const struct ctl_proc control_codes[] = {
115 	{ CTL_OP_UNSPEC,		NOAUTH,	control_unspec },
116 	{ CTL_OP_READSTAT,		NOAUTH,	read_status },
117 	{ CTL_OP_READVAR,		NOAUTH,	read_variables },
118 	{ CTL_OP_WRITEVAR,		AUTH,	write_variables },
119 	{ CTL_OP_READCLOCK,		NOAUTH,	read_clockstatus },
120 	{ CTL_OP_WRITECLOCK,		NOAUTH,	write_clockstatus },
121 	{ CTL_OP_SETTRAP,		NOAUTH,	set_trap },
122 	{ CTL_OP_CONFIGURE,		AUTH,	configure },
123 	{ CTL_OP_SAVECONFIG,		AUTH,	save_config },
124 	{ CTL_OP_READ_MRU,		NOAUTH,	read_mru_list },
125 	{ CTL_OP_READ_ORDLIST_A,	AUTH,	read_ordlist },
126 	{ CTL_OP_REQ_NONCE,		NOAUTH,	req_nonce },
127 	{ CTL_OP_UNSETTRAP,		NOAUTH,	unset_trap },
128 	{ NO_REQUEST,			0,	NULL }
129 };
130 
131 /*
132  * System variables we understand
133  */
134 #define	CS_LEAP			1
135 #define	CS_STRATUM		2
136 #define	CS_PRECISION		3
137 #define	CS_ROOTDELAY		4
138 #define	CS_ROOTDISPERSION	5
139 #define	CS_REFID		6
140 #define	CS_REFTIME		7
141 #define	CS_POLL			8
142 #define	CS_PEERID		9
143 #define	CS_OFFSET		10
144 #define	CS_DRIFT		11
145 #define	CS_JITTER		12
146 #define	CS_ERROR		13
147 #define	CS_CLOCK		14
148 #define	CS_PROCESSOR		15
149 #define	CS_SYSTEM		16
150 #define	CS_VERSION		17
151 #define	CS_STABIL		18
152 #define	CS_VARLIST		19
153 #define	CS_TAI			20
154 #define	CS_LEAPTAB		21
155 #define	CS_LEAPEND		22
156 #define	CS_RATE			23
157 #define	CS_MRU_ENABLED		24
158 #define	CS_MRU_DEPTH		25
159 #define	CS_MRU_DEEPEST		26
160 #define	CS_MRU_MINDEPTH		27
161 #define	CS_MRU_MAXAGE		28
162 #define	CS_MRU_MAXDEPTH		29
163 #define	CS_MRU_MEM		30
164 #define	CS_MRU_MAXMEM		31
165 #define	CS_SS_UPTIME		32
166 #define	CS_SS_RESET		33
167 #define	CS_SS_RECEIVED		34
168 #define	CS_SS_THISVER		35
169 #define	CS_SS_OLDVER		36
170 #define	CS_SS_BADFORMAT		37
171 #define	CS_SS_BADAUTH		38
172 #define	CS_SS_DECLINED		39
173 #define	CS_SS_RESTRICTED	40
174 #define	CS_SS_LIMITED		41
175 #define	CS_SS_KODSENT		42
176 #define	CS_SS_PROCESSED		43
177 #define	CS_PEERADR		44
178 #define	CS_PEERMODE		45
179 #define	CS_BCASTDELAY		46
180 #define	CS_AUTHDELAY		47
181 #define	CS_AUTHKEYS		48
182 #define	CS_AUTHFREEK		49
183 #define	CS_AUTHKLOOKUPS		50
184 #define	CS_AUTHKNOTFOUND	51
185 #define	CS_AUTHKUNCACHED	52
186 #define	CS_AUTHKEXPIRED		53
187 #define	CS_AUTHENCRYPTS		54
188 #define	CS_AUTHDECRYPTS		55
189 #define	CS_AUTHRESET		56
190 #define	CS_K_OFFSET		57
191 #define	CS_K_FREQ		58
192 #define	CS_K_MAXERR		59
193 #define	CS_K_ESTERR		60
194 #define	CS_K_STFLAGS		61
195 #define	CS_K_TIMECONST		62
196 #define	CS_K_PRECISION		63
197 #define	CS_K_FREQTOL		64
198 #define	CS_K_PPS_FREQ		65
199 #define	CS_K_PPS_STABIL		66
200 #define	CS_K_PPS_JITTER		67
201 #define	CS_K_PPS_CALIBDUR	68
202 #define	CS_K_PPS_CALIBS		69
203 #define	CS_K_PPS_CALIBERRS	70
204 #define	CS_K_PPS_JITEXC		71
205 #define	CS_K_PPS_STBEXC		72
206 #define	CS_KERN_FIRST		CS_K_OFFSET
207 #define	CS_KERN_LAST		CS_K_PPS_STBEXC
208 #define	CS_IOSTATS_RESET	73
209 #define	CS_TOTAL_RBUF		74
210 #define	CS_FREE_RBUF		75
211 #define	CS_USED_RBUF		76
212 #define	CS_RBUF_LOWATER		77
213 #define	CS_IO_DROPPED		78
214 #define	CS_IO_IGNORED		79
215 #define	CS_IO_RECEIVED		80
216 #define	CS_IO_SENT		81
217 #define	CS_IO_SENDFAILED	82
218 #define	CS_IO_WAKEUPS		83
219 #define	CS_IO_GOODWAKEUPS	84
220 #define	CS_TIMERSTATS_RESET	85
221 #define	CS_TIMER_OVERRUNS	86
222 #define	CS_TIMER_XMTS		87
223 #define	CS_FUZZ			88
224 #define	CS_WANDER_THRESH	89
225 #define	CS_LEAPSMEARINTV	90
226 #define	CS_LEAPSMEAROFFS	91
227 #define	CS_MAX_NOAUTOKEY	CS_LEAPSMEAROFFS
228 #ifdef AUTOKEY
229 #define	CS_FLAGS		(1 + CS_MAX_NOAUTOKEY)
230 #define	CS_HOST			(2 + CS_MAX_NOAUTOKEY)
231 #define	CS_PUBLIC		(3 + CS_MAX_NOAUTOKEY)
232 #define	CS_CERTIF		(4 + CS_MAX_NOAUTOKEY)
233 #define	CS_SIGNATURE		(5 + CS_MAX_NOAUTOKEY)
234 #define	CS_REVTIME		(6 + CS_MAX_NOAUTOKEY)
235 #define	CS_IDENT		(7 + CS_MAX_NOAUTOKEY)
236 #define	CS_DIGEST		(8 + CS_MAX_NOAUTOKEY)
237 #define	CS_MAXCODE		CS_DIGEST
238 #else	/* !AUTOKEY follows */
239 #define	CS_MAXCODE		CS_MAX_NOAUTOKEY
240 #endif	/* !AUTOKEY */
241 
242 /*
243  * Peer variables we understand
244  */
245 #define	CP_CONFIG		1
246 #define	CP_AUTHENABLE		2
247 #define	CP_AUTHENTIC		3
248 #define	CP_SRCADR		4
249 #define	CP_SRCPORT		5
250 #define	CP_DSTADR		6
251 #define	CP_DSTPORT		7
252 #define	CP_LEAP			8
253 #define	CP_HMODE		9
254 #define	CP_STRATUM		10
255 #define	CP_PPOLL		11
256 #define	CP_HPOLL		12
257 #define	CP_PRECISION		13
258 #define	CP_ROOTDELAY		14
259 #define	CP_ROOTDISPERSION	15
260 #define	CP_REFID		16
261 #define	CP_REFTIME		17
262 #define	CP_ORG			18
263 #define	CP_REC			19
264 #define	CP_XMT			20
265 #define	CP_REACH		21
266 #define	CP_UNREACH		22
267 #define	CP_TIMER		23
268 #define	CP_DELAY		24
269 #define	CP_OFFSET		25
270 #define	CP_JITTER		26
271 #define	CP_DISPERSION		27
272 #define	CP_KEYID		28
273 #define	CP_FILTDELAY		29
274 #define	CP_FILTOFFSET		30
275 #define	CP_PMODE		31
276 #define	CP_RECEIVED		32
277 #define	CP_SENT			33
278 #define	CP_FILTERROR		34
279 #define	CP_FLASH		35
280 #define	CP_TTL			36
281 #define	CP_VARLIST		37
282 #define	CP_IN			38
283 #define	CP_OUT			39
284 #define	CP_RATE			40
285 #define	CP_BIAS			41
286 #define	CP_SRCHOST		42
287 #define	CP_TIMEREC		43
288 #define	CP_TIMEREACH		44
289 #define	CP_BADAUTH		45
290 #define	CP_BOGUSORG		46
291 #define	CP_OLDPKT		47
292 #define	CP_SELDISP		48
293 #define	CP_SELBROKEN		49
294 #define	CP_CANDIDATE		50
295 #define	CP_MAX_NOAUTOKEY	CP_CANDIDATE
296 #ifdef AUTOKEY
297 #define	CP_FLAGS		(1 + CP_MAX_NOAUTOKEY)
298 #define	CP_HOST			(2 + CP_MAX_NOAUTOKEY)
299 #define	CP_VALID		(3 + CP_MAX_NOAUTOKEY)
300 #define	CP_INITSEQ		(4 + CP_MAX_NOAUTOKEY)
301 #define	CP_INITKEY		(5 + CP_MAX_NOAUTOKEY)
302 #define	CP_INITTSP		(6 + CP_MAX_NOAUTOKEY)
303 #define	CP_SIGNATURE		(7 + CP_MAX_NOAUTOKEY)
304 #define	CP_IDENT		(8 + CP_MAX_NOAUTOKEY)
305 #define	CP_MAXCODE		CP_IDENT
306 #else	/* !AUTOKEY follows */
307 #define	CP_MAXCODE		CP_MAX_NOAUTOKEY
308 #endif	/* !AUTOKEY */
309 
310 /*
311  * Clock variables we understand
312  */
313 #define	CC_TYPE		1
314 #define	CC_TIMECODE	2
315 #define	CC_POLL		3
316 #define	CC_NOREPLY	4
317 #define	CC_BADFORMAT	5
318 #define	CC_BADDATA	6
319 #define	CC_FUDGETIME1	7
320 #define	CC_FUDGETIME2	8
321 #define	CC_FUDGEVAL1	9
322 #define	CC_FUDGEVAL2	10
323 #define	CC_FLAGS	11
324 #define	CC_DEVICE	12
325 #define	CC_VARLIST	13
326 #define	CC_MAXCODE	CC_VARLIST
327 
328 /*
329  * System variable values. The array can be indexed by the variable
330  * index to find the textual name.
331  */
332 static const struct ctl_var sys_var[] = {
333 	{ 0,		PADDING, "" },		/* 0 */
334 	{ CS_LEAP,	RW, "leap" },		/* 1 */
335 	{ CS_STRATUM,	RO, "stratum" },	/* 2 */
336 	{ CS_PRECISION, RO, "precision" },	/* 3 */
337 	{ CS_ROOTDELAY, RO, "rootdelay" },	/* 4 */
338 	{ CS_ROOTDISPERSION, RO, "rootdisp" },	/* 5 */
339 	{ CS_REFID,	RO, "refid" },		/* 6 */
340 	{ CS_REFTIME,	RO, "reftime" },	/* 7 */
341 	{ CS_POLL,	RO, "tc" },		/* 8 */
342 	{ CS_PEERID,	RO, "peer" },		/* 9 */
343 	{ CS_OFFSET,	RO, "offset" },		/* 10 */
344 	{ CS_DRIFT,	RO, "frequency" },	/* 11 */
345 	{ CS_JITTER,	RO, "sys_jitter" },	/* 12 */
346 	{ CS_ERROR,	RO, "clk_jitter" },	/* 13 */
347 	{ CS_CLOCK,	RO, "clock" },		/* 14 */
348 	{ CS_PROCESSOR, RO, "processor" },	/* 15 */
349 	{ CS_SYSTEM,	RO, "system" },		/* 16 */
350 	{ CS_VERSION,	RO, "version" },	/* 17 */
351 	{ CS_STABIL,	RO, "clk_wander" },	/* 18 */
352 	{ CS_VARLIST,	RO, "sys_var_list" },	/* 19 */
353 	{ CS_TAI,	RO, "tai" },		/* 20 */
354 	{ CS_LEAPTAB,	RO, "leapsec" },	/* 21 */
355 	{ CS_LEAPEND,	RO, "expire" },		/* 22 */
356 	{ CS_RATE,	RO, "mintc" },		/* 23 */
357 	{ CS_MRU_ENABLED,	RO, "mru_enabled" },	/* 24 */
358 	{ CS_MRU_DEPTH,		RO, "mru_depth" },	/* 25 */
359 	{ CS_MRU_DEEPEST,	RO, "mru_deepest" },	/* 26 */
360 	{ CS_MRU_MINDEPTH,	RO, "mru_mindepth" },	/* 27 */
361 	{ CS_MRU_MAXAGE,	RO, "mru_maxage" },	/* 28 */
362 	{ CS_MRU_MAXDEPTH,	RO, "mru_maxdepth" },	/* 29 */
363 	{ CS_MRU_MEM,		RO, "mru_mem" },	/* 30 */
364 	{ CS_MRU_MAXMEM,	RO, "mru_maxmem" },	/* 31 */
365 	{ CS_SS_UPTIME,		RO, "ss_uptime" },	/* 32 */
366 	{ CS_SS_RESET,		RO, "ss_reset" },	/* 33 */
367 	{ CS_SS_RECEIVED,	RO, "ss_received" },	/* 34 */
368 	{ CS_SS_THISVER,	RO, "ss_thisver" },	/* 35 */
369 	{ CS_SS_OLDVER,		RO, "ss_oldver" },	/* 36 */
370 	{ CS_SS_BADFORMAT,	RO, "ss_badformat" },	/* 37 */
371 	{ CS_SS_BADAUTH,	RO, "ss_badauth" },	/* 38 */
372 	{ CS_SS_DECLINED,	RO, "ss_declined" },	/* 39 */
373 	{ CS_SS_RESTRICTED,	RO, "ss_restricted" },	/* 40 */
374 	{ CS_SS_LIMITED,	RO, "ss_limited" },	/* 41 */
375 	{ CS_SS_KODSENT,	RO, "ss_kodsent" },	/* 42 */
376 	{ CS_SS_PROCESSED,	RO, "ss_processed" },	/* 43 */
377 	{ CS_PEERADR,		RO, "peeradr" },	/* 44 */
378 	{ CS_PEERMODE,		RO, "peermode" },	/* 45 */
379 	{ CS_BCASTDELAY,	RO, "bcastdelay" },	/* 46 */
380 	{ CS_AUTHDELAY,		RO, "authdelay" },	/* 47 */
381 	{ CS_AUTHKEYS,		RO, "authkeys" },	/* 48 */
382 	{ CS_AUTHFREEK,		RO, "authfreek" },	/* 49 */
383 	{ CS_AUTHKLOOKUPS,	RO, "authklookups" },	/* 50 */
384 	{ CS_AUTHKNOTFOUND,	RO, "authknotfound" },	/* 51 */
385 	{ CS_AUTHKUNCACHED,	RO, "authkuncached" },	/* 52 */
386 	{ CS_AUTHKEXPIRED,	RO, "authkexpired" },	/* 53 */
387 	{ CS_AUTHENCRYPTS,	RO, "authencrypts" },	/* 54 */
388 	{ CS_AUTHDECRYPTS,	RO, "authdecrypts" },	/* 55 */
389 	{ CS_AUTHRESET,		RO, "authreset" },	/* 56 */
390 	{ CS_K_OFFSET,		RO, "koffset" },	/* 57 */
391 	{ CS_K_FREQ,		RO, "kfreq" },		/* 58 */
392 	{ CS_K_MAXERR,		RO, "kmaxerr" },	/* 59 */
393 	{ CS_K_ESTERR,		RO, "kesterr" },	/* 60 */
394 	{ CS_K_STFLAGS,		RO, "kstflags" },	/* 61 */
395 	{ CS_K_TIMECONST,	RO, "ktimeconst" },	/* 62 */
396 	{ CS_K_PRECISION,	RO, "kprecis" },	/* 63 */
397 	{ CS_K_FREQTOL,		RO, "kfreqtol" },	/* 64 */
398 	{ CS_K_PPS_FREQ,	RO, "kppsfreq" },	/* 65 */
399 	{ CS_K_PPS_STABIL,	RO, "kppsstab" },	/* 66 */
400 	{ CS_K_PPS_JITTER,	RO, "kppsjitter" },	/* 67 */
401 	{ CS_K_PPS_CALIBDUR,	RO, "kppscalibdur" },	/* 68 */
402 	{ CS_K_PPS_CALIBS,	RO, "kppscalibs" },	/* 69 */
403 	{ CS_K_PPS_CALIBERRS,	RO, "kppscaliberrs" },	/* 70 */
404 	{ CS_K_PPS_JITEXC,	RO, "kppsjitexc" },	/* 71 */
405 	{ CS_K_PPS_STBEXC,	RO, "kppsstbexc" },	/* 72 */
406 	{ CS_IOSTATS_RESET,	RO, "iostats_reset" },	/* 73 */
407 	{ CS_TOTAL_RBUF,	RO, "total_rbuf" },	/* 74 */
408 	{ CS_FREE_RBUF,		RO, "free_rbuf" },	/* 75 */
409 	{ CS_USED_RBUF,		RO, "used_rbuf" },	/* 76 */
410 	{ CS_RBUF_LOWATER,	RO, "rbuf_lowater" },	/* 77 */
411 	{ CS_IO_DROPPED,	RO, "io_dropped" },	/* 78 */
412 	{ CS_IO_IGNORED,	RO, "io_ignored" },	/* 79 */
413 	{ CS_IO_RECEIVED,	RO, "io_received" },	/* 80 */
414 	{ CS_IO_SENT,		RO, "io_sent" },	/* 81 */
415 	{ CS_IO_SENDFAILED,	RO, "io_sendfailed" },	/* 82 */
416 	{ CS_IO_WAKEUPS,	RO, "io_wakeups" },	/* 83 */
417 	{ CS_IO_GOODWAKEUPS,	RO, "io_goodwakeups" },	/* 84 */
418 	{ CS_TIMERSTATS_RESET,	RO, "timerstats_reset" },/* 85 */
419 	{ CS_TIMER_OVERRUNS,	RO, "timer_overruns" },	/* 86 */
420 	{ CS_TIMER_XMTS,	RO, "timer_xmts" },	/* 87 */
421 	{ CS_FUZZ,		RO, "fuzz" },		/* 88 */
422 	{ CS_WANDER_THRESH,	RO, "clk_wander_threshold" }, /* 89 */
423 
424 	{ CS_LEAPSMEARINTV,	RO, "leapsmearinterval" },    /* 90 */
425 	{ CS_LEAPSMEAROFFS,	RO, "leapsmearoffset" },      /* 91 */
426 
427 #ifdef AUTOKEY
428 	{ CS_FLAGS,	RO, "flags" },		/* 1 + CS_MAX_NOAUTOKEY */
429 	{ CS_HOST,	RO, "host" },		/* 2 + CS_MAX_NOAUTOKEY */
430 	{ CS_PUBLIC,	RO, "update" },		/* 3 + CS_MAX_NOAUTOKEY */
431 	{ CS_CERTIF,	RO, "cert" },		/* 4 + CS_MAX_NOAUTOKEY */
432 	{ CS_SIGNATURE,	RO, "signature" },	/* 5 + CS_MAX_NOAUTOKEY */
433 	{ CS_REVTIME,	RO, "until" },		/* 6 + CS_MAX_NOAUTOKEY */
434 	{ CS_IDENT,	RO, "ident" },		/* 7 + CS_MAX_NOAUTOKEY */
435 	{ CS_DIGEST,	RO, "digest" },		/* 8 + CS_MAX_NOAUTOKEY */
436 #endif	/* AUTOKEY */
437 	{ 0,		EOV, "" }		/* 87/95 */
438 };
439 
440 static struct ctl_var *ext_sys_var = NULL;
441 
442 /*
443  * System variables we print by default (in fuzzball order,
444  * more-or-less)
445  */
446 static const u_char def_sys_var[] = {
447 	CS_VERSION,
448 	CS_PROCESSOR,
449 	CS_SYSTEM,
450 	CS_LEAP,
451 	CS_STRATUM,
452 	CS_PRECISION,
453 	CS_ROOTDELAY,
454 	CS_ROOTDISPERSION,
455 	CS_REFID,
456 	CS_REFTIME,
457 	CS_CLOCK,
458 	CS_PEERID,
459 	CS_POLL,
460 	CS_RATE,
461 	CS_OFFSET,
462 	CS_DRIFT,
463 	CS_JITTER,
464 	CS_ERROR,
465 	CS_STABIL,
466 	CS_TAI,
467 	CS_LEAPTAB,
468 	CS_LEAPEND,
469 	CS_LEAPSMEARINTV,
470 	CS_LEAPSMEAROFFS,
471 #ifdef AUTOKEY
472 	CS_HOST,
473 	CS_IDENT,
474 	CS_FLAGS,
475 	CS_DIGEST,
476 	CS_SIGNATURE,
477 	CS_PUBLIC,
478 	CS_CERTIF,
479 #endif	/* AUTOKEY */
480 	0
481 };
482 
483 
484 /*
485  * Peer variable list
486  */
487 static const struct ctl_var peer_var[] = {
488 	{ 0,		PADDING, "" },		/* 0 */
489 	{ CP_CONFIG,	RO, "config" },		/* 1 */
490 	{ CP_AUTHENABLE, RO,	"authenable" },	/* 2 */
491 	{ CP_AUTHENTIC, RO, "authentic" },	/* 3 */
492 	{ CP_SRCADR,	RO, "srcadr" },		/* 4 */
493 	{ CP_SRCPORT,	RO, "srcport" },	/* 5 */
494 	{ CP_DSTADR,	RO, "dstadr" },		/* 6 */
495 	{ CP_DSTPORT,	RO, "dstport" },	/* 7 */
496 	{ CP_LEAP,	RO, "leap" },		/* 8 */
497 	{ CP_HMODE,	RO, "hmode" },		/* 9 */
498 	{ CP_STRATUM,	RO, "stratum" },	/* 10 */
499 	{ CP_PPOLL,	RO, "ppoll" },		/* 11 */
500 	{ CP_HPOLL,	RO, "hpoll" },		/* 12 */
501 	{ CP_PRECISION,	RO, "precision" },	/* 13 */
502 	{ CP_ROOTDELAY,	RO, "rootdelay" },	/* 14 */
503 	{ CP_ROOTDISPERSION, RO, "rootdisp" },	/* 15 */
504 	{ CP_REFID,	RO, "refid" },		/* 16 */
505 	{ CP_REFTIME,	RO, "reftime" },	/* 17 */
506 	{ CP_ORG,	RO, "org" },		/* 18 */
507 	{ CP_REC,	RO, "rec" },		/* 19 */
508 	{ CP_XMT,	RO, "xleave" },		/* 20 */
509 	{ CP_REACH,	RO, "reach" },		/* 21 */
510 	{ CP_UNREACH,	RO, "unreach" },	/* 22 */
511 	{ CP_TIMER,	RO, "timer" },		/* 23 */
512 	{ CP_DELAY,	RO, "delay" },		/* 24 */
513 	{ CP_OFFSET,	RO, "offset" },		/* 25 */
514 	{ CP_JITTER,	RO, "jitter" },		/* 26 */
515 	{ CP_DISPERSION, RO, "dispersion" },	/* 27 */
516 	{ CP_KEYID,	RO, "keyid" },		/* 28 */
517 	{ CP_FILTDELAY,	RO, "filtdelay" },	/* 29 */
518 	{ CP_FILTOFFSET, RO, "filtoffset" },	/* 30 */
519 	{ CP_PMODE,	RO, "pmode" },		/* 31 */
520 	{ CP_RECEIVED,	RO, "received"},	/* 32 */
521 	{ CP_SENT,	RO, "sent" },		/* 33 */
522 	{ CP_FILTERROR,	RO, "filtdisp" },	/* 34 */
523 	{ CP_FLASH,	RO, "flash" },		/* 35 */
524 	{ CP_TTL,	RO, "ttl" },		/* 36 */
525 	{ CP_VARLIST,	RO, "peer_var_list" },	/* 37 */
526 	{ CP_IN,	RO, "in" },		/* 38 */
527 	{ CP_OUT,	RO, "out" },		/* 39 */
528 	{ CP_RATE,	RO, "headway" },	/* 40 */
529 	{ CP_BIAS,	RO, "bias" },		/* 41 */
530 	{ CP_SRCHOST,	RO, "srchost" },	/* 42 */
531 	{ CP_TIMEREC,	RO, "timerec" },	/* 43 */
532 	{ CP_TIMEREACH,	RO, "timereach" },	/* 44 */
533 	{ CP_BADAUTH,	RO, "badauth" },	/* 45 */
534 	{ CP_BOGUSORG,	RO, "bogusorg" },	/* 46 */
535 	{ CP_OLDPKT,	RO, "oldpkt" },		/* 47 */
536 	{ CP_SELDISP,	RO, "seldisp" },	/* 48 */
537 	{ CP_SELBROKEN,	RO, "selbroken" },	/* 49 */
538 	{ CP_CANDIDATE, RO, "candidate" },	/* 50 */
539 #ifdef AUTOKEY
540 	{ CP_FLAGS,	RO, "flags" },		/* 1 + CP_MAX_NOAUTOKEY */
541 	{ CP_HOST,	RO, "host" },		/* 2 + CP_MAX_NOAUTOKEY */
542 	{ CP_VALID,	RO, "valid" },		/* 3 + CP_MAX_NOAUTOKEY */
543 	{ CP_INITSEQ,	RO, "initsequence" },	/* 4 + CP_MAX_NOAUTOKEY */
544 	{ CP_INITKEY,	RO, "initkey" },	/* 5 + CP_MAX_NOAUTOKEY */
545 	{ CP_INITTSP,	RO, "timestamp" },	/* 6 + CP_MAX_NOAUTOKEY */
546 	{ CP_SIGNATURE,	RO, "signature" },	/* 7 + CP_MAX_NOAUTOKEY */
547 	{ CP_IDENT,	RO, "ident" },		/* 8 + CP_MAX_NOAUTOKEY */
548 #endif	/* AUTOKEY */
549 	{ 0,		EOV, "" }		/* 50/58 */
550 };
551 
552 
553 /*
554  * Peer variables we print by default
555  */
556 static const u_char def_peer_var[] = {
557 	CP_SRCADR,
558 	CP_SRCPORT,
559 	CP_SRCHOST,
560 	CP_DSTADR,
561 	CP_DSTPORT,
562 	CP_OUT,
563 	CP_IN,
564 	CP_LEAP,
565 	CP_STRATUM,
566 	CP_PRECISION,
567 	CP_ROOTDELAY,
568 	CP_ROOTDISPERSION,
569 	CP_REFID,
570 	CP_REFTIME,
571 	CP_REC,
572 	CP_REACH,
573 	CP_UNREACH,
574 	CP_HMODE,
575 	CP_PMODE,
576 	CP_HPOLL,
577 	CP_PPOLL,
578 	CP_RATE,
579 	CP_FLASH,
580 	CP_KEYID,
581 	CP_TTL,
582 	CP_OFFSET,
583 	CP_DELAY,
584 	CP_DISPERSION,
585 	CP_JITTER,
586 	CP_XMT,
587 	CP_BIAS,
588 	CP_FILTDELAY,
589 	CP_FILTOFFSET,
590 	CP_FILTERROR,
591 #ifdef AUTOKEY
592 	CP_HOST,
593 	CP_FLAGS,
594 	CP_SIGNATURE,
595 	CP_VALID,
596 	CP_INITSEQ,
597 	CP_IDENT,
598 #endif	/* AUTOKEY */
599 	0
600 };
601 
602 
603 #ifdef REFCLOCK
604 /*
605  * Clock variable list
606  */
607 static const struct ctl_var clock_var[] = {
608 	{ 0,		PADDING, "" },		/* 0 */
609 	{ CC_TYPE,	RO, "type" },		/* 1 */
610 	{ CC_TIMECODE,	RO, "timecode" },	/* 2 */
611 	{ CC_POLL,	RO, "poll" },		/* 3 */
612 	{ CC_NOREPLY,	RO, "noreply" },	/* 4 */
613 	{ CC_BADFORMAT, RO, "badformat" },	/* 5 */
614 	{ CC_BADDATA,	RO, "baddata" },	/* 6 */
615 	{ CC_FUDGETIME1, RO, "fudgetime1" },	/* 7 */
616 	{ CC_FUDGETIME2, RO, "fudgetime2" },	/* 8 */
617 	{ CC_FUDGEVAL1, RO, "stratum" },	/* 9 */
618 	{ CC_FUDGEVAL2, RO, "refid" },		/* 10 */
619 	{ CC_FLAGS,	RO, "flags" },		/* 11 */
620 	{ CC_DEVICE,	RO, "device" },		/* 12 */
621 	{ CC_VARLIST,	RO, "clock_var_list" },	/* 13 */
622 	{ 0,		EOV, ""  }		/* 14 */
623 };
624 
625 
626 /*
627  * Clock variables printed by default
628  */
629 static const u_char def_clock_var[] = {
630 	CC_DEVICE,
631 	CC_TYPE,	/* won't be output if device = known */
632 	CC_TIMECODE,
633 	CC_POLL,
634 	CC_NOREPLY,
635 	CC_BADFORMAT,
636 	CC_BADDATA,
637 	CC_FUDGETIME1,
638 	CC_FUDGETIME2,
639 	CC_FUDGEVAL1,
640 	CC_FUDGEVAL2,
641 	CC_FLAGS,
642 	0
643 };
644 #endif
645 
646 /*
647  * MRU string constants shared by send_mru_entry() and read_mru_list().
648  */
649 static const char addr_fmt[] =		"addr.%d";
650 static const char last_fmt[] =		"last.%d";
651 
652 /*
653  * System and processor definitions.
654  */
655 #ifndef HAVE_UNAME
656 # ifndef STR_SYSTEM
657 #  define		STR_SYSTEM	"UNIX"
658 # endif
659 # ifndef STR_PROCESSOR
660 #  define		STR_PROCESSOR	"unknown"
661 # endif
662 
663 static const char str_system[] = STR_SYSTEM;
664 static const char str_processor[] = STR_PROCESSOR;
665 #else
666 # include <sys/utsname.h>
667 static struct utsname utsnamebuf;
668 #endif /* HAVE_UNAME */
669 
670 /*
671  * Trap structures. We only allow a few of these, and send a copy of
672  * each async message to each live one. Traps time out after an hour, it
673  * is up to the trap receipient to keep resetting it to avoid being
674  * timed out.
675  */
676 /* ntp_request.c */
677 struct ctl_trap ctl_traps[CTL_MAXTRAPS];
678 int num_ctl_traps;
679 
680 /*
681  * Type bits, for ctlsettrap() call.
682  */
683 #define TRAP_TYPE_CONFIG	0	/* used by configuration code */
684 #define TRAP_TYPE_PRIO		1	/* priority trap */
685 #define TRAP_TYPE_NONPRIO	2	/* nonpriority trap */
686 
687 
688 /*
689  * List relating reference clock types to control message time sources.
690  * Index by the reference clock type. This list will only be used iff
691  * the reference clock driver doesn't set peer->sstclktype to something
692  * different than CTL_SST_TS_UNSPEC.
693  */
694 #ifdef REFCLOCK
695 static const u_char clocktypes[] = {
696 	CTL_SST_TS_NTP,		/* REFCLK_NONE (0) */
697 	CTL_SST_TS_LOCAL,	/* REFCLK_LOCALCLOCK (1) */
698 	CTL_SST_TS_UHF,		/* deprecated REFCLK_GPS_TRAK (2) */
699 	CTL_SST_TS_HF,		/* REFCLK_WWV_PST (3) */
700 	CTL_SST_TS_LF,		/* REFCLK_WWVB_SPECTRACOM (4) */
701 	CTL_SST_TS_UHF,		/* REFCLK_TRUETIME (5) */
702 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_AUDIO (6) */
703 	CTL_SST_TS_HF,		/* REFCLK_CHU (7) */
704 	CTL_SST_TS_LF,		/* REFCLOCK_PARSE (default) (8) */
705 	CTL_SST_TS_LF,		/* REFCLK_GPS_MX4200 (9) */
706 	CTL_SST_TS_UHF,		/* REFCLK_GPS_AS2201 (10) */
707 	CTL_SST_TS_UHF,		/* REFCLK_GPS_ARBITER (11) */
708 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_TPRO (12) */
709 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_LEITCH (13) */
710 	CTL_SST_TS_LF,		/* deprecated REFCLK_MSF_EES (14) */
711 	CTL_SST_TS_NTP,		/* not used (15) */
712 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_BANCOMM (16) */
713 	CTL_SST_TS_UHF,		/* REFCLK_GPS_DATU (17) */
714 	CTL_SST_TS_TELEPHONE,	/* REFCLK_NIST_ACTS (18) */
715 	CTL_SST_TS_HF,		/* REFCLK_WWV_HEATH (19) */
716 	CTL_SST_TS_UHF,		/* REFCLK_GPS_NMEA (20) */
717 	CTL_SST_TS_UHF,		/* REFCLK_GPS_VME (21) */
718 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_PPS (22) */
719 	CTL_SST_TS_NTP,		/* not used (23) */
720 	CTL_SST_TS_NTP,		/* not used (24) */
721 	CTL_SST_TS_NTP,		/* not used (25) */
722 	CTL_SST_TS_UHF,		/* REFCLK_GPS_HP (26) */
723 	CTL_SST_TS_LF,		/* REFCLK_ARCRON_MSF (27) */
724 	CTL_SST_TS_UHF,		/* REFCLK_SHM (28) */
725 	CTL_SST_TS_UHF,		/* REFCLK_PALISADE (29) */
726 	CTL_SST_TS_UHF,		/* REFCLK_ONCORE (30) */
727 	CTL_SST_TS_UHF,		/* REFCLK_JUPITER (31) */
728 	CTL_SST_TS_LF,		/* REFCLK_CHRONOLOG (32) */
729 	CTL_SST_TS_LF,		/* REFCLK_DUMBCLOCK (33) */
730 	CTL_SST_TS_LF,		/* REFCLK_ULINK (34) */
731 	CTL_SST_TS_LF,		/* REFCLK_PCF (35) */
732 	CTL_SST_TS_HF,		/* REFCLK_WWV (36) */
733 	CTL_SST_TS_LF,		/* REFCLK_FG (37) */
734 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_SERIAL (38) */
735 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_PCI (39) */
736 	CTL_SST_TS_LF,		/* REFCLK_JJY (40) */
737 	CTL_SST_TS_UHF,		/* REFCLK_TT560 (41) */
738 	CTL_SST_TS_UHF,		/* REFCLK_ZYFER (42) */
739 	CTL_SST_TS_UHF,		/* REFCLK_RIPENCC (43) */
740 	CTL_SST_TS_UHF,		/* REFCLK_NEOCLOCK4X (44) */
741 	CTL_SST_TS_UHF,		/* REFCLK_TSYNCPCI (45) */
742 	CTL_SST_TS_UHF		/* REFCLK_GPSDJSON (46) */
743 };
744 #endif  /* REFCLOCK */
745 
746 
747 /*
748  * Keyid used for authenticating write requests.
749  */
750 keyid_t ctl_auth_keyid;
751 
752 /*
753  * We keep track of the last error reported by the system internally
754  */
755 static	u_char ctl_sys_last_event;
756 static	u_char ctl_sys_num_events;
757 
758 
759 /*
760  * Statistic counters to keep track of requests and responses.
761  */
762 u_long ctltimereset;		/* time stats reset */
763 u_long numctlreq;		/* number of requests we've received */
764 u_long numctlbadpkts;		/* number of bad control packets */
765 u_long numctlresponses;		/* number of resp packets sent with data */
766 u_long numctlfrags;		/* number of fragments sent */
767 u_long numctlerrors;		/* number of error responses sent */
768 u_long numctltooshort;		/* number of too short input packets */
769 u_long numctlinputresp;		/* number of responses on input */
770 u_long numctlinputfrag;		/* number of fragments on input */
771 u_long numctlinputerr;		/* number of input pkts with err bit set */
772 u_long numctlbadoffset;		/* number of input pkts with nonzero offset */
773 u_long numctlbadversion;	/* number of input pkts with unknown version */
774 u_long numctldatatooshort;	/* data too short for count */
775 u_long numctlbadop;		/* bad op code found in packet */
776 u_long numasyncmsgs;		/* number of async messages we've sent */
777 
778 /*
779  * Response packet used by these routines. Also some state information
780  * so that we can handle packet formatting within a common set of
781  * subroutines.  Note we try to enter data in place whenever possible,
782  * but the need to set the more bit correctly means we occasionally
783  * use the extra buffer and copy.
784  */
785 static struct ntp_control rpkt;
786 static u_char	res_version;
787 static u_char	res_opcode;
788 static associd_t res_associd;
789 static u_short	res_frags;	/* datagrams in this response */
790 static int	res_offset;	/* offset of payload in response */
791 static u_char * datapt;
792 static u_char * dataend;
793 static int	datalinelen;
794 static int	datasent;	/* flag to avoid initial ", " */
795 static int	datanotbinflag;
796 static sockaddr_u *rmt_addr;
797 static struct interface *lcl_inter;
798 
799 static u_char	res_authenticate;
800 static u_char	res_authokay;
801 static keyid_t	res_keyid;
802 
803 #define MAXDATALINELEN	(72)
804 
805 static u_char	res_async;	/* sending async trap response? */
806 
807 /*
808  * Pointers for saving state when decoding request packets
809  */
810 static	char *reqpt;
811 static	char *reqend;
812 
813 #ifndef MIN
814 #define MIN(a, b) (((a) <= (b)) ? (a) : (b))
815 #endif
816 
817 /*
818  * init_control - initialize request data
819  */
820 void
821 init_control(void)
822 {
823 	size_t i;
824 
825 #ifdef HAVE_UNAME
826 	uname(&utsnamebuf);
827 #endif /* HAVE_UNAME */
828 
829 	ctl_clr_stats();
830 
831 	ctl_auth_keyid = 0;
832 	ctl_sys_last_event = EVNT_UNSPEC;
833 	ctl_sys_num_events = 0;
834 
835 	num_ctl_traps = 0;
836 	for (i = 0; i < COUNTOF(ctl_traps); i++)
837 		ctl_traps[i].tr_flags = 0;
838 }
839 
840 
841 /*
842  * ctl_error - send an error response for the current request
843  */
844 static void
845 ctl_error(
846 	u_char errcode
847 	)
848 {
849 	size_t		maclen;
850 
851 	numctlerrors++;
852 	DPRINTF(3, ("sending control error %u\n", errcode));
853 
854 	/*
855 	 * Fill in the fields. We assume rpkt.sequence and rpkt.associd
856 	 * have already been filled in.
857 	 */
858 	rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
859 			(res_opcode & CTL_OP_MASK);
860 	rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
861 	rpkt.count = 0;
862 
863 	/*
864 	 * send packet and bump counters
865 	 */
866 	if (res_authenticate && sys_authenticate) {
867 		maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
868 				     CTL_HEADER_LEN);
869 		sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
870 			CTL_HEADER_LEN + maclen);
871 	} else
872 		sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
873 			CTL_HEADER_LEN);
874 }
875 
876 /*
877  * save_config - Implements ntpq -c "saveconfig <filename>"
878  *		 Writes current configuration including any runtime
879  *		 changes by ntpq's :config or config-from-file
880  */
881 void
882 save_config(
883 	struct recvbuf *rbufp,
884 	int restrict_mask
885 	)
886 {
887 	/* block directory traversal by searching for characters that
888 	 * indicate directory components in a file path.
889 	 *
890 	 * Conceptually we should be searching for DIRSEP in filename,
891 	 * however Windows actually recognizes both forward and
892 	 * backslashes as equivalent directory separators at the API
893 	 * level.  On POSIX systems we could allow '\\' but such
894 	 * filenames are tricky to manipulate from a shell, so just
895 	 * reject both types of slashes on all platforms.
896 	 */
897 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
898 	static const char * illegal_in_filename =
899 #if defined(VMS)
900 	    ":[]"	/* do not allow drive and path components here */
901 #elif defined(SYS_WINNT)
902 	    ":\\/"	/* path and drive separators */
903 #else
904 	    "\\/"	/* separator and critical char for POSIX */
905 #endif
906 	    ;
907 
908 
909 	char reply[128];
910 #ifdef SAVECONFIG
911 	char filespec[128];
912 	char filename[128];
913 	char fullpath[512];
914 	const char savedconfig_eq[] = "savedconfig=";
915 	char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
916 	time_t now;
917 	int fd;
918 	FILE *fptr;
919 #endif
920 
921 	if (RES_NOMODIFY & restrict_mask) {
922 		snprintf(reply, sizeof(reply),
923 			 "saveconfig prohibited by restrict ... nomodify");
924 		ctl_putdata(reply, strlen(reply), 0);
925 		ctl_flushpkt(0);
926 		NLOG(NLOG_SYSINFO)
927 			msyslog(LOG_NOTICE,
928 				"saveconfig from %s rejected due to nomodify restriction",
929 				stoa(&rbufp->recv_srcadr));
930 		sys_restricted++;
931 		return;
932 	}
933 
934 #ifdef SAVECONFIG
935 	if (NULL == saveconfigdir) {
936 		snprintf(reply, sizeof(reply),
937 			 "saveconfig prohibited, no saveconfigdir configured");
938 		ctl_putdata(reply, strlen(reply), 0);
939 		ctl_flushpkt(0);
940 		NLOG(NLOG_SYSINFO)
941 			msyslog(LOG_NOTICE,
942 				"saveconfig from %s rejected, no saveconfigdir",
943 				stoa(&rbufp->recv_srcadr));
944 		return;
945 	}
946 
947 	if (0 == reqend - reqpt)
948 		return;
949 
950 	strlcpy(filespec, reqpt, sizeof(filespec));
951 	time(&now);
952 
953 	/*
954 	 * allow timestamping of the saved config filename with
955 	 * strftime() format such as:
956 	 *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
957 	 * XXX: Nice feature, but not too safe.
958 	 */
959 	if (0 == strftime(filename, sizeof(filename), filespec,
960 			       localtime(&now)))
961 		strlcpy(filename, filespec, sizeof(filename));
962 
963 	/* block directory/drive traversal */
964 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
965 	if (NULL != strpbrk(filename, illegal_in_filename)) {
966 		snprintf(reply, sizeof(reply),
967 			 "saveconfig does not allow directory in filename");
968 		ctl_putdata(reply, strlen(reply), 0);
969 		ctl_flushpkt(0);
970 		msyslog(LOG_NOTICE,
971 			"saveconfig with path from %s rejected",
972 			stoa(&rbufp->recv_srcadr));
973 		return;
974 	}
975 
976 	snprintf(fullpath, sizeof(fullpath), "%s%s",
977 		 saveconfigdir, filename);
978 
979 	fd = open(fullpath, O_CREAT | O_TRUNC | O_WRONLY,
980 		  S_IRUSR | S_IWUSR);
981 	if (-1 == fd)
982 		fptr = NULL;
983 	else
984 		fptr = fdopen(fd, "w");
985 
986 	if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
987 		snprintf(reply, sizeof(reply),
988 			 "Unable to save configuration to file %s",
989 			 filename);
990 		msyslog(LOG_ERR,
991 			"saveconfig %s from %s failed", filename,
992 			stoa(&rbufp->recv_srcadr));
993 	} else {
994 		snprintf(reply, sizeof(reply),
995 			 "Configuration saved to %s", filename);
996 		msyslog(LOG_NOTICE,
997 			"Configuration saved to %s (requested by %s)",
998 			fullpath, stoa(&rbufp->recv_srcadr));
999 		/*
1000 		 * save the output filename in system variable
1001 		 * savedconfig, retrieved with:
1002 		 *   ntpq -c "rv 0 savedconfig"
1003 		 */
1004 		snprintf(savedconfig, sizeof(savedconfig), "%s%s",
1005 			 savedconfig_eq, filename);
1006 		set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
1007 	}
1008 
1009 	if (NULL != fptr)
1010 		fclose(fptr);
1011 #else	/* !SAVECONFIG follows */
1012 	snprintf(reply, sizeof(reply),
1013 		 "saveconfig unavailable, configured with --disable-saveconfig");
1014 #endif
1015 
1016 	ctl_putdata(reply, strlen(reply), 0);
1017 	ctl_flushpkt(0);
1018 }
1019 
1020 
1021 /*
1022  * process_control - process an incoming control message
1023  */
1024 void
1025 process_control(
1026 	struct recvbuf *rbufp,
1027 	int restrict_mask
1028 	)
1029 {
1030 	struct ntp_control *pkt;
1031 	int req_count;
1032 	int req_data;
1033 	const struct ctl_proc *cc;
1034 	keyid_t *pkid;
1035 	int properlen;
1036 	size_t maclen;
1037 
1038 	DPRINTF(3, ("in process_control()\n"));
1039 
1040 	/*
1041 	 * Save the addresses for error responses
1042 	 */
1043 	numctlreq++;
1044 	rmt_addr = &rbufp->recv_srcadr;
1045 	lcl_inter = rbufp->dstadr;
1046 	pkt = (struct ntp_control *)&rbufp->recv_pkt;
1047 
1048 	/*
1049 	 * If the length is less than required for the header, or
1050 	 * it is a response or a fragment, ignore this.
1051 	 */
1052 	if (rbufp->recv_length < (int)CTL_HEADER_LEN
1053 	    || (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1054 	    || pkt->offset != 0) {
1055 		DPRINTF(1, ("invalid format in control packet\n"));
1056 		if (rbufp->recv_length < (int)CTL_HEADER_LEN)
1057 			numctltooshort++;
1058 		if (CTL_RESPONSE & pkt->r_m_e_op)
1059 			numctlinputresp++;
1060 		if (CTL_MORE & pkt->r_m_e_op)
1061 			numctlinputfrag++;
1062 		if (CTL_ERROR & pkt->r_m_e_op)
1063 			numctlinputerr++;
1064 		if (pkt->offset != 0)
1065 			numctlbadoffset++;
1066 		return;
1067 	}
1068 	res_version = PKT_VERSION(pkt->li_vn_mode);
1069 	if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1070 		DPRINTF(1, ("unknown version %d in control packet\n",
1071 			    res_version));
1072 		numctlbadversion++;
1073 		return;
1074 	}
1075 
1076 	/*
1077 	 * Pull enough data from the packet to make intelligent
1078 	 * responses
1079 	 */
1080 	rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1081 					 MODE_CONTROL);
1082 	res_opcode = pkt->r_m_e_op;
1083 	rpkt.sequence = pkt->sequence;
1084 	rpkt.associd = pkt->associd;
1085 	rpkt.status = 0;
1086 	res_frags = 1;
1087 	res_offset = 0;
1088 	res_associd = htons(pkt->associd);
1089 	res_async = FALSE;
1090 	res_authenticate = FALSE;
1091 	res_keyid = 0;
1092 	res_authokay = FALSE;
1093 	req_count = (int)ntohs(pkt->count);
1094 	datanotbinflag = FALSE;
1095 	datalinelen = 0;
1096 	datasent = 0;
1097 	datapt = rpkt.u.data;
1098 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1099 
1100 	if ((rbufp->recv_length & 0x3) != 0)
1101 		DPRINTF(3, ("Control packet length %d unrounded\n",
1102 			    rbufp->recv_length));
1103 
1104 	/*
1105 	 * We're set up now. Make sure we've got at least enough
1106 	 * incoming data space to match the count.
1107 	 */
1108 	req_data = rbufp->recv_length - CTL_HEADER_LEN;
1109 	if (req_data < req_count || rbufp->recv_length & 0x3) {
1110 		ctl_error(CERR_BADFMT);
1111 		numctldatatooshort++;
1112 		return;
1113 	}
1114 
1115 	properlen = req_count + CTL_HEADER_LEN;
1116 	/* round up proper len to a 8 octet boundary */
1117 
1118 	properlen = (properlen + 7) & ~7;
1119 	maclen = rbufp->recv_length - properlen;
1120 	if ((rbufp->recv_length & 3) == 0 &&
1121 	    maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1122 	    sys_authenticate) {
1123 		res_authenticate = TRUE;
1124 		pkid = (void *)((char *)pkt + properlen);
1125 		res_keyid = ntohl(*pkid);
1126 		DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1127 			    rbufp->recv_length, properlen, res_keyid,
1128 			    maclen));
1129 
1130 		if (!authistrusted(res_keyid))
1131 			DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1132 		else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1133 				     rbufp->recv_length - maclen,
1134 				     maclen)) {
1135 			res_authokay = TRUE;
1136 			DPRINTF(3, ("authenticated okay\n"));
1137 		} else {
1138 			res_keyid = 0;
1139 			DPRINTF(3, ("authentication failed\n"));
1140 		}
1141 	}
1142 
1143 	/*
1144 	 * Set up translate pointers
1145 	 */
1146 	reqpt = (char *)pkt->u.data;
1147 	reqend = reqpt + req_count;
1148 
1149 	/*
1150 	 * Look for the opcode processor
1151 	 */
1152 	for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1153 		if (cc->control_code == res_opcode) {
1154 			DPRINTF(3, ("opcode %d, found command handler\n",
1155 				    res_opcode));
1156 			if (cc->flags == AUTH
1157 			    && (!res_authokay
1158 				|| res_keyid != ctl_auth_keyid)) {
1159 				ctl_error(CERR_PERMISSION);
1160 				return;
1161 			}
1162 			(cc->handler)(rbufp, restrict_mask);
1163 			return;
1164 		}
1165 	}
1166 
1167 	/*
1168 	 * Can't find this one, return an error.
1169 	 */
1170 	numctlbadop++;
1171 	ctl_error(CERR_BADOP);
1172 	return;
1173 }
1174 
1175 
1176 /*
1177  * ctlpeerstatus - return a status word for this peer
1178  */
1179 u_short
1180 ctlpeerstatus(
1181 	register struct peer *p
1182 	)
1183 {
1184 	u_short status;
1185 
1186 	status = p->status;
1187 	if (FLAG_CONFIG & p->flags)
1188 		status |= CTL_PST_CONFIG;
1189 	if (p->keyid)
1190 		status |= CTL_PST_AUTHENABLE;
1191 	if (FLAG_AUTHENTIC & p->flags)
1192 		status |= CTL_PST_AUTHENTIC;
1193 	if (p->reach)
1194 		status |= CTL_PST_REACH;
1195 	if (MDF_TXONLY_MASK & p->cast_flags)
1196 		status |= CTL_PST_BCAST;
1197 
1198 	return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1199 }
1200 
1201 
1202 /*
1203  * ctlclkstatus - return a status word for this clock
1204  */
1205 #ifdef REFCLOCK
1206 static u_short
1207 ctlclkstatus(
1208 	struct refclockstat *pcs
1209 	)
1210 {
1211 	return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1212 }
1213 #endif
1214 
1215 
1216 /*
1217  * ctlsysstatus - return the system status word
1218  */
1219 u_short
1220 ctlsysstatus(void)
1221 {
1222 	register u_char this_clock;
1223 
1224 	this_clock = CTL_SST_TS_UNSPEC;
1225 #ifdef REFCLOCK
1226 	if (sys_peer != NULL) {
1227 		if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1228 			this_clock = sys_peer->sstclktype;
1229 		else if (sys_peer->refclktype < COUNTOF(clocktypes))
1230 			this_clock = clocktypes[sys_peer->refclktype];
1231 	}
1232 #else /* REFCLOCK */
1233 	if (sys_peer != 0)
1234 		this_clock = CTL_SST_TS_NTP;
1235 #endif /* REFCLOCK */
1236 	return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1237 			      ctl_sys_last_event);
1238 }
1239 
1240 
1241 /*
1242  * ctl_flushpkt - write out the current packet and prepare
1243  *		  another if necessary.
1244  */
1245 static void
1246 ctl_flushpkt(
1247 	u_char more
1248 	)
1249 {
1250 	size_t i;
1251 	size_t dlen;
1252 	size_t sendlen;
1253 	size_t maclen;
1254 	size_t totlen;
1255 	keyid_t keyid;
1256 
1257 	dlen = datapt - rpkt.u.data;
1258 	if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1259 		/*
1260 		 * Big hack, output a trailing \r\n
1261 		 */
1262 		*datapt++ = '\r';
1263 		*datapt++ = '\n';
1264 		dlen += 2;
1265 	}
1266 	sendlen = dlen + CTL_HEADER_LEN;
1267 
1268 	/*
1269 	 * Pad to a multiple of 32 bits
1270 	 */
1271 	while (sendlen & 0x3) {
1272 		*datapt++ = '\0';
1273 		sendlen++;
1274 	}
1275 
1276 	/*
1277 	 * Fill in the packet with the current info
1278 	 */
1279 	rpkt.r_m_e_op = CTL_RESPONSE | more |
1280 			(res_opcode & CTL_OP_MASK);
1281 	rpkt.count = htons((u_short)dlen);
1282 	rpkt.offset = htons((u_short)res_offset);
1283 	if (res_async) {
1284 		for (i = 0; i < COUNTOF(ctl_traps); i++) {
1285 			if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1286 				rpkt.li_vn_mode =
1287 				    PKT_LI_VN_MODE(
1288 					sys_leap,
1289 					ctl_traps[i].tr_version,
1290 					MODE_CONTROL);
1291 				rpkt.sequence =
1292 				    htons(ctl_traps[i].tr_sequence);
1293 				sendpkt(&ctl_traps[i].tr_addr,
1294 					ctl_traps[i].tr_localaddr, -4,
1295 					(struct pkt *)&rpkt, sendlen);
1296 				if (!more)
1297 					ctl_traps[i].tr_sequence++;
1298 				numasyncmsgs++;
1299 			}
1300 		}
1301 	} else {
1302 		if (res_authenticate && sys_authenticate) {
1303 			totlen = sendlen;
1304 			/*
1305 			 * If we are going to authenticate, then there
1306 			 * is an additional requirement that the MAC
1307 			 * begin on a 64 bit boundary.
1308 			 */
1309 			while (totlen & 7) {
1310 				*datapt++ = '\0';
1311 				totlen++;
1312 			}
1313 			keyid = htonl(res_keyid);
1314 			memcpy(datapt, &keyid, sizeof(keyid));
1315 			maclen = authencrypt(res_keyid,
1316 					     (u_int32 *)&rpkt, totlen);
1317 			sendpkt(rmt_addr, lcl_inter, -5,
1318 				(struct pkt *)&rpkt, totlen + maclen);
1319 		} else {
1320 			sendpkt(rmt_addr, lcl_inter, -6,
1321 				(struct pkt *)&rpkt, sendlen);
1322 		}
1323 		if (more)
1324 			numctlfrags++;
1325 		else
1326 			numctlresponses++;
1327 	}
1328 
1329 	/*
1330 	 * Set us up for another go around.
1331 	 */
1332 	res_frags++;
1333 	res_offset += dlen;
1334 	datapt = rpkt.u.data;
1335 }
1336 
1337 
1338 /*
1339  * ctl_putdata - write data into the packet, fragmenting and starting
1340  * another if this one is full.
1341  */
1342 static void
1343 ctl_putdata(
1344 	const char *dp,
1345 	unsigned int dlen,
1346 	int bin			/* set to 1 when data is binary */
1347 	)
1348 {
1349 	int overhead;
1350 	unsigned int currentlen;
1351 
1352 	overhead = 0;
1353 	if (!bin) {
1354 		datanotbinflag = TRUE;
1355 		overhead = 3;
1356 		if (datasent) {
1357 			*datapt++ = ',';
1358 			datalinelen++;
1359 			if ((dlen + datalinelen + 1) >= MAXDATALINELEN) {
1360 				*datapt++ = '\r';
1361 				*datapt++ = '\n';
1362 				datalinelen = 0;
1363 			} else {
1364 				*datapt++ = ' ';
1365 				datalinelen++;
1366 			}
1367 		}
1368 	}
1369 
1370 	/*
1371 	 * Save room for trailing junk
1372 	 */
1373 	while (dlen + overhead + datapt > dataend) {
1374 		/*
1375 		 * Not enough room in this one, flush it out.
1376 		 */
1377 		currentlen = MIN(dlen, (unsigned int)(dataend - datapt));
1378 
1379 		memcpy(datapt, dp, currentlen);
1380 
1381 		datapt += currentlen;
1382 		dp += currentlen;
1383 		dlen -= currentlen;
1384 		datalinelen += currentlen;
1385 
1386 		ctl_flushpkt(CTL_MORE);
1387 	}
1388 
1389 	memcpy(datapt, dp, dlen);
1390 	datapt += dlen;
1391 	datalinelen += dlen;
1392 	datasent = TRUE;
1393 }
1394 
1395 
1396 /*
1397  * ctl_putstr - write a tagged string into the response packet
1398  *		in the form:
1399  *
1400  *		tag="data"
1401  *
1402  *		len is the data length excluding the NUL terminator,
1403  *		as in ctl_putstr("var", "value", strlen("value"));
1404  */
1405 static void
1406 ctl_putstr(
1407 	const char *	tag,
1408 	const char *	data,
1409 	size_t		len
1410 	)
1411 {
1412 	char buffer[512];
1413 	char *cp;
1414 	size_t tl;
1415 
1416 	tl = strlen(tag);
1417 	memcpy(buffer, tag, tl);
1418 	cp = buffer + tl;
1419 	if (len > 0) {
1420 		INSIST(tl + 3 + len <= sizeof(buffer));
1421 		*cp++ = '=';
1422 		*cp++ = '"';
1423 		memcpy(cp, data, len);
1424 		cp += len;
1425 		*cp++ = '"';
1426 	}
1427 	ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1428 }
1429 
1430 
1431 /*
1432  * ctl_putunqstr - write a tagged string into the response packet
1433  *		   in the form:
1434  *
1435  *		   tag=data
1436  *
1437  *	len is the data length excluding the NUL terminator.
1438  *	data must not contain a comma or whitespace.
1439  */
1440 static void
1441 ctl_putunqstr(
1442 	const char *	tag,
1443 	const char *	data,
1444 	size_t		len
1445 	)
1446 {
1447 	char buffer[512];
1448 	char *cp;
1449 	size_t tl;
1450 
1451 	tl = strlen(tag);
1452 	memcpy(buffer, tag, tl);
1453 	cp = buffer + tl;
1454 	if (len > 0) {
1455 		INSIST(tl + 1 + len <= sizeof(buffer));
1456 		*cp++ = '=';
1457 		memcpy(cp, data, len);
1458 		cp += len;
1459 	}
1460 	ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1461 }
1462 
1463 
1464 /*
1465  * ctl_putdblf - write a tagged, signed double into the response packet
1466  */
1467 static void
1468 ctl_putdblf(
1469 	const char *	tag,
1470 	int		use_f,
1471 	int		precision,
1472 	double		d
1473 	)
1474 {
1475 	char *cp;
1476 	const char *cq;
1477 	char buffer[200];
1478 
1479 	cp = buffer;
1480 	cq = tag;
1481 	while (*cq != '\0')
1482 		*cp++ = *cq++;
1483 	*cp++ = '=';
1484 	INSIST((size_t)(cp - buffer) < sizeof(buffer));
1485 	snprintf(cp, sizeof(buffer) - (cp - buffer), use_f ? "%.*f" : "%.*g",
1486 	    precision, d);
1487 	cp += strlen(cp);
1488 	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1489 }
1490 
1491 /*
1492  * ctl_putuint - write a tagged unsigned integer into the response
1493  */
1494 static void
1495 ctl_putuint(
1496 	const char *tag,
1497 	u_long uval
1498 	)
1499 {
1500 	register char *cp;
1501 	register const char *cq;
1502 	char buffer[200];
1503 
1504 	cp = buffer;
1505 	cq = tag;
1506 	while (*cq != '\0')
1507 		*cp++ = *cq++;
1508 
1509 	*cp++ = '=';
1510 	INSIST((cp - buffer) < (int)sizeof(buffer));
1511 	snprintf(cp, sizeof(buffer) - (cp - buffer), "%lu", uval);
1512 	cp += strlen(cp);
1513 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1514 }
1515 
1516 /*
1517  * ctl_putcal - write a decoded calendar data into the response
1518  */
1519 static void
1520 ctl_putcal(
1521 	const char *tag,
1522 	const struct calendar *pcal
1523 	)
1524 {
1525 	char buffer[100];
1526 	unsigned numch;
1527 
1528 	numch = snprintf(buffer, sizeof(buffer),
1529 			"%s=%04d%02d%02d%02d%02d",
1530 			tag,
1531 			pcal->year,
1532 			pcal->month,
1533 			pcal->monthday,
1534 			pcal->hour,
1535 			pcal->minute
1536 			);
1537 	INSIST(numch < sizeof(buffer));
1538 	ctl_putdata(buffer, numch, 0);
1539 
1540 	return;
1541 }
1542 
1543 /*
1544  * ctl_putfs - write a decoded filestamp into the response
1545  */
1546 static void
1547 ctl_putfs(
1548 	const char *tag,
1549 	tstamp_t uval
1550 	)
1551 {
1552 	register char *cp;
1553 	register const char *cq;
1554 	char buffer[200];
1555 	struct tm *tm = NULL;
1556 	time_t fstamp;
1557 
1558 	cp = buffer;
1559 	cq = tag;
1560 	while (*cq != '\0')
1561 		*cp++ = *cq++;
1562 
1563 	*cp++ = '=';
1564 	fstamp = uval - JAN_1970;
1565 	tm = gmtime(&fstamp);
1566 	if (NULL ==  tm)
1567 		return;
1568 	INSIST((cp - buffer) < (int)sizeof(buffer));
1569 	snprintf(cp, sizeof(buffer) - (cp - buffer),
1570 		 "%04d%02d%02d%02d%02d", tm->tm_year + 1900,
1571 		 tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min);
1572 	cp += strlen(cp);
1573 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1574 }
1575 
1576 
1577 /*
1578  * ctl_puthex - write a tagged unsigned integer, in hex, into the
1579  * response
1580  */
1581 static void
1582 ctl_puthex(
1583 	const char *tag,
1584 	u_long uval
1585 	)
1586 {
1587 	register char *cp;
1588 	register const char *cq;
1589 	char buffer[200];
1590 
1591 	cp = buffer;
1592 	cq = tag;
1593 	while (*cq != '\0')
1594 		*cp++ = *cq++;
1595 
1596 	*cp++ = '=';
1597 	INSIST((cp - buffer) < (int)sizeof(buffer));
1598 	snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%lx", uval);
1599 	cp += strlen(cp);
1600 	ctl_putdata(buffer,(unsigned)( cp - buffer ), 0);
1601 }
1602 
1603 
1604 /*
1605  * ctl_putint - write a tagged signed integer into the response
1606  */
1607 static void
1608 ctl_putint(
1609 	const char *tag,
1610 	long ival
1611 	)
1612 {
1613 	register char *cp;
1614 	register const char *cq;
1615 	char buffer[200];
1616 
1617 	cp = buffer;
1618 	cq = tag;
1619 	while (*cq != '\0')
1620 		*cp++ = *cq++;
1621 
1622 	*cp++ = '=';
1623 	INSIST((cp - buffer) < (int)sizeof(buffer));
1624 	snprintf(cp, sizeof(buffer) - (cp - buffer), "%ld", ival);
1625 	cp += strlen(cp);
1626 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1627 }
1628 
1629 
1630 /*
1631  * ctl_putts - write a tagged timestamp, in hex, into the response
1632  */
1633 static void
1634 ctl_putts(
1635 	const char *tag,
1636 	l_fp *ts
1637 	)
1638 {
1639 	register char *cp;
1640 	register const char *cq;
1641 	char buffer[200];
1642 
1643 	cp = buffer;
1644 	cq = tag;
1645 	while (*cq != '\0')
1646 		*cp++ = *cq++;
1647 
1648 	*cp++ = '=';
1649 	INSIST((size_t)(cp - buffer) < sizeof(buffer));
1650 	snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%08x.%08x",
1651 		 (u_int)ts->l_ui, (u_int)ts->l_uf);
1652 	cp += strlen(cp);
1653 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1654 }
1655 
1656 
1657 /*
1658  * ctl_putadr - write an IP address into the response
1659  */
1660 static void
1661 ctl_putadr(
1662 	const char *tag,
1663 	u_int32 addr32,
1664 	sockaddr_u *addr
1665 	)
1666 {
1667 	register char *cp;
1668 	register const char *cq;
1669 	char buffer[200];
1670 
1671 	cp = buffer;
1672 	cq = tag;
1673 	while (*cq != '\0')
1674 		*cp++ = *cq++;
1675 
1676 	*cp++ = '=';
1677 	if (NULL == addr)
1678 		cq = numtoa(addr32);
1679 	else
1680 		cq = stoa(addr);
1681 	INSIST((cp - buffer) < (int)sizeof(buffer));
1682 	snprintf(cp, sizeof(buffer) - (cp - buffer), "%s", cq);
1683 	cp += strlen(cp);
1684 	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1685 }
1686 
1687 
1688 /*
1689  * ctl_putrefid - send a u_int32 refid as printable text
1690  */
1691 static void
1692 ctl_putrefid(
1693 	const char *	tag,
1694 	u_int32		refid
1695 	)
1696 {
1697 	char	output[16];
1698 	char *	optr;
1699 	char *	oplim;
1700 	char *	iptr;
1701 	char *	iplim;
1702 	char *	past_eq;
1703 
1704 	optr = output;
1705 	oplim = output + sizeof(output);
1706 	while (optr < oplim && '\0' != *tag)
1707 		*optr++ = *tag++;
1708 	if (optr < oplim) {
1709 		*optr++ = '=';
1710 		past_eq = optr;
1711 	}
1712 	if (!(optr < oplim))
1713 		return;
1714 	iptr = (char *)&refid;
1715 	iplim = iptr + sizeof(refid);
1716 	for ( ; optr < oplim && iptr < iplim && '\0' != *iptr;
1717 	     iptr++, optr++)
1718 		if (isprint((int)*iptr))
1719 			*optr = *iptr;
1720 		else
1721 			*optr = '.';
1722 	if (!(optr <= oplim))
1723 		optr = past_eq;
1724 	ctl_putdata(output, (u_int)(optr - output), FALSE);
1725 }
1726 
1727 
1728 /*
1729  * ctl_putarray - write a tagged eight element double array into the response
1730  */
1731 static void
1732 ctl_putarray(
1733 	const char *tag,
1734 	double *arr,
1735 	int start
1736 	)
1737 {
1738 	register char *cp;
1739 	register const char *cq;
1740 	char buffer[200];
1741 	int i;
1742 	cp = buffer;
1743 	cq = tag;
1744 	while (*cq != '\0')
1745 		*cp++ = *cq++;
1746 	*cp++ = '=';
1747 	i = start;
1748 	do {
1749 		if (i == 0)
1750 			i = NTP_SHIFT;
1751 		i--;
1752 		INSIST((cp - buffer) < (int)sizeof(buffer));
1753 		snprintf(cp, sizeof(buffer) - (cp - buffer),
1754 			 " %.2f", arr[i] * 1e3);
1755 		cp += strlen(cp);
1756 	} while (i != start);
1757 	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1758 }
1759 
1760 
1761 /*
1762  * ctl_putsys - output a system variable
1763  */
1764 static void
1765 ctl_putsys(
1766 	int varid
1767 	)
1768 {
1769 	l_fp tmp;
1770 	char str[256];
1771 	u_int u;
1772 	double kb;
1773 	double dtemp;
1774 	const char *ss;
1775 #ifdef AUTOKEY
1776 	struct cert_info *cp;
1777 #endif	/* AUTOKEY */
1778 #ifdef KERNEL_PLL
1779 	static struct timex ntx;
1780 	static u_long ntp_adjtime_time;
1781 
1782 	static const double to_ms =
1783 # ifdef STA_NANO
1784 		1.0e-6; /* nsec to msec */
1785 # else
1786 		1.0e-3; /* usec to msec */
1787 # endif
1788 
1789 	/*
1790 	 * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1791 	 */
1792 	if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1793 	    current_time != ntp_adjtime_time) {
1794 		ZERO(ntx);
1795 		if (ntp_adjtime(&ntx) < 0)
1796 			msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1797 		else
1798 			ntp_adjtime_time = current_time;
1799 	}
1800 #endif	/* KERNEL_PLL */
1801 
1802 	switch (varid) {
1803 
1804 	case CS_LEAP:
1805 		ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1806 		break;
1807 
1808 	case CS_STRATUM:
1809 		ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1810 		break;
1811 
1812 	case CS_PRECISION:
1813 		ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1814 		break;
1815 
1816 	case CS_ROOTDELAY:
1817 		ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1818 			   1e3);
1819 		break;
1820 
1821 	case CS_ROOTDISPERSION:
1822 		ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1823 			   sys_rootdisp * 1e3);
1824 		break;
1825 
1826 	case CS_REFID:
1827 		if (sys_stratum > 1 && sys_stratum < STRATUM_UNSPEC)
1828 			ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1829 		else
1830 			ctl_putrefid(sys_var[varid].text, sys_refid);
1831 		break;
1832 
1833 	case CS_REFTIME:
1834 		ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
1835 		break;
1836 
1837 	case CS_POLL:
1838 		ctl_putuint(sys_var[CS_POLL].text, sys_poll);
1839 		break;
1840 
1841 	case CS_PEERID:
1842 		if (sys_peer == NULL)
1843 			ctl_putuint(sys_var[CS_PEERID].text, 0);
1844 		else
1845 			ctl_putuint(sys_var[CS_PEERID].text,
1846 				    sys_peer->associd);
1847 		break;
1848 
1849 	case CS_PEERADR:
1850 		if (sys_peer != NULL && sys_peer->dstadr != NULL)
1851 			ss = sptoa(&sys_peer->srcadr);
1852 		else
1853 			ss = "0.0.0.0:0";
1854 		ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
1855 		break;
1856 
1857 	case CS_PEERMODE:
1858 		u = (sys_peer != NULL)
1859 			? sys_peer->hmode
1860 			: MODE_UNSPEC;
1861 		ctl_putuint(sys_var[CS_PEERMODE].text, u);
1862 		break;
1863 
1864 	case CS_OFFSET:
1865 		ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
1866 		break;
1867 
1868 	case CS_DRIFT:
1869 		ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
1870 		break;
1871 
1872 	case CS_JITTER:
1873 		ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
1874 		break;
1875 
1876 	case CS_ERROR:
1877 		ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
1878 		break;
1879 
1880 	case CS_CLOCK:
1881 		get_systime(&tmp);
1882 		ctl_putts(sys_var[CS_CLOCK].text, &tmp);
1883 		break;
1884 
1885 	case CS_PROCESSOR:
1886 #ifndef HAVE_UNAME
1887 		ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
1888 			   sizeof(str_processor) - 1);
1889 #else
1890 		ctl_putstr(sys_var[CS_PROCESSOR].text,
1891 			   utsnamebuf.machine, strlen(utsnamebuf.machine));
1892 #endif /* HAVE_UNAME */
1893 		break;
1894 
1895 	case CS_SYSTEM:
1896 #ifndef HAVE_UNAME
1897 		ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
1898 			   sizeof(str_system) - 1);
1899 #else
1900 		snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
1901 			 utsnamebuf.release);
1902 		ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
1903 #endif /* HAVE_UNAME */
1904 		break;
1905 
1906 	case CS_VERSION:
1907 		ctl_putstr(sys_var[CS_VERSION].text, Version,
1908 			   strlen(Version));
1909 		break;
1910 
1911 	case CS_STABIL:
1912 		ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
1913 			   1e6);
1914 		break;
1915 
1916 	case CS_VARLIST:
1917 	{
1918 		char buf[CTL_MAX_DATA_LEN];
1919 		//buffPointer, firstElementPointer, buffEndPointer
1920 		char *buffp, *buffend;
1921 		int firstVarName;
1922 		const char *ss1;
1923 		int len;
1924 		const struct ctl_var *k;
1925 
1926 		buffp = buf;
1927 		buffend = buf + sizeof(buf);
1928 		if (buffp + strlen(sys_var[CS_VARLIST].text) + 4 > buffend)
1929 			break;	/* really long var name */
1930 
1931 		snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
1932 		buffp += strlen(buffp);
1933 		firstVarName = TRUE;
1934 		for (k = sys_var; !(k->flags & EOV); k++) {
1935 			if (k->flags & PADDING)
1936 				continue;
1937 			len = strlen(k->text);
1938 			if (buffp + len + 1 >= buffend)
1939 				break;
1940 			if (!firstVarName)
1941 				*buffp++ = ',';
1942 			else
1943 				firstVarName = FALSE;
1944 			memcpy(buffp, k->text, len);
1945 			buffp += len;
1946 		}
1947 
1948 		for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
1949 			if (k->flags & PADDING)
1950 				continue;
1951 			if (NULL == k->text)
1952 				continue;
1953 			ss1 = strchr(k->text, '=');
1954 			if (NULL == ss1)
1955 				len = strlen(k->text);
1956 			else
1957 				len = ss1 - k->text;
1958 			if (buffp + len + 1 >= buffend)
1959 				break;
1960 			if (firstVarName) {
1961 				*buffp++ = ',';
1962 				firstVarName = FALSE;
1963 			}
1964 			memcpy(buffp, k->text,(unsigned)len);
1965 			buffp += len;
1966 		}
1967 		if (buffp + 2 >= buffend)
1968 			break;
1969 
1970 		*buffp++ = '"';
1971 		*buffp = '\0';
1972 
1973 		ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
1974 		break;
1975 	}
1976 
1977 	case CS_TAI:
1978 		if (sys_tai > 0)
1979 			ctl_putuint(sys_var[CS_TAI].text, sys_tai);
1980 		break;
1981 
1982 	case CS_LEAPTAB:
1983 	{
1984 		leap_signature_t lsig;
1985 		leapsec_getsig(&lsig);
1986 		if (lsig.ttime > 0)
1987 			ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
1988 		break;
1989 	}
1990 
1991 	case CS_LEAPEND:
1992 	{
1993 		leap_signature_t lsig;
1994 		leapsec_getsig(&lsig);
1995 		if (lsig.etime > 0)
1996 			ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
1997 		break;
1998 	}
1999 
2000 #ifdef LEAP_SMEAR
2001 	case CS_LEAPSMEARINTV:
2002 		if (leap_smear_intv > 0)
2003 			ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv);
2004 		break;
2005 
2006 	case CS_LEAPSMEAROFFS:
2007 		if (leap_smear_intv > 0)
2008 			ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text,
2009 				   leap_smear.doffset * 1e3);
2010 		break;
2011 #endif	/* LEAP_SMEAR */
2012 
2013 	case CS_RATE:
2014 		ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
2015 		break;
2016 
2017 	case CS_MRU_ENABLED:
2018 		ctl_puthex(sys_var[varid].text, mon_enabled);
2019 		break;
2020 
2021 	case CS_MRU_DEPTH:
2022 		ctl_putuint(sys_var[varid].text, mru_entries);
2023 		break;
2024 
2025 	case CS_MRU_MEM:
2026 		kb = mru_entries * (sizeof(mon_entry) / 1024.);
2027 		u = (u_int)kb;
2028 		if (kb - u >= 0.5)
2029 			u++;
2030 		ctl_putuint(sys_var[varid].text, u);
2031 		break;
2032 
2033 	case CS_MRU_DEEPEST:
2034 		ctl_putuint(sys_var[varid].text, mru_peakentries);
2035 		break;
2036 
2037 	case CS_MRU_MINDEPTH:
2038 		ctl_putuint(sys_var[varid].text, mru_mindepth);
2039 		break;
2040 
2041 	case CS_MRU_MAXAGE:
2042 		ctl_putint(sys_var[varid].text, mru_maxage);
2043 		break;
2044 
2045 	case CS_MRU_MAXDEPTH:
2046 		ctl_putuint(sys_var[varid].text, mru_maxdepth);
2047 		break;
2048 
2049 	case CS_MRU_MAXMEM:
2050 		kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
2051 		u = (u_int)kb;
2052 		if (kb - u >= 0.5)
2053 			u++;
2054 		ctl_putuint(sys_var[varid].text, u);
2055 		break;
2056 
2057 	case CS_SS_UPTIME:
2058 		ctl_putuint(sys_var[varid].text, current_time);
2059 		break;
2060 
2061 	case CS_SS_RESET:
2062 		ctl_putuint(sys_var[varid].text,
2063 			    current_time - sys_stattime);
2064 		break;
2065 
2066 	case CS_SS_RECEIVED:
2067 		ctl_putuint(sys_var[varid].text, sys_received);
2068 		break;
2069 
2070 	case CS_SS_THISVER:
2071 		ctl_putuint(sys_var[varid].text, sys_newversion);
2072 		break;
2073 
2074 	case CS_SS_OLDVER:
2075 		ctl_putuint(sys_var[varid].text, sys_oldversion);
2076 		break;
2077 
2078 	case CS_SS_BADFORMAT:
2079 		ctl_putuint(sys_var[varid].text, sys_badlength);
2080 		break;
2081 
2082 	case CS_SS_BADAUTH:
2083 		ctl_putuint(sys_var[varid].text, sys_badauth);
2084 		break;
2085 
2086 	case CS_SS_DECLINED:
2087 		ctl_putuint(sys_var[varid].text, sys_declined);
2088 		break;
2089 
2090 	case CS_SS_RESTRICTED:
2091 		ctl_putuint(sys_var[varid].text, sys_restricted);
2092 		break;
2093 
2094 	case CS_SS_LIMITED:
2095 		ctl_putuint(sys_var[varid].text, sys_limitrejected);
2096 		break;
2097 
2098 	case CS_SS_KODSENT:
2099 		ctl_putuint(sys_var[varid].text, sys_kodsent);
2100 		break;
2101 
2102 	case CS_SS_PROCESSED:
2103 		ctl_putuint(sys_var[varid].text, sys_processed);
2104 		break;
2105 
2106 	case CS_BCASTDELAY:
2107 		ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2108 		break;
2109 
2110 	case CS_AUTHDELAY:
2111 		LFPTOD(&sys_authdelay, dtemp);
2112 		ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2113 		break;
2114 
2115 	case CS_AUTHKEYS:
2116 		ctl_putuint(sys_var[varid].text, authnumkeys);
2117 		break;
2118 
2119 	case CS_AUTHFREEK:
2120 		ctl_putuint(sys_var[varid].text, authnumfreekeys);
2121 		break;
2122 
2123 	case CS_AUTHKLOOKUPS:
2124 		ctl_putuint(sys_var[varid].text, authkeylookups);
2125 		break;
2126 
2127 	case CS_AUTHKNOTFOUND:
2128 		ctl_putuint(sys_var[varid].text, authkeynotfound);
2129 		break;
2130 
2131 	case CS_AUTHKUNCACHED:
2132 		ctl_putuint(sys_var[varid].text, authkeyuncached);
2133 		break;
2134 
2135 	case CS_AUTHKEXPIRED:
2136 		ctl_putuint(sys_var[varid].text, authkeyexpired);
2137 		break;
2138 
2139 	case CS_AUTHENCRYPTS:
2140 		ctl_putuint(sys_var[varid].text, authencryptions);
2141 		break;
2142 
2143 	case CS_AUTHDECRYPTS:
2144 		ctl_putuint(sys_var[varid].text, authdecryptions);
2145 		break;
2146 
2147 	case CS_AUTHRESET:
2148 		ctl_putuint(sys_var[varid].text,
2149 			    current_time - auth_timereset);
2150 		break;
2151 
2152 		/*
2153 		 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2154 		 * unavailable, otherwise calls putfunc with args.
2155 		 */
2156 #ifndef KERNEL_PLL
2157 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2158 		ctl_putint(sys_var[varid].text, 0)
2159 #else
2160 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2161 		putfunc args
2162 #endif
2163 
2164 		/*
2165 		 * CTL_IF_KERNPPS() puts a zero if either the kernel
2166 		 * loop is unavailable, or kernel hard PPS is not
2167 		 * active, otherwise calls putfunc with args.
2168 		 */
2169 #ifndef KERNEL_PLL
2170 # define	CTL_IF_KERNPPS(putfunc, args)	\
2171 		ctl_putint(sys_var[varid].text, 0)
2172 #else
2173 # define	CTL_IF_KERNPPS(putfunc, args)			\
2174 		if (0 == ntx.shift)				\
2175 			ctl_putint(sys_var[varid].text, 0);	\
2176 		else						\
2177 			putfunc args	/* no trailing ; */
2178 #endif
2179 
2180 	case CS_K_OFFSET:
2181 		CTL_IF_KERNLOOP(
2182 			ctl_putdblf,
2183 			(sys_var[varid].text, 0, -1, to_ms * ntx.offset)
2184 		);
2185 		break;
2186 
2187 	case CS_K_FREQ:
2188 		CTL_IF_KERNLOOP(
2189 			ctl_putsfp,
2190 			(sys_var[varid].text, ntx.freq)
2191 		);
2192 		break;
2193 
2194 	case CS_K_MAXERR:
2195 		CTL_IF_KERNLOOP(
2196 			ctl_putdblf,
2197 			(sys_var[varid].text, 0, 6,
2198 			 to_ms * ntx.maxerror)
2199 		);
2200 		break;
2201 
2202 	case CS_K_ESTERR:
2203 		CTL_IF_KERNLOOP(
2204 			ctl_putdblf,
2205 			(sys_var[varid].text, 0, 6,
2206 			 to_ms * ntx.esterror)
2207 		);
2208 		break;
2209 
2210 	case CS_K_STFLAGS:
2211 #ifndef KERNEL_PLL
2212 		ss = "";
2213 #else
2214 		ss = k_st_flags(ntx.status);
2215 #endif
2216 		ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2217 		break;
2218 
2219 	case CS_K_TIMECONST:
2220 		CTL_IF_KERNLOOP(
2221 			ctl_putint,
2222 			(sys_var[varid].text, ntx.constant)
2223 		);
2224 		break;
2225 
2226 	case CS_K_PRECISION:
2227 		CTL_IF_KERNLOOP(
2228 			ctl_putdblf,
2229 			(sys_var[varid].text, 0, 6,
2230 			    to_ms * ntx.precision)
2231 		);
2232 		break;
2233 
2234 	case CS_K_FREQTOL:
2235 		CTL_IF_KERNLOOP(
2236 			ctl_putsfp,
2237 			(sys_var[varid].text, ntx.tolerance)
2238 		);
2239 		break;
2240 
2241 	case CS_K_PPS_FREQ:
2242 		CTL_IF_KERNPPS(
2243 			ctl_putsfp,
2244 			(sys_var[varid].text, ntx.ppsfreq)
2245 		);
2246 		break;
2247 
2248 	case CS_K_PPS_STABIL:
2249 		CTL_IF_KERNPPS(
2250 			ctl_putsfp,
2251 			(sys_var[varid].text, ntx.stabil)
2252 		);
2253 		break;
2254 
2255 	case CS_K_PPS_JITTER:
2256 		CTL_IF_KERNPPS(
2257 			ctl_putdbl,
2258 			(sys_var[varid].text, to_ms * ntx.jitter)
2259 		);
2260 		break;
2261 
2262 	case CS_K_PPS_CALIBDUR:
2263 		CTL_IF_KERNPPS(
2264 			ctl_putint,
2265 			(sys_var[varid].text, 1 << ntx.shift)
2266 		);
2267 		break;
2268 
2269 	case CS_K_PPS_CALIBS:
2270 		CTL_IF_KERNPPS(
2271 			ctl_putint,
2272 			(sys_var[varid].text, ntx.calcnt)
2273 		);
2274 		break;
2275 
2276 	case CS_K_PPS_CALIBERRS:
2277 		CTL_IF_KERNPPS(
2278 			ctl_putint,
2279 			(sys_var[varid].text, ntx.errcnt)
2280 		);
2281 		break;
2282 
2283 	case CS_K_PPS_JITEXC:
2284 		CTL_IF_KERNPPS(
2285 			ctl_putint,
2286 			(sys_var[varid].text, ntx.jitcnt)
2287 		);
2288 		break;
2289 
2290 	case CS_K_PPS_STBEXC:
2291 		CTL_IF_KERNPPS(
2292 			ctl_putint,
2293 			(sys_var[varid].text, ntx.stbcnt)
2294 		);
2295 		break;
2296 
2297 	case CS_IOSTATS_RESET:
2298 		ctl_putuint(sys_var[varid].text,
2299 			    current_time - io_timereset);
2300 		break;
2301 
2302 	case CS_TOTAL_RBUF:
2303 		ctl_putuint(sys_var[varid].text, total_recvbuffs());
2304 		break;
2305 
2306 	case CS_FREE_RBUF:
2307 		ctl_putuint(sys_var[varid].text, free_recvbuffs());
2308 		break;
2309 
2310 	case CS_USED_RBUF:
2311 		ctl_putuint(sys_var[varid].text, full_recvbuffs());
2312 		break;
2313 
2314 	case CS_RBUF_LOWATER:
2315 		ctl_putuint(sys_var[varid].text, lowater_additions());
2316 		break;
2317 
2318 	case CS_IO_DROPPED:
2319 		ctl_putuint(sys_var[varid].text, packets_dropped);
2320 		break;
2321 
2322 	case CS_IO_IGNORED:
2323 		ctl_putuint(sys_var[varid].text, packets_ignored);
2324 		break;
2325 
2326 	case CS_IO_RECEIVED:
2327 		ctl_putuint(sys_var[varid].text, packets_received);
2328 		break;
2329 
2330 	case CS_IO_SENT:
2331 		ctl_putuint(sys_var[varid].text, packets_sent);
2332 		break;
2333 
2334 	case CS_IO_SENDFAILED:
2335 		ctl_putuint(sys_var[varid].text, packets_notsent);
2336 		break;
2337 
2338 	case CS_IO_WAKEUPS:
2339 		ctl_putuint(sys_var[varid].text, handler_calls);
2340 		break;
2341 
2342 	case CS_IO_GOODWAKEUPS:
2343 		ctl_putuint(sys_var[varid].text, handler_pkts);
2344 		break;
2345 
2346 	case CS_TIMERSTATS_RESET:
2347 		ctl_putuint(sys_var[varid].text,
2348 			    current_time - timer_timereset);
2349 		break;
2350 
2351 	case CS_TIMER_OVERRUNS:
2352 		ctl_putuint(sys_var[varid].text, alarm_overflow);
2353 		break;
2354 
2355 	case CS_TIMER_XMTS:
2356 		ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2357 		break;
2358 
2359 	case CS_FUZZ:
2360 		ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2361 		break;
2362 	case CS_WANDER_THRESH:
2363 		ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
2364 		break;
2365 #ifdef AUTOKEY
2366 	case CS_FLAGS:
2367 		if (crypto_flags)
2368 			ctl_puthex(sys_var[CS_FLAGS].text,
2369 			    crypto_flags);
2370 		break;
2371 
2372 	case CS_DIGEST:
2373 		if (crypto_flags) {
2374 			strlcpy(str, OBJ_nid2ln(crypto_nid),
2375 			    COUNTOF(str));
2376 			ctl_putstr(sys_var[CS_DIGEST].text, str,
2377 			    strlen(str));
2378 		}
2379 		break;
2380 
2381 	case CS_SIGNATURE:
2382 		if (crypto_flags) {
2383 			const EVP_MD *dp;
2384 
2385 			dp = EVP_get_digestbynid(crypto_flags >> 16);
2386 			strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2387 			    COUNTOF(str));
2388 			ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2389 			    strlen(str));
2390 		}
2391 		break;
2392 
2393 	case CS_HOST:
2394 		if (hostval.ptr != NULL)
2395 			ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2396 			    strlen(hostval.ptr));
2397 		break;
2398 
2399 	case CS_IDENT:
2400 		if (sys_ident != NULL)
2401 			ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2402 			    strlen(sys_ident));
2403 		break;
2404 
2405 	case CS_CERTIF:
2406 		for (cp = cinfo; cp != NULL; cp = cp->link) {
2407 			snprintf(str, sizeof(str), "%s %s 0x%x",
2408 			    cp->subject, cp->issuer, cp->flags);
2409 			ctl_putstr(sys_var[CS_CERTIF].text, str,
2410 			    strlen(str));
2411 			ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
2412 		}
2413 		break;
2414 
2415 	case CS_PUBLIC:
2416 		if (hostval.tstamp != 0)
2417 			ctl_putfs(sys_var[CS_PUBLIC].text,
2418 			    ntohl(hostval.tstamp));
2419 		break;
2420 #endif	/* AUTOKEY */
2421 
2422 	default:
2423 		break;
2424 	}
2425 }
2426 
2427 
2428 /*
2429  * ctl_putpeer - output a peer variable
2430  */
2431 static void
2432 ctl_putpeer(
2433 	int id,
2434 	struct peer *p
2435 	)
2436 {
2437 	char buf[CTL_MAX_DATA_LEN];
2438 	char *s;
2439 	char *t;
2440 	char *be;
2441 	int i;
2442 	const struct ctl_var *k;
2443 #ifdef AUTOKEY
2444 	struct autokey *ap;
2445 	const EVP_MD *dp;
2446 	const char *str;
2447 #endif	/* AUTOKEY */
2448 
2449 	switch (id) {
2450 
2451 	case CP_CONFIG:
2452 		ctl_putuint(peer_var[id].text,
2453 			    !(FLAG_PREEMPT & p->flags));
2454 		break;
2455 
2456 	case CP_AUTHENABLE:
2457 		ctl_putuint(peer_var[id].text, !(p->keyid));
2458 		break;
2459 
2460 	case CP_AUTHENTIC:
2461 		ctl_putuint(peer_var[id].text,
2462 			    !!(FLAG_AUTHENTIC & p->flags));
2463 		break;
2464 
2465 	case CP_SRCADR:
2466 		ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2467 		break;
2468 
2469 	case CP_SRCPORT:
2470 		ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2471 		break;
2472 
2473 	case CP_SRCHOST:
2474 		if (p->hostname != NULL)
2475 			ctl_putstr(peer_var[id].text, p->hostname,
2476 				   strlen(p->hostname));
2477 		break;
2478 
2479 	case CP_DSTADR:
2480 		ctl_putadr(peer_var[id].text, 0,
2481 			   (p->dstadr != NULL)
2482 				? &p->dstadr->sin
2483 				: NULL);
2484 		break;
2485 
2486 	case CP_DSTPORT:
2487 		ctl_putuint(peer_var[id].text,
2488 			    (p->dstadr != NULL)
2489 				? SRCPORT(&p->dstadr->sin)
2490 				: 0);
2491 		break;
2492 
2493 	case CP_IN:
2494 		if (p->r21 > 0.)
2495 			ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2496 		break;
2497 
2498 	case CP_OUT:
2499 		if (p->r34 > 0.)
2500 			ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2501 		break;
2502 
2503 	case CP_RATE:
2504 		ctl_putuint(peer_var[id].text, p->throttle);
2505 		break;
2506 
2507 	case CP_LEAP:
2508 		ctl_putuint(peer_var[id].text, p->leap);
2509 		break;
2510 
2511 	case CP_HMODE:
2512 		ctl_putuint(peer_var[id].text, p->hmode);
2513 		break;
2514 
2515 	case CP_STRATUM:
2516 		ctl_putuint(peer_var[id].text, p->stratum);
2517 		break;
2518 
2519 	case CP_PPOLL:
2520 		ctl_putuint(peer_var[id].text, p->ppoll);
2521 		break;
2522 
2523 	case CP_HPOLL:
2524 		ctl_putuint(peer_var[id].text, p->hpoll);
2525 		break;
2526 
2527 	case CP_PRECISION:
2528 		ctl_putint(peer_var[id].text, p->precision);
2529 		break;
2530 
2531 	case CP_ROOTDELAY:
2532 		ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2533 		break;
2534 
2535 	case CP_ROOTDISPERSION:
2536 		ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2537 		break;
2538 
2539 	case CP_REFID:
2540 #ifdef REFCLOCK
2541 		if (p->flags & FLAG_REFCLOCK) {
2542 			ctl_putrefid(peer_var[id].text, p->refid);
2543 			break;
2544 		}
2545 #endif
2546 		if (p->stratum > 1 && p->stratum < STRATUM_UNSPEC)
2547 			ctl_putadr(peer_var[id].text, p->refid,
2548 				   NULL);
2549 		else
2550 			ctl_putrefid(peer_var[id].text, p->refid);
2551 		break;
2552 
2553 	case CP_REFTIME:
2554 		ctl_putts(peer_var[id].text, &p->reftime);
2555 		break;
2556 
2557 	case CP_ORG:
2558 		ctl_putts(peer_var[id].text, &p->aorg);
2559 		break;
2560 
2561 	case CP_REC:
2562 		ctl_putts(peer_var[id].text, &p->dst);
2563 		break;
2564 
2565 	case CP_XMT:
2566 		if (p->xleave)
2567 			ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2568 		break;
2569 
2570 	case CP_BIAS:
2571 		if (p->bias != 0.)
2572 			ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2573 		break;
2574 
2575 	case CP_REACH:
2576 		ctl_puthex(peer_var[id].text, p->reach);
2577 		break;
2578 
2579 	case CP_FLASH:
2580 		ctl_puthex(peer_var[id].text, p->flash);
2581 		break;
2582 
2583 	case CP_TTL:
2584 #ifdef REFCLOCK
2585 		if (p->flags & FLAG_REFCLOCK) {
2586 			ctl_putuint(peer_var[id].text, p->ttl);
2587 			break;
2588 		}
2589 #endif
2590 		if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2591 			ctl_putint(peer_var[id].text,
2592 				   sys_ttl[p->ttl]);
2593 		break;
2594 
2595 	case CP_UNREACH:
2596 		ctl_putuint(peer_var[id].text, p->unreach);
2597 		break;
2598 
2599 	case CP_TIMER:
2600 		ctl_putuint(peer_var[id].text,
2601 			    p->nextdate - current_time);
2602 		break;
2603 
2604 	case CP_DELAY:
2605 		ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2606 		break;
2607 
2608 	case CP_OFFSET:
2609 		ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2610 		break;
2611 
2612 	case CP_JITTER:
2613 		ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2614 		break;
2615 
2616 	case CP_DISPERSION:
2617 		ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2618 		break;
2619 
2620 	case CP_KEYID:
2621 		if (p->keyid > NTP_MAXKEY)
2622 			ctl_puthex(peer_var[id].text, p->keyid);
2623 		else
2624 			ctl_putuint(peer_var[id].text, p->keyid);
2625 		break;
2626 
2627 	case CP_FILTDELAY:
2628 		ctl_putarray(peer_var[id].text, p->filter_delay,
2629 			     p->filter_nextpt);
2630 		break;
2631 
2632 	case CP_FILTOFFSET:
2633 		ctl_putarray(peer_var[id].text, p->filter_offset,
2634 			     p->filter_nextpt);
2635 		break;
2636 
2637 	case CP_FILTERROR:
2638 		ctl_putarray(peer_var[id].text, p->filter_disp,
2639 			     p->filter_nextpt);
2640 		break;
2641 
2642 	case CP_PMODE:
2643 		ctl_putuint(peer_var[id].text, p->pmode);
2644 		break;
2645 
2646 	case CP_RECEIVED:
2647 		ctl_putuint(peer_var[id].text, p->received);
2648 		break;
2649 
2650 	case CP_SENT:
2651 		ctl_putuint(peer_var[id].text, p->sent);
2652 		break;
2653 
2654 	case CP_VARLIST:
2655 		s = buf;
2656 		be = buf + sizeof(buf);
2657 		if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2658 			break;	/* really long var name */
2659 
2660 		snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2661 		s += strlen(s);
2662 		t = s;
2663 		for (k = peer_var; !(EOV & k->flags); k++) {
2664 			if (PADDING & k->flags)
2665 				continue;
2666 			i = strlen(k->text);
2667 			if (s + i + 1 >= be)
2668 				break;
2669 			if (s != t)
2670 				*s++ = ',';
2671 			memcpy(s, k->text, i);
2672 			s += i;
2673 		}
2674 		if (s + 2 < be) {
2675 			*s++ = '"';
2676 			*s = '\0';
2677 			ctl_putdata(buf, (u_int)(s - buf), 0);
2678 		}
2679 		break;
2680 
2681 	case CP_TIMEREC:
2682 		ctl_putuint(peer_var[id].text,
2683 			    current_time - p->timereceived);
2684 		break;
2685 
2686 	case CP_TIMEREACH:
2687 		ctl_putuint(peer_var[id].text,
2688 			    current_time - p->timereachable);
2689 		break;
2690 
2691 	case CP_BADAUTH:
2692 		ctl_putuint(peer_var[id].text, p->badauth);
2693 		break;
2694 
2695 	case CP_BOGUSORG:
2696 		ctl_putuint(peer_var[id].text, p->bogusorg);
2697 		break;
2698 
2699 	case CP_OLDPKT:
2700 		ctl_putuint(peer_var[id].text, p->oldpkt);
2701 		break;
2702 
2703 	case CP_SELDISP:
2704 		ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2705 		break;
2706 
2707 	case CP_SELBROKEN:
2708 		ctl_putuint(peer_var[id].text, p->selbroken);
2709 		break;
2710 
2711 	case CP_CANDIDATE:
2712 		ctl_putuint(peer_var[id].text, p->status);
2713 		break;
2714 #ifdef AUTOKEY
2715 	case CP_FLAGS:
2716 		if (p->crypto)
2717 			ctl_puthex(peer_var[id].text, p->crypto);
2718 		break;
2719 
2720 	case CP_SIGNATURE:
2721 		if (p->crypto) {
2722 			dp = EVP_get_digestbynid(p->crypto >> 16);
2723 			str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2724 			ctl_putstr(peer_var[id].text, str, strlen(str));
2725 		}
2726 		break;
2727 
2728 	case CP_HOST:
2729 		if (p->subject != NULL)
2730 			ctl_putstr(peer_var[id].text, p->subject,
2731 			    strlen(p->subject));
2732 		break;
2733 
2734 	case CP_VALID:		/* not used */
2735 		break;
2736 
2737 	case CP_INITSEQ:
2738 		if (NULL == (ap = p->recval.ptr))
2739 			break;
2740 
2741 		ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2742 		ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2743 		ctl_putfs(peer_var[CP_INITTSP].text,
2744 			  ntohl(p->recval.tstamp));
2745 		break;
2746 
2747 	case CP_IDENT:
2748 		if (p->ident != NULL)
2749 			ctl_putstr(peer_var[id].text, p->ident,
2750 			    strlen(p->ident));
2751 		break;
2752 
2753 
2754 #endif	/* AUTOKEY */
2755 	}
2756 }
2757 
2758 
2759 #ifdef REFCLOCK
2760 /*
2761  * ctl_putclock - output clock variables
2762  */
2763 static void
2764 ctl_putclock(
2765 	int id,
2766 	struct refclockstat *pcs,
2767 	int mustput
2768 	)
2769 {
2770 	char buf[CTL_MAX_DATA_LEN];
2771 	char *s, *t, *be;
2772 	const char *ss;
2773 	int i;
2774 	const struct ctl_var *k;
2775 
2776 	switch (id) {
2777 
2778 	case CC_TYPE:
2779 		if (mustput || pcs->clockdesc == NULL
2780 		    || *(pcs->clockdesc) == '\0') {
2781 			ctl_putuint(clock_var[id].text, pcs->type);
2782 		}
2783 		break;
2784 	case CC_TIMECODE:
2785 		ctl_putstr(clock_var[id].text,
2786 			   pcs->p_lastcode,
2787 			   (unsigned)pcs->lencode);
2788 		break;
2789 
2790 	case CC_POLL:
2791 		ctl_putuint(clock_var[id].text, pcs->polls);
2792 		break;
2793 
2794 	case CC_NOREPLY:
2795 		ctl_putuint(clock_var[id].text,
2796 			    pcs->noresponse);
2797 		break;
2798 
2799 	case CC_BADFORMAT:
2800 		ctl_putuint(clock_var[id].text,
2801 			    pcs->badformat);
2802 		break;
2803 
2804 	case CC_BADDATA:
2805 		ctl_putuint(clock_var[id].text,
2806 			    pcs->baddata);
2807 		break;
2808 
2809 	case CC_FUDGETIME1:
2810 		if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2811 			ctl_putdbl(clock_var[id].text,
2812 				   pcs->fudgetime1 * 1e3);
2813 		break;
2814 
2815 	case CC_FUDGETIME2:
2816 		if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2817 			ctl_putdbl(clock_var[id].text,
2818 				   pcs->fudgetime2 * 1e3);
2819 		break;
2820 
2821 	case CC_FUDGEVAL1:
2822 		if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2823 			ctl_putint(clock_var[id].text,
2824 				   pcs->fudgeval1);
2825 		break;
2826 
2827 	case CC_FUDGEVAL2:
2828 		if (mustput || (pcs->haveflags & CLK_HAVEVAL2)) {
2829 			if (pcs->fudgeval1 > 1)
2830 				ctl_putadr(clock_var[id].text,
2831 					   pcs->fudgeval2, NULL);
2832 			else
2833 				ctl_putrefid(clock_var[id].text,
2834 					     pcs->fudgeval2);
2835 		}
2836 		break;
2837 
2838 	case CC_FLAGS:
2839 		ctl_putuint(clock_var[id].text, pcs->flags);
2840 		break;
2841 
2842 	case CC_DEVICE:
2843 		if (pcs->clockdesc == NULL ||
2844 		    *(pcs->clockdesc) == '\0') {
2845 			if (mustput)
2846 				ctl_putstr(clock_var[id].text,
2847 					   "", 0);
2848 		} else {
2849 			ctl_putstr(clock_var[id].text,
2850 				   pcs->clockdesc,
2851 				   strlen(pcs->clockdesc));
2852 		}
2853 		break;
2854 
2855 	case CC_VARLIST:
2856 		s = buf;
2857 		be = buf + sizeof(buf);
2858 		if (strlen(clock_var[CC_VARLIST].text) + 4 >
2859 		    sizeof(buf))
2860 			break;	/* really long var name */
2861 
2862 		snprintf(s, sizeof(buf), "%s=\"",
2863 			 clock_var[CC_VARLIST].text);
2864 		s += strlen(s);
2865 		t = s;
2866 
2867 		for (k = clock_var; !(EOV & k->flags); k++) {
2868 			if (PADDING & k->flags)
2869 				continue;
2870 
2871 			i = strlen(k->text);
2872 			if (s + i + 1 >= be)
2873 				break;
2874 
2875 			if (s != t)
2876 				*s++ = ',';
2877 			memcpy(s, k->text, i);
2878 			s += i;
2879 		}
2880 
2881 		for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
2882 			if (PADDING & k->flags)
2883 				continue;
2884 
2885 			ss = k->text;
2886 			if (NULL == ss)
2887 				continue;
2888 
2889 			while (*ss && *ss != '=')
2890 				ss++;
2891 			i = ss - k->text;
2892 			if (s + i + 1 >= be)
2893 				break;
2894 
2895 			if (s != t)
2896 				*s++ = ',';
2897 			memcpy(s, k->text, (unsigned)i);
2898 			s += i;
2899 			*s = '\0';
2900 		}
2901 		if (s + 2 >= be)
2902 			break;
2903 
2904 		*s++ = '"';
2905 		*s = '\0';
2906 		ctl_putdata(buf, (unsigned)(s - buf), 0);
2907 		break;
2908 	}
2909 }
2910 #endif
2911 
2912 
2913 
2914 /*
2915  * ctl_getitem - get the next data item from the incoming packet
2916  */
2917 static const struct ctl_var *
2918 ctl_getitem(
2919 	const struct ctl_var *var_list,
2920 	char **data
2921 	)
2922 {
2923 	static const struct ctl_var eol = { 0, EOV, NULL };
2924 	static char buf[128];
2925 	static u_long quiet_until;
2926 	const struct ctl_var *v;
2927 	const char *pch;
2928 	char *cp;
2929 	char *tp;
2930 
2931 	/*
2932 	 * Delete leading commas and white space
2933 	 */
2934 	while (reqpt < reqend && (*reqpt == ',' ||
2935 				  isspace((unsigned char)*reqpt)))
2936 		reqpt++;
2937 	if (reqpt >= reqend)
2938 		return NULL;
2939 
2940 	if (NULL == var_list)
2941 		return &eol;
2942 
2943 	/*
2944 	 * Look for a first character match on the tag.  If we find
2945 	 * one, see if it is a full match.
2946 	 */
2947 	cp = reqpt;
2948 	for (v = var_list; !(EOV & v->flags); v++) {
2949 		if (!(PADDING & v->flags) && *cp == *(v->text)) {
2950 			pch = v->text;
2951 			while ('\0' != *pch && '=' != *pch && cp < reqend
2952 			       && *cp == *pch) {
2953 				cp++;
2954 				pch++;
2955 			}
2956 			if ('\0' == *pch || '=' == *pch) {
2957 				while (cp < reqend && isspace((u_char)*cp))
2958 					cp++;
2959 				if (cp == reqend || ',' == *cp) {
2960 					buf[0] = '\0';
2961 					*data = buf;
2962 					if (cp < reqend)
2963 						cp++;
2964 					reqpt = cp;
2965 					return v;
2966 				}
2967 				if ('=' == *cp) {
2968 					cp++;
2969 					tp = buf;
2970 					while (cp < reqend && isspace((u_char)*cp))
2971 						cp++;
2972 					while (cp < reqend && *cp != ',') {
2973 						*tp++ = *cp++;
2974 						if ((size_t)(tp - buf) >= sizeof(buf)) {
2975 							ctl_error(CERR_BADFMT);
2976 							numctlbadpkts++;
2977 							NLOG(NLOG_SYSEVENT)
2978 								if (quiet_until <= current_time) {
2979 									quiet_until = current_time + 300;
2980 									msyslog(LOG_WARNING,
2981 "Possible 'ntpdx' exploit from %s#%u (possibly spoofed)", stoa(rmt_addr), SRCPORT(rmt_addr));
2982 								}
2983 							return NULL;
2984 						}
2985 					}
2986 					if (cp < reqend)
2987 						cp++;
2988 					*tp-- = '\0';
2989 					while (tp >= buf && isspace((u_char)*tp))
2990 						*tp-- = '\0';
2991 					reqpt = cp;
2992 					*data = buf;
2993 					return v;
2994 				}
2995 			}
2996 			cp = reqpt;
2997 		}
2998 	}
2999 	return v;
3000 }
3001 
3002 
3003 /*
3004  * control_unspec - response to an unspecified op-code
3005  */
3006 /*ARGSUSED*/
3007 static void
3008 control_unspec(
3009 	struct recvbuf *rbufp,
3010 	int restrict_mask
3011 	)
3012 {
3013 	struct peer *peer;
3014 
3015 	/*
3016 	 * What is an appropriate response to an unspecified op-code?
3017 	 * I return no errors and no data, unless a specified assocation
3018 	 * doesn't exist.
3019 	 */
3020 	if (res_associd) {
3021 		peer = findpeerbyassoc(res_associd);
3022 		if (NULL == peer) {
3023 			ctl_error(CERR_BADASSOC);
3024 			return;
3025 		}
3026 		rpkt.status = htons(ctlpeerstatus(peer));
3027 	} else
3028 		rpkt.status = htons(ctlsysstatus());
3029 	ctl_flushpkt(0);
3030 }
3031 
3032 
3033 /*
3034  * read_status - return either a list of associd's, or a particular
3035  * peer's status.
3036  */
3037 /*ARGSUSED*/
3038 static void
3039 read_status(
3040 	struct recvbuf *rbufp,
3041 	int restrict_mask
3042 	)
3043 {
3044 	struct peer *peer;
3045 	const u_char *cp;
3046 	size_t n;
3047 	/* a_st holds association ID, status pairs alternating */
3048 	u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
3049 
3050 #ifdef DEBUG
3051 	if (debug > 2)
3052 		printf("read_status: ID %d\n", res_associd);
3053 #endif
3054 	/*
3055 	 * Two choices here. If the specified association ID is
3056 	 * zero we return all known assocation ID's.  Otherwise
3057 	 * we return a bunch of stuff about the particular peer.
3058 	 */
3059 	if (res_associd) {
3060 		peer = findpeerbyassoc(res_associd);
3061 		if (NULL == peer) {
3062 			ctl_error(CERR_BADASSOC);
3063 			return;
3064 		}
3065 		rpkt.status = htons(ctlpeerstatus(peer));
3066 		if (res_authokay)
3067 			peer->num_events = 0;
3068 		/*
3069 		 * For now, output everything we know about the
3070 		 * peer. May be more selective later.
3071 		 */
3072 		for (cp = def_peer_var; *cp != 0; cp++)
3073 			ctl_putpeer((int)*cp, peer);
3074 		ctl_flushpkt(0);
3075 		return;
3076 	}
3077 	n = 0;
3078 	rpkt.status = htons(ctlsysstatus());
3079 	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3080 		a_st[n++] = htons(peer->associd);
3081 		a_st[n++] = htons(ctlpeerstatus(peer));
3082 		/* two entries each loop iteration, so n + 1 */
3083 		if (n + 1 >= COUNTOF(a_st)) {
3084 			ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
3085 				    1);
3086 			n = 0;
3087 		}
3088 	}
3089 	if (n)
3090 		ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3091 	ctl_flushpkt(0);
3092 }
3093 
3094 
3095 /*
3096  * read_peervars - half of read_variables() implementation
3097  */
3098 static void
3099 read_peervars(void)
3100 {
3101 	const struct ctl_var *v;
3102 	struct peer *peer;
3103 	const u_char *cp;
3104 	size_t i;
3105 	char *	valuep;
3106 	u_char	wants[CP_MAXCODE + 1];
3107 	u_int	gotvar;
3108 
3109 	/*
3110 	 * Wants info for a particular peer. See if we know
3111 	 * the guy.
3112 	 */
3113 	peer = findpeerbyassoc(res_associd);
3114 	if (NULL == peer) {
3115 		ctl_error(CERR_BADASSOC);
3116 		return;
3117 	}
3118 	rpkt.status = htons(ctlpeerstatus(peer));
3119 	if (res_authokay)
3120 		peer->num_events = 0;
3121 	ZERO(wants);
3122 	gotvar = 0;
3123 	while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3124 		if (v->flags & EOV) {
3125 			ctl_error(CERR_UNKNOWNVAR);
3126 			return;
3127 		}
3128 		INSIST(v->code < COUNTOF(wants));
3129 		wants[v->code] = 1;
3130 		gotvar = 1;
3131 	}
3132 	if (gotvar) {
3133 		for (i = 1; i < COUNTOF(wants); i++)
3134 			if (wants[i])
3135 				ctl_putpeer(i, peer);
3136 	} else
3137 		for (cp = def_peer_var; *cp != 0; cp++)
3138 			ctl_putpeer((int)*cp, peer);
3139 	ctl_flushpkt(0);
3140 }
3141 
3142 
3143 /*
3144  * read_sysvars - half of read_variables() implementation
3145  */
3146 static void
3147 read_sysvars(void)
3148 {
3149 	const struct ctl_var *v;
3150 	struct ctl_var *kv;
3151 	u_int	n;
3152 	u_int	gotvar;
3153 	const u_char *cs;
3154 	char *	valuep;
3155 	const char * pch;
3156 	u_char *wants;
3157 	size_t	wants_count;
3158 
3159 	/*
3160 	 * Wants system variables. Figure out which he wants
3161 	 * and give them to him.
3162 	 */
3163 	rpkt.status = htons(ctlsysstatus());
3164 	if (res_authokay)
3165 		ctl_sys_num_events = 0;
3166 	wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3167 	wants = emalloc_zero(wants_count);
3168 	gotvar = 0;
3169 	while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3170 		if (!(EOV & v->flags)) {
3171 			INSIST(v->code < wants_count);
3172 			wants[v->code] = 1;
3173 			gotvar = 1;
3174 		} else {
3175 			v = ctl_getitem(ext_sys_var, &valuep);
3176 			INSIST(v != NULL);
3177 			if (EOV & v->flags) {
3178 				ctl_error(CERR_UNKNOWNVAR);
3179 				free(wants);
3180 				return;
3181 			}
3182 			n = v->code + CS_MAXCODE + 1;
3183 			INSIST(n < wants_count);
3184 			wants[n] = 1;
3185 			gotvar = 1;
3186 		}
3187 	}
3188 	if (gotvar) {
3189 		for (n = 1; n <= CS_MAXCODE; n++)
3190 			if (wants[n])
3191 				ctl_putsys(n);
3192 		for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3193 			if (wants[n + CS_MAXCODE + 1]) {
3194 				pch = ext_sys_var[n].text;
3195 				ctl_putdata(pch, strlen(pch), 0);
3196 			}
3197 	} else {
3198 		for (cs = def_sys_var; *cs != 0; cs++)
3199 			ctl_putsys((int)*cs);
3200 		for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3201 			if (DEF & kv->flags)
3202 				ctl_putdata(kv->text, strlen(kv->text),
3203 					    0);
3204 	}
3205 	free(wants);
3206 	ctl_flushpkt(0);
3207 }
3208 
3209 
3210 /*
3211  * read_variables - return the variables the caller asks for
3212  */
3213 /*ARGSUSED*/
3214 static void
3215 read_variables(
3216 	struct recvbuf *rbufp,
3217 	int restrict_mask
3218 	)
3219 {
3220 	if (res_associd)
3221 		read_peervars();
3222 	else
3223 		read_sysvars();
3224 }
3225 
3226 
3227 /*
3228  * write_variables - write into variables. We only allow leap bit
3229  * writing this way.
3230  */
3231 /*ARGSUSED*/
3232 static void
3233 write_variables(
3234 	struct recvbuf *rbufp,
3235 	int restrict_mask
3236 	)
3237 {
3238 	const struct ctl_var *v;
3239 	int ext_var;
3240 	char *valuep;
3241 	long val;
3242 	size_t octets;
3243 	char *vareqv;
3244 	const char *t;
3245 	char *tt;
3246 
3247 	val = 0;
3248 	/*
3249 	 * If he's trying to write into a peer tell him no way
3250 	 */
3251 	if (res_associd != 0) {
3252 		ctl_error(CERR_PERMISSION);
3253 		return;
3254 	}
3255 
3256 	/*
3257 	 * Set status
3258 	 */
3259 	rpkt.status = htons(ctlsysstatus());
3260 
3261 	/*
3262 	 * Look through the variables. Dump out at the first sign of
3263 	 * trouble.
3264 	 */
3265 	while ((v = ctl_getitem(sys_var, &valuep)) != 0) {
3266 		ext_var = 0;
3267 		if (v->flags & EOV) {
3268 			if ((v = ctl_getitem(ext_sys_var, &valuep)) !=
3269 			    0) {
3270 				if (v->flags & EOV) {
3271 					ctl_error(CERR_UNKNOWNVAR);
3272 					return;
3273 				}
3274 				ext_var = 1;
3275 			} else {
3276 				break;
3277 			}
3278 		}
3279 		if (!(v->flags & CAN_WRITE)) {
3280 			ctl_error(CERR_PERMISSION);
3281 			return;
3282 		}
3283 		if (!ext_var && (*valuep == '\0' || !atoint(valuep,
3284 							    &val))) {
3285 			ctl_error(CERR_BADFMT);
3286 			return;
3287 		}
3288 		if (!ext_var && (val & ~LEAP_NOTINSYNC) != 0) {
3289 			ctl_error(CERR_BADVALUE);
3290 			return;
3291 		}
3292 
3293 		if (ext_var) {
3294 			octets = strlen(v->text) + strlen(valuep) + 2;
3295 			vareqv = emalloc(octets);
3296 			tt = vareqv;
3297 			t = v->text;
3298 			while (*t && *t != '=')
3299 				*tt++ = *t++;
3300 			*tt++ = '=';
3301 			memcpy(tt, valuep, 1 + strlen(valuep));
3302 			set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3303 			free(vareqv);
3304 		} else {
3305 			ctl_error(CERR_UNSPEC); /* really */
3306 			return;
3307 		}
3308 	}
3309 
3310 	/*
3311 	 * If we got anything, do it. xxx nothing to do ***
3312 	 */
3313 	/*
3314 	  if (leapind != ~0 || leapwarn != ~0) {
3315 	  if (!leap_setleap((int)leapind, (int)leapwarn)) {
3316 	  ctl_error(CERR_PERMISSION);
3317 	  return;
3318 	  }
3319 	  }
3320 	*/
3321 	ctl_flushpkt(0);
3322 }
3323 
3324 
3325 /*
3326  * configure() processes ntpq :config/config-from-file, allowing
3327  *		generic runtime reconfiguration.
3328  */
3329 static void configure(
3330 	struct recvbuf *rbufp,
3331 	int restrict_mask
3332 	)
3333 {
3334 	size_t data_count;
3335 	int retval;
3336 
3337 	/* I haven't yet implemented changes to an existing association.
3338 	 * Hence check if the association id is 0
3339 	 */
3340 	if (res_associd != 0) {
3341 		ctl_error(CERR_BADVALUE);
3342 		return;
3343 	}
3344 
3345 	if (RES_NOMODIFY & restrict_mask) {
3346 		snprintf(remote_config.err_msg,
3347 			 sizeof(remote_config.err_msg),
3348 			 "runtime configuration prohibited by restrict ... nomodify");
3349 		ctl_putdata(remote_config.err_msg,
3350 			    strlen(remote_config.err_msg), 0);
3351 		ctl_flushpkt(0);
3352 		NLOG(NLOG_SYSINFO)
3353 			msyslog(LOG_NOTICE,
3354 				"runtime config from %s rejected due to nomodify restriction",
3355 				stoa(&rbufp->recv_srcadr));
3356 		sys_restricted++;
3357 		return;
3358 	}
3359 
3360 	/* Initialize the remote config buffer */
3361 	data_count = remoteconfig_cmdlength(reqpt, reqend);
3362 
3363 	if (data_count > sizeof(remote_config.buffer) - 2) {
3364 		snprintf(remote_config.err_msg,
3365 			 sizeof(remote_config.err_msg),
3366 			 "runtime configuration failed: request too long");
3367 		ctl_putdata(remote_config.err_msg,
3368 			    strlen(remote_config.err_msg), 0);
3369 		ctl_flushpkt(0);
3370 		msyslog(LOG_NOTICE,
3371 			"runtime config from %s rejected: request too long",
3372 			stoa(&rbufp->recv_srcadr));
3373 		return;
3374 	}
3375 	/* Bug 2853 -- check if all characters were acceptable */
3376 	if (data_count != (size_t)(reqend - reqpt)) {
3377 		snprintf(remote_config.err_msg,
3378 			 sizeof(remote_config.err_msg),
3379 			 "runtime configuration failed: request contains an unprintable character");
3380 		ctl_putdata(remote_config.err_msg,
3381 			    strlen(remote_config.err_msg), 0);
3382 		ctl_flushpkt(0);
3383 		msyslog(LOG_NOTICE,
3384 			"runtime config from %s rejected: request contains an unprintable character: %0x",
3385 			stoa(&rbufp->recv_srcadr),
3386 			reqpt[data_count]);
3387 		return;
3388 	}
3389 
3390 	memcpy(remote_config.buffer, reqpt, data_count);
3391 	/* The buffer has no trailing linefeed or NUL right now. For
3392 	 * logging, we do not want a newline, so we do that first after
3393 	 * adding the necessary NUL byte.
3394 	 */
3395 	remote_config.buffer[data_count] = '\0';
3396 	DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3397 		remote_config.buffer));
3398 	msyslog(LOG_NOTICE, "%s config: %s",
3399 		stoa(&rbufp->recv_srcadr),
3400 		remote_config.buffer);
3401 
3402 	/* Now we have to make sure there is a NL/NUL sequence at the
3403 	 * end of the buffer before we parse it.
3404 	 */
3405 	remote_config.buffer[data_count++] = '\n';
3406 	remote_config.buffer[data_count] = '\0';
3407 	remote_config.pos = 0;
3408 	remote_config.err_pos = 0;
3409 	remote_config.no_errors = 0;
3410 	config_remotely(&rbufp->recv_srcadr);
3411 
3412 	/*
3413 	 * Check if errors were reported. If not, output 'Config
3414 	 * Succeeded'.  Else output the error count.  It would be nice
3415 	 * to output any parser error messages.
3416 	 */
3417 	if (0 == remote_config.no_errors) {
3418 		retval = snprintf(remote_config.err_msg,
3419 				  sizeof(remote_config.err_msg),
3420 				  "Config Succeeded");
3421 		if (retval > 0)
3422 			remote_config.err_pos += retval;
3423 	}
3424 
3425 	ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3426 	ctl_flushpkt(0);
3427 
3428 	DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3429 
3430 	if (remote_config.no_errors > 0)
3431 		msyslog(LOG_NOTICE, "%d error in %s config",
3432 			remote_config.no_errors,
3433 			stoa(&rbufp->recv_srcadr));
3434 }
3435 
3436 
3437 /*
3438  * derive_nonce - generate client-address-specific nonce value
3439  *		  associated with a given timestamp.
3440  */
3441 static u_int32 derive_nonce(
3442 	sockaddr_u *	addr,
3443 	u_int32		ts_i,
3444 	u_int32		ts_f
3445 	)
3446 {
3447 	static u_int32	salt[4];
3448 	static u_long	last_salt_update;
3449 	union d_tag {
3450 		u_char	digest[EVP_MAX_MD_SIZE];
3451 		u_int32 extract;
3452 	}		d;
3453 	EVP_MD_CTX	ctx;
3454 	u_int		len;
3455 
3456 	while (!salt[0] || current_time - last_salt_update >= 3600) {
3457 		salt[0] = ntp_random();
3458 		salt[1] = ntp_random();
3459 		salt[2] = ntp_random();
3460 		salt[3] = ntp_random();
3461 		last_salt_update = current_time;
3462 	}
3463 
3464 	EVP_DigestInit(&ctx, EVP_get_digestbynid(NID_md5));
3465 	EVP_DigestUpdate(&ctx, salt, sizeof(salt));
3466 	EVP_DigestUpdate(&ctx, &ts_i, sizeof(ts_i));
3467 	EVP_DigestUpdate(&ctx, &ts_f, sizeof(ts_f));
3468 	if (IS_IPV4(addr))
3469 		EVP_DigestUpdate(&ctx, &SOCK_ADDR4(addr),
3470 			         sizeof(SOCK_ADDR4(addr)));
3471 	else
3472 		EVP_DigestUpdate(&ctx, &SOCK_ADDR6(addr),
3473 			         sizeof(SOCK_ADDR6(addr)));
3474 	EVP_DigestUpdate(&ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
3475 	EVP_DigestUpdate(&ctx, salt, sizeof(salt));
3476 	EVP_DigestFinal(&ctx, d.digest, &len);
3477 
3478 	return d.extract;
3479 }
3480 
3481 
3482 /*
3483  * generate_nonce - generate client-address-specific nonce string.
3484  */
3485 static void generate_nonce(
3486 	struct recvbuf *	rbufp,
3487 	char *			nonce,
3488 	size_t			nonce_octets
3489 	)
3490 {
3491 	u_int32 derived;
3492 
3493 	derived = derive_nonce(&rbufp->recv_srcadr,
3494 			       rbufp->recv_time.l_ui,
3495 			       rbufp->recv_time.l_uf);
3496 	snprintf(nonce, nonce_octets, "%08x%08x%08x",
3497 		 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3498 }
3499 
3500 
3501 /*
3502  * validate_nonce - validate client-address-specific nonce string.
3503  *
3504  * Returns TRUE if the local calculation of the nonce matches the
3505  * client-provided value and the timestamp is recent enough.
3506  */
3507 static int validate_nonce(
3508 	const char *		pnonce,
3509 	struct recvbuf *	rbufp
3510 	)
3511 {
3512 	u_int	ts_i;
3513 	u_int	ts_f;
3514 	l_fp	ts;
3515 	l_fp	now_delta;
3516 	u_int	supposed;
3517 	u_int	derived;
3518 
3519 	if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3520 		return FALSE;
3521 
3522 	ts.l_ui = (u_int32)ts_i;
3523 	ts.l_uf = (u_int32)ts_f;
3524 	derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3525 	get_systime(&now_delta);
3526 	L_SUB(&now_delta, &ts);
3527 
3528 	return (supposed == derived && now_delta.l_ui < 16);
3529 }
3530 
3531 
3532 /*
3533  * send_random_tag_value - send a randomly-generated three character
3534  *			   tag prefix, a '.', an index, a '=' and a
3535  *			   random integer value.
3536  *
3537  * To try to force clients to ignore unrecognized tags in mrulist,
3538  * reslist, and ifstats responses, the first and last rows are spiced
3539  * with randomly-generated tag names with correct .# index.  Make it
3540  * three characters knowing that none of the currently-used subscripted
3541  * tags have that length, avoiding the need to test for
3542  * tag collision.
3543  */
3544 static void
3545 send_random_tag_value(
3546 	int	indx
3547 	)
3548 {
3549 	int	noise;
3550 	char	buf[32];
3551 
3552 	noise = rand() ^ (rand() << 16);
3553 	buf[0] = 'a' + noise % 26;
3554 	noise >>= 5;
3555 	buf[1] = 'a' + noise % 26;
3556 	noise >>= 5;
3557 	buf[2] = 'a' + noise % 26;
3558 	noise >>= 5;
3559 	buf[3] = '.';
3560 	snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3561 	ctl_putuint(buf, noise);
3562 }
3563 
3564 
3565 /*
3566  * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3567  *
3568  * To keep clients honest about not depending on the order of values,
3569  * and thereby avoid being locked into ugly workarounds to maintain
3570  * backward compatibility later as new fields are added to the response,
3571  * the order is random.
3572  */
3573 static void
3574 send_mru_entry(
3575 	mon_entry *	mon,
3576 	int		count
3577 	)
3578 {
3579 	const char first_fmt[] =	"first.%d";
3580 	const char ct_fmt[] =		"ct.%d";
3581 	const char mv_fmt[] =		"mv.%d";
3582 	const char rs_fmt[] =		"rs.%d";
3583 	char	tag[32];
3584 	u_char	sent[6]; /* 6 tag=value pairs */
3585 	u_int32 noise;
3586 	u_int	which;
3587 	u_int	remaining;
3588 	const char * pch;
3589 
3590 	remaining = COUNTOF(sent);
3591 	ZERO(sent);
3592 	noise = (u_int32)(rand() ^ (rand() << 16));
3593 	while (remaining > 0) {
3594 		which = (noise & 7) % COUNTOF(sent);
3595 		noise >>= 3;
3596 		while (sent[which])
3597 			which = (which + 1) % COUNTOF(sent);
3598 
3599 		switch (which) {
3600 
3601 		case 0:
3602 			snprintf(tag, sizeof(tag), addr_fmt, count);
3603 			pch = sptoa(&mon->rmtadr);
3604 			ctl_putunqstr(tag, pch, strlen(pch));
3605 			break;
3606 
3607 		case 1:
3608 			snprintf(tag, sizeof(tag), last_fmt, count);
3609 			ctl_putts(tag, &mon->last);
3610 			break;
3611 
3612 		case 2:
3613 			snprintf(tag, sizeof(tag), first_fmt, count);
3614 			ctl_putts(tag, &mon->first);
3615 			break;
3616 
3617 		case 3:
3618 			snprintf(tag, sizeof(tag), ct_fmt, count);
3619 			ctl_putint(tag, mon->count);
3620 			break;
3621 
3622 		case 4:
3623 			snprintf(tag, sizeof(tag), mv_fmt, count);
3624 			ctl_putuint(tag, mon->vn_mode);
3625 			break;
3626 
3627 		case 5:
3628 			snprintf(tag, sizeof(tag), rs_fmt, count);
3629 			ctl_puthex(tag, mon->flags);
3630 			break;
3631 		}
3632 		sent[which] = TRUE;
3633 		remaining--;
3634 	}
3635 }
3636 
3637 
3638 /*
3639  * read_mru_list - supports ntpq's mrulist command.
3640  *
3641  * The challenge here is to match ntpdc's monlist functionality without
3642  * being limited to hundreds of entries returned total, and without
3643  * requiring state on the server.  If state were required, ntpq's
3644  * mrulist command would require authentication.
3645  *
3646  * The approach was suggested by Ry Jones.  A finite and variable number
3647  * of entries are retrieved per request, to avoid having responses with
3648  * such large numbers of packets that socket buffers are overflowed and
3649  * packets lost.  The entries are retrieved oldest-first, taking into
3650  * account that the MRU list will be changing between each request.  We
3651  * can expect to see duplicate entries for addresses updated in the MRU
3652  * list during the fetch operation.  In the end, the client can assemble
3653  * a close approximation of the MRU list at the point in time the last
3654  * response was sent by ntpd.  The only difference is it may be longer,
3655  * containing some number of oldest entries which have since been
3656  * reclaimed.  If necessary, the protocol could be extended to zap those
3657  * from the client snapshot at the end, but so far that doesn't seem
3658  * useful.
3659  *
3660  * To accomodate the changing MRU list, the starting point for requests
3661  * after the first request is supplied as a series of last seen
3662  * timestamps and associated addresses, the newest ones the client has
3663  * received.  As long as at least one of those entries hasn't been
3664  * bumped to the head of the MRU list, ntpd can pick up at that point.
3665  * Otherwise, the request is failed and it is up to ntpq to back up and
3666  * provide the next newest entry's timestamps and addresses, conceivably
3667  * backing up all the way to the starting point.
3668  *
3669  * input parameters:
3670  *	nonce=		Regurgitated nonce retrieved by the client
3671  *			previously using CTL_OP_REQ_NONCE, demonstrating
3672  *			ability to receive traffic sent to its address.
3673  *	frags=		Limit on datagrams (fragments) in response.  Used
3674  *			by newer ntpq versions instead of limit= when
3675  *			retrieving multiple entries.
3676  *	limit=		Limit on MRU entries returned.  One of frags= or
3677  *			limit= must be provided.
3678  *			limit=1 is a special case:  Instead of fetching
3679  *			beginning with the supplied starting point's
3680  *			newer neighbor, fetch the supplied entry, and
3681  *			in that case the #.last timestamp can be zero.
3682  *			This enables fetching a single entry by IP
3683  *			address.  When limit is not one and frags= is
3684  *			provided, the fragment limit controls.
3685  *	mincount=	(decimal) Return entries with count >= mincount.
3686  *	laddr=		Return entries associated with the server's IP
3687  *			address given.  No port specification is needed,
3688  *			and any supplied is ignored.
3689  *	resall=		0x-prefixed hex restrict bits which must all be
3690  *			lit for an MRU entry to be included.
3691  *			Has precedence over any resany=.
3692  *	resany=		0x-prefixed hex restrict bits, at least one of
3693  *			which must be list for an MRU entry to be
3694  *			included.
3695  *	last.0=		0x-prefixed hex l_fp timestamp of newest entry
3696  *			which client previously received.
3697  *	addr.0=		text of newest entry's IP address and port,
3698  *			IPv6 addresses in bracketed form: [::]:123
3699  *	last.1=		timestamp of 2nd newest entry client has.
3700  *	addr.1=		address of 2nd newest entry.
3701  *	[...]
3702  *
3703  * ntpq provides as many last/addr pairs as will fit in a single request
3704  * packet, except for the first request in a MRU fetch operation.
3705  *
3706  * The response begins with a new nonce value to be used for any
3707  * followup request.  Following the nonce is the next newer entry than
3708  * referred to by last.0 and addr.0, if the "0" entry has not been
3709  * bumped to the front.  If it has, the first entry returned will be the
3710  * next entry newer than referred to by last.1 and addr.1, and so on.
3711  * If none of the referenced entries remain unchanged, the request fails
3712  * and ntpq backs up to the next earlier set of entries to resync.
3713  *
3714  * Except for the first response, the response begins with confirmation
3715  * of the entry that precedes the first additional entry provided:
3716  *
3717  *	last.older=	hex l_fp timestamp matching one of the input
3718  *			.last timestamps, which entry now precedes the
3719  *			response 0. entry in the MRU list.
3720  *	addr.older=	text of address corresponding to older.last.
3721  *
3722  * And in any case, a successful response contains sets of values
3723  * comprising entries, with the oldest numbered 0 and incrementing from
3724  * there:
3725  *
3726  *	addr.#		text of IPv4 or IPv6 address and port
3727  *	last.#		hex l_fp timestamp of last receipt
3728  *	first.#		hex l_fp timestamp of first receipt
3729  *	ct.#		count of packets received
3730  *	mv.#		mode and version
3731  *	rs.#		restriction mask (RES_* bits)
3732  *
3733  * Note the code currently assumes there are no valid three letter
3734  * tags sent with each row, and needs to be adjusted if that changes.
3735  *
3736  * The client should accept the values in any order, and ignore .#
3737  * values which it does not understand, to allow a smooth path to
3738  * future changes without requiring a new opcode.  Clients can rely
3739  * on all *.0 values preceding any *.1 values, that is all values for
3740  * a given index number are together in the response.
3741  *
3742  * The end of the response list is noted with one or two tag=value
3743  * pairs.  Unconditionally:
3744  *
3745  *	now=		0x-prefixed l_fp timestamp at the server marking
3746  *			the end of the operation.
3747  *
3748  * If any entries were returned, now= is followed by:
3749  *
3750  *	last.newest=	hex l_fp identical to last.# of the prior
3751  *			entry.
3752  */
3753 static void read_mru_list(
3754 	struct recvbuf *rbufp,
3755 	int restrict_mask
3756 	)
3757 {
3758 	const char		nonce_text[] =		"nonce";
3759 	const char		frags_text[] =		"frags";
3760 	const char		limit_text[] =		"limit";
3761 	const char		mincount_text[] =	"mincount";
3762 	const char		resall_text[] =		"resall";
3763 	const char		resany_text[] =		"resany";
3764 	const char		maxlstint_text[] =	"maxlstint";
3765 	const char		laddr_text[] =		"laddr";
3766 	const char		resaxx_fmt[] =		"0x%hx";
3767 	u_int			limit;
3768 	u_short			frags;
3769 	u_short			resall;
3770 	u_short			resany;
3771 	int			mincount;
3772 	u_int			maxlstint;
3773 	sockaddr_u		laddr;
3774 	struct interface *	lcladr;
3775 	u_int			count;
3776 	u_int			ui;
3777 	u_int			uf;
3778 	l_fp			last[16];
3779 	sockaddr_u		addr[COUNTOF(last)];
3780 	char			buf[128];
3781 	struct ctl_var *	in_parms;
3782 	const struct ctl_var *	v;
3783 	char *			val;
3784 	const char *		pch;
3785 	char *			pnonce;
3786 	int			nonce_valid;
3787 	size_t			i;
3788 	int			priors;
3789 	u_short			hash;
3790 	mon_entry *		mon;
3791 	mon_entry *		prior_mon;
3792 	l_fp			now;
3793 
3794 	if (RES_NOMRULIST & restrict_mask) {
3795 		ctl_error(CERR_PERMISSION);
3796 		NLOG(NLOG_SYSINFO)
3797 			msyslog(LOG_NOTICE,
3798 				"mrulist from %s rejected due to nomrulist restriction",
3799 				stoa(&rbufp->recv_srcadr));
3800 		sys_restricted++;
3801 		return;
3802 	}
3803 	/*
3804 	 * fill in_parms var list with all possible input parameters.
3805 	 */
3806 	in_parms = NULL;
3807 	set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
3808 	set_var(&in_parms, frags_text, sizeof(frags_text), 0);
3809 	set_var(&in_parms, limit_text, sizeof(limit_text), 0);
3810 	set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
3811 	set_var(&in_parms, resall_text, sizeof(resall_text), 0);
3812 	set_var(&in_parms, resany_text, sizeof(resany_text), 0);
3813 	set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
3814 	set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
3815 	for (i = 0; i < COUNTOF(last); i++) {
3816 		snprintf(buf, sizeof(buf), last_fmt, (int)i);
3817 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
3818 		snprintf(buf, sizeof(buf), addr_fmt, (int)i);
3819 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
3820 	}
3821 
3822 	/* decode input parms */
3823 	pnonce = NULL;
3824 	frags = 0;
3825 	limit = 0;
3826 	mincount = 0;
3827 	resall = 0;
3828 	resany = 0;
3829 	maxlstint = 0;
3830 	lcladr = NULL;
3831 	priors = 0;
3832 	ZERO(last);
3833 	ZERO(addr);
3834 
3835 	while (NULL != (v = ctl_getitem(in_parms, &val)) &&
3836 	       !(EOV & v->flags)) {
3837 		int si;
3838 
3839 		if (!strcmp(nonce_text, v->text)) {
3840 			if (NULL != pnonce)
3841 				free(pnonce);
3842 			pnonce = estrdup(val);
3843 		} else if (!strcmp(frags_text, v->text)) {
3844 			sscanf(val, "%hu", &frags);
3845 		} else if (!strcmp(limit_text, v->text)) {
3846 			sscanf(val, "%u", &limit);
3847 		} else if (!strcmp(mincount_text, v->text)) {
3848 			if (1 != sscanf(val, "%d", &mincount) ||
3849 			    mincount < 0)
3850 				mincount = 0;
3851 		} else if (!strcmp(resall_text, v->text)) {
3852 			sscanf(val, resaxx_fmt, &resall);
3853 		} else if (!strcmp(resany_text, v->text)) {
3854 			sscanf(val, resaxx_fmt, &resany);
3855 		} else if (!strcmp(maxlstint_text, v->text)) {
3856 			sscanf(val, "%u", &maxlstint);
3857 		} else if (!strcmp(laddr_text, v->text)) {
3858 			if (decodenetnum(val, &laddr))
3859 				lcladr = getinterface(&laddr, 0);
3860 		} else if (1 == sscanf(v->text, last_fmt, &si) &&
3861 			   (size_t)si < COUNTOF(last)) {
3862 			if (2 == sscanf(val, "0x%08x.%08x", &ui, &uf)) {
3863 				last[si].l_ui = ui;
3864 				last[si].l_uf = uf;
3865 				if (!SOCK_UNSPEC(&addr[si]) &&
3866 				    si == priors)
3867 					priors++;
3868 			}
3869 		} else if (1 == sscanf(v->text, addr_fmt, &si) &&
3870 			   (size_t)si < COUNTOF(addr)) {
3871 			if (decodenetnum(val, &addr[si])
3872 			    && last[si].l_ui && last[si].l_uf &&
3873 			    si == priors)
3874 				priors++;
3875 		}
3876 	}
3877 	free_varlist(in_parms);
3878 	in_parms = NULL;
3879 
3880 	/* return no responses until the nonce is validated */
3881 	if (NULL == pnonce)
3882 		return;
3883 
3884 	nonce_valid = validate_nonce(pnonce, rbufp);
3885 	free(pnonce);
3886 	if (!nonce_valid)
3887 		return;
3888 
3889 	if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
3890 	    frags > MRU_FRAGS_LIMIT) {
3891 		ctl_error(CERR_BADVALUE);
3892 		return;
3893 	}
3894 
3895 	/*
3896 	 * If either frags or limit is not given, use the max.
3897 	 */
3898 	if (0 != frags && 0 == limit)
3899 		limit = UINT_MAX;
3900 	else if (0 != limit && 0 == frags)
3901 		frags = MRU_FRAGS_LIMIT;
3902 
3903 	/*
3904 	 * Find the starting point if one was provided.
3905 	 */
3906 	mon = NULL;
3907 	for (i = 0; i < (size_t)priors; i++) {
3908 		hash = MON_HASH(&addr[i]);
3909 		for (mon = mon_hash[hash];
3910 		     mon != NULL;
3911 		     mon = mon->hash_next)
3912 			if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
3913 				break;
3914 		if (mon != NULL) {
3915 			if (L_ISEQU(&mon->last, &last[i]))
3916 				break;
3917 			mon = NULL;
3918 		}
3919 	}
3920 
3921 	/* If a starting point was provided... */
3922 	if (priors) {
3923 		/* and none could be found unmodified... */
3924 		if (NULL == mon) {
3925 			/* tell ntpq to try again with older entries */
3926 			ctl_error(CERR_UNKNOWNVAR);
3927 			return;
3928 		}
3929 		/* confirm the prior entry used as starting point */
3930 		ctl_putts("last.older", &mon->last);
3931 		pch = sptoa(&mon->rmtadr);
3932 		ctl_putunqstr("addr.older", pch, strlen(pch));
3933 
3934 		/*
3935 		 * Move on to the first entry the client doesn't have,
3936 		 * except in the special case of a limit of one.  In
3937 		 * that case return the starting point entry.
3938 		 */
3939 		if (limit > 1)
3940 			mon = PREV_DLIST(mon_mru_list, mon, mru);
3941 	} else {	/* start with the oldest */
3942 		mon = TAIL_DLIST(mon_mru_list, mru);
3943 	}
3944 
3945 	/*
3946 	 * send up to limit= entries in up to frags= datagrams
3947 	 */
3948 	get_systime(&now);
3949 	generate_nonce(rbufp, buf, sizeof(buf));
3950 	ctl_putunqstr("nonce", buf, strlen(buf));
3951 	prior_mon = NULL;
3952 	for (count = 0;
3953 	     mon != NULL && res_frags < frags && count < limit;
3954 	     mon = PREV_DLIST(mon_mru_list, mon, mru)) {
3955 
3956 		if (mon->count < mincount)
3957 			continue;
3958 		if (resall && resall != (resall & mon->flags))
3959 			continue;
3960 		if (resany && !(resany & mon->flags))
3961 			continue;
3962 		if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
3963 		    maxlstint)
3964 			continue;
3965 		if (lcladr != NULL && mon->lcladr != lcladr)
3966 			continue;
3967 
3968 		send_mru_entry(mon, count);
3969 		if (!count)
3970 			send_random_tag_value(0);
3971 		count++;
3972 		prior_mon = mon;
3973 	}
3974 
3975 	/*
3976 	 * If this batch completes the MRU list, say so explicitly with
3977 	 * a now= l_fp timestamp.
3978 	 */
3979 	if (NULL == mon) {
3980 		if (count > 1)
3981 			send_random_tag_value(count - 1);
3982 		ctl_putts("now", &now);
3983 		/* if any entries were returned confirm the last */
3984 		if (prior_mon != NULL)
3985 			ctl_putts("last.newest", &prior_mon->last);
3986 	}
3987 	ctl_flushpkt(0);
3988 }
3989 
3990 
3991 /*
3992  * Send a ifstats entry in response to a "ntpq -c ifstats" request.
3993  *
3994  * To keep clients honest about not depending on the order of values,
3995  * and thereby avoid being locked into ugly workarounds to maintain
3996  * backward compatibility later as new fields are added to the response,
3997  * the order is random.
3998  */
3999 static void
4000 send_ifstats_entry(
4001 	endpt *	la,
4002 	u_int	ifnum
4003 	)
4004 {
4005 	const char addr_fmtu[] =	"addr.%u";
4006 	const char bcast_fmt[] =	"bcast.%u";
4007 	const char en_fmt[] =		"en.%u";	/* enabled */
4008 	const char name_fmt[] =		"name.%u";
4009 	const char flags_fmt[] =	"flags.%u";
4010 	const char tl_fmt[] =		"tl.%u";	/* ttl */
4011 	const char mc_fmt[] =		"mc.%u";	/* mcast count */
4012 	const char rx_fmt[] =		"rx.%u";
4013 	const char tx_fmt[] =		"tx.%u";
4014 	const char txerr_fmt[] =	"txerr.%u";
4015 	const char pc_fmt[] =		"pc.%u";	/* peer count */
4016 	const char up_fmt[] =		"up.%u";	/* uptime */
4017 	char	tag[32];
4018 	u_char	sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
4019 	int	noisebits;
4020 	u_int32 noise;
4021 	u_int	which;
4022 	u_int	remaining;
4023 	const char *pch;
4024 
4025 	remaining = COUNTOF(sent);
4026 	ZERO(sent);
4027 	noise = 0;
4028 	noisebits = 0;
4029 	while (remaining > 0) {
4030 		if (noisebits < 4) {
4031 			noise = rand() ^ (rand() << 16);
4032 			noisebits = 31;
4033 		}
4034 		which = (noise & 0xf) % COUNTOF(sent);
4035 		noise >>= 4;
4036 		noisebits -= 4;
4037 
4038 		while (sent[which])
4039 			which = (which + 1) % COUNTOF(sent);
4040 
4041 		switch (which) {
4042 
4043 		case 0:
4044 			snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
4045 			pch = sptoa(&la->sin);
4046 			ctl_putunqstr(tag, pch, strlen(pch));
4047 			break;
4048 
4049 		case 1:
4050 			snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
4051 			if (INT_BCASTOPEN & la->flags)
4052 				pch = sptoa(&la->bcast);
4053 			else
4054 				pch = "";
4055 			ctl_putunqstr(tag, pch, strlen(pch));
4056 			break;
4057 
4058 		case 2:
4059 			snprintf(tag, sizeof(tag), en_fmt, ifnum);
4060 			ctl_putint(tag, !la->ignore_packets);
4061 			break;
4062 
4063 		case 3:
4064 			snprintf(tag, sizeof(tag), name_fmt, ifnum);
4065 			ctl_putstr(tag, la->name, strlen(la->name));
4066 			break;
4067 
4068 		case 4:
4069 			snprintf(tag, sizeof(tag), flags_fmt, ifnum);
4070 			ctl_puthex(tag, (u_int)la->flags);
4071 			break;
4072 
4073 		case 5:
4074 			snprintf(tag, sizeof(tag), tl_fmt, ifnum);
4075 			ctl_putint(tag, la->last_ttl);
4076 			break;
4077 
4078 		case 6:
4079 			snprintf(tag, sizeof(tag), mc_fmt, ifnum);
4080 			ctl_putint(tag, la->num_mcast);
4081 			break;
4082 
4083 		case 7:
4084 			snprintf(tag, sizeof(tag), rx_fmt, ifnum);
4085 			ctl_putint(tag, la->received);
4086 			break;
4087 
4088 		case 8:
4089 			snprintf(tag, sizeof(tag), tx_fmt, ifnum);
4090 			ctl_putint(tag, la->sent);
4091 			break;
4092 
4093 		case 9:
4094 			snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
4095 			ctl_putint(tag, la->notsent);
4096 			break;
4097 
4098 		case 10:
4099 			snprintf(tag, sizeof(tag), pc_fmt, ifnum);
4100 			ctl_putuint(tag, la->peercnt);
4101 			break;
4102 
4103 		case 11:
4104 			snprintf(tag, sizeof(tag), up_fmt, ifnum);
4105 			ctl_putuint(tag, current_time - la->starttime);
4106 			break;
4107 		}
4108 		sent[which] = TRUE;
4109 		remaining--;
4110 	}
4111 	send_random_tag_value((int)ifnum);
4112 }
4113 
4114 
4115 /*
4116  * read_ifstats - send statistics for each local address, exposed by
4117  *		  ntpq -c ifstats
4118  */
4119 static void
4120 read_ifstats(
4121 	struct recvbuf *	rbufp
4122 	)
4123 {
4124 	u_int	ifidx;
4125 	endpt *	la;
4126 
4127 	/*
4128 	 * loop over [0..sys_ifnum] searching ep_list for each
4129 	 * ifnum in turn.
4130 	 */
4131 	for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4132 		for (la = ep_list; la != NULL; la = la->elink)
4133 			if (ifidx == la->ifnum)
4134 				break;
4135 		if (NULL == la)
4136 			continue;
4137 		/* return stats for one local address */
4138 		send_ifstats_entry(la, ifidx);
4139 	}
4140 	ctl_flushpkt(0);
4141 }
4142 
4143 static void
4144 sockaddrs_from_restrict_u(
4145 	sockaddr_u *	psaA,
4146 	sockaddr_u *	psaM,
4147 	restrict_u *	pres,
4148 	int		ipv6
4149 	)
4150 {
4151 	ZERO(*psaA);
4152 	ZERO(*psaM);
4153 	if (!ipv6) {
4154 		psaA->sa.sa_family = AF_INET;
4155 		psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
4156 		psaM->sa.sa_family = AF_INET;
4157 		psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
4158 	} else {
4159 		psaA->sa.sa_family = AF_INET6;
4160 		memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
4161 		       sizeof(psaA->sa6.sin6_addr));
4162 		psaM->sa.sa_family = AF_INET6;
4163 		memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
4164 		       sizeof(psaA->sa6.sin6_addr));
4165 	}
4166 }
4167 
4168 
4169 /*
4170  * Send a restrict entry in response to a "ntpq -c reslist" request.
4171  *
4172  * To keep clients honest about not depending on the order of values,
4173  * and thereby avoid being locked into ugly workarounds to maintain
4174  * backward compatibility later as new fields are added to the response,
4175  * the order is random.
4176  */
4177 static void
4178 send_restrict_entry(
4179 	restrict_u *	pres,
4180 	int		ipv6,
4181 	u_int		idx
4182 	)
4183 {
4184 	const char addr_fmtu[] =	"addr.%u";
4185 	const char mask_fmtu[] =	"mask.%u";
4186 	const char hits_fmt[] =		"hits.%u";
4187 	const char flags_fmt[] =	"flags.%u";
4188 	char		tag[32];
4189 	u_char		sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4190 	int		noisebits;
4191 	u_int32		noise;
4192 	u_int		which;
4193 	u_int		remaining;
4194 	sockaddr_u	addr;
4195 	sockaddr_u	mask;
4196 	const char *	pch;
4197 	char *		buf;
4198 	const char *	match_str;
4199 	const char *	access_str;
4200 
4201 	sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
4202 	remaining = COUNTOF(sent);
4203 	ZERO(sent);
4204 	noise = 0;
4205 	noisebits = 0;
4206 	while (remaining > 0) {
4207 		if (noisebits < 2) {
4208 			noise = rand() ^ (rand() << 16);
4209 			noisebits = 31;
4210 		}
4211 		which = (noise & 0x3) % COUNTOF(sent);
4212 		noise >>= 2;
4213 		noisebits -= 2;
4214 
4215 		while (sent[which])
4216 			which = (which + 1) % COUNTOF(sent);
4217 
4218 		switch (which) {
4219 
4220 		case 0:
4221 			snprintf(tag, sizeof(tag), addr_fmtu, idx);
4222 			pch = stoa(&addr);
4223 			ctl_putunqstr(tag, pch, strlen(pch));
4224 			break;
4225 
4226 		case 1:
4227 			snprintf(tag, sizeof(tag), mask_fmtu, idx);
4228 			pch = stoa(&mask);
4229 			ctl_putunqstr(tag, pch, strlen(pch));
4230 			break;
4231 
4232 		case 2:
4233 			snprintf(tag, sizeof(tag), hits_fmt, idx);
4234 			ctl_putuint(tag, pres->count);
4235 			break;
4236 
4237 		case 3:
4238 			snprintf(tag, sizeof(tag), flags_fmt, idx);
4239 			match_str = res_match_flags(pres->mflags);
4240 			access_str = res_access_flags(pres->flags);
4241 			if ('\0' == match_str[0]) {
4242 				pch = access_str;
4243 			} else {
4244 				LIB_GETBUF(buf);
4245 				snprintf(buf, LIB_BUFLENGTH, "%s %s",
4246 					 match_str, access_str);
4247 				pch = buf;
4248 			}
4249 			ctl_putunqstr(tag, pch, strlen(pch));
4250 			break;
4251 		}
4252 		sent[which] = TRUE;
4253 		remaining--;
4254 	}
4255 	send_random_tag_value((int)idx);
4256 }
4257 
4258 
4259 static void
4260 send_restrict_list(
4261 	restrict_u *	pres,
4262 	int		ipv6,
4263 	u_int *		pidx
4264 	)
4265 {
4266 	for ( ; pres != NULL; pres = pres->link) {
4267 		send_restrict_entry(pres, ipv6, *pidx);
4268 		(*pidx)++;
4269 	}
4270 }
4271 
4272 
4273 /*
4274  * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4275  */
4276 static void
4277 read_addr_restrictions(
4278 	struct recvbuf *	rbufp
4279 )
4280 {
4281 	u_int idx;
4282 
4283 	idx = 0;
4284 	send_restrict_list(restrictlist4, FALSE, &idx);
4285 	send_restrict_list(restrictlist6, TRUE, &idx);
4286 	ctl_flushpkt(0);
4287 }
4288 
4289 
4290 /*
4291  * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4292  */
4293 static void
4294 read_ordlist(
4295 	struct recvbuf *	rbufp,
4296 	int			restrict_mask
4297 	)
4298 {
4299 	const char ifstats_s[] = "ifstats";
4300 	const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4301 	const char addr_rst_s[] = "addr_restrictions";
4302 	const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4303 	struct ntp_control *	cpkt;
4304 	u_short			qdata_octets;
4305 
4306 	/*
4307 	 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4308 	 * used only for ntpq -c ifstats.  With the addition of reslist
4309 	 * the same opcode was generalized to retrieve ordered lists
4310 	 * which require authentication.  The request data is empty or
4311 	 * contains "ifstats" (not null terminated) to retrieve local
4312 	 * addresses and associated stats.  It is "addr_restrictions"
4313 	 * to retrieve the IPv4 then IPv6 remote address restrictions,
4314 	 * which are access control lists.  Other request data return
4315 	 * CERR_UNKNOWNVAR.
4316 	 */
4317 	cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4318 	qdata_octets = ntohs(cpkt->count);
4319 	if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4320 	    !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4321 		read_ifstats(rbufp);
4322 		return;
4323 	}
4324 	if (a_r_chars == qdata_octets &&
4325 	    !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4326 		read_addr_restrictions(rbufp);
4327 		return;
4328 	}
4329 	ctl_error(CERR_UNKNOWNVAR);
4330 }
4331 
4332 
4333 /*
4334  * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4335  */
4336 static void req_nonce(
4337 	struct recvbuf *	rbufp,
4338 	int			restrict_mask
4339 	)
4340 {
4341 	char	buf[64];
4342 
4343 	generate_nonce(rbufp, buf, sizeof(buf));
4344 	ctl_putunqstr("nonce", buf, strlen(buf));
4345 	ctl_flushpkt(0);
4346 }
4347 
4348 
4349 /*
4350  * read_clockstatus - return clock radio status
4351  */
4352 /*ARGSUSED*/
4353 static void
4354 read_clockstatus(
4355 	struct recvbuf *rbufp,
4356 	int restrict_mask
4357 	)
4358 {
4359 #ifndef REFCLOCK
4360 	/*
4361 	 * If no refclock support, no data to return
4362 	 */
4363 	ctl_error(CERR_BADASSOC);
4364 #else
4365 	const struct ctl_var *	v;
4366 	int			i;
4367 	struct peer *		peer;
4368 	char *			valuep;
4369 	u_char *		wants;
4370 	size_t			wants_alloc;
4371 	int			gotvar;
4372 	const u_char *		cc;
4373 	struct ctl_var *	kv;
4374 	struct refclockstat	cs;
4375 
4376 	if (res_associd != 0) {
4377 		peer = findpeerbyassoc(res_associd);
4378 	} else {
4379 		/*
4380 		 * Find a clock for this jerk.	If the system peer
4381 		 * is a clock use it, else search peer_list for one.
4382 		 */
4383 		if (sys_peer != NULL && (FLAG_REFCLOCK &
4384 		    sys_peer->flags))
4385 			peer = sys_peer;
4386 		else
4387 			for (peer = peer_list;
4388 			     peer != NULL;
4389 			     peer = peer->p_link)
4390 				if (FLAG_REFCLOCK & peer->flags)
4391 					break;
4392 	}
4393 	if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4394 		ctl_error(CERR_BADASSOC);
4395 		return;
4396 	}
4397 	/*
4398 	 * If we got here we have a peer which is a clock. Get his
4399 	 * status.
4400 	 */
4401 	cs.kv_list = NULL;
4402 	refclock_control(&peer->srcadr, NULL, &cs);
4403 	kv = cs.kv_list;
4404 	/*
4405 	 * Look for variables in the packet.
4406 	 */
4407 	rpkt.status = htons(ctlclkstatus(&cs));
4408 	wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4409 	wants = emalloc_zero(wants_alloc);
4410 	gotvar = FALSE;
4411 	while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4412 		if (!(EOV & v->flags)) {
4413 			wants[v->code] = TRUE;
4414 			gotvar = TRUE;
4415 		} else {
4416 			v = ctl_getitem(kv, &valuep);
4417 			INSIST(NULL != v);
4418 			if (EOV & v->flags) {
4419 				ctl_error(CERR_UNKNOWNVAR);
4420 				free(wants);
4421 				free_varlist(cs.kv_list);
4422 				return;
4423 			}
4424 			wants[CC_MAXCODE + 1 + v->code] = TRUE;
4425 			gotvar = TRUE;
4426 		}
4427 	}
4428 
4429 	if (gotvar) {
4430 		for (i = 1; i <= CC_MAXCODE; i++)
4431 			if (wants[i])
4432 				ctl_putclock(i, &cs, TRUE);
4433 		if (kv != NULL)
4434 			for (i = 0; !(EOV & kv[i].flags); i++)
4435 				if (wants[i + CC_MAXCODE + 1])
4436 					ctl_putdata(kv[i].text,
4437 						    strlen(kv[i].text),
4438 						    FALSE);
4439 	} else {
4440 		for (cc = def_clock_var; *cc != 0; cc++)
4441 			ctl_putclock((int)*cc, &cs, FALSE);
4442 		for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4443 			if (DEF & kv->flags)
4444 				ctl_putdata(kv->text, strlen(kv->text),
4445 					    FALSE);
4446 	}
4447 
4448 	free(wants);
4449 	free_varlist(cs.kv_list);
4450 
4451 	ctl_flushpkt(0);
4452 #endif
4453 }
4454 
4455 
4456 /*
4457  * write_clockstatus - we don't do this
4458  */
4459 /*ARGSUSED*/
4460 static void
4461 write_clockstatus(
4462 	struct recvbuf *rbufp,
4463 	int restrict_mask
4464 	)
4465 {
4466 	ctl_error(CERR_PERMISSION);
4467 }
4468 
4469 /*
4470  * Trap support from here on down. We send async trap messages when the
4471  * upper levels report trouble. Traps can by set either by control
4472  * messages or by configuration.
4473  */
4474 /*
4475  * set_trap - set a trap in response to a control message
4476  */
4477 static void
4478 set_trap(
4479 	struct recvbuf *rbufp,
4480 	int restrict_mask
4481 	)
4482 {
4483 	int traptype;
4484 
4485 	/*
4486 	 * See if this guy is allowed
4487 	 */
4488 	if (restrict_mask & RES_NOTRAP) {
4489 		ctl_error(CERR_PERMISSION);
4490 		return;
4491 	}
4492 
4493 	/*
4494 	 * Determine his allowed trap type.
4495 	 */
4496 	traptype = TRAP_TYPE_PRIO;
4497 	if (restrict_mask & RES_LPTRAP)
4498 		traptype = TRAP_TYPE_NONPRIO;
4499 
4500 	/*
4501 	 * Call ctlsettrap() to do the work.  Return
4502 	 * an error if it can't assign the trap.
4503 	 */
4504 	if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4505 			(int)res_version))
4506 		ctl_error(CERR_NORESOURCE);
4507 	ctl_flushpkt(0);
4508 }
4509 
4510 
4511 /*
4512  * unset_trap - unset a trap in response to a control message
4513  */
4514 static void
4515 unset_trap(
4516 	struct recvbuf *rbufp,
4517 	int restrict_mask
4518 	)
4519 {
4520 	int traptype;
4521 
4522 	/*
4523 	 * We don't prevent anyone from removing his own trap unless the
4524 	 * trap is configured. Note we also must be aware of the
4525 	 * possibility that restriction flags were changed since this
4526 	 * guy last set his trap. Set the trap type based on this.
4527 	 */
4528 	traptype = TRAP_TYPE_PRIO;
4529 	if (restrict_mask & RES_LPTRAP)
4530 		traptype = TRAP_TYPE_NONPRIO;
4531 
4532 	/*
4533 	 * Call ctlclrtrap() to clear this out.
4534 	 */
4535 	if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4536 		ctl_error(CERR_BADASSOC);
4537 	ctl_flushpkt(0);
4538 }
4539 
4540 
4541 /*
4542  * ctlsettrap - called to set a trap
4543  */
4544 int
4545 ctlsettrap(
4546 	sockaddr_u *raddr,
4547 	struct interface *linter,
4548 	int traptype,
4549 	int version
4550 	)
4551 {
4552 	size_t n;
4553 	struct ctl_trap *tp;
4554 	struct ctl_trap *tptouse;
4555 
4556 	/*
4557 	 * See if we can find this trap.  If so, we only need update
4558 	 * the flags and the time.
4559 	 */
4560 	if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4561 		switch (traptype) {
4562 
4563 		case TRAP_TYPE_CONFIG:
4564 			tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4565 			break;
4566 
4567 		case TRAP_TYPE_PRIO:
4568 			if (tp->tr_flags & TRAP_CONFIGURED)
4569 				return (1); /* don't change anything */
4570 			tp->tr_flags = TRAP_INUSE;
4571 			break;
4572 
4573 		case TRAP_TYPE_NONPRIO:
4574 			if (tp->tr_flags & TRAP_CONFIGURED)
4575 				return (1); /* don't change anything */
4576 			tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4577 			break;
4578 		}
4579 		tp->tr_settime = current_time;
4580 		tp->tr_resets++;
4581 		return (1);
4582 	}
4583 
4584 	/*
4585 	 * First we heard of this guy.	Try to find a trap structure
4586 	 * for him to use, clearing out lesser priority guys if we
4587 	 * have to. Clear out anyone who's expired while we're at it.
4588 	 */
4589 	tptouse = NULL;
4590 	for (n = 0; n < COUNTOF(ctl_traps); n++) {
4591 		tp = &ctl_traps[n];
4592 		if ((TRAP_INUSE & tp->tr_flags) &&
4593 		    !(TRAP_CONFIGURED & tp->tr_flags) &&
4594 		    ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4595 			tp->tr_flags = 0;
4596 			num_ctl_traps--;
4597 		}
4598 		if (!(TRAP_INUSE & tp->tr_flags)) {
4599 			tptouse = tp;
4600 		} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4601 			switch (traptype) {
4602 
4603 			case TRAP_TYPE_CONFIG:
4604 				if (tptouse == NULL) {
4605 					tptouse = tp;
4606 					break;
4607 				}
4608 				if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4609 				    !(TRAP_NONPRIO & tp->tr_flags))
4610 					break;
4611 
4612 				if (!(TRAP_NONPRIO & tptouse->tr_flags)
4613 				    && (TRAP_NONPRIO & tp->tr_flags)) {
4614 					tptouse = tp;
4615 					break;
4616 				}
4617 				if (tptouse->tr_origtime <
4618 				    tp->tr_origtime)
4619 					tptouse = tp;
4620 				break;
4621 
4622 			case TRAP_TYPE_PRIO:
4623 				if ( TRAP_NONPRIO & tp->tr_flags) {
4624 					if (tptouse == NULL ||
4625 					    ((TRAP_INUSE &
4626 					      tptouse->tr_flags) &&
4627 					     tptouse->tr_origtime <
4628 					     tp->tr_origtime))
4629 						tptouse = tp;
4630 				}
4631 				break;
4632 
4633 			case TRAP_TYPE_NONPRIO:
4634 				break;
4635 			}
4636 		}
4637 	}
4638 
4639 	/*
4640 	 * If we don't have room for him return an error.
4641 	 */
4642 	if (tptouse == NULL)
4643 		return (0);
4644 
4645 	/*
4646 	 * Set up this structure for him.
4647 	 */
4648 	tptouse->tr_settime = tptouse->tr_origtime = current_time;
4649 	tptouse->tr_count = tptouse->tr_resets = 0;
4650 	tptouse->tr_sequence = 1;
4651 	tptouse->tr_addr = *raddr;
4652 	tptouse->tr_localaddr = linter;
4653 	tptouse->tr_version = (u_char) version;
4654 	tptouse->tr_flags = TRAP_INUSE;
4655 	if (traptype == TRAP_TYPE_CONFIG)
4656 		tptouse->tr_flags |= TRAP_CONFIGURED;
4657 	else if (traptype == TRAP_TYPE_NONPRIO)
4658 		tptouse->tr_flags |= TRAP_NONPRIO;
4659 	num_ctl_traps++;
4660 	return (1);
4661 }
4662 
4663 
4664 /*
4665  * ctlclrtrap - called to clear a trap
4666  */
4667 int
4668 ctlclrtrap(
4669 	sockaddr_u *raddr,
4670 	struct interface *linter,
4671 	int traptype
4672 	)
4673 {
4674 	register struct ctl_trap *tp;
4675 
4676 	if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4677 		return (0);
4678 
4679 	if (tp->tr_flags & TRAP_CONFIGURED
4680 	    && traptype != TRAP_TYPE_CONFIG)
4681 		return (0);
4682 
4683 	tp->tr_flags = 0;
4684 	num_ctl_traps--;
4685 	return (1);
4686 }
4687 
4688 
4689 /*
4690  * ctlfindtrap - find a trap given the remote and local addresses
4691  */
4692 static struct ctl_trap *
4693 ctlfindtrap(
4694 	sockaddr_u *raddr,
4695 	struct interface *linter
4696 	)
4697 {
4698 	size_t	n;
4699 
4700 	for (n = 0; n < COUNTOF(ctl_traps); n++)
4701 		if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4702 		    && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4703 		    && (linter == ctl_traps[n].tr_localaddr))
4704 			return &ctl_traps[n];
4705 
4706 	return NULL;
4707 }
4708 
4709 
4710 /*
4711  * report_event - report an event to the trappers
4712  */
4713 void
4714 report_event(
4715 	int	err,		/* error code */
4716 	struct peer *peer,	/* peer structure pointer */
4717 	const char *str		/* protostats string */
4718 	)
4719 {
4720 	char	statstr[NTP_MAXSTRLEN];
4721 	int	i;
4722 	size_t	len;
4723 
4724 	/*
4725 	 * Report the error to the protostats file, system log and
4726 	 * trappers.
4727 	 */
4728 	if (peer == NULL) {
4729 
4730 		/*
4731 		 * Discard a system report if the number of reports of
4732 		 * the same type exceeds the maximum.
4733 		 */
4734 		if (ctl_sys_last_event != (u_char)err)
4735 			ctl_sys_num_events= 0;
4736 		if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
4737 			return;
4738 
4739 		ctl_sys_last_event = (u_char)err;
4740 		ctl_sys_num_events++;
4741 		snprintf(statstr, sizeof(statstr),
4742 		    "0.0.0.0 %04x %02x %s",
4743 		    ctlsysstatus(), err, eventstr(err));
4744 		if (str != NULL) {
4745 			len = strlen(statstr);
4746 			snprintf(statstr + len, sizeof(statstr) - len,
4747 			    " %s", str);
4748 		}
4749 		NLOG(NLOG_SYSEVENT)
4750 			msyslog(LOG_INFO, "%s", statstr);
4751 	} else {
4752 
4753 		/*
4754 		 * Discard a peer report if the number of reports of
4755 		 * the same type exceeds the maximum for that peer.
4756 		 */
4757 		const char *	src;
4758 		u_char		errlast;
4759 
4760 		errlast = (u_char)err & ~PEER_EVENT;
4761 		if (peer->last_event == errlast)
4762 			peer->num_events = 0;
4763 		if (peer->num_events >= CTL_PEER_MAXEVENTS)
4764 			return;
4765 
4766 		peer->last_event = errlast;
4767 		peer->num_events++;
4768 		if (ISREFCLOCKADR(&peer->srcadr))
4769 			src = refnumtoa(&peer->srcadr);
4770 		else
4771 			src = stoa(&peer->srcadr);
4772 
4773 		snprintf(statstr, sizeof(statstr),
4774 		    "%s %04x %02x %s", src,
4775 		    ctlpeerstatus(peer), err, eventstr(err));
4776 		if (str != NULL) {
4777 			len = strlen(statstr);
4778 			snprintf(statstr + len, sizeof(statstr) - len,
4779 			    " %s", str);
4780 		}
4781 		NLOG(NLOG_PEEREVENT)
4782 			msyslog(LOG_INFO, "%s", statstr);
4783 	}
4784 	record_proto_stats(statstr);
4785 #if DEBUG
4786 	if (debug)
4787 		printf("event at %lu %s\n", current_time, statstr);
4788 #endif
4789 
4790 	/*
4791 	 * If no trappers, return.
4792 	 */
4793 	if (num_ctl_traps <= 0)
4794 		return;
4795 
4796 	/*
4797 	 * Set up the outgoing packet variables
4798 	 */
4799 	res_opcode = CTL_OP_ASYNCMSG;
4800 	res_offset = 0;
4801 	res_async = TRUE;
4802 	res_authenticate = FALSE;
4803 	datapt = rpkt.u.data;
4804 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
4805 	if (!(err & PEER_EVENT)) {
4806 		rpkt.associd = 0;
4807 		rpkt.status = htons(ctlsysstatus());
4808 
4809 		/* Include the core system variables and the list. */
4810 		for (i = 1; i <= CS_VARLIST; i++)
4811 			ctl_putsys(i);
4812 	} else {
4813 		INSIST(peer != NULL);
4814 		rpkt.associd = htons(peer->associd);
4815 		rpkt.status = htons(ctlpeerstatus(peer));
4816 
4817 		/* Dump it all. Later, maybe less. */
4818 		for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
4819 			ctl_putpeer(i, peer);
4820 #ifdef REFCLOCK
4821 		/*
4822 		 * for clock exception events: add clock variables to
4823 		 * reflect info on exception
4824 		 */
4825 		if (err == PEVNT_CLOCK) {
4826 			struct refclockstat cs;
4827 			struct ctl_var *kv;
4828 
4829 			cs.kv_list = NULL;
4830 			refclock_control(&peer->srcadr, NULL, &cs);
4831 
4832 			ctl_puthex("refclockstatus",
4833 				   ctlclkstatus(&cs));
4834 
4835 			for (i = 1; i <= CC_MAXCODE; i++)
4836 				ctl_putclock(i, &cs, FALSE);
4837 			for (kv = cs.kv_list;
4838 			     kv != NULL && !(EOV & kv->flags);
4839 			     kv++)
4840 				if (DEF & kv->flags)
4841 					ctl_putdata(kv->text,
4842 						    strlen(kv->text),
4843 						    FALSE);
4844 			free_varlist(cs.kv_list);
4845 		}
4846 #endif /* REFCLOCK */
4847 	}
4848 
4849 	/*
4850 	 * We're done, return.
4851 	 */
4852 	ctl_flushpkt(0);
4853 }
4854 
4855 
4856 /*
4857  * mprintf_event - printf-style varargs variant of report_event()
4858  */
4859 int
4860 mprintf_event(
4861 	int		evcode,		/* event code */
4862 	struct peer *	p,		/* may be NULL */
4863 	const char *	fmt,		/* msnprintf format */
4864 	...
4865 	)
4866 {
4867 	va_list	ap;
4868 	int	rc;
4869 	char	msg[512];
4870 
4871 	va_start(ap, fmt);
4872 	rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
4873 	va_end(ap);
4874 	report_event(evcode, p, msg);
4875 
4876 	return rc;
4877 }
4878 
4879 
4880 /*
4881  * ctl_clr_stats - clear stat counters
4882  */
4883 void
4884 ctl_clr_stats(void)
4885 {
4886 	ctltimereset = current_time;
4887 	numctlreq = 0;
4888 	numctlbadpkts = 0;
4889 	numctlresponses = 0;
4890 	numctlfrags = 0;
4891 	numctlerrors = 0;
4892 	numctlfrags = 0;
4893 	numctltooshort = 0;
4894 	numctlinputresp = 0;
4895 	numctlinputfrag = 0;
4896 	numctlinputerr = 0;
4897 	numctlbadoffset = 0;
4898 	numctlbadversion = 0;
4899 	numctldatatooshort = 0;
4900 	numctlbadop = 0;
4901 	numasyncmsgs = 0;
4902 }
4903 
4904 static u_short
4905 count_var(
4906 	const struct ctl_var *k
4907 	)
4908 {
4909 	u_int c;
4910 
4911 	if (NULL == k)
4912 		return 0;
4913 
4914 	c = 0;
4915 	while (!(EOV & (k++)->flags))
4916 		c++;
4917 
4918 	ENSURE(c <= USHRT_MAX);
4919 	return (u_short)c;
4920 }
4921 
4922 
4923 char *
4924 add_var(
4925 	struct ctl_var **kv,
4926 	u_long size,
4927 	u_short def
4928 	)
4929 {
4930 	u_short		c;
4931 	struct ctl_var *k;
4932 	char *		buf;
4933 
4934 	c = count_var(*kv);
4935 	*kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
4936 	k = *kv;
4937 	buf = emalloc(size);
4938 	k[c].code  = c;
4939 	k[c].text  = buf;
4940 	k[c].flags = def;
4941 	k[c + 1].code  = 0;
4942 	k[c + 1].text  = NULL;
4943 	k[c + 1].flags = EOV;
4944 
4945 	return buf;
4946 }
4947 
4948 
4949 void
4950 set_var(
4951 	struct ctl_var **kv,
4952 	const char *data,
4953 	u_long size,
4954 	u_short def
4955 	)
4956 {
4957 	struct ctl_var *k;
4958 	const char *s;
4959 	const char *t;
4960 	char *td;
4961 
4962 	if (NULL == data || !size)
4963 		return;
4964 
4965 	k = *kv;
4966 	if (k != NULL) {
4967 		while (!(EOV & k->flags)) {
4968 			if (NULL == k->text)	{
4969 				td = emalloc(size);
4970 				memcpy(td, data, size);
4971 				k->text = td;
4972 				k->flags = def;
4973 				return;
4974 			} else {
4975 				s = data;
4976 				t = k->text;
4977 				while (*t != '=' && *s == *t) {
4978 					s++;
4979 					t++;
4980 				}
4981 				if (*s == *t && ((*t == '=') || !*t)) {
4982 					td = erealloc((void *)(intptr_t)k->text, size);
4983 					memcpy(td, data, size);
4984 					k->text = td;
4985 					k->flags = def;
4986 					return;
4987 				}
4988 			}
4989 			k++;
4990 		}
4991 	}
4992 	td = add_var(kv, size, def);
4993 	memcpy(td, data, size);
4994 }
4995 
4996 
4997 void
4998 set_sys_var(
4999 	const char *data,
5000 	u_long size,
5001 	u_short def
5002 	)
5003 {
5004 	set_var(&ext_sys_var, data, size, def);
5005 }
5006 
5007 
5008 /*
5009  * get_ext_sys_var() retrieves the value of a user-defined variable or
5010  * NULL if the variable has not been setvar'd.
5011  */
5012 const char *
5013 get_ext_sys_var(const char *tag)
5014 {
5015 	struct ctl_var *	v;
5016 	size_t			c;
5017 	const char *		val;
5018 
5019 	val = NULL;
5020 	c = strlen(tag);
5021 	for (v = ext_sys_var; !(EOV & v->flags); v++) {
5022 		if (NULL != v->text && !memcmp(tag, v->text, c)) {
5023 			if ('=' == v->text[c]) {
5024 				val = v->text + c + 1;
5025 				break;
5026 			} else if ('\0' == v->text[c]) {
5027 				val = "";
5028 				break;
5029 			}
5030 		}
5031 	}
5032 
5033 	return val;
5034 }
5035 
5036 
5037 void
5038 free_varlist(
5039 	struct ctl_var *kv
5040 	)
5041 {
5042 	struct ctl_var *k;
5043 	if (kv) {
5044 		for (k = kv; !(k->flags & EOV); k++)
5045 			free((void *)(intptr_t)k->text);
5046 		free((void *)kv);
5047 	}
5048 }
5049