xref: /freebsd/contrib/ntp/ntpd/ntp_control.c (revision 788ca347b816afd83b2885e0c79aeeb88649b2ab)
1 /*
2  * ntp_control.c - respond to mode 6 control messages and send async
3  *		   traps.  Provides service to ntpq and others.
4  */
5 
6 /*
7  * $FreeBSD: head/contrib/ntp/ntpd/ntp_control.c 276071 2014-12-22 18:54:55Z delphij $
8  */
9 
10 #ifdef HAVE_CONFIG_H
11 # include <config.h>
12 #endif
13 
14 #include <stdio.h>
15 #include <ctype.h>
16 #include <signal.h>
17 #include <sys/stat.h>
18 #ifdef HAVE_NETINET_IN_H
19 # include <netinet/in.h>
20 #endif
21 #include <arpa/inet.h>
22 
23 #include "ntpd.h"
24 #include "ntp_io.h"
25 #include "ntp_refclock.h"
26 #include "ntp_control.h"
27 #include "ntp_unixtime.h"
28 #include "ntp_stdlib.h"
29 #include "ntp_config.h"
30 #include "ntp_crypto.h"
31 #include "ntp_assert.h"
32 #include "ntp_leapsec.h"
33 #include "ntp_md5.h"	/* provides OpenSSL digest API */
34 #include "lib_strbuf.h"
35 #ifdef KERNEL_PLL
36 # include "ntp_syscall.h"
37 #endif
38 
39 
40 #ifndef MIN
41 #define MIN(a, b) (((a) <= (b)) ? (a) : (b))
42 #endif
43 
44 /*
45  * Structure to hold request procedure information
46  */
47 
48 struct ctl_proc {
49 	short control_code;		/* defined request code */
50 #define NO_REQUEST	(-1)
51 	u_short flags;			/* flags word */
52 	/* Only one flag.  Authentication required or not. */
53 #define NOAUTH	0
54 #define AUTH	1
55 	void (*handler) (struct recvbuf *, int); /* handle request */
56 };
57 
58 
59 /*
60  * Request processing routines
61  */
62 static	void	ctl_error	(u_char);
63 #ifdef REFCLOCK
64 static	u_short ctlclkstatus	(struct refclockstat *);
65 #endif
66 static	void	ctl_flushpkt	(u_char);
67 static	void	ctl_putdata	(const char *, unsigned int, int);
68 static	void	ctl_putstr	(const char *, const char *, size_t);
69 static	void	ctl_putdblf	(const char *, int, int, double);
70 #define	ctl_putdbl(tag, d)	ctl_putdblf(tag, 1, 3, d)
71 #define	ctl_putdbl6(tag, d)	ctl_putdblf(tag, 1, 6, d)
72 #define	ctl_putsfp(tag, sfp)	ctl_putdblf(tag, 0, -1, \
73 					    FPTOD(sfp))
74 static	void	ctl_putuint	(const char *, u_long);
75 static	void	ctl_puthex	(const char *, u_long);
76 static	void	ctl_putint	(const char *, long);
77 static	void	ctl_putts	(const char *, l_fp *);
78 static	void	ctl_putadr	(const char *, u_int32,
79 				 sockaddr_u *);
80 static	void	ctl_putrefid	(const char *, u_int32);
81 static	void	ctl_putarray	(const char *, double *, int);
82 static	void	ctl_putsys	(int);
83 static	void	ctl_putpeer	(int, struct peer *);
84 static	void	ctl_putfs	(const char *, tstamp_t);
85 #ifdef REFCLOCK
86 static	void	ctl_putclock	(int, struct refclockstat *, int);
87 #endif	/* REFCLOCK */
88 static	const struct ctl_var *ctl_getitem(const struct ctl_var *,
89 					  char **);
90 static	u_short	count_var	(const struct ctl_var *);
91 static	void	control_unspec	(struct recvbuf *, int);
92 static	void	read_status	(struct recvbuf *, int);
93 static	void	read_sysvars	(void);
94 static	void	read_peervars	(void);
95 static	void	read_variables	(struct recvbuf *, int);
96 static	void	write_variables (struct recvbuf *, int);
97 static	void	read_clockstatus(struct recvbuf *, int);
98 static	void	write_clockstatus(struct recvbuf *, int);
99 static	void	set_trap	(struct recvbuf *, int);
100 static	void	save_config	(struct recvbuf *, int);
101 static	void	configure	(struct recvbuf *, int);
102 static	void	send_mru_entry	(mon_entry *, int);
103 static	void	send_random_tag_value(int);
104 static	void	read_mru_list	(struct recvbuf *, int);
105 static	void	send_ifstats_entry(endpt *, u_int);
106 static	void	read_ifstats	(struct recvbuf *);
107 static	void	sockaddrs_from_restrict_u(sockaddr_u *,	sockaddr_u *,
108 					  restrict_u *, int);
109 static	void	send_restrict_entry(restrict_u *, int, u_int);
110 static	void	send_restrict_list(restrict_u *, int, u_int *);
111 static	void	read_addr_restrictions(struct recvbuf *);
112 static	void	read_ordlist	(struct recvbuf *, int);
113 static	u_int32	derive_nonce	(sockaddr_u *, u_int32, u_int32);
114 static	void	generate_nonce	(struct recvbuf *, char *, size_t);
115 static	int	validate_nonce	(const char *, struct recvbuf *);
116 static	void	req_nonce	(struct recvbuf *, int);
117 static	void	unset_trap	(struct recvbuf *, int);
118 static	struct ctl_trap *ctlfindtrap(sockaddr_u *,
119 				     struct interface *);
120 
121 static const struct ctl_proc control_codes[] = {
122 	{ CTL_OP_UNSPEC,		NOAUTH,	control_unspec },
123 	{ CTL_OP_READSTAT,		NOAUTH,	read_status },
124 	{ CTL_OP_READVAR,		NOAUTH,	read_variables },
125 	{ CTL_OP_WRITEVAR,		AUTH,	write_variables },
126 	{ CTL_OP_READCLOCK,		NOAUTH,	read_clockstatus },
127 	{ CTL_OP_WRITECLOCK,		NOAUTH,	write_clockstatus },
128 	{ CTL_OP_SETTRAP,		NOAUTH,	set_trap },
129 	{ CTL_OP_CONFIGURE,		AUTH,	configure },
130 	{ CTL_OP_SAVECONFIG,		AUTH,	save_config },
131 	{ CTL_OP_READ_MRU,		NOAUTH,	read_mru_list },
132 	{ CTL_OP_READ_ORDLIST_A,	AUTH,	read_ordlist },
133 	{ CTL_OP_REQ_NONCE,		NOAUTH,	req_nonce },
134 	{ CTL_OP_UNSETTRAP,		NOAUTH,	unset_trap },
135 	{ NO_REQUEST,			0,	NULL }
136 };
137 
138 /*
139  * System variables we understand
140  */
141 #define	CS_LEAP			1
142 #define	CS_STRATUM		2
143 #define	CS_PRECISION		3
144 #define	CS_ROOTDELAY		4
145 #define	CS_ROOTDISPERSION	5
146 #define	CS_REFID		6
147 #define	CS_REFTIME		7
148 #define	CS_POLL			8
149 #define	CS_PEERID		9
150 #define	CS_OFFSET		10
151 #define	CS_DRIFT		11
152 #define	CS_JITTER		12
153 #define	CS_ERROR		13
154 #define	CS_CLOCK		14
155 #define	CS_PROCESSOR		15
156 #define	CS_SYSTEM		16
157 #define	CS_VERSION		17
158 #define	CS_STABIL		18
159 #define	CS_VARLIST		19
160 #define	CS_TAI			20
161 #define	CS_LEAPTAB		21
162 #define	CS_LEAPEND		22
163 #define	CS_RATE			23
164 #define	CS_MRU_ENABLED		24
165 #define	CS_MRU_DEPTH		25
166 #define	CS_MRU_DEEPEST		26
167 #define	CS_MRU_MINDEPTH		27
168 #define	CS_MRU_MAXAGE		28
169 #define	CS_MRU_MAXDEPTH		29
170 #define	CS_MRU_MEM		30
171 #define	CS_MRU_MAXMEM		31
172 #define	CS_SS_UPTIME		32
173 #define	CS_SS_RESET		33
174 #define	CS_SS_RECEIVED		34
175 #define	CS_SS_THISVER		35
176 #define	CS_SS_OLDVER		36
177 #define	CS_SS_BADFORMAT		37
178 #define	CS_SS_BADAUTH		38
179 #define	CS_SS_DECLINED		39
180 #define	CS_SS_RESTRICTED	40
181 #define	CS_SS_LIMITED		41
182 #define	CS_SS_KODSENT		42
183 #define	CS_SS_PROCESSED		43
184 #define	CS_PEERADR		44
185 #define	CS_PEERMODE		45
186 #define	CS_BCASTDELAY		46
187 #define	CS_AUTHDELAY		47
188 #define	CS_AUTHKEYS		48
189 #define	CS_AUTHFREEK		49
190 #define	CS_AUTHKLOOKUPS		50
191 #define	CS_AUTHKNOTFOUND	51
192 #define	CS_AUTHKUNCACHED	52
193 #define	CS_AUTHKEXPIRED		53
194 #define	CS_AUTHENCRYPTS		54
195 #define	CS_AUTHDECRYPTS		55
196 #define	CS_AUTHRESET		56
197 #define	CS_K_OFFSET		57
198 #define	CS_K_FREQ		58
199 #define	CS_K_MAXERR		59
200 #define	CS_K_ESTERR		60
201 #define	CS_K_STFLAGS		61
202 #define	CS_K_TIMECONST		62
203 #define	CS_K_PRECISION		63
204 #define	CS_K_FREQTOL		64
205 #define	CS_K_PPS_FREQ		65
206 #define	CS_K_PPS_STABIL		66
207 #define	CS_K_PPS_JITTER		67
208 #define	CS_K_PPS_CALIBDUR	68
209 #define	CS_K_PPS_CALIBS		69
210 #define	CS_K_PPS_CALIBERRS	70
211 #define	CS_K_PPS_JITEXC		71
212 #define	CS_K_PPS_STBEXC		72
213 #define	CS_KERN_FIRST		CS_K_OFFSET
214 #define	CS_KERN_LAST		CS_K_PPS_STBEXC
215 #define	CS_IOSTATS_RESET	73
216 #define	CS_TOTAL_RBUF		74
217 #define	CS_FREE_RBUF		75
218 #define	CS_USED_RBUF		76
219 #define	CS_RBUF_LOWATER		77
220 #define	CS_IO_DROPPED		78
221 #define	CS_IO_IGNORED		79
222 #define	CS_IO_RECEIVED		80
223 #define	CS_IO_SENT		81
224 #define	CS_IO_SENDFAILED	82
225 #define	CS_IO_WAKEUPS		83
226 #define	CS_IO_GOODWAKEUPS	84
227 #define	CS_TIMERSTATS_RESET	85
228 #define	CS_TIMER_OVERRUNS	86
229 #define	CS_TIMER_XMTS		87
230 #define	CS_FUZZ			88
231 #define	CS_MAX_NOAUTOKEY	CS_FUZZ
232 #ifdef AUTOKEY
233 #define	CS_FLAGS		(1 + CS_MAX_NOAUTOKEY)
234 #define	CS_HOST			(2 + CS_MAX_NOAUTOKEY)
235 #define	CS_PUBLIC		(3 + CS_MAX_NOAUTOKEY)
236 #define	CS_CERTIF		(4 + CS_MAX_NOAUTOKEY)
237 #define	CS_SIGNATURE		(5 + CS_MAX_NOAUTOKEY)
238 #define	CS_REVTIME		(6 + CS_MAX_NOAUTOKEY)
239 #define	CS_IDENT		(7 + CS_MAX_NOAUTOKEY)
240 #define	CS_DIGEST		(8 + CS_MAX_NOAUTOKEY)
241 #define	CS_MAXCODE		CS_DIGEST
242 #else	/* !AUTOKEY follows */
243 #define	CS_MAXCODE		CS_MAX_NOAUTOKEY
244 #endif	/* !AUTOKEY */
245 
246 /*
247  * Peer variables we understand
248  */
249 #define	CP_CONFIG		1
250 #define	CP_AUTHENABLE		2
251 #define	CP_AUTHENTIC		3
252 #define	CP_SRCADR		4
253 #define	CP_SRCPORT		5
254 #define	CP_DSTADR		6
255 #define	CP_DSTPORT		7
256 #define	CP_LEAP			8
257 #define	CP_HMODE		9
258 #define	CP_STRATUM		10
259 #define	CP_PPOLL		11
260 #define	CP_HPOLL		12
261 #define	CP_PRECISION		13
262 #define	CP_ROOTDELAY		14
263 #define	CP_ROOTDISPERSION	15
264 #define	CP_REFID		16
265 #define	CP_REFTIME		17
266 #define	CP_ORG			18
267 #define	CP_REC			19
268 #define	CP_XMT			20
269 #define	CP_REACH		21
270 #define	CP_UNREACH		22
271 #define	CP_TIMER		23
272 #define	CP_DELAY		24
273 #define	CP_OFFSET		25
274 #define	CP_JITTER		26
275 #define	CP_DISPERSION		27
276 #define	CP_KEYID		28
277 #define	CP_FILTDELAY		29
278 #define	CP_FILTOFFSET		30
279 #define	CP_PMODE		31
280 #define	CP_RECEIVED		32
281 #define	CP_SENT			33
282 #define	CP_FILTERROR		34
283 #define	CP_FLASH		35
284 #define	CP_TTL			36
285 #define	CP_VARLIST		37
286 #define	CP_IN			38
287 #define	CP_OUT			39
288 #define	CP_RATE			40
289 #define	CP_BIAS			41
290 #define	CP_SRCHOST		42
291 #define	CP_TIMEREC		43
292 #define	CP_TIMEREACH		44
293 #define	CP_BADAUTH		45
294 #define	CP_BOGUSORG		46
295 #define	CP_OLDPKT		47
296 #define	CP_SELDISP		48
297 #define	CP_SELBROKEN		49
298 #define	CP_CANDIDATE		50
299 #define	CP_MAX_NOAUTOKEY	CP_CANDIDATE
300 #ifdef AUTOKEY
301 #define	CP_FLAGS		(1 + CP_MAX_NOAUTOKEY)
302 #define	CP_HOST			(2 + CP_MAX_NOAUTOKEY)
303 #define	CP_VALID		(3 + CP_MAX_NOAUTOKEY)
304 #define	CP_INITSEQ		(4 + CP_MAX_NOAUTOKEY)
305 #define	CP_INITKEY		(5 + CP_MAX_NOAUTOKEY)
306 #define	CP_INITTSP		(6 + CP_MAX_NOAUTOKEY)
307 #define	CP_SIGNATURE		(7 + CP_MAX_NOAUTOKEY)
308 #define	CP_IDENT		(8 + CP_MAX_NOAUTOKEY)
309 #define	CP_MAXCODE		CP_IDENT
310 #else	/* !AUTOKEY follows */
311 #define	CP_MAXCODE		CP_MAX_NOAUTOKEY
312 #endif	/* !AUTOKEY */
313 
314 /*
315  * Clock variables we understand
316  */
317 #define	CC_TYPE		1
318 #define	CC_TIMECODE	2
319 #define	CC_POLL		3
320 #define	CC_NOREPLY	4
321 #define	CC_BADFORMAT	5
322 #define	CC_BADDATA	6
323 #define	CC_FUDGETIME1	7
324 #define	CC_FUDGETIME2	8
325 #define	CC_FUDGEVAL1	9
326 #define	CC_FUDGEVAL2	10
327 #define	CC_FLAGS	11
328 #define	CC_DEVICE	12
329 #define	CC_VARLIST	13
330 #define	CC_MAXCODE	CC_VARLIST
331 
332 /*
333  * System variable values. The array can be indexed by the variable
334  * index to find the textual name.
335  */
336 static const struct ctl_var sys_var[] = {
337 	{ 0,		PADDING, "" },		/* 0 */
338 	{ CS_LEAP,	RW, "leap" },		/* 1 */
339 	{ CS_STRATUM,	RO, "stratum" },	/* 2 */
340 	{ CS_PRECISION, RO, "precision" },	/* 3 */
341 	{ CS_ROOTDELAY, RO, "rootdelay" },	/* 4 */
342 	{ CS_ROOTDISPERSION, RO, "rootdisp" },	/* 5 */
343 	{ CS_REFID,	RO, "refid" },		/* 6 */
344 	{ CS_REFTIME,	RO, "reftime" },	/* 7 */
345 	{ CS_POLL,	RO, "tc" },		/* 8 */
346 	{ CS_PEERID,	RO, "peer" },		/* 9 */
347 	{ CS_OFFSET,	RO, "offset" },		/* 10 */
348 	{ CS_DRIFT,	RO, "frequency" },	/* 11 */
349 	{ CS_JITTER,	RO, "sys_jitter" },	/* 12 */
350 	{ CS_ERROR,	RO, "clk_jitter" },	/* 13 */
351 	{ CS_CLOCK,	RO, "clock" },		/* 14 */
352 	{ CS_PROCESSOR, RO, "processor" },	/* 15 */
353 	{ CS_SYSTEM,	RO, "system" },		/* 16 */
354 	{ CS_VERSION,	RO, "version" },	/* 17 */
355 	{ CS_STABIL,	RO, "clk_wander" },	/* 18 */
356 	{ CS_VARLIST,	RO, "sys_var_list" },	/* 19 */
357 	{ CS_TAI,	RO, "tai" },		/* 20 */
358 	{ CS_LEAPTAB,	RO, "leapsec" },	/* 21 */
359 	{ CS_LEAPEND,	RO, "expire" },		/* 22 */
360 	{ CS_RATE,	RO, "mintc" },		/* 23 */
361 	{ CS_MRU_ENABLED,	RO, "mru_enabled" },	/* 24 */
362 	{ CS_MRU_DEPTH,		RO, "mru_depth" },	/* 25 */
363 	{ CS_MRU_DEEPEST,	RO, "mru_deepest" },	/* 26 */
364 	{ CS_MRU_MINDEPTH,	RO, "mru_mindepth" },	/* 27 */
365 	{ CS_MRU_MAXAGE,	RO, "mru_maxage" },	/* 28 */
366 	{ CS_MRU_MAXDEPTH,	RO, "mru_maxdepth" },	/* 29 */
367 	{ CS_MRU_MEM,		RO, "mru_mem" },	/* 30 */
368 	{ CS_MRU_MAXMEM,	RO, "mru_maxmem" },	/* 31 */
369 	{ CS_SS_UPTIME,		RO, "ss_uptime" },	/* 32 */
370 	{ CS_SS_RESET,		RO, "ss_reset" },	/* 33 */
371 	{ CS_SS_RECEIVED,	RO, "ss_received" },	/* 34 */
372 	{ CS_SS_THISVER,	RO, "ss_thisver" },	/* 35 */
373 	{ CS_SS_OLDVER,		RO, "ss_oldver" },	/* 36 */
374 	{ CS_SS_BADFORMAT,	RO, "ss_badformat" },	/* 37 */
375 	{ CS_SS_BADAUTH,	RO, "ss_badauth" },	/* 38 */
376 	{ CS_SS_DECLINED,	RO, "ss_declined" },	/* 39 */
377 	{ CS_SS_RESTRICTED,	RO, "ss_restricted" },	/* 40 */
378 	{ CS_SS_LIMITED,	RO, "ss_limited" },	/* 41 */
379 	{ CS_SS_KODSENT,	RO, "ss_kodsent" },	/* 42 */
380 	{ CS_SS_PROCESSED,	RO, "ss_processed" },	/* 43 */
381 	{ CS_PEERADR,		RO, "peeradr" },	/* 44 */
382 	{ CS_PEERMODE,		RO, "peermode" },	/* 45 */
383 	{ CS_BCASTDELAY,	RO, "bcastdelay" },	/* 46 */
384 	{ CS_AUTHDELAY,		RO, "authdelay" },	/* 47 */
385 	{ CS_AUTHKEYS,		RO, "authkeys" },	/* 48 */
386 	{ CS_AUTHFREEK,		RO, "authfreek" },	/* 49 */
387 	{ CS_AUTHKLOOKUPS,	RO, "authklookups" },	/* 50 */
388 	{ CS_AUTHKNOTFOUND,	RO, "authknotfound" },	/* 51 */
389 	{ CS_AUTHKUNCACHED,	RO, "authkuncached" },	/* 52 */
390 	{ CS_AUTHKEXPIRED,	RO, "authkexpired" },	/* 53 */
391 	{ CS_AUTHENCRYPTS,	RO, "authencrypts" },	/* 54 */
392 	{ CS_AUTHDECRYPTS,	RO, "authdecrypts" },	/* 55 */
393 	{ CS_AUTHRESET,		RO, "authreset" },	/* 56 */
394 	{ CS_K_OFFSET,		RO, "koffset" },	/* 57 */
395 	{ CS_K_FREQ,		RO, "kfreq" },		/* 58 */
396 	{ CS_K_MAXERR,		RO, "kmaxerr" },	/* 59 */
397 	{ CS_K_ESTERR,		RO, "kesterr" },	/* 60 */
398 	{ CS_K_STFLAGS,		RO, "kstflags" },	/* 61 */
399 	{ CS_K_TIMECONST,	RO, "ktimeconst" },	/* 62 */
400 	{ CS_K_PRECISION,	RO, "kprecis" },	/* 63 */
401 	{ CS_K_FREQTOL,		RO, "kfreqtol" },	/* 64 */
402 	{ CS_K_PPS_FREQ,	RO, "kppsfreq" },	/* 65 */
403 	{ CS_K_PPS_STABIL,	RO, "kppsstab" },	/* 66 */
404 	{ CS_K_PPS_JITTER,	RO, "kppsjitter" },	/* 67 */
405 	{ CS_K_PPS_CALIBDUR,	RO, "kppscalibdur" },	/* 68 */
406 	{ CS_K_PPS_CALIBS,	RO, "kppscalibs" },	/* 69 */
407 	{ CS_K_PPS_CALIBERRS,	RO, "kppscaliberrs" },	/* 70 */
408 	{ CS_K_PPS_JITEXC,	RO, "kppsjitexc" },	/* 71 */
409 	{ CS_K_PPS_STBEXC,	RO, "kppsstbexc" },	/* 72 */
410 	{ CS_IOSTATS_RESET,	RO, "iostats_reset" },	/* 73 */
411 	{ CS_TOTAL_RBUF,	RO, "total_rbuf" },	/* 74 */
412 	{ CS_FREE_RBUF,		RO, "free_rbuf" },	/* 75 */
413 	{ CS_USED_RBUF,		RO, "used_rbuf" },	/* 76 */
414 	{ CS_RBUF_LOWATER,	RO, "rbuf_lowater" },	/* 77 */
415 	{ CS_IO_DROPPED,	RO, "io_dropped" },	/* 78 */
416 	{ CS_IO_IGNORED,	RO, "io_ignored" },	/* 79 */
417 	{ CS_IO_RECEIVED,	RO, "io_received" },	/* 80 */
418 	{ CS_IO_SENT,		RO, "io_sent" },	/* 81 */
419 	{ CS_IO_SENDFAILED,	RO, "io_sendfailed" },	/* 82 */
420 	{ CS_IO_WAKEUPS,	RO, "io_wakeups" },	/* 83 */
421 	{ CS_IO_GOODWAKEUPS,	RO, "io_goodwakeups" },	/* 84 */
422 	{ CS_TIMERSTATS_RESET,	RO, "timerstats_reset" },/* 85 */
423 	{ CS_TIMER_OVERRUNS,	RO, "timer_overruns" },	/* 86 */
424 	{ CS_TIMER_XMTS,	RO, "timer_xmts" },	/* 87 */
425 	{ CS_FUZZ,		RO, "fuzz" },		/* 88 */
426 #ifdef AUTOKEY
427 	{ CS_FLAGS,	RO, "flags" },		/* 1 + CS_MAX_NOAUTOKEY */
428 	{ CS_HOST,	RO, "host" },		/* 2 + CS_MAX_NOAUTOKEY */
429 	{ CS_PUBLIC,	RO, "update" },		/* 3 + CS_MAX_NOAUTOKEY */
430 	{ CS_CERTIF,	RO, "cert" },		/* 4 + CS_MAX_NOAUTOKEY */
431 	{ CS_SIGNATURE,	RO, "signature" },	/* 5 + CS_MAX_NOAUTOKEY */
432 	{ CS_REVTIME,	RO, "until" },		/* 6 + CS_MAX_NOAUTOKEY */
433 	{ CS_IDENT,	RO, "ident" },		/* 7 + CS_MAX_NOAUTOKEY */
434 	{ CS_DIGEST,	RO, "digest" },		/* 8 + CS_MAX_NOAUTOKEY */
435 #endif	/* AUTOKEY */
436 	{ 0,		EOV, "" }		/* 87/95 */
437 };
438 
439 static struct ctl_var *ext_sys_var = NULL;
440 
441 /*
442  * System variables we print by default (in fuzzball order,
443  * more-or-less)
444  */
445 static const u_char def_sys_var[] = {
446 	CS_VERSION,
447 	CS_PROCESSOR,
448 	CS_SYSTEM,
449 	CS_LEAP,
450 	CS_STRATUM,
451 	CS_PRECISION,
452 	CS_ROOTDELAY,
453 	CS_ROOTDISPERSION,
454 	CS_REFID,
455 	CS_REFTIME,
456 	CS_CLOCK,
457 	CS_PEERID,
458 	CS_POLL,
459 	CS_RATE,
460 	CS_OFFSET,
461 	CS_DRIFT,
462 	CS_JITTER,
463 	CS_ERROR,
464 	CS_STABIL,
465 	CS_TAI,
466 	CS_LEAPTAB,
467 	CS_LEAPEND,
468 #ifdef AUTOKEY
469 	CS_HOST,
470 	CS_IDENT,
471 	CS_FLAGS,
472 	CS_DIGEST,
473 	CS_SIGNATURE,
474 	CS_PUBLIC,
475 	CS_CERTIF,
476 #endif	/* AUTOKEY */
477 	0
478 };
479 
480 
481 /*
482  * Peer variable list
483  */
484 static const struct ctl_var peer_var[] = {
485 	{ 0,		PADDING, "" },		/* 0 */
486 	{ CP_CONFIG,	RO, "config" },		/* 1 */
487 	{ CP_AUTHENABLE, RO,	"authenable" },	/* 2 */
488 	{ CP_AUTHENTIC, RO, "authentic" }, 	/* 3 */
489 	{ CP_SRCADR,	RO, "srcadr" },		/* 4 */
490 	{ CP_SRCPORT,	RO, "srcport" },	/* 5 */
491 	{ CP_DSTADR,	RO, "dstadr" },		/* 6 */
492 	{ CP_DSTPORT,	RO, "dstport" },	/* 7 */
493 	{ CP_LEAP,	RO, "leap" },		/* 8 */
494 	{ CP_HMODE,	RO, "hmode" },		/* 9 */
495 	{ CP_STRATUM,	RO, "stratum" },	/* 10 */
496 	{ CP_PPOLL,	RO, "ppoll" },		/* 11 */
497 	{ CP_HPOLL,	RO, "hpoll" },		/* 12 */
498 	{ CP_PRECISION,	RO, "precision" },	/* 13 */
499 	{ CP_ROOTDELAY,	RO, "rootdelay" },	/* 14 */
500 	{ CP_ROOTDISPERSION, RO, "rootdisp" },	/* 15 */
501 	{ CP_REFID,	RO, "refid" },		/* 16 */
502 	{ CP_REFTIME,	RO, "reftime" },	/* 17 */
503 	{ CP_ORG,	RO, "org" },		/* 18 */
504 	{ CP_REC,	RO, "rec" },		/* 19 */
505 	{ CP_XMT,	RO, "xleave" },		/* 20 */
506 	{ CP_REACH,	RO, "reach" },		/* 21 */
507 	{ CP_UNREACH,	RO, "unreach" },	/* 22 */
508 	{ CP_TIMER,	RO, "timer" },		/* 23 */
509 	{ CP_DELAY,	RO, "delay" },		/* 24 */
510 	{ CP_OFFSET,	RO, "offset" },		/* 25 */
511 	{ CP_JITTER,	RO, "jitter" },		/* 26 */
512 	{ CP_DISPERSION, RO, "dispersion" },	/* 27 */
513 	{ CP_KEYID,	RO, "keyid" },		/* 28 */
514 	{ CP_FILTDELAY,	RO, "filtdelay" },	/* 29 */
515 	{ CP_FILTOFFSET, RO, "filtoffset" },	/* 30 */
516 	{ CP_PMODE,	RO, "pmode" },		/* 31 */
517 	{ CP_RECEIVED,	RO, "received"},	/* 32 */
518 	{ CP_SENT,	RO, "sent" },		/* 33 */
519 	{ CP_FILTERROR,	RO, "filtdisp" },	/* 34 */
520 	{ CP_FLASH,	RO, "flash" },		/* 35 */
521 	{ CP_TTL,	RO, "ttl" },		/* 36 */
522 	{ CP_VARLIST,	RO, "peer_var_list" },	/* 37 */
523 	{ CP_IN,	RO, "in" },		/* 38 */
524 	{ CP_OUT,	RO, "out" },		/* 39 */
525 	{ CP_RATE,	RO, "headway" },	/* 40 */
526 	{ CP_BIAS,	RO, "bias" },		/* 41 */
527 	{ CP_SRCHOST,	RO, "srchost" },	/* 42 */
528 	{ CP_TIMEREC,	RO, "timerec" },	/* 43 */
529 	{ CP_TIMEREACH,	RO, "timereach" },	/* 44 */
530 	{ CP_BADAUTH,	RO, "badauth" },	/* 45 */
531 	{ CP_BOGUSORG,	RO, "bogusorg" },	/* 46 */
532 	{ CP_OLDPKT,	RO, "oldpkt" },		/* 47 */
533 	{ CP_SELDISP,	RO, "seldisp" },	/* 48 */
534 	{ CP_SELBROKEN,	RO, "selbroken" },	/* 49 */
535 	{ CP_CANDIDATE, RO, "candidate" },	/* 50 */
536 #ifdef AUTOKEY
537 	{ CP_FLAGS,	RO, "flags" },		/* 1 + CP_MAX_NOAUTOKEY */
538 	{ CP_HOST,	RO, "host" },		/* 2 + CP_MAX_NOAUTOKEY */
539 	{ CP_VALID,	RO, "valid" },		/* 3 + CP_MAX_NOAUTOKEY */
540 	{ CP_INITSEQ,	RO, "initsequence" },   /* 4 + CP_MAX_NOAUTOKEY */
541 	{ CP_INITKEY,	RO, "initkey" },	/* 5 + CP_MAX_NOAUTOKEY */
542 	{ CP_INITTSP,	RO, "timestamp" },	/* 6 + CP_MAX_NOAUTOKEY */
543 	{ CP_SIGNATURE,	RO, "signature" },	/* 7 + CP_MAX_NOAUTOKEY */
544 	{ CP_IDENT,	RO, "ident" },		/* 8 + CP_MAX_NOAUTOKEY */
545 #endif	/* AUTOKEY */
546 	{ 0,		EOV, "" }		/* 50/58 */
547 };
548 
549 
550 /*
551  * Peer variables we print by default
552  */
553 static const u_char def_peer_var[] = {
554 	CP_SRCADR,
555 	CP_SRCPORT,
556 	CP_SRCHOST,
557 	CP_DSTADR,
558 	CP_DSTPORT,
559 	CP_OUT,
560 	CP_IN,
561 	CP_LEAP,
562 	CP_STRATUM,
563 	CP_PRECISION,
564 	CP_ROOTDELAY,
565 	CP_ROOTDISPERSION,
566 	CP_REFID,
567 	CP_REFTIME,
568 	CP_REC,
569 	CP_REACH,
570 	CP_UNREACH,
571 	CP_HMODE,
572 	CP_PMODE,
573 	CP_HPOLL,
574 	CP_PPOLL,
575 	CP_RATE,
576 	CP_FLASH,
577 	CP_KEYID,
578 	CP_TTL,
579 	CP_OFFSET,
580 	CP_DELAY,
581 	CP_DISPERSION,
582 	CP_JITTER,
583 	CP_XMT,
584 	CP_BIAS,
585 	CP_FILTDELAY,
586 	CP_FILTOFFSET,
587 	CP_FILTERROR,
588 #ifdef AUTOKEY
589 	CP_HOST,
590 	CP_FLAGS,
591 	CP_SIGNATURE,
592 	CP_VALID,
593 	CP_INITSEQ,
594 	CP_IDENT,
595 #endif	/* AUTOKEY */
596 	0
597 };
598 
599 
600 #ifdef REFCLOCK
601 /*
602  * Clock variable list
603  */
604 static const struct ctl_var clock_var[] = {
605 	{ 0,		PADDING, "" },		/* 0 */
606 	{ CC_TYPE,	RO, "type" },		/* 1 */
607 	{ CC_TIMECODE,	RO, "timecode" },	/* 2 */
608 	{ CC_POLL,	RO, "poll" },		/* 3 */
609 	{ CC_NOREPLY,	RO, "noreply" },	/* 4 */
610 	{ CC_BADFORMAT, RO, "badformat" },	/* 5 */
611 	{ CC_BADDATA,	RO, "baddata" },	/* 6 */
612 	{ CC_FUDGETIME1, RO, "fudgetime1" },	/* 7 */
613 	{ CC_FUDGETIME2, RO, "fudgetime2" },	/* 8 */
614 	{ CC_FUDGEVAL1, RO, "stratum" },	/* 9 */
615 	{ CC_FUDGEVAL2, RO, "refid" },		/* 10 */
616 	{ CC_FLAGS,	RO, "flags" },		/* 11 */
617 	{ CC_DEVICE,	RO, "device" },		/* 12 */
618 	{ CC_VARLIST,	RO, "clock_var_list" },	/* 13 */
619 	{ 0,		EOV, ""  }		/* 14 */
620 };
621 
622 
623 /*
624  * Clock variables printed by default
625  */
626 static const u_char def_clock_var[] = {
627 	CC_DEVICE,
628 	CC_TYPE,	/* won't be output if device = known */
629 	CC_TIMECODE,
630 	CC_POLL,
631 	CC_NOREPLY,
632 	CC_BADFORMAT,
633 	CC_BADDATA,
634 	CC_FUDGETIME1,
635 	CC_FUDGETIME2,
636 	CC_FUDGEVAL1,
637 	CC_FUDGEVAL2,
638 	CC_FLAGS,
639 	0
640 };
641 #endif
642 
643 /*
644  * MRU string constants shared by send_mru_entry() and read_mru_list().
645  */
646 static const char addr_fmt[] =		"addr.%d";
647 static const char last_fmt[] =		"last.%d";
648 
649 /*
650  * System and processor definitions.
651  */
652 #ifndef HAVE_UNAME
653 # ifndef STR_SYSTEM
654 #  define		STR_SYSTEM	"UNIX"
655 # endif
656 # ifndef STR_PROCESSOR
657 #  define		STR_PROCESSOR	"unknown"
658 # endif
659 
660 static const char str_system[] = STR_SYSTEM;
661 static const char str_processor[] = STR_PROCESSOR;
662 #else
663 # include <sys/utsname.h>
664 static struct utsname utsnamebuf;
665 #endif /* HAVE_UNAME */
666 
667 /*
668  * Trap structures. We only allow a few of these, and send a copy of
669  * each async message to each live one. Traps time out after an hour, it
670  * is up to the trap receipient to keep resetting it to avoid being
671  * timed out.
672  */
673 /* ntp_request.c */
674 struct ctl_trap ctl_traps[CTL_MAXTRAPS];
675 int num_ctl_traps;
676 
677 /*
678  * Type bits, for ctlsettrap() call.
679  */
680 #define TRAP_TYPE_CONFIG	0	/* used by configuration code */
681 #define TRAP_TYPE_PRIO		1	/* priority trap */
682 #define TRAP_TYPE_NONPRIO	2	/* nonpriority trap */
683 
684 
685 /*
686  * List relating reference clock types to control message time sources.
687  * Index by the reference clock type. This list will only be used iff
688  * the reference clock driver doesn't set peer->sstclktype to something
689  * different than CTL_SST_TS_UNSPEC.
690  */
691 #ifdef REFCLOCK
692 static const u_char clocktypes[] = {
693 	CTL_SST_TS_NTP, 	/* REFCLK_NONE (0) */
694 	CTL_SST_TS_LOCAL,	/* REFCLK_LOCALCLOCK (1) */
695 	CTL_SST_TS_UHF, 	/* deprecated REFCLK_GPS_TRAK (2) */
696 	CTL_SST_TS_HF,		/* REFCLK_WWV_PST (3) */
697 	CTL_SST_TS_LF,		/* REFCLK_WWVB_SPECTRACOM (4) */
698 	CTL_SST_TS_UHF, 	/* REFCLK_TRUETIME (5) */
699 	CTL_SST_TS_UHF, 	/* REFCLK_IRIG_AUDIO (6) */
700 	CTL_SST_TS_HF,		/* REFCLK_CHU (7) */
701 	CTL_SST_TS_LF,		/* REFCLOCK_PARSE (default) (8) */
702 	CTL_SST_TS_LF,		/* REFCLK_GPS_MX4200 (9) */
703 	CTL_SST_TS_UHF, 	/* REFCLK_GPS_AS2201 (10) */
704 	CTL_SST_TS_UHF, 	/* REFCLK_GPS_ARBITER (11) */
705 	CTL_SST_TS_UHF, 	/* REFCLK_IRIG_TPRO (12) */
706 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_LEITCH (13) */
707 	CTL_SST_TS_LF,		/* deprecated REFCLK_MSF_EES (14) */
708 	CTL_SST_TS_NTP, 	/* not used (15) */
709 	CTL_SST_TS_UHF, 	/* REFCLK_IRIG_BANCOMM (16) */
710 	CTL_SST_TS_UHF, 	/* REFCLK_GPS_DATU (17) */
711 	CTL_SST_TS_TELEPHONE,	/* REFCLK_NIST_ACTS (18) */
712 	CTL_SST_TS_HF,		/* REFCLK_WWV_HEATH (19) */
713 	CTL_SST_TS_UHF, 	/* REFCLK_GPS_NMEA (20) */
714 	CTL_SST_TS_UHF, 	/* REFCLK_GPS_VME (21) */
715 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_PPS (22) */
716 	CTL_SST_TS_NTP,		/* not used (23) */
717 	CTL_SST_TS_NTP,		/* not used (24) */
718 	CTL_SST_TS_NTP, 	/* not used (25) */
719 	CTL_SST_TS_UHF, 	/* REFCLK_GPS_HP (26) */
720 	CTL_SST_TS_LF,		/* REFCLK_ARCRON_MSF (27) */
721 	CTL_SST_TS_UHF,		/* REFCLK_SHM (28) */
722 	CTL_SST_TS_UHF, 	/* REFCLK_PALISADE (29) */
723 	CTL_SST_TS_UHF, 	/* REFCLK_ONCORE (30) */
724 	CTL_SST_TS_UHF,		/* REFCLK_JUPITER (31) */
725 	CTL_SST_TS_LF,		/* REFCLK_CHRONOLOG (32) */
726 	CTL_SST_TS_LF,		/* REFCLK_DUMBCLOCK (33) */
727 	CTL_SST_TS_LF,		/* REFCLK_ULINK (34) */
728 	CTL_SST_TS_LF,		/* REFCLK_PCF (35) */
729 	CTL_SST_TS_HF,		/* REFCLK_WWV (36) */
730 	CTL_SST_TS_LF,		/* REFCLK_FG (37) */
731 	CTL_SST_TS_UHF, 	/* REFCLK_HOPF_SERIAL (38) */
732 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_PCI (39) */
733 	CTL_SST_TS_LF,		/* REFCLK_JJY (40) */
734 	CTL_SST_TS_UHF,		/* REFCLK_TT560 (41) */
735 	CTL_SST_TS_UHF,		/* REFCLK_ZYFER (42) */
736 	CTL_SST_TS_UHF,		/* REFCLK_RIPENCC (43) */
737 	CTL_SST_TS_UHF,		/* REFCLK_NEOCLOCK4X (44) */
738 	CTL_SST_TS_UHF,		/* REFCLK_TSYNCPCI (45) */
739 	CTL_SST_TS_UHF		/* REFCLK_GPSDJSON (46) */
740 };
741 #endif  /* REFCLOCK */
742 
743 
744 /*
745  * Keyid used for authenticating write requests.
746  */
747 keyid_t ctl_auth_keyid;
748 
749 /*
750  * We keep track of the last error reported by the system internally
751  */
752 static	u_char ctl_sys_last_event;
753 static	u_char ctl_sys_num_events;
754 
755 
756 /*
757  * Statistic counters to keep track of requests and responses.
758  */
759 u_long ctltimereset;		/* time stats reset */
760 u_long numctlreq;		/* number of requests we've received */
761 u_long numctlbadpkts;		/* number of bad control packets */
762 u_long numctlresponses; 	/* number of resp packets sent with data */
763 u_long numctlfrags; 		/* number of fragments sent */
764 u_long numctlerrors;		/* number of error responses sent */
765 u_long numctltooshort;		/* number of too short input packets */
766 u_long numctlinputresp; 	/* number of responses on input */
767 u_long numctlinputfrag; 	/* number of fragments on input */
768 u_long numctlinputerr;		/* number of input pkts with err bit set */
769 u_long numctlbadoffset; 	/* number of input pkts with nonzero offset */
770 u_long numctlbadversion;	/* number of input pkts with unknown version */
771 u_long numctldatatooshort;	/* data too short for count */
772 u_long numctlbadop; 		/* bad op code found in packet */
773 u_long numasyncmsgs;		/* number of async messages we've sent */
774 
775 /*
776  * Response packet used by these routines. Also some state information
777  * so that we can handle packet formatting within a common set of
778  * subroutines.  Note we try to enter data in place whenever possible,
779  * but the need to set the more bit correctly means we occasionally
780  * use the extra buffer and copy.
781  */
782 static struct ntp_control rpkt;
783 static u_char	res_version;
784 static u_char	res_opcode;
785 static associd_t res_associd;
786 static u_short	res_frags;	/* datagrams in this response */
787 static int	res_offset;	/* offset of payload in response */
788 static u_char * datapt;
789 static u_char * dataend;
790 static int	datalinelen;
791 static int	datasent;       /* flag to avoid initial ", " */
792 static int	datanotbinflag;
793 static sockaddr_u *rmt_addr;
794 static struct interface *lcl_inter;
795 
796 static u_char	res_authenticate;
797 static u_char	res_authokay;
798 static keyid_t	res_keyid;
799 
800 #define MAXDATALINELEN	(72)
801 
802 static u_char	res_async;	/* sending async trap response? */
803 
804 /*
805  * Pointers for saving state when decoding request packets
806  */
807 static	char *reqpt;
808 static	char *reqend;
809 
810 #ifndef MIN
811 #define MIN(a, b) (((a) <= (b)) ? (a) : (b))
812 #endif
813 
814 /*
815  * init_control - initialize request data
816  */
817 void
818 init_control(void)
819 {
820 	size_t i;
821 
822 #ifdef HAVE_UNAME
823 	uname(&utsnamebuf);
824 #endif /* HAVE_UNAME */
825 
826 	ctl_clr_stats();
827 
828 	ctl_auth_keyid = 0;
829 	ctl_sys_last_event = EVNT_UNSPEC;
830 	ctl_sys_num_events = 0;
831 
832 	num_ctl_traps = 0;
833 	for (i = 0; i < COUNTOF(ctl_traps); i++)
834 		ctl_traps[i].tr_flags = 0;
835 }
836 
837 
838 /*
839  * ctl_error - send an error response for the current request
840  */
841 static void
842 ctl_error(
843 	u_char errcode
844 	)
845 {
846 	int		maclen;
847 
848 	numctlerrors++;
849 	DPRINTF(3, ("sending control error %u\n", errcode));
850 
851 	/*
852 	 * Fill in the fields. We assume rpkt.sequence and rpkt.associd
853 	 * have already been filled in.
854 	 */
855 	rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
856 			(res_opcode & CTL_OP_MASK);
857 	rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
858 	rpkt.count = 0;
859 
860 	/*
861 	 * send packet and bump counters
862 	 */
863 	if (res_authenticate && sys_authenticate) {
864 		maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
865 				     CTL_HEADER_LEN);
866 		sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
867 			CTL_HEADER_LEN + maclen);
868 	} else
869 		sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
870 			CTL_HEADER_LEN);
871 }
872 
873 /*
874  * save_config - Implements ntpq -c "saveconfig <filename>"
875  *		 Writes current configuration including any runtime
876  *		 changes by ntpq's :config or config-from-file
877  */
878 void
879 save_config(
880 	struct recvbuf *rbufp,
881 	int restrict_mask
882 	)
883 {
884 	char reply[128];
885 #ifdef SAVECONFIG
886 	char filespec[128];
887 	char filename[128];
888 	char fullpath[512];
889 	const char savedconfig_eq[] = "savedconfig=";
890 	char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
891 	time_t now;
892 	int fd;
893 	FILE *fptr;
894 #endif
895 
896 	if (RES_NOMODIFY & restrict_mask) {
897 		snprintf(reply, sizeof(reply),
898 			 "saveconfig prohibited by restrict ... nomodify");
899 		ctl_putdata(reply, strlen(reply), 0);
900 		ctl_flushpkt(0);
901 		NLOG(NLOG_SYSINFO)
902 			msyslog(LOG_NOTICE,
903 				"saveconfig from %s rejected due to nomodify restriction",
904 				stoa(&rbufp->recv_srcadr));
905 		sys_restricted++;
906 		return;
907 	}
908 
909 #ifdef SAVECONFIG
910 	if (NULL == saveconfigdir) {
911 		snprintf(reply, sizeof(reply),
912 			 "saveconfig prohibited, no saveconfigdir configured");
913 		ctl_putdata(reply, strlen(reply), 0);
914 		ctl_flushpkt(0);
915 		NLOG(NLOG_SYSINFO)
916 			msyslog(LOG_NOTICE,
917 				"saveconfig from %s rejected, no saveconfigdir",
918 				stoa(&rbufp->recv_srcadr));
919 		return;
920 	}
921 
922 	if (0 == reqend - reqpt)
923 		return;
924 
925 	strlcpy(filespec, reqpt, sizeof(filespec));
926 	time(&now);
927 
928 	/*
929 	 * allow timestamping of the saved config filename with
930 	 * strftime() format such as:
931 	 *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
932 	 * XXX: Nice feature, but not too safe.
933 	 */
934 	if (0 == strftime(filename, sizeof(filename), filespec,
935 			       localtime(&now)))
936 		strlcpy(filename, filespec, sizeof(filename));
937 
938 	/*
939 	 * Conceptually we should be searching for DIRSEP in filename,
940 	 * however Windows actually recognizes both forward and
941 	 * backslashes as equivalent directory separators at the API
942 	 * level.  On POSIX systems we could allow '\\' but such
943 	 * filenames are tricky to manipulate from a shell, so just
944 	 * reject both types of slashes on all platforms.
945 	 */
946 	if (strchr(filename, '\\') || strchr(filename, '/')) {
947 		snprintf(reply, sizeof(reply),
948 			 "saveconfig does not allow directory in filename");
949 		ctl_putdata(reply, strlen(reply), 0);
950 		ctl_flushpkt(0);
951 		msyslog(LOG_NOTICE,
952 			"saveconfig with path from %s rejected",
953 			stoa(&rbufp->recv_srcadr));
954 		return;
955 	}
956 
957 	snprintf(fullpath, sizeof(fullpath), "%s%s",
958 		 saveconfigdir, filename);
959 
960 	fd = open(fullpath, O_CREAT | O_TRUNC | O_WRONLY,
961 		  S_IRUSR | S_IWUSR);
962 	if (-1 == fd)
963 		fptr = NULL;
964 	else
965 		fptr = fdopen(fd, "w");
966 
967 	if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
968 		snprintf(reply, sizeof(reply),
969 			 "Unable to save configuration to file %s",
970 			 filename);
971 		msyslog(LOG_ERR,
972 			"saveconfig %s from %s failed", filename,
973 			stoa(&rbufp->recv_srcadr));
974 	} else {
975 		snprintf(reply, sizeof(reply),
976 			 "Configuration saved to %s", filename);
977 		msyslog(LOG_NOTICE,
978 			"Configuration saved to %s (requested by %s)",
979 			fullpath, stoa(&rbufp->recv_srcadr));
980 		/*
981 		 * save the output filename in system variable
982 		 * savedconfig, retrieved with:
983 		 *   ntpq -c "rv 0 savedconfig"
984 		 */
985 		snprintf(savedconfig, sizeof(savedconfig), "%s%s",
986 			 savedconfig_eq, filename);
987 		set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
988 	}
989 
990 	if (NULL != fptr)
991 		fclose(fptr);
992 #else	/* !SAVECONFIG follows */
993 	snprintf(reply, sizeof(reply),
994 		 "saveconfig unavailable, configured with --disable-saveconfig");
995 #endif
996 
997 	ctl_putdata(reply, strlen(reply), 0);
998 	ctl_flushpkt(0);
999 }
1000 
1001 
1002 /*
1003  * process_control - process an incoming control message
1004  */
1005 void
1006 process_control(
1007 	struct recvbuf *rbufp,
1008 	int restrict_mask
1009 	)
1010 {
1011 	struct ntp_control *pkt;
1012 	int req_count;
1013 	int req_data;
1014 	const struct ctl_proc *cc;
1015 	keyid_t *pkid;
1016 	int properlen;
1017 	size_t maclen;
1018 
1019 	DPRINTF(3, ("in process_control()\n"));
1020 
1021 	/*
1022 	 * Save the addresses for error responses
1023 	 */
1024 	numctlreq++;
1025 	rmt_addr = &rbufp->recv_srcadr;
1026 	lcl_inter = rbufp->dstadr;
1027 	pkt = (struct ntp_control *)&rbufp->recv_pkt;
1028 
1029 	/*
1030 	 * If the length is less than required for the header, or
1031 	 * it is a response or a fragment, ignore this.
1032 	 */
1033 	if (rbufp->recv_length < (int)CTL_HEADER_LEN
1034 	    || (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1035 	    || pkt->offset != 0) {
1036 		DPRINTF(1, ("invalid format in control packet\n"));
1037 		if (rbufp->recv_length < (int)CTL_HEADER_LEN)
1038 			numctltooshort++;
1039 		if (CTL_RESPONSE & pkt->r_m_e_op)
1040 			numctlinputresp++;
1041 		if (CTL_MORE & pkt->r_m_e_op)
1042 			numctlinputfrag++;
1043 		if (CTL_ERROR & pkt->r_m_e_op)
1044 			numctlinputerr++;
1045 		if (pkt->offset != 0)
1046 			numctlbadoffset++;
1047 		return;
1048 	}
1049 	res_version = PKT_VERSION(pkt->li_vn_mode);
1050 	if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1051 		DPRINTF(1, ("unknown version %d in control packet\n",
1052 			    res_version));
1053 		numctlbadversion++;
1054 		return;
1055 	}
1056 
1057 	/*
1058 	 * Pull enough data from the packet to make intelligent
1059 	 * responses
1060 	 */
1061 	rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1062 					 MODE_CONTROL);
1063 	res_opcode = pkt->r_m_e_op;
1064 	rpkt.sequence = pkt->sequence;
1065 	rpkt.associd = pkt->associd;
1066 	rpkt.status = 0;
1067 	res_frags = 1;
1068 	res_offset = 0;
1069 	res_associd = htons(pkt->associd);
1070 	res_async = FALSE;
1071 	res_authenticate = FALSE;
1072 	res_keyid = 0;
1073 	res_authokay = FALSE;
1074 	req_count = (int)ntohs(pkt->count);
1075 	datanotbinflag = FALSE;
1076 	datalinelen = 0;
1077 	datasent = 0;
1078 	datapt = rpkt.u.data;
1079 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1080 
1081 	if ((rbufp->recv_length & 0x3) != 0)
1082 		DPRINTF(3, ("Control packet length %d unrounded\n",
1083 			    rbufp->recv_length));
1084 
1085 	/*
1086 	 * We're set up now. Make sure we've got at least enough
1087 	 * incoming data space to match the count.
1088 	 */
1089 	req_data = rbufp->recv_length - CTL_HEADER_LEN;
1090 	if (req_data < req_count || rbufp->recv_length & 0x3) {
1091 		ctl_error(CERR_BADFMT);
1092 		numctldatatooshort++;
1093 		return;
1094 	}
1095 
1096 	properlen = req_count + CTL_HEADER_LEN;
1097 	/* round up proper len to a 8 octet boundary */
1098 
1099 	properlen = (properlen + 7) & ~7;
1100 	maclen = rbufp->recv_length - properlen;
1101 	if ((rbufp->recv_length & 3) == 0 &&
1102 	    maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1103 	    sys_authenticate) {
1104 		res_authenticate = TRUE;
1105 		pkid = (void *)((char *)pkt + properlen);
1106 		res_keyid = ntohl(*pkid);
1107 		DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1108 			    rbufp->recv_length, properlen, res_keyid,
1109 			    maclen));
1110 
1111 		if (!authistrusted(res_keyid))
1112 			DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1113 		else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1114 				     rbufp->recv_length - maclen,
1115 				     maclen)) {
1116 			res_authokay = TRUE;
1117 			DPRINTF(3, ("authenticated okay\n"));
1118 		} else {
1119 			res_keyid = 0;
1120 			DPRINTF(3, ("authentication failed\n"));
1121 		}
1122 	}
1123 
1124 	/*
1125 	 * Set up translate pointers
1126 	 */
1127 	reqpt = (char *)pkt->u.data;
1128 	reqend = reqpt + req_count;
1129 
1130 	/*
1131 	 * Look for the opcode processor
1132 	 */
1133 	for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1134 		if (cc->control_code == res_opcode) {
1135 			DPRINTF(3, ("opcode %d, found command handler\n",
1136 				    res_opcode));
1137 			if (cc->flags == AUTH
1138 			    && (!res_authokay
1139 				|| res_keyid != ctl_auth_keyid)) {
1140 				ctl_error(CERR_PERMISSION);
1141 				return;
1142 			}
1143 			(cc->handler)(rbufp, restrict_mask);
1144 			return;
1145 		}
1146 	}
1147 
1148 	/*
1149 	 * Can't find this one, return an error.
1150 	 */
1151 	numctlbadop++;
1152 	ctl_error(CERR_BADOP);
1153 	return;
1154 }
1155 
1156 
1157 /*
1158  * ctlpeerstatus - return a status word for this peer
1159  */
1160 u_short
1161 ctlpeerstatus(
1162 	register struct peer *p
1163 	)
1164 {
1165 	u_short status;
1166 
1167 	status = p->status;
1168 	if (FLAG_CONFIG & p->flags)
1169 		status |= CTL_PST_CONFIG;
1170 	if (p->keyid)
1171 		status |= CTL_PST_AUTHENABLE;
1172 	if (FLAG_AUTHENTIC & p->flags)
1173 		status |= CTL_PST_AUTHENTIC;
1174 	if (p->reach)
1175 		status |= CTL_PST_REACH;
1176 	if (MDF_TXONLY_MASK & p->cast_flags)
1177 		status |= CTL_PST_BCAST;
1178 
1179 	return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1180 }
1181 
1182 
1183 /*
1184  * ctlclkstatus - return a status word for this clock
1185  */
1186 #ifdef REFCLOCK
1187 static u_short
1188 ctlclkstatus(
1189 	struct refclockstat *pcs
1190 	)
1191 {
1192 	return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1193 }
1194 #endif
1195 
1196 
1197 /*
1198  * ctlsysstatus - return the system status word
1199  */
1200 u_short
1201 ctlsysstatus(void)
1202 {
1203 	register u_char this_clock;
1204 
1205 	this_clock = CTL_SST_TS_UNSPEC;
1206 #ifdef REFCLOCK
1207 	if (sys_peer != NULL) {
1208 		if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1209 			this_clock = sys_peer->sstclktype;
1210 		else if (sys_peer->refclktype < COUNTOF(clocktypes))
1211 			this_clock = clocktypes[sys_peer->refclktype];
1212 	}
1213 #else /* REFCLOCK */
1214 	if (sys_peer != 0)
1215 		this_clock = CTL_SST_TS_NTP;
1216 #endif /* REFCLOCK */
1217 	return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1218 			      ctl_sys_last_event);
1219 }
1220 
1221 
1222 /*
1223  * ctl_flushpkt - write out the current packet and prepare
1224  *		  another if necessary.
1225  */
1226 static void
1227 ctl_flushpkt(
1228 	u_char more
1229 	)
1230 {
1231 	size_t i;
1232 	int dlen;
1233 	int sendlen;
1234 	int maclen;
1235 	int totlen;
1236 	keyid_t keyid;
1237 
1238 	dlen = datapt - rpkt.u.data;
1239 	if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1240 		/*
1241 		 * Big hack, output a trailing \r\n
1242 		 */
1243 		*datapt++ = '\r';
1244 		*datapt++ = '\n';
1245 		dlen += 2;
1246 	}
1247 	sendlen = dlen + CTL_HEADER_LEN;
1248 
1249 	/*
1250 	 * Pad to a multiple of 32 bits
1251 	 */
1252 	while (sendlen & 0x3) {
1253 		*datapt++ = '\0';
1254 		sendlen++;
1255 	}
1256 
1257 	/*
1258 	 * Fill in the packet with the current info
1259 	 */
1260 	rpkt.r_m_e_op = CTL_RESPONSE | more |
1261 			(res_opcode & CTL_OP_MASK);
1262 	rpkt.count = htons((u_short)dlen);
1263 	rpkt.offset = htons((u_short)res_offset);
1264 	if (res_async) {
1265 		for (i = 0; i < COUNTOF(ctl_traps); i++) {
1266 			if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1267 				rpkt.li_vn_mode =
1268 				    PKT_LI_VN_MODE(
1269 					sys_leap,
1270 					ctl_traps[i].tr_version,
1271 					MODE_CONTROL);
1272 				rpkt.sequence =
1273 				    htons(ctl_traps[i].tr_sequence);
1274 				sendpkt(&ctl_traps[i].tr_addr,
1275 					ctl_traps[i].tr_localaddr, -4,
1276 					(struct pkt *)&rpkt, sendlen);
1277 				if (!more)
1278 					ctl_traps[i].tr_sequence++;
1279 				numasyncmsgs++;
1280 			}
1281 		}
1282 	} else {
1283 		if (res_authenticate && sys_authenticate) {
1284 			totlen = sendlen;
1285 			/*
1286 			 * If we are going to authenticate, then there
1287 			 * is an additional requirement that the MAC
1288 			 * begin on a 64 bit boundary.
1289 			 */
1290 			while (totlen & 7) {
1291 				*datapt++ = '\0';
1292 				totlen++;
1293 			}
1294 			keyid = htonl(res_keyid);
1295 			memcpy(datapt, &keyid, sizeof(keyid));
1296 			maclen = authencrypt(res_keyid,
1297 					     (u_int32 *)&rpkt, totlen);
1298 			sendpkt(rmt_addr, lcl_inter, -5,
1299 				(struct pkt *)&rpkt, totlen + maclen);
1300 		} else {
1301 			sendpkt(rmt_addr, lcl_inter, -6,
1302 				(struct pkt *)&rpkt, sendlen);
1303 		}
1304 		if (more)
1305 			numctlfrags++;
1306 		else
1307 			numctlresponses++;
1308 	}
1309 
1310 	/*
1311 	 * Set us up for another go around.
1312 	 */
1313 	res_frags++;
1314 	res_offset += dlen;
1315 	datapt = rpkt.u.data;
1316 }
1317 
1318 
1319 /*
1320  * ctl_putdata - write data into the packet, fragmenting and starting
1321  * another if this one is full.
1322  */
1323 static void
1324 ctl_putdata(
1325 	const char *dp,
1326 	unsigned int dlen,
1327 	int bin 		/* set to 1 when data is binary */
1328 	)
1329 {
1330 	int overhead;
1331 	unsigned int currentlen;
1332 
1333 	overhead = 0;
1334 	if (!bin) {
1335 		datanotbinflag = TRUE;
1336 		overhead = 3;
1337 		if (datasent) {
1338 			*datapt++ = ',';
1339 			datalinelen++;
1340 			if ((dlen + datalinelen + 1) >= MAXDATALINELEN) {
1341 				*datapt++ = '\r';
1342 				*datapt++ = '\n';
1343 				datalinelen = 0;
1344 			} else {
1345 				*datapt++ = ' ';
1346 				datalinelen++;
1347 			}
1348 		}
1349 	}
1350 
1351 	/*
1352 	 * Save room for trailing junk
1353 	 */
1354 	while (dlen + overhead + datapt > dataend) {
1355 		/*
1356 		 * Not enough room in this one, flush it out.
1357 		 */
1358 		currentlen = MIN(dlen, (unsigned int)(dataend - datapt));
1359 
1360 		memcpy(datapt, dp, currentlen);
1361 
1362 		datapt += currentlen;
1363 		dp += currentlen;
1364 		dlen -= currentlen;
1365 		datalinelen += currentlen;
1366 
1367 		ctl_flushpkt(CTL_MORE);
1368 	}
1369 
1370 	memcpy(datapt, dp, dlen);
1371 	datapt += dlen;
1372 	datalinelen += dlen;
1373 	datasent = TRUE;
1374 }
1375 
1376 
1377 /*
1378  * ctl_putstr - write a tagged string into the response packet
1379  *		in the form:
1380  *
1381  *		tag="data"
1382  *
1383  *		len is the data length excluding the NUL terminator,
1384  *		as in ctl_putstr("var", "value", strlen("value"));
1385  */
1386 static void
1387 ctl_putstr(
1388 	const char *	tag,
1389 	const char *	data,
1390 	size_t		len
1391 	)
1392 {
1393 	char buffer[512];
1394 	char *cp;
1395 	size_t tl;
1396 
1397 	tl = strlen(tag);
1398 	memcpy(buffer, tag, tl);
1399 	cp = buffer + tl;
1400 	if (len > 0) {
1401 		NTP_INSIST(tl + 3 + len <= sizeof(buffer));
1402 		*cp++ = '=';
1403 		*cp++ = '"';
1404 		memcpy(cp, data, len);
1405 		cp += len;
1406 		*cp++ = '"';
1407 	}
1408 	ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1409 }
1410 
1411 
1412 /*
1413  * ctl_putunqstr - write a tagged string into the response packet
1414  *		   in the form:
1415  *
1416  *		   tag=data
1417  *
1418  *	len is the data length excluding the NUL terminator.
1419  *	data must not contain a comma or whitespace.
1420  */
1421 static void
1422 ctl_putunqstr(
1423 	const char *	tag,
1424 	const char *	data,
1425 	size_t		len
1426 	)
1427 {
1428 	char buffer[512];
1429 	char *cp;
1430 	size_t tl;
1431 
1432 	tl = strlen(tag);
1433 	memcpy(buffer, tag, tl);
1434 	cp = buffer + tl;
1435 	if (len > 0) {
1436 		NTP_INSIST(tl + 1 + len <= sizeof(buffer));
1437 		*cp++ = '=';
1438 		memcpy(cp, data, len);
1439 		cp += len;
1440 	}
1441 	ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1442 }
1443 
1444 
1445 /*
1446  * ctl_putdblf - write a tagged, signed double into the response packet
1447  */
1448 static void
1449 ctl_putdblf(
1450 	const char *	tag,
1451 	int		use_f,
1452 	int		precision,
1453 	double		d
1454 	)
1455 {
1456 	char *cp;
1457 	const char *cq;
1458 	char buffer[200];
1459 
1460 	cp = buffer;
1461 	cq = tag;
1462 	while (*cq != '\0')
1463 		*cp++ = *cq++;
1464 	*cp++ = '=';
1465 	NTP_INSIST((size_t)(cp - buffer) < sizeof(buffer));
1466 	snprintf(cp, sizeof(buffer) - (cp - buffer), use_f ? "%.*f" : "%.*g",
1467 	    precision, d);
1468 	cp += strlen(cp);
1469 	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1470 }
1471 
1472 /*
1473  * ctl_putuint - write a tagged unsigned integer into the response
1474  */
1475 static void
1476 ctl_putuint(
1477 	const char *tag,
1478 	u_long uval
1479 	)
1480 {
1481 	register char *cp;
1482 	register const char *cq;
1483 	char buffer[200];
1484 
1485 	cp = buffer;
1486 	cq = tag;
1487 	while (*cq != '\0')
1488 		*cp++ = *cq++;
1489 
1490 	*cp++ = '=';
1491 	NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1492 	snprintf(cp, sizeof(buffer) - (cp - buffer), "%lu", uval);
1493 	cp += strlen(cp);
1494 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1495 }
1496 
1497 /*
1498  * ctl_putcal - write a decoded calendar data into the response
1499  */
1500 static void
1501 ctl_putcal(
1502 	const char *tag,
1503 	const struct calendar *pcal
1504 	)
1505 {
1506 	char buffer[100];
1507 	unsigned numch;
1508 
1509 	numch = snprintf(buffer, sizeof(buffer),
1510 			"%s=%04d%02d%02d%02d%02d",
1511 			tag,
1512 			pcal->year,
1513 			pcal->month,
1514 			pcal->monthday,
1515 			pcal->hour,
1516 			pcal->minute
1517 			);
1518 	NTP_INSIST(numch < sizeof(buffer));
1519 	ctl_putdata(buffer, numch, 0);
1520 
1521 	return;
1522 }
1523 
1524 /*
1525  * ctl_putfs - write a decoded filestamp into the response
1526  */
1527 static void
1528 ctl_putfs(
1529 	const char *tag,
1530 	tstamp_t uval
1531 	)
1532 {
1533 	register char *cp;
1534 	register const char *cq;
1535 	char buffer[200];
1536 	struct tm *tm = NULL;
1537 	time_t fstamp;
1538 
1539 	cp = buffer;
1540 	cq = tag;
1541 	while (*cq != '\0')
1542 		*cp++ = *cq++;
1543 
1544 	*cp++ = '=';
1545 	fstamp = uval - JAN_1970;
1546 	tm = gmtime(&fstamp);
1547 	if (NULL ==  tm)
1548 		return;
1549 	NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1550 	snprintf(cp, sizeof(buffer) - (cp - buffer),
1551 		 "%04d%02d%02d%02d%02d", tm->tm_year + 1900,
1552 		 tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min);
1553 	cp += strlen(cp);
1554 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1555 }
1556 
1557 
1558 /*
1559  * ctl_puthex - write a tagged unsigned integer, in hex, into the
1560  * response
1561  */
1562 static void
1563 ctl_puthex(
1564 	const char *tag,
1565 	u_long uval
1566 	)
1567 {
1568 	register char *cp;
1569 	register const char *cq;
1570 	char buffer[200];
1571 
1572 	cp = buffer;
1573 	cq = tag;
1574 	while (*cq != '\0')
1575 		*cp++ = *cq++;
1576 
1577 	*cp++ = '=';
1578 	NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1579 	snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%lx", uval);
1580 	cp += strlen(cp);
1581 	ctl_putdata(buffer,(unsigned)( cp - buffer ), 0);
1582 }
1583 
1584 
1585 /*
1586  * ctl_putint - write a tagged signed integer into the response
1587  */
1588 static void
1589 ctl_putint(
1590 	const char *tag,
1591 	long ival
1592 	)
1593 {
1594 	register char *cp;
1595 	register const char *cq;
1596 	char buffer[200];
1597 
1598 	cp = buffer;
1599 	cq = tag;
1600 	while (*cq != '\0')
1601 		*cp++ = *cq++;
1602 
1603 	*cp++ = '=';
1604 	NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1605 	snprintf(cp, sizeof(buffer) - (cp - buffer), "%ld", ival);
1606 	cp += strlen(cp);
1607 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1608 }
1609 
1610 
1611 /*
1612  * ctl_putts - write a tagged timestamp, in hex, into the response
1613  */
1614 static void
1615 ctl_putts(
1616 	const char *tag,
1617 	l_fp *ts
1618 	)
1619 {
1620 	register char *cp;
1621 	register const char *cq;
1622 	char buffer[200];
1623 
1624 	cp = buffer;
1625 	cq = tag;
1626 	while (*cq != '\0')
1627 		*cp++ = *cq++;
1628 
1629 	*cp++ = '=';
1630 	NTP_INSIST((size_t)(cp - buffer) < sizeof(buffer));
1631 	snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%08x.%08x",
1632 		 (u_int)ts->l_ui, (u_int)ts->l_uf);
1633 	cp += strlen(cp);
1634 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1635 }
1636 
1637 
1638 /*
1639  * ctl_putadr - write an IP address into the response
1640  */
1641 static void
1642 ctl_putadr(
1643 	const char *tag,
1644 	u_int32 addr32,
1645 	sockaddr_u *addr
1646 	)
1647 {
1648 	register char *cp;
1649 	register const char *cq;
1650 	char buffer[200];
1651 
1652 	cp = buffer;
1653 	cq = tag;
1654 	while (*cq != '\0')
1655 		*cp++ = *cq++;
1656 
1657 	*cp++ = '=';
1658 	if (NULL == addr)
1659 		cq = numtoa(addr32);
1660 	else
1661 		cq = stoa(addr);
1662 	NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1663 	snprintf(cp, sizeof(buffer) - (cp - buffer), "%s", cq);
1664 	cp += strlen(cp);
1665 	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1666 }
1667 
1668 
1669 /*
1670  * ctl_putrefid - send a u_int32 refid as printable text
1671  */
1672 static void
1673 ctl_putrefid(
1674 	const char *	tag,
1675 	u_int32		refid
1676 	)
1677 {
1678 	char	output[16];
1679 	char *	optr;
1680 	char *	oplim;
1681 	char *	iptr;
1682 	char *	iplim;
1683 	char *	past_eq;
1684 
1685 	optr = output;
1686 	oplim = output + sizeof(output);
1687 	while (optr < oplim && '\0' != *tag)
1688 		*optr++ = *tag++;
1689 	if (optr < oplim) {
1690 		*optr++ = '=';
1691 		past_eq = optr;
1692 	}
1693 	if (!(optr < oplim))
1694 		return;
1695 	iptr = (char *)&refid;
1696 	iplim = iptr + sizeof(refid);
1697 	for ( ; optr < oplim && iptr < iplim && '\0' != *iptr;
1698 	     iptr++, optr++)
1699 		if (isprint((int)*iptr))
1700 			*optr = *iptr;
1701 		else
1702 			*optr = '.';
1703 	if (!(optr <= oplim))
1704 		optr = past_eq;
1705 	ctl_putdata(output, (u_int)(optr - output), FALSE);
1706 }
1707 
1708 
1709 /*
1710  * ctl_putarray - write a tagged eight element double array into the response
1711  */
1712 static void
1713 ctl_putarray(
1714 	const char *tag,
1715 	double *arr,
1716 	int start
1717 	)
1718 {
1719 	register char *cp;
1720 	register const char *cq;
1721 	char buffer[200];
1722 	int i;
1723 	cp = buffer;
1724 	cq = tag;
1725 	while (*cq != '\0')
1726 		*cp++ = *cq++;
1727 	*cp++ = '=';
1728 	i = start;
1729 	do {
1730 		if (i == 0)
1731 			i = NTP_SHIFT;
1732 		i--;
1733 		NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1734 		snprintf(cp, sizeof(buffer) - (cp - buffer),
1735 			 " %.2f", arr[i] * 1e3);
1736 		cp += strlen(cp);
1737 	} while (i != start);
1738 	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1739 }
1740 
1741 
1742 /*
1743  * ctl_putsys - output a system variable
1744  */
1745 static void
1746 ctl_putsys(
1747 	int varid
1748 	)
1749 {
1750 	l_fp tmp;
1751 	char str[256];
1752 	u_int u;
1753 	double kb;
1754 	double dtemp;
1755 	const char *ss;
1756 #ifdef AUTOKEY
1757 	struct cert_info *cp;
1758 #endif	/* AUTOKEY */
1759 #ifdef KERNEL_PLL
1760 	static struct timex ntx;
1761 	static u_long ntp_adjtime_time;
1762 
1763 	static const double to_ms =
1764 # ifdef STA_NANO
1765 	    	1.0e-6; /* nsec to msec */
1766 # else
1767 		1.0e-3; /* usec to msec */
1768 # endif
1769 
1770 	/*
1771 	 * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1772 	 */
1773 	if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1774 	    current_time != ntp_adjtime_time) {
1775 		ZERO(ntx);
1776 		if (ntp_adjtime(&ntx) < 0)
1777 			msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1778 		else
1779 			ntp_adjtime_time = current_time;
1780 	}
1781 #endif	/* KERNEL_PLL */
1782 
1783 	switch (varid) {
1784 
1785 	case CS_LEAP:
1786 		ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1787 		break;
1788 
1789 	case CS_STRATUM:
1790 		ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1791 		break;
1792 
1793 	case CS_PRECISION:
1794 		ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1795 		break;
1796 
1797 	case CS_ROOTDELAY:
1798 		ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1799 			   1e3);
1800 		break;
1801 
1802 	case CS_ROOTDISPERSION:
1803 		ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1804 			   sys_rootdisp * 1e3);
1805 		break;
1806 
1807 	case CS_REFID:
1808 		if (sys_stratum > 1 && sys_stratum < STRATUM_UNSPEC)
1809 			ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1810 		else
1811 			ctl_putrefid(sys_var[varid].text, sys_refid);
1812 		break;
1813 
1814 	case CS_REFTIME:
1815 		ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
1816 		break;
1817 
1818 	case CS_POLL:
1819 		ctl_putuint(sys_var[CS_POLL].text, sys_poll);
1820 		break;
1821 
1822 	case CS_PEERID:
1823 		if (sys_peer == NULL)
1824 			ctl_putuint(sys_var[CS_PEERID].text, 0);
1825 		else
1826 			ctl_putuint(sys_var[CS_PEERID].text,
1827 				    sys_peer->associd);
1828 		break;
1829 
1830 	case CS_PEERADR:
1831 		if (sys_peer != NULL && sys_peer->dstadr != NULL)
1832 			ss = sptoa(&sys_peer->srcadr);
1833 		else
1834 			ss = "0.0.0.0:0";
1835 		ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
1836 		break;
1837 
1838 	case CS_PEERMODE:
1839 		u = (sys_peer != NULL)
1840 			? sys_peer->hmode
1841 			: MODE_UNSPEC;
1842 		ctl_putuint(sys_var[CS_PEERMODE].text, u);
1843 		break;
1844 
1845 	case CS_OFFSET:
1846 		ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
1847 		break;
1848 
1849 	case CS_DRIFT:
1850 		ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
1851 		break;
1852 
1853 	case CS_JITTER:
1854 		ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
1855 		break;
1856 
1857 	case CS_ERROR:
1858 		ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
1859 		break;
1860 
1861 	case CS_CLOCK:
1862 		get_systime(&tmp);
1863 		ctl_putts(sys_var[CS_CLOCK].text, &tmp);
1864 		break;
1865 
1866 	case CS_PROCESSOR:
1867 #ifndef HAVE_UNAME
1868 		ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
1869 			   sizeof(str_processor) - 1);
1870 #else
1871 		ctl_putstr(sys_var[CS_PROCESSOR].text,
1872 			   utsnamebuf.machine, strlen(utsnamebuf.machine));
1873 #endif /* HAVE_UNAME */
1874 		break;
1875 
1876 	case CS_SYSTEM:
1877 #ifndef HAVE_UNAME
1878 		ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
1879 			   sizeof(str_system) - 1);
1880 #else
1881 		snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
1882 			 utsnamebuf.release);
1883 		ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
1884 #endif /* HAVE_UNAME */
1885 		break;
1886 
1887 	case CS_VERSION:
1888 		ctl_putstr(sys_var[CS_VERSION].text, Version,
1889 			   strlen(Version));
1890 		break;
1891 
1892 	case CS_STABIL:
1893 		ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
1894 			   1e6);
1895 		break;
1896 
1897 	case CS_VARLIST:
1898 	{
1899 		char buf[CTL_MAX_DATA_LEN];
1900 		//buffPointer, firstElementPointer, buffEndPointer
1901 		char *buffp, *buffend;
1902 		int firstVarName;
1903 		const char *ss1;
1904 		int len;
1905 		const struct ctl_var *k;
1906 
1907 		buffp = buf;
1908 		buffend = buf + sizeof(buf);
1909 		if (buffp + strlen(sys_var[CS_VARLIST].text) + 4 > buffend)
1910 			break;	/* really long var name */
1911 
1912 		snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
1913 		buffp += strlen(buffp);
1914 		firstVarName = TRUE;
1915 		for (k = sys_var; !(k->flags & EOV); k++) {
1916 			if (k->flags & PADDING)
1917 				continue;
1918 			len = strlen(k->text);
1919 			if (buffp + len + 1 >= buffend)
1920 				break;
1921 			if (!firstVarName)
1922 				*buffp++ = ',';
1923 			else
1924 				firstVarName = FALSE;
1925 			memcpy(buffp, k->text, len);
1926 			buffp += len;
1927 		}
1928 
1929 		for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
1930 			if (k->flags & PADDING)
1931 				continue;
1932 			if (NULL == k->text)
1933 				continue;
1934 			ss1 = strchr(k->text, '=');
1935 			if (NULL == ss1)
1936 				len = strlen(k->text);
1937 			else
1938 				len = ss1 - k->text;
1939 			if (buffp + len + 1 >= buffend)
1940 				break;
1941 			if (firstVarName) {
1942 				*buffp++ = ',';
1943 				firstVarName = FALSE;
1944 			}
1945 			memcpy(buffp, k->text,(unsigned)len);
1946 			buffp += len;
1947 		}
1948 		if (buffp + 2 >= buffend)
1949 			break;
1950 
1951 		*buffp++ = '"';
1952 		*buffp = '\0';
1953 
1954 		ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
1955 		break;
1956 	}
1957 
1958 	case CS_TAI:
1959 		if (sys_tai > 0)
1960 			ctl_putuint(sys_var[CS_TAI].text, sys_tai);
1961 		break;
1962 
1963 	case CS_LEAPTAB:
1964 	{
1965 		leap_signature_t lsig;
1966 		leapsec_getsig(&lsig);
1967 		if (lsig.ttime > 0)
1968 			ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
1969 		break;
1970 	}
1971 
1972 	case CS_LEAPEND:
1973 	{
1974 		leap_signature_t lsig;
1975 		leapsec_getsig(&lsig);
1976 		if (lsig.etime > 0)
1977 			ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
1978 		break;
1979 	}
1980 
1981 	case CS_RATE:
1982 		ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
1983 		break;
1984 
1985 	case CS_MRU_ENABLED:
1986 		ctl_puthex(sys_var[varid].text, mon_enabled);
1987 		break;
1988 
1989 	case CS_MRU_DEPTH:
1990 		ctl_putuint(sys_var[varid].text, mru_entries);
1991 		break;
1992 
1993 	case CS_MRU_MEM:
1994 		kb = mru_entries * (sizeof(mon_entry) / 1024.);
1995 		u = (u_int)kb;
1996 		if (kb - u >= 0.5)
1997 			u++;
1998 		ctl_putuint(sys_var[varid].text, u);
1999 		break;
2000 
2001 	case CS_MRU_DEEPEST:
2002 		ctl_putuint(sys_var[varid].text, mru_peakentries);
2003 		break;
2004 
2005 	case CS_MRU_MINDEPTH:
2006 		ctl_putuint(sys_var[varid].text, mru_mindepth);
2007 		break;
2008 
2009 	case CS_MRU_MAXAGE:
2010 		ctl_putint(sys_var[varid].text, mru_maxage);
2011 		break;
2012 
2013 	case CS_MRU_MAXDEPTH:
2014 		ctl_putuint(sys_var[varid].text, mru_maxdepth);
2015 		break;
2016 
2017 	case CS_MRU_MAXMEM:
2018 		kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
2019 		u = (u_int)kb;
2020 		if (kb - u >= 0.5)
2021 			u++;
2022 		ctl_putuint(sys_var[varid].text, u);
2023 		break;
2024 
2025 	case CS_SS_UPTIME:
2026 		ctl_putuint(sys_var[varid].text, current_time);
2027 		break;
2028 
2029 	case CS_SS_RESET:
2030 		ctl_putuint(sys_var[varid].text,
2031 			    current_time - sys_stattime);
2032 		break;
2033 
2034 	case CS_SS_RECEIVED:
2035 		ctl_putuint(sys_var[varid].text, sys_received);
2036 		break;
2037 
2038 	case CS_SS_THISVER:
2039 		ctl_putuint(sys_var[varid].text, sys_newversion);
2040 		break;
2041 
2042 	case CS_SS_OLDVER:
2043 		ctl_putuint(sys_var[varid].text, sys_oldversion);
2044 		break;
2045 
2046 	case CS_SS_BADFORMAT:
2047 		ctl_putuint(sys_var[varid].text, sys_badlength);
2048 		break;
2049 
2050 	case CS_SS_BADAUTH:
2051 		ctl_putuint(sys_var[varid].text, sys_badauth);
2052 		break;
2053 
2054 	case CS_SS_DECLINED:
2055 		ctl_putuint(sys_var[varid].text, sys_declined);
2056 		break;
2057 
2058 	case CS_SS_RESTRICTED:
2059 		ctl_putuint(sys_var[varid].text, sys_restricted);
2060 		break;
2061 
2062 	case CS_SS_LIMITED:
2063 		ctl_putuint(sys_var[varid].text, sys_limitrejected);
2064 		break;
2065 
2066 	case CS_SS_KODSENT:
2067 		ctl_putuint(sys_var[varid].text, sys_kodsent);
2068 		break;
2069 
2070 	case CS_SS_PROCESSED:
2071 		ctl_putuint(sys_var[varid].text, sys_processed);
2072 		break;
2073 
2074 	case CS_BCASTDELAY:
2075 		ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2076 		break;
2077 
2078 	case CS_AUTHDELAY:
2079 		LFPTOD(&sys_authdelay, dtemp);
2080 		ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2081 		break;
2082 
2083 	case CS_AUTHKEYS:
2084 		ctl_putuint(sys_var[varid].text, authnumkeys);
2085 		break;
2086 
2087 	case CS_AUTHFREEK:
2088 		ctl_putuint(sys_var[varid].text, authnumfreekeys);
2089 		break;
2090 
2091 	case CS_AUTHKLOOKUPS:
2092 		ctl_putuint(sys_var[varid].text, authkeylookups);
2093 		break;
2094 
2095 	case CS_AUTHKNOTFOUND:
2096 		ctl_putuint(sys_var[varid].text, authkeynotfound);
2097 		break;
2098 
2099 	case CS_AUTHKUNCACHED:
2100 		ctl_putuint(sys_var[varid].text, authkeyuncached);
2101 		break;
2102 
2103 	case CS_AUTHKEXPIRED:
2104 		ctl_putuint(sys_var[varid].text, authkeyexpired);
2105 		break;
2106 
2107 	case CS_AUTHENCRYPTS:
2108 		ctl_putuint(sys_var[varid].text, authencryptions);
2109 		break;
2110 
2111 	case CS_AUTHDECRYPTS:
2112 		ctl_putuint(sys_var[varid].text, authdecryptions);
2113 		break;
2114 
2115 	case CS_AUTHRESET:
2116 		ctl_putuint(sys_var[varid].text,
2117 			    current_time - auth_timereset);
2118 		break;
2119 
2120 		/*
2121 		 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2122 		 * unavailable, otherwise calls putfunc with args.
2123 		 */
2124 #ifndef KERNEL_PLL
2125 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2126 		ctl_putint(sys_var[varid].text, 0)
2127 #else
2128 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2129 		putfunc args
2130 #endif
2131 
2132 		/*
2133 		 * CTL_IF_KERNPPS() puts a zero if either the kernel
2134 		 * loop is unavailable, or kernel hard PPS is not
2135 		 * active, otherwise calls putfunc with args.
2136 		 */
2137 #ifndef KERNEL_PLL
2138 # define	CTL_IF_KERNPPS(putfunc, args)	\
2139 		ctl_putint(sys_var[varid].text, 0)
2140 #else
2141 # define	CTL_IF_KERNPPS(putfunc, args)			\
2142 		if (0 == ntx.shift)				\
2143 			ctl_putint(sys_var[varid].text, 0);	\
2144 		else						\
2145 			putfunc args	/* no trailing ; */
2146 #endif
2147 
2148 	case CS_K_OFFSET:
2149 		CTL_IF_KERNLOOP(
2150 			ctl_putdblf,
2151 			(sys_var[varid].text, 0, -1, to_ms * ntx.offset)
2152 		);
2153 		break;
2154 
2155 	case CS_K_FREQ:
2156 		CTL_IF_KERNLOOP(
2157 			ctl_putsfp,
2158 			(sys_var[varid].text, ntx.freq)
2159 		);
2160 		break;
2161 
2162 	case CS_K_MAXERR:
2163 		CTL_IF_KERNLOOP(
2164 			ctl_putdblf,
2165 			(sys_var[varid].text, 0, 6,
2166 			 to_ms * ntx.maxerror)
2167 		);
2168 		break;
2169 
2170 	case CS_K_ESTERR:
2171 		CTL_IF_KERNLOOP(
2172 			ctl_putdblf,
2173 			(sys_var[varid].text, 0, 6,
2174 			 to_ms * ntx.esterror)
2175 		);
2176 		break;
2177 
2178 	case CS_K_STFLAGS:
2179 #ifndef KERNEL_PLL
2180 		ss = "";
2181 #else
2182 		ss = k_st_flags(ntx.status);
2183 #endif
2184 		ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2185 		break;
2186 
2187 	case CS_K_TIMECONST:
2188 		CTL_IF_KERNLOOP(
2189 			ctl_putint,
2190 			(sys_var[varid].text, ntx.constant)
2191 		);
2192 		break;
2193 
2194 	case CS_K_PRECISION:
2195 		CTL_IF_KERNLOOP(
2196 			ctl_putdblf,
2197 			(sys_var[varid].text, 0, 6,
2198 			    to_ms * ntx.precision)
2199 		);
2200 		break;
2201 
2202 	case CS_K_FREQTOL:
2203 		CTL_IF_KERNLOOP(
2204 			ctl_putsfp,
2205 			(sys_var[varid].text, ntx.tolerance)
2206 		);
2207 		break;
2208 
2209 	case CS_K_PPS_FREQ:
2210 		CTL_IF_KERNPPS(
2211 			ctl_putsfp,
2212 			(sys_var[varid].text, ntx.ppsfreq)
2213 		);
2214 		break;
2215 
2216 	case CS_K_PPS_STABIL:
2217 		CTL_IF_KERNPPS(
2218 			ctl_putsfp,
2219 			(sys_var[varid].text, ntx.stabil)
2220 		);
2221 		break;
2222 
2223 	case CS_K_PPS_JITTER:
2224 		CTL_IF_KERNPPS(
2225 			ctl_putdbl,
2226 			(sys_var[varid].text, to_ms * ntx.jitter)
2227 		);
2228 		break;
2229 
2230 	case CS_K_PPS_CALIBDUR:
2231 		CTL_IF_KERNPPS(
2232 			ctl_putint,
2233 			(sys_var[varid].text, 1 << ntx.shift)
2234 		);
2235 		break;
2236 
2237 	case CS_K_PPS_CALIBS:
2238 		CTL_IF_KERNPPS(
2239 			ctl_putint,
2240 			(sys_var[varid].text, ntx.calcnt)
2241 		);
2242 		break;
2243 
2244 	case CS_K_PPS_CALIBERRS:
2245 		CTL_IF_KERNPPS(
2246 			ctl_putint,
2247 			(sys_var[varid].text, ntx.errcnt)
2248 		);
2249 		break;
2250 
2251 	case CS_K_PPS_JITEXC:
2252 		CTL_IF_KERNPPS(
2253 			ctl_putint,
2254 			(sys_var[varid].text, ntx.jitcnt)
2255 		);
2256 		break;
2257 
2258 	case CS_K_PPS_STBEXC:
2259 		CTL_IF_KERNPPS(
2260 			ctl_putint,
2261 			(sys_var[varid].text, ntx.stbcnt)
2262 		);
2263 		break;
2264 
2265 	case CS_IOSTATS_RESET:
2266 		ctl_putuint(sys_var[varid].text,
2267 			    current_time - io_timereset);
2268 		break;
2269 
2270 	case CS_TOTAL_RBUF:
2271 		ctl_putuint(sys_var[varid].text, total_recvbuffs());
2272 		break;
2273 
2274 	case CS_FREE_RBUF:
2275 		ctl_putuint(sys_var[varid].text, free_recvbuffs());
2276 		break;
2277 
2278 	case CS_USED_RBUF:
2279 		ctl_putuint(sys_var[varid].text, full_recvbuffs());
2280 		break;
2281 
2282 	case CS_RBUF_LOWATER:
2283 		ctl_putuint(sys_var[varid].text, lowater_additions());
2284 		break;
2285 
2286 	case CS_IO_DROPPED:
2287 		ctl_putuint(sys_var[varid].text, packets_dropped);
2288 		break;
2289 
2290 	case CS_IO_IGNORED:
2291 		ctl_putuint(sys_var[varid].text, packets_ignored);
2292 		break;
2293 
2294 	case CS_IO_RECEIVED:
2295 		ctl_putuint(sys_var[varid].text, packets_received);
2296 		break;
2297 
2298 	case CS_IO_SENT:
2299 		ctl_putuint(sys_var[varid].text, packets_sent);
2300 		break;
2301 
2302 	case CS_IO_SENDFAILED:
2303 		ctl_putuint(sys_var[varid].text, packets_notsent);
2304 		break;
2305 
2306 	case CS_IO_WAKEUPS:
2307 		ctl_putuint(sys_var[varid].text, handler_calls);
2308 		break;
2309 
2310 	case CS_IO_GOODWAKEUPS:
2311 		ctl_putuint(sys_var[varid].text, handler_pkts);
2312 		break;
2313 
2314 	case CS_TIMERSTATS_RESET:
2315 		ctl_putuint(sys_var[varid].text,
2316 			    current_time - timer_timereset);
2317 		break;
2318 
2319 	case CS_TIMER_OVERRUNS:
2320 		ctl_putuint(sys_var[varid].text, alarm_overflow);
2321 		break;
2322 
2323 	case CS_TIMER_XMTS:
2324 		ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2325 		break;
2326 
2327 	case CS_FUZZ:
2328 		ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2329 		break;
2330 #ifdef AUTOKEY
2331 	case CS_FLAGS:
2332 		if (crypto_flags)
2333 			ctl_puthex(sys_var[CS_FLAGS].text,
2334 			    crypto_flags);
2335 		break;
2336 
2337 	case CS_DIGEST:
2338 		if (crypto_flags) {
2339 			strlcpy(str, OBJ_nid2ln(crypto_nid),
2340 			    COUNTOF(str));
2341 			ctl_putstr(sys_var[CS_DIGEST].text, str,
2342 			    strlen(str));
2343 		}
2344 		break;
2345 
2346 	case CS_SIGNATURE:
2347 		if (crypto_flags) {
2348 			const EVP_MD *dp;
2349 
2350 			dp = EVP_get_digestbynid(crypto_flags >> 16);
2351 			strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2352 			    COUNTOF(str));
2353 			ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2354 			    strlen(str));
2355 		}
2356 		break;
2357 
2358 	case CS_HOST:
2359 		if (hostval.ptr != NULL)
2360 			ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2361 			    strlen(hostval.ptr));
2362 		break;
2363 
2364 	case CS_IDENT:
2365 		if (sys_ident != NULL)
2366 			ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2367 			    strlen(sys_ident));
2368 		break;
2369 
2370 	case CS_CERTIF:
2371 		for (cp = cinfo; cp != NULL; cp = cp->link) {
2372 			snprintf(str, sizeof(str), "%s %s 0x%x",
2373 			    cp->subject, cp->issuer, cp->flags);
2374 			ctl_putstr(sys_var[CS_CERTIF].text, str,
2375 			    strlen(str));
2376 			ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
2377 		}
2378 		break;
2379 
2380 	case CS_PUBLIC:
2381 		if (hostval.tstamp != 0)
2382 			ctl_putfs(sys_var[CS_PUBLIC].text,
2383 			    ntohl(hostval.tstamp));
2384 		break;
2385 #endif	/* AUTOKEY */
2386 	}
2387 }
2388 
2389 
2390 /*
2391  * ctl_putpeer - output a peer variable
2392  */
2393 static void
2394 ctl_putpeer(
2395 	int id,
2396 	struct peer *p
2397 	)
2398 {
2399 	char buf[CTL_MAX_DATA_LEN];
2400 	char *s;
2401 	char *t;
2402 	char *be;
2403 	int i;
2404 	const struct ctl_var *k;
2405 #ifdef AUTOKEY
2406 	struct autokey *ap;
2407 	const EVP_MD *dp;
2408 	const char *str;
2409 #endif	/* AUTOKEY */
2410 
2411 	switch (id) {
2412 
2413 	case CP_CONFIG:
2414 		ctl_putuint(peer_var[id].text,
2415 			    !(FLAG_PREEMPT & p->flags));
2416 		break;
2417 
2418 	case CP_AUTHENABLE:
2419 		ctl_putuint(peer_var[id].text, !(p->keyid));
2420 		break;
2421 
2422 	case CP_AUTHENTIC:
2423 		ctl_putuint(peer_var[id].text,
2424 			    !!(FLAG_AUTHENTIC & p->flags));
2425 		break;
2426 
2427 	case CP_SRCADR:
2428 		ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2429 		break;
2430 
2431 	case CP_SRCPORT:
2432 		ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2433 		break;
2434 
2435 	case CP_SRCHOST:
2436 		if (p->hostname != NULL)
2437 			ctl_putstr(peer_var[id].text, p->hostname,
2438 				   strlen(p->hostname));
2439 		break;
2440 
2441 	case CP_DSTADR:
2442 		ctl_putadr(peer_var[id].text, 0,
2443 			   (p->dstadr != NULL)
2444 				? &p->dstadr->sin
2445 				: NULL);
2446 		break;
2447 
2448 	case CP_DSTPORT:
2449 		ctl_putuint(peer_var[id].text,
2450 			    (p->dstadr != NULL)
2451 				? SRCPORT(&p->dstadr->sin)
2452 				: 0);
2453 		break;
2454 
2455 	case CP_IN:
2456 		if (p->r21 > 0.)
2457 			ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2458 		break;
2459 
2460 	case CP_OUT:
2461 		if (p->r34 > 0.)
2462 			ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2463 		break;
2464 
2465 	case CP_RATE:
2466 		ctl_putuint(peer_var[id].text, p->throttle);
2467 		break;
2468 
2469 	case CP_LEAP:
2470 		ctl_putuint(peer_var[id].text, p->leap);
2471 		break;
2472 
2473 	case CP_HMODE:
2474 		ctl_putuint(peer_var[id].text, p->hmode);
2475 		break;
2476 
2477 	case CP_STRATUM:
2478 		ctl_putuint(peer_var[id].text, p->stratum);
2479 		break;
2480 
2481 	case CP_PPOLL:
2482 		ctl_putuint(peer_var[id].text, p->ppoll);
2483 		break;
2484 
2485 	case CP_HPOLL:
2486 		ctl_putuint(peer_var[id].text, p->hpoll);
2487 		break;
2488 
2489 	case CP_PRECISION:
2490 		ctl_putint(peer_var[id].text, p->precision);
2491 		break;
2492 
2493 	case CP_ROOTDELAY:
2494 		ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2495 		break;
2496 
2497 	case CP_ROOTDISPERSION:
2498 		ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2499 		break;
2500 
2501 	case CP_REFID:
2502 #ifdef REFCLOCK
2503 		if (p->flags & FLAG_REFCLOCK) {
2504 			ctl_putrefid(peer_var[id].text, p->refid);
2505 			break;
2506 		}
2507 #endif
2508 		if (p->stratum > 1 && p->stratum < STRATUM_UNSPEC)
2509 			ctl_putadr(peer_var[id].text, p->refid,
2510 				   NULL);
2511 		else
2512 			ctl_putrefid(peer_var[id].text, p->refid);
2513 		break;
2514 
2515 	case CP_REFTIME:
2516 		ctl_putts(peer_var[id].text, &p->reftime);
2517 		break;
2518 
2519 	case CP_ORG:
2520 		ctl_putts(peer_var[id].text, &p->aorg);
2521 		break;
2522 
2523 	case CP_REC:
2524 		ctl_putts(peer_var[id].text, &p->dst);
2525 		break;
2526 
2527 	case CP_XMT:
2528 		if (p->xleave)
2529 			ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2530 		break;
2531 
2532 	case CP_BIAS:
2533 		if (p->bias != 0.)
2534 			ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2535 		break;
2536 
2537 	case CP_REACH:
2538 		ctl_puthex(peer_var[id].text, p->reach);
2539 		break;
2540 
2541 	case CP_FLASH:
2542 		ctl_puthex(peer_var[id].text, p->flash);
2543 		break;
2544 
2545 	case CP_TTL:
2546 #ifdef REFCLOCK
2547 		if (p->flags & FLAG_REFCLOCK) {
2548 			ctl_putuint(peer_var[id].text, p->ttl);
2549 			break;
2550 		}
2551 #endif
2552 		if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2553 			ctl_putint(peer_var[id].text,
2554 				   sys_ttl[p->ttl]);
2555 		break;
2556 
2557 	case CP_UNREACH:
2558 		ctl_putuint(peer_var[id].text, p->unreach);
2559 		break;
2560 
2561 	case CP_TIMER:
2562 		ctl_putuint(peer_var[id].text,
2563 			    p->nextdate - current_time);
2564 		break;
2565 
2566 	case CP_DELAY:
2567 		ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2568 		break;
2569 
2570 	case CP_OFFSET:
2571 		ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2572 		break;
2573 
2574 	case CP_JITTER:
2575 		ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2576 		break;
2577 
2578 	case CP_DISPERSION:
2579 		ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2580 		break;
2581 
2582 	case CP_KEYID:
2583 		if (p->keyid > NTP_MAXKEY)
2584 			ctl_puthex(peer_var[id].text, p->keyid);
2585 		else
2586 			ctl_putuint(peer_var[id].text, p->keyid);
2587 		break;
2588 
2589 	case CP_FILTDELAY:
2590 		ctl_putarray(peer_var[id].text, p->filter_delay,
2591 			     p->filter_nextpt);
2592 		break;
2593 
2594 	case CP_FILTOFFSET:
2595 		ctl_putarray(peer_var[id].text, p->filter_offset,
2596 			     p->filter_nextpt);
2597 		break;
2598 
2599 	case CP_FILTERROR:
2600 		ctl_putarray(peer_var[id].text, p->filter_disp,
2601 			     p->filter_nextpt);
2602 		break;
2603 
2604 	case CP_PMODE:
2605 		ctl_putuint(peer_var[id].text, p->pmode);
2606 		break;
2607 
2608 	case CP_RECEIVED:
2609 		ctl_putuint(peer_var[id].text, p->received);
2610 		break;
2611 
2612 	case CP_SENT:
2613 		ctl_putuint(peer_var[id].text, p->sent);
2614 		break;
2615 
2616 	case CP_VARLIST:
2617 		s = buf;
2618 		be = buf + sizeof(buf);
2619 		if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2620 			break;	/* really long var name */
2621 
2622 		snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2623 		s += strlen(s);
2624 		t = s;
2625 		for (k = peer_var; !(EOV & k->flags); k++) {
2626 			if (PADDING & k->flags)
2627 				continue;
2628 			i = strlen(k->text);
2629 			if (s + i + 1 >= be)
2630 				break;
2631 			if (s != t)
2632 				*s++ = ',';
2633 			memcpy(s, k->text, i);
2634 			s += i;
2635 		}
2636 		if (s + 2 < be) {
2637 			*s++ = '"';
2638 			*s = '\0';
2639 			ctl_putdata(buf, (u_int)(s - buf), 0);
2640 		}
2641 		break;
2642 
2643 	case CP_TIMEREC:
2644 		ctl_putuint(peer_var[id].text,
2645 			    current_time - p->timereceived);
2646 		break;
2647 
2648 	case CP_TIMEREACH:
2649 		ctl_putuint(peer_var[id].text,
2650 			    current_time - p->timereachable);
2651 		break;
2652 
2653 	case CP_BADAUTH:
2654 		ctl_putuint(peer_var[id].text, p->badauth);
2655 		break;
2656 
2657 	case CP_BOGUSORG:
2658 		ctl_putuint(peer_var[id].text, p->bogusorg);
2659 		break;
2660 
2661 	case CP_OLDPKT:
2662 		ctl_putuint(peer_var[id].text, p->oldpkt);
2663 		break;
2664 
2665 	case CP_SELDISP:
2666 		ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2667 		break;
2668 
2669 	case CP_SELBROKEN:
2670 		ctl_putuint(peer_var[id].text, p->selbroken);
2671 		break;
2672 
2673 	case CP_CANDIDATE:
2674 		ctl_putuint(peer_var[id].text, p->status);
2675 		break;
2676 #ifdef AUTOKEY
2677 	case CP_FLAGS:
2678 		if (p->crypto)
2679 			ctl_puthex(peer_var[id].text, p->crypto);
2680 		break;
2681 
2682 	case CP_SIGNATURE:
2683 		if (p->crypto) {
2684 			dp = EVP_get_digestbynid(p->crypto >> 16);
2685 			str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2686 			ctl_putstr(peer_var[id].text, str, strlen(str));
2687 		}
2688 		break;
2689 
2690 	case CP_HOST:
2691 		if (p->subject != NULL)
2692 			ctl_putstr(peer_var[id].text, p->subject,
2693 			    strlen(p->subject));
2694 		break;
2695 
2696 	case CP_VALID:		/* not used */
2697 		break;
2698 
2699 	case CP_INITSEQ:
2700 		if (NULL == (ap = p->recval.ptr))
2701 			break;
2702 
2703 		ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2704 		ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2705 		ctl_putfs(peer_var[CP_INITTSP].text,
2706 			  ntohl(p->recval.tstamp));
2707 		break;
2708 
2709 	case CP_IDENT:
2710 		if (p->ident != NULL)
2711 			ctl_putstr(peer_var[id].text, p->ident,
2712 			    strlen(p->ident));
2713 		break;
2714 
2715 
2716 #endif	/* AUTOKEY */
2717 	}
2718 }
2719 
2720 
2721 #ifdef REFCLOCK
2722 /*
2723  * ctl_putclock - output clock variables
2724  */
2725 static void
2726 ctl_putclock(
2727 	int id,
2728 	struct refclockstat *pcs,
2729 	int mustput
2730 	)
2731 {
2732 	char buf[CTL_MAX_DATA_LEN];
2733 	char *s, *t, *be;
2734 	const char *ss;
2735 	int i;
2736 	const struct ctl_var *k;
2737 
2738 	switch (id) {
2739 
2740 	case CC_TYPE:
2741 		if (mustput || pcs->clockdesc == NULL
2742 		    || *(pcs->clockdesc) == '\0') {
2743 			ctl_putuint(clock_var[id].text, pcs->type);
2744 		}
2745 		break;
2746 	case CC_TIMECODE:
2747 		ctl_putstr(clock_var[id].text,
2748 			   pcs->p_lastcode,
2749 			   (unsigned)pcs->lencode);
2750 		break;
2751 
2752 	case CC_POLL:
2753 		ctl_putuint(clock_var[id].text, pcs->polls);
2754 		break;
2755 
2756 	case CC_NOREPLY:
2757 		ctl_putuint(clock_var[id].text,
2758 			    pcs->noresponse);
2759 		break;
2760 
2761 	case CC_BADFORMAT:
2762 		ctl_putuint(clock_var[id].text,
2763 			    pcs->badformat);
2764 		break;
2765 
2766 	case CC_BADDATA:
2767 		ctl_putuint(clock_var[id].text,
2768 			    pcs->baddata);
2769 		break;
2770 
2771 	case CC_FUDGETIME1:
2772 		if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2773 			ctl_putdbl(clock_var[id].text,
2774 				   pcs->fudgetime1 * 1e3);
2775 		break;
2776 
2777 	case CC_FUDGETIME2:
2778 		if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2779 			ctl_putdbl(clock_var[id].text,
2780 				   pcs->fudgetime2 * 1e3);
2781 		break;
2782 
2783 	case CC_FUDGEVAL1:
2784 		if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2785 			ctl_putint(clock_var[id].text,
2786 				   pcs->fudgeval1);
2787 		break;
2788 
2789 	case CC_FUDGEVAL2:
2790 		if (mustput || (pcs->haveflags & CLK_HAVEVAL2)) {
2791 			if (pcs->fudgeval1 > 1)
2792 				ctl_putadr(clock_var[id].text,
2793 					   pcs->fudgeval2, NULL);
2794 			else
2795 				ctl_putrefid(clock_var[id].text,
2796 					     pcs->fudgeval2);
2797 		}
2798 		break;
2799 
2800 	case CC_FLAGS:
2801 		ctl_putuint(clock_var[id].text, pcs->flags);
2802 		break;
2803 
2804 	case CC_DEVICE:
2805 		if (pcs->clockdesc == NULL ||
2806 		    *(pcs->clockdesc) == '\0') {
2807 			if (mustput)
2808 				ctl_putstr(clock_var[id].text,
2809 					   "", 0);
2810 		} else {
2811 			ctl_putstr(clock_var[id].text,
2812 				   pcs->clockdesc,
2813 				   strlen(pcs->clockdesc));
2814 		}
2815 		break;
2816 
2817 	case CC_VARLIST:
2818 		s = buf;
2819 		be = buf + sizeof(buf);
2820 		if (strlen(clock_var[CC_VARLIST].text) + 4 >
2821 		    sizeof(buf))
2822 			break;	/* really long var name */
2823 
2824 		snprintf(s, sizeof(buf), "%s=\"",
2825 			 clock_var[CC_VARLIST].text);
2826 		s += strlen(s);
2827 		t = s;
2828 
2829 		for (k = clock_var; !(EOV & k->flags); k++) {
2830 			if (PADDING & k->flags)
2831 				continue;
2832 
2833 			i = strlen(k->text);
2834 			if (s + i + 1 >= be)
2835 				break;
2836 
2837 			if (s != t)
2838 				*s++ = ',';
2839 			memcpy(s, k->text, i);
2840 			s += i;
2841 		}
2842 
2843 		for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
2844 			if (PADDING & k->flags)
2845 				continue;
2846 
2847 			ss = k->text;
2848 			if (NULL == ss)
2849 				continue;
2850 
2851 			while (*ss && *ss != '=')
2852 				ss++;
2853 			i = ss - k->text;
2854 			if (s + i + 1 >= be)
2855 				break;
2856 
2857 			if (s != t)
2858 				*s++ = ',';
2859 			memcpy(s, k->text, (unsigned)i);
2860 			s += i;
2861 			*s = '\0';
2862 		}
2863 		if (s + 2 >= be)
2864 			break;
2865 
2866 		*s++ = '"';
2867 		*s = '\0';
2868 		ctl_putdata(buf, (unsigned)(s - buf), 0);
2869 		break;
2870 	}
2871 }
2872 #endif
2873 
2874 
2875 
2876 /*
2877  * ctl_getitem - get the next data item from the incoming packet
2878  */
2879 static const struct ctl_var *
2880 ctl_getitem(
2881 	const struct ctl_var *var_list,
2882 	char **data
2883 	)
2884 {
2885 	static const struct ctl_var eol = { 0, EOV, NULL };
2886 	static char buf[128];
2887 	static u_long quiet_until;
2888 	const struct ctl_var *v;
2889 	const char *pch;
2890 	char *cp;
2891 	char *tp;
2892 
2893 	/*
2894 	 * Delete leading commas and white space
2895 	 */
2896 	while (reqpt < reqend && (*reqpt == ',' ||
2897 				  isspace((unsigned char)*reqpt)))
2898 		reqpt++;
2899 	if (reqpt >= reqend)
2900 		return NULL;
2901 
2902 	if (NULL == var_list)
2903 		return &eol;
2904 
2905 	/*
2906 	 * Look for a first character match on the tag.  If we find
2907 	 * one, see if it is a full match.
2908 	 */
2909 	v = var_list;
2910 	cp = reqpt;
2911 	for (v = var_list; !(EOV & v->flags); v++) {
2912 		if (!(PADDING & v->flags) && *cp == *(v->text)) {
2913 			pch = v->text;
2914 			while ('\0' != *pch && '=' != *pch && cp < reqend
2915 			       && *cp == *pch) {
2916 				cp++;
2917 				pch++;
2918 			}
2919 			if ('\0' == *pch || '=' == *pch) {
2920 				while (cp < reqend && isspace((u_char)*cp))
2921 					cp++;
2922 				if (cp == reqend || ',' == *cp) {
2923 					buf[0] = '\0';
2924 					*data = buf;
2925 					if (cp < reqend)
2926 						cp++;
2927 					reqpt = cp;
2928 					return v;
2929 				}
2930 				if ('=' == *cp) {
2931 					cp++;
2932 					tp = buf;
2933 					while (cp < reqend && isspace((u_char)*cp))
2934 						cp++;
2935 					while (cp < reqend && *cp != ',') {
2936 						*tp++ = *cp++;
2937 						if ((size_t)(tp - buf) >= sizeof(buf)) {
2938 							ctl_error(CERR_BADFMT);
2939 							numctlbadpkts++;
2940 							NLOG(NLOG_SYSEVENT)
2941 								if (quiet_until <= current_time) {
2942 									quiet_until = current_time + 300;
2943 									msyslog(LOG_WARNING,
2944 "Possible 'ntpdx' exploit from %s#%u (possibly spoofed)", stoa(rmt_addr), SRCPORT(rmt_addr));
2945 								}
2946 							return NULL;
2947 						}
2948 					}
2949 					if (cp < reqend)
2950 						cp++;
2951 					*tp-- = '\0';
2952 					while (tp >= buf && isspace((u_char)*tp))
2953 						*tp-- = '\0';
2954 					reqpt = cp;
2955 					*data = buf;
2956 					return v;
2957 				}
2958 			}
2959 			cp = reqpt;
2960 		}
2961 	}
2962 	return v;
2963 }
2964 
2965 
2966 /*
2967  * control_unspec - response to an unspecified op-code
2968  */
2969 /*ARGSUSED*/
2970 static void
2971 control_unspec(
2972 	struct recvbuf *rbufp,
2973 	int restrict_mask
2974 	)
2975 {
2976 	struct peer *peer;
2977 
2978 	/*
2979 	 * What is an appropriate response to an unspecified op-code?
2980 	 * I return no errors and no data, unless a specified assocation
2981 	 * doesn't exist.
2982 	 */
2983 	if (res_associd) {
2984 		peer = findpeerbyassoc(res_associd);
2985 		if (NULL == peer) {
2986 			ctl_error(CERR_BADASSOC);
2987 			return;
2988 		}
2989 		rpkt.status = htons(ctlpeerstatus(peer));
2990 	} else
2991 		rpkt.status = htons(ctlsysstatus());
2992 	ctl_flushpkt(0);
2993 }
2994 
2995 
2996 /*
2997  * read_status - return either a list of associd's, or a particular
2998  * peer's status.
2999  */
3000 /*ARGSUSED*/
3001 static void
3002 read_status(
3003 	struct recvbuf *rbufp,
3004 	int restrict_mask
3005 	)
3006 {
3007 	struct peer *peer;
3008 	const u_char *cp;
3009 	size_t n;
3010 	/* a_st holds association ID, status pairs alternating */
3011 	u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
3012 
3013 #ifdef DEBUG
3014 	if (debug > 2)
3015 		printf("read_status: ID %d\n", res_associd);
3016 #endif
3017 	/*
3018 	 * Two choices here. If the specified association ID is
3019 	 * zero we return all known assocation ID's.  Otherwise
3020 	 * we return a bunch of stuff about the particular peer.
3021 	 */
3022 	if (res_associd) {
3023 		peer = findpeerbyassoc(res_associd);
3024 		if (NULL == peer) {
3025 			ctl_error(CERR_BADASSOC);
3026 			return;
3027 		}
3028 		rpkt.status = htons(ctlpeerstatus(peer));
3029 		if (res_authokay)
3030 			peer->num_events = 0;
3031 		/*
3032 		 * For now, output everything we know about the
3033 		 * peer. May be more selective later.
3034 		 */
3035 		for (cp = def_peer_var; *cp != 0; cp++)
3036 			ctl_putpeer((int)*cp, peer);
3037 		ctl_flushpkt(0);
3038 		return;
3039 	}
3040 	n = 0;
3041 	rpkt.status = htons(ctlsysstatus());
3042 	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3043 		a_st[n++] = htons(peer->associd);
3044 		a_st[n++] = htons(ctlpeerstatus(peer));
3045 		/* two entries each loop iteration, so n + 1 */
3046 		if (n + 1 >= COUNTOF(a_st)) {
3047 			ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
3048 				    1);
3049 			n = 0;
3050 		}
3051 	}
3052 	if (n)
3053 		ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3054 	ctl_flushpkt(0);
3055 }
3056 
3057 
3058 /*
3059  * read_peervars - half of read_variables() implementation
3060  */
3061 static void
3062 read_peervars(void)
3063 {
3064 	const struct ctl_var *v;
3065 	struct peer *peer;
3066 	const u_char *cp;
3067 	size_t i;
3068 	char *	valuep;
3069 	u_char	wants[CP_MAXCODE + 1];
3070 	u_int	gotvar;
3071 
3072 	/*
3073 	 * Wants info for a particular peer. See if we know
3074 	 * the guy.
3075 	 */
3076 	peer = findpeerbyassoc(res_associd);
3077 	if (NULL == peer) {
3078 		ctl_error(CERR_BADASSOC);
3079 		return;
3080 	}
3081 	rpkt.status = htons(ctlpeerstatus(peer));
3082 	if (res_authokay)
3083 		peer->num_events = 0;
3084 	ZERO(wants);
3085 	gotvar = 0;
3086 	while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3087 		if (v->flags & EOV) {
3088 			ctl_error(CERR_UNKNOWNVAR);
3089 			return;
3090 		}
3091 		NTP_INSIST(v->code < COUNTOF(wants));
3092 		wants[v->code] = 1;
3093 		gotvar = 1;
3094 	}
3095 	if (gotvar) {
3096 		for (i = 1; i < COUNTOF(wants); i++)
3097 			if (wants[i])
3098 				ctl_putpeer(i, peer);
3099 	} else
3100 		for (cp = def_peer_var; *cp != 0; cp++)
3101 			ctl_putpeer((int)*cp, peer);
3102 	ctl_flushpkt(0);
3103 }
3104 
3105 
3106 /*
3107  * read_sysvars - half of read_variables() implementation
3108  */
3109 static void
3110 read_sysvars(void)
3111 {
3112 	const struct ctl_var *v;
3113 	struct ctl_var *kv;
3114 	u_int	n;
3115 	u_int	gotvar;
3116 	const u_char *cs;
3117 	char *	valuep;
3118 	const char * pch;
3119 	u_char *wants;
3120 	size_t	wants_count;
3121 
3122 	/*
3123 	 * Wants system variables. Figure out which he wants
3124 	 * and give them to him.
3125 	 */
3126 	rpkt.status = htons(ctlsysstatus());
3127 	if (res_authokay)
3128 		ctl_sys_num_events = 0;
3129 	wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3130 	wants = emalloc_zero(wants_count);
3131 	gotvar = 0;
3132 	while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3133 		if (!(EOV & v->flags)) {
3134 			NTP_INSIST(v->code < wants_count);
3135 			wants[v->code] = 1;
3136 			gotvar = 1;
3137 		} else {
3138 			v = ctl_getitem(ext_sys_var, &valuep);
3139 			NTP_INSIST(v != NULL);
3140 			if (EOV & v->flags) {
3141 				ctl_error(CERR_UNKNOWNVAR);
3142 				free(wants);
3143 				return;
3144 			}
3145 			n = v->code + CS_MAXCODE + 1;
3146 			NTP_INSIST(n < wants_count);
3147 			wants[n] = 1;
3148 			gotvar = 1;
3149 		}
3150 	}
3151 	if (gotvar) {
3152 		for (n = 1; n <= CS_MAXCODE; n++)
3153 			if (wants[n])
3154 				ctl_putsys(n);
3155 		for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3156 			if (wants[n + CS_MAXCODE + 1]) {
3157 				pch = ext_sys_var[n].text;
3158 				ctl_putdata(pch, strlen(pch), 0);
3159 			}
3160 	} else {
3161 		for (cs = def_sys_var; *cs != 0; cs++)
3162 			ctl_putsys((int)*cs);
3163 		for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3164 			if (DEF & kv->flags)
3165 				ctl_putdata(kv->text, strlen(kv->text),
3166 					    0);
3167 	}
3168 	free(wants);
3169 	ctl_flushpkt(0);
3170 }
3171 
3172 
3173 /*
3174  * read_variables - return the variables the caller asks for
3175  */
3176 /*ARGSUSED*/
3177 static void
3178 read_variables(
3179 	struct recvbuf *rbufp,
3180 	int restrict_mask
3181 	)
3182 {
3183 	if (res_associd)
3184 		read_peervars();
3185 	else
3186 		read_sysvars();
3187 }
3188 
3189 
3190 /*
3191  * write_variables - write into variables. We only allow leap bit
3192  * writing this way.
3193  */
3194 /*ARGSUSED*/
3195 static void
3196 write_variables(
3197 	struct recvbuf *rbufp,
3198 	int restrict_mask
3199 	)
3200 {
3201 	const struct ctl_var *v;
3202 	int ext_var;
3203 	char *valuep;
3204 	long val;
3205 	size_t octets;
3206 	char *vareqv;
3207 	const char *t;
3208 	char *tt;
3209 
3210 	val = 0;
3211 	/*
3212 	 * If he's trying to write into a peer tell him no way
3213 	 */
3214 	if (res_associd != 0) {
3215 		ctl_error(CERR_PERMISSION);
3216 		return;
3217 	}
3218 
3219 	/*
3220 	 * Set status
3221 	 */
3222 	rpkt.status = htons(ctlsysstatus());
3223 
3224 	/*
3225 	 * Look through the variables. Dump out at the first sign of
3226 	 * trouble.
3227 	 */
3228 	while ((v = ctl_getitem(sys_var, &valuep)) != 0) {
3229 		ext_var = 0;
3230 		if (v->flags & EOV) {
3231 			if ((v = ctl_getitem(ext_sys_var, &valuep)) !=
3232 			    0) {
3233 				if (v->flags & EOV) {
3234 					ctl_error(CERR_UNKNOWNVAR);
3235 					return;
3236 				}
3237 				ext_var = 1;
3238 			} else {
3239 				break;
3240 			}
3241 		}
3242 		if (!(v->flags & CAN_WRITE)) {
3243 			ctl_error(CERR_PERMISSION);
3244 			return;
3245 		}
3246 		if (!ext_var && (*valuep == '\0' || !atoint(valuep,
3247 							    &val))) {
3248 			ctl_error(CERR_BADFMT);
3249 			return;
3250 		}
3251 		if (!ext_var && (val & ~LEAP_NOTINSYNC) != 0) {
3252 			ctl_error(CERR_BADVALUE);
3253 			return;
3254 		}
3255 
3256 		if (ext_var) {
3257 			octets = strlen(v->text) + strlen(valuep) + 2;
3258 			vareqv = emalloc(octets);
3259 			tt = vareqv;
3260 			t = v->text;
3261 			while (*t && *t != '=')
3262 				*tt++ = *t++;
3263 			*tt++ = '=';
3264 			memcpy(tt, valuep, 1 + strlen(valuep));
3265 			set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3266 			free(vareqv);
3267 		} else {
3268 			ctl_error(CERR_UNSPEC); /* really */
3269 			return;
3270 		}
3271 	}
3272 
3273 	/*
3274 	 * If we got anything, do it. xxx nothing to do ***
3275 	 */
3276 	/*
3277 	  if (leapind != ~0 || leapwarn != ~0) {
3278 	  if (!leap_setleap((int)leapind, (int)leapwarn)) {
3279 	  ctl_error(CERR_PERMISSION);
3280 	  return;
3281 	  }
3282 	  }
3283 	*/
3284 	ctl_flushpkt(0);
3285 }
3286 
3287 /*
3288  * configure() processes ntpq :config/config-from-file, allowing
3289  *		generic runtime reconfiguration.
3290  */
3291 static void configure(
3292 	struct recvbuf *rbufp,
3293 	int restrict_mask
3294 	)
3295 {
3296 	size_t data_count;
3297 	int retval;
3298 	int replace_nl;
3299 
3300 	/* I haven't yet implemented changes to an existing association.
3301 	 * Hence check if the association id is 0
3302 	 */
3303 	if (res_associd != 0) {
3304 		ctl_error(CERR_BADVALUE);
3305 		return;
3306 	}
3307 
3308 	if (RES_NOMODIFY & restrict_mask) {
3309 		snprintf(remote_config.err_msg,
3310 			 sizeof(remote_config.err_msg),
3311 			 "runtime configuration prohibited by restrict ... nomodify");
3312 		ctl_putdata(remote_config.err_msg,
3313 			    strlen(remote_config.err_msg), 0);
3314 		ctl_flushpkt(0);
3315 		NLOG(NLOG_SYSINFO)
3316 			msyslog(LOG_NOTICE,
3317 				"runtime config from %s rejected due to nomodify restriction",
3318 				stoa(&rbufp->recv_srcadr));
3319 		sys_restricted++;
3320 		return;
3321 	}
3322 
3323 	/* Initialize the remote config buffer */
3324 	data_count = reqend - reqpt;
3325 
3326 	if (data_count > sizeof(remote_config.buffer) - 2) {
3327 		snprintf(remote_config.err_msg,
3328 			 sizeof(remote_config.err_msg),
3329 			 "runtime configuration failed: request too long");
3330 		ctl_putdata(remote_config.err_msg,
3331 			    strlen(remote_config.err_msg), 0);
3332 		ctl_flushpkt(0);
3333 		msyslog(LOG_NOTICE,
3334 			"runtime config from %s rejected: request too long",
3335 			stoa(&rbufp->recv_srcadr));
3336 		return;
3337 	}
3338 
3339 	memcpy(remote_config.buffer, reqpt, data_count);
3340 	if (data_count > 0
3341 	    && '\n' != remote_config.buffer[data_count - 1])
3342 		remote_config.buffer[data_count++] = '\n';
3343 	remote_config.buffer[data_count] = '\0';
3344 	remote_config.pos = 0;
3345 	remote_config.err_pos = 0;
3346 	remote_config.no_errors = 0;
3347 
3348 	/* do not include terminating newline in log */
3349 	if (data_count > 0
3350 	    && '\n' == remote_config.buffer[data_count - 1]) {
3351 		remote_config.buffer[data_count - 1] = '\0';
3352 		replace_nl = TRUE;
3353 	} else {
3354 		replace_nl = FALSE;
3355 	}
3356 
3357 	DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3358 		remote_config.buffer));
3359 	msyslog(LOG_NOTICE, "%s config: %s",
3360 		stoa(&rbufp->recv_srcadr),
3361 		remote_config.buffer);
3362 
3363 	if (replace_nl)
3364 		remote_config.buffer[data_count - 1] = '\n';
3365 
3366 	config_remotely(&rbufp->recv_srcadr);
3367 
3368 	/*
3369 	 * Check if errors were reported. If not, output 'Config
3370 	 * Succeeded'.  Else output the error count.  It would be nice
3371 	 * to output any parser error messages.
3372 	 */
3373 	if (0 == remote_config.no_errors) {
3374 		retval = snprintf(remote_config.err_msg,
3375 				  sizeof(remote_config.err_msg),
3376 				  "Config Succeeded");
3377 		if (retval > 0)
3378 			remote_config.err_pos += retval;
3379 	}
3380 
3381 	ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3382 	ctl_flushpkt(0);
3383 
3384 	DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3385 
3386 	if (remote_config.no_errors > 0)
3387 		msyslog(LOG_NOTICE, "%d error in %s config",
3388 			remote_config.no_errors,
3389 			stoa(&rbufp->recv_srcadr));
3390 }
3391 
3392 
3393 /*
3394  * derive_nonce - generate client-address-specific nonce value
3395  *		  associated with a given timestamp.
3396  */
3397 static u_int32 derive_nonce(
3398 	sockaddr_u *	addr,
3399 	u_int32		ts_i,
3400 	u_int32		ts_f
3401 	)
3402 {
3403 	static u_int32	salt[4];
3404 	static u_long	last_salt_update;
3405 	union d_tag {
3406 		u_char	digest[EVP_MAX_MD_SIZE];
3407 		u_int32 extract;
3408 	}		d;
3409 	EVP_MD_CTX	ctx;
3410 	u_int		len;
3411 
3412 	while (!salt[0] || current_time - last_salt_update >= 3600) {
3413 		salt[0] = ntp_random();
3414 		salt[1] = ntp_random();
3415 		salt[2] = ntp_random();
3416 		salt[3] = ntp_random();
3417 		last_salt_update = current_time;
3418 	}
3419 
3420 	EVP_DigestInit(&ctx, EVP_get_digestbynid(NID_md5));
3421 	EVP_DigestUpdate(&ctx, salt, sizeof(salt));
3422 	EVP_DigestUpdate(&ctx, &ts_i, sizeof(ts_i));
3423 	EVP_DigestUpdate(&ctx, &ts_f, sizeof(ts_f));
3424 	if (IS_IPV4(addr))
3425 		EVP_DigestUpdate(&ctx, &SOCK_ADDR4(addr),
3426 			         sizeof(SOCK_ADDR4(addr)));
3427 	else
3428 		EVP_DigestUpdate(&ctx, &SOCK_ADDR6(addr),
3429 			         sizeof(SOCK_ADDR6(addr)));
3430 	EVP_DigestUpdate(&ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
3431 	EVP_DigestUpdate(&ctx, salt, sizeof(salt));
3432 	EVP_DigestFinal(&ctx, d.digest, &len);
3433 
3434 	return d.extract;
3435 }
3436 
3437 
3438 /*
3439  * generate_nonce - generate client-address-specific nonce string.
3440  */
3441 static void generate_nonce(
3442 	struct recvbuf *	rbufp,
3443 	char *			nonce,
3444 	size_t			nonce_octets
3445 	)
3446 {
3447 	u_int32 derived;
3448 
3449 	derived = derive_nonce(&rbufp->recv_srcadr,
3450 			       rbufp->recv_time.l_ui,
3451 			       rbufp->recv_time.l_uf);
3452 	snprintf(nonce, nonce_octets, "%08x%08x%08x",
3453 		 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3454 }
3455 
3456 
3457 /*
3458  * validate_nonce - validate client-address-specific nonce string.
3459  *
3460  * Returns TRUE if the local calculation of the nonce matches the
3461  * client-provided value and the timestamp is recent enough.
3462  */
3463 static int validate_nonce(
3464 	const char *		pnonce,
3465 	struct recvbuf *	rbufp
3466 	)
3467 {
3468 	u_int	ts_i;
3469 	u_int	ts_f;
3470 	l_fp	ts;
3471 	l_fp	now_delta;
3472 	u_int	supposed;
3473 	u_int	derived;
3474 
3475 	if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3476 		return FALSE;
3477 
3478 	ts.l_ui = (u_int32)ts_i;
3479 	ts.l_uf = (u_int32)ts_f;
3480 	derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3481 	get_systime(&now_delta);
3482 	L_SUB(&now_delta, &ts);
3483 
3484 	return (supposed == derived && now_delta.l_ui < 16);
3485 }
3486 
3487 
3488 /*
3489  * send_random_tag_value - send a randomly-generated three character
3490  *			   tag prefix, a '.', an index, a '=' and a
3491  *			   random integer value.
3492  *
3493  * To try to force clients to ignore unrecognized tags in mrulist,
3494  * reslist, and ifstats responses, the first and last rows are spiced
3495  * with randomly-generated tag names with correct .# index.  Make it
3496  * three characters knowing that none of the currently-used subscripted
3497  * tags have that length, avoiding the need to test for
3498  * tag collision.
3499  */
3500 static void
3501 send_random_tag_value(
3502 	int	indx
3503 	)
3504 {
3505 	int	noise;
3506 	char	buf[32];
3507 
3508 	noise = rand() ^ (rand() << 16);
3509 	buf[0] = 'a' + noise % 26;
3510 	noise >>= 5;
3511 	buf[1] = 'a' + noise % 26;
3512 	noise >>= 5;
3513 	buf[2] = 'a' + noise % 26;
3514 	noise >>= 5;
3515 	buf[3] = '.';
3516 	snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3517 	ctl_putuint(buf, noise);
3518 }
3519 
3520 
3521 /*
3522  * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3523  *
3524  * To keep clients honest about not depending on the order of values,
3525  * and thereby avoid being locked into ugly workarounds to maintain
3526  * backward compatibility later as new fields are added to the response,
3527  * the order is random.
3528  */
3529 static void
3530 send_mru_entry(
3531 	mon_entry *	mon,
3532 	int		count
3533 	)
3534 {
3535 	const char first_fmt[] =	"first.%d";
3536 	const char ct_fmt[] =		"ct.%d";
3537 	const char mv_fmt[] =		"mv.%d";
3538 	const char rs_fmt[] =		"rs.%d";
3539 	char	tag[32];
3540 	u_char	sent[6]; /* 6 tag=value pairs */
3541 	u_int32 noise;
3542 	u_int	which;
3543 	u_int	remaining;
3544 	const char * pch;
3545 
3546 	remaining = COUNTOF(sent);
3547 	ZERO(sent);
3548 	noise = (u_int32)(rand() ^ (rand() << 16));
3549 	while (remaining > 0) {
3550 		which = (noise & 7) % COUNTOF(sent);
3551 		noise >>= 3;
3552 		while (sent[which])
3553 			which = (which + 1) % COUNTOF(sent);
3554 
3555 		switch (which) {
3556 
3557 		case 0:
3558 			snprintf(tag, sizeof(tag), addr_fmt, count);
3559 			pch = sptoa(&mon->rmtadr);
3560 			ctl_putunqstr(tag, pch, strlen(pch));
3561 			break;
3562 
3563 		case 1:
3564 			snprintf(tag, sizeof(tag), last_fmt, count);
3565 			ctl_putts(tag, &mon->last);
3566 			break;
3567 
3568 		case 2:
3569 			snprintf(tag, sizeof(tag), first_fmt, count);
3570 			ctl_putts(tag, &mon->first);
3571 			break;
3572 
3573 		case 3:
3574 			snprintf(tag, sizeof(tag), ct_fmt, count);
3575 			ctl_putint(tag, mon->count);
3576 			break;
3577 
3578 		case 4:
3579 			snprintf(tag, sizeof(tag), mv_fmt, count);
3580 			ctl_putuint(tag, mon->vn_mode);
3581 			break;
3582 
3583 		case 5:
3584 			snprintf(tag, sizeof(tag), rs_fmt, count);
3585 			ctl_puthex(tag, mon->flags);
3586 			break;
3587 		}
3588 		sent[which] = TRUE;
3589 		remaining--;
3590 	}
3591 }
3592 
3593 
3594 /*
3595  * read_mru_list - supports ntpq's mrulist command.
3596  *
3597  * The challenge here is to match ntpdc's monlist functionality without
3598  * being limited to hundreds of entries returned total, and without
3599  * requiring state on the server.  If state were required, ntpq's
3600  * mrulist command would require authentication.
3601  *
3602  * The approach was suggested by Ry Jones.  A finite and variable number
3603  * of entries are retrieved per request, to avoid having responses with
3604  * such large numbers of packets that socket buffers are overflowed and
3605  * packets lost.  The entries are retrieved oldest-first, taking into
3606  * account that the MRU list will be changing between each request.  We
3607  * can expect to see duplicate entries for addresses updated in the MRU
3608  * list during the fetch operation.  In the end, the client can assemble
3609  * a close approximation of the MRU list at the point in time the last
3610  * response was sent by ntpd.  The only difference is it may be longer,
3611  * containing some number of oldest entries which have since been
3612  * reclaimed.  If necessary, the protocol could be extended to zap those
3613  * from the client snapshot at the end, but so far that doesn't seem
3614  * useful.
3615  *
3616  * To accomodate the changing MRU list, the starting point for requests
3617  * after the first request is supplied as a series of last seen
3618  * timestamps and associated addresses, the newest ones the client has
3619  * received.  As long as at least one of those entries hasn't been
3620  * bumped to the head of the MRU list, ntpd can pick up at that point.
3621  * Otherwise, the request is failed and it is up to ntpq to back up and
3622  * provide the next newest entry's timestamps and addresses, conceivably
3623  * backing up all the way to the starting point.
3624  *
3625  * input parameters:
3626  *	nonce=		Regurgitated nonce retrieved by the client
3627  *			previously using CTL_OP_REQ_NONCE, demonstrating
3628  *			ability to receive traffic sent to its address.
3629  *	frags=		Limit on datagrams (fragments) in response.  Used
3630  *			by newer ntpq versions instead of limit= when
3631  *			retrieving multiple entries.
3632  *	limit=		Limit on MRU entries returned.  One of frags= or
3633  *			limit= must be provided.
3634  *			limit=1 is a special case:  Instead of fetching
3635  *			beginning with the supplied starting point's
3636  *			newer neighbor, fetch the supplied entry, and
3637  *			in that case the #.last timestamp can be zero.
3638  *			This enables fetching a single entry by IP
3639  *			address.  When limit is not one and frags= is
3640  *			provided, the fragment limit controls.
3641  *	mincount=	(decimal) Return entries with count >= mincount.
3642  *	laddr=		Return entries associated with the server's IP
3643  *			address given.  No port specification is needed,
3644  *			and any supplied is ignored.
3645  *	resall=		0x-prefixed hex restrict bits which must all be
3646  *			lit for an MRU entry to be included.
3647  *			Has precedence over any resany=.
3648  *	resany=		0x-prefixed hex restrict bits, at least one of
3649  *			which must be list for an MRU entry to be
3650  *			included.
3651  *	last.0=		0x-prefixed hex l_fp timestamp of newest entry
3652  *			which client previously received.
3653  *	addr.0=		text of newest entry's IP address and port,
3654  *			IPv6 addresses in bracketed form: [::]:123
3655  *	last.1=		timestamp of 2nd newest entry client has.
3656  *	addr.1=		address of 2nd newest entry.
3657  *	[...]
3658  *
3659  * ntpq provides as many last/addr pairs as will fit in a single request
3660  * packet, except for the first request in a MRU fetch operation.
3661  *
3662  * The response begins with a new nonce value to be used for any
3663  * followup request.  Following the nonce is the next newer entry than
3664  * referred to by last.0 and addr.0, if the "0" entry has not been
3665  * bumped to the front.  If it has, the first entry returned will be the
3666  * next entry newer than referred to by last.1 and addr.1, and so on.
3667  * If none of the referenced entries remain unchanged, the request fails
3668  * and ntpq backs up to the next earlier set of entries to resync.
3669  *
3670  * Except for the first response, the response begins with confirmation
3671  * of the entry that precedes the first additional entry provided:
3672  *
3673  *	last.older=	hex l_fp timestamp matching one of the input
3674  *			.last timestamps, which entry now precedes the
3675  *			response 0. entry in the MRU list.
3676  *	addr.older=	text of address corresponding to older.last.
3677  *
3678  * And in any case, a successful response contains sets of values
3679  * comprising entries, with the oldest numbered 0 and incrementing from
3680  * there:
3681  *
3682  *	addr.#		text of IPv4 or IPv6 address and port
3683  *	last.#		hex l_fp timestamp of last receipt
3684  *	first.#		hex l_fp timestamp of first receipt
3685  *	ct.#		count of packets received
3686  *	mv.#		mode and version
3687  *	rs.#		restriction mask (RES_* bits)
3688  *
3689  * Note the code currently assumes there are no valid three letter
3690  * tags sent with each row, and needs to be adjusted if that changes.
3691  *
3692  * The client should accept the values in any order, and ignore .#
3693  * values which it does not understand, to allow a smooth path to
3694  * future changes without requiring a new opcode.  Clients can rely
3695  * on all *.0 values preceding any *.1 values, that is all values for
3696  * a given index number are together in the response.
3697  *
3698  * The end of the response list is noted with one or two tag=value
3699  * pairs.  Unconditionally:
3700  *
3701  *	now=		0x-prefixed l_fp timestamp at the server marking
3702  *			the end of the operation.
3703  *
3704  * If any entries were returned, now= is followed by:
3705  *
3706  *	last.newest=	hex l_fp identical to last.# of the prior
3707  *			entry.
3708  */
3709 static void read_mru_list(
3710 	struct recvbuf *rbufp,
3711 	int restrict_mask
3712 	)
3713 {
3714 	const char		nonce_text[] =		"nonce";
3715 	const char		frags_text[] =		"frags";
3716 	const char		limit_text[] =		"limit";
3717 	const char		mincount_text[] =	"mincount";
3718 	const char		resall_text[] =		"resall";
3719 	const char		resany_text[] =		"resany";
3720 	const char		maxlstint_text[] =	"maxlstint";
3721 	const char		laddr_text[] =		"laddr";
3722 	const char		resaxx_fmt[] =		"0x%hx";
3723 	u_int			limit;
3724 	u_short			frags;
3725 	u_short			resall;
3726 	u_short			resany;
3727 	int			mincount;
3728 	u_int			maxlstint;
3729 	sockaddr_u		laddr;
3730 	struct interface *	lcladr;
3731 	u_int			count;
3732 	u_int			ui;
3733 	u_int			uf;
3734 	l_fp			last[16];
3735 	sockaddr_u		addr[COUNTOF(last)];
3736 	char			buf[128];
3737 	struct ctl_var *	in_parms;
3738 	const struct ctl_var *	v;
3739 	char *			val;
3740 	const char *		pch;
3741 	char *			pnonce;
3742 	int			nonce_valid;
3743 	size_t			i;
3744 	int			priors;
3745 	u_short			hash;
3746 	mon_entry *		mon;
3747 	mon_entry *		prior_mon;
3748 	l_fp			now;
3749 
3750 	if (RES_NOMRULIST & restrict_mask) {
3751 		ctl_error(CERR_PERMISSION);
3752 		NLOG(NLOG_SYSINFO)
3753 			msyslog(LOG_NOTICE,
3754 				"mrulist from %s rejected due to nomrulist restriction",
3755 				stoa(&rbufp->recv_srcadr));
3756 		sys_restricted++;
3757 		return;
3758 	}
3759 	/*
3760 	 * fill in_parms var list with all possible input parameters.
3761 	 */
3762 	in_parms = NULL;
3763 	set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
3764 	set_var(&in_parms, frags_text, sizeof(frags_text), 0);
3765 	set_var(&in_parms, limit_text, sizeof(limit_text), 0);
3766 	set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
3767 	set_var(&in_parms, resall_text, sizeof(resall_text), 0);
3768 	set_var(&in_parms, resany_text, sizeof(resany_text), 0);
3769 	set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
3770 	set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
3771 	for (i = 0; i < COUNTOF(last); i++) {
3772 		snprintf(buf, sizeof(buf), last_fmt, (int)i);
3773 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
3774 		snprintf(buf, sizeof(buf), addr_fmt, (int)i);
3775 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
3776 	}
3777 
3778 	/* decode input parms */
3779 	pnonce = NULL;
3780 	frags = 0;
3781 	limit = 0;
3782 	mincount = 0;
3783 	resall = 0;
3784 	resany = 0;
3785 	maxlstint = 0;
3786 	lcladr = NULL;
3787 	priors = 0;
3788 	ZERO(last);
3789 	ZERO(addr);
3790 
3791 	while (NULL != (v = ctl_getitem(in_parms, &val)) &&
3792 	       !(EOV & v->flags)) {
3793 	        int si;
3794 
3795 		if (!strcmp(nonce_text, v->text)) {
3796 			if (NULL != pnonce)
3797 				free(pnonce);
3798 			pnonce = estrdup(val);
3799 		} else if (!strcmp(frags_text, v->text)) {
3800 			sscanf(val, "%hu", &frags);
3801 		} else if (!strcmp(limit_text, v->text)) {
3802 			sscanf(val, "%u", &limit);
3803 		} else if (!strcmp(mincount_text, v->text)) {
3804 			if (1 != sscanf(val, "%d", &mincount) ||
3805 			    mincount < 0)
3806 				mincount = 0;
3807 		} else if (!strcmp(resall_text, v->text)) {
3808 			sscanf(val, resaxx_fmt, &resall);
3809 		} else if (!strcmp(resany_text, v->text)) {
3810 			sscanf(val, resaxx_fmt, &resany);
3811 		} else if (!strcmp(maxlstint_text, v->text)) {
3812 			sscanf(val, "%u", &maxlstint);
3813 		} else if (!strcmp(laddr_text, v->text)) {
3814 			if (decodenetnum(val, &laddr))
3815 				lcladr = getinterface(&laddr, 0);
3816 		} else if (1 == sscanf(v->text, last_fmt, &si) &&
3817 			   (size_t)si < COUNTOF(last)) {
3818 			if (2 == sscanf(val, "0x%08x.%08x", &ui, &uf)) {
3819 				last[si].l_ui = ui;
3820 				last[si].l_uf = uf;
3821 				if (!SOCK_UNSPEC(&addr[si]) &&
3822 				    si == priors)
3823 					priors++;
3824 			}
3825 		} else if (1 == sscanf(v->text, addr_fmt, &si) &&
3826 			   (size_t)si < COUNTOF(addr)) {
3827 			if (decodenetnum(val, &addr[si])
3828 			    && last[si].l_ui && last[si].l_uf &&
3829 			    si == priors)
3830 				priors++;
3831 		}
3832 	}
3833 	free_varlist(in_parms);
3834 	in_parms = NULL;
3835 
3836 	/* return no responses until the nonce is validated */
3837 	if (NULL == pnonce)
3838 		return;
3839 
3840 	nonce_valid = validate_nonce(pnonce, rbufp);
3841 	free(pnonce);
3842 	if (!nonce_valid)
3843 		return;
3844 
3845 	if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
3846 	    frags > MRU_FRAGS_LIMIT) {
3847 		ctl_error(CERR_BADVALUE);
3848 		return;
3849 	}
3850 
3851 	/*
3852 	 * If either frags or limit is not given, use the max.
3853 	 */
3854 	if (0 != frags && 0 == limit)
3855 		limit = UINT_MAX;
3856 	else if (0 != limit && 0 == frags)
3857 		frags = MRU_FRAGS_LIMIT;
3858 
3859 	/*
3860 	 * Find the starting point if one was provided.
3861 	 */
3862 	mon = NULL;
3863 	for (i = 0; i < (size_t)priors; i++) {
3864 		hash = MON_HASH(&addr[i]);
3865 		for (mon = mon_hash[hash];
3866 		     mon != NULL;
3867 		     mon = mon->hash_next)
3868 			if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
3869 				break;
3870 		if (mon != NULL) {
3871 			if (L_ISEQU(&mon->last, &last[i]))
3872 				break;
3873 			mon = NULL;
3874 		}
3875 	}
3876 
3877 	/* If a starting point was provided... */
3878 	if (priors) {
3879 		/* and none could be found unmodified... */
3880 		if (NULL == mon) {
3881 			/* tell ntpq to try again with older entries */
3882 			ctl_error(CERR_UNKNOWNVAR);
3883 			return;
3884 		}
3885 		/* confirm the prior entry used as starting point */
3886 		ctl_putts("last.older", &mon->last);
3887 		pch = sptoa(&mon->rmtadr);
3888 		ctl_putunqstr("addr.older", pch, strlen(pch));
3889 
3890 		/*
3891 		 * Move on to the first entry the client doesn't have,
3892 		 * except in the special case of a limit of one.  In
3893 		 * that case return the starting point entry.
3894 		 */
3895 		if (limit > 1)
3896 			mon = PREV_DLIST(mon_mru_list, mon, mru);
3897 	} else {	/* start with the oldest */
3898 		mon = TAIL_DLIST(mon_mru_list, mru);
3899 	}
3900 
3901 	/*
3902 	 * send up to limit= entries in up to frags= datagrams
3903 	 */
3904 	get_systime(&now);
3905 	generate_nonce(rbufp, buf, sizeof(buf));
3906 	ctl_putunqstr("nonce", buf, strlen(buf));
3907 	prior_mon = NULL;
3908 	for (count = 0;
3909 	     mon != NULL && res_frags < frags && count < limit;
3910 	     mon = PREV_DLIST(mon_mru_list, mon, mru)) {
3911 
3912 		if (mon->count < mincount)
3913 			continue;
3914 		if (resall && resall != (resall & mon->flags))
3915 			continue;
3916 		if (resany && !(resany & mon->flags))
3917 			continue;
3918 		if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
3919 		    maxlstint)
3920 			continue;
3921 		if (lcladr != NULL && mon->lcladr != lcladr)
3922 			continue;
3923 
3924 		send_mru_entry(mon, count);
3925 		if (!count)
3926 			send_random_tag_value(0);
3927 		count++;
3928 		prior_mon = mon;
3929 	}
3930 
3931 	/*
3932 	 * If this batch completes the MRU list, say so explicitly with
3933 	 * a now= l_fp timestamp.
3934 	 */
3935 	if (NULL == mon) {
3936 		if (count > 1)
3937 			send_random_tag_value(count - 1);
3938 		ctl_putts("now", &now);
3939 		/* if any entries were returned confirm the last */
3940 		if (prior_mon != NULL)
3941 			ctl_putts("last.newest", &prior_mon->last);
3942 	}
3943 	ctl_flushpkt(0);
3944 }
3945 
3946 
3947 /*
3948  * Send a ifstats entry in response to a "ntpq -c ifstats" request.
3949  *
3950  * To keep clients honest about not depending on the order of values,
3951  * and thereby avoid being locked into ugly workarounds to maintain
3952  * backward compatibility later as new fields are added to the response,
3953  * the order is random.
3954  */
3955 static void
3956 send_ifstats_entry(
3957 	endpt *	la,
3958 	u_int	ifnum
3959 	)
3960 {
3961 	const char addr_fmtu[] =	"addr.%u";
3962 	const char bcast_fmt[] =	"bcast.%u";
3963 	const char en_fmt[] =		"en.%u";	/* enabled */
3964 	const char name_fmt[] =		"name.%u";
3965 	const char flags_fmt[] =	"flags.%u";
3966 	const char tl_fmt[] =		"tl.%u";	/* ttl */
3967 	const char mc_fmt[] =		"mc.%u";	/* mcast count */
3968 	const char rx_fmt[] =		"rx.%u";
3969 	const char tx_fmt[] =		"tx.%u";
3970 	const char txerr_fmt[] =	"txerr.%u";
3971 	const char pc_fmt[] =		"pc.%u";	/* peer count */
3972 	const char up_fmt[] =		"up.%u";	/* uptime */
3973 	char	tag[32];
3974 	u_char	sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
3975 	int	noisebits;
3976 	u_int32 noise;
3977 	u_int	which;
3978 	u_int	remaining;
3979 	const char *pch;
3980 
3981 	remaining = COUNTOF(sent);
3982 	ZERO(sent);
3983 	noise = 0;
3984 	noisebits = 0;
3985 	while (remaining > 0) {
3986 		if (noisebits < 4) {
3987 			noise = rand() ^ (rand() << 16);
3988 			noisebits = 31;
3989 		}
3990 		which = (noise & 0xf) % COUNTOF(sent);
3991 		noise >>= 4;
3992 		noisebits -= 4;
3993 
3994 		while (sent[which])
3995 			which = (which + 1) % COUNTOF(sent);
3996 
3997 		switch (which) {
3998 
3999 		case 0:
4000 			snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
4001 			pch = sptoa(&la->sin);
4002 			ctl_putunqstr(tag, pch, strlen(pch));
4003 			break;
4004 
4005 		case 1:
4006 			snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
4007 			if (INT_BCASTOPEN & la->flags)
4008 				pch = sptoa(&la->bcast);
4009 			else
4010 				pch = "";
4011 			ctl_putunqstr(tag, pch, strlen(pch));
4012 			break;
4013 
4014 		case 2:
4015 			snprintf(tag, sizeof(tag), en_fmt, ifnum);
4016 			ctl_putint(tag, !la->ignore_packets);
4017 			break;
4018 
4019 		case 3:
4020 			snprintf(tag, sizeof(tag), name_fmt, ifnum);
4021 			ctl_putstr(tag, la->name, strlen(la->name));
4022 			break;
4023 
4024 		case 4:
4025 			snprintf(tag, sizeof(tag), flags_fmt, ifnum);
4026 			ctl_puthex(tag, (u_int)la->flags);
4027 			break;
4028 
4029 		case 5:
4030 			snprintf(tag, sizeof(tag), tl_fmt, ifnum);
4031 			ctl_putint(tag, la->last_ttl);
4032 			break;
4033 
4034 		case 6:
4035 			snprintf(tag, sizeof(tag), mc_fmt, ifnum);
4036 			ctl_putint(tag, la->num_mcast);
4037 			break;
4038 
4039 		case 7:
4040 			snprintf(tag, sizeof(tag), rx_fmt, ifnum);
4041 			ctl_putint(tag, la->received);
4042 			break;
4043 
4044 		case 8:
4045 			snprintf(tag, sizeof(tag), tx_fmt, ifnum);
4046 			ctl_putint(tag, la->sent);
4047 			break;
4048 
4049 		case 9:
4050 			snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
4051 			ctl_putint(tag, la->notsent);
4052 			break;
4053 
4054 		case 10:
4055 			snprintf(tag, sizeof(tag), pc_fmt, ifnum);
4056 			ctl_putuint(tag, la->peercnt);
4057 			break;
4058 
4059 		case 11:
4060 			snprintf(tag, sizeof(tag), up_fmt, ifnum);
4061 			ctl_putuint(tag, current_time - la->starttime);
4062 			break;
4063 		}
4064 		sent[which] = TRUE;
4065 		remaining--;
4066 	}
4067 	send_random_tag_value((int)ifnum);
4068 }
4069 
4070 
4071 /*
4072  * read_ifstats - send statistics for each local address, exposed by
4073  *		  ntpq -c ifstats
4074  */
4075 static void
4076 read_ifstats(
4077 	struct recvbuf *	rbufp
4078 	)
4079 {
4080 	u_int	ifidx;
4081 	endpt *	la;
4082 
4083 	/*
4084 	 * loop over [0..sys_ifnum] searching ep_list for each
4085 	 * ifnum in turn.
4086 	 */
4087 	for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4088 		for (la = ep_list; la != NULL; la = la->elink)
4089 			if (ifidx == la->ifnum)
4090 				break;
4091 		if (NULL == la)
4092 			continue;
4093 		/* return stats for one local address */
4094 		send_ifstats_entry(la, ifidx);
4095 	}
4096 	ctl_flushpkt(0);
4097 }
4098 
4099 static void
4100 sockaddrs_from_restrict_u(
4101 	sockaddr_u *	psaA,
4102 	sockaddr_u *	psaM,
4103 	restrict_u *	pres,
4104 	int		ipv6
4105 	)
4106 {
4107 	ZERO(*psaA);
4108 	ZERO(*psaM);
4109 	if (!ipv6) {
4110 		psaA->sa.sa_family = AF_INET;
4111 		psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
4112 		psaM->sa.sa_family = AF_INET;
4113 		psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
4114 	} else {
4115 		psaA->sa.sa_family = AF_INET6;
4116 		memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
4117 		       sizeof(psaA->sa6.sin6_addr));
4118 		psaM->sa.sa_family = AF_INET6;
4119 		memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
4120 		       sizeof(psaA->sa6.sin6_addr));
4121 	}
4122 }
4123 
4124 
4125 /*
4126  * Send a restrict entry in response to a "ntpq -c reslist" request.
4127  *
4128  * To keep clients honest about not depending on the order of values,
4129  * and thereby avoid being locked into ugly workarounds to maintain
4130  * backward compatibility later as new fields are added to the response,
4131  * the order is random.
4132  */
4133 static void
4134 send_restrict_entry(
4135 	restrict_u *	pres,
4136 	int		ipv6,
4137 	u_int		idx
4138 	)
4139 {
4140 	const char addr_fmtu[] =	"addr.%u";
4141 	const char mask_fmtu[] =	"mask.%u";
4142 	const char hits_fmt[] =		"hits.%u";
4143 	const char flags_fmt[] =	"flags.%u";
4144 	char		tag[32];
4145 	u_char		sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4146 	int		noisebits;
4147 	u_int32		noise;
4148 	u_int		which;
4149 	u_int		remaining;
4150 	sockaddr_u	addr;
4151 	sockaddr_u	mask;
4152 	const char *	pch;
4153 	char *		buf;
4154 	const char *	match_str;
4155 	const char *	access_str;
4156 
4157 	sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
4158 	remaining = COUNTOF(sent);
4159 	ZERO(sent);
4160 	noise = 0;
4161 	noisebits = 0;
4162 	while (remaining > 0) {
4163 		if (noisebits < 2) {
4164 			noise = rand() ^ (rand() << 16);
4165 			noisebits = 31;
4166 		}
4167 		which = (noise & 0x3) % COUNTOF(sent);
4168 		noise >>= 2;
4169 		noisebits -= 2;
4170 
4171 		while (sent[which])
4172 			which = (which + 1) % COUNTOF(sent);
4173 
4174 		switch (which) {
4175 
4176 		case 0:
4177 			snprintf(tag, sizeof(tag), addr_fmtu, idx);
4178 			pch = stoa(&addr);
4179 			ctl_putunqstr(tag, pch, strlen(pch));
4180 			break;
4181 
4182 		case 1:
4183 			snprintf(tag, sizeof(tag), mask_fmtu, idx);
4184 			pch = stoa(&mask);
4185 			ctl_putunqstr(tag, pch, strlen(pch));
4186 			break;
4187 
4188 		case 2:
4189 			snprintf(tag, sizeof(tag), hits_fmt, idx);
4190 			ctl_putuint(tag, pres->count);
4191 			break;
4192 
4193 		case 3:
4194 			snprintf(tag, sizeof(tag), flags_fmt, idx);
4195 			match_str = res_match_flags(pres->mflags);
4196 			access_str = res_access_flags(pres->flags);
4197 			if ('\0' == match_str[0]) {
4198 				pch = access_str;
4199 			} else {
4200 				LIB_GETBUF(buf);
4201 				snprintf(buf, LIB_BUFLENGTH, "%s %s",
4202 					 match_str, access_str);
4203 				pch = buf;
4204 			}
4205 			ctl_putunqstr(tag, pch, strlen(pch));
4206 			break;
4207 		}
4208 		sent[which] = TRUE;
4209 		remaining--;
4210 	}
4211 	send_random_tag_value((int)idx);
4212 }
4213 
4214 
4215 static void
4216 send_restrict_list(
4217 	restrict_u *	pres,
4218 	int		ipv6,
4219 	u_int *		pidx
4220 	)
4221 {
4222 	for ( ; pres != NULL; pres = pres->link) {
4223 		send_restrict_entry(pres, ipv6, *pidx);
4224 		(*pidx)++;
4225 	}
4226 }
4227 
4228 
4229 /*
4230  * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4231  */
4232 static void
4233 read_addr_restrictions(
4234 	struct recvbuf *	rbufp
4235 )
4236 {
4237 	u_int idx;
4238 
4239 	idx = 0;
4240 	send_restrict_list(restrictlist4, FALSE, &idx);
4241 	send_restrict_list(restrictlist6, TRUE, &idx);
4242 	ctl_flushpkt(0);
4243 }
4244 
4245 
4246 /*
4247  * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4248  */
4249 static void
4250 read_ordlist(
4251 	struct recvbuf *	rbufp,
4252 	int			restrict_mask
4253 	)
4254 {
4255 	const char ifstats_s[] = "ifstats";
4256 	const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4257 	const char addr_rst_s[] = "addr_restrictions";
4258 	const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4259 	struct ntp_control *	cpkt;
4260 	u_short			qdata_octets;
4261 
4262 	/*
4263 	 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4264 	 * used only for ntpq -c ifstats.  With the addition of reslist
4265 	 * the same opcode was generalized to retrieve ordered lists
4266 	 * which require authentication.  The request data is empty or
4267 	 * contains "ifstats" (not null terminated) to retrieve local
4268 	 * addresses and associated stats.  It is "addr_restrictions"
4269 	 * to retrieve the IPv4 then IPv6 remote address restrictions,
4270 	 * which are access control lists.  Other request data return
4271 	 * CERR_UNKNOWNVAR.
4272 	 */
4273 	cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4274 	qdata_octets = ntohs(cpkt->count);
4275 	if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4276 	    !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4277 		read_ifstats(rbufp);
4278 		return;
4279 	}
4280 	if (a_r_chars == qdata_octets &&
4281 	    !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4282 		read_addr_restrictions(rbufp);
4283 		return;
4284 	}
4285 	ctl_error(CERR_UNKNOWNVAR);
4286 }
4287 
4288 
4289 /*
4290  * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4291  */
4292 static void req_nonce(
4293 	struct recvbuf *	rbufp,
4294 	int			restrict_mask
4295 	)
4296 {
4297 	char	buf[64];
4298 
4299 	generate_nonce(rbufp, buf, sizeof(buf));
4300 	ctl_putunqstr("nonce", buf, strlen(buf));
4301 	ctl_flushpkt(0);
4302 }
4303 
4304 
4305 /*
4306  * read_clockstatus - return clock radio status
4307  */
4308 /*ARGSUSED*/
4309 static void
4310 read_clockstatus(
4311 	struct recvbuf *rbufp,
4312 	int restrict_mask
4313 	)
4314 {
4315 #ifndef REFCLOCK
4316 	/*
4317 	 * If no refclock support, no data to return
4318 	 */
4319 	ctl_error(CERR_BADASSOC);
4320 #else
4321 	const struct ctl_var *	v;
4322 	int			i;
4323 	struct peer *		peer;
4324 	char *			valuep;
4325 	u_char *		wants;
4326 	size_t			wants_alloc;
4327 	int			gotvar;
4328 	const u_char *		cc;
4329 	struct ctl_var *	kv;
4330 	struct refclockstat	cs;
4331 
4332 	if (res_associd != 0) {
4333 		peer = findpeerbyassoc(res_associd);
4334 	} else {
4335 		/*
4336 		 * Find a clock for this jerk.	If the system peer
4337 		 * is a clock use it, else search peer_list for one.
4338 		 */
4339 		if (sys_peer != NULL && (FLAG_REFCLOCK &
4340 		    sys_peer->flags))
4341 			peer = sys_peer;
4342 		else
4343 			for (peer = peer_list;
4344 			     peer != NULL;
4345 			     peer = peer->p_link)
4346 				if (FLAG_REFCLOCK & peer->flags)
4347 					break;
4348 	}
4349 	if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4350 		ctl_error(CERR_BADASSOC);
4351 		return;
4352 	}
4353 	/*
4354 	 * If we got here we have a peer which is a clock. Get his
4355 	 * status.
4356 	 */
4357 	cs.kv_list = NULL;
4358 	refclock_control(&peer->srcadr, NULL, &cs);
4359 	kv = cs.kv_list;
4360 	/*
4361 	 * Look for variables in the packet.
4362 	 */
4363 	rpkt.status = htons(ctlclkstatus(&cs));
4364 	wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4365 	wants = emalloc_zero(wants_alloc);
4366 	gotvar = FALSE;
4367 	while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4368 		if (!(EOV & v->flags)) {
4369 			wants[v->code] = TRUE;
4370 			gotvar = TRUE;
4371 		} else {
4372 			v = ctl_getitem(kv, &valuep);
4373 			NTP_INSIST(NULL != v);
4374 			if (EOV & v->flags) {
4375 				ctl_error(CERR_UNKNOWNVAR);
4376 				free(wants);
4377 				free_varlist(cs.kv_list);
4378 				return;
4379 			}
4380 			wants[CC_MAXCODE + 1 + v->code] = TRUE;
4381 			gotvar = TRUE;
4382 		}
4383 	}
4384 
4385 	if (gotvar) {
4386 		for (i = 1; i <= CC_MAXCODE; i++)
4387 			if (wants[i])
4388 				ctl_putclock(i, &cs, TRUE);
4389 		if (kv != NULL)
4390 			for (i = 0; !(EOV & kv[i].flags); i++)
4391 				if (wants[i + CC_MAXCODE + 1])
4392 					ctl_putdata(kv[i].text,
4393 						    strlen(kv[i].text),
4394 						    FALSE);
4395 	} else {
4396 		for (cc = def_clock_var; *cc != 0; cc++)
4397 			ctl_putclock((int)*cc, &cs, FALSE);
4398 		for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4399 			if (DEF & kv->flags)
4400 				ctl_putdata(kv->text, strlen(kv->text),
4401 					    FALSE);
4402 	}
4403 
4404 	free(wants);
4405 	free_varlist(cs.kv_list);
4406 
4407 	ctl_flushpkt(0);
4408 #endif
4409 }
4410 
4411 
4412 /*
4413  * write_clockstatus - we don't do this
4414  */
4415 /*ARGSUSED*/
4416 static void
4417 write_clockstatus(
4418 	struct recvbuf *rbufp,
4419 	int restrict_mask
4420 	)
4421 {
4422 	ctl_error(CERR_PERMISSION);
4423 }
4424 
4425 /*
4426  * Trap support from here on down. We send async trap messages when the
4427  * upper levels report trouble. Traps can by set either by control
4428  * messages or by configuration.
4429  */
4430 /*
4431  * set_trap - set a trap in response to a control message
4432  */
4433 static void
4434 set_trap(
4435 	struct recvbuf *rbufp,
4436 	int restrict_mask
4437 	)
4438 {
4439 	int traptype;
4440 
4441 	/*
4442 	 * See if this guy is allowed
4443 	 */
4444 	if (restrict_mask & RES_NOTRAP) {
4445 		ctl_error(CERR_PERMISSION);
4446 		return;
4447 	}
4448 
4449 	/*
4450 	 * Determine his allowed trap type.
4451 	 */
4452 	traptype = TRAP_TYPE_PRIO;
4453 	if (restrict_mask & RES_LPTRAP)
4454 		traptype = TRAP_TYPE_NONPRIO;
4455 
4456 	/*
4457 	 * Call ctlsettrap() to do the work.  Return
4458 	 * an error if it can't assign the trap.
4459 	 */
4460 	if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4461 			(int)res_version))
4462 		ctl_error(CERR_NORESOURCE);
4463 	ctl_flushpkt(0);
4464 }
4465 
4466 
4467 /*
4468  * unset_trap - unset a trap in response to a control message
4469  */
4470 static void
4471 unset_trap(
4472 	struct recvbuf *rbufp,
4473 	int restrict_mask
4474 	)
4475 {
4476 	int traptype;
4477 
4478 	/*
4479 	 * We don't prevent anyone from removing his own trap unless the
4480 	 * trap is configured. Note we also must be aware of the
4481 	 * possibility that restriction flags were changed since this
4482 	 * guy last set his trap. Set the trap type based on this.
4483 	 */
4484 	traptype = TRAP_TYPE_PRIO;
4485 	if (restrict_mask & RES_LPTRAP)
4486 		traptype = TRAP_TYPE_NONPRIO;
4487 
4488 	/*
4489 	 * Call ctlclrtrap() to clear this out.
4490 	 */
4491 	if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4492 		ctl_error(CERR_BADASSOC);
4493 	ctl_flushpkt(0);
4494 }
4495 
4496 
4497 /*
4498  * ctlsettrap - called to set a trap
4499  */
4500 int
4501 ctlsettrap(
4502 	sockaddr_u *raddr,
4503 	struct interface *linter,
4504 	int traptype,
4505 	int version
4506 	)
4507 {
4508 	size_t n;
4509 	struct ctl_trap *tp;
4510 	struct ctl_trap *tptouse;
4511 
4512 	/*
4513 	 * See if we can find this trap.  If so, we only need update
4514 	 * the flags and the time.
4515 	 */
4516 	if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4517 		switch (traptype) {
4518 
4519 		case TRAP_TYPE_CONFIG:
4520 			tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4521 			break;
4522 
4523 		case TRAP_TYPE_PRIO:
4524 			if (tp->tr_flags & TRAP_CONFIGURED)
4525 				return (1); /* don't change anything */
4526 			tp->tr_flags = TRAP_INUSE;
4527 			break;
4528 
4529 		case TRAP_TYPE_NONPRIO:
4530 			if (tp->tr_flags & TRAP_CONFIGURED)
4531 				return (1); /* don't change anything */
4532 			tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4533 			break;
4534 		}
4535 		tp->tr_settime = current_time;
4536 		tp->tr_resets++;
4537 		return (1);
4538 	}
4539 
4540 	/*
4541 	 * First we heard of this guy.	Try to find a trap structure
4542 	 * for him to use, clearing out lesser priority guys if we
4543 	 * have to. Clear out anyone who's expired while we're at it.
4544 	 */
4545 	tptouse = NULL;
4546 	for (n = 0; n < COUNTOF(ctl_traps); n++) {
4547 		tp = &ctl_traps[n];
4548 		if ((TRAP_INUSE & tp->tr_flags) &&
4549 		    !(TRAP_CONFIGURED & tp->tr_flags) &&
4550 		    ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4551 			tp->tr_flags = 0;
4552 			num_ctl_traps--;
4553 		}
4554 		if (!(TRAP_INUSE & tp->tr_flags)) {
4555 			tptouse = tp;
4556 		} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4557 			switch (traptype) {
4558 
4559 			case TRAP_TYPE_CONFIG:
4560 				if (tptouse == NULL) {
4561 					tptouse = tp;
4562 					break;
4563 				}
4564 				if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4565 				    !(TRAP_NONPRIO & tp->tr_flags))
4566 					break;
4567 
4568 				if (!(TRAP_NONPRIO & tptouse->tr_flags)
4569 				    && (TRAP_NONPRIO & tp->tr_flags)) {
4570 					tptouse = tp;
4571 					break;
4572 				}
4573 				if (tptouse->tr_origtime <
4574 				    tp->tr_origtime)
4575 					tptouse = tp;
4576 				break;
4577 
4578 			case TRAP_TYPE_PRIO:
4579 				if ( TRAP_NONPRIO & tp->tr_flags) {
4580 					if (tptouse == NULL ||
4581 					    ((TRAP_INUSE &
4582 					      tptouse->tr_flags) &&
4583 					     tptouse->tr_origtime <
4584 					     tp->tr_origtime))
4585 						tptouse = tp;
4586 				}
4587 				break;
4588 
4589 			case TRAP_TYPE_NONPRIO:
4590 				break;
4591 			}
4592 		}
4593 	}
4594 
4595 	/*
4596 	 * If we don't have room for him return an error.
4597 	 */
4598 	if (tptouse == NULL)
4599 		return (0);
4600 
4601 	/*
4602 	 * Set up this structure for him.
4603 	 */
4604 	tptouse->tr_settime = tptouse->tr_origtime = current_time;
4605 	tptouse->tr_count = tptouse->tr_resets = 0;
4606 	tptouse->tr_sequence = 1;
4607 	tptouse->tr_addr = *raddr;
4608 	tptouse->tr_localaddr = linter;
4609 	tptouse->tr_version = (u_char) version;
4610 	tptouse->tr_flags = TRAP_INUSE;
4611 	if (traptype == TRAP_TYPE_CONFIG)
4612 		tptouse->tr_flags |= TRAP_CONFIGURED;
4613 	else if (traptype == TRAP_TYPE_NONPRIO)
4614 		tptouse->tr_flags |= TRAP_NONPRIO;
4615 	num_ctl_traps++;
4616 	return (1);
4617 }
4618 
4619 
4620 /*
4621  * ctlclrtrap - called to clear a trap
4622  */
4623 int
4624 ctlclrtrap(
4625 	sockaddr_u *raddr,
4626 	struct interface *linter,
4627 	int traptype
4628 	)
4629 {
4630 	register struct ctl_trap *tp;
4631 
4632 	if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4633 		return (0);
4634 
4635 	if (tp->tr_flags & TRAP_CONFIGURED
4636 	    && traptype != TRAP_TYPE_CONFIG)
4637 		return (0);
4638 
4639 	tp->tr_flags = 0;
4640 	num_ctl_traps--;
4641 	return (1);
4642 }
4643 
4644 
4645 /*
4646  * ctlfindtrap - find a trap given the remote and local addresses
4647  */
4648 static struct ctl_trap *
4649 ctlfindtrap(
4650 	sockaddr_u *raddr,
4651 	struct interface *linter
4652 	)
4653 {
4654 	size_t	n;
4655 
4656 	for (n = 0; n < COUNTOF(ctl_traps); n++)
4657 		if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4658 		    && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4659 	 	    && (linter == ctl_traps[n].tr_localaddr))
4660 			return &ctl_traps[n];
4661 
4662 	return NULL;
4663 }
4664 
4665 
4666 /*
4667  * report_event - report an event to the trappers
4668  */
4669 void
4670 report_event(
4671 	int	err,		/* error code */
4672 	struct peer *peer,	/* peer structure pointer */
4673 	const char *str		/* protostats string */
4674 	)
4675 {
4676 	char	statstr[NTP_MAXSTRLEN];
4677 	int	i;
4678 	size_t	len;
4679 
4680 	/*
4681 	 * Report the error to the protostats file, system log and
4682 	 * trappers.
4683 	 */
4684 	if (peer == NULL) {
4685 
4686 		/*
4687 		 * Discard a system report if the number of reports of
4688 		 * the same type exceeds the maximum.
4689 		 */
4690 		if (ctl_sys_last_event != (u_char)err)
4691 			ctl_sys_num_events= 0;
4692 		if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
4693 			return;
4694 
4695 		ctl_sys_last_event = (u_char)err;
4696 		ctl_sys_num_events++;
4697 		snprintf(statstr, sizeof(statstr),
4698 		    "0.0.0.0 %04x %02x %s",
4699 		    ctlsysstatus(), err, eventstr(err));
4700 		if (str != NULL) {
4701 			len = strlen(statstr);
4702 			snprintf(statstr + len, sizeof(statstr) - len,
4703 			    " %s", str);
4704 		}
4705 		NLOG(NLOG_SYSEVENT)
4706 			msyslog(LOG_INFO, "%s", statstr);
4707 	} else {
4708 
4709 		/*
4710 		 * Discard a peer report if the number of reports of
4711 		 * the same type exceeds the maximum for that peer.
4712 		 */
4713 		const char *	src;
4714 		u_char		errlast;
4715 
4716 		errlast = (u_char)err & ~PEER_EVENT;
4717 		if (peer->last_event == errlast)
4718 			peer->num_events = 0;
4719 		if (peer->num_events >= CTL_PEER_MAXEVENTS)
4720 			return;
4721 
4722 		peer->last_event = errlast;
4723 		peer->num_events++;
4724 		if (ISREFCLOCKADR(&peer->srcadr))
4725 			src = refnumtoa(&peer->srcadr);
4726 		else
4727 			src = stoa(&peer->srcadr);
4728 
4729 		snprintf(statstr, sizeof(statstr),
4730 		    "%s %04x %02x %s", src,
4731 		    ctlpeerstatus(peer), err, eventstr(err));
4732 		if (str != NULL) {
4733 			len = strlen(statstr);
4734 			snprintf(statstr + len, sizeof(statstr) - len,
4735 			    " %s", str);
4736 		}
4737 		NLOG(NLOG_PEEREVENT)
4738 			msyslog(LOG_INFO, "%s", statstr);
4739 	}
4740 	record_proto_stats(statstr);
4741 #if DEBUG
4742 	if (debug)
4743 		printf("event at %lu %s\n", current_time, statstr);
4744 #endif
4745 
4746 	/*
4747 	 * If no trappers, return.
4748 	 */
4749 	if (num_ctl_traps <= 0)
4750 		return;
4751 
4752 	/*
4753 	 * Set up the outgoing packet variables
4754 	 */
4755 	res_opcode = CTL_OP_ASYNCMSG;
4756 	res_offset = 0;
4757 	res_async = TRUE;
4758 	res_authenticate = FALSE;
4759 	datapt = rpkt.u.data;
4760 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
4761 	if (!(err & PEER_EVENT)) {
4762 		rpkt.associd = 0;
4763 		rpkt.status = htons(ctlsysstatus());
4764 
4765 		/* Include the core system variables and the list. */
4766 		for (i = 1; i <= CS_VARLIST; i++)
4767 			ctl_putsys(i);
4768 	} else {
4769 		NTP_INSIST(peer != NULL);
4770 		rpkt.associd = htons(peer->associd);
4771 		rpkt.status = htons(ctlpeerstatus(peer));
4772 
4773 		/* Dump it all. Later, maybe less. */
4774 		for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
4775 			ctl_putpeer(i, peer);
4776 #ifdef REFCLOCK
4777 		/*
4778 		 * for clock exception events: add clock variables to
4779 		 * reflect info on exception
4780 		 */
4781 		if (err == PEVNT_CLOCK) {
4782 			struct refclockstat cs;
4783 			struct ctl_var *kv;
4784 
4785 			cs.kv_list = NULL;
4786 			refclock_control(&peer->srcadr, NULL, &cs);
4787 
4788 			ctl_puthex("refclockstatus",
4789 				   ctlclkstatus(&cs));
4790 
4791 			for (i = 1; i <= CC_MAXCODE; i++)
4792 				ctl_putclock(i, &cs, FALSE);
4793 			for (kv = cs.kv_list;
4794 			     kv != NULL && !(EOV & kv->flags);
4795 			     kv++)
4796 				if (DEF & kv->flags)
4797 					ctl_putdata(kv->text,
4798 						    strlen(kv->text),
4799 						    FALSE);
4800 			free_varlist(cs.kv_list);
4801 		}
4802 #endif /* REFCLOCK */
4803 	}
4804 
4805 	/*
4806 	 * We're done, return.
4807 	 */
4808 	ctl_flushpkt(0);
4809 }
4810 
4811 
4812 /*
4813  * mprintf_event - printf-style varargs variant of report_event()
4814  */
4815 int
4816 mprintf_event(
4817 	int		evcode,		/* event code */
4818 	struct peer *	p,		/* may be NULL */
4819 	const char *	fmt,		/* msnprintf format */
4820 	...
4821 	)
4822 {
4823 	va_list	ap;
4824 	int	rc;
4825 	char	msg[512];
4826 
4827 	va_start(ap, fmt);
4828 	rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
4829 	va_end(ap);
4830 	report_event(evcode, p, msg);
4831 
4832 	return rc;
4833 }
4834 
4835 
4836 /*
4837  * ctl_clr_stats - clear stat counters
4838  */
4839 void
4840 ctl_clr_stats(void)
4841 {
4842 	ctltimereset = current_time;
4843 	numctlreq = 0;
4844 	numctlbadpkts = 0;
4845 	numctlresponses = 0;
4846 	numctlfrags = 0;
4847 	numctlerrors = 0;
4848 	numctlfrags = 0;
4849 	numctltooshort = 0;
4850 	numctlinputresp = 0;
4851 	numctlinputfrag = 0;
4852 	numctlinputerr = 0;
4853 	numctlbadoffset = 0;
4854 	numctlbadversion = 0;
4855 	numctldatatooshort = 0;
4856 	numctlbadop = 0;
4857 	numasyncmsgs = 0;
4858 }
4859 
4860 static u_short
4861 count_var(
4862 	const struct ctl_var *k
4863 	)
4864 {
4865 	u_int c;
4866 
4867 	if (NULL == k)
4868 		return 0;
4869 
4870 	c = 0;
4871 	while (!(EOV & (k++)->flags))
4872 		c++;
4873 
4874 	NTP_ENSURE(c <= USHRT_MAX);
4875 	return (u_short)c;
4876 }
4877 
4878 
4879 char *
4880 add_var(
4881 	struct ctl_var **kv,
4882 	u_long size,
4883 	u_short def
4884 	)
4885 {
4886 	u_short		c;
4887 	struct ctl_var *k;
4888 	char *		buf;
4889 
4890 	c = count_var(*kv);
4891 	*kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
4892 	k = *kv;
4893 	buf = emalloc(size);
4894 	k[c].code  = c;
4895 	k[c].text  = buf;
4896 	k[c].flags = def;
4897 	k[c + 1].code  = 0;
4898 	k[c + 1].text  = NULL;
4899 	k[c + 1].flags = EOV;
4900 
4901 	return buf;
4902 }
4903 
4904 
4905 void
4906 set_var(
4907 	struct ctl_var **kv,
4908 	const char *data,
4909 	u_long size,
4910 	u_short def
4911 	)
4912 {
4913 	struct ctl_var *k;
4914 	const char *s;
4915 	const char *t;
4916 	char *td;
4917 
4918 	if (NULL == data || !size)
4919 		return;
4920 
4921 	k = *kv;
4922 	if (k != NULL) {
4923 		while (!(EOV & k->flags)) {
4924 			if (NULL == k->text)	{
4925 				td = emalloc(size);
4926 				memcpy(td, data, size);
4927 				k->text = td;
4928 				k->flags = def;
4929 				return;
4930 			} else {
4931 				s = data;
4932 				t = k->text;
4933 				while (*t != '=' && *s == *t) {
4934 					s++;
4935 					t++;
4936 				}
4937 				if (*s == *t && ((*t == '=') || !*t)) {
4938 					td = erealloc((void *)(intptr_t)k->text, size);
4939 					memcpy(td, data, size);
4940 					k->text = td;
4941 					k->flags = def;
4942 					return;
4943 				}
4944 			}
4945 			k++;
4946 		}
4947 	}
4948 	td = add_var(kv, size, def);
4949 	memcpy(td, data, size);
4950 }
4951 
4952 
4953 void
4954 set_sys_var(
4955 	const char *data,
4956 	u_long size,
4957 	u_short def
4958 	)
4959 {
4960 	set_var(&ext_sys_var, data, size, def);
4961 }
4962 
4963 
4964 /*
4965  * get_ext_sys_var() retrieves the value of a user-defined variable or
4966  * NULL if the variable has not been setvar'd.
4967  */
4968 const char *
4969 get_ext_sys_var(const char *tag)
4970 {
4971 	struct ctl_var *	v;
4972 	size_t			c;
4973 	const char *		val;
4974 
4975 	val = NULL;
4976 	c = strlen(tag);
4977 	for (v = ext_sys_var; !(EOV & v->flags); v++) {
4978 		if (NULL != v->text && !memcmp(tag, v->text, c)) {
4979 			if ('=' == v->text[c]) {
4980 				val = v->text + c + 1;
4981 				break;
4982 			} else if ('\0' == v->text[c]) {
4983 				val = "";
4984 				break;
4985 			}
4986 		}
4987 	}
4988 
4989 	return val;
4990 }
4991 
4992 
4993 void
4994 free_varlist(
4995 	struct ctl_var *kv
4996 	)
4997 {
4998 	struct ctl_var *k;
4999 	if (kv) {
5000 		for (k = kv; !(k->flags & EOV); k++)
5001 			free((void *)(intptr_t)k->text);
5002 		free((void *)kv);
5003 	}
5004 }
5005