xref: /freebsd/contrib/ntp/ntpd/ntp_control.c (revision 76afb20c58adb296f09857aed214b91464242264)
1 /*
2  * ntp_control.c - respond to mode 6 control messages and send async
3  *		   traps.  Provides service to ntpq and others.
4  */
5 
6 #ifdef HAVE_CONFIG_H
7 # include <config.h>
8 #endif
9 
10 #include <stdio.h>
11 #include <ctype.h>
12 #include <signal.h>
13 #include <sys/stat.h>
14 #ifdef HAVE_NETINET_IN_H
15 # include <netinet/in.h>
16 #endif
17 #include <arpa/inet.h>
18 
19 #include "ntpd.h"
20 #include "ntp_io.h"
21 #include "ntp_refclock.h"
22 #include "ntp_control.h"
23 #include "ntp_unixtime.h"
24 #include "ntp_stdlib.h"
25 #include "ntp_config.h"
26 #include "ntp_crypto.h"
27 #include "ntp_assert.h"
28 #include "ntp_leapsec.h"
29 #include "ntp_md5.h"	/* provides OpenSSL digest API */
30 #include "lib_strbuf.h"
31 #include <rc_cmdlength.h>
32 #ifdef KERNEL_PLL
33 # include "ntp_syscall.h"
34 #endif
35 
36 /*
37  * Structure to hold request procedure information
38  */
39 
40 struct ctl_proc {
41 	short control_code;		/* defined request code */
42 #define NO_REQUEST	(-1)
43 	u_short flags;			/* flags word */
44 	/* Only one flag.  Authentication required or not. */
45 #define NOAUTH	0
46 #define AUTH	1
47 	void (*handler) (struct recvbuf *, int); /* handle request */
48 };
49 
50 
51 /*
52  * Request processing routines
53  */
54 static	void	ctl_error	(u_char);
55 #ifdef REFCLOCK
56 static	u_short ctlclkstatus	(struct refclockstat *);
57 #endif
58 static	void	ctl_flushpkt	(u_char);
59 static	void	ctl_putdata	(const char *, unsigned int, int);
60 static	void	ctl_putstr	(const char *, const char *, size_t);
61 static	void	ctl_putdblf	(const char *, int, int, double);
62 #define	ctl_putdbl(tag, d)	ctl_putdblf(tag, 1, 3, d)
63 #define	ctl_putdbl6(tag, d)	ctl_putdblf(tag, 1, 6, d)
64 #define	ctl_putsfp(tag, sfp)	ctl_putdblf(tag, 0, -1, \
65 					    FPTOD(sfp))
66 static	void	ctl_putuint	(const char *, u_long);
67 static	void	ctl_puthex	(const char *, u_long);
68 static	void	ctl_putint	(const char *, long);
69 static	void	ctl_putts	(const char *, l_fp *);
70 static	void	ctl_putadr	(const char *, u_int32,
71 				 sockaddr_u *);
72 static	void	ctl_putrefid	(const char *, u_int32);
73 static	void	ctl_putarray	(const char *, double *, int);
74 static	void	ctl_putsys	(int);
75 static	void	ctl_putpeer	(int, struct peer *);
76 static	void	ctl_putfs	(const char *, tstamp_t);
77 static	void	ctl_printf	(const char *, ...) NTP_PRINTF(1, 2);
78 #ifdef REFCLOCK
79 static	void	ctl_putclock	(int, struct refclockstat *, int);
80 #endif	/* REFCLOCK */
81 static	const struct ctl_var *ctl_getitem(const struct ctl_var *,
82 					  char **);
83 static	u_short	count_var	(const struct ctl_var *);
84 static	void	control_unspec	(struct recvbuf *, int);
85 static	void	read_status	(struct recvbuf *, int);
86 static	void	read_sysvars	(void);
87 static	void	read_peervars	(void);
88 static	void	read_variables	(struct recvbuf *, int);
89 static	void	write_variables (struct recvbuf *, int);
90 static	void	read_clockstatus(struct recvbuf *, int);
91 static	void	write_clockstatus(struct recvbuf *, int);
92 static	void	set_trap	(struct recvbuf *, int);
93 static	void	save_config	(struct recvbuf *, int);
94 static	void	configure	(struct recvbuf *, int);
95 static	void	send_mru_entry	(mon_entry *, int);
96 static	void	send_random_tag_value(int);
97 static	void	read_mru_list	(struct recvbuf *, int);
98 static	void	send_ifstats_entry(endpt *, u_int);
99 static	void	read_ifstats	(struct recvbuf *);
100 static	void	sockaddrs_from_restrict_u(sockaddr_u *,	sockaddr_u *,
101 					  restrict_u *, int);
102 static	void	send_restrict_entry(restrict_u *, int, u_int);
103 static	void	send_restrict_list(restrict_u *, int, u_int *);
104 static	void	read_addr_restrictions(struct recvbuf *);
105 static	void	read_ordlist	(struct recvbuf *, int);
106 static	u_int32	derive_nonce	(sockaddr_u *, u_int32, u_int32);
107 static	void	generate_nonce	(struct recvbuf *, char *, size_t);
108 static	int	validate_nonce	(const char *, struct recvbuf *);
109 static	void	req_nonce	(struct recvbuf *, int);
110 static	void	unset_trap	(struct recvbuf *, int);
111 static	struct ctl_trap *ctlfindtrap(sockaddr_u *,
112 				     struct interface *);
113 
114 int/*BOOL*/ is_safe_filename(const char * name);
115 
116 static const struct ctl_proc control_codes[] = {
117 	{ CTL_OP_UNSPEC,		NOAUTH,	control_unspec },
118 	{ CTL_OP_READSTAT,		NOAUTH,	read_status },
119 	{ CTL_OP_READVAR,		NOAUTH,	read_variables },
120 	{ CTL_OP_WRITEVAR,		AUTH,	write_variables },
121 	{ CTL_OP_READCLOCK,		NOAUTH,	read_clockstatus },
122 	{ CTL_OP_WRITECLOCK,		AUTH,	write_clockstatus },
123 	{ CTL_OP_SETTRAP,		AUTH,	set_trap },
124 	{ CTL_OP_CONFIGURE,		AUTH,	configure },
125 	{ CTL_OP_SAVECONFIG,		AUTH,	save_config },
126 	{ CTL_OP_READ_MRU,		NOAUTH,	read_mru_list },
127 	{ CTL_OP_READ_ORDLIST_A,	AUTH,	read_ordlist },
128 	{ CTL_OP_REQ_NONCE,		NOAUTH,	req_nonce },
129 	{ CTL_OP_UNSETTRAP,		AUTH,	unset_trap },
130 	{ NO_REQUEST,			0,	NULL }
131 };
132 
133 /*
134  * System variables we understand
135  */
136 #define	CS_LEAP			1
137 #define	CS_STRATUM		2
138 #define	CS_PRECISION		3
139 #define	CS_ROOTDELAY		4
140 #define	CS_ROOTDISPERSION	5
141 #define	CS_REFID		6
142 #define	CS_REFTIME		7
143 #define	CS_POLL			8
144 #define	CS_PEERID		9
145 #define	CS_OFFSET		10
146 #define	CS_DRIFT		11
147 #define	CS_JITTER		12
148 #define	CS_ERROR		13
149 #define	CS_CLOCK		14
150 #define	CS_PROCESSOR		15
151 #define	CS_SYSTEM		16
152 #define	CS_VERSION		17
153 #define	CS_STABIL		18
154 #define	CS_VARLIST		19
155 #define	CS_TAI			20
156 #define	CS_LEAPTAB		21
157 #define	CS_LEAPEND		22
158 #define	CS_RATE			23
159 #define	CS_MRU_ENABLED		24
160 #define	CS_MRU_DEPTH		25
161 #define	CS_MRU_DEEPEST		26
162 #define	CS_MRU_MINDEPTH		27
163 #define	CS_MRU_MAXAGE		28
164 #define	CS_MRU_MAXDEPTH		29
165 #define	CS_MRU_MEM		30
166 #define	CS_MRU_MAXMEM		31
167 #define	CS_SS_UPTIME		32
168 #define	CS_SS_RESET		33
169 #define	CS_SS_RECEIVED		34
170 #define	CS_SS_THISVER		35
171 #define	CS_SS_OLDVER		36
172 #define	CS_SS_BADFORMAT		37
173 #define	CS_SS_BADAUTH		38
174 #define	CS_SS_DECLINED		39
175 #define	CS_SS_RESTRICTED	40
176 #define	CS_SS_LIMITED		41
177 #define	CS_SS_KODSENT		42
178 #define	CS_SS_PROCESSED		43
179 #define	CS_SS_LAMPORT		44
180 #define	CS_SS_TSROUNDING	45
181 #define	CS_PEERADR		46
182 #define	CS_PEERMODE		47
183 #define	CS_BCASTDELAY		48
184 #define	CS_AUTHDELAY		49
185 #define	CS_AUTHKEYS		50
186 #define	CS_AUTHFREEK		51
187 #define	CS_AUTHKLOOKUPS		52
188 #define	CS_AUTHKNOTFOUND	53
189 #define	CS_AUTHKUNCACHED	54
190 #define	CS_AUTHKEXPIRED		55
191 #define	CS_AUTHENCRYPTS		56
192 #define	CS_AUTHDECRYPTS		57
193 #define	CS_AUTHRESET		58
194 #define	CS_K_OFFSET		59
195 #define	CS_K_FREQ		60
196 #define	CS_K_MAXERR		61
197 #define	CS_K_ESTERR		62
198 #define	CS_K_STFLAGS		63
199 #define	CS_K_TIMECONST		64
200 #define	CS_K_PRECISION		65
201 #define	CS_K_FREQTOL		66
202 #define	CS_K_PPS_FREQ		67
203 #define	CS_K_PPS_STABIL		68
204 #define	CS_K_PPS_JITTER		69
205 #define	CS_K_PPS_CALIBDUR	70
206 #define	CS_K_PPS_CALIBS		71
207 #define	CS_K_PPS_CALIBERRS	72
208 #define	CS_K_PPS_JITEXC		73
209 #define	CS_K_PPS_STBEXC		74
210 #define	CS_KERN_FIRST		CS_K_OFFSET
211 #define	CS_KERN_LAST		CS_K_PPS_STBEXC
212 #define	CS_IOSTATS_RESET	75
213 #define	CS_TOTAL_RBUF		76
214 #define	CS_FREE_RBUF		77
215 #define	CS_USED_RBUF		78
216 #define	CS_RBUF_LOWATER		79
217 #define	CS_IO_DROPPED		80
218 #define	CS_IO_IGNORED		81
219 #define	CS_IO_RECEIVED		82
220 #define	CS_IO_SENT		83
221 #define	CS_IO_SENDFAILED	84
222 #define	CS_IO_WAKEUPS		85
223 #define	CS_IO_GOODWAKEUPS	86
224 #define	CS_TIMERSTATS_RESET	87
225 #define	CS_TIMER_OVERRUNS	88
226 #define	CS_TIMER_XMTS		89
227 #define	CS_FUZZ			90
228 #define	CS_WANDER_THRESH	91
229 #define	CS_LEAPSMEARINTV	92
230 #define	CS_LEAPSMEAROFFS	93
231 #define	CS_MAX_NOAUTOKEY	CS_LEAPSMEAROFFS
232 #ifdef AUTOKEY
233 #define	CS_FLAGS		(1 + CS_MAX_NOAUTOKEY)
234 #define	CS_HOST			(2 + CS_MAX_NOAUTOKEY)
235 #define	CS_PUBLIC		(3 + CS_MAX_NOAUTOKEY)
236 #define	CS_CERTIF		(4 + CS_MAX_NOAUTOKEY)
237 #define	CS_SIGNATURE		(5 + CS_MAX_NOAUTOKEY)
238 #define	CS_REVTIME		(6 + CS_MAX_NOAUTOKEY)
239 #define	CS_IDENT		(7 + CS_MAX_NOAUTOKEY)
240 #define	CS_DIGEST		(8 + CS_MAX_NOAUTOKEY)
241 #define	CS_MAXCODE		CS_DIGEST
242 #else	/* !AUTOKEY follows */
243 #define	CS_MAXCODE		CS_MAX_NOAUTOKEY
244 #endif	/* !AUTOKEY */
245 
246 /*
247  * Peer variables we understand
248  */
249 #define	CP_CONFIG		1
250 #define	CP_AUTHENABLE		2
251 #define	CP_AUTHENTIC		3
252 #define	CP_SRCADR		4
253 #define	CP_SRCPORT		5
254 #define	CP_DSTADR		6
255 #define	CP_DSTPORT		7
256 #define	CP_LEAP			8
257 #define	CP_HMODE		9
258 #define	CP_STRATUM		10
259 #define	CP_PPOLL		11
260 #define	CP_HPOLL		12
261 #define	CP_PRECISION		13
262 #define	CP_ROOTDELAY		14
263 #define	CP_ROOTDISPERSION	15
264 #define	CP_REFID		16
265 #define	CP_REFTIME		17
266 #define	CP_ORG			18
267 #define	CP_REC			19
268 #define	CP_XMT			20
269 #define	CP_REACH		21
270 #define	CP_UNREACH		22
271 #define	CP_TIMER		23
272 #define	CP_DELAY		24
273 #define	CP_OFFSET		25
274 #define	CP_JITTER		26
275 #define	CP_DISPERSION		27
276 #define	CP_KEYID		28
277 #define	CP_FILTDELAY		29
278 #define	CP_FILTOFFSET		30
279 #define	CP_PMODE		31
280 #define	CP_RECEIVED		32
281 #define	CP_SENT			33
282 #define	CP_FILTERROR		34
283 #define	CP_FLASH		35
284 #define	CP_TTL			36
285 #define	CP_VARLIST		37
286 #define	CP_IN			38
287 #define	CP_OUT			39
288 #define	CP_RATE			40
289 #define	CP_BIAS			41
290 #define	CP_SRCHOST		42
291 #define	CP_TIMEREC		43
292 #define	CP_TIMEREACH		44
293 #define	CP_BADAUTH		45
294 #define	CP_BOGUSORG		46
295 #define	CP_OLDPKT		47
296 #define	CP_SELDISP		48
297 #define	CP_SELBROKEN		49
298 #define	CP_CANDIDATE		50
299 #define	CP_MAX_NOAUTOKEY	CP_CANDIDATE
300 #ifdef AUTOKEY
301 #define	CP_FLAGS		(1 + CP_MAX_NOAUTOKEY)
302 #define	CP_HOST			(2 + CP_MAX_NOAUTOKEY)
303 #define	CP_VALID		(3 + CP_MAX_NOAUTOKEY)
304 #define	CP_INITSEQ		(4 + CP_MAX_NOAUTOKEY)
305 #define	CP_INITKEY		(5 + CP_MAX_NOAUTOKEY)
306 #define	CP_INITTSP		(6 + CP_MAX_NOAUTOKEY)
307 #define	CP_SIGNATURE		(7 + CP_MAX_NOAUTOKEY)
308 #define	CP_IDENT		(8 + CP_MAX_NOAUTOKEY)
309 #define	CP_MAXCODE		CP_IDENT
310 #else	/* !AUTOKEY follows */
311 #define	CP_MAXCODE		CP_MAX_NOAUTOKEY
312 #endif	/* !AUTOKEY */
313 
314 /*
315  * Clock variables we understand
316  */
317 #define	CC_TYPE		1
318 #define	CC_TIMECODE	2
319 #define	CC_POLL		3
320 #define	CC_NOREPLY	4
321 #define	CC_BADFORMAT	5
322 #define	CC_BADDATA	6
323 #define	CC_FUDGETIME1	7
324 #define	CC_FUDGETIME2	8
325 #define	CC_FUDGEVAL1	9
326 #define	CC_FUDGEVAL2	10
327 #define	CC_FLAGS	11
328 #define	CC_DEVICE	12
329 #define	CC_VARLIST	13
330 #define	CC_MAXCODE	CC_VARLIST
331 
332 /*
333  * System variable values. The array can be indexed by the variable
334  * index to find the textual name.
335  */
336 static const struct ctl_var sys_var[] = {
337 	{ 0,		PADDING, "" },		/* 0 */
338 	{ CS_LEAP,	RW, "leap" },		/* 1 */
339 	{ CS_STRATUM,	RO, "stratum" },	/* 2 */
340 	{ CS_PRECISION, RO, "precision" },	/* 3 */
341 	{ CS_ROOTDELAY, RO, "rootdelay" },	/* 4 */
342 	{ CS_ROOTDISPERSION, RO, "rootdisp" },	/* 5 */
343 	{ CS_REFID,	RO, "refid" },		/* 6 */
344 	{ CS_REFTIME,	RO, "reftime" },	/* 7 */
345 	{ CS_POLL,	RO, "tc" },		/* 8 */
346 	{ CS_PEERID,	RO, "peer" },		/* 9 */
347 	{ CS_OFFSET,	RO, "offset" },		/* 10 */
348 	{ CS_DRIFT,	RO, "frequency" },	/* 11 */
349 	{ CS_JITTER,	RO, "sys_jitter" },	/* 12 */
350 	{ CS_ERROR,	RO, "clk_jitter" },	/* 13 */
351 	{ CS_CLOCK,	RO, "clock" },		/* 14 */
352 	{ CS_PROCESSOR, RO, "processor" },	/* 15 */
353 	{ CS_SYSTEM,	RO, "system" },		/* 16 */
354 	{ CS_VERSION,	RO, "version" },	/* 17 */
355 	{ CS_STABIL,	RO, "clk_wander" },	/* 18 */
356 	{ CS_VARLIST,	RO, "sys_var_list" },	/* 19 */
357 	{ CS_TAI,	RO, "tai" },		/* 20 */
358 	{ CS_LEAPTAB,	RO, "leapsec" },	/* 21 */
359 	{ CS_LEAPEND,	RO, "expire" },		/* 22 */
360 	{ CS_RATE,	RO, "mintc" },		/* 23 */
361 	{ CS_MRU_ENABLED,	RO, "mru_enabled" },	/* 24 */
362 	{ CS_MRU_DEPTH,		RO, "mru_depth" },	/* 25 */
363 	{ CS_MRU_DEEPEST,	RO, "mru_deepest" },	/* 26 */
364 	{ CS_MRU_MINDEPTH,	RO, "mru_mindepth" },	/* 27 */
365 	{ CS_MRU_MAXAGE,	RO, "mru_maxage" },	/* 28 */
366 	{ CS_MRU_MAXDEPTH,	RO, "mru_maxdepth" },	/* 29 */
367 	{ CS_MRU_MEM,		RO, "mru_mem" },	/* 30 */
368 	{ CS_MRU_MAXMEM,	RO, "mru_maxmem" },	/* 31 */
369 	{ CS_SS_UPTIME,		RO, "ss_uptime" },	/* 32 */
370 	{ CS_SS_RESET,		RO, "ss_reset" },	/* 33 */
371 	{ CS_SS_RECEIVED,	RO, "ss_received" },	/* 34 */
372 	{ CS_SS_THISVER,	RO, "ss_thisver" },	/* 35 */
373 	{ CS_SS_OLDVER,		RO, "ss_oldver" },	/* 36 */
374 	{ CS_SS_BADFORMAT,	RO, "ss_badformat" },	/* 37 */
375 	{ CS_SS_BADAUTH,	RO, "ss_badauth" },	/* 38 */
376 	{ CS_SS_DECLINED,	RO, "ss_declined" },	/* 39 */
377 	{ CS_SS_RESTRICTED,	RO, "ss_restricted" },	/* 40 */
378 	{ CS_SS_LIMITED,	RO, "ss_limited" },	/* 41 */
379 	{ CS_SS_KODSENT,	RO, "ss_kodsent" },	/* 42 */
380 	{ CS_SS_PROCESSED,	RO, "ss_processed" },	/* 43 */
381 	{ CS_SS_LAMPORT,	RO, "ss_lamport" },	/* 44 */
382 	{ CS_SS_TSROUNDING,	RO, "ss_tsrounding" },	/* 45 */
383 	{ CS_PEERADR,		RO, "peeradr" },	/* 46 */
384 	{ CS_PEERMODE,		RO, "peermode" },	/* 47 */
385 	{ CS_BCASTDELAY,	RO, "bcastdelay" },	/* 48 */
386 	{ CS_AUTHDELAY,		RO, "authdelay" },	/* 49 */
387 	{ CS_AUTHKEYS,		RO, "authkeys" },	/* 50 */
388 	{ CS_AUTHFREEK,		RO, "authfreek" },	/* 51 */
389 	{ CS_AUTHKLOOKUPS,	RO, "authklookups" },	/* 52 */
390 	{ CS_AUTHKNOTFOUND,	RO, "authknotfound" },	/* 53 */
391 	{ CS_AUTHKUNCACHED,	RO, "authkuncached" },	/* 54 */
392 	{ CS_AUTHKEXPIRED,	RO, "authkexpired" },	/* 55 */
393 	{ CS_AUTHENCRYPTS,	RO, "authencrypts" },	/* 56 */
394 	{ CS_AUTHDECRYPTS,	RO, "authdecrypts" },	/* 57 */
395 	{ CS_AUTHRESET,		RO, "authreset" },	/* 58 */
396 	{ CS_K_OFFSET,		RO, "koffset" },	/* 59 */
397 	{ CS_K_FREQ,		RO, "kfreq" },		/* 60 */
398 	{ CS_K_MAXERR,		RO, "kmaxerr" },	/* 61 */
399 	{ CS_K_ESTERR,		RO, "kesterr" },	/* 62 */
400 	{ CS_K_STFLAGS,		RO, "kstflags" },	/* 63 */
401 	{ CS_K_TIMECONST,	RO, "ktimeconst" },	/* 64 */
402 	{ CS_K_PRECISION,	RO, "kprecis" },	/* 65 */
403 	{ CS_K_FREQTOL,		RO, "kfreqtol" },	/* 66 */
404 	{ CS_K_PPS_FREQ,	RO, "kppsfreq" },	/* 67 */
405 	{ CS_K_PPS_STABIL,	RO, "kppsstab" },	/* 68 */
406 	{ CS_K_PPS_JITTER,	RO, "kppsjitter" },	/* 69 */
407 	{ CS_K_PPS_CALIBDUR,	RO, "kppscalibdur" },	/* 70 */
408 	{ CS_K_PPS_CALIBS,	RO, "kppscalibs" },	/* 71 */
409 	{ CS_K_PPS_CALIBERRS,	RO, "kppscaliberrs" },	/* 72 */
410 	{ CS_K_PPS_JITEXC,	RO, "kppsjitexc" },	/* 73 */
411 	{ CS_K_PPS_STBEXC,	RO, "kppsstbexc" },	/* 74 */
412 	{ CS_IOSTATS_RESET,	RO, "iostats_reset" },	/* 75 */
413 	{ CS_TOTAL_RBUF,	RO, "total_rbuf" },	/* 76 */
414 	{ CS_FREE_RBUF,		RO, "free_rbuf" },	/* 77 */
415 	{ CS_USED_RBUF,		RO, "used_rbuf" },	/* 78 */
416 	{ CS_RBUF_LOWATER,	RO, "rbuf_lowater" },	/* 79 */
417 	{ CS_IO_DROPPED,	RO, "io_dropped" },	/* 80 */
418 	{ CS_IO_IGNORED,	RO, "io_ignored" },	/* 81 */
419 	{ CS_IO_RECEIVED,	RO, "io_received" },	/* 82 */
420 	{ CS_IO_SENT,		RO, "io_sent" },	/* 83 */
421 	{ CS_IO_SENDFAILED,	RO, "io_sendfailed" },	/* 84 */
422 	{ CS_IO_WAKEUPS,	RO, "io_wakeups" },	/* 85 */
423 	{ CS_IO_GOODWAKEUPS,	RO, "io_goodwakeups" },	/* 86 */
424 	{ CS_TIMERSTATS_RESET,	RO, "timerstats_reset" },/* 87 */
425 	{ CS_TIMER_OVERRUNS,	RO, "timer_overruns" },	/* 88 */
426 	{ CS_TIMER_XMTS,	RO, "timer_xmts" },	/* 89 */
427 	{ CS_FUZZ,		RO, "fuzz" },		/* 90 */
428 	{ CS_WANDER_THRESH,	RO, "clk_wander_threshold" }, /* 91 */
429 
430 	{ CS_LEAPSMEARINTV,	RO, "leapsmearinterval" },    /* 92 */
431 	{ CS_LEAPSMEAROFFS,	RO, "leapsmearoffset" },      /* 93 */
432 
433 #ifdef AUTOKEY
434 	{ CS_FLAGS,	RO, "flags" },		/* 1 + CS_MAX_NOAUTOKEY */
435 	{ CS_HOST,	RO, "host" },		/* 2 + CS_MAX_NOAUTOKEY */
436 	{ CS_PUBLIC,	RO, "update" },		/* 3 + CS_MAX_NOAUTOKEY */
437 	{ CS_CERTIF,	RO, "cert" },		/* 4 + CS_MAX_NOAUTOKEY */
438 	{ CS_SIGNATURE,	RO, "signature" },	/* 5 + CS_MAX_NOAUTOKEY */
439 	{ CS_REVTIME,	RO, "until" },		/* 6 + CS_MAX_NOAUTOKEY */
440 	{ CS_IDENT,	RO, "ident" },		/* 7 + CS_MAX_NOAUTOKEY */
441 	{ CS_DIGEST,	RO, "digest" },		/* 8 + CS_MAX_NOAUTOKEY */
442 #endif	/* AUTOKEY */
443 	{ 0,		EOV, "" }		/* 94/102 */
444 };
445 
446 static struct ctl_var *ext_sys_var = NULL;
447 
448 /*
449  * System variables we print by default (in fuzzball order,
450  * more-or-less)
451  */
452 static const u_char def_sys_var[] = {
453 	CS_VERSION,
454 	CS_PROCESSOR,
455 	CS_SYSTEM,
456 	CS_LEAP,
457 	CS_STRATUM,
458 	CS_PRECISION,
459 	CS_ROOTDELAY,
460 	CS_ROOTDISPERSION,
461 	CS_REFID,
462 	CS_REFTIME,
463 	CS_CLOCK,
464 	CS_PEERID,
465 	CS_POLL,
466 	CS_RATE,
467 	CS_OFFSET,
468 	CS_DRIFT,
469 	CS_JITTER,
470 	CS_ERROR,
471 	CS_STABIL,
472 	CS_TAI,
473 	CS_LEAPTAB,
474 	CS_LEAPEND,
475 	CS_LEAPSMEARINTV,
476 	CS_LEAPSMEAROFFS,
477 #ifdef AUTOKEY
478 	CS_HOST,
479 	CS_IDENT,
480 	CS_FLAGS,
481 	CS_DIGEST,
482 	CS_SIGNATURE,
483 	CS_PUBLIC,
484 	CS_CERTIF,
485 #endif	/* AUTOKEY */
486 	0
487 };
488 
489 
490 /*
491  * Peer variable list
492  */
493 static const struct ctl_var peer_var[] = {
494 	{ 0,		PADDING, "" },		/* 0 */
495 	{ CP_CONFIG,	RO, "config" },		/* 1 */
496 	{ CP_AUTHENABLE, RO,	"authenable" },	/* 2 */
497 	{ CP_AUTHENTIC, RO, "authentic" },	/* 3 */
498 	{ CP_SRCADR,	RO, "srcadr" },		/* 4 */
499 	{ CP_SRCPORT,	RO, "srcport" },	/* 5 */
500 	{ CP_DSTADR,	RO, "dstadr" },		/* 6 */
501 	{ CP_DSTPORT,	RO, "dstport" },	/* 7 */
502 	{ CP_LEAP,	RO, "leap" },		/* 8 */
503 	{ CP_HMODE,	RO, "hmode" },		/* 9 */
504 	{ CP_STRATUM,	RO, "stratum" },	/* 10 */
505 	{ CP_PPOLL,	RO, "ppoll" },		/* 11 */
506 	{ CP_HPOLL,	RO, "hpoll" },		/* 12 */
507 	{ CP_PRECISION,	RO, "precision" },	/* 13 */
508 	{ CP_ROOTDELAY,	RO, "rootdelay" },	/* 14 */
509 	{ CP_ROOTDISPERSION, RO, "rootdisp" },	/* 15 */
510 	{ CP_REFID,	RO, "refid" },		/* 16 */
511 	{ CP_REFTIME,	RO, "reftime" },	/* 17 */
512 	{ CP_ORG,	RO, "org" },		/* 18 */
513 	{ CP_REC,	RO, "rec" },		/* 19 */
514 	{ CP_XMT,	RO, "xleave" },		/* 20 */
515 	{ CP_REACH,	RO, "reach" },		/* 21 */
516 	{ CP_UNREACH,	RO, "unreach" },	/* 22 */
517 	{ CP_TIMER,	RO, "timer" },		/* 23 */
518 	{ CP_DELAY,	RO, "delay" },		/* 24 */
519 	{ CP_OFFSET,	RO, "offset" },		/* 25 */
520 	{ CP_JITTER,	RO, "jitter" },		/* 26 */
521 	{ CP_DISPERSION, RO, "dispersion" },	/* 27 */
522 	{ CP_KEYID,	RO, "keyid" },		/* 28 */
523 	{ CP_FILTDELAY,	RO, "filtdelay" },	/* 29 */
524 	{ CP_FILTOFFSET, RO, "filtoffset" },	/* 30 */
525 	{ CP_PMODE,	RO, "pmode" },		/* 31 */
526 	{ CP_RECEIVED,	RO, "received"},	/* 32 */
527 	{ CP_SENT,	RO, "sent" },		/* 33 */
528 	{ CP_FILTERROR,	RO, "filtdisp" },	/* 34 */
529 	{ CP_FLASH,	RO, "flash" },		/* 35 */
530 	{ CP_TTL,	RO, "ttl" },		/* 36 */
531 	{ CP_VARLIST,	RO, "peer_var_list" },	/* 37 */
532 	{ CP_IN,	RO, "in" },		/* 38 */
533 	{ CP_OUT,	RO, "out" },		/* 39 */
534 	{ CP_RATE,	RO, "headway" },	/* 40 */
535 	{ CP_BIAS,	RO, "bias" },		/* 41 */
536 	{ CP_SRCHOST,	RO, "srchost" },	/* 42 */
537 	{ CP_TIMEREC,	RO, "timerec" },	/* 43 */
538 	{ CP_TIMEREACH,	RO, "timereach" },	/* 44 */
539 	{ CP_BADAUTH,	RO, "badauth" },	/* 45 */
540 	{ CP_BOGUSORG,	RO, "bogusorg" },	/* 46 */
541 	{ CP_OLDPKT,	RO, "oldpkt" },		/* 47 */
542 	{ CP_SELDISP,	RO, "seldisp" },	/* 48 */
543 	{ CP_SELBROKEN,	RO, "selbroken" },	/* 49 */
544 	{ CP_CANDIDATE, RO, "candidate" },	/* 50 */
545 #ifdef AUTOKEY
546 	{ CP_FLAGS,	RO, "flags" },		/* 1 + CP_MAX_NOAUTOKEY */
547 	{ CP_HOST,	RO, "host" },		/* 2 + CP_MAX_NOAUTOKEY */
548 	{ CP_VALID,	RO, "valid" },		/* 3 + CP_MAX_NOAUTOKEY */
549 	{ CP_INITSEQ,	RO, "initsequence" },	/* 4 + CP_MAX_NOAUTOKEY */
550 	{ CP_INITKEY,	RO, "initkey" },	/* 5 + CP_MAX_NOAUTOKEY */
551 	{ CP_INITTSP,	RO, "timestamp" },	/* 6 + CP_MAX_NOAUTOKEY */
552 	{ CP_SIGNATURE,	RO, "signature" },	/* 7 + CP_MAX_NOAUTOKEY */
553 	{ CP_IDENT,	RO, "ident" },		/* 8 + CP_MAX_NOAUTOKEY */
554 #endif	/* AUTOKEY */
555 	{ 0,		EOV, "" }		/* 50/58 */
556 };
557 
558 
559 /*
560  * Peer variables we print by default
561  */
562 static const u_char def_peer_var[] = {
563 	CP_SRCADR,
564 	CP_SRCPORT,
565 	CP_SRCHOST,
566 	CP_DSTADR,
567 	CP_DSTPORT,
568 	CP_OUT,
569 	CP_IN,
570 	CP_LEAP,
571 	CP_STRATUM,
572 	CP_PRECISION,
573 	CP_ROOTDELAY,
574 	CP_ROOTDISPERSION,
575 	CP_REFID,
576 	CP_REFTIME,
577 	CP_REC,
578 	CP_REACH,
579 	CP_UNREACH,
580 	CP_HMODE,
581 	CP_PMODE,
582 	CP_HPOLL,
583 	CP_PPOLL,
584 	CP_RATE,
585 	CP_FLASH,
586 	CP_KEYID,
587 	CP_TTL,
588 	CP_OFFSET,
589 	CP_DELAY,
590 	CP_DISPERSION,
591 	CP_JITTER,
592 	CP_XMT,
593 	CP_BIAS,
594 	CP_FILTDELAY,
595 	CP_FILTOFFSET,
596 	CP_FILTERROR,
597 #ifdef AUTOKEY
598 	CP_HOST,
599 	CP_FLAGS,
600 	CP_SIGNATURE,
601 	CP_VALID,
602 	CP_INITSEQ,
603 	CP_IDENT,
604 #endif	/* AUTOKEY */
605 	0
606 };
607 
608 
609 #ifdef REFCLOCK
610 /*
611  * Clock variable list
612  */
613 static const struct ctl_var clock_var[] = {
614 	{ 0,		PADDING, "" },		/* 0 */
615 	{ CC_TYPE,	RO, "type" },		/* 1 */
616 	{ CC_TIMECODE,	RO, "timecode" },	/* 2 */
617 	{ CC_POLL,	RO, "poll" },		/* 3 */
618 	{ CC_NOREPLY,	RO, "noreply" },	/* 4 */
619 	{ CC_BADFORMAT, RO, "badformat" },	/* 5 */
620 	{ CC_BADDATA,	RO, "baddata" },	/* 6 */
621 	{ CC_FUDGETIME1, RO, "fudgetime1" },	/* 7 */
622 	{ CC_FUDGETIME2, RO, "fudgetime2" },	/* 8 */
623 	{ CC_FUDGEVAL1, RO, "stratum" },	/* 9 */
624 	{ CC_FUDGEVAL2, RO, "refid" },		/* 10 */
625 	{ CC_FLAGS,	RO, "flags" },		/* 11 */
626 	{ CC_DEVICE,	RO, "device" },		/* 12 */
627 	{ CC_VARLIST,	RO, "clock_var_list" },	/* 13 */
628 	{ 0,		EOV, ""  }		/* 14 */
629 };
630 
631 
632 /*
633  * Clock variables printed by default
634  */
635 static const u_char def_clock_var[] = {
636 	CC_DEVICE,
637 	CC_TYPE,	/* won't be output if device = known */
638 	CC_TIMECODE,
639 	CC_POLL,
640 	CC_NOREPLY,
641 	CC_BADFORMAT,
642 	CC_BADDATA,
643 	CC_FUDGETIME1,
644 	CC_FUDGETIME2,
645 	CC_FUDGEVAL1,
646 	CC_FUDGEVAL2,
647 	CC_FLAGS,
648 	0
649 };
650 #endif
651 
652 /*
653  * MRU string constants shared by send_mru_entry() and read_mru_list().
654  */
655 static const char addr_fmt[] =		"addr.%d";
656 static const char last_fmt[] =		"last.%d";
657 
658 /*
659  * System and processor definitions.
660  */
661 #ifndef HAVE_UNAME
662 # ifndef STR_SYSTEM
663 #  define		STR_SYSTEM	"UNIX"
664 # endif
665 # ifndef STR_PROCESSOR
666 #  define		STR_PROCESSOR	"unknown"
667 # endif
668 
669 static const char str_system[] = STR_SYSTEM;
670 static const char str_processor[] = STR_PROCESSOR;
671 #else
672 # include <sys/utsname.h>
673 static struct utsname utsnamebuf;
674 #endif /* HAVE_UNAME */
675 
676 /*
677  * Trap structures. We only allow a few of these, and send a copy of
678  * each async message to each live one. Traps time out after an hour, it
679  * is up to the trap receipient to keep resetting it to avoid being
680  * timed out.
681  */
682 /* ntp_request.c */
683 struct ctl_trap ctl_traps[CTL_MAXTRAPS];
684 int num_ctl_traps;
685 
686 /*
687  * Type bits, for ctlsettrap() call.
688  */
689 #define TRAP_TYPE_CONFIG	0	/* used by configuration code */
690 #define TRAP_TYPE_PRIO		1	/* priority trap */
691 #define TRAP_TYPE_NONPRIO	2	/* nonpriority trap */
692 
693 
694 /*
695  * List relating reference clock types to control message time sources.
696  * Index by the reference clock type. This list will only be used iff
697  * the reference clock driver doesn't set peer->sstclktype to something
698  * different than CTL_SST_TS_UNSPEC.
699  */
700 #ifdef REFCLOCK
701 static const u_char clocktypes[] = {
702 	CTL_SST_TS_NTP,		/* REFCLK_NONE (0) */
703 	CTL_SST_TS_LOCAL,	/* REFCLK_LOCALCLOCK (1) */
704 	CTL_SST_TS_UHF,		/* deprecated REFCLK_GPS_TRAK (2) */
705 	CTL_SST_TS_HF,		/* REFCLK_WWV_PST (3) */
706 	CTL_SST_TS_LF,		/* REFCLK_WWVB_SPECTRACOM (4) */
707 	CTL_SST_TS_UHF,		/* REFCLK_TRUETIME (5) */
708 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_AUDIO (6) */
709 	CTL_SST_TS_HF,		/* REFCLK_CHU (7) */
710 	CTL_SST_TS_LF,		/* REFCLOCK_PARSE (default) (8) */
711 	CTL_SST_TS_LF,		/* REFCLK_GPS_MX4200 (9) */
712 	CTL_SST_TS_UHF,		/* REFCLK_GPS_AS2201 (10) */
713 	CTL_SST_TS_UHF,		/* REFCLK_GPS_ARBITER (11) */
714 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_TPRO (12) */
715 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_LEITCH (13) */
716 	CTL_SST_TS_LF,		/* deprecated REFCLK_MSF_EES (14) */
717 	CTL_SST_TS_NTP,		/* not used (15) */
718 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_BANCOMM (16) */
719 	CTL_SST_TS_UHF,		/* REFCLK_GPS_DATU (17) */
720 	CTL_SST_TS_TELEPHONE,	/* REFCLK_NIST_ACTS (18) */
721 	CTL_SST_TS_HF,		/* REFCLK_WWV_HEATH (19) */
722 	CTL_SST_TS_UHF,		/* REFCLK_GPS_NMEA (20) */
723 	CTL_SST_TS_UHF,		/* REFCLK_GPS_VME (21) */
724 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_PPS (22) */
725 	CTL_SST_TS_NTP,		/* not used (23) */
726 	CTL_SST_TS_NTP,		/* not used (24) */
727 	CTL_SST_TS_NTP,		/* not used (25) */
728 	CTL_SST_TS_UHF,		/* REFCLK_GPS_HP (26) */
729 	CTL_SST_TS_LF,		/* REFCLK_ARCRON_MSF (27) */
730 	CTL_SST_TS_UHF,		/* REFCLK_SHM (28) */
731 	CTL_SST_TS_UHF,		/* REFCLK_PALISADE (29) */
732 	CTL_SST_TS_UHF,		/* REFCLK_ONCORE (30) */
733 	CTL_SST_TS_UHF,		/* REFCLK_JUPITER (31) */
734 	CTL_SST_TS_LF,		/* REFCLK_CHRONOLOG (32) */
735 	CTL_SST_TS_LF,		/* REFCLK_DUMBCLOCK (33) */
736 	CTL_SST_TS_LF,		/* REFCLK_ULINK (34) */
737 	CTL_SST_TS_LF,		/* REFCLK_PCF (35) */
738 	CTL_SST_TS_HF,		/* REFCLK_WWV (36) */
739 	CTL_SST_TS_LF,		/* REFCLK_FG (37) */
740 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_SERIAL (38) */
741 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_PCI (39) */
742 	CTL_SST_TS_LF,		/* REFCLK_JJY (40) */
743 	CTL_SST_TS_UHF,		/* REFCLK_TT560 (41) */
744 	CTL_SST_TS_UHF,		/* REFCLK_ZYFER (42) */
745 	CTL_SST_TS_UHF,		/* REFCLK_RIPENCC (43) */
746 	CTL_SST_TS_UHF,		/* REFCLK_NEOCLOCK4X (44) */
747 	CTL_SST_TS_UHF,		/* REFCLK_TSYNCPCI (45) */
748 	CTL_SST_TS_UHF		/* REFCLK_GPSDJSON (46) */
749 };
750 #endif  /* REFCLOCK */
751 
752 
753 /*
754  * Keyid used for authenticating write requests.
755  */
756 keyid_t ctl_auth_keyid;
757 
758 /*
759  * We keep track of the last error reported by the system internally
760  */
761 static	u_char ctl_sys_last_event;
762 static	u_char ctl_sys_num_events;
763 
764 
765 /*
766  * Statistic counters to keep track of requests and responses.
767  */
768 u_long ctltimereset;		/* time stats reset */
769 u_long numctlreq;		/* number of requests we've received */
770 u_long numctlbadpkts;		/* number of bad control packets */
771 u_long numctlresponses;		/* number of resp packets sent with data */
772 u_long numctlfrags;		/* number of fragments sent */
773 u_long numctlerrors;		/* number of error responses sent */
774 u_long numctltooshort;		/* number of too short input packets */
775 u_long numctlinputresp;		/* number of responses on input */
776 u_long numctlinputfrag;		/* number of fragments on input */
777 u_long numctlinputerr;		/* number of input pkts with err bit set */
778 u_long numctlbadoffset;		/* number of input pkts with nonzero offset */
779 u_long numctlbadversion;	/* number of input pkts with unknown version */
780 u_long numctldatatooshort;	/* data too short for count */
781 u_long numctlbadop;		/* bad op code found in packet */
782 u_long numasyncmsgs;		/* number of async messages we've sent */
783 
784 /*
785  * Response packet used by these routines. Also some state information
786  * so that we can handle packet formatting within a common set of
787  * subroutines.  Note we try to enter data in place whenever possible,
788  * but the need to set the more bit correctly means we occasionally
789  * use the extra buffer and copy.
790  */
791 static struct ntp_control rpkt;
792 static u_char	res_version;
793 static u_char	res_opcode;
794 static associd_t res_associd;
795 static u_short	res_frags;	/* datagrams in this response */
796 static int	res_offset;	/* offset of payload in response */
797 static u_char * datapt;
798 static u_char * dataend;
799 static int	datalinelen;
800 static int	datasent;	/* flag to avoid initial ", " */
801 static int	datanotbinflag;
802 static sockaddr_u *rmt_addr;
803 static struct interface *lcl_inter;
804 
805 static u_char	res_authenticate;
806 static u_char	res_authokay;
807 static keyid_t	res_keyid;
808 
809 #define MAXDATALINELEN	(72)
810 
811 static u_char	res_async;	/* sending async trap response? */
812 
813 /*
814  * Pointers for saving state when decoding request packets
815  */
816 static	char *reqpt;
817 static	char *reqend;
818 
819 #ifndef MIN
820 #define MIN(a, b) (((a) <= (b)) ? (a) : (b))
821 #endif
822 
823 /*
824  * init_control - initialize request data
825  */
826 void
827 init_control(void)
828 {
829 	size_t i;
830 
831 #ifdef HAVE_UNAME
832 	uname(&utsnamebuf);
833 #endif /* HAVE_UNAME */
834 
835 	ctl_clr_stats();
836 
837 	ctl_auth_keyid = 0;
838 	ctl_sys_last_event = EVNT_UNSPEC;
839 	ctl_sys_num_events = 0;
840 
841 	num_ctl_traps = 0;
842 	for (i = 0; i < COUNTOF(ctl_traps); i++)
843 		ctl_traps[i].tr_flags = 0;
844 }
845 
846 
847 /*
848  * ctl_error - send an error response for the current request
849  */
850 static void
851 ctl_error(
852 	u_char errcode
853 	)
854 {
855 	size_t		maclen;
856 
857 	numctlerrors++;
858 	DPRINTF(3, ("sending control error %u\n", errcode));
859 
860 	/*
861 	 * Fill in the fields. We assume rpkt.sequence and rpkt.associd
862 	 * have already been filled in.
863 	 */
864 	rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
865 			(res_opcode & CTL_OP_MASK);
866 	rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
867 	rpkt.count = 0;
868 
869 	/*
870 	 * send packet and bump counters
871 	 */
872 	if (res_authenticate && sys_authenticate) {
873 		maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
874 				     CTL_HEADER_LEN);
875 		sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
876 			CTL_HEADER_LEN + maclen);
877 	} else
878 		sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
879 			CTL_HEADER_LEN);
880 }
881 
882 int/*BOOL*/
883 is_safe_filename(const char * name)
884 {
885 	/* We need a strict validation of filenames we should write: The
886 	 * daemon might run with special permissions and is remote
887 	 * controllable, so we better take care what we allow as file
888 	 * name!
889 	 *
890 	 * The first character must be digit or a letter from the ASCII
891 	 * base plane or a '_' ([_A-Za-z0-9]), the following characters
892 	 * must be from [-._+A-Za-z0-9].
893 	 *
894 	 * We do not trust the character classification much here: Since
895 	 * the NTP protocol makes no provisions for UTF-8 or local code
896 	 * pages, we strictly require the 7bit ASCII code page.
897 	 *
898 	 * The following table is a packed bit field of 128 two-bit
899 	 * groups. The LSB in each group tells us if a character is
900 	 * acceptable at the first position, the MSB if the character is
901 	 * accepted at any other position.
902 	 *
903 	 * This does not ensure that the file name is syntactically
904 	 * correct (multiple dots will not work with VMS...) but it will
905 	 * exclude potential globbing bombs and directory traversal. It
906 	 * also rules out drive selection. (For systems that have this
907 	 * notion, like Windows or VMS.)
908 	 */
909 	static const uint32_t chclass[8] = {
910 		0x00000000, 0x00000000,
911 		0x28800000, 0x000FFFFF,
912 		0xFFFFFFFC, 0xC03FFFFF,
913 		0xFFFFFFFC, 0x003FFFFF
914 	};
915 
916 	u_int widx, bidx, mask;
917 	if ( ! (name && *name))
918 		return FALSE;
919 
920 	mask = 1u;
921 	while (0 != (widx = (u_char)*name++)) {
922 		bidx = (widx & 15) << 1;
923 		widx = widx >> 4;
924 		if (widx >= sizeof(chclass)/sizeof(chclass[0]))
925 			return FALSE;
926 		if (0 == ((chclass[widx] >> bidx) & mask))
927 			return FALSE;
928 		mask = 2u;
929 	}
930 	return TRUE;
931 }
932 
933 
934 /*
935  * save_config - Implements ntpq -c "saveconfig <filename>"
936  *		 Writes current configuration including any runtime
937  *		 changes by ntpq's :config or config-from-file
938  *
939  * Note: There should be no buffer overflow or truncation in the
940  * processing of file names -- both cause security problems. This is bit
941  * painful to code but essential here.
942  */
943 void
944 save_config(
945 	struct recvbuf *rbufp,
946 	int restrict_mask
947 	)
948 {
949 	/* block directory traversal by searching for characters that
950 	 * indicate directory components in a file path.
951 	 *
952 	 * Conceptually we should be searching for DIRSEP in filename,
953 	 * however Windows actually recognizes both forward and
954 	 * backslashes as equivalent directory separators at the API
955 	 * level.  On POSIX systems we could allow '\\' but such
956 	 * filenames are tricky to manipulate from a shell, so just
957 	 * reject both types of slashes on all platforms.
958 	 */
959 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
960 	static const char * illegal_in_filename =
961 #if defined(VMS)
962 	    ":[]"	/* do not allow drive and path components here */
963 #elif defined(SYS_WINNT)
964 	    ":\\/"	/* path and drive separators */
965 #else
966 	    "\\/"	/* separator and critical char for POSIX */
967 #endif
968 	    ;
969 	char reply[128];
970 #ifdef SAVECONFIG
971 	static const char savedconfig_eq[] = "savedconfig=";
972 
973 	/* Build a safe open mode from the available mode flags. We want
974 	 * to create a new file and write it in text mode (when
975 	 * applicable -- only Windows does this...)
976 	 */
977 	static const int openmode = O_CREAT | O_TRUNC | O_WRONLY
978 #  if defined(O_EXCL)		/* posix, vms */
979 	    | O_EXCL
980 #  elif defined(_O_EXCL)	/* windows is alway very special... */
981 	    | _O_EXCL
982 #  endif
983 #  if defined(_O_TEXT)		/* windows, again */
984 	    | _O_TEXT
985 #endif
986 	    ;
987 
988 	char filespec[128];
989 	char filename[128];
990 	char fullpath[512];
991 	char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
992 	time_t now;
993 	int fd;
994 	FILE *fptr;
995 	int prc;
996 	size_t reqlen;
997 #endif
998 
999 	if (RES_NOMODIFY & restrict_mask) {
1000 		ctl_printf("%s", "saveconfig prohibited by restrict ... nomodify");
1001 		ctl_flushpkt(0);
1002 		NLOG(NLOG_SYSINFO)
1003 			msyslog(LOG_NOTICE,
1004 				"saveconfig from %s rejected due to nomodify restriction",
1005 				stoa(&rbufp->recv_srcadr));
1006 		sys_restricted++;
1007 		return;
1008 	}
1009 
1010 #ifdef SAVECONFIG
1011 	if (NULL == saveconfigdir) {
1012 		ctl_printf("%s", "saveconfig prohibited, no saveconfigdir configured");
1013 		ctl_flushpkt(0);
1014 		NLOG(NLOG_SYSINFO)
1015 			msyslog(LOG_NOTICE,
1016 				"saveconfig from %s rejected, no saveconfigdir",
1017 				stoa(&rbufp->recv_srcadr));
1018 		return;
1019 	}
1020 
1021 	/* The length checking stuff gets serious. Do not assume a NUL
1022 	 * byte can be found, but if so, use it to calculate the needed
1023 	 * buffer size. If the available buffer is too short, bail out;
1024 	 * likewise if there is no file spec. (The latter will not
1025 	 * happen when using NTPQ, but there are other ways to craft a
1026 	 * network packet!)
1027 	 */
1028 	reqlen = (size_t)(reqend - reqpt);
1029 	if (0 != reqlen) {
1030 		char * nulpos = (char*)memchr(reqpt, 0, reqlen);
1031 		if (NULL != nulpos)
1032 			reqlen = (size_t)(nulpos - reqpt);
1033 	}
1034 	if (0 == reqlen)
1035 		return;
1036 	if (reqlen >= sizeof(filespec)) {
1037 		ctl_printf("saveconfig exceeded maximum raw name length (%u)",
1038 			   (u_int)sizeof(filespec));
1039 		ctl_flushpkt(0);
1040 		msyslog(LOG_NOTICE,
1041 			"saveconfig exceeded maximum raw name length from %s",
1042 			stoa(&rbufp->recv_srcadr));
1043 		return;
1044 	}
1045 
1046 	/* copy data directly as we exactly know the size */
1047 	memcpy(filespec, reqpt, reqlen);
1048 	filespec[reqlen] = '\0';
1049 
1050 	/*
1051 	 * allow timestamping of the saved config filename with
1052 	 * strftime() format such as:
1053 	 *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
1054 	 * XXX: Nice feature, but not too safe.
1055 	 * YYY: The check for permitted characters in file names should
1056 	 *      weed out the worst. Let's hope 'strftime()' does not
1057 	 *      develop pathological problems.
1058 	 */
1059 	time(&now);
1060 	if (0 == strftime(filename, sizeof(filename), filespec,
1061 			  localtime(&now)))
1062 	{
1063 		/*
1064 		 * If we arrive here, 'strftime()' balked; most likely
1065 		 * the buffer was too short. (Or it encounterd an empty
1066 		 * format, or just a format that expands to an empty
1067 		 * string.) We try to use the original name, though this
1068 		 * is very likely to fail later if there are format
1069 		 * specs in the string. Note that truncation cannot
1070 		 * happen here as long as both buffers have the same
1071 		 * size!
1072 		 */
1073 		strlcpy(filename, filespec, sizeof(filename));
1074 	}
1075 
1076 	/*
1077 	 * Check the file name for sanity. This might/will rule out file
1078 	 * names that would be legal but problematic, and it blocks
1079 	 * directory traversal.
1080 	 */
1081 	if (!is_safe_filename(filename)) {
1082 		ctl_printf("saveconfig rejects unsafe file name '%s'",
1083 			   filename);
1084 		ctl_flushpkt(0);
1085 		msyslog(LOG_NOTICE,
1086 			"saveconfig rejects unsafe file name from %s",
1087 			stoa(&rbufp->recv_srcadr));
1088 		return;
1089 	}
1090 
1091 	/*
1092 	 * XXX: This next test may not be needed with is_safe_filename()
1093 	 */
1094 
1095 	/* block directory/drive traversal */
1096 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
1097 	if (NULL != strpbrk(filename, illegal_in_filename)) {
1098 		snprintf(reply, sizeof(reply),
1099 			 "saveconfig does not allow directory in filename");
1100 		ctl_putdata(reply, strlen(reply), 0);
1101 		ctl_flushpkt(0);
1102 		msyslog(LOG_NOTICE,
1103 			"saveconfig rejects unsafe file name from %s",
1104 			stoa(&rbufp->recv_srcadr));
1105 		return;
1106 	}
1107 
1108 	/* concatenation of directory and path can cause another
1109 	 * truncation...
1110 	 */
1111 	prc = snprintf(fullpath, sizeof(fullpath), "%s%s",
1112 		       saveconfigdir, filename);
1113 	if (prc < 0 || (size_t)prc >= sizeof(fullpath)) {
1114 		ctl_printf("saveconfig exceeded maximum path length (%u)",
1115 			   (u_int)sizeof(fullpath));
1116 		ctl_flushpkt(0);
1117 		msyslog(LOG_NOTICE,
1118 			"saveconfig exceeded maximum path length from %s",
1119 			stoa(&rbufp->recv_srcadr));
1120 		return;
1121 	}
1122 
1123 	fd = open(fullpath, openmode, S_IRUSR | S_IWUSR);
1124 	if (-1 == fd)
1125 		fptr = NULL;
1126 	else
1127 		fptr = fdopen(fd, "w");
1128 
1129 	if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
1130 		ctl_printf("Unable to save configuration to file '%s': %s",
1131 			   filename, strerror(errno));
1132 		msyslog(LOG_ERR,
1133 			"saveconfig %s from %s failed", filename,
1134 			stoa(&rbufp->recv_srcadr));
1135 	} else {
1136 		ctl_printf("Configuration saved to '%s'", filename);
1137 		msyslog(LOG_NOTICE,
1138 			"Configuration saved to '%s' (requested by %s)",
1139 			fullpath, stoa(&rbufp->recv_srcadr));
1140 		/*
1141 		 * save the output filename in system variable
1142 		 * savedconfig, retrieved with:
1143 		 *   ntpq -c "rv 0 savedconfig"
1144 		 * Note: the way 'savedconfig' is defined makes overflow
1145 		 * checks unnecessary here.
1146 		 */
1147 		snprintf(savedconfig, sizeof(savedconfig), "%s%s",
1148 			 savedconfig_eq, filename);
1149 		set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
1150 	}
1151 
1152 	if (NULL != fptr)
1153 		fclose(fptr);
1154 #else	/* !SAVECONFIG follows */
1155 	ctl_printf("%s",
1156 		   "saveconfig unavailable, configured with --disable-saveconfig");
1157 #endif
1158 	ctl_flushpkt(0);
1159 }
1160 
1161 
1162 /*
1163  * process_control - process an incoming control message
1164  */
1165 void
1166 process_control(
1167 	struct recvbuf *rbufp,
1168 	int restrict_mask
1169 	)
1170 {
1171 	struct ntp_control *pkt;
1172 	int req_count;
1173 	int req_data;
1174 	const struct ctl_proc *cc;
1175 	keyid_t *pkid;
1176 	int properlen;
1177 	size_t maclen;
1178 
1179 	DPRINTF(3, ("in process_control()\n"));
1180 
1181 	/*
1182 	 * Save the addresses for error responses
1183 	 */
1184 	numctlreq++;
1185 	rmt_addr = &rbufp->recv_srcadr;
1186 	lcl_inter = rbufp->dstadr;
1187 	pkt = (struct ntp_control *)&rbufp->recv_pkt;
1188 
1189 	/*
1190 	 * If the length is less than required for the header, or
1191 	 * it is a response or a fragment, ignore this.
1192 	 */
1193 	if (rbufp->recv_length < (int)CTL_HEADER_LEN
1194 	    || (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1195 	    || pkt->offset != 0) {
1196 		DPRINTF(1, ("invalid format in control packet\n"));
1197 		if (rbufp->recv_length < (int)CTL_HEADER_LEN)
1198 			numctltooshort++;
1199 		if (CTL_RESPONSE & pkt->r_m_e_op)
1200 			numctlinputresp++;
1201 		if (CTL_MORE & pkt->r_m_e_op)
1202 			numctlinputfrag++;
1203 		if (CTL_ERROR & pkt->r_m_e_op)
1204 			numctlinputerr++;
1205 		if (pkt->offset != 0)
1206 			numctlbadoffset++;
1207 		return;
1208 	}
1209 	res_version = PKT_VERSION(pkt->li_vn_mode);
1210 	if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1211 		DPRINTF(1, ("unknown version %d in control packet\n",
1212 			    res_version));
1213 		numctlbadversion++;
1214 		return;
1215 	}
1216 
1217 	/*
1218 	 * Pull enough data from the packet to make intelligent
1219 	 * responses
1220 	 */
1221 	rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1222 					 MODE_CONTROL);
1223 	res_opcode = pkt->r_m_e_op;
1224 	rpkt.sequence = pkt->sequence;
1225 	rpkt.associd = pkt->associd;
1226 	rpkt.status = 0;
1227 	res_frags = 1;
1228 	res_offset = 0;
1229 	res_associd = htons(pkt->associd);
1230 	res_async = FALSE;
1231 	res_authenticate = FALSE;
1232 	res_keyid = 0;
1233 	res_authokay = FALSE;
1234 	req_count = (int)ntohs(pkt->count);
1235 	datanotbinflag = FALSE;
1236 	datalinelen = 0;
1237 	datasent = 0;
1238 	datapt = rpkt.u.data;
1239 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1240 
1241 	if ((rbufp->recv_length & 0x3) != 0)
1242 		DPRINTF(3, ("Control packet length %d unrounded\n",
1243 			    rbufp->recv_length));
1244 
1245 	/*
1246 	 * We're set up now. Make sure we've got at least enough
1247 	 * incoming data space to match the count.
1248 	 */
1249 	req_data = rbufp->recv_length - CTL_HEADER_LEN;
1250 	if (req_data < req_count || rbufp->recv_length & 0x3) {
1251 		ctl_error(CERR_BADFMT);
1252 		numctldatatooshort++;
1253 		return;
1254 	}
1255 
1256 	properlen = req_count + CTL_HEADER_LEN;
1257 	/* round up proper len to a 8 octet boundary */
1258 
1259 	properlen = (properlen + 7) & ~7;
1260 	maclen = rbufp->recv_length - properlen;
1261 	if ((rbufp->recv_length & 3) == 0 &&
1262 	    maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1263 	    sys_authenticate) {
1264 		res_authenticate = TRUE;
1265 		pkid = (void *)((char *)pkt + properlen);
1266 		res_keyid = ntohl(*pkid);
1267 		DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1268 			    rbufp->recv_length, properlen, res_keyid,
1269 			    maclen));
1270 
1271 		if (!authistrustedip(res_keyid, &rbufp->recv_srcadr))
1272 			DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1273 		else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1274 				     rbufp->recv_length - maclen,
1275 				     maclen)) {
1276 			res_authokay = TRUE;
1277 			DPRINTF(3, ("authenticated okay\n"));
1278 		} else {
1279 			res_keyid = 0;
1280 			DPRINTF(3, ("authentication failed\n"));
1281 		}
1282 	}
1283 
1284 	/*
1285 	 * Set up translate pointers
1286 	 */
1287 	reqpt = (char *)pkt->u.data;
1288 	reqend = reqpt + req_count;
1289 
1290 	/*
1291 	 * Look for the opcode processor
1292 	 */
1293 	for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1294 		if (cc->control_code == res_opcode) {
1295 			DPRINTF(3, ("opcode %d, found command handler\n",
1296 				    res_opcode));
1297 			if (cc->flags == AUTH
1298 			    && (!res_authokay
1299 				|| res_keyid != ctl_auth_keyid)) {
1300 				ctl_error(CERR_PERMISSION);
1301 				return;
1302 			}
1303 			(cc->handler)(rbufp, restrict_mask);
1304 			return;
1305 		}
1306 	}
1307 
1308 	/*
1309 	 * Can't find this one, return an error.
1310 	 */
1311 	numctlbadop++;
1312 	ctl_error(CERR_BADOP);
1313 	return;
1314 }
1315 
1316 
1317 /*
1318  * ctlpeerstatus - return a status word for this peer
1319  */
1320 u_short
1321 ctlpeerstatus(
1322 	register struct peer *p
1323 	)
1324 {
1325 	u_short status;
1326 
1327 	status = p->status;
1328 	if (FLAG_CONFIG & p->flags)
1329 		status |= CTL_PST_CONFIG;
1330 	if (p->keyid)
1331 		status |= CTL_PST_AUTHENABLE;
1332 	if (FLAG_AUTHENTIC & p->flags)
1333 		status |= CTL_PST_AUTHENTIC;
1334 	if (p->reach)
1335 		status |= CTL_PST_REACH;
1336 	if (MDF_TXONLY_MASK & p->cast_flags)
1337 		status |= CTL_PST_BCAST;
1338 
1339 	return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1340 }
1341 
1342 
1343 /*
1344  * ctlclkstatus - return a status word for this clock
1345  */
1346 #ifdef REFCLOCK
1347 static u_short
1348 ctlclkstatus(
1349 	struct refclockstat *pcs
1350 	)
1351 {
1352 	return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1353 }
1354 #endif
1355 
1356 
1357 /*
1358  * ctlsysstatus - return the system status word
1359  */
1360 u_short
1361 ctlsysstatus(void)
1362 {
1363 	register u_char this_clock;
1364 
1365 	this_clock = CTL_SST_TS_UNSPEC;
1366 #ifdef REFCLOCK
1367 	if (sys_peer != NULL) {
1368 		if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1369 			this_clock = sys_peer->sstclktype;
1370 		else if (sys_peer->refclktype < COUNTOF(clocktypes))
1371 			this_clock = clocktypes[sys_peer->refclktype];
1372 	}
1373 #else /* REFCLOCK */
1374 	if (sys_peer != 0)
1375 		this_clock = CTL_SST_TS_NTP;
1376 #endif /* REFCLOCK */
1377 	return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1378 			      ctl_sys_last_event);
1379 }
1380 
1381 
1382 /*
1383  * ctl_flushpkt - write out the current packet and prepare
1384  *		  another if necessary.
1385  */
1386 static void
1387 ctl_flushpkt(
1388 	u_char more
1389 	)
1390 {
1391 	size_t i;
1392 	size_t dlen;
1393 	size_t sendlen;
1394 	size_t maclen;
1395 	size_t totlen;
1396 	keyid_t keyid;
1397 
1398 	dlen = datapt - rpkt.u.data;
1399 	if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1400 		/*
1401 		 * Big hack, output a trailing \r\n
1402 		 */
1403 		*datapt++ = '\r';
1404 		*datapt++ = '\n';
1405 		dlen += 2;
1406 	}
1407 	sendlen = dlen + CTL_HEADER_LEN;
1408 
1409 	/*
1410 	 * Pad to a multiple of 32 bits
1411 	 */
1412 	while (sendlen & 0x3) {
1413 		*datapt++ = '\0';
1414 		sendlen++;
1415 	}
1416 
1417 	/*
1418 	 * Fill in the packet with the current info
1419 	 */
1420 	rpkt.r_m_e_op = CTL_RESPONSE | more |
1421 			(res_opcode & CTL_OP_MASK);
1422 	rpkt.count = htons((u_short)dlen);
1423 	rpkt.offset = htons((u_short)res_offset);
1424 	if (res_async) {
1425 		for (i = 0; i < COUNTOF(ctl_traps); i++) {
1426 			if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1427 				rpkt.li_vn_mode =
1428 				    PKT_LI_VN_MODE(
1429 					sys_leap,
1430 					ctl_traps[i].tr_version,
1431 					MODE_CONTROL);
1432 				rpkt.sequence =
1433 				    htons(ctl_traps[i].tr_sequence);
1434 				sendpkt(&ctl_traps[i].tr_addr,
1435 					ctl_traps[i].tr_localaddr, -4,
1436 					(struct pkt *)&rpkt, sendlen);
1437 				if (!more)
1438 					ctl_traps[i].tr_sequence++;
1439 				numasyncmsgs++;
1440 			}
1441 		}
1442 	} else {
1443 		if (res_authenticate && sys_authenticate) {
1444 			totlen = sendlen;
1445 			/*
1446 			 * If we are going to authenticate, then there
1447 			 * is an additional requirement that the MAC
1448 			 * begin on a 64 bit boundary.
1449 			 */
1450 			while (totlen & 7) {
1451 				*datapt++ = '\0';
1452 				totlen++;
1453 			}
1454 			keyid = htonl(res_keyid);
1455 			memcpy(datapt, &keyid, sizeof(keyid));
1456 			maclen = authencrypt(res_keyid,
1457 					     (u_int32 *)&rpkt, totlen);
1458 			sendpkt(rmt_addr, lcl_inter, -5,
1459 				(struct pkt *)&rpkt, totlen + maclen);
1460 		} else {
1461 			sendpkt(rmt_addr, lcl_inter, -6,
1462 				(struct pkt *)&rpkt, sendlen);
1463 		}
1464 		if (more)
1465 			numctlfrags++;
1466 		else
1467 			numctlresponses++;
1468 	}
1469 
1470 	/*
1471 	 * Set us up for another go around.
1472 	 */
1473 	res_frags++;
1474 	res_offset += dlen;
1475 	datapt = rpkt.u.data;
1476 }
1477 
1478 
1479 /* --------------------------------------------------------------------
1480  * block transfer API -- stream string/data fragments into xmit buffer
1481  * without additional copying
1482  */
1483 
1484 /* buffer descriptor: address & size of fragment
1485  * 'buf' may only be NULL when 'len' is zero!
1486  */
1487 typedef struct {
1488 	const void  *buf;
1489 	size_t       len;
1490 } CtlMemBufT;
1491 
1492 /* put ctl data in a gather-style operation */
1493 static void
1494 ctl_putdata_ex(
1495 	const CtlMemBufT * argv,
1496 	size_t             argc,
1497 	int/*BOOL*/        bin		/* set to 1 when data is binary */
1498 	)
1499 {
1500 	const char * src_ptr;
1501 	size_t       src_len, cur_len, add_len, argi;
1502 
1503 	/* text / binary preprocessing, possibly create new linefeed */
1504 	if (bin) {
1505 		add_len = 0;
1506 	} else {
1507 		datanotbinflag = TRUE;
1508 		add_len = 3;
1509 
1510 		if (datasent) {
1511 			*datapt++ = ',';
1512 			datalinelen++;
1513 
1514 			/* sum up total length */
1515 			for (argi = 0, src_len = 0; argi < argc; ++argi)
1516 				src_len += argv[argi].len;
1517 			/* possibly start a new line, assume no size_t overflow */
1518 			if ((src_len + datalinelen + 1) >= MAXDATALINELEN) {
1519 				*datapt++ = '\r';
1520 				*datapt++ = '\n';
1521 				datalinelen = 0;
1522 			} else {
1523 				*datapt++ = ' ';
1524 				datalinelen++;
1525 			}
1526 		}
1527 	}
1528 
1529 	/* now stream out all buffers */
1530 	for (argi = 0; argi < argc; ++argi) {
1531 		src_ptr = argv[argi].buf;
1532 		src_len = argv[argi].len;
1533 
1534 		if ( ! (src_ptr && src_len))
1535 			continue;
1536 
1537 		cur_len = (size_t)(dataend - datapt);
1538 		while ((src_len + add_len) > cur_len) {
1539 			/* Not enough room in this one, flush it out. */
1540 			if (src_len < cur_len)
1541 				cur_len = src_len;
1542 
1543 			memcpy(datapt, src_ptr, cur_len);
1544 			datapt      += cur_len;
1545 			datalinelen += cur_len;
1546 
1547 			src_ptr     += cur_len;
1548 			src_len     -= cur_len;
1549 
1550 			ctl_flushpkt(CTL_MORE);
1551 			cur_len = (size_t)(dataend - datapt);
1552 		}
1553 
1554 		memcpy(datapt, src_ptr, src_len);
1555 		datapt      += src_len;
1556 		datalinelen += src_len;
1557 
1558 		datasent = TRUE;
1559 	}
1560 }
1561 
1562 /*
1563  * ctl_putdata - write data into the packet, fragmenting and starting
1564  * another if this one is full.
1565  */
1566 static void
1567 ctl_putdata(
1568 	const char *dp,
1569 	unsigned int dlen,
1570 	int bin			/* set to 1 when data is binary */
1571 	)
1572 {
1573 	CtlMemBufT args[1];
1574 
1575 	args[0].buf = dp;
1576 	args[0].len = dlen;
1577 	ctl_putdata_ex(args, 1, bin);
1578 }
1579 
1580 /*
1581  * ctl_putstr - write a tagged string into the response packet
1582  *		in the form:
1583  *
1584  *		tag="data"
1585  *
1586  *		len is the data length excluding the NUL terminator,
1587  *		as in ctl_putstr("var", "value", strlen("value"));
1588  */
1589 static void
1590 ctl_putstr(
1591 	const char *	tag,
1592 	const char *	data,
1593 	size_t		len
1594 	)
1595 {
1596 	CtlMemBufT args[4];
1597 
1598 	args[0].buf = tag;
1599 	args[0].len = strlen(tag);
1600 	if (data && len) {
1601 	    args[1].buf = "=\"";
1602 	    args[1].len = 2;
1603 	    args[2].buf = data;
1604 	    args[2].len = len;
1605 	    args[3].buf = "\"";
1606 	    args[3].len = 1;
1607 	    ctl_putdata_ex(args, 4, FALSE);
1608 	} else {
1609 	    args[1].buf = "=\"\"";
1610 	    args[1].len = 3;
1611 	    ctl_putdata_ex(args, 2, FALSE);
1612 	}
1613 }
1614 
1615 
1616 /*
1617  * ctl_putunqstr - write a tagged string into the response packet
1618  *		   in the form:
1619  *
1620  *		   tag=data
1621  *
1622  *	len is the data length excluding the NUL terminator.
1623  *	data must not contain a comma or whitespace.
1624  */
1625 static void
1626 ctl_putunqstr(
1627 	const char *	tag,
1628 	const char *	data,
1629 	size_t		len
1630 	)
1631 {
1632 	CtlMemBufT args[3];
1633 
1634 	args[0].buf = tag;
1635 	args[0].len = strlen(tag);
1636 	args[1].buf = "=";
1637 	args[1].len = 1;
1638 	if (data && len) {
1639 		args[2].buf = data;
1640 		args[2].len = len;
1641 		ctl_putdata_ex(args, 3, FALSE);
1642 	} else {
1643 		ctl_putdata_ex(args, 2, FALSE);
1644 	}
1645 }
1646 
1647 
1648 /*
1649  * ctl_putdblf - write a tagged, signed double into the response packet
1650  */
1651 static void
1652 ctl_putdblf(
1653 	const char *	tag,
1654 	int		use_f,
1655 	int		precision,
1656 	double		d
1657 	)
1658 {
1659 	char buffer[40];
1660 	int  rc;
1661 
1662 	rc = snprintf(buffer, sizeof(buffer),
1663 		      (use_f ? "%.*f" : "%.*g"),
1664 		      precision, d);
1665 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1666 	ctl_putunqstr(tag, buffer, rc);
1667 }
1668 
1669 /*
1670  * ctl_putuint - write a tagged unsigned integer into the response
1671  */
1672 static void
1673 ctl_putuint(
1674 	const char *tag,
1675 	u_long uval
1676 	)
1677 {
1678 	char buffer[24]; /* needs to fit for 64 bits! */
1679 	int  rc;
1680 
1681 	rc = snprintf(buffer, sizeof(buffer), "%lu", uval);
1682 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1683 	ctl_putunqstr(tag, buffer, rc);
1684 }
1685 
1686 /*
1687  * ctl_putcal - write a decoded calendar data into the response.
1688  * only used with AUTOKEY currently, so compiled conditional
1689  */
1690 #ifdef AUTOKEY
1691 static void
1692 ctl_putcal(
1693 	const char *tag,
1694 	const struct calendar *pcal
1695 	)
1696 {
1697 	char buffer[16];
1698 	int  rc;
1699 
1700 	rc = snprintf(buffer, sizeof(buffer),
1701 		      "%04d%02d%02d%02d%02d",
1702 		      pcal->year, pcal->month, pcal->monthday,
1703 		      pcal->hour, pcal->minute
1704 		);
1705 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1706 	ctl_putunqstr(tag, buffer, rc);
1707 }
1708 #endif
1709 
1710 /*
1711  * ctl_putfs - write a decoded filestamp into the response
1712  */
1713 static void
1714 ctl_putfs(
1715 	const char *tag,
1716 	tstamp_t uval
1717 	)
1718 {
1719 	char buffer[16];
1720 	int  rc;
1721 
1722 	time_t fstamp = (time_t)uval - JAN_1970;
1723 	struct tm *tm = gmtime(&fstamp);
1724 
1725 	if (NULL == tm)
1726 		return;
1727 
1728 	rc = snprintf(buffer, sizeof(buffer),
1729 		      "%04d%02d%02d%02d%02d",
1730 		      tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
1731 		      tm->tm_hour, tm->tm_min);
1732 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1733 	ctl_putunqstr(tag, buffer, rc);
1734 }
1735 
1736 
1737 /*
1738  * ctl_puthex - write a tagged unsigned integer, in hex, into the
1739  * response
1740  */
1741 static void
1742 ctl_puthex(
1743 	const char *tag,
1744 	u_long uval
1745 	)
1746 {
1747 	char buffer[24];	/* must fit 64bit int! */
1748 	int  rc;
1749 
1750 	rc = snprintf(buffer, sizeof(buffer), "0x%lx", uval);
1751 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1752 	ctl_putunqstr(tag, buffer, rc);
1753 }
1754 
1755 
1756 /*
1757  * ctl_putint - write a tagged signed integer into the response
1758  */
1759 static void
1760 ctl_putint(
1761 	const char *tag,
1762 	long ival
1763 	)
1764 {
1765 	char buffer[24];	/*must fit 64bit int */
1766 	int  rc;
1767 
1768 	rc = snprintf(buffer, sizeof(buffer), "%ld", ival);
1769 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1770 	ctl_putunqstr(tag, buffer, rc);
1771 }
1772 
1773 
1774 /*
1775  * ctl_putts - write a tagged timestamp, in hex, into the response
1776  */
1777 static void
1778 ctl_putts(
1779 	const char *tag,
1780 	l_fp *ts
1781 	)
1782 {
1783 	char buffer[24];
1784 	int  rc;
1785 
1786 	rc = snprintf(buffer, sizeof(buffer),
1787 		      "0x%08lx.%08lx",
1788 		      (u_long)ts->l_ui, (u_long)ts->l_uf);
1789 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1790 	ctl_putunqstr(tag, buffer, rc);
1791 }
1792 
1793 
1794 /*
1795  * ctl_putadr - write an IP address into the response
1796  */
1797 static void
1798 ctl_putadr(
1799 	const char *tag,
1800 	u_int32 addr32,
1801 	sockaddr_u *addr
1802 	)
1803 {
1804 	const char *cq;
1805 
1806 	if (NULL == addr)
1807 		cq = numtoa(addr32);
1808 	else
1809 		cq = stoa(addr);
1810 	ctl_putunqstr(tag, cq, strlen(cq));
1811 }
1812 
1813 
1814 /*
1815  * ctl_putrefid - send a u_int32 refid as printable text
1816  */
1817 static void
1818 ctl_putrefid(
1819 	const char *	tag,
1820 	u_int32		refid
1821 	)
1822 {
1823 	size_t nc;
1824 
1825 	union {
1826 		uint32_t w;
1827 		uint8_t  b[sizeof(uint32_t)];
1828 	} bytes;
1829 
1830 	bytes.w = refid;
1831 	for (nc = 0; nc < sizeof(bytes.b) && bytes.b[nc]; ++nc)
1832 		if (  !isprint(bytes.b[nc])
1833 		    || isspace(bytes.b[nc])
1834 		    || bytes.b[nc] == ','  )
1835 			bytes.b[nc] = '.';
1836 	ctl_putunqstr(tag, (const char*)bytes.b, nc);
1837 }
1838 
1839 
1840 /*
1841  * ctl_putarray - write a tagged eight element double array into the response
1842  */
1843 static void
1844 ctl_putarray(
1845 	const char *tag,
1846 	double *arr,
1847 	int start
1848 	)
1849 {
1850 	char *cp, *ep;
1851 	char buffer[200];
1852 	int  i, rc;
1853 
1854 	cp = buffer;
1855 	ep = buffer + sizeof(buffer);
1856 	i  = start;
1857 	do {
1858 		if (i == 0)
1859 			i = NTP_SHIFT;
1860 		i--;
1861 		rc = snprintf(cp, (size_t)(ep - cp), " %.2f", arr[i] * 1e3);
1862 		INSIST(rc >= 0 && (size_t)rc < (size_t)(ep - cp));
1863 		cp += rc;
1864 	} while (i != start);
1865 	ctl_putunqstr(tag, buffer, (size_t)(cp - buffer));
1866 }
1867 
1868 /*
1869  * ctl_printf - put a formatted string into the data buffer
1870  */
1871 static void
1872 ctl_printf(
1873 	const char * fmt,
1874 	...
1875 	)
1876 {
1877 	static const char * ellipsis = "[...]";
1878 	va_list va;
1879 	char    fmtbuf[128];
1880 	int     rc;
1881 
1882 	va_start(va, fmt);
1883 	rc = vsnprintf(fmtbuf, sizeof(fmtbuf), fmt, va);
1884 	va_end(va);
1885 	if (rc < 0 || (size_t)rc >= sizeof(fmtbuf))
1886 		strcpy(fmtbuf + sizeof(fmtbuf) - strlen(ellipsis) - 1,
1887 		       ellipsis);
1888 	ctl_putdata(fmtbuf, strlen(fmtbuf), 0);
1889 }
1890 
1891 
1892 /*
1893  * ctl_putsys - output a system variable
1894  */
1895 static void
1896 ctl_putsys(
1897 	int varid
1898 	)
1899 {
1900 	l_fp tmp;
1901 	char str[256];
1902 	u_int u;
1903 	double kb;
1904 	double dtemp;
1905 	const char *ss;
1906 #ifdef AUTOKEY
1907 	struct cert_info *cp;
1908 #endif	/* AUTOKEY */
1909 #ifdef KERNEL_PLL
1910 	static struct timex ntx;
1911 	static u_long ntp_adjtime_time;
1912 
1913 	static const double to_ms_usec =
1914 		1.0e-3; /* usec to msec */
1915 	static const double to_ms_nusec =
1916 # ifdef STA_NANO
1917 		1.0e-6; /* nsec to msec */
1918 # else
1919 		to_ms_usec;
1920 # endif
1921 
1922 	/*
1923 	 * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1924 	 */
1925 	if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1926 	    current_time != ntp_adjtime_time) {
1927 		ZERO(ntx);
1928 		if (ntp_adjtime(&ntx) < 0)
1929 			msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1930 		else
1931 			ntp_adjtime_time = current_time;
1932 	}
1933 #endif	/* KERNEL_PLL */
1934 
1935 	switch (varid) {
1936 
1937 	case CS_LEAP:
1938 		ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1939 		break;
1940 
1941 	case CS_STRATUM:
1942 		ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1943 		break;
1944 
1945 	case CS_PRECISION:
1946 		ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1947 		break;
1948 
1949 	case CS_ROOTDELAY:
1950 		ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1951 			   1e3);
1952 		break;
1953 
1954 	case CS_ROOTDISPERSION:
1955 		ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1956 			   sys_rootdisp * 1e3);
1957 		break;
1958 
1959 	case CS_REFID:
1960 		if (REFID_ISTEXT(sys_stratum))
1961 			ctl_putrefid(sys_var[varid].text, sys_refid);
1962 		else
1963 			ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1964 		break;
1965 
1966 	case CS_REFTIME:
1967 		ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
1968 		break;
1969 
1970 	case CS_POLL:
1971 		ctl_putuint(sys_var[CS_POLL].text, sys_poll);
1972 		break;
1973 
1974 	case CS_PEERID:
1975 		if (sys_peer == NULL)
1976 			ctl_putuint(sys_var[CS_PEERID].text, 0);
1977 		else
1978 			ctl_putuint(sys_var[CS_PEERID].text,
1979 				    sys_peer->associd);
1980 		break;
1981 
1982 	case CS_PEERADR:
1983 		if (sys_peer != NULL && sys_peer->dstadr != NULL)
1984 			ss = sptoa(&sys_peer->srcadr);
1985 		else
1986 			ss = "0.0.0.0:0";
1987 		ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
1988 		break;
1989 
1990 	case CS_PEERMODE:
1991 		u = (sys_peer != NULL)
1992 			? sys_peer->hmode
1993 			: MODE_UNSPEC;
1994 		ctl_putuint(sys_var[CS_PEERMODE].text, u);
1995 		break;
1996 
1997 	case CS_OFFSET:
1998 		ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
1999 		break;
2000 
2001 	case CS_DRIFT:
2002 		ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
2003 		break;
2004 
2005 	case CS_JITTER:
2006 		ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
2007 		break;
2008 
2009 	case CS_ERROR:
2010 		ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
2011 		break;
2012 
2013 	case CS_CLOCK:
2014 		get_systime(&tmp);
2015 		ctl_putts(sys_var[CS_CLOCK].text, &tmp);
2016 		break;
2017 
2018 	case CS_PROCESSOR:
2019 #ifndef HAVE_UNAME
2020 		ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
2021 			   sizeof(str_processor) - 1);
2022 #else
2023 		ctl_putstr(sys_var[CS_PROCESSOR].text,
2024 			   utsnamebuf.machine, strlen(utsnamebuf.machine));
2025 #endif /* HAVE_UNAME */
2026 		break;
2027 
2028 	case CS_SYSTEM:
2029 #ifndef HAVE_UNAME
2030 		ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
2031 			   sizeof(str_system) - 1);
2032 #else
2033 		snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
2034 			 utsnamebuf.release);
2035 		ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
2036 #endif /* HAVE_UNAME */
2037 		break;
2038 
2039 	case CS_VERSION:
2040 		ctl_putstr(sys_var[CS_VERSION].text, Version,
2041 			   strlen(Version));
2042 		break;
2043 
2044 	case CS_STABIL:
2045 		ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
2046 			   1e6);
2047 		break;
2048 
2049 	case CS_VARLIST:
2050 	{
2051 		char buf[CTL_MAX_DATA_LEN];
2052 		//buffPointer, firstElementPointer, buffEndPointer
2053 		char *buffp, *buffend;
2054 		int firstVarName;
2055 		const char *ss1;
2056 		int len;
2057 		const struct ctl_var *k;
2058 
2059 		buffp = buf;
2060 		buffend = buf + sizeof(buf);
2061 		if (strlen(sys_var[CS_VARLIST].text) > (sizeof(buf) - 4))
2062 			break;	/* really long var name */
2063 
2064 		snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
2065 		buffp += strlen(buffp);
2066 		firstVarName = TRUE;
2067 		for (k = sys_var; !(k->flags & EOV); k++) {
2068 			if (k->flags & PADDING)
2069 				continue;
2070 			len = strlen(k->text);
2071 			if (len + 1 >= buffend - buffp)
2072 				break;
2073 			if (!firstVarName)
2074 				*buffp++ = ',';
2075 			else
2076 				firstVarName = FALSE;
2077 			memcpy(buffp, k->text, len);
2078 			buffp += len;
2079 		}
2080 
2081 		for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
2082 			if (k->flags & PADDING)
2083 				continue;
2084 			if (NULL == k->text)
2085 				continue;
2086 			ss1 = strchr(k->text, '=');
2087 			if (NULL == ss1)
2088 				len = strlen(k->text);
2089 			else
2090 				len = ss1 - k->text;
2091 			if (len + 1 >= buffend - buffp)
2092 				break;
2093 			if (firstVarName) {
2094 				*buffp++ = ',';
2095 				firstVarName = FALSE;
2096 			}
2097 			memcpy(buffp, k->text,(unsigned)len);
2098 			buffp += len;
2099 		}
2100 		if (2 >= buffend - buffp)
2101 			break;
2102 
2103 		*buffp++ = '"';
2104 		*buffp = '\0';
2105 
2106 		ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
2107 		break;
2108 	}
2109 
2110 	case CS_TAI:
2111 		if (sys_tai > 0)
2112 			ctl_putuint(sys_var[CS_TAI].text, sys_tai);
2113 		break;
2114 
2115 	case CS_LEAPTAB:
2116 	{
2117 		leap_signature_t lsig;
2118 		leapsec_getsig(&lsig);
2119 		if (lsig.ttime > 0)
2120 			ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
2121 		break;
2122 	}
2123 
2124 	case CS_LEAPEND:
2125 	{
2126 		leap_signature_t lsig;
2127 		leapsec_getsig(&lsig);
2128 		if (lsig.etime > 0)
2129 			ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
2130 		break;
2131 	}
2132 
2133 #ifdef LEAP_SMEAR
2134 	case CS_LEAPSMEARINTV:
2135 		if (leap_smear_intv > 0)
2136 			ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv);
2137 		break;
2138 
2139 	case CS_LEAPSMEAROFFS:
2140 		if (leap_smear_intv > 0)
2141 			ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text,
2142 				   leap_smear.doffset * 1e3);
2143 		break;
2144 #endif	/* LEAP_SMEAR */
2145 
2146 	case CS_RATE:
2147 		ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
2148 		break;
2149 
2150 	case CS_MRU_ENABLED:
2151 		ctl_puthex(sys_var[varid].text, mon_enabled);
2152 		break;
2153 
2154 	case CS_MRU_DEPTH:
2155 		ctl_putuint(sys_var[varid].text, mru_entries);
2156 		break;
2157 
2158 	case CS_MRU_MEM:
2159 		kb = mru_entries * (sizeof(mon_entry) / 1024.);
2160 		u = (u_int)kb;
2161 		if (kb - u >= 0.5)
2162 			u++;
2163 		ctl_putuint(sys_var[varid].text, u);
2164 		break;
2165 
2166 	case CS_MRU_DEEPEST:
2167 		ctl_putuint(sys_var[varid].text, mru_peakentries);
2168 		break;
2169 
2170 	case CS_MRU_MINDEPTH:
2171 		ctl_putuint(sys_var[varid].text, mru_mindepth);
2172 		break;
2173 
2174 	case CS_MRU_MAXAGE:
2175 		ctl_putint(sys_var[varid].text, mru_maxage);
2176 		break;
2177 
2178 	case CS_MRU_MAXDEPTH:
2179 		ctl_putuint(sys_var[varid].text, mru_maxdepth);
2180 		break;
2181 
2182 	case CS_MRU_MAXMEM:
2183 		kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
2184 		u = (u_int)kb;
2185 		if (kb - u >= 0.5)
2186 			u++;
2187 		ctl_putuint(sys_var[varid].text, u);
2188 		break;
2189 
2190 	case CS_SS_UPTIME:
2191 		ctl_putuint(sys_var[varid].text, current_time);
2192 		break;
2193 
2194 	case CS_SS_RESET:
2195 		ctl_putuint(sys_var[varid].text,
2196 			    current_time - sys_stattime);
2197 		break;
2198 
2199 	case CS_SS_RECEIVED:
2200 		ctl_putuint(sys_var[varid].text, sys_received);
2201 		break;
2202 
2203 	case CS_SS_THISVER:
2204 		ctl_putuint(sys_var[varid].text, sys_newversion);
2205 		break;
2206 
2207 	case CS_SS_OLDVER:
2208 		ctl_putuint(sys_var[varid].text, sys_oldversion);
2209 		break;
2210 
2211 	case CS_SS_BADFORMAT:
2212 		ctl_putuint(sys_var[varid].text, sys_badlength);
2213 		break;
2214 
2215 	case CS_SS_BADAUTH:
2216 		ctl_putuint(sys_var[varid].text, sys_badauth);
2217 		break;
2218 
2219 	case CS_SS_DECLINED:
2220 		ctl_putuint(sys_var[varid].text, sys_declined);
2221 		break;
2222 
2223 	case CS_SS_RESTRICTED:
2224 		ctl_putuint(sys_var[varid].text, sys_restricted);
2225 		break;
2226 
2227 	case CS_SS_LIMITED:
2228 		ctl_putuint(sys_var[varid].text, sys_limitrejected);
2229 		break;
2230 
2231 	case CS_SS_LAMPORT:
2232 		ctl_putuint(sys_var[varid].text, sys_lamport);
2233 		break;
2234 
2235 	case CS_SS_TSROUNDING:
2236 		ctl_putuint(sys_var[varid].text, sys_tsrounding);
2237 		break;
2238 
2239 	case CS_SS_KODSENT:
2240 		ctl_putuint(sys_var[varid].text, sys_kodsent);
2241 		break;
2242 
2243 	case CS_SS_PROCESSED:
2244 		ctl_putuint(sys_var[varid].text, sys_processed);
2245 		break;
2246 
2247 	case CS_BCASTDELAY:
2248 		ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2249 		break;
2250 
2251 	case CS_AUTHDELAY:
2252 		LFPTOD(&sys_authdelay, dtemp);
2253 		ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2254 		break;
2255 
2256 	case CS_AUTHKEYS:
2257 		ctl_putuint(sys_var[varid].text, authnumkeys);
2258 		break;
2259 
2260 	case CS_AUTHFREEK:
2261 		ctl_putuint(sys_var[varid].text, authnumfreekeys);
2262 		break;
2263 
2264 	case CS_AUTHKLOOKUPS:
2265 		ctl_putuint(sys_var[varid].text, authkeylookups);
2266 		break;
2267 
2268 	case CS_AUTHKNOTFOUND:
2269 		ctl_putuint(sys_var[varid].text, authkeynotfound);
2270 		break;
2271 
2272 	case CS_AUTHKUNCACHED:
2273 		ctl_putuint(sys_var[varid].text, authkeyuncached);
2274 		break;
2275 
2276 	case CS_AUTHKEXPIRED:
2277 		ctl_putuint(sys_var[varid].text, authkeyexpired);
2278 		break;
2279 
2280 	case CS_AUTHENCRYPTS:
2281 		ctl_putuint(sys_var[varid].text, authencryptions);
2282 		break;
2283 
2284 	case CS_AUTHDECRYPTS:
2285 		ctl_putuint(sys_var[varid].text, authdecryptions);
2286 		break;
2287 
2288 	case CS_AUTHRESET:
2289 		ctl_putuint(sys_var[varid].text,
2290 			    current_time - auth_timereset);
2291 		break;
2292 
2293 		/*
2294 		 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2295 		 * unavailable, otherwise calls putfunc with args.
2296 		 */
2297 #ifndef KERNEL_PLL
2298 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2299 		ctl_putint(sys_var[varid].text, 0)
2300 #else
2301 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2302 		putfunc args
2303 #endif
2304 
2305 		/*
2306 		 * CTL_IF_KERNPPS() puts a zero if either the kernel
2307 		 * loop is unavailable, or kernel hard PPS is not
2308 		 * active, otherwise calls putfunc with args.
2309 		 */
2310 #ifndef KERNEL_PLL
2311 # define	CTL_IF_KERNPPS(putfunc, args)	\
2312 		ctl_putint(sys_var[varid].text, 0)
2313 #else
2314 # define	CTL_IF_KERNPPS(putfunc, args)			\
2315 		if (0 == ntx.shift)				\
2316 			ctl_putint(sys_var[varid].text, 0);	\
2317 		else						\
2318 			putfunc args	/* no trailing ; */
2319 #endif
2320 
2321 	case CS_K_OFFSET:
2322 		CTL_IF_KERNLOOP(
2323 			ctl_putdblf,
2324 			(sys_var[varid].text, 0, -1, to_ms_nusec * ntx.offset)
2325 		);
2326 		break;
2327 
2328 	case CS_K_FREQ:
2329 		CTL_IF_KERNLOOP(
2330 			ctl_putsfp,
2331 			(sys_var[varid].text, ntx.freq)
2332 		);
2333 		break;
2334 
2335 	case CS_K_MAXERR:
2336 		CTL_IF_KERNLOOP(
2337 			ctl_putdblf,
2338 			(sys_var[varid].text, 0, 6,
2339 			 to_ms_usec * ntx.maxerror)
2340 		);
2341 		break;
2342 
2343 	case CS_K_ESTERR:
2344 		CTL_IF_KERNLOOP(
2345 			ctl_putdblf,
2346 			(sys_var[varid].text, 0, 6,
2347 			 to_ms_usec * ntx.esterror)
2348 		);
2349 		break;
2350 
2351 	case CS_K_STFLAGS:
2352 #ifndef KERNEL_PLL
2353 		ss = "";
2354 #else
2355 		ss = k_st_flags(ntx.status);
2356 #endif
2357 		ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2358 		break;
2359 
2360 	case CS_K_TIMECONST:
2361 		CTL_IF_KERNLOOP(
2362 			ctl_putint,
2363 			(sys_var[varid].text, ntx.constant)
2364 		);
2365 		break;
2366 
2367 	case CS_K_PRECISION:
2368 		CTL_IF_KERNLOOP(
2369 			ctl_putdblf,
2370 			(sys_var[varid].text, 0, 6,
2371 			    to_ms_usec * ntx.precision)
2372 		);
2373 		break;
2374 
2375 	case CS_K_FREQTOL:
2376 		CTL_IF_KERNLOOP(
2377 			ctl_putsfp,
2378 			(sys_var[varid].text, ntx.tolerance)
2379 		);
2380 		break;
2381 
2382 	case CS_K_PPS_FREQ:
2383 		CTL_IF_KERNPPS(
2384 			ctl_putsfp,
2385 			(sys_var[varid].text, ntx.ppsfreq)
2386 		);
2387 		break;
2388 
2389 	case CS_K_PPS_STABIL:
2390 		CTL_IF_KERNPPS(
2391 			ctl_putsfp,
2392 			(sys_var[varid].text, ntx.stabil)
2393 		);
2394 		break;
2395 
2396 	case CS_K_PPS_JITTER:
2397 		CTL_IF_KERNPPS(
2398 			ctl_putdbl,
2399 			(sys_var[varid].text, to_ms_nusec * ntx.jitter)
2400 		);
2401 		break;
2402 
2403 	case CS_K_PPS_CALIBDUR:
2404 		CTL_IF_KERNPPS(
2405 			ctl_putint,
2406 			(sys_var[varid].text, 1 << ntx.shift)
2407 		);
2408 		break;
2409 
2410 	case CS_K_PPS_CALIBS:
2411 		CTL_IF_KERNPPS(
2412 			ctl_putint,
2413 			(sys_var[varid].text, ntx.calcnt)
2414 		);
2415 		break;
2416 
2417 	case CS_K_PPS_CALIBERRS:
2418 		CTL_IF_KERNPPS(
2419 			ctl_putint,
2420 			(sys_var[varid].text, ntx.errcnt)
2421 		);
2422 		break;
2423 
2424 	case CS_K_PPS_JITEXC:
2425 		CTL_IF_KERNPPS(
2426 			ctl_putint,
2427 			(sys_var[varid].text, ntx.jitcnt)
2428 		);
2429 		break;
2430 
2431 	case CS_K_PPS_STBEXC:
2432 		CTL_IF_KERNPPS(
2433 			ctl_putint,
2434 			(sys_var[varid].text, ntx.stbcnt)
2435 		);
2436 		break;
2437 
2438 	case CS_IOSTATS_RESET:
2439 		ctl_putuint(sys_var[varid].text,
2440 			    current_time - io_timereset);
2441 		break;
2442 
2443 	case CS_TOTAL_RBUF:
2444 		ctl_putuint(sys_var[varid].text, total_recvbuffs());
2445 		break;
2446 
2447 	case CS_FREE_RBUF:
2448 		ctl_putuint(sys_var[varid].text, free_recvbuffs());
2449 		break;
2450 
2451 	case CS_USED_RBUF:
2452 		ctl_putuint(sys_var[varid].text, full_recvbuffs());
2453 		break;
2454 
2455 	case CS_RBUF_LOWATER:
2456 		ctl_putuint(sys_var[varid].text, lowater_additions());
2457 		break;
2458 
2459 	case CS_IO_DROPPED:
2460 		ctl_putuint(sys_var[varid].text, packets_dropped);
2461 		break;
2462 
2463 	case CS_IO_IGNORED:
2464 		ctl_putuint(sys_var[varid].text, packets_ignored);
2465 		break;
2466 
2467 	case CS_IO_RECEIVED:
2468 		ctl_putuint(sys_var[varid].text, packets_received);
2469 		break;
2470 
2471 	case CS_IO_SENT:
2472 		ctl_putuint(sys_var[varid].text, packets_sent);
2473 		break;
2474 
2475 	case CS_IO_SENDFAILED:
2476 		ctl_putuint(sys_var[varid].text, packets_notsent);
2477 		break;
2478 
2479 	case CS_IO_WAKEUPS:
2480 		ctl_putuint(sys_var[varid].text, handler_calls);
2481 		break;
2482 
2483 	case CS_IO_GOODWAKEUPS:
2484 		ctl_putuint(sys_var[varid].text, handler_pkts);
2485 		break;
2486 
2487 	case CS_TIMERSTATS_RESET:
2488 		ctl_putuint(sys_var[varid].text,
2489 			    current_time - timer_timereset);
2490 		break;
2491 
2492 	case CS_TIMER_OVERRUNS:
2493 		ctl_putuint(sys_var[varid].text, alarm_overflow);
2494 		break;
2495 
2496 	case CS_TIMER_XMTS:
2497 		ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2498 		break;
2499 
2500 	case CS_FUZZ:
2501 		ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2502 		break;
2503 	case CS_WANDER_THRESH:
2504 		ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
2505 		break;
2506 #ifdef AUTOKEY
2507 	case CS_FLAGS:
2508 		if (crypto_flags)
2509 			ctl_puthex(sys_var[CS_FLAGS].text,
2510 			    crypto_flags);
2511 		break;
2512 
2513 	case CS_DIGEST:
2514 		if (crypto_flags) {
2515 			strlcpy(str, OBJ_nid2ln(crypto_nid),
2516 			    COUNTOF(str));
2517 			ctl_putstr(sys_var[CS_DIGEST].text, str,
2518 			    strlen(str));
2519 		}
2520 		break;
2521 
2522 	case CS_SIGNATURE:
2523 		if (crypto_flags) {
2524 			const EVP_MD *dp;
2525 
2526 			dp = EVP_get_digestbynid(crypto_flags >> 16);
2527 			strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2528 			    COUNTOF(str));
2529 			ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2530 			    strlen(str));
2531 		}
2532 		break;
2533 
2534 	case CS_HOST:
2535 		if (hostval.ptr != NULL)
2536 			ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2537 			    strlen(hostval.ptr));
2538 		break;
2539 
2540 	case CS_IDENT:
2541 		if (sys_ident != NULL)
2542 			ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2543 			    strlen(sys_ident));
2544 		break;
2545 
2546 	case CS_CERTIF:
2547 		for (cp = cinfo; cp != NULL; cp = cp->link) {
2548 			snprintf(str, sizeof(str), "%s %s 0x%x",
2549 			    cp->subject, cp->issuer, cp->flags);
2550 			ctl_putstr(sys_var[CS_CERTIF].text, str,
2551 			    strlen(str));
2552 			ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
2553 		}
2554 		break;
2555 
2556 	case CS_PUBLIC:
2557 		if (hostval.tstamp != 0)
2558 			ctl_putfs(sys_var[CS_PUBLIC].text,
2559 			    ntohl(hostval.tstamp));
2560 		break;
2561 #endif	/* AUTOKEY */
2562 
2563 	default:
2564 		break;
2565 	}
2566 }
2567 
2568 
2569 /*
2570  * ctl_putpeer - output a peer variable
2571  */
2572 static void
2573 ctl_putpeer(
2574 	int id,
2575 	struct peer *p
2576 	)
2577 {
2578 	char buf[CTL_MAX_DATA_LEN];
2579 	char *s;
2580 	char *t;
2581 	char *be;
2582 	int i;
2583 	const struct ctl_var *k;
2584 #ifdef AUTOKEY
2585 	struct autokey *ap;
2586 	const EVP_MD *dp;
2587 	const char *str;
2588 #endif	/* AUTOKEY */
2589 
2590 	switch (id) {
2591 
2592 	case CP_CONFIG:
2593 		ctl_putuint(peer_var[id].text,
2594 			    !(FLAG_PREEMPT & p->flags));
2595 		break;
2596 
2597 	case CP_AUTHENABLE:
2598 		ctl_putuint(peer_var[id].text, !(p->keyid));
2599 		break;
2600 
2601 	case CP_AUTHENTIC:
2602 		ctl_putuint(peer_var[id].text,
2603 			    !!(FLAG_AUTHENTIC & p->flags));
2604 		break;
2605 
2606 	case CP_SRCADR:
2607 		ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2608 		break;
2609 
2610 	case CP_SRCPORT:
2611 		ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2612 		break;
2613 
2614 	case CP_SRCHOST:
2615 		if (p->hostname != NULL)
2616 			ctl_putstr(peer_var[id].text, p->hostname,
2617 				   strlen(p->hostname));
2618 		break;
2619 
2620 	case CP_DSTADR:
2621 		ctl_putadr(peer_var[id].text, 0,
2622 			   (p->dstadr != NULL)
2623 				? &p->dstadr->sin
2624 				: NULL);
2625 		break;
2626 
2627 	case CP_DSTPORT:
2628 		ctl_putuint(peer_var[id].text,
2629 			    (p->dstadr != NULL)
2630 				? SRCPORT(&p->dstadr->sin)
2631 				: 0);
2632 		break;
2633 
2634 	case CP_IN:
2635 		if (p->r21 > 0.)
2636 			ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2637 		break;
2638 
2639 	case CP_OUT:
2640 		if (p->r34 > 0.)
2641 			ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2642 		break;
2643 
2644 	case CP_RATE:
2645 		ctl_putuint(peer_var[id].text, p->throttle);
2646 		break;
2647 
2648 	case CP_LEAP:
2649 		ctl_putuint(peer_var[id].text, p->leap);
2650 		break;
2651 
2652 	case CP_HMODE:
2653 		ctl_putuint(peer_var[id].text, p->hmode);
2654 		break;
2655 
2656 	case CP_STRATUM:
2657 		ctl_putuint(peer_var[id].text, p->stratum);
2658 		break;
2659 
2660 	case CP_PPOLL:
2661 		ctl_putuint(peer_var[id].text, p->ppoll);
2662 		break;
2663 
2664 	case CP_HPOLL:
2665 		ctl_putuint(peer_var[id].text, p->hpoll);
2666 		break;
2667 
2668 	case CP_PRECISION:
2669 		ctl_putint(peer_var[id].text, p->precision);
2670 		break;
2671 
2672 	case CP_ROOTDELAY:
2673 		ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2674 		break;
2675 
2676 	case CP_ROOTDISPERSION:
2677 		ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2678 		break;
2679 
2680 	case CP_REFID:
2681 #ifdef REFCLOCK
2682 		if (p->flags & FLAG_REFCLOCK) {
2683 			ctl_putrefid(peer_var[id].text, p->refid);
2684 			break;
2685 		}
2686 #endif
2687 		if (REFID_ISTEXT(p->stratum))
2688 			ctl_putrefid(peer_var[id].text, p->refid);
2689 		else
2690 			ctl_putadr(peer_var[id].text, p->refid, NULL);
2691 		break;
2692 
2693 	case CP_REFTIME:
2694 		ctl_putts(peer_var[id].text, &p->reftime);
2695 		break;
2696 
2697 	case CP_ORG:
2698 		ctl_putts(peer_var[id].text, &p->aorg);
2699 		break;
2700 
2701 	case CP_REC:
2702 		ctl_putts(peer_var[id].text, &p->dst);
2703 		break;
2704 
2705 	case CP_XMT:
2706 		if (p->xleave)
2707 			ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2708 		break;
2709 
2710 	case CP_BIAS:
2711 		if (p->bias != 0.)
2712 			ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2713 		break;
2714 
2715 	case CP_REACH:
2716 		ctl_puthex(peer_var[id].text, p->reach);
2717 		break;
2718 
2719 	case CP_FLASH:
2720 		ctl_puthex(peer_var[id].text, p->flash);
2721 		break;
2722 
2723 	case CP_TTL:
2724 #ifdef REFCLOCK
2725 		if (p->flags & FLAG_REFCLOCK) {
2726 			ctl_putuint(peer_var[id].text, p->ttl);
2727 			break;
2728 		}
2729 #endif
2730 		if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2731 			ctl_putint(peer_var[id].text,
2732 				   sys_ttl[p->ttl]);
2733 		break;
2734 
2735 	case CP_UNREACH:
2736 		ctl_putuint(peer_var[id].text, p->unreach);
2737 		break;
2738 
2739 	case CP_TIMER:
2740 		ctl_putuint(peer_var[id].text,
2741 			    p->nextdate - current_time);
2742 		break;
2743 
2744 	case CP_DELAY:
2745 		ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2746 		break;
2747 
2748 	case CP_OFFSET:
2749 		ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2750 		break;
2751 
2752 	case CP_JITTER:
2753 		ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2754 		break;
2755 
2756 	case CP_DISPERSION:
2757 		ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2758 		break;
2759 
2760 	case CP_KEYID:
2761 		if (p->keyid > NTP_MAXKEY)
2762 			ctl_puthex(peer_var[id].text, p->keyid);
2763 		else
2764 			ctl_putuint(peer_var[id].text, p->keyid);
2765 		break;
2766 
2767 	case CP_FILTDELAY:
2768 		ctl_putarray(peer_var[id].text, p->filter_delay,
2769 			     p->filter_nextpt);
2770 		break;
2771 
2772 	case CP_FILTOFFSET:
2773 		ctl_putarray(peer_var[id].text, p->filter_offset,
2774 			     p->filter_nextpt);
2775 		break;
2776 
2777 	case CP_FILTERROR:
2778 		ctl_putarray(peer_var[id].text, p->filter_disp,
2779 			     p->filter_nextpt);
2780 		break;
2781 
2782 	case CP_PMODE:
2783 		ctl_putuint(peer_var[id].text, p->pmode);
2784 		break;
2785 
2786 	case CP_RECEIVED:
2787 		ctl_putuint(peer_var[id].text, p->received);
2788 		break;
2789 
2790 	case CP_SENT:
2791 		ctl_putuint(peer_var[id].text, p->sent);
2792 		break;
2793 
2794 	case CP_VARLIST:
2795 		s = buf;
2796 		be = buf + sizeof(buf);
2797 		if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2798 			break;	/* really long var name */
2799 
2800 		snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2801 		s += strlen(s);
2802 		t = s;
2803 		for (k = peer_var; !(EOV & k->flags); k++) {
2804 			if (PADDING & k->flags)
2805 				continue;
2806 			i = strlen(k->text);
2807 			if (s + i + 1 >= be)
2808 				break;
2809 			if (s != t)
2810 				*s++ = ',';
2811 			memcpy(s, k->text, i);
2812 			s += i;
2813 		}
2814 		if (s + 2 < be) {
2815 			*s++ = '"';
2816 			*s = '\0';
2817 			ctl_putdata(buf, (u_int)(s - buf), 0);
2818 		}
2819 		break;
2820 
2821 	case CP_TIMEREC:
2822 		ctl_putuint(peer_var[id].text,
2823 			    current_time - p->timereceived);
2824 		break;
2825 
2826 	case CP_TIMEREACH:
2827 		ctl_putuint(peer_var[id].text,
2828 			    current_time - p->timereachable);
2829 		break;
2830 
2831 	case CP_BADAUTH:
2832 		ctl_putuint(peer_var[id].text, p->badauth);
2833 		break;
2834 
2835 	case CP_BOGUSORG:
2836 		ctl_putuint(peer_var[id].text, p->bogusorg);
2837 		break;
2838 
2839 	case CP_OLDPKT:
2840 		ctl_putuint(peer_var[id].text, p->oldpkt);
2841 		break;
2842 
2843 	case CP_SELDISP:
2844 		ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2845 		break;
2846 
2847 	case CP_SELBROKEN:
2848 		ctl_putuint(peer_var[id].text, p->selbroken);
2849 		break;
2850 
2851 	case CP_CANDIDATE:
2852 		ctl_putuint(peer_var[id].text, p->status);
2853 		break;
2854 #ifdef AUTOKEY
2855 	case CP_FLAGS:
2856 		if (p->crypto)
2857 			ctl_puthex(peer_var[id].text, p->crypto);
2858 		break;
2859 
2860 	case CP_SIGNATURE:
2861 		if (p->crypto) {
2862 			dp = EVP_get_digestbynid(p->crypto >> 16);
2863 			str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2864 			ctl_putstr(peer_var[id].text, str, strlen(str));
2865 		}
2866 		break;
2867 
2868 	case CP_HOST:
2869 		if (p->subject != NULL)
2870 			ctl_putstr(peer_var[id].text, p->subject,
2871 			    strlen(p->subject));
2872 		break;
2873 
2874 	case CP_VALID:		/* not used */
2875 		break;
2876 
2877 	case CP_INITSEQ:
2878 		if (NULL == (ap = p->recval.ptr))
2879 			break;
2880 
2881 		ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2882 		ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2883 		ctl_putfs(peer_var[CP_INITTSP].text,
2884 			  ntohl(p->recval.tstamp));
2885 		break;
2886 
2887 	case CP_IDENT:
2888 		if (p->ident != NULL)
2889 			ctl_putstr(peer_var[id].text, p->ident,
2890 			    strlen(p->ident));
2891 		break;
2892 
2893 
2894 #endif	/* AUTOKEY */
2895 	}
2896 }
2897 
2898 
2899 #ifdef REFCLOCK
2900 /*
2901  * ctl_putclock - output clock variables
2902  */
2903 static void
2904 ctl_putclock(
2905 	int id,
2906 	struct refclockstat *pcs,
2907 	int mustput
2908 	)
2909 {
2910 	char buf[CTL_MAX_DATA_LEN];
2911 	char *s, *t, *be;
2912 	const char *ss;
2913 	int i;
2914 	const struct ctl_var *k;
2915 
2916 	switch (id) {
2917 
2918 	case CC_TYPE:
2919 		if (mustput || pcs->clockdesc == NULL
2920 		    || *(pcs->clockdesc) == '\0') {
2921 			ctl_putuint(clock_var[id].text, pcs->type);
2922 		}
2923 		break;
2924 	case CC_TIMECODE:
2925 		ctl_putstr(clock_var[id].text,
2926 			   pcs->p_lastcode,
2927 			   (unsigned)pcs->lencode);
2928 		break;
2929 
2930 	case CC_POLL:
2931 		ctl_putuint(clock_var[id].text, pcs->polls);
2932 		break;
2933 
2934 	case CC_NOREPLY:
2935 		ctl_putuint(clock_var[id].text,
2936 			    pcs->noresponse);
2937 		break;
2938 
2939 	case CC_BADFORMAT:
2940 		ctl_putuint(clock_var[id].text,
2941 			    pcs->badformat);
2942 		break;
2943 
2944 	case CC_BADDATA:
2945 		ctl_putuint(clock_var[id].text,
2946 			    pcs->baddata);
2947 		break;
2948 
2949 	case CC_FUDGETIME1:
2950 		if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2951 			ctl_putdbl(clock_var[id].text,
2952 				   pcs->fudgetime1 * 1e3);
2953 		break;
2954 
2955 	case CC_FUDGETIME2:
2956 		if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2957 			ctl_putdbl(clock_var[id].text,
2958 				   pcs->fudgetime2 * 1e3);
2959 		break;
2960 
2961 	case CC_FUDGEVAL1:
2962 		if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2963 			ctl_putint(clock_var[id].text,
2964 				   pcs->fudgeval1);
2965 		break;
2966 
2967 	case CC_FUDGEVAL2:
2968 		if (mustput || (pcs->haveflags & CLK_HAVEVAL2)) {
2969 			if (pcs->fudgeval1 > 1)
2970 				ctl_putadr(clock_var[id].text,
2971 					   pcs->fudgeval2, NULL);
2972 			else
2973 				ctl_putrefid(clock_var[id].text,
2974 					     pcs->fudgeval2);
2975 		}
2976 		break;
2977 
2978 	case CC_FLAGS:
2979 		ctl_putuint(clock_var[id].text, pcs->flags);
2980 		break;
2981 
2982 	case CC_DEVICE:
2983 		if (pcs->clockdesc == NULL ||
2984 		    *(pcs->clockdesc) == '\0') {
2985 			if (mustput)
2986 				ctl_putstr(clock_var[id].text,
2987 					   "", 0);
2988 		} else {
2989 			ctl_putstr(clock_var[id].text,
2990 				   pcs->clockdesc,
2991 				   strlen(pcs->clockdesc));
2992 		}
2993 		break;
2994 
2995 	case CC_VARLIST:
2996 		s = buf;
2997 		be = buf + sizeof(buf);
2998 		if (strlen(clock_var[CC_VARLIST].text) + 4 >
2999 		    sizeof(buf))
3000 			break;	/* really long var name */
3001 
3002 		snprintf(s, sizeof(buf), "%s=\"",
3003 			 clock_var[CC_VARLIST].text);
3004 		s += strlen(s);
3005 		t = s;
3006 
3007 		for (k = clock_var; !(EOV & k->flags); k++) {
3008 			if (PADDING & k->flags)
3009 				continue;
3010 
3011 			i = strlen(k->text);
3012 			if (s + i + 1 >= be)
3013 				break;
3014 
3015 			if (s != t)
3016 				*s++ = ',';
3017 			memcpy(s, k->text, i);
3018 			s += i;
3019 		}
3020 
3021 		for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
3022 			if (PADDING & k->flags)
3023 				continue;
3024 
3025 			ss = k->text;
3026 			if (NULL == ss)
3027 				continue;
3028 
3029 			while (*ss && *ss != '=')
3030 				ss++;
3031 			i = ss - k->text;
3032 			if (s + i + 1 >= be)
3033 				break;
3034 
3035 			if (s != t)
3036 				*s++ = ',';
3037 			memcpy(s, k->text, (unsigned)i);
3038 			s += i;
3039 			*s = '\0';
3040 		}
3041 		if (s + 2 >= be)
3042 			break;
3043 
3044 		*s++ = '"';
3045 		*s = '\0';
3046 		ctl_putdata(buf, (unsigned)(s - buf), 0);
3047 		break;
3048 	}
3049 }
3050 #endif
3051 
3052 
3053 
3054 /*
3055  * ctl_getitem - get the next data item from the incoming packet
3056  */
3057 static const struct ctl_var *
3058 ctl_getitem(
3059 	const struct ctl_var *var_list,
3060 	char **data
3061 	)
3062 {
3063 	/* [Bug 3008] First check the packet data sanity, then search
3064 	 * the key. This improves the consistency of result values: If
3065 	 * the result is NULL once, it will never be EOV again for this
3066 	 * packet; If it's EOV, it will never be NULL again until the
3067 	 * variable is found and processed in a given 'var_list'. (That
3068 	 * is, a result is returned that is neither NULL nor EOV).
3069 	 */
3070 	static const struct ctl_var eol = { 0, EOV, NULL };
3071 	static char buf[128];
3072 	static u_long quiet_until;
3073 	const struct ctl_var *v;
3074 	char *cp;
3075 	char *tp;
3076 
3077 	/*
3078 	 * Part One: Validate the packet state
3079 	 */
3080 
3081 	/* Delete leading commas and white space */
3082 	while (reqpt < reqend && (*reqpt == ',' ||
3083 				  isspace((unsigned char)*reqpt)))
3084 		reqpt++;
3085 	if (reqpt >= reqend)
3086 		return NULL;
3087 
3088 	/* Scan the string in the packet until we hit comma or
3089 	 * EoB. Register position of first '=' on the fly. */
3090 	for (tp = NULL, cp = reqpt; cp != reqend; ++cp) {
3091 		if (*cp == '=' && tp == NULL)
3092 			tp = cp;
3093 		if (*cp == ',')
3094 			break;
3095 	}
3096 
3097 	/* Process payload, if any. */
3098 	*data = NULL;
3099 	if (NULL != tp) {
3100 		/* eventually strip white space from argument. */
3101 		const char *plhead = tp + 1; /* skip the '=' */
3102 		const char *pltail = cp;
3103 		size_t      plsize;
3104 
3105 		while (plhead != pltail && isspace((u_char)plhead[0]))
3106 			++plhead;
3107 		while (plhead != pltail && isspace((u_char)pltail[-1]))
3108 			--pltail;
3109 
3110 		/* check payload size, terminate packet on overflow */
3111 		plsize = (size_t)(pltail - plhead);
3112 		if (plsize >= sizeof(buf))
3113 			goto badpacket;
3114 
3115 		/* copy data, NUL terminate, and set result data ptr */
3116 		memcpy(buf, plhead, plsize);
3117 		buf[plsize] = '\0';
3118 		*data = buf;
3119 	} else {
3120 		/* no payload, current end --> current name termination */
3121 		tp = cp;
3122 	}
3123 
3124 	/* Part Two
3125 	 *
3126 	 * Now we're sure that the packet data itself is sane. Scan the
3127 	 * list now. Make sure a NULL list is properly treated by
3128 	 * returning a synthetic End-Of-Values record. We must not
3129 	 * return NULL pointers after this point, or the behaviour would
3130 	 * become inconsistent if called several times with different
3131 	 * variable lists after an EoV was returned.  (Such a behavior
3132 	 * actually caused Bug 3008.)
3133 	 */
3134 
3135 	if (NULL == var_list)
3136 		return &eol;
3137 
3138 	for (v = var_list; !(EOV & v->flags); ++v)
3139 		if (!(PADDING & v->flags)) {
3140 			/* Check if the var name matches the buffer. The
3141 			 * name is bracketed by [reqpt..tp] and not NUL
3142 			 * terminated, and it contains no '=' char. The
3143 			 * lookup value IS NUL-terminated but might
3144 			 * include a '='... We have to look out for
3145 			 * that!
3146 			 */
3147 			const char *sp1 = reqpt;
3148 			const char *sp2 = v->text;
3149 
3150 			/* [Bug 3412] do not compare past NUL byte in name */
3151 			while (   (sp1 != tp)
3152 			       && ('\0' != *sp2) && (*sp1 == *sp2)) {
3153 				++sp1;
3154 				++sp2;
3155 			}
3156 			if (sp1 == tp && (*sp2 == '\0' || *sp2 == '='))
3157 				break;
3158 		}
3159 
3160 	/* See if we have found a valid entry or not. If found, advance
3161 	 * the request pointer for the next round; if not, clear the
3162 	 * data pointer so we have no dangling garbage here.
3163 	 */
3164 	if (EOV & v->flags)
3165 		*data = NULL;
3166 	else
3167 		reqpt = cp + (cp != reqend);
3168 	return v;
3169 
3170   badpacket:
3171 	/*TODO? somehow indicate this packet was bad, apart from syslog? */
3172 	numctlbadpkts++;
3173 	NLOG(NLOG_SYSEVENT)
3174 	    if (quiet_until <= current_time) {
3175 		    quiet_until = current_time + 300;
3176 		    msyslog(LOG_WARNING,
3177 			    "Possible 'ntpdx' exploit from %s#%u (possibly spoofed)",
3178 			    stoa(rmt_addr), SRCPORT(rmt_addr));
3179 	    }
3180 	reqpt = reqend; /* never again for this packet! */
3181 	return NULL;
3182 }
3183 
3184 
3185 /*
3186  * control_unspec - response to an unspecified op-code
3187  */
3188 /*ARGSUSED*/
3189 static void
3190 control_unspec(
3191 	struct recvbuf *rbufp,
3192 	int restrict_mask
3193 	)
3194 {
3195 	struct peer *peer;
3196 
3197 	/*
3198 	 * What is an appropriate response to an unspecified op-code?
3199 	 * I return no errors and no data, unless a specified assocation
3200 	 * doesn't exist.
3201 	 */
3202 	if (res_associd) {
3203 		peer = findpeerbyassoc(res_associd);
3204 		if (NULL == peer) {
3205 			ctl_error(CERR_BADASSOC);
3206 			return;
3207 		}
3208 		rpkt.status = htons(ctlpeerstatus(peer));
3209 	} else
3210 		rpkt.status = htons(ctlsysstatus());
3211 	ctl_flushpkt(0);
3212 }
3213 
3214 
3215 /*
3216  * read_status - return either a list of associd's, or a particular
3217  * peer's status.
3218  */
3219 /*ARGSUSED*/
3220 static void
3221 read_status(
3222 	struct recvbuf *rbufp,
3223 	int restrict_mask
3224 	)
3225 {
3226 	struct peer *peer;
3227 	const u_char *cp;
3228 	size_t n;
3229 	/* a_st holds association ID, status pairs alternating */
3230 	u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
3231 
3232 #ifdef DEBUG
3233 	if (debug > 2)
3234 		printf("read_status: ID %d\n", res_associd);
3235 #endif
3236 	/*
3237 	 * Two choices here. If the specified association ID is
3238 	 * zero we return all known assocation ID's.  Otherwise
3239 	 * we return a bunch of stuff about the particular peer.
3240 	 */
3241 	if (res_associd) {
3242 		peer = findpeerbyassoc(res_associd);
3243 		if (NULL == peer) {
3244 			ctl_error(CERR_BADASSOC);
3245 			return;
3246 		}
3247 		rpkt.status = htons(ctlpeerstatus(peer));
3248 		if (res_authokay)
3249 			peer->num_events = 0;
3250 		/*
3251 		 * For now, output everything we know about the
3252 		 * peer. May be more selective later.
3253 		 */
3254 		for (cp = def_peer_var; *cp != 0; cp++)
3255 			ctl_putpeer((int)*cp, peer);
3256 		ctl_flushpkt(0);
3257 		return;
3258 	}
3259 	n = 0;
3260 	rpkt.status = htons(ctlsysstatus());
3261 	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3262 		a_st[n++] = htons(peer->associd);
3263 		a_st[n++] = htons(ctlpeerstatus(peer));
3264 		/* two entries each loop iteration, so n + 1 */
3265 		if (n + 1 >= COUNTOF(a_st)) {
3266 			ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
3267 				    1);
3268 			n = 0;
3269 		}
3270 	}
3271 	if (n)
3272 		ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3273 	ctl_flushpkt(0);
3274 }
3275 
3276 
3277 /*
3278  * read_peervars - half of read_variables() implementation
3279  */
3280 static void
3281 read_peervars(void)
3282 {
3283 	const struct ctl_var *v;
3284 	struct peer *peer;
3285 	const u_char *cp;
3286 	size_t i;
3287 	char *	valuep;
3288 	u_char	wants[CP_MAXCODE + 1];
3289 	u_int	gotvar;
3290 
3291 	/*
3292 	 * Wants info for a particular peer. See if we know
3293 	 * the guy.
3294 	 */
3295 	peer = findpeerbyassoc(res_associd);
3296 	if (NULL == peer) {
3297 		ctl_error(CERR_BADASSOC);
3298 		return;
3299 	}
3300 	rpkt.status = htons(ctlpeerstatus(peer));
3301 	if (res_authokay)
3302 		peer->num_events = 0;
3303 	ZERO(wants);
3304 	gotvar = 0;
3305 	while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3306 		if (v->flags & EOV) {
3307 			ctl_error(CERR_UNKNOWNVAR);
3308 			return;
3309 		}
3310 		INSIST(v->code < COUNTOF(wants));
3311 		wants[v->code] = 1;
3312 		gotvar = 1;
3313 	}
3314 	if (gotvar) {
3315 		for (i = 1; i < COUNTOF(wants); i++)
3316 			if (wants[i])
3317 				ctl_putpeer(i, peer);
3318 	} else
3319 		for (cp = def_peer_var; *cp != 0; cp++)
3320 			ctl_putpeer((int)*cp, peer);
3321 	ctl_flushpkt(0);
3322 }
3323 
3324 
3325 /*
3326  * read_sysvars - half of read_variables() implementation
3327  */
3328 static void
3329 read_sysvars(void)
3330 {
3331 	const struct ctl_var *v;
3332 	struct ctl_var *kv;
3333 	u_int	n;
3334 	u_int	gotvar;
3335 	const u_char *cs;
3336 	char *	valuep;
3337 	const char * pch;
3338 	u_char *wants;
3339 	size_t	wants_count;
3340 
3341 	/*
3342 	 * Wants system variables. Figure out which he wants
3343 	 * and give them to him.
3344 	 */
3345 	rpkt.status = htons(ctlsysstatus());
3346 	if (res_authokay)
3347 		ctl_sys_num_events = 0;
3348 	wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3349 	wants = emalloc_zero(wants_count);
3350 	gotvar = 0;
3351 	while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3352 		if (!(EOV & v->flags)) {
3353 			INSIST(v->code < wants_count);
3354 			wants[v->code] = 1;
3355 			gotvar = 1;
3356 		} else {
3357 			v = ctl_getitem(ext_sys_var, &valuep);
3358 			if (NULL == v) {
3359 				ctl_error(CERR_BADVALUE);
3360 				free(wants);
3361 				return;
3362 			}
3363 			if (EOV & v->flags) {
3364 				ctl_error(CERR_UNKNOWNVAR);
3365 				free(wants);
3366 				return;
3367 			}
3368 			n = v->code + CS_MAXCODE + 1;
3369 			INSIST(n < wants_count);
3370 			wants[n] = 1;
3371 			gotvar = 1;
3372 		}
3373 	}
3374 	if (gotvar) {
3375 		for (n = 1; n <= CS_MAXCODE; n++)
3376 			if (wants[n])
3377 				ctl_putsys(n);
3378 		for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3379 			if (wants[n + CS_MAXCODE + 1]) {
3380 				pch = ext_sys_var[n].text;
3381 				ctl_putdata(pch, strlen(pch), 0);
3382 			}
3383 	} else {
3384 		for (cs = def_sys_var; *cs != 0; cs++)
3385 			ctl_putsys((int)*cs);
3386 		for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3387 			if (DEF & kv->flags)
3388 				ctl_putdata(kv->text, strlen(kv->text),
3389 					    0);
3390 	}
3391 	free(wants);
3392 	ctl_flushpkt(0);
3393 }
3394 
3395 
3396 /*
3397  * read_variables - return the variables the caller asks for
3398  */
3399 /*ARGSUSED*/
3400 static void
3401 read_variables(
3402 	struct recvbuf *rbufp,
3403 	int restrict_mask
3404 	)
3405 {
3406 	if (res_associd)
3407 		read_peervars();
3408 	else
3409 		read_sysvars();
3410 }
3411 
3412 
3413 /*
3414  * write_variables - write into variables. We only allow leap bit
3415  * writing this way.
3416  */
3417 /*ARGSUSED*/
3418 static void
3419 write_variables(
3420 	struct recvbuf *rbufp,
3421 	int restrict_mask
3422 	)
3423 {
3424 	const struct ctl_var *v;
3425 	int ext_var;
3426 	char *valuep;
3427 	long val;
3428 	size_t octets;
3429 	char *vareqv;
3430 	const char *t;
3431 	char *tt;
3432 
3433 	val = 0;
3434 	/*
3435 	 * If he's trying to write into a peer tell him no way
3436 	 */
3437 	if (res_associd != 0) {
3438 		ctl_error(CERR_PERMISSION);
3439 		return;
3440 	}
3441 
3442 	/*
3443 	 * Set status
3444 	 */
3445 	rpkt.status = htons(ctlsysstatus());
3446 
3447 	/*
3448 	 * Look through the variables. Dump out at the first sign of
3449 	 * trouble.
3450 	 */
3451 	while ((v = ctl_getitem(sys_var, &valuep)) != NULL) {
3452 		ext_var = 0;
3453 		if (v->flags & EOV) {
3454 			v = ctl_getitem(ext_sys_var, &valuep);
3455 			if (v != NULL) {
3456 				if (v->flags & EOV) {
3457 					ctl_error(CERR_UNKNOWNVAR);
3458 					return;
3459 				}
3460 				ext_var = 1;
3461 			} else {
3462 				break;
3463 			}
3464 		}
3465 		if (!(v->flags & CAN_WRITE)) {
3466 			ctl_error(CERR_PERMISSION);
3467 			return;
3468 		}
3469 		/* [bug 3565] writing makes sense only if we *have* a
3470 		 * value in the packet!
3471 		 */
3472 		if (valuep == NULL) {
3473 			ctl_error(CERR_BADFMT);
3474 			return;
3475 		}
3476 		if (!ext_var) {
3477 			if ( !(*valuep && atoint(valuep, &val))) {
3478 				ctl_error(CERR_BADFMT);
3479 				return;
3480 			}
3481 			if ((val & ~LEAP_NOTINSYNC) != 0) {
3482 				ctl_error(CERR_BADVALUE);
3483 				return;
3484 			}
3485 		}
3486 
3487 		if (ext_var) {
3488 			octets = strlen(v->text) + strlen(valuep) + 2;
3489 			vareqv = emalloc(octets);
3490 			tt = vareqv;
3491 			t = v->text;
3492 			while (*t && *t != '=')
3493 				*tt++ = *t++;
3494 			*tt++ = '=';
3495 			memcpy(tt, valuep, 1 + strlen(valuep));
3496 			set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3497 			free(vareqv);
3498 		} else {
3499 			ctl_error(CERR_UNSPEC); /* really */
3500 			return;
3501 		}
3502 	}
3503 
3504 	/*
3505 	 * If we got anything, do it. xxx nothing to do ***
3506 	 */
3507 	/*
3508 	  if (leapind != ~0 || leapwarn != ~0) {
3509 	  if (!leap_setleap((int)leapind, (int)leapwarn)) {
3510 	  ctl_error(CERR_PERMISSION);
3511 	  return;
3512 	  }
3513 	  }
3514 	*/
3515 	ctl_flushpkt(0);
3516 }
3517 
3518 
3519 /*
3520  * configure() processes ntpq :config/config-from-file, allowing
3521  *		generic runtime reconfiguration.
3522  */
3523 static void configure(
3524 	struct recvbuf *rbufp,
3525 	int restrict_mask
3526 	)
3527 {
3528 	size_t data_count;
3529 	int retval;
3530 
3531 	/* I haven't yet implemented changes to an existing association.
3532 	 * Hence check if the association id is 0
3533 	 */
3534 	if (res_associd != 0) {
3535 		ctl_error(CERR_BADVALUE);
3536 		return;
3537 	}
3538 
3539 	if (RES_NOMODIFY & restrict_mask) {
3540 		snprintf(remote_config.err_msg,
3541 			 sizeof(remote_config.err_msg),
3542 			 "runtime configuration prohibited by restrict ... nomodify");
3543 		ctl_putdata(remote_config.err_msg,
3544 			    strlen(remote_config.err_msg), 0);
3545 		ctl_flushpkt(0);
3546 		NLOG(NLOG_SYSINFO)
3547 			msyslog(LOG_NOTICE,
3548 				"runtime config from %s rejected due to nomodify restriction",
3549 				stoa(&rbufp->recv_srcadr));
3550 		sys_restricted++;
3551 		return;
3552 	}
3553 
3554 	/* Initialize the remote config buffer */
3555 	data_count = remoteconfig_cmdlength(reqpt, reqend);
3556 
3557 	if (data_count > sizeof(remote_config.buffer) - 2) {
3558 		snprintf(remote_config.err_msg,
3559 			 sizeof(remote_config.err_msg),
3560 			 "runtime configuration failed: request too long");
3561 		ctl_putdata(remote_config.err_msg,
3562 			    strlen(remote_config.err_msg), 0);
3563 		ctl_flushpkt(0);
3564 		msyslog(LOG_NOTICE,
3565 			"runtime config from %s rejected: request too long",
3566 			stoa(&rbufp->recv_srcadr));
3567 		return;
3568 	}
3569 	/* Bug 2853 -- check if all characters were acceptable */
3570 	if (data_count != (size_t)(reqend - reqpt)) {
3571 		snprintf(remote_config.err_msg,
3572 			 sizeof(remote_config.err_msg),
3573 			 "runtime configuration failed: request contains an unprintable character");
3574 		ctl_putdata(remote_config.err_msg,
3575 			    strlen(remote_config.err_msg), 0);
3576 		ctl_flushpkt(0);
3577 		msyslog(LOG_NOTICE,
3578 			"runtime config from %s rejected: request contains an unprintable character: %0x",
3579 			stoa(&rbufp->recv_srcadr),
3580 			reqpt[data_count]);
3581 		return;
3582 	}
3583 
3584 	memcpy(remote_config.buffer, reqpt, data_count);
3585 	/* The buffer has no trailing linefeed or NUL right now. For
3586 	 * logging, we do not want a newline, so we do that first after
3587 	 * adding the necessary NUL byte.
3588 	 */
3589 	remote_config.buffer[data_count] = '\0';
3590 	DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3591 		remote_config.buffer));
3592 	msyslog(LOG_NOTICE, "%s config: %s",
3593 		stoa(&rbufp->recv_srcadr),
3594 		remote_config.buffer);
3595 
3596 	/* Now we have to make sure there is a NL/NUL sequence at the
3597 	 * end of the buffer before we parse it.
3598 	 */
3599 	remote_config.buffer[data_count++] = '\n';
3600 	remote_config.buffer[data_count] = '\0';
3601 	remote_config.pos = 0;
3602 	remote_config.err_pos = 0;
3603 	remote_config.no_errors = 0;
3604 	config_remotely(&rbufp->recv_srcadr);
3605 
3606 	/*
3607 	 * Check if errors were reported. If not, output 'Config
3608 	 * Succeeded'.  Else output the error count.  It would be nice
3609 	 * to output any parser error messages.
3610 	 */
3611 	if (0 == remote_config.no_errors) {
3612 		retval = snprintf(remote_config.err_msg,
3613 				  sizeof(remote_config.err_msg),
3614 				  "Config Succeeded");
3615 		if (retval > 0)
3616 			remote_config.err_pos += retval;
3617 	}
3618 
3619 	ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3620 	ctl_flushpkt(0);
3621 
3622 	DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3623 
3624 	if (remote_config.no_errors > 0)
3625 		msyslog(LOG_NOTICE, "%d error in %s config",
3626 			remote_config.no_errors,
3627 			stoa(&rbufp->recv_srcadr));
3628 }
3629 
3630 
3631 /*
3632  * derive_nonce - generate client-address-specific nonce value
3633  *		  associated with a given timestamp.
3634  */
3635 static u_int32 derive_nonce(
3636 	sockaddr_u *	addr,
3637 	u_int32		ts_i,
3638 	u_int32		ts_f
3639 	)
3640 {
3641 	static u_int32	salt[4];
3642 	static u_long	last_salt_update;
3643 	union d_tag {
3644 		u_char	digest[EVP_MAX_MD_SIZE];
3645 		u_int32 extract;
3646 	}		d;
3647 	EVP_MD_CTX	*ctx;
3648 	u_int		len;
3649 
3650 	while (!salt[0] || current_time - last_salt_update >= 3600) {
3651 		salt[0] = ntp_random();
3652 		salt[1] = ntp_random();
3653 		salt[2] = ntp_random();
3654 		salt[3] = ntp_random();
3655 		last_salt_update = current_time;
3656 	}
3657 
3658 	ctx = EVP_MD_CTX_new();
3659 #   if defined(OPENSSL) && defined(EVP_MD_CTX_FLAG_NON_FIPS_ALLOW)
3660 	/* [Bug 3457] set flags and don't kill them again */
3661 	EVP_MD_CTX_set_flags(ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
3662 	EVP_DigestInit_ex(ctx, EVP_get_digestbynid(NID_md5), NULL);
3663 #   else
3664 	EVP_DigestInit(ctx, EVP_get_digestbynid(NID_md5));
3665 #   endif
3666 	EVP_DigestUpdate(ctx, salt, sizeof(salt));
3667 	EVP_DigestUpdate(ctx, &ts_i, sizeof(ts_i));
3668 	EVP_DigestUpdate(ctx, &ts_f, sizeof(ts_f));
3669 	if (IS_IPV4(addr))
3670 		EVP_DigestUpdate(ctx, &SOCK_ADDR4(addr),
3671 			         sizeof(SOCK_ADDR4(addr)));
3672 	else
3673 		EVP_DigestUpdate(ctx, &SOCK_ADDR6(addr),
3674 			         sizeof(SOCK_ADDR6(addr)));
3675 	EVP_DigestUpdate(ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
3676 	EVP_DigestUpdate(ctx, salt, sizeof(salt));
3677 	EVP_DigestFinal(ctx, d.digest, &len);
3678 	EVP_MD_CTX_free(ctx);
3679 
3680 	return d.extract;
3681 }
3682 
3683 
3684 /*
3685  * generate_nonce - generate client-address-specific nonce string.
3686  */
3687 static void generate_nonce(
3688 	struct recvbuf *	rbufp,
3689 	char *			nonce,
3690 	size_t			nonce_octets
3691 	)
3692 {
3693 	u_int32 derived;
3694 
3695 	derived = derive_nonce(&rbufp->recv_srcadr,
3696 			       rbufp->recv_time.l_ui,
3697 			       rbufp->recv_time.l_uf);
3698 	snprintf(nonce, nonce_octets, "%08x%08x%08x",
3699 		 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3700 }
3701 
3702 
3703 /*
3704  * validate_nonce - validate client-address-specific nonce string.
3705  *
3706  * Returns TRUE if the local calculation of the nonce matches the
3707  * client-provided value and the timestamp is recent enough.
3708  */
3709 static int validate_nonce(
3710 	const char *		pnonce,
3711 	struct recvbuf *	rbufp
3712 	)
3713 {
3714 	u_int	ts_i;
3715 	u_int	ts_f;
3716 	l_fp	ts;
3717 	l_fp	now_delta;
3718 	u_int	supposed;
3719 	u_int	derived;
3720 
3721 	if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3722 		return FALSE;
3723 
3724 	ts.l_ui = (u_int32)ts_i;
3725 	ts.l_uf = (u_int32)ts_f;
3726 	derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3727 	get_systime(&now_delta);
3728 	L_SUB(&now_delta, &ts);
3729 
3730 	return (supposed == derived && now_delta.l_ui < 16);
3731 }
3732 
3733 
3734 /*
3735  * send_random_tag_value - send a randomly-generated three character
3736  *			   tag prefix, a '.', an index, a '=' and a
3737  *			   random integer value.
3738  *
3739  * To try to force clients to ignore unrecognized tags in mrulist,
3740  * reslist, and ifstats responses, the first and last rows are spiced
3741  * with randomly-generated tag names with correct .# index.  Make it
3742  * three characters knowing that none of the currently-used subscripted
3743  * tags have that length, avoiding the need to test for
3744  * tag collision.
3745  */
3746 static void
3747 send_random_tag_value(
3748 	int	indx
3749 	)
3750 {
3751 	int	noise;
3752 	char	buf[32];
3753 
3754 	noise = rand() ^ (rand() << 16);
3755 	buf[0] = 'a' + noise % 26;
3756 	noise >>= 5;
3757 	buf[1] = 'a' + noise % 26;
3758 	noise >>= 5;
3759 	buf[2] = 'a' + noise % 26;
3760 	noise >>= 5;
3761 	buf[3] = '.';
3762 	snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3763 	ctl_putuint(buf, noise);
3764 }
3765 
3766 
3767 /*
3768  * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3769  *
3770  * To keep clients honest about not depending on the order of values,
3771  * and thereby avoid being locked into ugly workarounds to maintain
3772  * backward compatibility later as new fields are added to the response,
3773  * the order is random.
3774  */
3775 static void
3776 send_mru_entry(
3777 	mon_entry *	mon,
3778 	int		count
3779 	)
3780 {
3781 	const char first_fmt[] =	"first.%d";
3782 	const char ct_fmt[] =		"ct.%d";
3783 	const char mv_fmt[] =		"mv.%d";
3784 	const char rs_fmt[] =		"rs.%d";
3785 	char	tag[32];
3786 	u_char	sent[6]; /* 6 tag=value pairs */
3787 	u_int32 noise;
3788 	u_int	which;
3789 	u_int	remaining;
3790 	const char * pch;
3791 
3792 	remaining = COUNTOF(sent);
3793 	ZERO(sent);
3794 	noise = (u_int32)(rand() ^ (rand() << 16));
3795 	while (remaining > 0) {
3796 		which = (noise & 7) % COUNTOF(sent);
3797 		noise >>= 3;
3798 		while (sent[which])
3799 			which = (which + 1) % COUNTOF(sent);
3800 
3801 		switch (which) {
3802 
3803 		case 0:
3804 			snprintf(tag, sizeof(tag), addr_fmt, count);
3805 			pch = sptoa(&mon->rmtadr);
3806 			ctl_putunqstr(tag, pch, strlen(pch));
3807 			break;
3808 
3809 		case 1:
3810 			snprintf(tag, sizeof(tag), last_fmt, count);
3811 			ctl_putts(tag, &mon->last);
3812 			break;
3813 
3814 		case 2:
3815 			snprintf(tag, sizeof(tag), first_fmt, count);
3816 			ctl_putts(tag, &mon->first);
3817 			break;
3818 
3819 		case 3:
3820 			snprintf(tag, sizeof(tag), ct_fmt, count);
3821 			ctl_putint(tag, mon->count);
3822 			break;
3823 
3824 		case 4:
3825 			snprintf(tag, sizeof(tag), mv_fmt, count);
3826 			ctl_putuint(tag, mon->vn_mode);
3827 			break;
3828 
3829 		case 5:
3830 			snprintf(tag, sizeof(tag), rs_fmt, count);
3831 			ctl_puthex(tag, mon->flags);
3832 			break;
3833 		}
3834 		sent[which] = TRUE;
3835 		remaining--;
3836 	}
3837 }
3838 
3839 
3840 /*
3841  * read_mru_list - supports ntpq's mrulist command.
3842  *
3843  * The challenge here is to match ntpdc's monlist functionality without
3844  * being limited to hundreds of entries returned total, and without
3845  * requiring state on the server.  If state were required, ntpq's
3846  * mrulist command would require authentication.
3847  *
3848  * The approach was suggested by Ry Jones.  A finite and variable number
3849  * of entries are retrieved per request, to avoid having responses with
3850  * such large numbers of packets that socket buffers are overflowed and
3851  * packets lost.  The entries are retrieved oldest-first, taking into
3852  * account that the MRU list will be changing between each request.  We
3853  * can expect to see duplicate entries for addresses updated in the MRU
3854  * list during the fetch operation.  In the end, the client can assemble
3855  * a close approximation of the MRU list at the point in time the last
3856  * response was sent by ntpd.  The only difference is it may be longer,
3857  * containing some number of oldest entries which have since been
3858  * reclaimed.  If necessary, the protocol could be extended to zap those
3859  * from the client snapshot at the end, but so far that doesn't seem
3860  * useful.
3861  *
3862  * To accomodate the changing MRU list, the starting point for requests
3863  * after the first request is supplied as a series of last seen
3864  * timestamps and associated addresses, the newest ones the client has
3865  * received.  As long as at least one of those entries hasn't been
3866  * bumped to the head of the MRU list, ntpd can pick up at that point.
3867  * Otherwise, the request is failed and it is up to ntpq to back up and
3868  * provide the next newest entry's timestamps and addresses, conceivably
3869  * backing up all the way to the starting point.
3870  *
3871  * input parameters:
3872  *	nonce=		Regurgitated nonce retrieved by the client
3873  *			previously using CTL_OP_REQ_NONCE, demonstrating
3874  *			ability to receive traffic sent to its address.
3875  *	frags=		Limit on datagrams (fragments) in response.  Used
3876  *			by newer ntpq versions instead of limit= when
3877  *			retrieving multiple entries.
3878  *	limit=		Limit on MRU entries returned.  One of frags= or
3879  *			limit= must be provided.
3880  *			limit=1 is a special case:  Instead of fetching
3881  *			beginning with the supplied starting point's
3882  *			newer neighbor, fetch the supplied entry, and
3883  *			in that case the #.last timestamp can be zero.
3884  *			This enables fetching a single entry by IP
3885  *			address.  When limit is not one and frags= is
3886  *			provided, the fragment limit controls.
3887  *	mincount=	(decimal) Return entries with count >= mincount.
3888  *	laddr=		Return entries associated with the server's IP
3889  *			address given.  No port specification is needed,
3890  *			and any supplied is ignored.
3891  *	resall=		0x-prefixed hex restrict bits which must all be
3892  *			lit for an MRU entry to be included.
3893  *			Has precedence over any resany=.
3894  *	resany=		0x-prefixed hex restrict bits, at least one of
3895  *			which must be list for an MRU entry to be
3896  *			included.
3897  *	last.0=		0x-prefixed hex l_fp timestamp of newest entry
3898  *			which client previously received.
3899  *	addr.0=		text of newest entry's IP address and port,
3900  *			IPv6 addresses in bracketed form: [::]:123
3901  *	last.1=		timestamp of 2nd newest entry client has.
3902  *	addr.1=		address of 2nd newest entry.
3903  *	[...]
3904  *
3905  * ntpq provides as many last/addr pairs as will fit in a single request
3906  * packet, except for the first request in a MRU fetch operation.
3907  *
3908  * The response begins with a new nonce value to be used for any
3909  * followup request.  Following the nonce is the next newer entry than
3910  * referred to by last.0 and addr.0, if the "0" entry has not been
3911  * bumped to the front.  If it has, the first entry returned will be the
3912  * next entry newer than referred to by last.1 and addr.1, and so on.
3913  * If none of the referenced entries remain unchanged, the request fails
3914  * and ntpq backs up to the next earlier set of entries to resync.
3915  *
3916  * Except for the first response, the response begins with confirmation
3917  * of the entry that precedes the first additional entry provided:
3918  *
3919  *	last.older=	hex l_fp timestamp matching one of the input
3920  *			.last timestamps, which entry now precedes the
3921  *			response 0. entry in the MRU list.
3922  *	addr.older=	text of address corresponding to older.last.
3923  *
3924  * And in any case, a successful response contains sets of values
3925  * comprising entries, with the oldest numbered 0 and incrementing from
3926  * there:
3927  *
3928  *	addr.#		text of IPv4 or IPv6 address and port
3929  *	last.#		hex l_fp timestamp of last receipt
3930  *	first.#		hex l_fp timestamp of first receipt
3931  *	ct.#		count of packets received
3932  *	mv.#		mode and version
3933  *	rs.#		restriction mask (RES_* bits)
3934  *
3935  * Note the code currently assumes there are no valid three letter
3936  * tags sent with each row, and needs to be adjusted if that changes.
3937  *
3938  * The client should accept the values in any order, and ignore .#
3939  * values which it does not understand, to allow a smooth path to
3940  * future changes without requiring a new opcode.  Clients can rely
3941  * on all *.0 values preceding any *.1 values, that is all values for
3942  * a given index number are together in the response.
3943  *
3944  * The end of the response list is noted with one or two tag=value
3945  * pairs.  Unconditionally:
3946  *
3947  *	now=		0x-prefixed l_fp timestamp at the server marking
3948  *			the end of the operation.
3949  *
3950  * If any entries were returned, now= is followed by:
3951  *
3952  *	last.newest=	hex l_fp identical to last.# of the prior
3953  *			entry.
3954  */
3955 static void read_mru_list(
3956 	struct recvbuf *rbufp,
3957 	int restrict_mask
3958 	)
3959 {
3960 	static const char	nulltxt[1] = 		{ '\0' };
3961 	static const char	nonce_text[] =		"nonce";
3962 	static const char	frags_text[] =		"frags";
3963 	static const char	limit_text[] =		"limit";
3964 	static const char	mincount_text[] =	"mincount";
3965 	static const char	resall_text[] =		"resall";
3966 	static const char	resany_text[] =		"resany";
3967 	static const char	maxlstint_text[] =	"maxlstint";
3968 	static const char	laddr_text[] =		"laddr";
3969 	static const char	resaxx_fmt[] =		"0x%hx";
3970 
3971 	u_int			limit;
3972 	u_short			frags;
3973 	u_short			resall;
3974 	u_short			resany;
3975 	int			mincount;
3976 	u_int			maxlstint;
3977 	sockaddr_u		laddr;
3978 	struct interface *	lcladr;
3979 	u_int			count;
3980 	u_int			ui;
3981 	u_int			uf;
3982 	l_fp			last[16];
3983 	sockaddr_u		addr[COUNTOF(last)];
3984 	char			buf[128];
3985 	struct ctl_var *	in_parms;
3986 	const struct ctl_var *	v;
3987 	const char *		val;
3988 	const char *		pch;
3989 	char *			pnonce;
3990 	int			nonce_valid;
3991 	size_t			i;
3992 	int			priors;
3993 	u_short			hash;
3994 	mon_entry *		mon;
3995 	mon_entry *		prior_mon;
3996 	l_fp			now;
3997 
3998 	if (RES_NOMRULIST & restrict_mask) {
3999 		ctl_error(CERR_PERMISSION);
4000 		NLOG(NLOG_SYSINFO)
4001 			msyslog(LOG_NOTICE,
4002 				"mrulist from %s rejected due to nomrulist restriction",
4003 				stoa(&rbufp->recv_srcadr));
4004 		sys_restricted++;
4005 		return;
4006 	}
4007 	/*
4008 	 * fill in_parms var list with all possible input parameters.
4009 	 */
4010 	in_parms = NULL;
4011 	set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
4012 	set_var(&in_parms, frags_text, sizeof(frags_text), 0);
4013 	set_var(&in_parms, limit_text, sizeof(limit_text), 0);
4014 	set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
4015 	set_var(&in_parms, resall_text, sizeof(resall_text), 0);
4016 	set_var(&in_parms, resany_text, sizeof(resany_text), 0);
4017 	set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
4018 	set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
4019 	for (i = 0; i < COUNTOF(last); i++) {
4020 		snprintf(buf, sizeof(buf), last_fmt, (int)i);
4021 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4022 		snprintf(buf, sizeof(buf), addr_fmt, (int)i);
4023 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4024 	}
4025 
4026 	/* decode input parms */
4027 	pnonce = NULL;
4028 	frags = 0;
4029 	limit = 0;
4030 	mincount = 0;
4031 	resall = 0;
4032 	resany = 0;
4033 	maxlstint = 0;
4034 	lcladr = NULL;
4035 	priors = 0;
4036 	ZERO(last);
4037 	ZERO(addr);
4038 
4039 	/* have to go through '(void*)' to drop 'const' property from pointer.
4040 	 * ctl_getitem()' needs some cleanup, too.... perlinger@ntp.org
4041 	 */
4042 	while (NULL != (v = ctl_getitem(in_parms, (void*)&val)) &&
4043 	       !(EOV & v->flags)) {
4044 		int si;
4045 
4046 		if (NULL == val)
4047 			val = nulltxt;
4048 
4049 		if (!strcmp(nonce_text, v->text)) {
4050 			free(pnonce);
4051 			pnonce = (*val) ? estrdup(val) : NULL;
4052 		} else if (!strcmp(frags_text, v->text)) {
4053 			if (1 != sscanf(val, "%hu", &frags))
4054 				goto blooper;
4055 		} else if (!strcmp(limit_text, v->text)) {
4056 			if (1 != sscanf(val, "%u", &limit))
4057 				goto blooper;
4058 		} else if (!strcmp(mincount_text, v->text)) {
4059 			if (1 != sscanf(val, "%d", &mincount))
4060 				goto blooper;
4061 			if (mincount < 0)
4062 				mincount = 0;
4063 		} else if (!strcmp(resall_text, v->text)) {
4064 			if (1 != sscanf(val, resaxx_fmt, &resall))
4065 				goto blooper;
4066 		} else if (!strcmp(resany_text, v->text)) {
4067 			if (1 != sscanf(val, resaxx_fmt, &resany))
4068 				goto blooper;
4069 		} else if (!strcmp(maxlstint_text, v->text)) {
4070 			if (1 != sscanf(val, "%u", &maxlstint))
4071 				goto blooper;
4072 		} else if (!strcmp(laddr_text, v->text)) {
4073 			if (!decodenetnum(val, &laddr))
4074 				goto blooper;
4075 			lcladr = getinterface(&laddr, 0);
4076 		} else if (1 == sscanf(v->text, last_fmt, &si) &&
4077 			   (size_t)si < COUNTOF(last)) {
4078 			if (2 != sscanf(val, "0x%08x.%08x", &ui, &uf))
4079 				goto blooper;
4080 			last[si].l_ui = ui;
4081 			last[si].l_uf = uf;
4082 			if (!SOCK_UNSPEC(&addr[si]) && si == priors)
4083 				priors++;
4084 		} else if (1 == sscanf(v->text, addr_fmt, &si) &&
4085 			   (size_t)si < COUNTOF(addr)) {
4086 			if (!decodenetnum(val, &addr[si]))
4087 				goto blooper;
4088 			if (last[si].l_ui && last[si].l_uf && si == priors)
4089 				priors++;
4090 		} else {
4091 			DPRINTF(1, ("read_mru_list: invalid key item: '%s' (ignored)\n",
4092 				    v->text));
4093 			continue;
4094 
4095 		blooper:
4096 			DPRINTF(1, ("read_mru_list: invalid param for '%s': '%s' (bailing)\n",
4097 				    v->text, val));
4098 			free(pnonce);
4099 			pnonce = NULL;
4100 			break;
4101 		}
4102 	}
4103 	free_varlist(in_parms);
4104 	in_parms = NULL;
4105 
4106 	/* return no responses until the nonce is validated */
4107 	if (NULL == pnonce)
4108 		return;
4109 
4110 	nonce_valid = validate_nonce(pnonce, rbufp);
4111 	free(pnonce);
4112 	if (!nonce_valid)
4113 		return;
4114 
4115 	if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
4116 	    frags > MRU_FRAGS_LIMIT) {
4117 		ctl_error(CERR_BADVALUE);
4118 		return;
4119 	}
4120 
4121 	/*
4122 	 * If either frags or limit is not given, use the max.
4123 	 */
4124 	if (0 != frags && 0 == limit)
4125 		limit = UINT_MAX;
4126 	else if (0 != limit && 0 == frags)
4127 		frags = MRU_FRAGS_LIMIT;
4128 
4129 	/*
4130 	 * Find the starting point if one was provided.
4131 	 */
4132 	mon = NULL;
4133 	for (i = 0; i < (size_t)priors; i++) {
4134 		hash = MON_HASH(&addr[i]);
4135 		for (mon = mon_hash[hash];
4136 		     mon != NULL;
4137 		     mon = mon->hash_next)
4138 			if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
4139 				break;
4140 		if (mon != NULL) {
4141 			if (L_ISEQU(&mon->last, &last[i]))
4142 				break;
4143 			mon = NULL;
4144 		}
4145 	}
4146 
4147 	/* If a starting point was provided... */
4148 	if (priors) {
4149 		/* and none could be found unmodified... */
4150 		if (NULL == mon) {
4151 			/* tell ntpq to try again with older entries */
4152 			ctl_error(CERR_UNKNOWNVAR);
4153 			return;
4154 		}
4155 		/* confirm the prior entry used as starting point */
4156 		ctl_putts("last.older", &mon->last);
4157 		pch = sptoa(&mon->rmtadr);
4158 		ctl_putunqstr("addr.older", pch, strlen(pch));
4159 
4160 		/*
4161 		 * Move on to the first entry the client doesn't have,
4162 		 * except in the special case of a limit of one.  In
4163 		 * that case return the starting point entry.
4164 		 */
4165 		if (limit > 1)
4166 			mon = PREV_DLIST(mon_mru_list, mon, mru);
4167 	} else {	/* start with the oldest */
4168 		mon = TAIL_DLIST(mon_mru_list, mru);
4169 	}
4170 
4171 	/*
4172 	 * send up to limit= entries in up to frags= datagrams
4173 	 */
4174 	get_systime(&now);
4175 	generate_nonce(rbufp, buf, sizeof(buf));
4176 	ctl_putunqstr("nonce", buf, strlen(buf));
4177 	prior_mon = NULL;
4178 	for (count = 0;
4179 	     mon != NULL && res_frags < frags && count < limit;
4180 	     mon = PREV_DLIST(mon_mru_list, mon, mru)) {
4181 
4182 		if (mon->count < mincount)
4183 			continue;
4184 		if (resall && resall != (resall & mon->flags))
4185 			continue;
4186 		if (resany && !(resany & mon->flags))
4187 			continue;
4188 		if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
4189 		    maxlstint)
4190 			continue;
4191 		if (lcladr != NULL && mon->lcladr != lcladr)
4192 			continue;
4193 
4194 		send_mru_entry(mon, count);
4195 		if (!count)
4196 			send_random_tag_value(0);
4197 		count++;
4198 		prior_mon = mon;
4199 	}
4200 
4201 	/*
4202 	 * If this batch completes the MRU list, say so explicitly with
4203 	 * a now= l_fp timestamp.
4204 	 */
4205 	if (NULL == mon) {
4206 		if (count > 1)
4207 			send_random_tag_value(count - 1);
4208 		ctl_putts("now", &now);
4209 		/* if any entries were returned confirm the last */
4210 		if (prior_mon != NULL)
4211 			ctl_putts("last.newest", &prior_mon->last);
4212 	}
4213 	ctl_flushpkt(0);
4214 }
4215 
4216 
4217 /*
4218  * Send a ifstats entry in response to a "ntpq -c ifstats" request.
4219  *
4220  * To keep clients honest about not depending on the order of values,
4221  * and thereby avoid being locked into ugly workarounds to maintain
4222  * backward compatibility later as new fields are added to the response,
4223  * the order is random.
4224  */
4225 static void
4226 send_ifstats_entry(
4227 	endpt *	la,
4228 	u_int	ifnum
4229 	)
4230 {
4231 	const char addr_fmtu[] =	"addr.%u";
4232 	const char bcast_fmt[] =	"bcast.%u";
4233 	const char en_fmt[] =		"en.%u";	/* enabled */
4234 	const char name_fmt[] =		"name.%u";
4235 	const char flags_fmt[] =	"flags.%u";
4236 	const char tl_fmt[] =		"tl.%u";	/* ttl */
4237 	const char mc_fmt[] =		"mc.%u";	/* mcast count */
4238 	const char rx_fmt[] =		"rx.%u";
4239 	const char tx_fmt[] =		"tx.%u";
4240 	const char txerr_fmt[] =	"txerr.%u";
4241 	const char pc_fmt[] =		"pc.%u";	/* peer count */
4242 	const char up_fmt[] =		"up.%u";	/* uptime */
4243 	char	tag[32];
4244 	u_char	sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
4245 	int	noisebits;
4246 	u_int32 noise;
4247 	u_int	which;
4248 	u_int	remaining;
4249 	const char *pch;
4250 
4251 	remaining = COUNTOF(sent);
4252 	ZERO(sent);
4253 	noise = 0;
4254 	noisebits = 0;
4255 	while (remaining > 0) {
4256 		if (noisebits < 4) {
4257 			noise = rand() ^ (rand() << 16);
4258 			noisebits = 31;
4259 		}
4260 		which = (noise & 0xf) % COUNTOF(sent);
4261 		noise >>= 4;
4262 		noisebits -= 4;
4263 
4264 		while (sent[which])
4265 			which = (which + 1) % COUNTOF(sent);
4266 
4267 		switch (which) {
4268 
4269 		case 0:
4270 			snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
4271 			pch = sptoa(&la->sin);
4272 			ctl_putunqstr(tag, pch, strlen(pch));
4273 			break;
4274 
4275 		case 1:
4276 			snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
4277 			if (INT_BCASTOPEN & la->flags)
4278 				pch = sptoa(&la->bcast);
4279 			else
4280 				pch = "";
4281 			ctl_putunqstr(tag, pch, strlen(pch));
4282 			break;
4283 
4284 		case 2:
4285 			snprintf(tag, sizeof(tag), en_fmt, ifnum);
4286 			ctl_putint(tag, !la->ignore_packets);
4287 			break;
4288 
4289 		case 3:
4290 			snprintf(tag, sizeof(tag), name_fmt, ifnum);
4291 			ctl_putstr(tag, la->name, strlen(la->name));
4292 			break;
4293 
4294 		case 4:
4295 			snprintf(tag, sizeof(tag), flags_fmt, ifnum);
4296 			ctl_puthex(tag, (u_int)la->flags);
4297 			break;
4298 
4299 		case 5:
4300 			snprintf(tag, sizeof(tag), tl_fmt, ifnum);
4301 			ctl_putint(tag, la->last_ttl);
4302 			break;
4303 
4304 		case 6:
4305 			snprintf(tag, sizeof(tag), mc_fmt, ifnum);
4306 			ctl_putint(tag, la->num_mcast);
4307 			break;
4308 
4309 		case 7:
4310 			snprintf(tag, sizeof(tag), rx_fmt, ifnum);
4311 			ctl_putint(tag, la->received);
4312 			break;
4313 
4314 		case 8:
4315 			snprintf(tag, sizeof(tag), tx_fmt, ifnum);
4316 			ctl_putint(tag, la->sent);
4317 			break;
4318 
4319 		case 9:
4320 			snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
4321 			ctl_putint(tag, la->notsent);
4322 			break;
4323 
4324 		case 10:
4325 			snprintf(tag, sizeof(tag), pc_fmt, ifnum);
4326 			ctl_putuint(tag, la->peercnt);
4327 			break;
4328 
4329 		case 11:
4330 			snprintf(tag, sizeof(tag), up_fmt, ifnum);
4331 			ctl_putuint(tag, current_time - la->starttime);
4332 			break;
4333 		}
4334 		sent[which] = TRUE;
4335 		remaining--;
4336 	}
4337 	send_random_tag_value((int)ifnum);
4338 }
4339 
4340 
4341 /*
4342  * read_ifstats - send statistics for each local address, exposed by
4343  *		  ntpq -c ifstats
4344  */
4345 static void
4346 read_ifstats(
4347 	struct recvbuf *	rbufp
4348 	)
4349 {
4350 	u_int	ifidx;
4351 	endpt *	la;
4352 
4353 	/*
4354 	 * loop over [0..sys_ifnum] searching ep_list for each
4355 	 * ifnum in turn.
4356 	 */
4357 	for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4358 		for (la = ep_list; la != NULL; la = la->elink)
4359 			if (ifidx == la->ifnum)
4360 				break;
4361 		if (NULL == la)
4362 			continue;
4363 		/* return stats for one local address */
4364 		send_ifstats_entry(la, ifidx);
4365 	}
4366 	ctl_flushpkt(0);
4367 }
4368 
4369 static void
4370 sockaddrs_from_restrict_u(
4371 	sockaddr_u *	psaA,
4372 	sockaddr_u *	psaM,
4373 	restrict_u *	pres,
4374 	int		ipv6
4375 	)
4376 {
4377 	ZERO(*psaA);
4378 	ZERO(*psaM);
4379 	if (!ipv6) {
4380 		psaA->sa.sa_family = AF_INET;
4381 		psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
4382 		psaM->sa.sa_family = AF_INET;
4383 		psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
4384 	} else {
4385 		psaA->sa.sa_family = AF_INET6;
4386 		memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
4387 		       sizeof(psaA->sa6.sin6_addr));
4388 		psaM->sa.sa_family = AF_INET6;
4389 		memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
4390 		       sizeof(psaA->sa6.sin6_addr));
4391 	}
4392 }
4393 
4394 
4395 /*
4396  * Send a restrict entry in response to a "ntpq -c reslist" request.
4397  *
4398  * To keep clients honest about not depending on the order of values,
4399  * and thereby avoid being locked into ugly workarounds to maintain
4400  * backward compatibility later as new fields are added to the response,
4401  * the order is random.
4402  */
4403 static void
4404 send_restrict_entry(
4405 	restrict_u *	pres,
4406 	int		ipv6,
4407 	u_int		idx
4408 	)
4409 {
4410 	const char addr_fmtu[] =	"addr.%u";
4411 	const char mask_fmtu[] =	"mask.%u";
4412 	const char hits_fmt[] =		"hits.%u";
4413 	const char flags_fmt[] =	"flags.%u";
4414 	char		tag[32];
4415 	u_char		sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4416 	int		noisebits;
4417 	u_int32		noise;
4418 	u_int		which;
4419 	u_int		remaining;
4420 	sockaddr_u	addr;
4421 	sockaddr_u	mask;
4422 	const char *	pch;
4423 	char *		buf;
4424 	const char *	match_str;
4425 	const char *	access_str;
4426 
4427 	sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
4428 	remaining = COUNTOF(sent);
4429 	ZERO(sent);
4430 	noise = 0;
4431 	noisebits = 0;
4432 	while (remaining > 0) {
4433 		if (noisebits < 2) {
4434 			noise = rand() ^ (rand() << 16);
4435 			noisebits = 31;
4436 		}
4437 		which = (noise & 0x3) % COUNTOF(sent);
4438 		noise >>= 2;
4439 		noisebits -= 2;
4440 
4441 		while (sent[which])
4442 			which = (which + 1) % COUNTOF(sent);
4443 
4444 		/* XXX: Numbers?  Really? */
4445 		switch (which) {
4446 
4447 		case 0:
4448 			snprintf(tag, sizeof(tag), addr_fmtu, idx);
4449 			pch = stoa(&addr);
4450 			ctl_putunqstr(tag, pch, strlen(pch));
4451 			break;
4452 
4453 		case 1:
4454 			snprintf(tag, sizeof(tag), mask_fmtu, idx);
4455 			pch = stoa(&mask);
4456 			ctl_putunqstr(tag, pch, strlen(pch));
4457 			break;
4458 
4459 		case 2:
4460 			snprintf(tag, sizeof(tag), hits_fmt, idx);
4461 			ctl_putuint(tag, pres->count);
4462 			break;
4463 
4464 		case 3:
4465 			snprintf(tag, sizeof(tag), flags_fmt, idx);
4466 			match_str = res_match_flags(pres->mflags);
4467 			access_str = res_access_flags(pres->rflags);
4468 			if ('\0' == match_str[0]) {
4469 				pch = access_str;
4470 			} else {
4471 				LIB_GETBUF(buf);
4472 				snprintf(buf, LIB_BUFLENGTH, "%s %s",
4473 					 match_str, access_str);
4474 				pch = buf;
4475 			}
4476 			ctl_putunqstr(tag, pch, strlen(pch));
4477 			break;
4478 		}
4479 		sent[which] = TRUE;
4480 		remaining--;
4481 	}
4482 	send_random_tag_value((int)idx);
4483 }
4484 
4485 
4486 static void
4487 send_restrict_list(
4488 	restrict_u *	pres,
4489 	int		ipv6,
4490 	u_int *		pidx
4491 	)
4492 {
4493 	for ( ; pres != NULL; pres = pres->link) {
4494 		send_restrict_entry(pres, ipv6, *pidx);
4495 		(*pidx)++;
4496 	}
4497 }
4498 
4499 
4500 /*
4501  * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4502  */
4503 static void
4504 read_addr_restrictions(
4505 	struct recvbuf *	rbufp
4506 )
4507 {
4508 	u_int idx;
4509 
4510 	idx = 0;
4511 	send_restrict_list(restrictlist4, FALSE, &idx);
4512 	send_restrict_list(restrictlist6, TRUE, &idx);
4513 	ctl_flushpkt(0);
4514 }
4515 
4516 
4517 /*
4518  * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4519  */
4520 static void
4521 read_ordlist(
4522 	struct recvbuf *	rbufp,
4523 	int			restrict_mask
4524 	)
4525 {
4526 	const char ifstats_s[] = "ifstats";
4527 	const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4528 	const char addr_rst_s[] = "addr_restrictions";
4529 	const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4530 	struct ntp_control *	cpkt;
4531 	u_short			qdata_octets;
4532 
4533 	/*
4534 	 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4535 	 * used only for ntpq -c ifstats.  With the addition of reslist
4536 	 * the same opcode was generalized to retrieve ordered lists
4537 	 * which require authentication.  The request data is empty or
4538 	 * contains "ifstats" (not null terminated) to retrieve local
4539 	 * addresses and associated stats.  It is "addr_restrictions"
4540 	 * to retrieve the IPv4 then IPv6 remote address restrictions,
4541 	 * which are access control lists.  Other request data return
4542 	 * CERR_UNKNOWNVAR.
4543 	 */
4544 	cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4545 	qdata_octets = ntohs(cpkt->count);
4546 	if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4547 	    !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4548 		read_ifstats(rbufp);
4549 		return;
4550 	}
4551 	if (a_r_chars == qdata_octets &&
4552 	    !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4553 		read_addr_restrictions(rbufp);
4554 		return;
4555 	}
4556 	ctl_error(CERR_UNKNOWNVAR);
4557 }
4558 
4559 
4560 /*
4561  * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4562  */
4563 static void req_nonce(
4564 	struct recvbuf *	rbufp,
4565 	int			restrict_mask
4566 	)
4567 {
4568 	char	buf[64];
4569 
4570 	generate_nonce(rbufp, buf, sizeof(buf));
4571 	ctl_putunqstr("nonce", buf, strlen(buf));
4572 	ctl_flushpkt(0);
4573 }
4574 
4575 
4576 /*
4577  * read_clockstatus - return clock radio status
4578  */
4579 /*ARGSUSED*/
4580 static void
4581 read_clockstatus(
4582 	struct recvbuf *rbufp,
4583 	int restrict_mask
4584 	)
4585 {
4586 #ifndef REFCLOCK
4587 	/*
4588 	 * If no refclock support, no data to return
4589 	 */
4590 	ctl_error(CERR_BADASSOC);
4591 #else
4592 	const struct ctl_var *	v;
4593 	int			i;
4594 	struct peer *		peer;
4595 	char *			valuep;
4596 	u_char *		wants;
4597 	size_t			wants_alloc;
4598 	int			gotvar;
4599 	const u_char *		cc;
4600 	struct ctl_var *	kv;
4601 	struct refclockstat	cs;
4602 
4603 	if (res_associd != 0) {
4604 		peer = findpeerbyassoc(res_associd);
4605 	} else {
4606 		/*
4607 		 * Find a clock for this jerk.	If the system peer
4608 		 * is a clock use it, else search peer_list for one.
4609 		 */
4610 		if (sys_peer != NULL && (FLAG_REFCLOCK &
4611 		    sys_peer->flags))
4612 			peer = sys_peer;
4613 		else
4614 			for (peer = peer_list;
4615 			     peer != NULL;
4616 			     peer = peer->p_link)
4617 				if (FLAG_REFCLOCK & peer->flags)
4618 					break;
4619 	}
4620 	if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4621 		ctl_error(CERR_BADASSOC);
4622 		return;
4623 	}
4624 	/*
4625 	 * If we got here we have a peer which is a clock. Get his
4626 	 * status.
4627 	 */
4628 	cs.kv_list = NULL;
4629 	refclock_control(&peer->srcadr, NULL, &cs);
4630 	kv = cs.kv_list;
4631 	/*
4632 	 * Look for variables in the packet.
4633 	 */
4634 	rpkt.status = htons(ctlclkstatus(&cs));
4635 	wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4636 	wants = emalloc_zero(wants_alloc);
4637 	gotvar = FALSE;
4638 	while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4639 		if (!(EOV & v->flags)) {
4640 			wants[v->code] = TRUE;
4641 			gotvar = TRUE;
4642 		} else {
4643 			v = ctl_getitem(kv, &valuep);
4644 			if (NULL == v) {
4645 				ctl_error(CERR_BADVALUE);
4646 				free(wants);
4647 				free_varlist(cs.kv_list);
4648 				return;
4649 			}
4650 			if (EOV & v->flags) {
4651 				ctl_error(CERR_UNKNOWNVAR);
4652 				free(wants);
4653 				free_varlist(cs.kv_list);
4654 				return;
4655 			}
4656 			wants[CC_MAXCODE + 1 + v->code] = TRUE;
4657 			gotvar = TRUE;
4658 		}
4659 	}
4660 
4661 	if (gotvar) {
4662 		for (i = 1; i <= CC_MAXCODE; i++)
4663 			if (wants[i])
4664 				ctl_putclock(i, &cs, TRUE);
4665 		if (kv != NULL)
4666 			for (i = 0; !(EOV & kv[i].flags); i++)
4667 				if (wants[i + CC_MAXCODE + 1])
4668 					ctl_putdata(kv[i].text,
4669 						    strlen(kv[i].text),
4670 						    FALSE);
4671 	} else {
4672 		for (cc = def_clock_var; *cc != 0; cc++)
4673 			ctl_putclock((int)*cc, &cs, FALSE);
4674 		for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4675 			if (DEF & kv->flags)
4676 				ctl_putdata(kv->text, strlen(kv->text),
4677 					    FALSE);
4678 	}
4679 
4680 	free(wants);
4681 	free_varlist(cs.kv_list);
4682 
4683 	ctl_flushpkt(0);
4684 #endif
4685 }
4686 
4687 
4688 /*
4689  * write_clockstatus - we don't do this
4690  */
4691 /*ARGSUSED*/
4692 static void
4693 write_clockstatus(
4694 	struct recvbuf *rbufp,
4695 	int restrict_mask
4696 	)
4697 {
4698 	ctl_error(CERR_PERMISSION);
4699 }
4700 
4701 /*
4702  * Trap support from here on down. We send async trap messages when the
4703  * upper levels report trouble. Traps can by set either by control
4704  * messages or by configuration.
4705  */
4706 /*
4707  * set_trap - set a trap in response to a control message
4708  */
4709 static void
4710 set_trap(
4711 	struct recvbuf *rbufp,
4712 	int restrict_mask
4713 	)
4714 {
4715 	int traptype;
4716 
4717 	/*
4718 	 * See if this guy is allowed
4719 	 */
4720 	if (restrict_mask & RES_NOTRAP) {
4721 		ctl_error(CERR_PERMISSION);
4722 		return;
4723 	}
4724 
4725 	/*
4726 	 * Determine his allowed trap type.
4727 	 */
4728 	traptype = TRAP_TYPE_PRIO;
4729 	if (restrict_mask & RES_LPTRAP)
4730 		traptype = TRAP_TYPE_NONPRIO;
4731 
4732 	/*
4733 	 * Call ctlsettrap() to do the work.  Return
4734 	 * an error if it can't assign the trap.
4735 	 */
4736 	if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4737 			(int)res_version))
4738 		ctl_error(CERR_NORESOURCE);
4739 	ctl_flushpkt(0);
4740 }
4741 
4742 
4743 /*
4744  * unset_trap - unset a trap in response to a control message
4745  */
4746 static void
4747 unset_trap(
4748 	struct recvbuf *rbufp,
4749 	int restrict_mask
4750 	)
4751 {
4752 	int traptype;
4753 
4754 	/*
4755 	 * We don't prevent anyone from removing his own trap unless the
4756 	 * trap is configured. Note we also must be aware of the
4757 	 * possibility that restriction flags were changed since this
4758 	 * guy last set his trap. Set the trap type based on this.
4759 	 */
4760 	traptype = TRAP_TYPE_PRIO;
4761 	if (restrict_mask & RES_LPTRAP)
4762 		traptype = TRAP_TYPE_NONPRIO;
4763 
4764 	/*
4765 	 * Call ctlclrtrap() to clear this out.
4766 	 */
4767 	if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4768 		ctl_error(CERR_BADASSOC);
4769 	ctl_flushpkt(0);
4770 }
4771 
4772 
4773 /*
4774  * ctlsettrap - called to set a trap
4775  */
4776 int
4777 ctlsettrap(
4778 	sockaddr_u *raddr,
4779 	struct interface *linter,
4780 	int traptype,
4781 	int version
4782 	)
4783 {
4784 	size_t n;
4785 	struct ctl_trap *tp;
4786 	struct ctl_trap *tptouse;
4787 
4788 	/*
4789 	 * See if we can find this trap.  If so, we only need update
4790 	 * the flags and the time.
4791 	 */
4792 	if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4793 		switch (traptype) {
4794 
4795 		case TRAP_TYPE_CONFIG:
4796 			tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4797 			break;
4798 
4799 		case TRAP_TYPE_PRIO:
4800 			if (tp->tr_flags & TRAP_CONFIGURED)
4801 				return (1); /* don't change anything */
4802 			tp->tr_flags = TRAP_INUSE;
4803 			break;
4804 
4805 		case TRAP_TYPE_NONPRIO:
4806 			if (tp->tr_flags & TRAP_CONFIGURED)
4807 				return (1); /* don't change anything */
4808 			tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4809 			break;
4810 		}
4811 		tp->tr_settime = current_time;
4812 		tp->tr_resets++;
4813 		return (1);
4814 	}
4815 
4816 	/*
4817 	 * First we heard of this guy.	Try to find a trap structure
4818 	 * for him to use, clearing out lesser priority guys if we
4819 	 * have to. Clear out anyone who's expired while we're at it.
4820 	 */
4821 	tptouse = NULL;
4822 	for (n = 0; n < COUNTOF(ctl_traps); n++) {
4823 		tp = &ctl_traps[n];
4824 		if ((TRAP_INUSE & tp->tr_flags) &&
4825 		    !(TRAP_CONFIGURED & tp->tr_flags) &&
4826 		    ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4827 			tp->tr_flags = 0;
4828 			num_ctl_traps--;
4829 		}
4830 		if (!(TRAP_INUSE & tp->tr_flags)) {
4831 			tptouse = tp;
4832 		} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4833 			switch (traptype) {
4834 
4835 			case TRAP_TYPE_CONFIG:
4836 				if (tptouse == NULL) {
4837 					tptouse = tp;
4838 					break;
4839 				}
4840 				if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4841 				    !(TRAP_NONPRIO & tp->tr_flags))
4842 					break;
4843 
4844 				if (!(TRAP_NONPRIO & tptouse->tr_flags)
4845 				    && (TRAP_NONPRIO & tp->tr_flags)) {
4846 					tptouse = tp;
4847 					break;
4848 				}
4849 				if (tptouse->tr_origtime <
4850 				    tp->tr_origtime)
4851 					tptouse = tp;
4852 				break;
4853 
4854 			case TRAP_TYPE_PRIO:
4855 				if ( TRAP_NONPRIO & tp->tr_flags) {
4856 					if (tptouse == NULL ||
4857 					    ((TRAP_INUSE &
4858 					      tptouse->tr_flags) &&
4859 					     tptouse->tr_origtime <
4860 					     tp->tr_origtime))
4861 						tptouse = tp;
4862 				}
4863 				break;
4864 
4865 			case TRAP_TYPE_NONPRIO:
4866 				break;
4867 			}
4868 		}
4869 	}
4870 
4871 	/*
4872 	 * If we don't have room for him return an error.
4873 	 */
4874 	if (tptouse == NULL)
4875 		return (0);
4876 
4877 	/*
4878 	 * Set up this structure for him.
4879 	 */
4880 	tptouse->tr_settime = tptouse->tr_origtime = current_time;
4881 	tptouse->tr_count = tptouse->tr_resets = 0;
4882 	tptouse->tr_sequence = 1;
4883 	tptouse->tr_addr = *raddr;
4884 	tptouse->tr_localaddr = linter;
4885 	tptouse->tr_version = (u_char) version;
4886 	tptouse->tr_flags = TRAP_INUSE;
4887 	if (traptype == TRAP_TYPE_CONFIG)
4888 		tptouse->tr_flags |= TRAP_CONFIGURED;
4889 	else if (traptype == TRAP_TYPE_NONPRIO)
4890 		tptouse->tr_flags |= TRAP_NONPRIO;
4891 	num_ctl_traps++;
4892 	return (1);
4893 }
4894 
4895 
4896 /*
4897  * ctlclrtrap - called to clear a trap
4898  */
4899 int
4900 ctlclrtrap(
4901 	sockaddr_u *raddr,
4902 	struct interface *linter,
4903 	int traptype
4904 	)
4905 {
4906 	register struct ctl_trap *tp;
4907 
4908 	if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4909 		return (0);
4910 
4911 	if (tp->tr_flags & TRAP_CONFIGURED
4912 	    && traptype != TRAP_TYPE_CONFIG)
4913 		return (0);
4914 
4915 	tp->tr_flags = 0;
4916 	num_ctl_traps--;
4917 	return (1);
4918 }
4919 
4920 
4921 /*
4922  * ctlfindtrap - find a trap given the remote and local addresses
4923  */
4924 static struct ctl_trap *
4925 ctlfindtrap(
4926 	sockaddr_u *raddr,
4927 	struct interface *linter
4928 	)
4929 {
4930 	size_t	n;
4931 
4932 	for (n = 0; n < COUNTOF(ctl_traps); n++)
4933 		if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4934 		    && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4935 		    && (linter == ctl_traps[n].tr_localaddr))
4936 			return &ctl_traps[n];
4937 
4938 	return NULL;
4939 }
4940 
4941 
4942 /*
4943  * report_event - report an event to the trappers
4944  */
4945 void
4946 report_event(
4947 	int	err,		/* error code */
4948 	struct peer *peer,	/* peer structure pointer */
4949 	const char *str		/* protostats string */
4950 	)
4951 {
4952 	char	statstr[NTP_MAXSTRLEN];
4953 	int	i;
4954 	size_t	len;
4955 
4956 	/*
4957 	 * Report the error to the protostats file, system log and
4958 	 * trappers.
4959 	 */
4960 	if (peer == NULL) {
4961 
4962 		/*
4963 		 * Discard a system report if the number of reports of
4964 		 * the same type exceeds the maximum.
4965 		 */
4966 		if (ctl_sys_last_event != (u_char)err)
4967 			ctl_sys_num_events= 0;
4968 		if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
4969 			return;
4970 
4971 		ctl_sys_last_event = (u_char)err;
4972 		ctl_sys_num_events++;
4973 		snprintf(statstr, sizeof(statstr),
4974 		    "0.0.0.0 %04x %02x %s",
4975 		    ctlsysstatus(), err, eventstr(err));
4976 		if (str != NULL) {
4977 			len = strlen(statstr);
4978 			snprintf(statstr + len, sizeof(statstr) - len,
4979 			    " %s", str);
4980 		}
4981 		NLOG(NLOG_SYSEVENT)
4982 			msyslog(LOG_INFO, "%s", statstr);
4983 	} else {
4984 
4985 		/*
4986 		 * Discard a peer report if the number of reports of
4987 		 * the same type exceeds the maximum for that peer.
4988 		 */
4989 		const char *	src;
4990 		u_char		errlast;
4991 
4992 		errlast = (u_char)err & ~PEER_EVENT;
4993 		if (peer->last_event != errlast)
4994 			peer->num_events = 0;
4995 		if (peer->num_events >= CTL_PEER_MAXEVENTS)
4996 			return;
4997 
4998 		peer->last_event = errlast;
4999 		peer->num_events++;
5000 		if (ISREFCLOCKADR(&peer->srcadr))
5001 			src = refnumtoa(&peer->srcadr);
5002 		else
5003 			src = stoa(&peer->srcadr);
5004 
5005 		snprintf(statstr, sizeof(statstr),
5006 		    "%s %04x %02x %s", src,
5007 		    ctlpeerstatus(peer), err, eventstr(err));
5008 		if (str != NULL) {
5009 			len = strlen(statstr);
5010 			snprintf(statstr + len, sizeof(statstr) - len,
5011 			    " %s", str);
5012 		}
5013 		NLOG(NLOG_PEEREVENT)
5014 			msyslog(LOG_INFO, "%s", statstr);
5015 	}
5016 	record_proto_stats(statstr);
5017 #if DEBUG
5018 	if (debug)
5019 		printf("event at %lu %s\n", current_time, statstr);
5020 #endif
5021 
5022 	/*
5023 	 * If no trappers, return.
5024 	 */
5025 	if (num_ctl_traps <= 0)
5026 		return;
5027 
5028 	/* [Bug 3119]
5029 	 * Peer Events should be associated with a peer -- hence the
5030 	 * name. But there are instances where this function is called
5031 	 * *without* a valid peer. This happens e.g. with an unsolicited
5032 	 * CryptoNAK, or when a leap second alarm is going off while
5033 	 * currently without a system peer.
5034 	 *
5035 	 * The most sensible approach to this seems to bail out here if
5036 	 * this happens. Avoiding to call this function would also
5037 	 * bypass the log reporting in the first part of this function,
5038 	 * and this is probably not the best of all options.
5039 	 *   -*-perlinger@ntp.org-*-
5040 	 */
5041 	if ((err & PEER_EVENT) && !peer)
5042 		return;
5043 
5044 	/*
5045 	 * Set up the outgoing packet variables
5046 	 */
5047 	res_opcode = CTL_OP_ASYNCMSG;
5048 	res_offset = 0;
5049 	res_async = TRUE;
5050 	res_authenticate = FALSE;
5051 	datapt = rpkt.u.data;
5052 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
5053 	if (!(err & PEER_EVENT)) {
5054 		rpkt.associd = 0;
5055 		rpkt.status = htons(ctlsysstatus());
5056 
5057 		/* Include the core system variables and the list. */
5058 		for (i = 1; i <= CS_VARLIST; i++)
5059 			ctl_putsys(i);
5060 	} else if (NULL != peer) { /* paranoia -- skip output */
5061 		rpkt.associd = htons(peer->associd);
5062 		rpkt.status = htons(ctlpeerstatus(peer));
5063 
5064 		/* Dump it all. Later, maybe less. */
5065 		for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
5066 			ctl_putpeer(i, peer);
5067 #	    ifdef REFCLOCK
5068 		/*
5069 		 * for clock exception events: add clock variables to
5070 		 * reflect info on exception
5071 		 */
5072 		if (err == PEVNT_CLOCK) {
5073 			struct refclockstat cs;
5074 			struct ctl_var *kv;
5075 
5076 			cs.kv_list = NULL;
5077 			refclock_control(&peer->srcadr, NULL, &cs);
5078 
5079 			ctl_puthex("refclockstatus",
5080 				   ctlclkstatus(&cs));
5081 
5082 			for (i = 1; i <= CC_MAXCODE; i++)
5083 				ctl_putclock(i, &cs, FALSE);
5084 			for (kv = cs.kv_list;
5085 			     kv != NULL && !(EOV & kv->flags);
5086 			     kv++)
5087 				if (DEF & kv->flags)
5088 					ctl_putdata(kv->text,
5089 						    strlen(kv->text),
5090 						    FALSE);
5091 			free_varlist(cs.kv_list);
5092 		}
5093 #	    endif /* REFCLOCK */
5094 	}
5095 
5096 	/*
5097 	 * We're done, return.
5098 	 */
5099 	ctl_flushpkt(0);
5100 }
5101 
5102 
5103 /*
5104  * mprintf_event - printf-style varargs variant of report_event()
5105  */
5106 int
5107 mprintf_event(
5108 	int		evcode,		/* event code */
5109 	struct peer *	p,		/* may be NULL */
5110 	const char *	fmt,		/* msnprintf format */
5111 	...
5112 	)
5113 {
5114 	va_list	ap;
5115 	int	rc;
5116 	char	msg[512];
5117 
5118 	va_start(ap, fmt);
5119 	rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
5120 	va_end(ap);
5121 	report_event(evcode, p, msg);
5122 
5123 	return rc;
5124 }
5125 
5126 
5127 /*
5128  * ctl_clr_stats - clear stat counters
5129  */
5130 void
5131 ctl_clr_stats(void)
5132 {
5133 	ctltimereset = current_time;
5134 	numctlreq = 0;
5135 	numctlbadpkts = 0;
5136 	numctlresponses = 0;
5137 	numctlfrags = 0;
5138 	numctlerrors = 0;
5139 	numctlfrags = 0;
5140 	numctltooshort = 0;
5141 	numctlinputresp = 0;
5142 	numctlinputfrag = 0;
5143 	numctlinputerr = 0;
5144 	numctlbadoffset = 0;
5145 	numctlbadversion = 0;
5146 	numctldatatooshort = 0;
5147 	numctlbadop = 0;
5148 	numasyncmsgs = 0;
5149 }
5150 
5151 static u_short
5152 count_var(
5153 	const struct ctl_var *k
5154 	)
5155 {
5156 	u_int c;
5157 
5158 	if (NULL == k)
5159 		return 0;
5160 
5161 	c = 0;
5162 	while (!(EOV & (k++)->flags))
5163 		c++;
5164 
5165 	ENSURE(c <= USHRT_MAX);
5166 	return (u_short)c;
5167 }
5168 
5169 
5170 char *
5171 add_var(
5172 	struct ctl_var **kv,
5173 	u_long size,
5174 	u_short def
5175 	)
5176 {
5177 	u_short		c;
5178 	struct ctl_var *k;
5179 	char *		buf;
5180 
5181 	c = count_var(*kv);
5182 	*kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
5183 	k = *kv;
5184 	buf = emalloc(size);
5185 	k[c].code  = c;
5186 	k[c].text  = buf;
5187 	k[c].flags = def;
5188 	k[c + 1].code  = 0;
5189 	k[c + 1].text  = NULL;
5190 	k[c + 1].flags = EOV;
5191 
5192 	return buf;
5193 }
5194 
5195 
5196 void
5197 set_var(
5198 	struct ctl_var **kv,
5199 	const char *data,
5200 	u_long size,
5201 	u_short def
5202 	)
5203 {
5204 	struct ctl_var *k;
5205 	const char *s;
5206 	const char *t;
5207 	char *td;
5208 
5209 	if (NULL == data || !size)
5210 		return;
5211 
5212 	k = *kv;
5213 	if (k != NULL) {
5214 		while (!(EOV & k->flags)) {
5215 			if (NULL == k->text)	{
5216 				td = emalloc(size);
5217 				memcpy(td, data, size);
5218 				k->text = td;
5219 				k->flags = def;
5220 				return;
5221 			} else {
5222 				s = data;
5223 				t = k->text;
5224 				while (*t != '=' && *s == *t) {
5225 					s++;
5226 					t++;
5227 				}
5228 				if (*s == *t && ((*t == '=') || !*t)) {
5229 					td = erealloc((void *)(intptr_t)k->text, size);
5230 					memcpy(td, data, size);
5231 					k->text = td;
5232 					k->flags = def;
5233 					return;
5234 				}
5235 			}
5236 			k++;
5237 		}
5238 	}
5239 	td = add_var(kv, size, def);
5240 	memcpy(td, data, size);
5241 }
5242 
5243 
5244 void
5245 set_sys_var(
5246 	const char *data,
5247 	u_long size,
5248 	u_short def
5249 	)
5250 {
5251 	set_var(&ext_sys_var, data, size, def);
5252 }
5253 
5254 
5255 /*
5256  * get_ext_sys_var() retrieves the value of a user-defined variable or
5257  * NULL if the variable has not been setvar'd.
5258  */
5259 const char *
5260 get_ext_sys_var(const char *tag)
5261 {
5262 	struct ctl_var *	v;
5263 	size_t			c;
5264 	const char *		val;
5265 
5266 	val = NULL;
5267 	c = strlen(tag);
5268 	for (v = ext_sys_var; !(EOV & v->flags); v++) {
5269 		if (NULL != v->text && !memcmp(tag, v->text, c)) {
5270 			if ('=' == v->text[c]) {
5271 				val = v->text + c + 1;
5272 				break;
5273 			} else if ('\0' == v->text[c]) {
5274 				val = "";
5275 				break;
5276 			}
5277 		}
5278 	}
5279 
5280 	return val;
5281 }
5282 
5283 
5284 void
5285 free_varlist(
5286 	struct ctl_var *kv
5287 	)
5288 {
5289 	struct ctl_var *k;
5290 	if (kv) {
5291 		for (k = kv; !(k->flags & EOV); k++)
5292 			free((void *)(intptr_t)k->text);
5293 		free((void *)kv);
5294 	}
5295 }
5296