xref: /freebsd/contrib/ntp/ntpd/ntp_control.c (revision 1f4bcc459a76b7aa664f3fd557684cd0ba6da352)
1 /*
2  * ntp_control.c - respond to mode 6 control messages and send async
3  *		   traps.  Provides service to ntpq and others.
4  */
5 
6 /*
7  * $FreeBSD: projects/release-pkg/contrib/ntp/ntpd/ntp_control.c 277386 2015-01-19 16:15:12Z gjb $
8  */
9 
10 #ifdef HAVE_CONFIG_H
11 # include <config.h>
12 #endif
13 
14 #include <stdio.h>
15 #include <ctype.h>
16 #include <signal.h>
17 #include <sys/stat.h>
18 #ifdef HAVE_NETINET_IN_H
19 # include <netinet/in.h>
20 #endif
21 #include <arpa/inet.h>
22 
23 #include "ntpd.h"
24 #include "ntp_io.h"
25 #include "ntp_refclock.h"
26 #include "ntp_control.h"
27 #include "ntp_unixtime.h"
28 #include "ntp_stdlib.h"
29 #include "ntp_config.h"
30 #include "ntp_crypto.h"
31 #include "ntp_assert.h"
32 #include "ntp_leapsec.h"
33 #include "ntp_md5.h"	/* provides OpenSSL digest API */
34 #include "lib_strbuf.h"
35 #include <rc_cmdlength.h>
36 #ifdef KERNEL_PLL
37 # include "ntp_syscall.h"
38 #endif
39 
40 
41 /*
42  * Structure to hold request procedure information
43  */
44 
45 struct ctl_proc {
46 	short control_code;		/* defined request code */
47 #define NO_REQUEST	(-1)
48 	u_short flags;			/* flags word */
49 	/* Only one flag.  Authentication required or not. */
50 #define NOAUTH	0
51 #define AUTH	1
52 	void (*handler) (struct recvbuf *, int); /* handle request */
53 };
54 
55 
56 /*
57  * Request processing routines
58  */
59 static	void	ctl_error	(u_char);
60 #ifdef REFCLOCK
61 static	u_short ctlclkstatus	(struct refclockstat *);
62 #endif
63 static	void	ctl_flushpkt	(u_char);
64 static	void	ctl_putdata	(const char *, unsigned int, int);
65 static	void	ctl_putstr	(const char *, const char *, size_t);
66 static	void	ctl_putdblf	(const char *, int, int, double);
67 #define	ctl_putdbl(tag, d)	ctl_putdblf(tag, 1, 3, d)
68 #define	ctl_putdbl6(tag, d)	ctl_putdblf(tag, 1, 6, d)
69 #define	ctl_putsfp(tag, sfp)	ctl_putdblf(tag, 0, -1, \
70 					    FPTOD(sfp))
71 static	void	ctl_putuint	(const char *, u_long);
72 static	void	ctl_puthex	(const char *, u_long);
73 static	void	ctl_putint	(const char *, long);
74 static	void	ctl_putts	(const char *, l_fp *);
75 static	void	ctl_putadr	(const char *, u_int32,
76 				 sockaddr_u *);
77 static	void	ctl_putrefid	(const char *, u_int32);
78 static	void	ctl_putarray	(const char *, double *, int);
79 static	void	ctl_putsys	(int);
80 static	void	ctl_putpeer	(int, struct peer *);
81 static	void	ctl_putfs	(const char *, tstamp_t);
82 static	void	ctl_printf	(const char *, ...) NTP_PRINTF(1, 2);
83 #ifdef REFCLOCK
84 static	void	ctl_putclock	(int, struct refclockstat *, int);
85 #endif	/* REFCLOCK */
86 static	const struct ctl_var *ctl_getitem(const struct ctl_var *,
87 					  char **);
88 static	u_short	count_var	(const struct ctl_var *);
89 static	void	control_unspec	(struct recvbuf *, int);
90 static	void	read_status	(struct recvbuf *, int);
91 static	void	read_sysvars	(void);
92 static	void	read_peervars	(void);
93 static	void	read_variables	(struct recvbuf *, int);
94 static	void	write_variables (struct recvbuf *, int);
95 static	void	read_clockstatus(struct recvbuf *, int);
96 static	void	write_clockstatus(struct recvbuf *, int);
97 static	void	set_trap	(struct recvbuf *, int);
98 static	void	save_config	(struct recvbuf *, int);
99 static	void	configure	(struct recvbuf *, int);
100 static	void	send_mru_entry	(mon_entry *, int);
101 static	void	send_random_tag_value(int);
102 static	void	read_mru_list	(struct recvbuf *, int);
103 static	void	send_ifstats_entry(endpt *, u_int);
104 static	void	read_ifstats	(struct recvbuf *);
105 static	void	sockaddrs_from_restrict_u(sockaddr_u *,	sockaddr_u *,
106 					  restrict_u *, int);
107 static	void	send_restrict_entry(restrict_u *, int, u_int);
108 static	void	send_restrict_list(restrict_u *, int, u_int *);
109 static	void	read_addr_restrictions(struct recvbuf *);
110 static	void	read_ordlist	(struct recvbuf *, int);
111 static	u_int32	derive_nonce	(sockaddr_u *, u_int32, u_int32);
112 static	void	generate_nonce	(struct recvbuf *, char *, size_t);
113 static	int	validate_nonce	(const char *, struct recvbuf *);
114 static	void	req_nonce	(struct recvbuf *, int);
115 static	void	unset_trap	(struct recvbuf *, int);
116 static	struct ctl_trap *ctlfindtrap(sockaddr_u *,
117 				     struct interface *);
118 
119 int/*BOOL*/ is_safe_filename(const char * name);
120 
121 static const struct ctl_proc control_codes[] = {
122 	{ CTL_OP_UNSPEC,		NOAUTH,	control_unspec },
123 	{ CTL_OP_READSTAT,		NOAUTH,	read_status },
124 	{ CTL_OP_READVAR,		NOAUTH,	read_variables },
125 	{ CTL_OP_WRITEVAR,		AUTH,	write_variables },
126 	{ CTL_OP_READCLOCK,		NOAUTH,	read_clockstatus },
127 	{ CTL_OP_WRITECLOCK,		NOAUTH,	write_clockstatus },
128 	{ CTL_OP_SETTRAP,		NOAUTH,	set_trap },
129 	{ CTL_OP_CONFIGURE,		AUTH,	configure },
130 	{ CTL_OP_SAVECONFIG,		AUTH,	save_config },
131 	{ CTL_OP_READ_MRU,		NOAUTH,	read_mru_list },
132 	{ CTL_OP_READ_ORDLIST_A,	AUTH,	read_ordlist },
133 	{ CTL_OP_REQ_NONCE,		NOAUTH,	req_nonce },
134 	{ CTL_OP_UNSETTRAP,		NOAUTH,	unset_trap },
135 	{ NO_REQUEST,			0,	NULL }
136 };
137 
138 /*
139  * System variables we understand
140  */
141 #define	CS_LEAP			1
142 #define	CS_STRATUM		2
143 #define	CS_PRECISION		3
144 #define	CS_ROOTDELAY		4
145 #define	CS_ROOTDISPERSION	5
146 #define	CS_REFID		6
147 #define	CS_REFTIME		7
148 #define	CS_POLL			8
149 #define	CS_PEERID		9
150 #define	CS_OFFSET		10
151 #define	CS_DRIFT		11
152 #define	CS_JITTER		12
153 #define	CS_ERROR		13
154 #define	CS_CLOCK		14
155 #define	CS_PROCESSOR		15
156 #define	CS_SYSTEM		16
157 #define	CS_VERSION		17
158 #define	CS_STABIL		18
159 #define	CS_VARLIST		19
160 #define	CS_TAI			20
161 #define	CS_LEAPTAB		21
162 #define	CS_LEAPEND		22
163 #define	CS_RATE			23
164 #define	CS_MRU_ENABLED		24
165 #define	CS_MRU_DEPTH		25
166 #define	CS_MRU_DEEPEST		26
167 #define	CS_MRU_MINDEPTH		27
168 #define	CS_MRU_MAXAGE		28
169 #define	CS_MRU_MAXDEPTH		29
170 #define	CS_MRU_MEM		30
171 #define	CS_MRU_MAXMEM		31
172 #define	CS_SS_UPTIME		32
173 #define	CS_SS_RESET		33
174 #define	CS_SS_RECEIVED		34
175 #define	CS_SS_THISVER		35
176 #define	CS_SS_OLDVER		36
177 #define	CS_SS_BADFORMAT		37
178 #define	CS_SS_BADAUTH		38
179 #define	CS_SS_DECLINED		39
180 #define	CS_SS_RESTRICTED	40
181 #define	CS_SS_LIMITED		41
182 #define	CS_SS_KODSENT		42
183 #define	CS_SS_PROCESSED		43
184 #define	CS_PEERADR		44
185 #define	CS_PEERMODE		45
186 #define	CS_BCASTDELAY		46
187 #define	CS_AUTHDELAY		47
188 #define	CS_AUTHKEYS		48
189 #define	CS_AUTHFREEK		49
190 #define	CS_AUTHKLOOKUPS		50
191 #define	CS_AUTHKNOTFOUND	51
192 #define	CS_AUTHKUNCACHED	52
193 #define	CS_AUTHKEXPIRED		53
194 #define	CS_AUTHENCRYPTS		54
195 #define	CS_AUTHDECRYPTS		55
196 #define	CS_AUTHRESET		56
197 #define	CS_K_OFFSET		57
198 #define	CS_K_FREQ		58
199 #define	CS_K_MAXERR		59
200 #define	CS_K_ESTERR		60
201 #define	CS_K_STFLAGS		61
202 #define	CS_K_TIMECONST		62
203 #define	CS_K_PRECISION		63
204 #define	CS_K_FREQTOL		64
205 #define	CS_K_PPS_FREQ		65
206 #define	CS_K_PPS_STABIL		66
207 #define	CS_K_PPS_JITTER		67
208 #define	CS_K_PPS_CALIBDUR	68
209 #define	CS_K_PPS_CALIBS		69
210 #define	CS_K_PPS_CALIBERRS	70
211 #define	CS_K_PPS_JITEXC		71
212 #define	CS_K_PPS_STBEXC		72
213 #define	CS_KERN_FIRST		CS_K_OFFSET
214 #define	CS_KERN_LAST		CS_K_PPS_STBEXC
215 #define	CS_IOSTATS_RESET	73
216 #define	CS_TOTAL_RBUF		74
217 #define	CS_FREE_RBUF		75
218 #define	CS_USED_RBUF		76
219 #define	CS_RBUF_LOWATER		77
220 #define	CS_IO_DROPPED		78
221 #define	CS_IO_IGNORED		79
222 #define	CS_IO_RECEIVED		80
223 #define	CS_IO_SENT		81
224 #define	CS_IO_SENDFAILED	82
225 #define	CS_IO_WAKEUPS		83
226 #define	CS_IO_GOODWAKEUPS	84
227 #define	CS_TIMERSTATS_RESET	85
228 #define	CS_TIMER_OVERRUNS	86
229 #define	CS_TIMER_XMTS		87
230 #define	CS_FUZZ			88
231 #define	CS_WANDER_THRESH	89
232 #define	CS_LEAPSMEARINTV	90
233 #define	CS_LEAPSMEAROFFS	91
234 #define	CS_MAX_NOAUTOKEY	CS_LEAPSMEAROFFS
235 #ifdef AUTOKEY
236 #define	CS_FLAGS		(1 + CS_MAX_NOAUTOKEY)
237 #define	CS_HOST			(2 + CS_MAX_NOAUTOKEY)
238 #define	CS_PUBLIC		(3 + CS_MAX_NOAUTOKEY)
239 #define	CS_CERTIF		(4 + CS_MAX_NOAUTOKEY)
240 #define	CS_SIGNATURE		(5 + CS_MAX_NOAUTOKEY)
241 #define	CS_REVTIME		(6 + CS_MAX_NOAUTOKEY)
242 #define	CS_IDENT		(7 + CS_MAX_NOAUTOKEY)
243 #define	CS_DIGEST		(8 + CS_MAX_NOAUTOKEY)
244 #define	CS_MAXCODE		CS_DIGEST
245 #else	/* !AUTOKEY follows */
246 #define	CS_MAXCODE		CS_MAX_NOAUTOKEY
247 #endif	/* !AUTOKEY */
248 
249 /*
250  * Peer variables we understand
251  */
252 #define	CP_CONFIG		1
253 #define	CP_AUTHENABLE		2
254 #define	CP_AUTHENTIC		3
255 #define	CP_SRCADR		4
256 #define	CP_SRCPORT		5
257 #define	CP_DSTADR		6
258 #define	CP_DSTPORT		7
259 #define	CP_LEAP			8
260 #define	CP_HMODE		9
261 #define	CP_STRATUM		10
262 #define	CP_PPOLL		11
263 #define	CP_HPOLL		12
264 #define	CP_PRECISION		13
265 #define	CP_ROOTDELAY		14
266 #define	CP_ROOTDISPERSION	15
267 #define	CP_REFID		16
268 #define	CP_REFTIME		17
269 #define	CP_ORG			18
270 #define	CP_REC			19
271 #define	CP_XMT			20
272 #define	CP_REACH		21
273 #define	CP_UNREACH		22
274 #define	CP_TIMER		23
275 #define	CP_DELAY		24
276 #define	CP_OFFSET		25
277 #define	CP_JITTER		26
278 #define	CP_DISPERSION		27
279 #define	CP_KEYID		28
280 #define	CP_FILTDELAY		29
281 #define	CP_FILTOFFSET		30
282 #define	CP_PMODE		31
283 #define	CP_RECEIVED		32
284 #define	CP_SENT			33
285 #define	CP_FILTERROR		34
286 #define	CP_FLASH		35
287 #define	CP_TTL			36
288 #define	CP_VARLIST		37
289 #define	CP_IN			38
290 #define	CP_OUT			39
291 #define	CP_RATE			40
292 #define	CP_BIAS			41
293 #define	CP_SRCHOST		42
294 #define	CP_TIMEREC		43
295 #define	CP_TIMEREACH		44
296 #define	CP_BADAUTH		45
297 #define	CP_BOGUSORG		46
298 #define	CP_OLDPKT		47
299 #define	CP_SELDISP		48
300 #define	CP_SELBROKEN		49
301 #define	CP_CANDIDATE		50
302 #define	CP_MAX_NOAUTOKEY	CP_CANDIDATE
303 #ifdef AUTOKEY
304 #define	CP_FLAGS		(1 + CP_MAX_NOAUTOKEY)
305 #define	CP_HOST			(2 + CP_MAX_NOAUTOKEY)
306 #define	CP_VALID		(3 + CP_MAX_NOAUTOKEY)
307 #define	CP_INITSEQ		(4 + CP_MAX_NOAUTOKEY)
308 #define	CP_INITKEY		(5 + CP_MAX_NOAUTOKEY)
309 #define	CP_INITTSP		(6 + CP_MAX_NOAUTOKEY)
310 #define	CP_SIGNATURE		(7 + CP_MAX_NOAUTOKEY)
311 #define	CP_IDENT		(8 + CP_MAX_NOAUTOKEY)
312 #define	CP_MAXCODE		CP_IDENT
313 #else	/* !AUTOKEY follows */
314 #define	CP_MAXCODE		CP_MAX_NOAUTOKEY
315 #endif	/* !AUTOKEY */
316 
317 /*
318  * Clock variables we understand
319  */
320 #define	CC_TYPE		1
321 #define	CC_TIMECODE	2
322 #define	CC_POLL		3
323 #define	CC_NOREPLY	4
324 #define	CC_BADFORMAT	5
325 #define	CC_BADDATA	6
326 #define	CC_FUDGETIME1	7
327 #define	CC_FUDGETIME2	8
328 #define	CC_FUDGEVAL1	9
329 #define	CC_FUDGEVAL2	10
330 #define	CC_FLAGS	11
331 #define	CC_DEVICE	12
332 #define	CC_VARLIST	13
333 #define	CC_MAXCODE	CC_VARLIST
334 
335 /*
336  * System variable values. The array can be indexed by the variable
337  * index to find the textual name.
338  */
339 static const struct ctl_var sys_var[] = {
340 	{ 0,		PADDING, "" },		/* 0 */
341 	{ CS_LEAP,	RW, "leap" },		/* 1 */
342 	{ CS_STRATUM,	RO, "stratum" },	/* 2 */
343 	{ CS_PRECISION, RO, "precision" },	/* 3 */
344 	{ CS_ROOTDELAY, RO, "rootdelay" },	/* 4 */
345 	{ CS_ROOTDISPERSION, RO, "rootdisp" },	/* 5 */
346 	{ CS_REFID,	RO, "refid" },		/* 6 */
347 	{ CS_REFTIME,	RO, "reftime" },	/* 7 */
348 	{ CS_POLL,	RO, "tc" },		/* 8 */
349 	{ CS_PEERID,	RO, "peer" },		/* 9 */
350 	{ CS_OFFSET,	RO, "offset" },		/* 10 */
351 	{ CS_DRIFT,	RO, "frequency" },	/* 11 */
352 	{ CS_JITTER,	RO, "sys_jitter" },	/* 12 */
353 	{ CS_ERROR,	RO, "clk_jitter" },	/* 13 */
354 	{ CS_CLOCK,	RO, "clock" },		/* 14 */
355 	{ CS_PROCESSOR, RO, "processor" },	/* 15 */
356 	{ CS_SYSTEM,	RO, "system" },		/* 16 */
357 	{ CS_VERSION,	RO, "version" },	/* 17 */
358 	{ CS_STABIL,	RO, "clk_wander" },	/* 18 */
359 	{ CS_VARLIST,	RO, "sys_var_list" },	/* 19 */
360 	{ CS_TAI,	RO, "tai" },		/* 20 */
361 	{ CS_LEAPTAB,	RO, "leapsec" },	/* 21 */
362 	{ CS_LEAPEND,	RO, "expire" },		/* 22 */
363 	{ CS_RATE,	RO, "mintc" },		/* 23 */
364 	{ CS_MRU_ENABLED,	RO, "mru_enabled" },	/* 24 */
365 	{ CS_MRU_DEPTH,		RO, "mru_depth" },	/* 25 */
366 	{ CS_MRU_DEEPEST,	RO, "mru_deepest" },	/* 26 */
367 	{ CS_MRU_MINDEPTH,	RO, "mru_mindepth" },	/* 27 */
368 	{ CS_MRU_MAXAGE,	RO, "mru_maxage" },	/* 28 */
369 	{ CS_MRU_MAXDEPTH,	RO, "mru_maxdepth" },	/* 29 */
370 	{ CS_MRU_MEM,		RO, "mru_mem" },	/* 30 */
371 	{ CS_MRU_MAXMEM,	RO, "mru_maxmem" },	/* 31 */
372 	{ CS_SS_UPTIME,		RO, "ss_uptime" },	/* 32 */
373 	{ CS_SS_RESET,		RO, "ss_reset" },	/* 33 */
374 	{ CS_SS_RECEIVED,	RO, "ss_received" },	/* 34 */
375 	{ CS_SS_THISVER,	RO, "ss_thisver" },	/* 35 */
376 	{ CS_SS_OLDVER,		RO, "ss_oldver" },	/* 36 */
377 	{ CS_SS_BADFORMAT,	RO, "ss_badformat" },	/* 37 */
378 	{ CS_SS_BADAUTH,	RO, "ss_badauth" },	/* 38 */
379 	{ CS_SS_DECLINED,	RO, "ss_declined" },	/* 39 */
380 	{ CS_SS_RESTRICTED,	RO, "ss_restricted" },	/* 40 */
381 	{ CS_SS_LIMITED,	RO, "ss_limited" },	/* 41 */
382 	{ CS_SS_KODSENT,	RO, "ss_kodsent" },	/* 42 */
383 	{ CS_SS_PROCESSED,	RO, "ss_processed" },	/* 43 */
384 	{ CS_PEERADR,		RO, "peeradr" },	/* 44 */
385 	{ CS_PEERMODE,		RO, "peermode" },	/* 45 */
386 	{ CS_BCASTDELAY,	RO, "bcastdelay" },	/* 46 */
387 	{ CS_AUTHDELAY,		RO, "authdelay" },	/* 47 */
388 	{ CS_AUTHKEYS,		RO, "authkeys" },	/* 48 */
389 	{ CS_AUTHFREEK,		RO, "authfreek" },	/* 49 */
390 	{ CS_AUTHKLOOKUPS,	RO, "authklookups" },	/* 50 */
391 	{ CS_AUTHKNOTFOUND,	RO, "authknotfound" },	/* 51 */
392 	{ CS_AUTHKUNCACHED,	RO, "authkuncached" },	/* 52 */
393 	{ CS_AUTHKEXPIRED,	RO, "authkexpired" },	/* 53 */
394 	{ CS_AUTHENCRYPTS,	RO, "authencrypts" },	/* 54 */
395 	{ CS_AUTHDECRYPTS,	RO, "authdecrypts" },	/* 55 */
396 	{ CS_AUTHRESET,		RO, "authreset" },	/* 56 */
397 	{ CS_K_OFFSET,		RO, "koffset" },	/* 57 */
398 	{ CS_K_FREQ,		RO, "kfreq" },		/* 58 */
399 	{ CS_K_MAXERR,		RO, "kmaxerr" },	/* 59 */
400 	{ CS_K_ESTERR,		RO, "kesterr" },	/* 60 */
401 	{ CS_K_STFLAGS,		RO, "kstflags" },	/* 61 */
402 	{ CS_K_TIMECONST,	RO, "ktimeconst" },	/* 62 */
403 	{ CS_K_PRECISION,	RO, "kprecis" },	/* 63 */
404 	{ CS_K_FREQTOL,		RO, "kfreqtol" },	/* 64 */
405 	{ CS_K_PPS_FREQ,	RO, "kppsfreq" },	/* 65 */
406 	{ CS_K_PPS_STABIL,	RO, "kppsstab" },	/* 66 */
407 	{ CS_K_PPS_JITTER,	RO, "kppsjitter" },	/* 67 */
408 	{ CS_K_PPS_CALIBDUR,	RO, "kppscalibdur" },	/* 68 */
409 	{ CS_K_PPS_CALIBS,	RO, "kppscalibs" },	/* 69 */
410 	{ CS_K_PPS_CALIBERRS,	RO, "kppscaliberrs" },	/* 70 */
411 	{ CS_K_PPS_JITEXC,	RO, "kppsjitexc" },	/* 71 */
412 	{ CS_K_PPS_STBEXC,	RO, "kppsstbexc" },	/* 72 */
413 	{ CS_IOSTATS_RESET,	RO, "iostats_reset" },	/* 73 */
414 	{ CS_TOTAL_RBUF,	RO, "total_rbuf" },	/* 74 */
415 	{ CS_FREE_RBUF,		RO, "free_rbuf" },	/* 75 */
416 	{ CS_USED_RBUF,		RO, "used_rbuf" },	/* 76 */
417 	{ CS_RBUF_LOWATER,	RO, "rbuf_lowater" },	/* 77 */
418 	{ CS_IO_DROPPED,	RO, "io_dropped" },	/* 78 */
419 	{ CS_IO_IGNORED,	RO, "io_ignored" },	/* 79 */
420 	{ CS_IO_RECEIVED,	RO, "io_received" },	/* 80 */
421 	{ CS_IO_SENT,		RO, "io_sent" },	/* 81 */
422 	{ CS_IO_SENDFAILED,	RO, "io_sendfailed" },	/* 82 */
423 	{ CS_IO_WAKEUPS,	RO, "io_wakeups" },	/* 83 */
424 	{ CS_IO_GOODWAKEUPS,	RO, "io_goodwakeups" },	/* 84 */
425 	{ CS_TIMERSTATS_RESET,	RO, "timerstats_reset" },/* 85 */
426 	{ CS_TIMER_OVERRUNS,	RO, "timer_overruns" },	/* 86 */
427 	{ CS_TIMER_XMTS,	RO, "timer_xmts" },	/* 87 */
428 	{ CS_FUZZ,		RO, "fuzz" },		/* 88 */
429 	{ CS_WANDER_THRESH,	RO, "clk_wander_threshold" }, /* 89 */
430 
431 	{ CS_LEAPSMEARINTV,	RO, "leapsmearinterval" },    /* 90 */
432 	{ CS_LEAPSMEAROFFS,	RO, "leapsmearoffset" },      /* 91 */
433 
434 #ifdef AUTOKEY
435 	{ CS_FLAGS,	RO, "flags" },		/* 1 + CS_MAX_NOAUTOKEY */
436 	{ CS_HOST,	RO, "host" },		/* 2 + CS_MAX_NOAUTOKEY */
437 	{ CS_PUBLIC,	RO, "update" },		/* 3 + CS_MAX_NOAUTOKEY */
438 	{ CS_CERTIF,	RO, "cert" },		/* 4 + CS_MAX_NOAUTOKEY */
439 	{ CS_SIGNATURE,	RO, "signature" },	/* 5 + CS_MAX_NOAUTOKEY */
440 	{ CS_REVTIME,	RO, "until" },		/* 6 + CS_MAX_NOAUTOKEY */
441 	{ CS_IDENT,	RO, "ident" },		/* 7 + CS_MAX_NOAUTOKEY */
442 	{ CS_DIGEST,	RO, "digest" },		/* 8 + CS_MAX_NOAUTOKEY */
443 #endif	/* AUTOKEY */
444 	{ 0,		EOV, "" }		/* 87/95 */
445 };
446 
447 static struct ctl_var *ext_sys_var = NULL;
448 
449 /*
450  * System variables we print by default (in fuzzball order,
451  * more-or-less)
452  */
453 static const u_char def_sys_var[] = {
454 	CS_VERSION,
455 	CS_PROCESSOR,
456 	CS_SYSTEM,
457 	CS_LEAP,
458 	CS_STRATUM,
459 	CS_PRECISION,
460 	CS_ROOTDELAY,
461 	CS_ROOTDISPERSION,
462 	CS_REFID,
463 	CS_REFTIME,
464 	CS_CLOCK,
465 	CS_PEERID,
466 	CS_POLL,
467 	CS_RATE,
468 	CS_OFFSET,
469 	CS_DRIFT,
470 	CS_JITTER,
471 	CS_ERROR,
472 	CS_STABIL,
473 	CS_TAI,
474 	CS_LEAPTAB,
475 	CS_LEAPEND,
476 	CS_LEAPSMEARINTV,
477 	CS_LEAPSMEAROFFS,
478 #ifdef AUTOKEY
479 	CS_HOST,
480 	CS_IDENT,
481 	CS_FLAGS,
482 	CS_DIGEST,
483 	CS_SIGNATURE,
484 	CS_PUBLIC,
485 	CS_CERTIF,
486 #endif	/* AUTOKEY */
487 	0
488 };
489 
490 
491 /*
492  * Peer variable list
493  */
494 static const struct ctl_var peer_var[] = {
495 	{ 0,		PADDING, "" },		/* 0 */
496 	{ CP_CONFIG,	RO, "config" },		/* 1 */
497 	{ CP_AUTHENABLE, RO,	"authenable" },	/* 2 */
498 	{ CP_AUTHENTIC, RO, "authentic" },	/* 3 */
499 	{ CP_SRCADR,	RO, "srcadr" },		/* 4 */
500 	{ CP_SRCPORT,	RO, "srcport" },	/* 5 */
501 	{ CP_DSTADR,	RO, "dstadr" },		/* 6 */
502 	{ CP_DSTPORT,	RO, "dstport" },	/* 7 */
503 	{ CP_LEAP,	RO, "leap" },		/* 8 */
504 	{ CP_HMODE,	RO, "hmode" },		/* 9 */
505 	{ CP_STRATUM,	RO, "stratum" },	/* 10 */
506 	{ CP_PPOLL,	RO, "ppoll" },		/* 11 */
507 	{ CP_HPOLL,	RO, "hpoll" },		/* 12 */
508 	{ CP_PRECISION,	RO, "precision" },	/* 13 */
509 	{ CP_ROOTDELAY,	RO, "rootdelay" },	/* 14 */
510 	{ CP_ROOTDISPERSION, RO, "rootdisp" },	/* 15 */
511 	{ CP_REFID,	RO, "refid" },		/* 16 */
512 	{ CP_REFTIME,	RO, "reftime" },	/* 17 */
513 	{ CP_ORG,	RO, "org" },		/* 18 */
514 	{ CP_REC,	RO, "rec" },		/* 19 */
515 	{ CP_XMT,	RO, "xleave" },		/* 20 */
516 	{ CP_REACH,	RO, "reach" },		/* 21 */
517 	{ CP_UNREACH,	RO, "unreach" },	/* 22 */
518 	{ CP_TIMER,	RO, "timer" },		/* 23 */
519 	{ CP_DELAY,	RO, "delay" },		/* 24 */
520 	{ CP_OFFSET,	RO, "offset" },		/* 25 */
521 	{ CP_JITTER,	RO, "jitter" },		/* 26 */
522 	{ CP_DISPERSION, RO, "dispersion" },	/* 27 */
523 	{ CP_KEYID,	RO, "keyid" },		/* 28 */
524 	{ CP_FILTDELAY,	RO, "filtdelay" },	/* 29 */
525 	{ CP_FILTOFFSET, RO, "filtoffset" },	/* 30 */
526 	{ CP_PMODE,	RO, "pmode" },		/* 31 */
527 	{ CP_RECEIVED,	RO, "received"},	/* 32 */
528 	{ CP_SENT,	RO, "sent" },		/* 33 */
529 	{ CP_FILTERROR,	RO, "filtdisp" },	/* 34 */
530 	{ CP_FLASH,	RO, "flash" },		/* 35 */
531 	{ CP_TTL,	RO, "ttl" },		/* 36 */
532 	{ CP_VARLIST,	RO, "peer_var_list" },	/* 37 */
533 	{ CP_IN,	RO, "in" },		/* 38 */
534 	{ CP_OUT,	RO, "out" },		/* 39 */
535 	{ CP_RATE,	RO, "headway" },	/* 40 */
536 	{ CP_BIAS,	RO, "bias" },		/* 41 */
537 	{ CP_SRCHOST,	RO, "srchost" },	/* 42 */
538 	{ CP_TIMEREC,	RO, "timerec" },	/* 43 */
539 	{ CP_TIMEREACH,	RO, "timereach" },	/* 44 */
540 	{ CP_BADAUTH,	RO, "badauth" },	/* 45 */
541 	{ CP_BOGUSORG,	RO, "bogusorg" },	/* 46 */
542 	{ CP_OLDPKT,	RO, "oldpkt" },		/* 47 */
543 	{ CP_SELDISP,	RO, "seldisp" },	/* 48 */
544 	{ CP_SELBROKEN,	RO, "selbroken" },	/* 49 */
545 	{ CP_CANDIDATE, RO, "candidate" },	/* 50 */
546 #ifdef AUTOKEY
547 	{ CP_FLAGS,	RO, "flags" },		/* 1 + CP_MAX_NOAUTOKEY */
548 	{ CP_HOST,	RO, "host" },		/* 2 + CP_MAX_NOAUTOKEY */
549 	{ CP_VALID,	RO, "valid" },		/* 3 + CP_MAX_NOAUTOKEY */
550 	{ CP_INITSEQ,	RO, "initsequence" },	/* 4 + CP_MAX_NOAUTOKEY */
551 	{ CP_INITKEY,	RO, "initkey" },	/* 5 + CP_MAX_NOAUTOKEY */
552 	{ CP_INITTSP,	RO, "timestamp" },	/* 6 + CP_MAX_NOAUTOKEY */
553 	{ CP_SIGNATURE,	RO, "signature" },	/* 7 + CP_MAX_NOAUTOKEY */
554 	{ CP_IDENT,	RO, "ident" },		/* 8 + CP_MAX_NOAUTOKEY */
555 #endif	/* AUTOKEY */
556 	{ 0,		EOV, "" }		/* 50/58 */
557 };
558 
559 
560 /*
561  * Peer variables we print by default
562  */
563 static const u_char def_peer_var[] = {
564 	CP_SRCADR,
565 	CP_SRCPORT,
566 	CP_SRCHOST,
567 	CP_DSTADR,
568 	CP_DSTPORT,
569 	CP_OUT,
570 	CP_IN,
571 	CP_LEAP,
572 	CP_STRATUM,
573 	CP_PRECISION,
574 	CP_ROOTDELAY,
575 	CP_ROOTDISPERSION,
576 	CP_REFID,
577 	CP_REFTIME,
578 	CP_REC,
579 	CP_REACH,
580 	CP_UNREACH,
581 	CP_HMODE,
582 	CP_PMODE,
583 	CP_HPOLL,
584 	CP_PPOLL,
585 	CP_RATE,
586 	CP_FLASH,
587 	CP_KEYID,
588 	CP_TTL,
589 	CP_OFFSET,
590 	CP_DELAY,
591 	CP_DISPERSION,
592 	CP_JITTER,
593 	CP_XMT,
594 	CP_BIAS,
595 	CP_FILTDELAY,
596 	CP_FILTOFFSET,
597 	CP_FILTERROR,
598 #ifdef AUTOKEY
599 	CP_HOST,
600 	CP_FLAGS,
601 	CP_SIGNATURE,
602 	CP_VALID,
603 	CP_INITSEQ,
604 	CP_IDENT,
605 #endif	/* AUTOKEY */
606 	0
607 };
608 
609 
610 #ifdef REFCLOCK
611 /*
612  * Clock variable list
613  */
614 static const struct ctl_var clock_var[] = {
615 	{ 0,		PADDING, "" },		/* 0 */
616 	{ CC_TYPE,	RO, "type" },		/* 1 */
617 	{ CC_TIMECODE,	RO, "timecode" },	/* 2 */
618 	{ CC_POLL,	RO, "poll" },		/* 3 */
619 	{ CC_NOREPLY,	RO, "noreply" },	/* 4 */
620 	{ CC_BADFORMAT, RO, "badformat" },	/* 5 */
621 	{ CC_BADDATA,	RO, "baddata" },	/* 6 */
622 	{ CC_FUDGETIME1, RO, "fudgetime1" },	/* 7 */
623 	{ CC_FUDGETIME2, RO, "fudgetime2" },	/* 8 */
624 	{ CC_FUDGEVAL1, RO, "stratum" },	/* 9 */
625 	{ CC_FUDGEVAL2, RO, "refid" },		/* 10 */
626 	{ CC_FLAGS,	RO, "flags" },		/* 11 */
627 	{ CC_DEVICE,	RO, "device" },		/* 12 */
628 	{ CC_VARLIST,	RO, "clock_var_list" },	/* 13 */
629 	{ 0,		EOV, ""  }		/* 14 */
630 };
631 
632 
633 /*
634  * Clock variables printed by default
635  */
636 static const u_char def_clock_var[] = {
637 	CC_DEVICE,
638 	CC_TYPE,	/* won't be output if device = known */
639 	CC_TIMECODE,
640 	CC_POLL,
641 	CC_NOREPLY,
642 	CC_BADFORMAT,
643 	CC_BADDATA,
644 	CC_FUDGETIME1,
645 	CC_FUDGETIME2,
646 	CC_FUDGEVAL1,
647 	CC_FUDGEVAL2,
648 	CC_FLAGS,
649 	0
650 };
651 #endif
652 
653 /*
654  * MRU string constants shared by send_mru_entry() and read_mru_list().
655  */
656 static const char addr_fmt[] =		"addr.%d";
657 static const char last_fmt[] =		"last.%d";
658 
659 /*
660  * System and processor definitions.
661  */
662 #ifndef HAVE_UNAME
663 # ifndef STR_SYSTEM
664 #  define		STR_SYSTEM	"UNIX"
665 # endif
666 # ifndef STR_PROCESSOR
667 #  define		STR_PROCESSOR	"unknown"
668 # endif
669 
670 static const char str_system[] = STR_SYSTEM;
671 static const char str_processor[] = STR_PROCESSOR;
672 #else
673 # include <sys/utsname.h>
674 static struct utsname utsnamebuf;
675 #endif /* HAVE_UNAME */
676 
677 /*
678  * Trap structures. We only allow a few of these, and send a copy of
679  * each async message to each live one. Traps time out after an hour, it
680  * is up to the trap receipient to keep resetting it to avoid being
681  * timed out.
682  */
683 /* ntp_request.c */
684 struct ctl_trap ctl_traps[CTL_MAXTRAPS];
685 int num_ctl_traps;
686 
687 /*
688  * Type bits, for ctlsettrap() call.
689  */
690 #define TRAP_TYPE_CONFIG	0	/* used by configuration code */
691 #define TRAP_TYPE_PRIO		1	/* priority trap */
692 #define TRAP_TYPE_NONPRIO	2	/* nonpriority trap */
693 
694 
695 /*
696  * List relating reference clock types to control message time sources.
697  * Index by the reference clock type. This list will only be used iff
698  * the reference clock driver doesn't set peer->sstclktype to something
699  * different than CTL_SST_TS_UNSPEC.
700  */
701 #ifdef REFCLOCK
702 static const u_char clocktypes[] = {
703 	CTL_SST_TS_NTP,		/* REFCLK_NONE (0) */
704 	CTL_SST_TS_LOCAL,	/* REFCLK_LOCALCLOCK (1) */
705 	CTL_SST_TS_UHF,		/* deprecated REFCLK_GPS_TRAK (2) */
706 	CTL_SST_TS_HF,		/* REFCLK_WWV_PST (3) */
707 	CTL_SST_TS_LF,		/* REFCLK_WWVB_SPECTRACOM (4) */
708 	CTL_SST_TS_UHF,		/* REFCLK_TRUETIME (5) */
709 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_AUDIO (6) */
710 	CTL_SST_TS_HF,		/* REFCLK_CHU (7) */
711 	CTL_SST_TS_LF,		/* REFCLOCK_PARSE (default) (8) */
712 	CTL_SST_TS_LF,		/* REFCLK_GPS_MX4200 (9) */
713 	CTL_SST_TS_UHF,		/* REFCLK_GPS_AS2201 (10) */
714 	CTL_SST_TS_UHF,		/* REFCLK_GPS_ARBITER (11) */
715 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_TPRO (12) */
716 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_LEITCH (13) */
717 	CTL_SST_TS_LF,		/* deprecated REFCLK_MSF_EES (14) */
718 	CTL_SST_TS_NTP,		/* not used (15) */
719 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_BANCOMM (16) */
720 	CTL_SST_TS_UHF,		/* REFCLK_GPS_DATU (17) */
721 	CTL_SST_TS_TELEPHONE,	/* REFCLK_NIST_ACTS (18) */
722 	CTL_SST_TS_HF,		/* REFCLK_WWV_HEATH (19) */
723 	CTL_SST_TS_UHF,		/* REFCLK_GPS_NMEA (20) */
724 	CTL_SST_TS_UHF,		/* REFCLK_GPS_VME (21) */
725 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_PPS (22) */
726 	CTL_SST_TS_NTP,		/* not used (23) */
727 	CTL_SST_TS_NTP,		/* not used (24) */
728 	CTL_SST_TS_NTP,		/* not used (25) */
729 	CTL_SST_TS_UHF,		/* REFCLK_GPS_HP (26) */
730 	CTL_SST_TS_LF,		/* REFCLK_ARCRON_MSF (27) */
731 	CTL_SST_TS_UHF,		/* REFCLK_SHM (28) */
732 	CTL_SST_TS_UHF,		/* REFCLK_PALISADE (29) */
733 	CTL_SST_TS_UHF,		/* REFCLK_ONCORE (30) */
734 	CTL_SST_TS_UHF,		/* REFCLK_JUPITER (31) */
735 	CTL_SST_TS_LF,		/* REFCLK_CHRONOLOG (32) */
736 	CTL_SST_TS_LF,		/* REFCLK_DUMBCLOCK (33) */
737 	CTL_SST_TS_LF,		/* REFCLK_ULINK (34) */
738 	CTL_SST_TS_LF,		/* REFCLK_PCF (35) */
739 	CTL_SST_TS_HF,		/* REFCLK_WWV (36) */
740 	CTL_SST_TS_LF,		/* REFCLK_FG (37) */
741 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_SERIAL (38) */
742 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_PCI (39) */
743 	CTL_SST_TS_LF,		/* REFCLK_JJY (40) */
744 	CTL_SST_TS_UHF,		/* REFCLK_TT560 (41) */
745 	CTL_SST_TS_UHF,		/* REFCLK_ZYFER (42) */
746 	CTL_SST_TS_UHF,		/* REFCLK_RIPENCC (43) */
747 	CTL_SST_TS_UHF,		/* REFCLK_NEOCLOCK4X (44) */
748 	CTL_SST_TS_UHF,		/* REFCLK_TSYNCPCI (45) */
749 	CTL_SST_TS_UHF		/* REFCLK_GPSDJSON (46) */
750 };
751 #endif  /* REFCLOCK */
752 
753 
754 /*
755  * Keyid used for authenticating write requests.
756  */
757 keyid_t ctl_auth_keyid;
758 
759 /*
760  * We keep track of the last error reported by the system internally
761  */
762 static	u_char ctl_sys_last_event;
763 static	u_char ctl_sys_num_events;
764 
765 
766 /*
767  * Statistic counters to keep track of requests and responses.
768  */
769 u_long ctltimereset;		/* time stats reset */
770 u_long numctlreq;		/* number of requests we've received */
771 u_long numctlbadpkts;		/* number of bad control packets */
772 u_long numctlresponses;		/* number of resp packets sent with data */
773 u_long numctlfrags;		/* number of fragments sent */
774 u_long numctlerrors;		/* number of error responses sent */
775 u_long numctltooshort;		/* number of too short input packets */
776 u_long numctlinputresp;		/* number of responses on input */
777 u_long numctlinputfrag;		/* number of fragments on input */
778 u_long numctlinputerr;		/* number of input pkts with err bit set */
779 u_long numctlbadoffset;		/* number of input pkts with nonzero offset */
780 u_long numctlbadversion;	/* number of input pkts with unknown version */
781 u_long numctldatatooshort;	/* data too short for count */
782 u_long numctlbadop;		/* bad op code found in packet */
783 u_long numasyncmsgs;		/* number of async messages we've sent */
784 
785 /*
786  * Response packet used by these routines. Also some state information
787  * so that we can handle packet formatting within a common set of
788  * subroutines.  Note we try to enter data in place whenever possible,
789  * but the need to set the more bit correctly means we occasionally
790  * use the extra buffer and copy.
791  */
792 static struct ntp_control rpkt;
793 static u_char	res_version;
794 static u_char	res_opcode;
795 static associd_t res_associd;
796 static u_short	res_frags;	/* datagrams in this response */
797 static int	res_offset;	/* offset of payload in response */
798 static u_char * datapt;
799 static u_char * dataend;
800 static int	datalinelen;
801 static int	datasent;	/* flag to avoid initial ", " */
802 static int	datanotbinflag;
803 static sockaddr_u *rmt_addr;
804 static struct interface *lcl_inter;
805 
806 static u_char	res_authenticate;
807 static u_char	res_authokay;
808 static keyid_t	res_keyid;
809 
810 #define MAXDATALINELEN	(72)
811 
812 static u_char	res_async;	/* sending async trap response? */
813 
814 /*
815  * Pointers for saving state when decoding request packets
816  */
817 static	char *reqpt;
818 static	char *reqend;
819 
820 #ifndef MIN
821 #define MIN(a, b) (((a) <= (b)) ? (a) : (b))
822 #endif
823 
824 /*
825  * init_control - initialize request data
826  */
827 void
828 init_control(void)
829 {
830 	size_t i;
831 
832 #ifdef HAVE_UNAME
833 	uname(&utsnamebuf);
834 #endif /* HAVE_UNAME */
835 
836 	ctl_clr_stats();
837 
838 	ctl_auth_keyid = 0;
839 	ctl_sys_last_event = EVNT_UNSPEC;
840 	ctl_sys_num_events = 0;
841 
842 	num_ctl_traps = 0;
843 	for (i = 0; i < COUNTOF(ctl_traps); i++)
844 		ctl_traps[i].tr_flags = 0;
845 }
846 
847 
848 /*
849  * ctl_error - send an error response for the current request
850  */
851 static void
852 ctl_error(
853 	u_char errcode
854 	)
855 {
856 	size_t		maclen;
857 
858 	numctlerrors++;
859 	DPRINTF(3, ("sending control error %u\n", errcode));
860 
861 	/*
862 	 * Fill in the fields. We assume rpkt.sequence and rpkt.associd
863 	 * have already been filled in.
864 	 */
865 	rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
866 			(res_opcode & CTL_OP_MASK);
867 	rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
868 	rpkt.count = 0;
869 
870 	/*
871 	 * send packet and bump counters
872 	 */
873 	if (res_authenticate && sys_authenticate) {
874 		maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
875 				     CTL_HEADER_LEN);
876 		sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
877 			CTL_HEADER_LEN + maclen);
878 	} else
879 		sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
880 			CTL_HEADER_LEN);
881 }
882 
883 int/*BOOL*/
884 is_safe_filename(const char * name)
885 {
886 	/* We need a strict validation of filenames we should write: The
887 	 * daemon might run with special permissions and is remote
888 	 * controllable, so we better take care what we allow as file
889 	 * name!
890 	 *
891 	 * The first character must be digit or a letter from the ASCII
892 	 * base plane or a '_' ([_A-Za-z0-9]), the following characters
893 	 * must be from [-._+A-Za-z0-9].
894 	 *
895 	 * We do not trust the character classification much here: Since
896 	 * the NTP protocol makes no provisions for UTF-8 or local code
897 	 * pages, we strictly require the 7bit ASCII code page.
898 	 *
899 	 * The following table is a packed bit field of 128 two-bit
900 	 * groups. The LSB in each group tells us if a character is
901 	 * acceptable at the first position, the MSB if the character is
902 	 * accepted at any other position.
903 	 *
904 	 * This does not ensure that the file name is syntactically
905 	 * correct (multiple dots will not work with VMS...) but it will
906 	 * exclude potential globbing bombs and directory traversal. It
907 	 * also rules out drive selection. (For systems that have this
908 	 * notion, like Windows or VMS.)
909 	 */
910 	static const uint32_t chclass[8] = {
911 		0x00000000, 0x00000000,
912 		0x28800000, 0x000FFFFF,
913 		0xFFFFFFFC, 0xC03FFFFF,
914 		0xFFFFFFFC, 0x003FFFFF
915 	};
916 
917 	u_int widx, bidx, mask;
918 	if (!*name)
919 		return FALSE;
920 
921 	mask = 1u;
922 	while (0 != (widx = (u_char)*name++)) {
923 		bidx = (widx & 15) << 1;
924 		widx = widx >> 4;
925 		if (widx >= sizeof(chclass))
926 			return FALSE;
927 		if (0 == ((chclass[widx] >> bidx) & mask))
928 			return FALSE;
929 		mask |= 2u;
930 	}
931 	return TRUE;
932 }
933 
934 
935 /*
936  * save_config - Implements ntpq -c "saveconfig <filename>"
937  *		 Writes current configuration including any runtime
938  *		 changes by ntpq's :config or config-from-file
939  *
940  * Note: There should be no buffer overflow or truncation in the
941  * processing of file names -- both cause security problems. This is bit
942  * painful to code but essential here.
943  */
944 void
945 save_config(
946 	struct recvbuf *rbufp,
947 	int restrict_mask
948 	)
949 {
950 	/* block directory traversal by searching for characters that
951 	 * indicate directory components in a file path.
952 	 *
953 	 * Conceptually we should be searching for DIRSEP in filename,
954 	 * however Windows actually recognizes both forward and
955 	 * backslashes as equivalent directory separators at the API
956 	 * level.  On POSIX systems we could allow '\\' but such
957 	 * filenames are tricky to manipulate from a shell, so just
958 	 * reject both types of slashes on all platforms.
959 	 */
960 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
961 	static const char * illegal_in_filename =
962 #if defined(VMS)
963 	    ":[]"	/* do not allow drive and path components here */
964 #elif defined(SYS_WINNT)
965 	    ":\\/"	/* path and drive separators */
966 #else
967 	    "\\/"	/* separator and critical char for POSIX */
968 #endif
969 	    ;
970 	char reply[128];
971 #ifdef SAVECONFIG
972 	static const char savedconfig_eq[] = "savedconfig=";
973 
974 	/* Build a safe open mode from the available mode flags. We want
975 	 * to create a new file and write it in text mode (when
976 	 * applicable -- only Windows does this...)
977 	 */
978 	static const int openmode = O_CREAT | O_TRUNC | O_WRONLY
979 #  if defined(O_EXCL)		/* posix, vms */
980 	    | O_EXCL
981 #  elif defined(_O_EXCL)	/* windows is alway very special... */
982 	    | _O_EXCL
983 #  endif
984 #  if defined(_O_TEXT)		/* windows, again */
985 	    | _O_TEXT
986 #endif
987 	    ;
988 
989 	char filespec[128];
990 	char filename[128];
991 	char fullpath[512];
992 	char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
993 	time_t now;
994 	int fd;
995 	FILE *fptr;
996 	int prc;
997 	size_t reqlen;
998 #endif
999 
1000 	if (RES_NOMODIFY & restrict_mask) {
1001 		ctl_printf("%s", "saveconfig prohibited by restrict ... nomodify");
1002 		ctl_flushpkt(0);
1003 		NLOG(NLOG_SYSINFO)
1004 			msyslog(LOG_NOTICE,
1005 				"saveconfig from %s rejected due to nomodify restriction",
1006 				stoa(&rbufp->recv_srcadr));
1007 		sys_restricted++;
1008 		return;
1009 	}
1010 
1011 #ifdef SAVECONFIG
1012 	if (NULL == saveconfigdir) {
1013 		ctl_printf("%s", "saveconfig prohibited, no saveconfigdir configured");
1014 		ctl_flushpkt(0);
1015 		NLOG(NLOG_SYSINFO)
1016 			msyslog(LOG_NOTICE,
1017 				"saveconfig from %s rejected, no saveconfigdir",
1018 				stoa(&rbufp->recv_srcadr));
1019 		return;
1020 	}
1021 
1022 	/* The length checking stuff gets serious. Do not assume a NUL
1023 	 * byte can be found, but if so, use it to calculate the needed
1024 	 * buffer size. If the available buffer is too short, bail out;
1025 	 * likewise if there is no file spec. (The latter will not
1026 	 * happen when using NTPQ, but there are other ways to craft a
1027 	 * network packet!)
1028 	 */
1029 	reqlen = (size_t)(reqend - reqpt);
1030 	if (0 != reqlen) {
1031 		char * nulpos = (char*)memchr(reqpt, 0, reqlen);
1032 		if (NULL != nulpos)
1033 			reqlen = (size_t)(nulpos - reqpt);
1034 	}
1035 	if (0 == reqlen)
1036 		return;
1037 	if (reqlen >= sizeof(filespec)) {
1038 		ctl_printf("saveconfig exceeded maximum raw name length (%u)",
1039 			   (u_int)sizeof(filespec));
1040 		ctl_flushpkt(0);
1041 		msyslog(LOG_NOTICE,
1042 			"saveconfig exceeded maximum raw name length from %s",
1043 			stoa(&rbufp->recv_srcadr));
1044 		return;
1045 	}
1046 
1047 	/* copy data directly as we exactly know the size */
1048 	memcpy(filespec, reqpt, reqlen);
1049 	filespec[reqlen] = '\0';
1050 
1051 	/*
1052 	 * allow timestamping of the saved config filename with
1053 	 * strftime() format such as:
1054 	 *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
1055 	 * XXX: Nice feature, but not too safe.
1056 	 * YYY: The check for permitted characters in file names should
1057 	 *      weed out the worst. Let's hope 'strftime()' does not
1058 	 *      develop pathological problems.
1059 	 */
1060 	time(&now);
1061 	if (0 == strftime(filename, sizeof(filename), filespec,
1062 			  localtime(&now)))
1063 	{
1064 		/*
1065 		 * If we arrive here, 'strftime()' balked; most likely
1066 		 * the buffer was too short. (Or it encounterd an empty
1067 		 * format, or just a format that expands to an empty
1068 		 * string.) We try to use the original name, though this
1069 		 * is very likely to fail later if there are format
1070 		 * specs in the string. Note that truncation cannot
1071 		 * happen here as long as both buffers have the same
1072 		 * size!
1073 		 */
1074 		strlcpy(filename, filespec, sizeof(filename));
1075 	}
1076 
1077 	/*
1078 	 * Check the file name for sanity. This might/will rule out file
1079 	 * names that would be legal but problematic, and it blocks
1080 	 * directory traversal.
1081 	 */
1082 	if (!is_safe_filename(filename)) {
1083 		ctl_printf("saveconfig rejects unsafe file name '%s'",
1084 			   filename);
1085 		ctl_flushpkt(0);
1086 		msyslog(LOG_NOTICE,
1087 			"saveconfig rejects unsafe file name from %s",
1088 			stoa(&rbufp->recv_srcadr));
1089 		return;
1090 	}
1091 
1092 	/*
1093 	 * XXX: This next test may not be needed with is_safe_filename()
1094 	 */
1095 
1096 	/* block directory/drive traversal */
1097 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
1098 	if (NULL != strpbrk(filename, illegal_in_filename)) {
1099 		snprintf(reply, sizeof(reply),
1100 			 "saveconfig does not allow directory in filename");
1101 		ctl_putdata(reply, strlen(reply), 0);
1102 		ctl_flushpkt(0);
1103 		msyslog(LOG_NOTICE,
1104 			"saveconfig rejects unsafe file name from %s",
1105 			stoa(&rbufp->recv_srcadr));
1106 		return;
1107 	}
1108 
1109 	/* concatenation of directory and path can cause another
1110 	 * truncation...
1111 	 */
1112 	prc = snprintf(fullpath, sizeof(fullpath), "%s%s",
1113 		       saveconfigdir, filename);
1114 	if (prc < 0 || prc >= sizeof(fullpath)) {
1115 		ctl_printf("saveconfig exceeded maximum path length (%u)",
1116 			   (u_int)sizeof(fullpath));
1117 		ctl_flushpkt(0);
1118 		msyslog(LOG_NOTICE,
1119 			"saveconfig exceeded maximum path length from %s",
1120 			stoa(&rbufp->recv_srcadr));
1121 		return;
1122 	}
1123 
1124 	fd = open(fullpath, openmode, S_IRUSR | S_IWUSR);
1125 	if (-1 == fd)
1126 		fptr = NULL;
1127 	else
1128 		fptr = fdopen(fd, "w");
1129 
1130 	if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
1131 		ctl_printf("Unable to save configuration to file '%s': %m",
1132 			   filename);
1133 		msyslog(LOG_ERR,
1134 			"saveconfig %s from %s failed", filename,
1135 			stoa(&rbufp->recv_srcadr));
1136 	} else {
1137 		ctl_printf("Configuration saved to '%s'", filename);
1138 		msyslog(LOG_NOTICE,
1139 			"Configuration saved to '%s' (requested by %s)",
1140 			fullpath, stoa(&rbufp->recv_srcadr));
1141 		/*
1142 		 * save the output filename in system variable
1143 		 * savedconfig, retrieved with:
1144 		 *   ntpq -c "rv 0 savedconfig"
1145 		 * Note: the way 'savedconfig' is defined makes overflow
1146 		 * checks unnecessary here.
1147 		 */
1148 		snprintf(savedconfig, sizeof(savedconfig), "%s%s",
1149 			 savedconfig_eq, filename);
1150 		set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
1151 	}
1152 
1153 	if (NULL != fptr)
1154 		fclose(fptr);
1155 #else	/* !SAVECONFIG follows */
1156 	ctl_printf("%s",
1157 		   "saveconfig unavailable, configured with --disable-saveconfig");
1158 #endif
1159 	ctl_flushpkt(0);
1160 }
1161 
1162 
1163 /*
1164  * process_control - process an incoming control message
1165  */
1166 void
1167 process_control(
1168 	struct recvbuf *rbufp,
1169 	int restrict_mask
1170 	)
1171 {
1172 	struct ntp_control *pkt;
1173 	int req_count;
1174 	int req_data;
1175 	const struct ctl_proc *cc;
1176 	keyid_t *pkid;
1177 	int properlen;
1178 	size_t maclen;
1179 
1180 	DPRINTF(3, ("in process_control()\n"));
1181 
1182 	/*
1183 	 * Save the addresses for error responses
1184 	 */
1185 	numctlreq++;
1186 	rmt_addr = &rbufp->recv_srcadr;
1187 	lcl_inter = rbufp->dstadr;
1188 	pkt = (struct ntp_control *)&rbufp->recv_pkt;
1189 
1190 	/*
1191 	 * If the length is less than required for the header, or
1192 	 * it is a response or a fragment, ignore this.
1193 	 */
1194 	if (rbufp->recv_length < (int)CTL_HEADER_LEN
1195 	    || (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1196 	    || pkt->offset != 0) {
1197 		DPRINTF(1, ("invalid format in control packet\n"));
1198 		if (rbufp->recv_length < (int)CTL_HEADER_LEN)
1199 			numctltooshort++;
1200 		if (CTL_RESPONSE & pkt->r_m_e_op)
1201 			numctlinputresp++;
1202 		if (CTL_MORE & pkt->r_m_e_op)
1203 			numctlinputfrag++;
1204 		if (CTL_ERROR & pkt->r_m_e_op)
1205 			numctlinputerr++;
1206 		if (pkt->offset != 0)
1207 			numctlbadoffset++;
1208 		return;
1209 	}
1210 	res_version = PKT_VERSION(pkt->li_vn_mode);
1211 	if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1212 		DPRINTF(1, ("unknown version %d in control packet\n",
1213 			    res_version));
1214 		numctlbadversion++;
1215 		return;
1216 	}
1217 
1218 	/*
1219 	 * Pull enough data from the packet to make intelligent
1220 	 * responses
1221 	 */
1222 	rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1223 					 MODE_CONTROL);
1224 	res_opcode = pkt->r_m_e_op;
1225 	rpkt.sequence = pkt->sequence;
1226 	rpkt.associd = pkt->associd;
1227 	rpkt.status = 0;
1228 	res_frags = 1;
1229 	res_offset = 0;
1230 	res_associd = htons(pkt->associd);
1231 	res_async = FALSE;
1232 	res_authenticate = FALSE;
1233 	res_keyid = 0;
1234 	res_authokay = FALSE;
1235 	req_count = (int)ntohs(pkt->count);
1236 	datanotbinflag = FALSE;
1237 	datalinelen = 0;
1238 	datasent = 0;
1239 	datapt = rpkt.u.data;
1240 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1241 
1242 	if ((rbufp->recv_length & 0x3) != 0)
1243 		DPRINTF(3, ("Control packet length %d unrounded\n",
1244 			    rbufp->recv_length));
1245 
1246 	/*
1247 	 * We're set up now. Make sure we've got at least enough
1248 	 * incoming data space to match the count.
1249 	 */
1250 	req_data = rbufp->recv_length - CTL_HEADER_LEN;
1251 	if (req_data < req_count || rbufp->recv_length & 0x3) {
1252 		ctl_error(CERR_BADFMT);
1253 		numctldatatooshort++;
1254 		return;
1255 	}
1256 
1257 	properlen = req_count + CTL_HEADER_LEN;
1258 	/* round up proper len to a 8 octet boundary */
1259 
1260 	properlen = (properlen + 7) & ~7;
1261 	maclen = rbufp->recv_length - properlen;
1262 	if ((rbufp->recv_length & 3) == 0 &&
1263 	    maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1264 	    sys_authenticate) {
1265 		res_authenticate = TRUE;
1266 		pkid = (void *)((char *)pkt + properlen);
1267 		res_keyid = ntohl(*pkid);
1268 		DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1269 			    rbufp->recv_length, properlen, res_keyid,
1270 			    maclen));
1271 
1272 		if (!authistrusted(res_keyid))
1273 			DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1274 		else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1275 				     rbufp->recv_length - maclen,
1276 				     maclen)) {
1277 			res_authokay = TRUE;
1278 			DPRINTF(3, ("authenticated okay\n"));
1279 		} else {
1280 			res_keyid = 0;
1281 			DPRINTF(3, ("authentication failed\n"));
1282 		}
1283 	}
1284 
1285 	/*
1286 	 * Set up translate pointers
1287 	 */
1288 	reqpt = (char *)pkt->u.data;
1289 	reqend = reqpt + req_count;
1290 
1291 	/*
1292 	 * Look for the opcode processor
1293 	 */
1294 	for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1295 		if (cc->control_code == res_opcode) {
1296 			DPRINTF(3, ("opcode %d, found command handler\n",
1297 				    res_opcode));
1298 			if (cc->flags == AUTH
1299 			    && (!res_authokay
1300 				|| res_keyid != ctl_auth_keyid)) {
1301 				ctl_error(CERR_PERMISSION);
1302 				return;
1303 			}
1304 			(cc->handler)(rbufp, restrict_mask);
1305 			return;
1306 		}
1307 	}
1308 
1309 	/*
1310 	 * Can't find this one, return an error.
1311 	 */
1312 	numctlbadop++;
1313 	ctl_error(CERR_BADOP);
1314 	return;
1315 }
1316 
1317 
1318 /*
1319  * ctlpeerstatus - return a status word for this peer
1320  */
1321 u_short
1322 ctlpeerstatus(
1323 	register struct peer *p
1324 	)
1325 {
1326 	u_short status;
1327 
1328 	status = p->status;
1329 	if (FLAG_CONFIG & p->flags)
1330 		status |= CTL_PST_CONFIG;
1331 	if (p->keyid)
1332 		status |= CTL_PST_AUTHENABLE;
1333 	if (FLAG_AUTHENTIC & p->flags)
1334 		status |= CTL_PST_AUTHENTIC;
1335 	if (p->reach)
1336 		status |= CTL_PST_REACH;
1337 	if (MDF_TXONLY_MASK & p->cast_flags)
1338 		status |= CTL_PST_BCAST;
1339 
1340 	return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1341 }
1342 
1343 
1344 /*
1345  * ctlclkstatus - return a status word for this clock
1346  */
1347 #ifdef REFCLOCK
1348 static u_short
1349 ctlclkstatus(
1350 	struct refclockstat *pcs
1351 	)
1352 {
1353 	return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1354 }
1355 #endif
1356 
1357 
1358 /*
1359  * ctlsysstatus - return the system status word
1360  */
1361 u_short
1362 ctlsysstatus(void)
1363 {
1364 	register u_char this_clock;
1365 
1366 	this_clock = CTL_SST_TS_UNSPEC;
1367 #ifdef REFCLOCK
1368 	if (sys_peer != NULL) {
1369 		if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1370 			this_clock = sys_peer->sstclktype;
1371 		else if (sys_peer->refclktype < COUNTOF(clocktypes))
1372 			this_clock = clocktypes[sys_peer->refclktype];
1373 	}
1374 #else /* REFCLOCK */
1375 	if (sys_peer != 0)
1376 		this_clock = CTL_SST_TS_NTP;
1377 #endif /* REFCLOCK */
1378 	return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1379 			      ctl_sys_last_event);
1380 }
1381 
1382 
1383 /*
1384  * ctl_flushpkt - write out the current packet and prepare
1385  *		  another if necessary.
1386  */
1387 static void
1388 ctl_flushpkt(
1389 	u_char more
1390 	)
1391 {
1392 	size_t i;
1393 	size_t dlen;
1394 	size_t sendlen;
1395 	size_t maclen;
1396 	size_t totlen;
1397 	keyid_t keyid;
1398 
1399 	dlen = datapt - rpkt.u.data;
1400 	if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1401 		/*
1402 		 * Big hack, output a trailing \r\n
1403 		 */
1404 		*datapt++ = '\r';
1405 		*datapt++ = '\n';
1406 		dlen += 2;
1407 	}
1408 	sendlen = dlen + CTL_HEADER_LEN;
1409 
1410 	/*
1411 	 * Pad to a multiple of 32 bits
1412 	 */
1413 	while (sendlen & 0x3) {
1414 		*datapt++ = '\0';
1415 		sendlen++;
1416 	}
1417 
1418 	/*
1419 	 * Fill in the packet with the current info
1420 	 */
1421 	rpkt.r_m_e_op = CTL_RESPONSE | more |
1422 			(res_opcode & CTL_OP_MASK);
1423 	rpkt.count = htons((u_short)dlen);
1424 	rpkt.offset = htons((u_short)res_offset);
1425 	if (res_async) {
1426 		for (i = 0; i < COUNTOF(ctl_traps); i++) {
1427 			if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1428 				rpkt.li_vn_mode =
1429 				    PKT_LI_VN_MODE(
1430 					sys_leap,
1431 					ctl_traps[i].tr_version,
1432 					MODE_CONTROL);
1433 				rpkt.sequence =
1434 				    htons(ctl_traps[i].tr_sequence);
1435 				sendpkt(&ctl_traps[i].tr_addr,
1436 					ctl_traps[i].tr_localaddr, -4,
1437 					(struct pkt *)&rpkt, sendlen);
1438 				if (!more)
1439 					ctl_traps[i].tr_sequence++;
1440 				numasyncmsgs++;
1441 			}
1442 		}
1443 	} else {
1444 		if (res_authenticate && sys_authenticate) {
1445 			totlen = sendlen;
1446 			/*
1447 			 * If we are going to authenticate, then there
1448 			 * is an additional requirement that the MAC
1449 			 * begin on a 64 bit boundary.
1450 			 */
1451 			while (totlen & 7) {
1452 				*datapt++ = '\0';
1453 				totlen++;
1454 			}
1455 			keyid = htonl(res_keyid);
1456 			memcpy(datapt, &keyid, sizeof(keyid));
1457 			maclen = authencrypt(res_keyid,
1458 					     (u_int32 *)&rpkt, totlen);
1459 			sendpkt(rmt_addr, lcl_inter, -5,
1460 				(struct pkt *)&rpkt, totlen + maclen);
1461 		} else {
1462 			sendpkt(rmt_addr, lcl_inter, -6,
1463 				(struct pkt *)&rpkt, sendlen);
1464 		}
1465 		if (more)
1466 			numctlfrags++;
1467 		else
1468 			numctlresponses++;
1469 	}
1470 
1471 	/*
1472 	 * Set us up for another go around.
1473 	 */
1474 	res_frags++;
1475 	res_offset += dlen;
1476 	datapt = rpkt.u.data;
1477 }
1478 
1479 
1480 /*
1481  * ctl_putdata - write data into the packet, fragmenting and starting
1482  * another if this one is full.
1483  */
1484 static void
1485 ctl_putdata(
1486 	const char *dp,
1487 	unsigned int dlen,
1488 	int bin			/* set to 1 when data is binary */
1489 	)
1490 {
1491 	int overhead;
1492 	unsigned int currentlen;
1493 
1494 	overhead = 0;
1495 	if (!bin) {
1496 		datanotbinflag = TRUE;
1497 		overhead = 3;
1498 		if (datasent) {
1499 			*datapt++ = ',';
1500 			datalinelen++;
1501 			if ((dlen + datalinelen + 1) >= MAXDATALINELEN) {
1502 				*datapt++ = '\r';
1503 				*datapt++ = '\n';
1504 				datalinelen = 0;
1505 			} else {
1506 				*datapt++ = ' ';
1507 				datalinelen++;
1508 			}
1509 		}
1510 	}
1511 
1512 	/*
1513 	 * Save room for trailing junk
1514 	 */
1515 	while (dlen + overhead + datapt > dataend) {
1516 		/*
1517 		 * Not enough room in this one, flush it out.
1518 		 */
1519 		currentlen = MIN(dlen, (unsigned int)(dataend - datapt));
1520 
1521 		memcpy(datapt, dp, currentlen);
1522 
1523 		datapt += currentlen;
1524 		dp += currentlen;
1525 		dlen -= currentlen;
1526 		datalinelen += currentlen;
1527 
1528 		ctl_flushpkt(CTL_MORE);
1529 	}
1530 
1531 	memcpy(datapt, dp, dlen);
1532 	datapt += dlen;
1533 	datalinelen += dlen;
1534 	datasent = TRUE;
1535 }
1536 
1537 
1538 /*
1539  * ctl_putstr - write a tagged string into the response packet
1540  *		in the form:
1541  *
1542  *		tag="data"
1543  *
1544  *		len is the data length excluding the NUL terminator,
1545  *		as in ctl_putstr("var", "value", strlen("value"));
1546  */
1547 static void
1548 ctl_putstr(
1549 	const char *	tag,
1550 	const char *	data,
1551 	size_t		len
1552 	)
1553 {
1554 	char buffer[512];
1555 	char *cp;
1556 	size_t tl;
1557 
1558 	tl = strlen(tag);
1559 	memcpy(buffer, tag, tl);
1560 	cp = buffer + tl;
1561 	if (len > 0) {
1562 		INSIST(tl + 3 + len <= sizeof(buffer));
1563 		*cp++ = '=';
1564 		*cp++ = '"';
1565 		memcpy(cp, data, len);
1566 		cp += len;
1567 		*cp++ = '"';
1568 	}
1569 	ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1570 }
1571 
1572 
1573 /*
1574  * ctl_putunqstr - write a tagged string into the response packet
1575  *		   in the form:
1576  *
1577  *		   tag=data
1578  *
1579  *	len is the data length excluding the NUL terminator.
1580  *	data must not contain a comma or whitespace.
1581  */
1582 static void
1583 ctl_putunqstr(
1584 	const char *	tag,
1585 	const char *	data,
1586 	size_t		len
1587 	)
1588 {
1589 	char buffer[512];
1590 	char *cp;
1591 	size_t tl;
1592 
1593 	tl = strlen(tag);
1594 	memcpy(buffer, tag, tl);
1595 	cp = buffer + tl;
1596 	if (len > 0) {
1597 		INSIST(tl + 1 + len <= sizeof(buffer));
1598 		*cp++ = '=';
1599 		memcpy(cp, data, len);
1600 		cp += len;
1601 	}
1602 	ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1603 }
1604 
1605 
1606 /*
1607  * ctl_putdblf - write a tagged, signed double into the response packet
1608  */
1609 static void
1610 ctl_putdblf(
1611 	const char *	tag,
1612 	int		use_f,
1613 	int		precision,
1614 	double		d
1615 	)
1616 {
1617 	char *cp;
1618 	const char *cq;
1619 	char buffer[200];
1620 
1621 	cp = buffer;
1622 	cq = tag;
1623 	while (*cq != '\0')
1624 		*cp++ = *cq++;
1625 	*cp++ = '=';
1626 	INSIST((size_t)(cp - buffer) < sizeof(buffer));
1627 	snprintf(cp, sizeof(buffer) - (cp - buffer), use_f ? "%.*f" : "%.*g",
1628 	    precision, d);
1629 	cp += strlen(cp);
1630 	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1631 }
1632 
1633 /*
1634  * ctl_putuint - write a tagged unsigned integer into the response
1635  */
1636 static void
1637 ctl_putuint(
1638 	const char *tag,
1639 	u_long uval
1640 	)
1641 {
1642 	register char *cp;
1643 	register const char *cq;
1644 	char buffer[200];
1645 
1646 	cp = buffer;
1647 	cq = tag;
1648 	while (*cq != '\0')
1649 		*cp++ = *cq++;
1650 
1651 	*cp++ = '=';
1652 	INSIST((cp - buffer) < (int)sizeof(buffer));
1653 	snprintf(cp, sizeof(buffer) - (cp - buffer), "%lu", uval);
1654 	cp += strlen(cp);
1655 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1656 }
1657 
1658 /*
1659  * ctl_putcal - write a decoded calendar data into the response
1660  */
1661 static void
1662 ctl_putcal(
1663 	const char *tag,
1664 	const struct calendar *pcal
1665 	)
1666 {
1667 	char buffer[100];
1668 	unsigned numch;
1669 
1670 	numch = snprintf(buffer, sizeof(buffer),
1671 			"%s=%04d%02d%02d%02d%02d",
1672 			tag,
1673 			pcal->year,
1674 			pcal->month,
1675 			pcal->monthday,
1676 			pcal->hour,
1677 			pcal->minute
1678 			);
1679 	INSIST(numch < sizeof(buffer));
1680 	ctl_putdata(buffer, numch, 0);
1681 
1682 	return;
1683 }
1684 
1685 /*
1686  * ctl_putfs - write a decoded filestamp into the response
1687  */
1688 static void
1689 ctl_putfs(
1690 	const char *tag,
1691 	tstamp_t uval
1692 	)
1693 {
1694 	register char *cp;
1695 	register const char *cq;
1696 	char buffer[200];
1697 	struct tm *tm = NULL;
1698 	time_t fstamp;
1699 
1700 	cp = buffer;
1701 	cq = tag;
1702 	while (*cq != '\0')
1703 		*cp++ = *cq++;
1704 
1705 	*cp++ = '=';
1706 	fstamp = uval - JAN_1970;
1707 	tm = gmtime(&fstamp);
1708 	if (NULL ==  tm)
1709 		return;
1710 	INSIST((cp - buffer) < (int)sizeof(buffer));
1711 	snprintf(cp, sizeof(buffer) - (cp - buffer),
1712 		 "%04d%02d%02d%02d%02d", tm->tm_year + 1900,
1713 		 tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min);
1714 	cp += strlen(cp);
1715 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1716 }
1717 
1718 
1719 /*
1720  * ctl_puthex - write a tagged unsigned integer, in hex, into the
1721  * response
1722  */
1723 static void
1724 ctl_puthex(
1725 	const char *tag,
1726 	u_long uval
1727 	)
1728 {
1729 	register char *cp;
1730 	register const char *cq;
1731 	char buffer[200];
1732 
1733 	cp = buffer;
1734 	cq = tag;
1735 	while (*cq != '\0')
1736 		*cp++ = *cq++;
1737 
1738 	*cp++ = '=';
1739 	INSIST((cp - buffer) < (int)sizeof(buffer));
1740 	snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%lx", uval);
1741 	cp += strlen(cp);
1742 	ctl_putdata(buffer,(unsigned)( cp - buffer ), 0);
1743 }
1744 
1745 
1746 /*
1747  * ctl_putint - write a tagged signed integer into the response
1748  */
1749 static void
1750 ctl_putint(
1751 	const char *tag,
1752 	long ival
1753 	)
1754 {
1755 	register char *cp;
1756 	register const char *cq;
1757 	char buffer[200];
1758 
1759 	cp = buffer;
1760 	cq = tag;
1761 	while (*cq != '\0')
1762 		*cp++ = *cq++;
1763 
1764 	*cp++ = '=';
1765 	INSIST((cp - buffer) < (int)sizeof(buffer));
1766 	snprintf(cp, sizeof(buffer) - (cp - buffer), "%ld", ival);
1767 	cp += strlen(cp);
1768 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1769 }
1770 
1771 
1772 /*
1773  * ctl_putts - write a tagged timestamp, in hex, into the response
1774  */
1775 static void
1776 ctl_putts(
1777 	const char *tag,
1778 	l_fp *ts
1779 	)
1780 {
1781 	register char *cp;
1782 	register const char *cq;
1783 	char buffer[200];
1784 
1785 	cp = buffer;
1786 	cq = tag;
1787 	while (*cq != '\0')
1788 		*cp++ = *cq++;
1789 
1790 	*cp++ = '=';
1791 	INSIST((size_t)(cp - buffer) < sizeof(buffer));
1792 	snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%08x.%08x",
1793 		 (u_int)ts->l_ui, (u_int)ts->l_uf);
1794 	cp += strlen(cp);
1795 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1796 }
1797 
1798 
1799 /*
1800  * ctl_putadr - write an IP address into the response
1801  */
1802 static void
1803 ctl_putadr(
1804 	const char *tag,
1805 	u_int32 addr32,
1806 	sockaddr_u *addr
1807 	)
1808 {
1809 	register char *cp;
1810 	register const char *cq;
1811 	char buffer[200];
1812 
1813 	cp = buffer;
1814 	cq = tag;
1815 	while (*cq != '\0')
1816 		*cp++ = *cq++;
1817 
1818 	*cp++ = '=';
1819 	if (NULL == addr)
1820 		cq = numtoa(addr32);
1821 	else
1822 		cq = stoa(addr);
1823 	INSIST((cp - buffer) < (int)sizeof(buffer));
1824 	snprintf(cp, sizeof(buffer) - (cp - buffer), "%s", cq);
1825 	cp += strlen(cp);
1826 	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1827 }
1828 
1829 
1830 /*
1831  * ctl_putrefid - send a u_int32 refid as printable text
1832  */
1833 static void
1834 ctl_putrefid(
1835 	const char *	tag,
1836 	u_int32		refid
1837 	)
1838 {
1839 	char	output[16];
1840 	char *	optr;
1841 	char *	oplim;
1842 	char *	iptr;
1843 	char *	iplim;
1844 	char *	past_eq;
1845 
1846 	optr = output;
1847 	oplim = output + sizeof(output);
1848 	while (optr < oplim && '\0' != *tag)
1849 		*optr++ = *tag++;
1850 	if (optr < oplim) {
1851 		*optr++ = '=';
1852 		past_eq = optr;
1853 	}
1854 	if (!(optr < oplim))
1855 		return;
1856 	iptr = (char *)&refid;
1857 	iplim = iptr + sizeof(refid);
1858 	for ( ; optr < oplim && iptr < iplim && '\0' != *iptr;
1859 	     iptr++, optr++)
1860 		if (isprint((int)*iptr))
1861 			*optr = *iptr;
1862 		else
1863 			*optr = '.';
1864 	if (!(optr <= oplim))
1865 		optr = past_eq;
1866 	ctl_putdata(output, (u_int)(optr - output), FALSE);
1867 }
1868 
1869 
1870 /*
1871  * ctl_putarray - write a tagged eight element double array into the response
1872  */
1873 static void
1874 ctl_putarray(
1875 	const char *tag,
1876 	double *arr,
1877 	int start
1878 	)
1879 {
1880 	register char *cp;
1881 	register const char *cq;
1882 	char buffer[200];
1883 	int i;
1884 	cp = buffer;
1885 	cq = tag;
1886 	while (*cq != '\0')
1887 		*cp++ = *cq++;
1888 	*cp++ = '=';
1889 	i = start;
1890 	do {
1891 		if (i == 0)
1892 			i = NTP_SHIFT;
1893 		i--;
1894 		INSIST((cp - buffer) < (int)sizeof(buffer));
1895 		snprintf(cp, sizeof(buffer) - (cp - buffer),
1896 			 " %.2f", arr[i] * 1e3);
1897 		cp += strlen(cp);
1898 	} while (i != start);
1899 	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1900 }
1901 
1902 /*
1903  * ctl_printf - put a formatted string into the data buffer
1904  */
1905 static void
1906 ctl_printf(
1907 	const char * fmt,
1908 	...
1909 	)
1910 {
1911 	static const char * ellipsis = "[...]";
1912 	va_list va;
1913 	char    fmtbuf[128];
1914 	int     rc;
1915 
1916 	va_start(va, fmt);
1917 	rc = vsnprintf(fmtbuf, sizeof(fmtbuf), fmt, va);
1918 	va_end(va);
1919 	if (rc < 0 || rc >= sizeof(fmtbuf))
1920 		strcpy(fmtbuf + sizeof(fmtbuf) - strlen(ellipsis) - 1,
1921 		       ellipsis);
1922 	ctl_putdata(fmtbuf, strlen(fmtbuf), 0);
1923 }
1924 
1925 
1926 /*
1927  * ctl_putsys - output a system variable
1928  */
1929 static void
1930 ctl_putsys(
1931 	int varid
1932 	)
1933 {
1934 	l_fp tmp;
1935 	char str[256];
1936 	u_int u;
1937 	double kb;
1938 	double dtemp;
1939 	const char *ss;
1940 #ifdef AUTOKEY
1941 	struct cert_info *cp;
1942 #endif	/* AUTOKEY */
1943 #ifdef KERNEL_PLL
1944 	static struct timex ntx;
1945 	static u_long ntp_adjtime_time;
1946 
1947 	static const double to_ms =
1948 # ifdef STA_NANO
1949 		1.0e-6; /* nsec to msec */
1950 # else
1951 		1.0e-3; /* usec to msec */
1952 # endif
1953 
1954 	/*
1955 	 * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1956 	 */
1957 	if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1958 	    current_time != ntp_adjtime_time) {
1959 		ZERO(ntx);
1960 		if (ntp_adjtime(&ntx) < 0)
1961 			msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1962 		else
1963 			ntp_adjtime_time = current_time;
1964 	}
1965 #endif	/* KERNEL_PLL */
1966 
1967 	switch (varid) {
1968 
1969 	case CS_LEAP:
1970 		ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1971 		break;
1972 
1973 	case CS_STRATUM:
1974 		ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1975 		break;
1976 
1977 	case CS_PRECISION:
1978 		ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1979 		break;
1980 
1981 	case CS_ROOTDELAY:
1982 		ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1983 			   1e3);
1984 		break;
1985 
1986 	case CS_ROOTDISPERSION:
1987 		ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1988 			   sys_rootdisp * 1e3);
1989 		break;
1990 
1991 	case CS_REFID:
1992 		if (sys_stratum > 1 && sys_stratum < STRATUM_UNSPEC)
1993 			ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1994 		else
1995 			ctl_putrefid(sys_var[varid].text, sys_refid);
1996 		break;
1997 
1998 	case CS_REFTIME:
1999 		ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
2000 		break;
2001 
2002 	case CS_POLL:
2003 		ctl_putuint(sys_var[CS_POLL].text, sys_poll);
2004 		break;
2005 
2006 	case CS_PEERID:
2007 		if (sys_peer == NULL)
2008 			ctl_putuint(sys_var[CS_PEERID].text, 0);
2009 		else
2010 			ctl_putuint(sys_var[CS_PEERID].text,
2011 				    sys_peer->associd);
2012 		break;
2013 
2014 	case CS_PEERADR:
2015 		if (sys_peer != NULL && sys_peer->dstadr != NULL)
2016 			ss = sptoa(&sys_peer->srcadr);
2017 		else
2018 			ss = "0.0.0.0:0";
2019 		ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
2020 		break;
2021 
2022 	case CS_PEERMODE:
2023 		u = (sys_peer != NULL)
2024 			? sys_peer->hmode
2025 			: MODE_UNSPEC;
2026 		ctl_putuint(sys_var[CS_PEERMODE].text, u);
2027 		break;
2028 
2029 	case CS_OFFSET:
2030 		ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
2031 		break;
2032 
2033 	case CS_DRIFT:
2034 		ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
2035 		break;
2036 
2037 	case CS_JITTER:
2038 		ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
2039 		break;
2040 
2041 	case CS_ERROR:
2042 		ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
2043 		break;
2044 
2045 	case CS_CLOCK:
2046 		get_systime(&tmp);
2047 		ctl_putts(sys_var[CS_CLOCK].text, &tmp);
2048 		break;
2049 
2050 	case CS_PROCESSOR:
2051 #ifndef HAVE_UNAME
2052 		ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
2053 			   sizeof(str_processor) - 1);
2054 #else
2055 		ctl_putstr(sys_var[CS_PROCESSOR].text,
2056 			   utsnamebuf.machine, strlen(utsnamebuf.machine));
2057 #endif /* HAVE_UNAME */
2058 		break;
2059 
2060 	case CS_SYSTEM:
2061 #ifndef HAVE_UNAME
2062 		ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
2063 			   sizeof(str_system) - 1);
2064 #else
2065 		snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
2066 			 utsnamebuf.release);
2067 		ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
2068 #endif /* HAVE_UNAME */
2069 		break;
2070 
2071 	case CS_VERSION:
2072 		ctl_putstr(sys_var[CS_VERSION].text, Version,
2073 			   strlen(Version));
2074 		break;
2075 
2076 	case CS_STABIL:
2077 		ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
2078 			   1e6);
2079 		break;
2080 
2081 	case CS_VARLIST:
2082 	{
2083 		char buf[CTL_MAX_DATA_LEN];
2084 		//buffPointer, firstElementPointer, buffEndPointer
2085 		char *buffp, *buffend;
2086 		int firstVarName;
2087 		const char *ss1;
2088 		int len;
2089 		const struct ctl_var *k;
2090 
2091 		buffp = buf;
2092 		buffend = buf + sizeof(buf);
2093 		if (buffp + strlen(sys_var[CS_VARLIST].text) + 4 > buffend)
2094 			break;	/* really long var name */
2095 
2096 		snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
2097 		buffp += strlen(buffp);
2098 		firstVarName = TRUE;
2099 		for (k = sys_var; !(k->flags & EOV); k++) {
2100 			if (k->flags & PADDING)
2101 				continue;
2102 			len = strlen(k->text);
2103 			if (buffp + len + 1 >= buffend)
2104 				break;
2105 			if (!firstVarName)
2106 				*buffp++ = ',';
2107 			else
2108 				firstVarName = FALSE;
2109 			memcpy(buffp, k->text, len);
2110 			buffp += len;
2111 		}
2112 
2113 		for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
2114 			if (k->flags & PADDING)
2115 				continue;
2116 			if (NULL == k->text)
2117 				continue;
2118 			ss1 = strchr(k->text, '=');
2119 			if (NULL == ss1)
2120 				len = strlen(k->text);
2121 			else
2122 				len = ss1 - k->text;
2123 			if (buffp + len + 1 >= buffend)
2124 				break;
2125 			if (firstVarName) {
2126 				*buffp++ = ',';
2127 				firstVarName = FALSE;
2128 			}
2129 			memcpy(buffp, k->text,(unsigned)len);
2130 			buffp += len;
2131 		}
2132 		if (buffp + 2 >= buffend)
2133 			break;
2134 
2135 		*buffp++ = '"';
2136 		*buffp = '\0';
2137 
2138 		ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
2139 		break;
2140 	}
2141 
2142 	case CS_TAI:
2143 		if (sys_tai > 0)
2144 			ctl_putuint(sys_var[CS_TAI].text, sys_tai);
2145 		break;
2146 
2147 	case CS_LEAPTAB:
2148 	{
2149 		leap_signature_t lsig;
2150 		leapsec_getsig(&lsig);
2151 		if (lsig.ttime > 0)
2152 			ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
2153 		break;
2154 	}
2155 
2156 	case CS_LEAPEND:
2157 	{
2158 		leap_signature_t lsig;
2159 		leapsec_getsig(&lsig);
2160 		if (lsig.etime > 0)
2161 			ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
2162 		break;
2163 	}
2164 
2165 #ifdef LEAP_SMEAR
2166 	case CS_LEAPSMEARINTV:
2167 		if (leap_smear_intv > 0)
2168 			ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv);
2169 		break;
2170 
2171 	case CS_LEAPSMEAROFFS:
2172 		if (leap_smear_intv > 0)
2173 			ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text,
2174 				   leap_smear.doffset * 1e3);
2175 		break;
2176 #endif	/* LEAP_SMEAR */
2177 
2178 	case CS_RATE:
2179 		ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
2180 		break;
2181 
2182 	case CS_MRU_ENABLED:
2183 		ctl_puthex(sys_var[varid].text, mon_enabled);
2184 		break;
2185 
2186 	case CS_MRU_DEPTH:
2187 		ctl_putuint(sys_var[varid].text, mru_entries);
2188 		break;
2189 
2190 	case CS_MRU_MEM:
2191 		kb = mru_entries * (sizeof(mon_entry) / 1024.);
2192 		u = (u_int)kb;
2193 		if (kb - u >= 0.5)
2194 			u++;
2195 		ctl_putuint(sys_var[varid].text, u);
2196 		break;
2197 
2198 	case CS_MRU_DEEPEST:
2199 		ctl_putuint(sys_var[varid].text, mru_peakentries);
2200 		break;
2201 
2202 	case CS_MRU_MINDEPTH:
2203 		ctl_putuint(sys_var[varid].text, mru_mindepth);
2204 		break;
2205 
2206 	case CS_MRU_MAXAGE:
2207 		ctl_putint(sys_var[varid].text, mru_maxage);
2208 		break;
2209 
2210 	case CS_MRU_MAXDEPTH:
2211 		ctl_putuint(sys_var[varid].text, mru_maxdepth);
2212 		break;
2213 
2214 	case CS_MRU_MAXMEM:
2215 		kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
2216 		u = (u_int)kb;
2217 		if (kb - u >= 0.5)
2218 			u++;
2219 		ctl_putuint(sys_var[varid].text, u);
2220 		break;
2221 
2222 	case CS_SS_UPTIME:
2223 		ctl_putuint(sys_var[varid].text, current_time);
2224 		break;
2225 
2226 	case CS_SS_RESET:
2227 		ctl_putuint(sys_var[varid].text,
2228 			    current_time - sys_stattime);
2229 		break;
2230 
2231 	case CS_SS_RECEIVED:
2232 		ctl_putuint(sys_var[varid].text, sys_received);
2233 		break;
2234 
2235 	case CS_SS_THISVER:
2236 		ctl_putuint(sys_var[varid].text, sys_newversion);
2237 		break;
2238 
2239 	case CS_SS_OLDVER:
2240 		ctl_putuint(sys_var[varid].text, sys_oldversion);
2241 		break;
2242 
2243 	case CS_SS_BADFORMAT:
2244 		ctl_putuint(sys_var[varid].text, sys_badlength);
2245 		break;
2246 
2247 	case CS_SS_BADAUTH:
2248 		ctl_putuint(sys_var[varid].text, sys_badauth);
2249 		break;
2250 
2251 	case CS_SS_DECLINED:
2252 		ctl_putuint(sys_var[varid].text, sys_declined);
2253 		break;
2254 
2255 	case CS_SS_RESTRICTED:
2256 		ctl_putuint(sys_var[varid].text, sys_restricted);
2257 		break;
2258 
2259 	case CS_SS_LIMITED:
2260 		ctl_putuint(sys_var[varid].text, sys_limitrejected);
2261 		break;
2262 
2263 	case CS_SS_KODSENT:
2264 		ctl_putuint(sys_var[varid].text, sys_kodsent);
2265 		break;
2266 
2267 	case CS_SS_PROCESSED:
2268 		ctl_putuint(sys_var[varid].text, sys_processed);
2269 		break;
2270 
2271 	case CS_BCASTDELAY:
2272 		ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2273 		break;
2274 
2275 	case CS_AUTHDELAY:
2276 		LFPTOD(&sys_authdelay, dtemp);
2277 		ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2278 		break;
2279 
2280 	case CS_AUTHKEYS:
2281 		ctl_putuint(sys_var[varid].text, authnumkeys);
2282 		break;
2283 
2284 	case CS_AUTHFREEK:
2285 		ctl_putuint(sys_var[varid].text, authnumfreekeys);
2286 		break;
2287 
2288 	case CS_AUTHKLOOKUPS:
2289 		ctl_putuint(sys_var[varid].text, authkeylookups);
2290 		break;
2291 
2292 	case CS_AUTHKNOTFOUND:
2293 		ctl_putuint(sys_var[varid].text, authkeynotfound);
2294 		break;
2295 
2296 	case CS_AUTHKUNCACHED:
2297 		ctl_putuint(sys_var[varid].text, authkeyuncached);
2298 		break;
2299 
2300 	case CS_AUTHKEXPIRED:
2301 		ctl_putuint(sys_var[varid].text, authkeyexpired);
2302 		break;
2303 
2304 	case CS_AUTHENCRYPTS:
2305 		ctl_putuint(sys_var[varid].text, authencryptions);
2306 		break;
2307 
2308 	case CS_AUTHDECRYPTS:
2309 		ctl_putuint(sys_var[varid].text, authdecryptions);
2310 		break;
2311 
2312 	case CS_AUTHRESET:
2313 		ctl_putuint(sys_var[varid].text,
2314 			    current_time - auth_timereset);
2315 		break;
2316 
2317 		/*
2318 		 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2319 		 * unavailable, otherwise calls putfunc with args.
2320 		 */
2321 #ifndef KERNEL_PLL
2322 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2323 		ctl_putint(sys_var[varid].text, 0)
2324 #else
2325 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2326 		putfunc args
2327 #endif
2328 
2329 		/*
2330 		 * CTL_IF_KERNPPS() puts a zero if either the kernel
2331 		 * loop is unavailable, or kernel hard PPS is not
2332 		 * active, otherwise calls putfunc with args.
2333 		 */
2334 #ifndef KERNEL_PLL
2335 # define	CTL_IF_KERNPPS(putfunc, args)	\
2336 		ctl_putint(sys_var[varid].text, 0)
2337 #else
2338 # define	CTL_IF_KERNPPS(putfunc, args)			\
2339 		if (0 == ntx.shift)				\
2340 			ctl_putint(sys_var[varid].text, 0);	\
2341 		else						\
2342 			putfunc args	/* no trailing ; */
2343 #endif
2344 
2345 	case CS_K_OFFSET:
2346 		CTL_IF_KERNLOOP(
2347 			ctl_putdblf,
2348 			(sys_var[varid].text, 0, -1, to_ms * ntx.offset)
2349 		);
2350 		break;
2351 
2352 	case CS_K_FREQ:
2353 		CTL_IF_KERNLOOP(
2354 			ctl_putsfp,
2355 			(sys_var[varid].text, ntx.freq)
2356 		);
2357 		break;
2358 
2359 	case CS_K_MAXERR:
2360 		CTL_IF_KERNLOOP(
2361 			ctl_putdblf,
2362 			(sys_var[varid].text, 0, 6,
2363 			 to_ms * ntx.maxerror)
2364 		);
2365 		break;
2366 
2367 	case CS_K_ESTERR:
2368 		CTL_IF_KERNLOOP(
2369 			ctl_putdblf,
2370 			(sys_var[varid].text, 0, 6,
2371 			 to_ms * ntx.esterror)
2372 		);
2373 		break;
2374 
2375 	case CS_K_STFLAGS:
2376 #ifndef KERNEL_PLL
2377 		ss = "";
2378 #else
2379 		ss = k_st_flags(ntx.status);
2380 #endif
2381 		ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2382 		break;
2383 
2384 	case CS_K_TIMECONST:
2385 		CTL_IF_KERNLOOP(
2386 			ctl_putint,
2387 			(sys_var[varid].text, ntx.constant)
2388 		);
2389 		break;
2390 
2391 	case CS_K_PRECISION:
2392 		CTL_IF_KERNLOOP(
2393 			ctl_putdblf,
2394 			(sys_var[varid].text, 0, 6,
2395 			    to_ms * ntx.precision)
2396 		);
2397 		break;
2398 
2399 	case CS_K_FREQTOL:
2400 		CTL_IF_KERNLOOP(
2401 			ctl_putsfp,
2402 			(sys_var[varid].text, ntx.tolerance)
2403 		);
2404 		break;
2405 
2406 	case CS_K_PPS_FREQ:
2407 		CTL_IF_KERNPPS(
2408 			ctl_putsfp,
2409 			(sys_var[varid].text, ntx.ppsfreq)
2410 		);
2411 		break;
2412 
2413 	case CS_K_PPS_STABIL:
2414 		CTL_IF_KERNPPS(
2415 			ctl_putsfp,
2416 			(sys_var[varid].text, ntx.stabil)
2417 		);
2418 		break;
2419 
2420 	case CS_K_PPS_JITTER:
2421 		CTL_IF_KERNPPS(
2422 			ctl_putdbl,
2423 			(sys_var[varid].text, to_ms * ntx.jitter)
2424 		);
2425 		break;
2426 
2427 	case CS_K_PPS_CALIBDUR:
2428 		CTL_IF_KERNPPS(
2429 			ctl_putint,
2430 			(sys_var[varid].text, 1 << ntx.shift)
2431 		);
2432 		break;
2433 
2434 	case CS_K_PPS_CALIBS:
2435 		CTL_IF_KERNPPS(
2436 			ctl_putint,
2437 			(sys_var[varid].text, ntx.calcnt)
2438 		);
2439 		break;
2440 
2441 	case CS_K_PPS_CALIBERRS:
2442 		CTL_IF_KERNPPS(
2443 			ctl_putint,
2444 			(sys_var[varid].text, ntx.errcnt)
2445 		);
2446 		break;
2447 
2448 	case CS_K_PPS_JITEXC:
2449 		CTL_IF_KERNPPS(
2450 			ctl_putint,
2451 			(sys_var[varid].text, ntx.jitcnt)
2452 		);
2453 		break;
2454 
2455 	case CS_K_PPS_STBEXC:
2456 		CTL_IF_KERNPPS(
2457 			ctl_putint,
2458 			(sys_var[varid].text, ntx.stbcnt)
2459 		);
2460 		break;
2461 
2462 	case CS_IOSTATS_RESET:
2463 		ctl_putuint(sys_var[varid].text,
2464 			    current_time - io_timereset);
2465 		break;
2466 
2467 	case CS_TOTAL_RBUF:
2468 		ctl_putuint(sys_var[varid].text, total_recvbuffs());
2469 		break;
2470 
2471 	case CS_FREE_RBUF:
2472 		ctl_putuint(sys_var[varid].text, free_recvbuffs());
2473 		break;
2474 
2475 	case CS_USED_RBUF:
2476 		ctl_putuint(sys_var[varid].text, full_recvbuffs());
2477 		break;
2478 
2479 	case CS_RBUF_LOWATER:
2480 		ctl_putuint(sys_var[varid].text, lowater_additions());
2481 		break;
2482 
2483 	case CS_IO_DROPPED:
2484 		ctl_putuint(sys_var[varid].text, packets_dropped);
2485 		break;
2486 
2487 	case CS_IO_IGNORED:
2488 		ctl_putuint(sys_var[varid].text, packets_ignored);
2489 		break;
2490 
2491 	case CS_IO_RECEIVED:
2492 		ctl_putuint(sys_var[varid].text, packets_received);
2493 		break;
2494 
2495 	case CS_IO_SENT:
2496 		ctl_putuint(sys_var[varid].text, packets_sent);
2497 		break;
2498 
2499 	case CS_IO_SENDFAILED:
2500 		ctl_putuint(sys_var[varid].text, packets_notsent);
2501 		break;
2502 
2503 	case CS_IO_WAKEUPS:
2504 		ctl_putuint(sys_var[varid].text, handler_calls);
2505 		break;
2506 
2507 	case CS_IO_GOODWAKEUPS:
2508 		ctl_putuint(sys_var[varid].text, handler_pkts);
2509 		break;
2510 
2511 	case CS_TIMERSTATS_RESET:
2512 		ctl_putuint(sys_var[varid].text,
2513 			    current_time - timer_timereset);
2514 		break;
2515 
2516 	case CS_TIMER_OVERRUNS:
2517 		ctl_putuint(sys_var[varid].text, alarm_overflow);
2518 		break;
2519 
2520 	case CS_TIMER_XMTS:
2521 		ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2522 		break;
2523 
2524 	case CS_FUZZ:
2525 		ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2526 		break;
2527 	case CS_WANDER_THRESH:
2528 		ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
2529 		break;
2530 #ifdef AUTOKEY
2531 	case CS_FLAGS:
2532 		if (crypto_flags)
2533 			ctl_puthex(sys_var[CS_FLAGS].text,
2534 			    crypto_flags);
2535 		break;
2536 
2537 	case CS_DIGEST:
2538 		if (crypto_flags) {
2539 			strlcpy(str, OBJ_nid2ln(crypto_nid),
2540 			    COUNTOF(str));
2541 			ctl_putstr(sys_var[CS_DIGEST].text, str,
2542 			    strlen(str));
2543 		}
2544 		break;
2545 
2546 	case CS_SIGNATURE:
2547 		if (crypto_flags) {
2548 			const EVP_MD *dp;
2549 
2550 			dp = EVP_get_digestbynid(crypto_flags >> 16);
2551 			strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2552 			    COUNTOF(str));
2553 			ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2554 			    strlen(str));
2555 		}
2556 		break;
2557 
2558 	case CS_HOST:
2559 		if (hostval.ptr != NULL)
2560 			ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2561 			    strlen(hostval.ptr));
2562 		break;
2563 
2564 	case CS_IDENT:
2565 		if (sys_ident != NULL)
2566 			ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2567 			    strlen(sys_ident));
2568 		break;
2569 
2570 	case CS_CERTIF:
2571 		for (cp = cinfo; cp != NULL; cp = cp->link) {
2572 			snprintf(str, sizeof(str), "%s %s 0x%x",
2573 			    cp->subject, cp->issuer, cp->flags);
2574 			ctl_putstr(sys_var[CS_CERTIF].text, str,
2575 			    strlen(str));
2576 			ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
2577 		}
2578 		break;
2579 
2580 	case CS_PUBLIC:
2581 		if (hostval.tstamp != 0)
2582 			ctl_putfs(sys_var[CS_PUBLIC].text,
2583 			    ntohl(hostval.tstamp));
2584 		break;
2585 #endif	/* AUTOKEY */
2586 
2587 	default:
2588 		break;
2589 	}
2590 }
2591 
2592 
2593 /*
2594  * ctl_putpeer - output a peer variable
2595  */
2596 static void
2597 ctl_putpeer(
2598 	int id,
2599 	struct peer *p
2600 	)
2601 {
2602 	char buf[CTL_MAX_DATA_LEN];
2603 	char *s;
2604 	char *t;
2605 	char *be;
2606 	int i;
2607 	const struct ctl_var *k;
2608 #ifdef AUTOKEY
2609 	struct autokey *ap;
2610 	const EVP_MD *dp;
2611 	const char *str;
2612 #endif	/* AUTOKEY */
2613 
2614 	switch (id) {
2615 
2616 	case CP_CONFIG:
2617 		ctl_putuint(peer_var[id].text,
2618 			    !(FLAG_PREEMPT & p->flags));
2619 		break;
2620 
2621 	case CP_AUTHENABLE:
2622 		ctl_putuint(peer_var[id].text, !(p->keyid));
2623 		break;
2624 
2625 	case CP_AUTHENTIC:
2626 		ctl_putuint(peer_var[id].text,
2627 			    !!(FLAG_AUTHENTIC & p->flags));
2628 		break;
2629 
2630 	case CP_SRCADR:
2631 		ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2632 		break;
2633 
2634 	case CP_SRCPORT:
2635 		ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2636 		break;
2637 
2638 	case CP_SRCHOST:
2639 		if (p->hostname != NULL)
2640 			ctl_putstr(peer_var[id].text, p->hostname,
2641 				   strlen(p->hostname));
2642 		break;
2643 
2644 	case CP_DSTADR:
2645 		ctl_putadr(peer_var[id].text, 0,
2646 			   (p->dstadr != NULL)
2647 				? &p->dstadr->sin
2648 				: NULL);
2649 		break;
2650 
2651 	case CP_DSTPORT:
2652 		ctl_putuint(peer_var[id].text,
2653 			    (p->dstadr != NULL)
2654 				? SRCPORT(&p->dstadr->sin)
2655 				: 0);
2656 		break;
2657 
2658 	case CP_IN:
2659 		if (p->r21 > 0.)
2660 			ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2661 		break;
2662 
2663 	case CP_OUT:
2664 		if (p->r34 > 0.)
2665 			ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2666 		break;
2667 
2668 	case CP_RATE:
2669 		ctl_putuint(peer_var[id].text, p->throttle);
2670 		break;
2671 
2672 	case CP_LEAP:
2673 		ctl_putuint(peer_var[id].text, p->leap);
2674 		break;
2675 
2676 	case CP_HMODE:
2677 		ctl_putuint(peer_var[id].text, p->hmode);
2678 		break;
2679 
2680 	case CP_STRATUM:
2681 		ctl_putuint(peer_var[id].text, p->stratum);
2682 		break;
2683 
2684 	case CP_PPOLL:
2685 		ctl_putuint(peer_var[id].text, p->ppoll);
2686 		break;
2687 
2688 	case CP_HPOLL:
2689 		ctl_putuint(peer_var[id].text, p->hpoll);
2690 		break;
2691 
2692 	case CP_PRECISION:
2693 		ctl_putint(peer_var[id].text, p->precision);
2694 		break;
2695 
2696 	case CP_ROOTDELAY:
2697 		ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2698 		break;
2699 
2700 	case CP_ROOTDISPERSION:
2701 		ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2702 		break;
2703 
2704 	case CP_REFID:
2705 #ifdef REFCLOCK
2706 		if (p->flags & FLAG_REFCLOCK) {
2707 			ctl_putrefid(peer_var[id].text, p->refid);
2708 			break;
2709 		}
2710 #endif
2711 		if (p->stratum > 1 && p->stratum < STRATUM_UNSPEC)
2712 			ctl_putadr(peer_var[id].text, p->refid,
2713 				   NULL);
2714 		else
2715 			ctl_putrefid(peer_var[id].text, p->refid);
2716 		break;
2717 
2718 	case CP_REFTIME:
2719 		ctl_putts(peer_var[id].text, &p->reftime);
2720 		break;
2721 
2722 	case CP_ORG:
2723 		ctl_putts(peer_var[id].text, &p->aorg);
2724 		break;
2725 
2726 	case CP_REC:
2727 		ctl_putts(peer_var[id].text, &p->dst);
2728 		break;
2729 
2730 	case CP_XMT:
2731 		if (p->xleave)
2732 			ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2733 		break;
2734 
2735 	case CP_BIAS:
2736 		if (p->bias != 0.)
2737 			ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2738 		break;
2739 
2740 	case CP_REACH:
2741 		ctl_puthex(peer_var[id].text, p->reach);
2742 		break;
2743 
2744 	case CP_FLASH:
2745 		ctl_puthex(peer_var[id].text, p->flash);
2746 		break;
2747 
2748 	case CP_TTL:
2749 #ifdef REFCLOCK
2750 		if (p->flags & FLAG_REFCLOCK) {
2751 			ctl_putuint(peer_var[id].text, p->ttl);
2752 			break;
2753 		}
2754 #endif
2755 		if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2756 			ctl_putint(peer_var[id].text,
2757 				   sys_ttl[p->ttl]);
2758 		break;
2759 
2760 	case CP_UNREACH:
2761 		ctl_putuint(peer_var[id].text, p->unreach);
2762 		break;
2763 
2764 	case CP_TIMER:
2765 		ctl_putuint(peer_var[id].text,
2766 			    p->nextdate - current_time);
2767 		break;
2768 
2769 	case CP_DELAY:
2770 		ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2771 		break;
2772 
2773 	case CP_OFFSET:
2774 		ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2775 		break;
2776 
2777 	case CP_JITTER:
2778 		ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2779 		break;
2780 
2781 	case CP_DISPERSION:
2782 		ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2783 		break;
2784 
2785 	case CP_KEYID:
2786 		if (p->keyid > NTP_MAXKEY)
2787 			ctl_puthex(peer_var[id].text, p->keyid);
2788 		else
2789 			ctl_putuint(peer_var[id].text, p->keyid);
2790 		break;
2791 
2792 	case CP_FILTDELAY:
2793 		ctl_putarray(peer_var[id].text, p->filter_delay,
2794 			     p->filter_nextpt);
2795 		break;
2796 
2797 	case CP_FILTOFFSET:
2798 		ctl_putarray(peer_var[id].text, p->filter_offset,
2799 			     p->filter_nextpt);
2800 		break;
2801 
2802 	case CP_FILTERROR:
2803 		ctl_putarray(peer_var[id].text, p->filter_disp,
2804 			     p->filter_nextpt);
2805 		break;
2806 
2807 	case CP_PMODE:
2808 		ctl_putuint(peer_var[id].text, p->pmode);
2809 		break;
2810 
2811 	case CP_RECEIVED:
2812 		ctl_putuint(peer_var[id].text, p->received);
2813 		break;
2814 
2815 	case CP_SENT:
2816 		ctl_putuint(peer_var[id].text, p->sent);
2817 		break;
2818 
2819 	case CP_VARLIST:
2820 		s = buf;
2821 		be = buf + sizeof(buf);
2822 		if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2823 			break;	/* really long var name */
2824 
2825 		snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2826 		s += strlen(s);
2827 		t = s;
2828 		for (k = peer_var; !(EOV & k->flags); k++) {
2829 			if (PADDING & k->flags)
2830 				continue;
2831 			i = strlen(k->text);
2832 			if (s + i + 1 >= be)
2833 				break;
2834 			if (s != t)
2835 				*s++ = ',';
2836 			memcpy(s, k->text, i);
2837 			s += i;
2838 		}
2839 		if (s + 2 < be) {
2840 			*s++ = '"';
2841 			*s = '\0';
2842 			ctl_putdata(buf, (u_int)(s - buf), 0);
2843 		}
2844 		break;
2845 
2846 	case CP_TIMEREC:
2847 		ctl_putuint(peer_var[id].text,
2848 			    current_time - p->timereceived);
2849 		break;
2850 
2851 	case CP_TIMEREACH:
2852 		ctl_putuint(peer_var[id].text,
2853 			    current_time - p->timereachable);
2854 		break;
2855 
2856 	case CP_BADAUTH:
2857 		ctl_putuint(peer_var[id].text, p->badauth);
2858 		break;
2859 
2860 	case CP_BOGUSORG:
2861 		ctl_putuint(peer_var[id].text, p->bogusorg);
2862 		break;
2863 
2864 	case CP_OLDPKT:
2865 		ctl_putuint(peer_var[id].text, p->oldpkt);
2866 		break;
2867 
2868 	case CP_SELDISP:
2869 		ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2870 		break;
2871 
2872 	case CP_SELBROKEN:
2873 		ctl_putuint(peer_var[id].text, p->selbroken);
2874 		break;
2875 
2876 	case CP_CANDIDATE:
2877 		ctl_putuint(peer_var[id].text, p->status);
2878 		break;
2879 #ifdef AUTOKEY
2880 	case CP_FLAGS:
2881 		if (p->crypto)
2882 			ctl_puthex(peer_var[id].text, p->crypto);
2883 		break;
2884 
2885 	case CP_SIGNATURE:
2886 		if (p->crypto) {
2887 			dp = EVP_get_digestbynid(p->crypto >> 16);
2888 			str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2889 			ctl_putstr(peer_var[id].text, str, strlen(str));
2890 		}
2891 		break;
2892 
2893 	case CP_HOST:
2894 		if (p->subject != NULL)
2895 			ctl_putstr(peer_var[id].text, p->subject,
2896 			    strlen(p->subject));
2897 		break;
2898 
2899 	case CP_VALID:		/* not used */
2900 		break;
2901 
2902 	case CP_INITSEQ:
2903 		if (NULL == (ap = p->recval.ptr))
2904 			break;
2905 
2906 		ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2907 		ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2908 		ctl_putfs(peer_var[CP_INITTSP].text,
2909 			  ntohl(p->recval.tstamp));
2910 		break;
2911 
2912 	case CP_IDENT:
2913 		if (p->ident != NULL)
2914 			ctl_putstr(peer_var[id].text, p->ident,
2915 			    strlen(p->ident));
2916 		break;
2917 
2918 
2919 #endif	/* AUTOKEY */
2920 	}
2921 }
2922 
2923 
2924 #ifdef REFCLOCK
2925 /*
2926  * ctl_putclock - output clock variables
2927  */
2928 static void
2929 ctl_putclock(
2930 	int id,
2931 	struct refclockstat *pcs,
2932 	int mustput
2933 	)
2934 {
2935 	char buf[CTL_MAX_DATA_LEN];
2936 	char *s, *t, *be;
2937 	const char *ss;
2938 	int i;
2939 	const struct ctl_var *k;
2940 
2941 	switch (id) {
2942 
2943 	case CC_TYPE:
2944 		if (mustput || pcs->clockdesc == NULL
2945 		    || *(pcs->clockdesc) == '\0') {
2946 			ctl_putuint(clock_var[id].text, pcs->type);
2947 		}
2948 		break;
2949 	case CC_TIMECODE:
2950 		ctl_putstr(clock_var[id].text,
2951 			   pcs->p_lastcode,
2952 			   (unsigned)pcs->lencode);
2953 		break;
2954 
2955 	case CC_POLL:
2956 		ctl_putuint(clock_var[id].text, pcs->polls);
2957 		break;
2958 
2959 	case CC_NOREPLY:
2960 		ctl_putuint(clock_var[id].text,
2961 			    pcs->noresponse);
2962 		break;
2963 
2964 	case CC_BADFORMAT:
2965 		ctl_putuint(clock_var[id].text,
2966 			    pcs->badformat);
2967 		break;
2968 
2969 	case CC_BADDATA:
2970 		ctl_putuint(clock_var[id].text,
2971 			    pcs->baddata);
2972 		break;
2973 
2974 	case CC_FUDGETIME1:
2975 		if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2976 			ctl_putdbl(clock_var[id].text,
2977 				   pcs->fudgetime1 * 1e3);
2978 		break;
2979 
2980 	case CC_FUDGETIME2:
2981 		if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2982 			ctl_putdbl(clock_var[id].text,
2983 				   pcs->fudgetime2 * 1e3);
2984 		break;
2985 
2986 	case CC_FUDGEVAL1:
2987 		if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2988 			ctl_putint(clock_var[id].text,
2989 				   pcs->fudgeval1);
2990 		break;
2991 
2992 	case CC_FUDGEVAL2:
2993 		if (mustput || (pcs->haveflags & CLK_HAVEVAL2)) {
2994 			if (pcs->fudgeval1 > 1)
2995 				ctl_putadr(clock_var[id].text,
2996 					   pcs->fudgeval2, NULL);
2997 			else
2998 				ctl_putrefid(clock_var[id].text,
2999 					     pcs->fudgeval2);
3000 		}
3001 		break;
3002 
3003 	case CC_FLAGS:
3004 		ctl_putuint(clock_var[id].text, pcs->flags);
3005 		break;
3006 
3007 	case CC_DEVICE:
3008 		if (pcs->clockdesc == NULL ||
3009 		    *(pcs->clockdesc) == '\0') {
3010 			if (mustput)
3011 				ctl_putstr(clock_var[id].text,
3012 					   "", 0);
3013 		} else {
3014 			ctl_putstr(clock_var[id].text,
3015 				   pcs->clockdesc,
3016 				   strlen(pcs->clockdesc));
3017 		}
3018 		break;
3019 
3020 	case CC_VARLIST:
3021 		s = buf;
3022 		be = buf + sizeof(buf);
3023 		if (strlen(clock_var[CC_VARLIST].text) + 4 >
3024 		    sizeof(buf))
3025 			break;	/* really long var name */
3026 
3027 		snprintf(s, sizeof(buf), "%s=\"",
3028 			 clock_var[CC_VARLIST].text);
3029 		s += strlen(s);
3030 		t = s;
3031 
3032 		for (k = clock_var; !(EOV & k->flags); k++) {
3033 			if (PADDING & k->flags)
3034 				continue;
3035 
3036 			i = strlen(k->text);
3037 			if (s + i + 1 >= be)
3038 				break;
3039 
3040 			if (s != t)
3041 				*s++ = ',';
3042 			memcpy(s, k->text, i);
3043 			s += i;
3044 		}
3045 
3046 		for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
3047 			if (PADDING & k->flags)
3048 				continue;
3049 
3050 			ss = k->text;
3051 			if (NULL == ss)
3052 				continue;
3053 
3054 			while (*ss && *ss != '=')
3055 				ss++;
3056 			i = ss - k->text;
3057 			if (s + i + 1 >= be)
3058 				break;
3059 
3060 			if (s != t)
3061 				*s++ = ',';
3062 			memcpy(s, k->text, (unsigned)i);
3063 			s += i;
3064 			*s = '\0';
3065 		}
3066 		if (s + 2 >= be)
3067 			break;
3068 
3069 		*s++ = '"';
3070 		*s = '\0';
3071 		ctl_putdata(buf, (unsigned)(s - buf), 0);
3072 		break;
3073 	}
3074 }
3075 #endif
3076 
3077 
3078 
3079 /*
3080  * ctl_getitem - get the next data item from the incoming packet
3081  */
3082 static const struct ctl_var *
3083 ctl_getitem(
3084 	const struct ctl_var *var_list,
3085 	char **data
3086 	)
3087 {
3088 	static const struct ctl_var eol = { 0, EOV, NULL };
3089 	static char buf[128];
3090 	static u_long quiet_until;
3091 	const struct ctl_var *v;
3092 	const char *pch;
3093 	char *cp;
3094 	char *tp;
3095 
3096 	/*
3097 	 * Delete leading commas and white space
3098 	 */
3099 	while (reqpt < reqend && (*reqpt == ',' ||
3100 				  isspace((unsigned char)*reqpt)))
3101 		reqpt++;
3102 	if (reqpt >= reqend)
3103 		return NULL;
3104 
3105 	if (NULL == var_list)
3106 		return &eol;
3107 
3108 	/*
3109 	 * Look for a first character match on the tag.  If we find
3110 	 * one, see if it is a full match.
3111 	 */
3112 	cp = reqpt;
3113 	for (v = var_list; !(EOV & v->flags); v++) {
3114 		if (!(PADDING & v->flags) && *cp == *(v->text)) {
3115 			pch = v->text;
3116 			while ('\0' != *pch && '=' != *pch && cp < reqend
3117 			       && *cp == *pch) {
3118 				cp++;
3119 				pch++;
3120 			}
3121 			if ('\0' == *pch || '=' == *pch) {
3122 				while (cp < reqend && isspace((u_char)*cp))
3123 					cp++;
3124 				if (cp == reqend || ',' == *cp) {
3125 					buf[0] = '\0';
3126 					*data = buf;
3127 					if (cp < reqend)
3128 						cp++;
3129 					reqpt = cp;
3130 					return v;
3131 				}
3132 				if ('=' == *cp) {
3133 					cp++;
3134 					tp = buf;
3135 					while (cp < reqend && isspace((u_char)*cp))
3136 						cp++;
3137 					while (cp < reqend && *cp != ',') {
3138 						*tp++ = *cp++;
3139 						if ((size_t)(tp - buf) >= sizeof(buf)) {
3140 							ctl_error(CERR_BADFMT);
3141 							numctlbadpkts++;
3142 							NLOG(NLOG_SYSEVENT)
3143 								if (quiet_until <= current_time) {
3144 									quiet_until = current_time + 300;
3145 									msyslog(LOG_WARNING,
3146 "Possible 'ntpdx' exploit from %s#%u (possibly spoofed)", stoa(rmt_addr), SRCPORT(rmt_addr));
3147 								}
3148 							return NULL;
3149 						}
3150 					}
3151 					if (cp < reqend)
3152 						cp++;
3153 					*tp-- = '\0';
3154 					while (tp >= buf && isspace((u_char)*tp))
3155 						*tp-- = '\0';
3156 					reqpt = cp;
3157 					*data = buf;
3158 					return v;
3159 				}
3160 			}
3161 			cp = reqpt;
3162 		}
3163 	}
3164 	return v;
3165 }
3166 
3167 
3168 /*
3169  * control_unspec - response to an unspecified op-code
3170  */
3171 /*ARGSUSED*/
3172 static void
3173 control_unspec(
3174 	struct recvbuf *rbufp,
3175 	int restrict_mask
3176 	)
3177 {
3178 	struct peer *peer;
3179 
3180 	/*
3181 	 * What is an appropriate response to an unspecified op-code?
3182 	 * I return no errors and no data, unless a specified assocation
3183 	 * doesn't exist.
3184 	 */
3185 	if (res_associd) {
3186 		peer = findpeerbyassoc(res_associd);
3187 		if (NULL == peer) {
3188 			ctl_error(CERR_BADASSOC);
3189 			return;
3190 		}
3191 		rpkt.status = htons(ctlpeerstatus(peer));
3192 	} else
3193 		rpkt.status = htons(ctlsysstatus());
3194 	ctl_flushpkt(0);
3195 }
3196 
3197 
3198 /*
3199  * read_status - return either a list of associd's, or a particular
3200  * peer's status.
3201  */
3202 /*ARGSUSED*/
3203 static void
3204 read_status(
3205 	struct recvbuf *rbufp,
3206 	int restrict_mask
3207 	)
3208 {
3209 	struct peer *peer;
3210 	const u_char *cp;
3211 	size_t n;
3212 	/* a_st holds association ID, status pairs alternating */
3213 	u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
3214 
3215 #ifdef DEBUG
3216 	if (debug > 2)
3217 		printf("read_status: ID %d\n", res_associd);
3218 #endif
3219 	/*
3220 	 * Two choices here. If the specified association ID is
3221 	 * zero we return all known assocation ID's.  Otherwise
3222 	 * we return a bunch of stuff about the particular peer.
3223 	 */
3224 	if (res_associd) {
3225 		peer = findpeerbyassoc(res_associd);
3226 		if (NULL == peer) {
3227 			ctl_error(CERR_BADASSOC);
3228 			return;
3229 		}
3230 		rpkt.status = htons(ctlpeerstatus(peer));
3231 		if (res_authokay)
3232 			peer->num_events = 0;
3233 		/*
3234 		 * For now, output everything we know about the
3235 		 * peer. May be more selective later.
3236 		 */
3237 		for (cp = def_peer_var; *cp != 0; cp++)
3238 			ctl_putpeer((int)*cp, peer);
3239 		ctl_flushpkt(0);
3240 		return;
3241 	}
3242 	n = 0;
3243 	rpkt.status = htons(ctlsysstatus());
3244 	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3245 		a_st[n++] = htons(peer->associd);
3246 		a_st[n++] = htons(ctlpeerstatus(peer));
3247 		/* two entries each loop iteration, so n + 1 */
3248 		if (n + 1 >= COUNTOF(a_st)) {
3249 			ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
3250 				    1);
3251 			n = 0;
3252 		}
3253 	}
3254 	if (n)
3255 		ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3256 	ctl_flushpkt(0);
3257 }
3258 
3259 
3260 /*
3261  * read_peervars - half of read_variables() implementation
3262  */
3263 static void
3264 read_peervars(void)
3265 {
3266 	const struct ctl_var *v;
3267 	struct peer *peer;
3268 	const u_char *cp;
3269 	size_t i;
3270 	char *	valuep;
3271 	u_char	wants[CP_MAXCODE + 1];
3272 	u_int	gotvar;
3273 
3274 	/*
3275 	 * Wants info for a particular peer. See if we know
3276 	 * the guy.
3277 	 */
3278 	peer = findpeerbyassoc(res_associd);
3279 	if (NULL == peer) {
3280 		ctl_error(CERR_BADASSOC);
3281 		return;
3282 	}
3283 	rpkt.status = htons(ctlpeerstatus(peer));
3284 	if (res_authokay)
3285 		peer->num_events = 0;
3286 	ZERO(wants);
3287 	gotvar = 0;
3288 	while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3289 		if (v->flags & EOV) {
3290 			ctl_error(CERR_UNKNOWNVAR);
3291 			return;
3292 		}
3293 		INSIST(v->code < COUNTOF(wants));
3294 		wants[v->code] = 1;
3295 		gotvar = 1;
3296 	}
3297 	if (gotvar) {
3298 		for (i = 1; i < COUNTOF(wants); i++)
3299 			if (wants[i])
3300 				ctl_putpeer(i, peer);
3301 	} else
3302 		for (cp = def_peer_var; *cp != 0; cp++)
3303 			ctl_putpeer((int)*cp, peer);
3304 	ctl_flushpkt(0);
3305 }
3306 
3307 
3308 /*
3309  * read_sysvars - half of read_variables() implementation
3310  */
3311 static void
3312 read_sysvars(void)
3313 {
3314 	const struct ctl_var *v;
3315 	struct ctl_var *kv;
3316 	u_int	n;
3317 	u_int	gotvar;
3318 	const u_char *cs;
3319 	char *	valuep;
3320 	const char * pch;
3321 	u_char *wants;
3322 	size_t	wants_count;
3323 
3324 	/*
3325 	 * Wants system variables. Figure out which he wants
3326 	 * and give them to him.
3327 	 */
3328 	rpkt.status = htons(ctlsysstatus());
3329 	if (res_authokay)
3330 		ctl_sys_num_events = 0;
3331 	wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3332 	wants = emalloc_zero(wants_count);
3333 	gotvar = 0;
3334 	while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3335 		if (!(EOV & v->flags)) {
3336 			INSIST(v->code < wants_count);
3337 			wants[v->code] = 1;
3338 			gotvar = 1;
3339 		} else {
3340 			v = ctl_getitem(ext_sys_var, &valuep);
3341 			INSIST(v != NULL);
3342 			if (EOV & v->flags) {
3343 				ctl_error(CERR_UNKNOWNVAR);
3344 				free(wants);
3345 				return;
3346 			}
3347 			n = v->code + CS_MAXCODE + 1;
3348 			INSIST(n < wants_count);
3349 			wants[n] = 1;
3350 			gotvar = 1;
3351 		}
3352 	}
3353 	if (gotvar) {
3354 		for (n = 1; n <= CS_MAXCODE; n++)
3355 			if (wants[n])
3356 				ctl_putsys(n);
3357 		for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3358 			if (wants[n + CS_MAXCODE + 1]) {
3359 				pch = ext_sys_var[n].text;
3360 				ctl_putdata(pch, strlen(pch), 0);
3361 			}
3362 	} else {
3363 		for (cs = def_sys_var; *cs != 0; cs++)
3364 			ctl_putsys((int)*cs);
3365 		for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3366 			if (DEF & kv->flags)
3367 				ctl_putdata(kv->text, strlen(kv->text),
3368 					    0);
3369 	}
3370 	free(wants);
3371 	ctl_flushpkt(0);
3372 }
3373 
3374 
3375 /*
3376  * read_variables - return the variables the caller asks for
3377  */
3378 /*ARGSUSED*/
3379 static void
3380 read_variables(
3381 	struct recvbuf *rbufp,
3382 	int restrict_mask
3383 	)
3384 {
3385 	if (res_associd)
3386 		read_peervars();
3387 	else
3388 		read_sysvars();
3389 }
3390 
3391 
3392 /*
3393  * write_variables - write into variables. We only allow leap bit
3394  * writing this way.
3395  */
3396 /*ARGSUSED*/
3397 static void
3398 write_variables(
3399 	struct recvbuf *rbufp,
3400 	int restrict_mask
3401 	)
3402 {
3403 	const struct ctl_var *v;
3404 	int ext_var;
3405 	char *valuep;
3406 	long val;
3407 	size_t octets;
3408 	char *vareqv;
3409 	const char *t;
3410 	char *tt;
3411 
3412 	val = 0;
3413 	/*
3414 	 * If he's trying to write into a peer tell him no way
3415 	 */
3416 	if (res_associd != 0) {
3417 		ctl_error(CERR_PERMISSION);
3418 		return;
3419 	}
3420 
3421 	/*
3422 	 * Set status
3423 	 */
3424 	rpkt.status = htons(ctlsysstatus());
3425 
3426 	/*
3427 	 * Look through the variables. Dump out at the first sign of
3428 	 * trouble.
3429 	 */
3430 	while ((v = ctl_getitem(sys_var, &valuep)) != 0) {
3431 		ext_var = 0;
3432 		if (v->flags & EOV) {
3433 			if ((v = ctl_getitem(ext_sys_var, &valuep)) !=
3434 			    0) {
3435 				if (v->flags & EOV) {
3436 					ctl_error(CERR_UNKNOWNVAR);
3437 					return;
3438 				}
3439 				ext_var = 1;
3440 			} else {
3441 				break;
3442 			}
3443 		}
3444 		if (!(v->flags & CAN_WRITE)) {
3445 			ctl_error(CERR_PERMISSION);
3446 			return;
3447 		}
3448 		if (!ext_var && (*valuep == '\0' || !atoint(valuep,
3449 							    &val))) {
3450 			ctl_error(CERR_BADFMT);
3451 			return;
3452 		}
3453 		if (!ext_var && (val & ~LEAP_NOTINSYNC) != 0) {
3454 			ctl_error(CERR_BADVALUE);
3455 			return;
3456 		}
3457 
3458 		if (ext_var) {
3459 			octets = strlen(v->text) + strlen(valuep) + 2;
3460 			vareqv = emalloc(octets);
3461 			tt = vareqv;
3462 			t = v->text;
3463 			while (*t && *t != '=')
3464 				*tt++ = *t++;
3465 			*tt++ = '=';
3466 			memcpy(tt, valuep, 1 + strlen(valuep));
3467 			set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3468 			free(vareqv);
3469 		} else {
3470 			ctl_error(CERR_UNSPEC); /* really */
3471 			return;
3472 		}
3473 	}
3474 
3475 	/*
3476 	 * If we got anything, do it. xxx nothing to do ***
3477 	 */
3478 	/*
3479 	  if (leapind != ~0 || leapwarn != ~0) {
3480 	  if (!leap_setleap((int)leapind, (int)leapwarn)) {
3481 	  ctl_error(CERR_PERMISSION);
3482 	  return;
3483 	  }
3484 	  }
3485 	*/
3486 	ctl_flushpkt(0);
3487 }
3488 
3489 
3490 /*
3491  * configure() processes ntpq :config/config-from-file, allowing
3492  *		generic runtime reconfiguration.
3493  */
3494 static void configure(
3495 	struct recvbuf *rbufp,
3496 	int restrict_mask
3497 	)
3498 {
3499 	size_t data_count;
3500 	int retval;
3501 
3502 	/* I haven't yet implemented changes to an existing association.
3503 	 * Hence check if the association id is 0
3504 	 */
3505 	if (res_associd != 0) {
3506 		ctl_error(CERR_BADVALUE);
3507 		return;
3508 	}
3509 
3510 	if (RES_NOMODIFY & restrict_mask) {
3511 		snprintf(remote_config.err_msg,
3512 			 sizeof(remote_config.err_msg),
3513 			 "runtime configuration prohibited by restrict ... nomodify");
3514 		ctl_putdata(remote_config.err_msg,
3515 			    strlen(remote_config.err_msg), 0);
3516 		ctl_flushpkt(0);
3517 		NLOG(NLOG_SYSINFO)
3518 			msyslog(LOG_NOTICE,
3519 				"runtime config from %s rejected due to nomodify restriction",
3520 				stoa(&rbufp->recv_srcadr));
3521 		sys_restricted++;
3522 		return;
3523 	}
3524 
3525 	/* Initialize the remote config buffer */
3526 	data_count = remoteconfig_cmdlength(reqpt, reqend);
3527 
3528 	if (data_count > sizeof(remote_config.buffer) - 2) {
3529 		snprintf(remote_config.err_msg,
3530 			 sizeof(remote_config.err_msg),
3531 			 "runtime configuration failed: request too long");
3532 		ctl_putdata(remote_config.err_msg,
3533 			    strlen(remote_config.err_msg), 0);
3534 		ctl_flushpkt(0);
3535 		msyslog(LOG_NOTICE,
3536 			"runtime config from %s rejected: request too long",
3537 			stoa(&rbufp->recv_srcadr));
3538 		return;
3539 	}
3540 	/* Bug 2853 -- check if all characters were acceptable */
3541 	if (data_count != (size_t)(reqend - reqpt)) {
3542 		snprintf(remote_config.err_msg,
3543 			 sizeof(remote_config.err_msg),
3544 			 "runtime configuration failed: request contains an unprintable character");
3545 		ctl_putdata(remote_config.err_msg,
3546 			    strlen(remote_config.err_msg), 0);
3547 		ctl_flushpkt(0);
3548 		msyslog(LOG_NOTICE,
3549 			"runtime config from %s rejected: request contains an unprintable character: %0x",
3550 			stoa(&rbufp->recv_srcadr),
3551 			reqpt[data_count]);
3552 		return;
3553 	}
3554 
3555 	memcpy(remote_config.buffer, reqpt, data_count);
3556 	/* The buffer has no trailing linefeed or NUL right now. For
3557 	 * logging, we do not want a newline, so we do that first after
3558 	 * adding the necessary NUL byte.
3559 	 */
3560 	remote_config.buffer[data_count] = '\0';
3561 	DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3562 		remote_config.buffer));
3563 	msyslog(LOG_NOTICE, "%s config: %s",
3564 		stoa(&rbufp->recv_srcadr),
3565 		remote_config.buffer);
3566 
3567 	/* Now we have to make sure there is a NL/NUL sequence at the
3568 	 * end of the buffer before we parse it.
3569 	 */
3570 	remote_config.buffer[data_count++] = '\n';
3571 	remote_config.buffer[data_count] = '\0';
3572 	remote_config.pos = 0;
3573 	remote_config.err_pos = 0;
3574 	remote_config.no_errors = 0;
3575 	config_remotely(&rbufp->recv_srcadr);
3576 
3577 	/*
3578 	 * Check if errors were reported. If not, output 'Config
3579 	 * Succeeded'.  Else output the error count.  It would be nice
3580 	 * to output any parser error messages.
3581 	 */
3582 	if (0 == remote_config.no_errors) {
3583 		retval = snprintf(remote_config.err_msg,
3584 				  sizeof(remote_config.err_msg),
3585 				  "Config Succeeded");
3586 		if (retval > 0)
3587 			remote_config.err_pos += retval;
3588 	}
3589 
3590 	ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3591 	ctl_flushpkt(0);
3592 
3593 	DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3594 
3595 	if (remote_config.no_errors > 0)
3596 		msyslog(LOG_NOTICE, "%d error in %s config",
3597 			remote_config.no_errors,
3598 			stoa(&rbufp->recv_srcadr));
3599 }
3600 
3601 
3602 /*
3603  * derive_nonce - generate client-address-specific nonce value
3604  *		  associated with a given timestamp.
3605  */
3606 static u_int32 derive_nonce(
3607 	sockaddr_u *	addr,
3608 	u_int32		ts_i,
3609 	u_int32		ts_f
3610 	)
3611 {
3612 	static u_int32	salt[4];
3613 	static u_long	last_salt_update;
3614 	union d_tag {
3615 		u_char	digest[EVP_MAX_MD_SIZE];
3616 		u_int32 extract;
3617 	}		d;
3618 	EVP_MD_CTX	ctx;
3619 	u_int		len;
3620 
3621 	while (!salt[0] || current_time - last_salt_update >= 3600) {
3622 		salt[0] = ntp_random();
3623 		salt[1] = ntp_random();
3624 		salt[2] = ntp_random();
3625 		salt[3] = ntp_random();
3626 		last_salt_update = current_time;
3627 	}
3628 
3629 	EVP_DigestInit(&ctx, EVP_get_digestbynid(NID_md5));
3630 	EVP_DigestUpdate(&ctx, salt, sizeof(salt));
3631 	EVP_DigestUpdate(&ctx, &ts_i, sizeof(ts_i));
3632 	EVP_DigestUpdate(&ctx, &ts_f, sizeof(ts_f));
3633 	if (IS_IPV4(addr))
3634 		EVP_DigestUpdate(&ctx, &SOCK_ADDR4(addr),
3635 			         sizeof(SOCK_ADDR4(addr)));
3636 	else
3637 		EVP_DigestUpdate(&ctx, &SOCK_ADDR6(addr),
3638 			         sizeof(SOCK_ADDR6(addr)));
3639 	EVP_DigestUpdate(&ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
3640 	EVP_DigestUpdate(&ctx, salt, sizeof(salt));
3641 	EVP_DigestFinal(&ctx, d.digest, &len);
3642 
3643 	return d.extract;
3644 }
3645 
3646 
3647 /*
3648  * generate_nonce - generate client-address-specific nonce string.
3649  */
3650 static void generate_nonce(
3651 	struct recvbuf *	rbufp,
3652 	char *			nonce,
3653 	size_t			nonce_octets
3654 	)
3655 {
3656 	u_int32 derived;
3657 
3658 	derived = derive_nonce(&rbufp->recv_srcadr,
3659 			       rbufp->recv_time.l_ui,
3660 			       rbufp->recv_time.l_uf);
3661 	snprintf(nonce, nonce_octets, "%08x%08x%08x",
3662 		 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3663 }
3664 
3665 
3666 /*
3667  * validate_nonce - validate client-address-specific nonce string.
3668  *
3669  * Returns TRUE if the local calculation of the nonce matches the
3670  * client-provided value and the timestamp is recent enough.
3671  */
3672 static int validate_nonce(
3673 	const char *		pnonce,
3674 	struct recvbuf *	rbufp
3675 	)
3676 {
3677 	u_int	ts_i;
3678 	u_int	ts_f;
3679 	l_fp	ts;
3680 	l_fp	now_delta;
3681 	u_int	supposed;
3682 	u_int	derived;
3683 
3684 	if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3685 		return FALSE;
3686 
3687 	ts.l_ui = (u_int32)ts_i;
3688 	ts.l_uf = (u_int32)ts_f;
3689 	derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3690 	get_systime(&now_delta);
3691 	L_SUB(&now_delta, &ts);
3692 
3693 	return (supposed == derived && now_delta.l_ui < 16);
3694 }
3695 
3696 
3697 /*
3698  * send_random_tag_value - send a randomly-generated three character
3699  *			   tag prefix, a '.', an index, a '=' and a
3700  *			   random integer value.
3701  *
3702  * To try to force clients to ignore unrecognized tags in mrulist,
3703  * reslist, and ifstats responses, the first and last rows are spiced
3704  * with randomly-generated tag names with correct .# index.  Make it
3705  * three characters knowing that none of the currently-used subscripted
3706  * tags have that length, avoiding the need to test for
3707  * tag collision.
3708  */
3709 static void
3710 send_random_tag_value(
3711 	int	indx
3712 	)
3713 {
3714 	int	noise;
3715 	char	buf[32];
3716 
3717 	noise = rand() ^ (rand() << 16);
3718 	buf[0] = 'a' + noise % 26;
3719 	noise >>= 5;
3720 	buf[1] = 'a' + noise % 26;
3721 	noise >>= 5;
3722 	buf[2] = 'a' + noise % 26;
3723 	noise >>= 5;
3724 	buf[3] = '.';
3725 	snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3726 	ctl_putuint(buf, noise);
3727 }
3728 
3729 
3730 /*
3731  * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3732  *
3733  * To keep clients honest about not depending on the order of values,
3734  * and thereby avoid being locked into ugly workarounds to maintain
3735  * backward compatibility later as new fields are added to the response,
3736  * the order is random.
3737  */
3738 static void
3739 send_mru_entry(
3740 	mon_entry *	mon,
3741 	int		count
3742 	)
3743 {
3744 	const char first_fmt[] =	"first.%d";
3745 	const char ct_fmt[] =		"ct.%d";
3746 	const char mv_fmt[] =		"mv.%d";
3747 	const char rs_fmt[] =		"rs.%d";
3748 	char	tag[32];
3749 	u_char	sent[6]; /* 6 tag=value pairs */
3750 	u_int32 noise;
3751 	u_int	which;
3752 	u_int	remaining;
3753 	const char * pch;
3754 
3755 	remaining = COUNTOF(sent);
3756 	ZERO(sent);
3757 	noise = (u_int32)(rand() ^ (rand() << 16));
3758 	while (remaining > 0) {
3759 		which = (noise & 7) % COUNTOF(sent);
3760 		noise >>= 3;
3761 		while (sent[which])
3762 			which = (which + 1) % COUNTOF(sent);
3763 
3764 		switch (which) {
3765 
3766 		case 0:
3767 			snprintf(tag, sizeof(tag), addr_fmt, count);
3768 			pch = sptoa(&mon->rmtadr);
3769 			ctl_putunqstr(tag, pch, strlen(pch));
3770 			break;
3771 
3772 		case 1:
3773 			snprintf(tag, sizeof(tag), last_fmt, count);
3774 			ctl_putts(tag, &mon->last);
3775 			break;
3776 
3777 		case 2:
3778 			snprintf(tag, sizeof(tag), first_fmt, count);
3779 			ctl_putts(tag, &mon->first);
3780 			break;
3781 
3782 		case 3:
3783 			snprintf(tag, sizeof(tag), ct_fmt, count);
3784 			ctl_putint(tag, mon->count);
3785 			break;
3786 
3787 		case 4:
3788 			snprintf(tag, sizeof(tag), mv_fmt, count);
3789 			ctl_putuint(tag, mon->vn_mode);
3790 			break;
3791 
3792 		case 5:
3793 			snprintf(tag, sizeof(tag), rs_fmt, count);
3794 			ctl_puthex(tag, mon->flags);
3795 			break;
3796 		}
3797 		sent[which] = TRUE;
3798 		remaining--;
3799 	}
3800 }
3801 
3802 
3803 /*
3804  * read_mru_list - supports ntpq's mrulist command.
3805  *
3806  * The challenge here is to match ntpdc's monlist functionality without
3807  * being limited to hundreds of entries returned total, and without
3808  * requiring state on the server.  If state were required, ntpq's
3809  * mrulist command would require authentication.
3810  *
3811  * The approach was suggested by Ry Jones.  A finite and variable number
3812  * of entries are retrieved per request, to avoid having responses with
3813  * such large numbers of packets that socket buffers are overflowed and
3814  * packets lost.  The entries are retrieved oldest-first, taking into
3815  * account that the MRU list will be changing between each request.  We
3816  * can expect to see duplicate entries for addresses updated in the MRU
3817  * list during the fetch operation.  In the end, the client can assemble
3818  * a close approximation of the MRU list at the point in time the last
3819  * response was sent by ntpd.  The only difference is it may be longer,
3820  * containing some number of oldest entries which have since been
3821  * reclaimed.  If necessary, the protocol could be extended to zap those
3822  * from the client snapshot at the end, but so far that doesn't seem
3823  * useful.
3824  *
3825  * To accomodate the changing MRU list, the starting point for requests
3826  * after the first request is supplied as a series of last seen
3827  * timestamps and associated addresses, the newest ones the client has
3828  * received.  As long as at least one of those entries hasn't been
3829  * bumped to the head of the MRU list, ntpd can pick up at that point.
3830  * Otherwise, the request is failed and it is up to ntpq to back up and
3831  * provide the next newest entry's timestamps and addresses, conceivably
3832  * backing up all the way to the starting point.
3833  *
3834  * input parameters:
3835  *	nonce=		Regurgitated nonce retrieved by the client
3836  *			previously using CTL_OP_REQ_NONCE, demonstrating
3837  *			ability to receive traffic sent to its address.
3838  *	frags=		Limit on datagrams (fragments) in response.  Used
3839  *			by newer ntpq versions instead of limit= when
3840  *			retrieving multiple entries.
3841  *	limit=		Limit on MRU entries returned.  One of frags= or
3842  *			limit= must be provided.
3843  *			limit=1 is a special case:  Instead of fetching
3844  *			beginning with the supplied starting point's
3845  *			newer neighbor, fetch the supplied entry, and
3846  *			in that case the #.last timestamp can be zero.
3847  *			This enables fetching a single entry by IP
3848  *			address.  When limit is not one and frags= is
3849  *			provided, the fragment limit controls.
3850  *	mincount=	(decimal) Return entries with count >= mincount.
3851  *	laddr=		Return entries associated with the server's IP
3852  *			address given.  No port specification is needed,
3853  *			and any supplied is ignored.
3854  *	resall=		0x-prefixed hex restrict bits which must all be
3855  *			lit for an MRU entry to be included.
3856  *			Has precedence over any resany=.
3857  *	resany=		0x-prefixed hex restrict bits, at least one of
3858  *			which must be list for an MRU entry to be
3859  *			included.
3860  *	last.0=		0x-prefixed hex l_fp timestamp of newest entry
3861  *			which client previously received.
3862  *	addr.0=		text of newest entry's IP address and port,
3863  *			IPv6 addresses in bracketed form: [::]:123
3864  *	last.1=		timestamp of 2nd newest entry client has.
3865  *	addr.1=		address of 2nd newest entry.
3866  *	[...]
3867  *
3868  * ntpq provides as many last/addr pairs as will fit in a single request
3869  * packet, except for the first request in a MRU fetch operation.
3870  *
3871  * The response begins with a new nonce value to be used for any
3872  * followup request.  Following the nonce is the next newer entry than
3873  * referred to by last.0 and addr.0, if the "0" entry has not been
3874  * bumped to the front.  If it has, the first entry returned will be the
3875  * next entry newer than referred to by last.1 and addr.1, and so on.
3876  * If none of the referenced entries remain unchanged, the request fails
3877  * and ntpq backs up to the next earlier set of entries to resync.
3878  *
3879  * Except for the first response, the response begins with confirmation
3880  * of the entry that precedes the first additional entry provided:
3881  *
3882  *	last.older=	hex l_fp timestamp matching one of the input
3883  *			.last timestamps, which entry now precedes the
3884  *			response 0. entry in the MRU list.
3885  *	addr.older=	text of address corresponding to older.last.
3886  *
3887  * And in any case, a successful response contains sets of values
3888  * comprising entries, with the oldest numbered 0 and incrementing from
3889  * there:
3890  *
3891  *	addr.#		text of IPv4 or IPv6 address and port
3892  *	last.#		hex l_fp timestamp of last receipt
3893  *	first.#		hex l_fp timestamp of first receipt
3894  *	ct.#		count of packets received
3895  *	mv.#		mode and version
3896  *	rs.#		restriction mask (RES_* bits)
3897  *
3898  * Note the code currently assumes there are no valid three letter
3899  * tags sent with each row, and needs to be adjusted if that changes.
3900  *
3901  * The client should accept the values in any order, and ignore .#
3902  * values which it does not understand, to allow a smooth path to
3903  * future changes without requiring a new opcode.  Clients can rely
3904  * on all *.0 values preceding any *.1 values, that is all values for
3905  * a given index number are together in the response.
3906  *
3907  * The end of the response list is noted with one or two tag=value
3908  * pairs.  Unconditionally:
3909  *
3910  *	now=		0x-prefixed l_fp timestamp at the server marking
3911  *			the end of the operation.
3912  *
3913  * If any entries were returned, now= is followed by:
3914  *
3915  *	last.newest=	hex l_fp identical to last.# of the prior
3916  *			entry.
3917  */
3918 static void read_mru_list(
3919 	struct recvbuf *rbufp,
3920 	int restrict_mask
3921 	)
3922 {
3923 	const char		nonce_text[] =		"nonce";
3924 	const char		frags_text[] =		"frags";
3925 	const char		limit_text[] =		"limit";
3926 	const char		mincount_text[] =	"mincount";
3927 	const char		resall_text[] =		"resall";
3928 	const char		resany_text[] =		"resany";
3929 	const char		maxlstint_text[] =	"maxlstint";
3930 	const char		laddr_text[] =		"laddr";
3931 	const char		resaxx_fmt[] =		"0x%hx";
3932 	u_int			limit;
3933 	u_short			frags;
3934 	u_short			resall;
3935 	u_short			resany;
3936 	int			mincount;
3937 	u_int			maxlstint;
3938 	sockaddr_u		laddr;
3939 	struct interface *	lcladr;
3940 	u_int			count;
3941 	u_int			ui;
3942 	u_int			uf;
3943 	l_fp			last[16];
3944 	sockaddr_u		addr[COUNTOF(last)];
3945 	char			buf[128];
3946 	struct ctl_var *	in_parms;
3947 	const struct ctl_var *	v;
3948 	char *			val;
3949 	const char *		pch;
3950 	char *			pnonce;
3951 	int			nonce_valid;
3952 	size_t			i;
3953 	int			priors;
3954 	u_short			hash;
3955 	mon_entry *		mon;
3956 	mon_entry *		prior_mon;
3957 	l_fp			now;
3958 
3959 	if (RES_NOMRULIST & restrict_mask) {
3960 		ctl_error(CERR_PERMISSION);
3961 		NLOG(NLOG_SYSINFO)
3962 			msyslog(LOG_NOTICE,
3963 				"mrulist from %s rejected due to nomrulist restriction",
3964 				stoa(&rbufp->recv_srcadr));
3965 		sys_restricted++;
3966 		return;
3967 	}
3968 	/*
3969 	 * fill in_parms var list with all possible input parameters.
3970 	 */
3971 	in_parms = NULL;
3972 	set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
3973 	set_var(&in_parms, frags_text, sizeof(frags_text), 0);
3974 	set_var(&in_parms, limit_text, sizeof(limit_text), 0);
3975 	set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
3976 	set_var(&in_parms, resall_text, sizeof(resall_text), 0);
3977 	set_var(&in_parms, resany_text, sizeof(resany_text), 0);
3978 	set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
3979 	set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
3980 	for (i = 0; i < COUNTOF(last); i++) {
3981 		snprintf(buf, sizeof(buf), last_fmt, (int)i);
3982 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
3983 		snprintf(buf, sizeof(buf), addr_fmt, (int)i);
3984 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
3985 	}
3986 
3987 	/* decode input parms */
3988 	pnonce = NULL;
3989 	frags = 0;
3990 	limit = 0;
3991 	mincount = 0;
3992 	resall = 0;
3993 	resany = 0;
3994 	maxlstint = 0;
3995 	lcladr = NULL;
3996 	priors = 0;
3997 	ZERO(last);
3998 	ZERO(addr);
3999 
4000 	while (NULL != (v = ctl_getitem(in_parms, &val)) &&
4001 	       !(EOV & v->flags)) {
4002 		int si;
4003 
4004 		if (!strcmp(nonce_text, v->text)) {
4005 			if (NULL != pnonce)
4006 				free(pnonce);
4007 			pnonce = estrdup(val);
4008 		} else if (!strcmp(frags_text, v->text)) {
4009 			sscanf(val, "%hu", &frags);
4010 		} else if (!strcmp(limit_text, v->text)) {
4011 			sscanf(val, "%u", &limit);
4012 		} else if (!strcmp(mincount_text, v->text)) {
4013 			if (1 != sscanf(val, "%d", &mincount) ||
4014 			    mincount < 0)
4015 				mincount = 0;
4016 		} else if (!strcmp(resall_text, v->text)) {
4017 			sscanf(val, resaxx_fmt, &resall);
4018 		} else if (!strcmp(resany_text, v->text)) {
4019 			sscanf(val, resaxx_fmt, &resany);
4020 		} else if (!strcmp(maxlstint_text, v->text)) {
4021 			sscanf(val, "%u", &maxlstint);
4022 		} else if (!strcmp(laddr_text, v->text)) {
4023 			if (decodenetnum(val, &laddr))
4024 				lcladr = getinterface(&laddr, 0);
4025 		} else if (1 == sscanf(v->text, last_fmt, &si) &&
4026 			   (size_t)si < COUNTOF(last)) {
4027 			if (2 == sscanf(val, "0x%08x.%08x", &ui, &uf)) {
4028 				last[si].l_ui = ui;
4029 				last[si].l_uf = uf;
4030 				if (!SOCK_UNSPEC(&addr[si]) &&
4031 				    si == priors)
4032 					priors++;
4033 			}
4034 		} else if (1 == sscanf(v->text, addr_fmt, &si) &&
4035 			   (size_t)si < COUNTOF(addr)) {
4036 			if (decodenetnum(val, &addr[si])
4037 			    && last[si].l_ui && last[si].l_uf &&
4038 			    si == priors)
4039 				priors++;
4040 		}
4041 	}
4042 	free_varlist(in_parms);
4043 	in_parms = NULL;
4044 
4045 	/* return no responses until the nonce is validated */
4046 	if (NULL == pnonce)
4047 		return;
4048 
4049 	nonce_valid = validate_nonce(pnonce, rbufp);
4050 	free(pnonce);
4051 	if (!nonce_valid)
4052 		return;
4053 
4054 	if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
4055 	    frags > MRU_FRAGS_LIMIT) {
4056 		ctl_error(CERR_BADVALUE);
4057 		return;
4058 	}
4059 
4060 	/*
4061 	 * If either frags or limit is not given, use the max.
4062 	 */
4063 	if (0 != frags && 0 == limit)
4064 		limit = UINT_MAX;
4065 	else if (0 != limit && 0 == frags)
4066 		frags = MRU_FRAGS_LIMIT;
4067 
4068 	/*
4069 	 * Find the starting point if one was provided.
4070 	 */
4071 	mon = NULL;
4072 	for (i = 0; i < (size_t)priors; i++) {
4073 		hash = MON_HASH(&addr[i]);
4074 		for (mon = mon_hash[hash];
4075 		     mon != NULL;
4076 		     mon = mon->hash_next)
4077 			if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
4078 				break;
4079 		if (mon != NULL) {
4080 			if (L_ISEQU(&mon->last, &last[i]))
4081 				break;
4082 			mon = NULL;
4083 		}
4084 	}
4085 
4086 	/* If a starting point was provided... */
4087 	if (priors) {
4088 		/* and none could be found unmodified... */
4089 		if (NULL == mon) {
4090 			/* tell ntpq to try again with older entries */
4091 			ctl_error(CERR_UNKNOWNVAR);
4092 			return;
4093 		}
4094 		/* confirm the prior entry used as starting point */
4095 		ctl_putts("last.older", &mon->last);
4096 		pch = sptoa(&mon->rmtadr);
4097 		ctl_putunqstr("addr.older", pch, strlen(pch));
4098 
4099 		/*
4100 		 * Move on to the first entry the client doesn't have,
4101 		 * except in the special case of a limit of one.  In
4102 		 * that case return the starting point entry.
4103 		 */
4104 		if (limit > 1)
4105 			mon = PREV_DLIST(mon_mru_list, mon, mru);
4106 	} else {	/* start with the oldest */
4107 		mon = TAIL_DLIST(mon_mru_list, mru);
4108 	}
4109 
4110 	/*
4111 	 * send up to limit= entries in up to frags= datagrams
4112 	 */
4113 	get_systime(&now);
4114 	generate_nonce(rbufp, buf, sizeof(buf));
4115 	ctl_putunqstr("nonce", buf, strlen(buf));
4116 	prior_mon = NULL;
4117 	for (count = 0;
4118 	     mon != NULL && res_frags < frags && count < limit;
4119 	     mon = PREV_DLIST(mon_mru_list, mon, mru)) {
4120 
4121 		if (mon->count < mincount)
4122 			continue;
4123 		if (resall && resall != (resall & mon->flags))
4124 			continue;
4125 		if (resany && !(resany & mon->flags))
4126 			continue;
4127 		if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
4128 		    maxlstint)
4129 			continue;
4130 		if (lcladr != NULL && mon->lcladr != lcladr)
4131 			continue;
4132 
4133 		send_mru_entry(mon, count);
4134 		if (!count)
4135 			send_random_tag_value(0);
4136 		count++;
4137 		prior_mon = mon;
4138 	}
4139 
4140 	/*
4141 	 * If this batch completes the MRU list, say so explicitly with
4142 	 * a now= l_fp timestamp.
4143 	 */
4144 	if (NULL == mon) {
4145 		if (count > 1)
4146 			send_random_tag_value(count - 1);
4147 		ctl_putts("now", &now);
4148 		/* if any entries were returned confirm the last */
4149 		if (prior_mon != NULL)
4150 			ctl_putts("last.newest", &prior_mon->last);
4151 	}
4152 	ctl_flushpkt(0);
4153 }
4154 
4155 
4156 /*
4157  * Send a ifstats entry in response to a "ntpq -c ifstats" request.
4158  *
4159  * To keep clients honest about not depending on the order of values,
4160  * and thereby avoid being locked into ugly workarounds to maintain
4161  * backward compatibility later as new fields are added to the response,
4162  * the order is random.
4163  */
4164 static void
4165 send_ifstats_entry(
4166 	endpt *	la,
4167 	u_int	ifnum
4168 	)
4169 {
4170 	const char addr_fmtu[] =	"addr.%u";
4171 	const char bcast_fmt[] =	"bcast.%u";
4172 	const char en_fmt[] =		"en.%u";	/* enabled */
4173 	const char name_fmt[] =		"name.%u";
4174 	const char flags_fmt[] =	"flags.%u";
4175 	const char tl_fmt[] =		"tl.%u";	/* ttl */
4176 	const char mc_fmt[] =		"mc.%u";	/* mcast count */
4177 	const char rx_fmt[] =		"rx.%u";
4178 	const char tx_fmt[] =		"tx.%u";
4179 	const char txerr_fmt[] =	"txerr.%u";
4180 	const char pc_fmt[] =		"pc.%u";	/* peer count */
4181 	const char up_fmt[] =		"up.%u";	/* uptime */
4182 	char	tag[32];
4183 	u_char	sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
4184 	int	noisebits;
4185 	u_int32 noise;
4186 	u_int	which;
4187 	u_int	remaining;
4188 	const char *pch;
4189 
4190 	remaining = COUNTOF(sent);
4191 	ZERO(sent);
4192 	noise = 0;
4193 	noisebits = 0;
4194 	while (remaining > 0) {
4195 		if (noisebits < 4) {
4196 			noise = rand() ^ (rand() << 16);
4197 			noisebits = 31;
4198 		}
4199 		which = (noise & 0xf) % COUNTOF(sent);
4200 		noise >>= 4;
4201 		noisebits -= 4;
4202 
4203 		while (sent[which])
4204 			which = (which + 1) % COUNTOF(sent);
4205 
4206 		switch (which) {
4207 
4208 		case 0:
4209 			snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
4210 			pch = sptoa(&la->sin);
4211 			ctl_putunqstr(tag, pch, strlen(pch));
4212 			break;
4213 
4214 		case 1:
4215 			snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
4216 			if (INT_BCASTOPEN & la->flags)
4217 				pch = sptoa(&la->bcast);
4218 			else
4219 				pch = "";
4220 			ctl_putunqstr(tag, pch, strlen(pch));
4221 			break;
4222 
4223 		case 2:
4224 			snprintf(tag, sizeof(tag), en_fmt, ifnum);
4225 			ctl_putint(tag, !la->ignore_packets);
4226 			break;
4227 
4228 		case 3:
4229 			snprintf(tag, sizeof(tag), name_fmt, ifnum);
4230 			ctl_putstr(tag, la->name, strlen(la->name));
4231 			break;
4232 
4233 		case 4:
4234 			snprintf(tag, sizeof(tag), flags_fmt, ifnum);
4235 			ctl_puthex(tag, (u_int)la->flags);
4236 			break;
4237 
4238 		case 5:
4239 			snprintf(tag, sizeof(tag), tl_fmt, ifnum);
4240 			ctl_putint(tag, la->last_ttl);
4241 			break;
4242 
4243 		case 6:
4244 			snprintf(tag, sizeof(tag), mc_fmt, ifnum);
4245 			ctl_putint(tag, la->num_mcast);
4246 			break;
4247 
4248 		case 7:
4249 			snprintf(tag, sizeof(tag), rx_fmt, ifnum);
4250 			ctl_putint(tag, la->received);
4251 			break;
4252 
4253 		case 8:
4254 			snprintf(tag, sizeof(tag), tx_fmt, ifnum);
4255 			ctl_putint(tag, la->sent);
4256 			break;
4257 
4258 		case 9:
4259 			snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
4260 			ctl_putint(tag, la->notsent);
4261 			break;
4262 
4263 		case 10:
4264 			snprintf(tag, sizeof(tag), pc_fmt, ifnum);
4265 			ctl_putuint(tag, la->peercnt);
4266 			break;
4267 
4268 		case 11:
4269 			snprintf(tag, sizeof(tag), up_fmt, ifnum);
4270 			ctl_putuint(tag, current_time - la->starttime);
4271 			break;
4272 		}
4273 		sent[which] = TRUE;
4274 		remaining--;
4275 	}
4276 	send_random_tag_value((int)ifnum);
4277 }
4278 
4279 
4280 /*
4281  * read_ifstats - send statistics for each local address, exposed by
4282  *		  ntpq -c ifstats
4283  */
4284 static void
4285 read_ifstats(
4286 	struct recvbuf *	rbufp
4287 	)
4288 {
4289 	u_int	ifidx;
4290 	endpt *	la;
4291 
4292 	/*
4293 	 * loop over [0..sys_ifnum] searching ep_list for each
4294 	 * ifnum in turn.
4295 	 */
4296 	for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4297 		for (la = ep_list; la != NULL; la = la->elink)
4298 			if (ifidx == la->ifnum)
4299 				break;
4300 		if (NULL == la)
4301 			continue;
4302 		/* return stats for one local address */
4303 		send_ifstats_entry(la, ifidx);
4304 	}
4305 	ctl_flushpkt(0);
4306 }
4307 
4308 static void
4309 sockaddrs_from_restrict_u(
4310 	sockaddr_u *	psaA,
4311 	sockaddr_u *	psaM,
4312 	restrict_u *	pres,
4313 	int		ipv6
4314 	)
4315 {
4316 	ZERO(*psaA);
4317 	ZERO(*psaM);
4318 	if (!ipv6) {
4319 		psaA->sa.sa_family = AF_INET;
4320 		psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
4321 		psaM->sa.sa_family = AF_INET;
4322 		psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
4323 	} else {
4324 		psaA->sa.sa_family = AF_INET6;
4325 		memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
4326 		       sizeof(psaA->sa6.sin6_addr));
4327 		psaM->sa.sa_family = AF_INET6;
4328 		memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
4329 		       sizeof(psaA->sa6.sin6_addr));
4330 	}
4331 }
4332 
4333 
4334 /*
4335  * Send a restrict entry in response to a "ntpq -c reslist" request.
4336  *
4337  * To keep clients honest about not depending on the order of values,
4338  * and thereby avoid being locked into ugly workarounds to maintain
4339  * backward compatibility later as new fields are added to the response,
4340  * the order is random.
4341  */
4342 static void
4343 send_restrict_entry(
4344 	restrict_u *	pres,
4345 	int		ipv6,
4346 	u_int		idx
4347 	)
4348 {
4349 	const char addr_fmtu[] =	"addr.%u";
4350 	const char mask_fmtu[] =	"mask.%u";
4351 	const char hits_fmt[] =		"hits.%u";
4352 	const char flags_fmt[] =	"flags.%u";
4353 	char		tag[32];
4354 	u_char		sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4355 	int		noisebits;
4356 	u_int32		noise;
4357 	u_int		which;
4358 	u_int		remaining;
4359 	sockaddr_u	addr;
4360 	sockaddr_u	mask;
4361 	const char *	pch;
4362 	char *		buf;
4363 	const char *	match_str;
4364 	const char *	access_str;
4365 
4366 	sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
4367 	remaining = COUNTOF(sent);
4368 	ZERO(sent);
4369 	noise = 0;
4370 	noisebits = 0;
4371 	while (remaining > 0) {
4372 		if (noisebits < 2) {
4373 			noise = rand() ^ (rand() << 16);
4374 			noisebits = 31;
4375 		}
4376 		which = (noise & 0x3) % COUNTOF(sent);
4377 		noise >>= 2;
4378 		noisebits -= 2;
4379 
4380 		while (sent[which])
4381 			which = (which + 1) % COUNTOF(sent);
4382 
4383 		switch (which) {
4384 
4385 		case 0:
4386 			snprintf(tag, sizeof(tag), addr_fmtu, idx);
4387 			pch = stoa(&addr);
4388 			ctl_putunqstr(tag, pch, strlen(pch));
4389 			break;
4390 
4391 		case 1:
4392 			snprintf(tag, sizeof(tag), mask_fmtu, idx);
4393 			pch = stoa(&mask);
4394 			ctl_putunqstr(tag, pch, strlen(pch));
4395 			break;
4396 
4397 		case 2:
4398 			snprintf(tag, sizeof(tag), hits_fmt, idx);
4399 			ctl_putuint(tag, pres->count);
4400 			break;
4401 
4402 		case 3:
4403 			snprintf(tag, sizeof(tag), flags_fmt, idx);
4404 			match_str = res_match_flags(pres->mflags);
4405 			access_str = res_access_flags(pres->flags);
4406 			if ('\0' == match_str[0]) {
4407 				pch = access_str;
4408 			} else {
4409 				LIB_GETBUF(buf);
4410 				snprintf(buf, LIB_BUFLENGTH, "%s %s",
4411 					 match_str, access_str);
4412 				pch = buf;
4413 			}
4414 			ctl_putunqstr(tag, pch, strlen(pch));
4415 			break;
4416 		}
4417 		sent[which] = TRUE;
4418 		remaining--;
4419 	}
4420 	send_random_tag_value((int)idx);
4421 }
4422 
4423 
4424 static void
4425 send_restrict_list(
4426 	restrict_u *	pres,
4427 	int		ipv6,
4428 	u_int *		pidx
4429 	)
4430 {
4431 	for ( ; pres != NULL; pres = pres->link) {
4432 		send_restrict_entry(pres, ipv6, *pidx);
4433 		(*pidx)++;
4434 	}
4435 }
4436 
4437 
4438 /*
4439  * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4440  */
4441 static void
4442 read_addr_restrictions(
4443 	struct recvbuf *	rbufp
4444 )
4445 {
4446 	u_int idx;
4447 
4448 	idx = 0;
4449 	send_restrict_list(restrictlist4, FALSE, &idx);
4450 	send_restrict_list(restrictlist6, TRUE, &idx);
4451 	ctl_flushpkt(0);
4452 }
4453 
4454 
4455 /*
4456  * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4457  */
4458 static void
4459 read_ordlist(
4460 	struct recvbuf *	rbufp,
4461 	int			restrict_mask
4462 	)
4463 {
4464 	const char ifstats_s[] = "ifstats";
4465 	const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4466 	const char addr_rst_s[] = "addr_restrictions";
4467 	const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4468 	struct ntp_control *	cpkt;
4469 	u_short			qdata_octets;
4470 
4471 	/*
4472 	 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4473 	 * used only for ntpq -c ifstats.  With the addition of reslist
4474 	 * the same opcode was generalized to retrieve ordered lists
4475 	 * which require authentication.  The request data is empty or
4476 	 * contains "ifstats" (not null terminated) to retrieve local
4477 	 * addresses and associated stats.  It is "addr_restrictions"
4478 	 * to retrieve the IPv4 then IPv6 remote address restrictions,
4479 	 * which are access control lists.  Other request data return
4480 	 * CERR_UNKNOWNVAR.
4481 	 */
4482 	cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4483 	qdata_octets = ntohs(cpkt->count);
4484 	if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4485 	    !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4486 		read_ifstats(rbufp);
4487 		return;
4488 	}
4489 	if (a_r_chars == qdata_octets &&
4490 	    !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4491 		read_addr_restrictions(rbufp);
4492 		return;
4493 	}
4494 	ctl_error(CERR_UNKNOWNVAR);
4495 }
4496 
4497 
4498 /*
4499  * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4500  */
4501 static void req_nonce(
4502 	struct recvbuf *	rbufp,
4503 	int			restrict_mask
4504 	)
4505 {
4506 	char	buf[64];
4507 
4508 	generate_nonce(rbufp, buf, sizeof(buf));
4509 	ctl_putunqstr("nonce", buf, strlen(buf));
4510 	ctl_flushpkt(0);
4511 }
4512 
4513 
4514 /*
4515  * read_clockstatus - return clock radio status
4516  */
4517 /*ARGSUSED*/
4518 static void
4519 read_clockstatus(
4520 	struct recvbuf *rbufp,
4521 	int restrict_mask
4522 	)
4523 {
4524 #ifndef REFCLOCK
4525 	/*
4526 	 * If no refclock support, no data to return
4527 	 */
4528 	ctl_error(CERR_BADASSOC);
4529 #else
4530 	const struct ctl_var *	v;
4531 	int			i;
4532 	struct peer *		peer;
4533 	char *			valuep;
4534 	u_char *		wants;
4535 	size_t			wants_alloc;
4536 	int			gotvar;
4537 	const u_char *		cc;
4538 	struct ctl_var *	kv;
4539 	struct refclockstat	cs;
4540 
4541 	if (res_associd != 0) {
4542 		peer = findpeerbyassoc(res_associd);
4543 	} else {
4544 		/*
4545 		 * Find a clock for this jerk.	If the system peer
4546 		 * is a clock use it, else search peer_list for one.
4547 		 */
4548 		if (sys_peer != NULL && (FLAG_REFCLOCK &
4549 		    sys_peer->flags))
4550 			peer = sys_peer;
4551 		else
4552 			for (peer = peer_list;
4553 			     peer != NULL;
4554 			     peer = peer->p_link)
4555 				if (FLAG_REFCLOCK & peer->flags)
4556 					break;
4557 	}
4558 	if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4559 		ctl_error(CERR_BADASSOC);
4560 		return;
4561 	}
4562 	/*
4563 	 * If we got here we have a peer which is a clock. Get his
4564 	 * status.
4565 	 */
4566 	cs.kv_list = NULL;
4567 	refclock_control(&peer->srcadr, NULL, &cs);
4568 	kv = cs.kv_list;
4569 	/*
4570 	 * Look for variables in the packet.
4571 	 */
4572 	rpkt.status = htons(ctlclkstatus(&cs));
4573 	wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4574 	wants = emalloc_zero(wants_alloc);
4575 	gotvar = FALSE;
4576 	while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4577 		if (!(EOV & v->flags)) {
4578 			wants[v->code] = TRUE;
4579 			gotvar = TRUE;
4580 		} else {
4581 			v = ctl_getitem(kv, &valuep);
4582 			INSIST(NULL != v);
4583 			if (EOV & v->flags) {
4584 				ctl_error(CERR_UNKNOWNVAR);
4585 				free(wants);
4586 				free_varlist(cs.kv_list);
4587 				return;
4588 			}
4589 			wants[CC_MAXCODE + 1 + v->code] = TRUE;
4590 			gotvar = TRUE;
4591 		}
4592 	}
4593 
4594 	if (gotvar) {
4595 		for (i = 1; i <= CC_MAXCODE; i++)
4596 			if (wants[i])
4597 				ctl_putclock(i, &cs, TRUE);
4598 		if (kv != NULL)
4599 			for (i = 0; !(EOV & kv[i].flags); i++)
4600 				if (wants[i + CC_MAXCODE + 1])
4601 					ctl_putdata(kv[i].text,
4602 						    strlen(kv[i].text),
4603 						    FALSE);
4604 	} else {
4605 		for (cc = def_clock_var; *cc != 0; cc++)
4606 			ctl_putclock((int)*cc, &cs, FALSE);
4607 		for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4608 			if (DEF & kv->flags)
4609 				ctl_putdata(kv->text, strlen(kv->text),
4610 					    FALSE);
4611 	}
4612 
4613 	free(wants);
4614 	free_varlist(cs.kv_list);
4615 
4616 	ctl_flushpkt(0);
4617 #endif
4618 }
4619 
4620 
4621 /*
4622  * write_clockstatus - we don't do this
4623  */
4624 /*ARGSUSED*/
4625 static void
4626 write_clockstatus(
4627 	struct recvbuf *rbufp,
4628 	int restrict_mask
4629 	)
4630 {
4631 	ctl_error(CERR_PERMISSION);
4632 }
4633 
4634 /*
4635  * Trap support from here on down. We send async trap messages when the
4636  * upper levels report trouble. Traps can by set either by control
4637  * messages or by configuration.
4638  */
4639 /*
4640  * set_trap - set a trap in response to a control message
4641  */
4642 static void
4643 set_trap(
4644 	struct recvbuf *rbufp,
4645 	int restrict_mask
4646 	)
4647 {
4648 	int traptype;
4649 
4650 	/*
4651 	 * See if this guy is allowed
4652 	 */
4653 	if (restrict_mask & RES_NOTRAP) {
4654 		ctl_error(CERR_PERMISSION);
4655 		return;
4656 	}
4657 
4658 	/*
4659 	 * Determine his allowed trap type.
4660 	 */
4661 	traptype = TRAP_TYPE_PRIO;
4662 	if (restrict_mask & RES_LPTRAP)
4663 		traptype = TRAP_TYPE_NONPRIO;
4664 
4665 	/*
4666 	 * Call ctlsettrap() to do the work.  Return
4667 	 * an error if it can't assign the trap.
4668 	 */
4669 	if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4670 			(int)res_version))
4671 		ctl_error(CERR_NORESOURCE);
4672 	ctl_flushpkt(0);
4673 }
4674 
4675 
4676 /*
4677  * unset_trap - unset a trap in response to a control message
4678  */
4679 static void
4680 unset_trap(
4681 	struct recvbuf *rbufp,
4682 	int restrict_mask
4683 	)
4684 {
4685 	int traptype;
4686 
4687 	/*
4688 	 * We don't prevent anyone from removing his own trap unless the
4689 	 * trap is configured. Note we also must be aware of the
4690 	 * possibility that restriction flags were changed since this
4691 	 * guy last set his trap. Set the trap type based on this.
4692 	 */
4693 	traptype = TRAP_TYPE_PRIO;
4694 	if (restrict_mask & RES_LPTRAP)
4695 		traptype = TRAP_TYPE_NONPRIO;
4696 
4697 	/*
4698 	 * Call ctlclrtrap() to clear this out.
4699 	 */
4700 	if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4701 		ctl_error(CERR_BADASSOC);
4702 	ctl_flushpkt(0);
4703 }
4704 
4705 
4706 /*
4707  * ctlsettrap - called to set a trap
4708  */
4709 int
4710 ctlsettrap(
4711 	sockaddr_u *raddr,
4712 	struct interface *linter,
4713 	int traptype,
4714 	int version
4715 	)
4716 {
4717 	size_t n;
4718 	struct ctl_trap *tp;
4719 	struct ctl_trap *tptouse;
4720 
4721 	/*
4722 	 * See if we can find this trap.  If so, we only need update
4723 	 * the flags and the time.
4724 	 */
4725 	if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4726 		switch (traptype) {
4727 
4728 		case TRAP_TYPE_CONFIG:
4729 			tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4730 			break;
4731 
4732 		case TRAP_TYPE_PRIO:
4733 			if (tp->tr_flags & TRAP_CONFIGURED)
4734 				return (1); /* don't change anything */
4735 			tp->tr_flags = TRAP_INUSE;
4736 			break;
4737 
4738 		case TRAP_TYPE_NONPRIO:
4739 			if (tp->tr_flags & TRAP_CONFIGURED)
4740 				return (1); /* don't change anything */
4741 			tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4742 			break;
4743 		}
4744 		tp->tr_settime = current_time;
4745 		tp->tr_resets++;
4746 		return (1);
4747 	}
4748 
4749 	/*
4750 	 * First we heard of this guy.	Try to find a trap structure
4751 	 * for him to use, clearing out lesser priority guys if we
4752 	 * have to. Clear out anyone who's expired while we're at it.
4753 	 */
4754 	tptouse = NULL;
4755 	for (n = 0; n < COUNTOF(ctl_traps); n++) {
4756 		tp = &ctl_traps[n];
4757 		if ((TRAP_INUSE & tp->tr_flags) &&
4758 		    !(TRAP_CONFIGURED & tp->tr_flags) &&
4759 		    ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4760 			tp->tr_flags = 0;
4761 			num_ctl_traps--;
4762 		}
4763 		if (!(TRAP_INUSE & tp->tr_flags)) {
4764 			tptouse = tp;
4765 		} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4766 			switch (traptype) {
4767 
4768 			case TRAP_TYPE_CONFIG:
4769 				if (tptouse == NULL) {
4770 					tptouse = tp;
4771 					break;
4772 				}
4773 				if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4774 				    !(TRAP_NONPRIO & tp->tr_flags))
4775 					break;
4776 
4777 				if (!(TRAP_NONPRIO & tptouse->tr_flags)
4778 				    && (TRAP_NONPRIO & tp->tr_flags)) {
4779 					tptouse = tp;
4780 					break;
4781 				}
4782 				if (tptouse->tr_origtime <
4783 				    tp->tr_origtime)
4784 					tptouse = tp;
4785 				break;
4786 
4787 			case TRAP_TYPE_PRIO:
4788 				if ( TRAP_NONPRIO & tp->tr_flags) {
4789 					if (tptouse == NULL ||
4790 					    ((TRAP_INUSE &
4791 					      tptouse->tr_flags) &&
4792 					     tptouse->tr_origtime <
4793 					     tp->tr_origtime))
4794 						tptouse = tp;
4795 				}
4796 				break;
4797 
4798 			case TRAP_TYPE_NONPRIO:
4799 				break;
4800 			}
4801 		}
4802 	}
4803 
4804 	/*
4805 	 * If we don't have room for him return an error.
4806 	 */
4807 	if (tptouse == NULL)
4808 		return (0);
4809 
4810 	/*
4811 	 * Set up this structure for him.
4812 	 */
4813 	tptouse->tr_settime = tptouse->tr_origtime = current_time;
4814 	tptouse->tr_count = tptouse->tr_resets = 0;
4815 	tptouse->tr_sequence = 1;
4816 	tptouse->tr_addr = *raddr;
4817 	tptouse->tr_localaddr = linter;
4818 	tptouse->tr_version = (u_char) version;
4819 	tptouse->tr_flags = TRAP_INUSE;
4820 	if (traptype == TRAP_TYPE_CONFIG)
4821 		tptouse->tr_flags |= TRAP_CONFIGURED;
4822 	else if (traptype == TRAP_TYPE_NONPRIO)
4823 		tptouse->tr_flags |= TRAP_NONPRIO;
4824 	num_ctl_traps++;
4825 	return (1);
4826 }
4827 
4828 
4829 /*
4830  * ctlclrtrap - called to clear a trap
4831  */
4832 int
4833 ctlclrtrap(
4834 	sockaddr_u *raddr,
4835 	struct interface *linter,
4836 	int traptype
4837 	)
4838 {
4839 	register struct ctl_trap *tp;
4840 
4841 	if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4842 		return (0);
4843 
4844 	if (tp->tr_flags & TRAP_CONFIGURED
4845 	    && traptype != TRAP_TYPE_CONFIG)
4846 		return (0);
4847 
4848 	tp->tr_flags = 0;
4849 	num_ctl_traps--;
4850 	return (1);
4851 }
4852 
4853 
4854 /*
4855  * ctlfindtrap - find a trap given the remote and local addresses
4856  */
4857 static struct ctl_trap *
4858 ctlfindtrap(
4859 	sockaddr_u *raddr,
4860 	struct interface *linter
4861 	)
4862 {
4863 	size_t	n;
4864 
4865 	for (n = 0; n < COUNTOF(ctl_traps); n++)
4866 		if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4867 		    && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4868 		    && (linter == ctl_traps[n].tr_localaddr))
4869 			return &ctl_traps[n];
4870 
4871 	return NULL;
4872 }
4873 
4874 
4875 /*
4876  * report_event - report an event to the trappers
4877  */
4878 void
4879 report_event(
4880 	int	err,		/* error code */
4881 	struct peer *peer,	/* peer structure pointer */
4882 	const char *str		/* protostats string */
4883 	)
4884 {
4885 	char	statstr[NTP_MAXSTRLEN];
4886 	int	i;
4887 	size_t	len;
4888 
4889 	/*
4890 	 * Report the error to the protostats file, system log and
4891 	 * trappers.
4892 	 */
4893 	if (peer == NULL) {
4894 
4895 		/*
4896 		 * Discard a system report if the number of reports of
4897 		 * the same type exceeds the maximum.
4898 		 */
4899 		if (ctl_sys_last_event != (u_char)err)
4900 			ctl_sys_num_events= 0;
4901 		if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
4902 			return;
4903 
4904 		ctl_sys_last_event = (u_char)err;
4905 		ctl_sys_num_events++;
4906 		snprintf(statstr, sizeof(statstr),
4907 		    "0.0.0.0 %04x %02x %s",
4908 		    ctlsysstatus(), err, eventstr(err));
4909 		if (str != NULL) {
4910 			len = strlen(statstr);
4911 			snprintf(statstr + len, sizeof(statstr) - len,
4912 			    " %s", str);
4913 		}
4914 		NLOG(NLOG_SYSEVENT)
4915 			msyslog(LOG_INFO, "%s", statstr);
4916 	} else {
4917 
4918 		/*
4919 		 * Discard a peer report if the number of reports of
4920 		 * the same type exceeds the maximum for that peer.
4921 		 */
4922 		const char *	src;
4923 		u_char		errlast;
4924 
4925 		errlast = (u_char)err & ~PEER_EVENT;
4926 		if (peer->last_event == errlast)
4927 			peer->num_events = 0;
4928 		if (peer->num_events >= CTL_PEER_MAXEVENTS)
4929 			return;
4930 
4931 		peer->last_event = errlast;
4932 		peer->num_events++;
4933 		if (ISREFCLOCKADR(&peer->srcadr))
4934 			src = refnumtoa(&peer->srcadr);
4935 		else
4936 			src = stoa(&peer->srcadr);
4937 
4938 		snprintf(statstr, sizeof(statstr),
4939 		    "%s %04x %02x %s", src,
4940 		    ctlpeerstatus(peer), err, eventstr(err));
4941 		if (str != NULL) {
4942 			len = strlen(statstr);
4943 			snprintf(statstr + len, sizeof(statstr) - len,
4944 			    " %s", str);
4945 		}
4946 		NLOG(NLOG_PEEREVENT)
4947 			msyslog(LOG_INFO, "%s", statstr);
4948 	}
4949 	record_proto_stats(statstr);
4950 #if DEBUG
4951 	if (debug)
4952 		printf("event at %lu %s\n", current_time, statstr);
4953 #endif
4954 
4955 	/*
4956 	 * If no trappers, return.
4957 	 */
4958 	if (num_ctl_traps <= 0)
4959 		return;
4960 
4961 	/*
4962 	 * Set up the outgoing packet variables
4963 	 */
4964 	res_opcode = CTL_OP_ASYNCMSG;
4965 	res_offset = 0;
4966 	res_async = TRUE;
4967 	res_authenticate = FALSE;
4968 	datapt = rpkt.u.data;
4969 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
4970 	if (!(err & PEER_EVENT)) {
4971 		rpkt.associd = 0;
4972 		rpkt.status = htons(ctlsysstatus());
4973 
4974 		/* Include the core system variables and the list. */
4975 		for (i = 1; i <= CS_VARLIST; i++)
4976 			ctl_putsys(i);
4977 	} else {
4978 		INSIST(peer != NULL);
4979 		rpkt.associd = htons(peer->associd);
4980 		rpkt.status = htons(ctlpeerstatus(peer));
4981 
4982 		/* Dump it all. Later, maybe less. */
4983 		for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
4984 			ctl_putpeer(i, peer);
4985 #ifdef REFCLOCK
4986 		/*
4987 		 * for clock exception events: add clock variables to
4988 		 * reflect info on exception
4989 		 */
4990 		if (err == PEVNT_CLOCK) {
4991 			struct refclockstat cs;
4992 			struct ctl_var *kv;
4993 
4994 			cs.kv_list = NULL;
4995 			refclock_control(&peer->srcadr, NULL, &cs);
4996 
4997 			ctl_puthex("refclockstatus",
4998 				   ctlclkstatus(&cs));
4999 
5000 			for (i = 1; i <= CC_MAXCODE; i++)
5001 				ctl_putclock(i, &cs, FALSE);
5002 			for (kv = cs.kv_list;
5003 			     kv != NULL && !(EOV & kv->flags);
5004 			     kv++)
5005 				if (DEF & kv->flags)
5006 					ctl_putdata(kv->text,
5007 						    strlen(kv->text),
5008 						    FALSE);
5009 			free_varlist(cs.kv_list);
5010 		}
5011 #endif /* REFCLOCK */
5012 	}
5013 
5014 	/*
5015 	 * We're done, return.
5016 	 */
5017 	ctl_flushpkt(0);
5018 }
5019 
5020 
5021 /*
5022  * mprintf_event - printf-style varargs variant of report_event()
5023  */
5024 int
5025 mprintf_event(
5026 	int		evcode,		/* event code */
5027 	struct peer *	p,		/* may be NULL */
5028 	const char *	fmt,		/* msnprintf format */
5029 	...
5030 	)
5031 {
5032 	va_list	ap;
5033 	int	rc;
5034 	char	msg[512];
5035 
5036 	va_start(ap, fmt);
5037 	rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
5038 	va_end(ap);
5039 	report_event(evcode, p, msg);
5040 
5041 	return rc;
5042 }
5043 
5044 
5045 /*
5046  * ctl_clr_stats - clear stat counters
5047  */
5048 void
5049 ctl_clr_stats(void)
5050 {
5051 	ctltimereset = current_time;
5052 	numctlreq = 0;
5053 	numctlbadpkts = 0;
5054 	numctlresponses = 0;
5055 	numctlfrags = 0;
5056 	numctlerrors = 0;
5057 	numctlfrags = 0;
5058 	numctltooshort = 0;
5059 	numctlinputresp = 0;
5060 	numctlinputfrag = 0;
5061 	numctlinputerr = 0;
5062 	numctlbadoffset = 0;
5063 	numctlbadversion = 0;
5064 	numctldatatooshort = 0;
5065 	numctlbadop = 0;
5066 	numasyncmsgs = 0;
5067 }
5068 
5069 static u_short
5070 count_var(
5071 	const struct ctl_var *k
5072 	)
5073 {
5074 	u_int c;
5075 
5076 	if (NULL == k)
5077 		return 0;
5078 
5079 	c = 0;
5080 	while (!(EOV & (k++)->flags))
5081 		c++;
5082 
5083 	ENSURE(c <= USHRT_MAX);
5084 	return (u_short)c;
5085 }
5086 
5087 
5088 char *
5089 add_var(
5090 	struct ctl_var **kv,
5091 	u_long size,
5092 	u_short def
5093 	)
5094 {
5095 	u_short		c;
5096 	struct ctl_var *k;
5097 	char *		buf;
5098 
5099 	c = count_var(*kv);
5100 	*kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
5101 	k = *kv;
5102 	buf = emalloc(size);
5103 	k[c].code  = c;
5104 	k[c].text  = buf;
5105 	k[c].flags = def;
5106 	k[c + 1].code  = 0;
5107 	k[c + 1].text  = NULL;
5108 	k[c + 1].flags = EOV;
5109 
5110 	return buf;
5111 }
5112 
5113 
5114 void
5115 set_var(
5116 	struct ctl_var **kv,
5117 	const char *data,
5118 	u_long size,
5119 	u_short def
5120 	)
5121 {
5122 	struct ctl_var *k;
5123 	const char *s;
5124 	const char *t;
5125 	char *td;
5126 
5127 	if (NULL == data || !size)
5128 		return;
5129 
5130 	k = *kv;
5131 	if (k != NULL) {
5132 		while (!(EOV & k->flags)) {
5133 			if (NULL == k->text)	{
5134 				td = emalloc(size);
5135 				memcpy(td, data, size);
5136 				k->text = td;
5137 				k->flags = def;
5138 				return;
5139 			} else {
5140 				s = data;
5141 				t = k->text;
5142 				while (*t != '=' && *s == *t) {
5143 					s++;
5144 					t++;
5145 				}
5146 				if (*s == *t && ((*t == '=') || !*t)) {
5147 					td = erealloc((void *)(intptr_t)k->text, size);
5148 					memcpy(td, data, size);
5149 					k->text = td;
5150 					k->flags = def;
5151 					return;
5152 				}
5153 			}
5154 			k++;
5155 		}
5156 	}
5157 	td = add_var(kv, size, def);
5158 	memcpy(td, data, size);
5159 }
5160 
5161 
5162 void
5163 set_sys_var(
5164 	const char *data,
5165 	u_long size,
5166 	u_short def
5167 	)
5168 {
5169 	set_var(&ext_sys_var, data, size, def);
5170 }
5171 
5172 
5173 /*
5174  * get_ext_sys_var() retrieves the value of a user-defined variable or
5175  * NULL if the variable has not been setvar'd.
5176  */
5177 const char *
5178 get_ext_sys_var(const char *tag)
5179 {
5180 	struct ctl_var *	v;
5181 	size_t			c;
5182 	const char *		val;
5183 
5184 	val = NULL;
5185 	c = strlen(tag);
5186 	for (v = ext_sys_var; !(EOV & v->flags); v++) {
5187 		if (NULL != v->text && !memcmp(tag, v->text, c)) {
5188 			if ('=' == v->text[c]) {
5189 				val = v->text + c + 1;
5190 				break;
5191 			} else if ('\0' == v->text[c]) {
5192 				val = "";
5193 				break;
5194 			}
5195 		}
5196 	}
5197 
5198 	return val;
5199 }
5200 
5201 
5202 void
5203 free_varlist(
5204 	struct ctl_var *kv
5205 	)
5206 {
5207 	struct ctl_var *k;
5208 	if (kv) {
5209 		for (k = kv; !(k->flags & EOV); k++)
5210 			free((void *)(intptr_t)k->text);
5211 		free((void *)kv);
5212 	}
5213 }
5214