xref: /freebsd/contrib/ntp/ntpd/ntp_control.c (revision 13464e4a44fc58490a03bb8bfc7e3c972e9c30b2)
1 /*
2  * ntp_control.c - respond to mode 6 control messages and send async
3  *		   traps.  Provides service to ntpq and others.
4  */
5 
6 #ifdef HAVE_CONFIG_H
7 # include <config.h>
8 #endif
9 
10 #include <stdio.h>
11 #include <ctype.h>
12 #include <signal.h>
13 #include <sys/stat.h>
14 #ifdef HAVE_NETINET_IN_H
15 # include <netinet/in.h>
16 #endif
17 #include <arpa/inet.h>
18 
19 #include "ntpd.h"
20 #include "ntp_io.h"
21 #include "ntp_refclock.h"
22 #include "ntp_control.h"
23 #include "ntp_unixtime.h"
24 #include "ntp_stdlib.h"
25 #include "ntp_config.h"
26 #include "ntp_crypto.h"
27 #include "ntp_assert.h"
28 #include "ntp_leapsec.h"
29 #include "ntp_md5.h"	/* provides OpenSSL digest API */
30 #include "lib_strbuf.h"
31 #include <rc_cmdlength.h>
32 #ifdef KERNEL_PLL
33 # include "ntp_syscall.h"
34 #endif
35 
36 /*
37  * Structure to hold request procedure information
38  */
39 
40 struct ctl_proc {
41 	short control_code;		/* defined request code */
42 #define NO_REQUEST	(-1)
43 	u_short flags;			/* flags word */
44 	/* Only one flag.  Authentication required or not. */
45 #define NOAUTH	0
46 #define AUTH	1
47 	void (*handler) (struct recvbuf *, int); /* handle request */
48 };
49 
50 
51 /*
52  * Request processing routines
53  */
54 static	void	ctl_error	(u_char);
55 #ifdef REFCLOCK
56 static	u_short ctlclkstatus	(struct refclockstat *);
57 #endif
58 static	void	ctl_flushpkt	(u_char);
59 static	void	ctl_putdata	(const char *, unsigned int, int);
60 static	void	ctl_putstr	(const char *, const char *, size_t);
61 static	void	ctl_putdblf	(const char *, int, int, double);
62 #define	ctl_putdbl(tag, d)	ctl_putdblf(tag, 1, 3, d)
63 #define	ctl_putdbl6(tag, d)	ctl_putdblf(tag, 1, 6, d)
64 #define	ctl_putsfp(tag, sfp)	ctl_putdblf(tag, 0, -1, \
65 					    FPTOD(sfp))
66 static	void	ctl_putuint	(const char *, u_long);
67 static	void	ctl_puthex	(const char *, u_long);
68 static	void	ctl_putint	(const char *, long);
69 static	void	ctl_putts	(const char *, l_fp *);
70 static	void	ctl_putadr	(const char *, u_int32,
71 				 sockaddr_u *);
72 static	void	ctl_putrefid	(const char *, u_int32);
73 static	void	ctl_putarray	(const char *, double *, int);
74 static	void	ctl_putsys	(int);
75 static	void	ctl_putpeer	(int, struct peer *);
76 static	void	ctl_putfs	(const char *, tstamp_t);
77 static	void	ctl_printf	(const char *, ...) NTP_PRINTF(1, 2);
78 #ifdef REFCLOCK
79 static	void	ctl_putclock	(int, struct refclockstat *, int);
80 #endif	/* REFCLOCK */
81 static	const struct ctl_var *ctl_getitem(const struct ctl_var *,
82 					  char **);
83 static	u_short	count_var	(const struct ctl_var *);
84 static	void	control_unspec	(struct recvbuf *, int);
85 static	void	read_status	(struct recvbuf *, int);
86 static	void	read_sysvars	(void);
87 static	void	read_peervars	(void);
88 static	void	read_variables	(struct recvbuf *, int);
89 static	void	write_variables (struct recvbuf *, int);
90 static	void	read_clockstatus(struct recvbuf *, int);
91 static	void	write_clockstatus(struct recvbuf *, int);
92 static	void	set_trap	(struct recvbuf *, int);
93 static	void	save_config	(struct recvbuf *, int);
94 static	void	configure	(struct recvbuf *, int);
95 static	void	send_mru_entry	(mon_entry *, int);
96 static	void	send_random_tag_value(int);
97 static	void	read_mru_list	(struct recvbuf *, int);
98 static	void	send_ifstats_entry(endpt *, u_int);
99 static	void	read_ifstats	(struct recvbuf *);
100 static	void	sockaddrs_from_restrict_u(sockaddr_u *,	sockaddr_u *,
101 					  restrict_u *, int);
102 static	void	send_restrict_entry(restrict_u *, int, u_int);
103 static	void	send_restrict_list(restrict_u *, int, u_int *);
104 static	void	read_addr_restrictions(struct recvbuf *);
105 static	void	read_ordlist	(struct recvbuf *, int);
106 static	u_int32	derive_nonce	(sockaddr_u *, u_int32, u_int32);
107 static	void	generate_nonce	(struct recvbuf *, char *, size_t);
108 static	int	validate_nonce	(const char *, struct recvbuf *);
109 static	void	req_nonce	(struct recvbuf *, int);
110 static	void	unset_trap	(struct recvbuf *, int);
111 static	struct ctl_trap *ctlfindtrap(sockaddr_u *,
112 				     struct interface *);
113 
114 int/*BOOL*/ is_safe_filename(const char * name);
115 
116 static const struct ctl_proc control_codes[] = {
117 	{ CTL_OP_UNSPEC,		NOAUTH,	control_unspec },
118 	{ CTL_OP_READSTAT,		NOAUTH,	read_status },
119 	{ CTL_OP_READVAR,		NOAUTH,	read_variables },
120 	{ CTL_OP_WRITEVAR,		AUTH,	write_variables },
121 	{ CTL_OP_READCLOCK,		NOAUTH,	read_clockstatus },
122 	{ CTL_OP_WRITECLOCK,		AUTH,	write_clockstatus },
123 	{ CTL_OP_SETTRAP,		AUTH,	set_trap },
124 	{ CTL_OP_CONFIGURE,		AUTH,	configure },
125 	{ CTL_OP_SAVECONFIG,		AUTH,	save_config },
126 	{ CTL_OP_READ_MRU,		NOAUTH,	read_mru_list },
127 	{ CTL_OP_READ_ORDLIST_A,	AUTH,	read_ordlist },
128 	{ CTL_OP_REQ_NONCE,		NOAUTH,	req_nonce },
129 	{ CTL_OP_UNSETTRAP,		AUTH,	unset_trap },
130 	{ NO_REQUEST,			0,	NULL }
131 };
132 
133 /*
134  * System variables we understand
135  */
136 #define	CS_LEAP			1
137 #define	CS_STRATUM		2
138 #define	CS_PRECISION		3
139 #define	CS_ROOTDELAY		4
140 #define	CS_ROOTDISPERSION	5
141 #define	CS_REFID		6
142 #define	CS_REFTIME		7
143 #define	CS_POLL			8
144 #define	CS_PEERID		9
145 #define	CS_OFFSET		10
146 #define	CS_DRIFT		11
147 #define	CS_JITTER		12
148 #define	CS_ERROR		13
149 #define	CS_CLOCK		14
150 #define	CS_PROCESSOR		15
151 #define	CS_SYSTEM		16
152 #define	CS_VERSION		17
153 #define	CS_STABIL		18
154 #define	CS_VARLIST		19
155 #define	CS_TAI			20
156 #define	CS_LEAPTAB		21
157 #define	CS_LEAPEND		22
158 #define	CS_RATE			23
159 #define	CS_MRU_ENABLED		24
160 #define	CS_MRU_DEPTH		25
161 #define	CS_MRU_DEEPEST		26
162 #define	CS_MRU_MINDEPTH		27
163 #define	CS_MRU_MAXAGE		28
164 #define	CS_MRU_MAXDEPTH		29
165 #define	CS_MRU_MEM		30
166 #define	CS_MRU_MAXMEM		31
167 #define	CS_SS_UPTIME		32
168 #define	CS_SS_RESET		33
169 #define	CS_SS_RECEIVED		34
170 #define	CS_SS_THISVER		35
171 #define	CS_SS_OLDVER		36
172 #define	CS_SS_BADFORMAT		37
173 #define	CS_SS_BADAUTH		38
174 #define	CS_SS_DECLINED		39
175 #define	CS_SS_RESTRICTED	40
176 #define	CS_SS_LIMITED		41
177 #define	CS_SS_KODSENT		42
178 #define	CS_SS_PROCESSED		43
179 #define	CS_PEERADR		44
180 #define	CS_PEERMODE		45
181 #define	CS_BCASTDELAY		46
182 #define	CS_AUTHDELAY		47
183 #define	CS_AUTHKEYS		48
184 #define	CS_AUTHFREEK		49
185 #define	CS_AUTHKLOOKUPS		50
186 #define	CS_AUTHKNOTFOUND	51
187 #define	CS_AUTHKUNCACHED	52
188 #define	CS_AUTHKEXPIRED		53
189 #define	CS_AUTHENCRYPTS		54
190 #define	CS_AUTHDECRYPTS		55
191 #define	CS_AUTHRESET		56
192 #define	CS_K_OFFSET		57
193 #define	CS_K_FREQ		58
194 #define	CS_K_MAXERR		59
195 #define	CS_K_ESTERR		60
196 #define	CS_K_STFLAGS		61
197 #define	CS_K_TIMECONST		62
198 #define	CS_K_PRECISION		63
199 #define	CS_K_FREQTOL		64
200 #define	CS_K_PPS_FREQ		65
201 #define	CS_K_PPS_STABIL		66
202 #define	CS_K_PPS_JITTER		67
203 #define	CS_K_PPS_CALIBDUR	68
204 #define	CS_K_PPS_CALIBS		69
205 #define	CS_K_PPS_CALIBERRS	70
206 #define	CS_K_PPS_JITEXC		71
207 #define	CS_K_PPS_STBEXC		72
208 #define	CS_KERN_FIRST		CS_K_OFFSET
209 #define	CS_KERN_LAST		CS_K_PPS_STBEXC
210 #define	CS_IOSTATS_RESET	73
211 #define	CS_TOTAL_RBUF		74
212 #define	CS_FREE_RBUF		75
213 #define	CS_USED_RBUF		76
214 #define	CS_RBUF_LOWATER		77
215 #define	CS_IO_DROPPED		78
216 #define	CS_IO_IGNORED		79
217 #define	CS_IO_RECEIVED		80
218 #define	CS_IO_SENT		81
219 #define	CS_IO_SENDFAILED	82
220 #define	CS_IO_WAKEUPS		83
221 #define	CS_IO_GOODWAKEUPS	84
222 #define	CS_TIMERSTATS_RESET	85
223 #define	CS_TIMER_OVERRUNS	86
224 #define	CS_TIMER_XMTS		87
225 #define	CS_FUZZ			88
226 #define	CS_WANDER_THRESH	89
227 #define	CS_LEAPSMEARINTV	90
228 #define	CS_LEAPSMEAROFFS	91
229 #define	CS_MAX_NOAUTOKEY	CS_LEAPSMEAROFFS
230 #ifdef AUTOKEY
231 #define	CS_FLAGS		(1 + CS_MAX_NOAUTOKEY)
232 #define	CS_HOST			(2 + CS_MAX_NOAUTOKEY)
233 #define	CS_PUBLIC		(3 + CS_MAX_NOAUTOKEY)
234 #define	CS_CERTIF		(4 + CS_MAX_NOAUTOKEY)
235 #define	CS_SIGNATURE		(5 + CS_MAX_NOAUTOKEY)
236 #define	CS_REVTIME		(6 + CS_MAX_NOAUTOKEY)
237 #define	CS_IDENT		(7 + CS_MAX_NOAUTOKEY)
238 #define	CS_DIGEST		(8 + CS_MAX_NOAUTOKEY)
239 #define	CS_MAXCODE		CS_DIGEST
240 #else	/* !AUTOKEY follows */
241 #define	CS_MAXCODE		CS_MAX_NOAUTOKEY
242 #endif	/* !AUTOKEY */
243 
244 /*
245  * Peer variables we understand
246  */
247 #define	CP_CONFIG		1
248 #define	CP_AUTHENABLE		2
249 #define	CP_AUTHENTIC		3
250 #define	CP_SRCADR		4
251 #define	CP_SRCPORT		5
252 #define	CP_DSTADR		6
253 #define	CP_DSTPORT		7
254 #define	CP_LEAP			8
255 #define	CP_HMODE		9
256 #define	CP_STRATUM		10
257 #define	CP_PPOLL		11
258 #define	CP_HPOLL		12
259 #define	CP_PRECISION		13
260 #define	CP_ROOTDELAY		14
261 #define	CP_ROOTDISPERSION	15
262 #define	CP_REFID		16
263 #define	CP_REFTIME		17
264 #define	CP_ORG			18
265 #define	CP_REC			19
266 #define	CP_XMT			20
267 #define	CP_REACH		21
268 #define	CP_UNREACH		22
269 #define	CP_TIMER		23
270 #define	CP_DELAY		24
271 #define	CP_OFFSET		25
272 #define	CP_JITTER		26
273 #define	CP_DISPERSION		27
274 #define	CP_KEYID		28
275 #define	CP_FILTDELAY		29
276 #define	CP_FILTOFFSET		30
277 #define	CP_PMODE		31
278 #define	CP_RECEIVED		32
279 #define	CP_SENT			33
280 #define	CP_FILTERROR		34
281 #define	CP_FLASH		35
282 #define	CP_TTL			36
283 #define	CP_VARLIST		37
284 #define	CP_IN			38
285 #define	CP_OUT			39
286 #define	CP_RATE			40
287 #define	CP_BIAS			41
288 #define	CP_SRCHOST		42
289 #define	CP_TIMEREC		43
290 #define	CP_TIMEREACH		44
291 #define	CP_BADAUTH		45
292 #define	CP_BOGUSORG		46
293 #define	CP_OLDPKT		47
294 #define	CP_SELDISP		48
295 #define	CP_SELBROKEN		49
296 #define	CP_CANDIDATE		50
297 #define	CP_MAX_NOAUTOKEY	CP_CANDIDATE
298 #ifdef AUTOKEY
299 #define	CP_FLAGS		(1 + CP_MAX_NOAUTOKEY)
300 #define	CP_HOST			(2 + CP_MAX_NOAUTOKEY)
301 #define	CP_VALID		(3 + CP_MAX_NOAUTOKEY)
302 #define	CP_INITSEQ		(4 + CP_MAX_NOAUTOKEY)
303 #define	CP_INITKEY		(5 + CP_MAX_NOAUTOKEY)
304 #define	CP_INITTSP		(6 + CP_MAX_NOAUTOKEY)
305 #define	CP_SIGNATURE		(7 + CP_MAX_NOAUTOKEY)
306 #define	CP_IDENT		(8 + CP_MAX_NOAUTOKEY)
307 #define	CP_MAXCODE		CP_IDENT
308 #else	/* !AUTOKEY follows */
309 #define	CP_MAXCODE		CP_MAX_NOAUTOKEY
310 #endif	/* !AUTOKEY */
311 
312 /*
313  * Clock variables we understand
314  */
315 #define	CC_TYPE		1
316 #define	CC_TIMECODE	2
317 #define	CC_POLL		3
318 #define	CC_NOREPLY	4
319 #define	CC_BADFORMAT	5
320 #define	CC_BADDATA	6
321 #define	CC_FUDGETIME1	7
322 #define	CC_FUDGETIME2	8
323 #define	CC_FUDGEVAL1	9
324 #define	CC_FUDGEVAL2	10
325 #define	CC_FLAGS	11
326 #define	CC_DEVICE	12
327 #define	CC_VARLIST	13
328 #define	CC_MAXCODE	CC_VARLIST
329 
330 /*
331  * System variable values. The array can be indexed by the variable
332  * index to find the textual name.
333  */
334 static const struct ctl_var sys_var[] = {
335 	{ 0,		PADDING, "" },		/* 0 */
336 	{ CS_LEAP,	RW, "leap" },		/* 1 */
337 	{ CS_STRATUM,	RO, "stratum" },	/* 2 */
338 	{ CS_PRECISION, RO, "precision" },	/* 3 */
339 	{ CS_ROOTDELAY, RO, "rootdelay" },	/* 4 */
340 	{ CS_ROOTDISPERSION, RO, "rootdisp" },	/* 5 */
341 	{ CS_REFID,	RO, "refid" },		/* 6 */
342 	{ CS_REFTIME,	RO, "reftime" },	/* 7 */
343 	{ CS_POLL,	RO, "tc" },		/* 8 */
344 	{ CS_PEERID,	RO, "peer" },		/* 9 */
345 	{ CS_OFFSET,	RO, "offset" },		/* 10 */
346 	{ CS_DRIFT,	RO, "frequency" },	/* 11 */
347 	{ CS_JITTER,	RO, "sys_jitter" },	/* 12 */
348 	{ CS_ERROR,	RO, "clk_jitter" },	/* 13 */
349 	{ CS_CLOCK,	RO, "clock" },		/* 14 */
350 	{ CS_PROCESSOR, RO, "processor" },	/* 15 */
351 	{ CS_SYSTEM,	RO, "system" },		/* 16 */
352 	{ CS_VERSION,	RO, "version" },	/* 17 */
353 	{ CS_STABIL,	RO, "clk_wander" },	/* 18 */
354 	{ CS_VARLIST,	RO, "sys_var_list" },	/* 19 */
355 	{ CS_TAI,	RO, "tai" },		/* 20 */
356 	{ CS_LEAPTAB,	RO, "leapsec" },	/* 21 */
357 	{ CS_LEAPEND,	RO, "expire" },		/* 22 */
358 	{ CS_RATE,	RO, "mintc" },		/* 23 */
359 	{ CS_MRU_ENABLED,	RO, "mru_enabled" },	/* 24 */
360 	{ CS_MRU_DEPTH,		RO, "mru_depth" },	/* 25 */
361 	{ CS_MRU_DEEPEST,	RO, "mru_deepest" },	/* 26 */
362 	{ CS_MRU_MINDEPTH,	RO, "mru_mindepth" },	/* 27 */
363 	{ CS_MRU_MAXAGE,	RO, "mru_maxage" },	/* 28 */
364 	{ CS_MRU_MAXDEPTH,	RO, "mru_maxdepth" },	/* 29 */
365 	{ CS_MRU_MEM,		RO, "mru_mem" },	/* 30 */
366 	{ CS_MRU_MAXMEM,	RO, "mru_maxmem" },	/* 31 */
367 	{ CS_SS_UPTIME,		RO, "ss_uptime" },	/* 32 */
368 	{ CS_SS_RESET,		RO, "ss_reset" },	/* 33 */
369 	{ CS_SS_RECEIVED,	RO, "ss_received" },	/* 34 */
370 	{ CS_SS_THISVER,	RO, "ss_thisver" },	/* 35 */
371 	{ CS_SS_OLDVER,		RO, "ss_oldver" },	/* 36 */
372 	{ CS_SS_BADFORMAT,	RO, "ss_badformat" },	/* 37 */
373 	{ CS_SS_BADAUTH,	RO, "ss_badauth" },	/* 38 */
374 	{ CS_SS_DECLINED,	RO, "ss_declined" },	/* 39 */
375 	{ CS_SS_RESTRICTED,	RO, "ss_restricted" },	/* 40 */
376 	{ CS_SS_LIMITED,	RO, "ss_limited" },	/* 41 */
377 	{ CS_SS_KODSENT,	RO, "ss_kodsent" },	/* 42 */
378 	{ CS_SS_PROCESSED,	RO, "ss_processed" },	/* 43 */
379 	{ CS_PEERADR,		RO, "peeradr" },	/* 44 */
380 	{ CS_PEERMODE,		RO, "peermode" },	/* 45 */
381 	{ CS_BCASTDELAY,	RO, "bcastdelay" },	/* 46 */
382 	{ CS_AUTHDELAY,		RO, "authdelay" },	/* 47 */
383 	{ CS_AUTHKEYS,		RO, "authkeys" },	/* 48 */
384 	{ CS_AUTHFREEK,		RO, "authfreek" },	/* 49 */
385 	{ CS_AUTHKLOOKUPS,	RO, "authklookups" },	/* 50 */
386 	{ CS_AUTHKNOTFOUND,	RO, "authknotfound" },	/* 51 */
387 	{ CS_AUTHKUNCACHED,	RO, "authkuncached" },	/* 52 */
388 	{ CS_AUTHKEXPIRED,	RO, "authkexpired" },	/* 53 */
389 	{ CS_AUTHENCRYPTS,	RO, "authencrypts" },	/* 54 */
390 	{ CS_AUTHDECRYPTS,	RO, "authdecrypts" },	/* 55 */
391 	{ CS_AUTHRESET,		RO, "authreset" },	/* 56 */
392 	{ CS_K_OFFSET,		RO, "koffset" },	/* 57 */
393 	{ CS_K_FREQ,		RO, "kfreq" },		/* 58 */
394 	{ CS_K_MAXERR,		RO, "kmaxerr" },	/* 59 */
395 	{ CS_K_ESTERR,		RO, "kesterr" },	/* 60 */
396 	{ CS_K_STFLAGS,		RO, "kstflags" },	/* 61 */
397 	{ CS_K_TIMECONST,	RO, "ktimeconst" },	/* 62 */
398 	{ CS_K_PRECISION,	RO, "kprecis" },	/* 63 */
399 	{ CS_K_FREQTOL,		RO, "kfreqtol" },	/* 64 */
400 	{ CS_K_PPS_FREQ,	RO, "kppsfreq" },	/* 65 */
401 	{ CS_K_PPS_STABIL,	RO, "kppsstab" },	/* 66 */
402 	{ CS_K_PPS_JITTER,	RO, "kppsjitter" },	/* 67 */
403 	{ CS_K_PPS_CALIBDUR,	RO, "kppscalibdur" },	/* 68 */
404 	{ CS_K_PPS_CALIBS,	RO, "kppscalibs" },	/* 69 */
405 	{ CS_K_PPS_CALIBERRS,	RO, "kppscaliberrs" },	/* 70 */
406 	{ CS_K_PPS_JITEXC,	RO, "kppsjitexc" },	/* 71 */
407 	{ CS_K_PPS_STBEXC,	RO, "kppsstbexc" },	/* 72 */
408 	{ CS_IOSTATS_RESET,	RO, "iostats_reset" },	/* 73 */
409 	{ CS_TOTAL_RBUF,	RO, "total_rbuf" },	/* 74 */
410 	{ CS_FREE_RBUF,		RO, "free_rbuf" },	/* 75 */
411 	{ CS_USED_RBUF,		RO, "used_rbuf" },	/* 76 */
412 	{ CS_RBUF_LOWATER,	RO, "rbuf_lowater" },	/* 77 */
413 	{ CS_IO_DROPPED,	RO, "io_dropped" },	/* 78 */
414 	{ CS_IO_IGNORED,	RO, "io_ignored" },	/* 79 */
415 	{ CS_IO_RECEIVED,	RO, "io_received" },	/* 80 */
416 	{ CS_IO_SENT,		RO, "io_sent" },	/* 81 */
417 	{ CS_IO_SENDFAILED,	RO, "io_sendfailed" },	/* 82 */
418 	{ CS_IO_WAKEUPS,	RO, "io_wakeups" },	/* 83 */
419 	{ CS_IO_GOODWAKEUPS,	RO, "io_goodwakeups" },	/* 84 */
420 	{ CS_TIMERSTATS_RESET,	RO, "timerstats_reset" },/* 85 */
421 	{ CS_TIMER_OVERRUNS,	RO, "timer_overruns" },	/* 86 */
422 	{ CS_TIMER_XMTS,	RO, "timer_xmts" },	/* 87 */
423 	{ CS_FUZZ,		RO, "fuzz" },		/* 88 */
424 	{ CS_WANDER_THRESH,	RO, "clk_wander_threshold" }, /* 89 */
425 
426 	{ CS_LEAPSMEARINTV,	RO, "leapsmearinterval" },    /* 90 */
427 	{ CS_LEAPSMEAROFFS,	RO, "leapsmearoffset" },      /* 91 */
428 
429 #ifdef AUTOKEY
430 	{ CS_FLAGS,	RO, "flags" },		/* 1 + CS_MAX_NOAUTOKEY */
431 	{ CS_HOST,	RO, "host" },		/* 2 + CS_MAX_NOAUTOKEY */
432 	{ CS_PUBLIC,	RO, "update" },		/* 3 + CS_MAX_NOAUTOKEY */
433 	{ CS_CERTIF,	RO, "cert" },		/* 4 + CS_MAX_NOAUTOKEY */
434 	{ CS_SIGNATURE,	RO, "signature" },	/* 5 + CS_MAX_NOAUTOKEY */
435 	{ CS_REVTIME,	RO, "until" },		/* 6 + CS_MAX_NOAUTOKEY */
436 	{ CS_IDENT,	RO, "ident" },		/* 7 + CS_MAX_NOAUTOKEY */
437 	{ CS_DIGEST,	RO, "digest" },		/* 8 + CS_MAX_NOAUTOKEY */
438 #endif	/* AUTOKEY */
439 	{ 0,		EOV, "" }		/* 87/95 */
440 };
441 
442 static struct ctl_var *ext_sys_var = NULL;
443 
444 /*
445  * System variables we print by default (in fuzzball order,
446  * more-or-less)
447  */
448 static const u_char def_sys_var[] = {
449 	CS_VERSION,
450 	CS_PROCESSOR,
451 	CS_SYSTEM,
452 	CS_LEAP,
453 	CS_STRATUM,
454 	CS_PRECISION,
455 	CS_ROOTDELAY,
456 	CS_ROOTDISPERSION,
457 	CS_REFID,
458 	CS_REFTIME,
459 	CS_CLOCK,
460 	CS_PEERID,
461 	CS_POLL,
462 	CS_RATE,
463 	CS_OFFSET,
464 	CS_DRIFT,
465 	CS_JITTER,
466 	CS_ERROR,
467 	CS_STABIL,
468 	CS_TAI,
469 	CS_LEAPTAB,
470 	CS_LEAPEND,
471 	CS_LEAPSMEARINTV,
472 	CS_LEAPSMEAROFFS,
473 #ifdef AUTOKEY
474 	CS_HOST,
475 	CS_IDENT,
476 	CS_FLAGS,
477 	CS_DIGEST,
478 	CS_SIGNATURE,
479 	CS_PUBLIC,
480 	CS_CERTIF,
481 #endif	/* AUTOKEY */
482 	0
483 };
484 
485 
486 /*
487  * Peer variable list
488  */
489 static const struct ctl_var peer_var[] = {
490 	{ 0,		PADDING, "" },		/* 0 */
491 	{ CP_CONFIG,	RO, "config" },		/* 1 */
492 	{ CP_AUTHENABLE, RO,	"authenable" },	/* 2 */
493 	{ CP_AUTHENTIC, RO, "authentic" },	/* 3 */
494 	{ CP_SRCADR,	RO, "srcadr" },		/* 4 */
495 	{ CP_SRCPORT,	RO, "srcport" },	/* 5 */
496 	{ CP_DSTADR,	RO, "dstadr" },		/* 6 */
497 	{ CP_DSTPORT,	RO, "dstport" },	/* 7 */
498 	{ CP_LEAP,	RO, "leap" },		/* 8 */
499 	{ CP_HMODE,	RO, "hmode" },		/* 9 */
500 	{ CP_STRATUM,	RO, "stratum" },	/* 10 */
501 	{ CP_PPOLL,	RO, "ppoll" },		/* 11 */
502 	{ CP_HPOLL,	RO, "hpoll" },		/* 12 */
503 	{ CP_PRECISION,	RO, "precision" },	/* 13 */
504 	{ CP_ROOTDELAY,	RO, "rootdelay" },	/* 14 */
505 	{ CP_ROOTDISPERSION, RO, "rootdisp" },	/* 15 */
506 	{ CP_REFID,	RO, "refid" },		/* 16 */
507 	{ CP_REFTIME,	RO, "reftime" },	/* 17 */
508 	{ CP_ORG,	RO, "org" },		/* 18 */
509 	{ CP_REC,	RO, "rec" },		/* 19 */
510 	{ CP_XMT,	RO, "xleave" },		/* 20 */
511 	{ CP_REACH,	RO, "reach" },		/* 21 */
512 	{ CP_UNREACH,	RO, "unreach" },	/* 22 */
513 	{ CP_TIMER,	RO, "timer" },		/* 23 */
514 	{ CP_DELAY,	RO, "delay" },		/* 24 */
515 	{ CP_OFFSET,	RO, "offset" },		/* 25 */
516 	{ CP_JITTER,	RO, "jitter" },		/* 26 */
517 	{ CP_DISPERSION, RO, "dispersion" },	/* 27 */
518 	{ CP_KEYID,	RO, "keyid" },		/* 28 */
519 	{ CP_FILTDELAY,	RO, "filtdelay" },	/* 29 */
520 	{ CP_FILTOFFSET, RO, "filtoffset" },	/* 30 */
521 	{ CP_PMODE,	RO, "pmode" },		/* 31 */
522 	{ CP_RECEIVED,	RO, "received"},	/* 32 */
523 	{ CP_SENT,	RO, "sent" },		/* 33 */
524 	{ CP_FILTERROR,	RO, "filtdisp" },	/* 34 */
525 	{ CP_FLASH,	RO, "flash" },		/* 35 */
526 	{ CP_TTL,	RO, "ttl" },		/* 36 */
527 	{ CP_VARLIST,	RO, "peer_var_list" },	/* 37 */
528 	{ CP_IN,	RO, "in" },		/* 38 */
529 	{ CP_OUT,	RO, "out" },		/* 39 */
530 	{ CP_RATE,	RO, "headway" },	/* 40 */
531 	{ CP_BIAS,	RO, "bias" },		/* 41 */
532 	{ CP_SRCHOST,	RO, "srchost" },	/* 42 */
533 	{ CP_TIMEREC,	RO, "timerec" },	/* 43 */
534 	{ CP_TIMEREACH,	RO, "timereach" },	/* 44 */
535 	{ CP_BADAUTH,	RO, "badauth" },	/* 45 */
536 	{ CP_BOGUSORG,	RO, "bogusorg" },	/* 46 */
537 	{ CP_OLDPKT,	RO, "oldpkt" },		/* 47 */
538 	{ CP_SELDISP,	RO, "seldisp" },	/* 48 */
539 	{ CP_SELBROKEN,	RO, "selbroken" },	/* 49 */
540 	{ CP_CANDIDATE, RO, "candidate" },	/* 50 */
541 #ifdef AUTOKEY
542 	{ CP_FLAGS,	RO, "flags" },		/* 1 + CP_MAX_NOAUTOKEY */
543 	{ CP_HOST,	RO, "host" },		/* 2 + CP_MAX_NOAUTOKEY */
544 	{ CP_VALID,	RO, "valid" },		/* 3 + CP_MAX_NOAUTOKEY */
545 	{ CP_INITSEQ,	RO, "initsequence" },	/* 4 + CP_MAX_NOAUTOKEY */
546 	{ CP_INITKEY,	RO, "initkey" },	/* 5 + CP_MAX_NOAUTOKEY */
547 	{ CP_INITTSP,	RO, "timestamp" },	/* 6 + CP_MAX_NOAUTOKEY */
548 	{ CP_SIGNATURE,	RO, "signature" },	/* 7 + CP_MAX_NOAUTOKEY */
549 	{ CP_IDENT,	RO, "ident" },		/* 8 + CP_MAX_NOAUTOKEY */
550 #endif	/* AUTOKEY */
551 	{ 0,		EOV, "" }		/* 50/58 */
552 };
553 
554 
555 /*
556  * Peer variables we print by default
557  */
558 static const u_char def_peer_var[] = {
559 	CP_SRCADR,
560 	CP_SRCPORT,
561 	CP_SRCHOST,
562 	CP_DSTADR,
563 	CP_DSTPORT,
564 	CP_OUT,
565 	CP_IN,
566 	CP_LEAP,
567 	CP_STRATUM,
568 	CP_PRECISION,
569 	CP_ROOTDELAY,
570 	CP_ROOTDISPERSION,
571 	CP_REFID,
572 	CP_REFTIME,
573 	CP_REC,
574 	CP_REACH,
575 	CP_UNREACH,
576 	CP_HMODE,
577 	CP_PMODE,
578 	CP_HPOLL,
579 	CP_PPOLL,
580 	CP_RATE,
581 	CP_FLASH,
582 	CP_KEYID,
583 	CP_TTL,
584 	CP_OFFSET,
585 	CP_DELAY,
586 	CP_DISPERSION,
587 	CP_JITTER,
588 	CP_XMT,
589 	CP_BIAS,
590 	CP_FILTDELAY,
591 	CP_FILTOFFSET,
592 	CP_FILTERROR,
593 #ifdef AUTOKEY
594 	CP_HOST,
595 	CP_FLAGS,
596 	CP_SIGNATURE,
597 	CP_VALID,
598 	CP_INITSEQ,
599 	CP_IDENT,
600 #endif	/* AUTOKEY */
601 	0
602 };
603 
604 
605 #ifdef REFCLOCK
606 /*
607  * Clock variable list
608  */
609 static const struct ctl_var clock_var[] = {
610 	{ 0,		PADDING, "" },		/* 0 */
611 	{ CC_TYPE,	RO, "type" },		/* 1 */
612 	{ CC_TIMECODE,	RO, "timecode" },	/* 2 */
613 	{ CC_POLL,	RO, "poll" },		/* 3 */
614 	{ CC_NOREPLY,	RO, "noreply" },	/* 4 */
615 	{ CC_BADFORMAT, RO, "badformat" },	/* 5 */
616 	{ CC_BADDATA,	RO, "baddata" },	/* 6 */
617 	{ CC_FUDGETIME1, RO, "fudgetime1" },	/* 7 */
618 	{ CC_FUDGETIME2, RO, "fudgetime2" },	/* 8 */
619 	{ CC_FUDGEVAL1, RO, "stratum" },	/* 9 */
620 	{ CC_FUDGEVAL2, RO, "refid" },		/* 10 */
621 	{ CC_FLAGS,	RO, "flags" },		/* 11 */
622 	{ CC_DEVICE,	RO, "device" },		/* 12 */
623 	{ CC_VARLIST,	RO, "clock_var_list" },	/* 13 */
624 	{ 0,		EOV, ""  }		/* 14 */
625 };
626 
627 
628 /*
629  * Clock variables printed by default
630  */
631 static const u_char def_clock_var[] = {
632 	CC_DEVICE,
633 	CC_TYPE,	/* won't be output if device = known */
634 	CC_TIMECODE,
635 	CC_POLL,
636 	CC_NOREPLY,
637 	CC_BADFORMAT,
638 	CC_BADDATA,
639 	CC_FUDGETIME1,
640 	CC_FUDGETIME2,
641 	CC_FUDGEVAL1,
642 	CC_FUDGEVAL2,
643 	CC_FLAGS,
644 	0
645 };
646 #endif
647 
648 /*
649  * MRU string constants shared by send_mru_entry() and read_mru_list().
650  */
651 static const char addr_fmt[] =		"addr.%d";
652 static const char last_fmt[] =		"last.%d";
653 
654 /*
655  * System and processor definitions.
656  */
657 #ifndef HAVE_UNAME
658 # ifndef STR_SYSTEM
659 #  define		STR_SYSTEM	"UNIX"
660 # endif
661 # ifndef STR_PROCESSOR
662 #  define		STR_PROCESSOR	"unknown"
663 # endif
664 
665 static const char str_system[] = STR_SYSTEM;
666 static const char str_processor[] = STR_PROCESSOR;
667 #else
668 # include <sys/utsname.h>
669 static struct utsname utsnamebuf;
670 #endif /* HAVE_UNAME */
671 
672 /*
673  * Trap structures. We only allow a few of these, and send a copy of
674  * each async message to each live one. Traps time out after an hour, it
675  * is up to the trap receipient to keep resetting it to avoid being
676  * timed out.
677  */
678 /* ntp_request.c */
679 struct ctl_trap ctl_traps[CTL_MAXTRAPS];
680 int num_ctl_traps;
681 
682 /*
683  * Type bits, for ctlsettrap() call.
684  */
685 #define TRAP_TYPE_CONFIG	0	/* used by configuration code */
686 #define TRAP_TYPE_PRIO		1	/* priority trap */
687 #define TRAP_TYPE_NONPRIO	2	/* nonpriority trap */
688 
689 
690 /*
691  * List relating reference clock types to control message time sources.
692  * Index by the reference clock type. This list will only be used iff
693  * the reference clock driver doesn't set peer->sstclktype to something
694  * different than CTL_SST_TS_UNSPEC.
695  */
696 #ifdef REFCLOCK
697 static const u_char clocktypes[] = {
698 	CTL_SST_TS_NTP,		/* REFCLK_NONE (0) */
699 	CTL_SST_TS_LOCAL,	/* REFCLK_LOCALCLOCK (1) */
700 	CTL_SST_TS_UHF,		/* deprecated REFCLK_GPS_TRAK (2) */
701 	CTL_SST_TS_HF,		/* REFCLK_WWV_PST (3) */
702 	CTL_SST_TS_LF,		/* REFCLK_WWVB_SPECTRACOM (4) */
703 	CTL_SST_TS_UHF,		/* REFCLK_TRUETIME (5) */
704 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_AUDIO (6) */
705 	CTL_SST_TS_HF,		/* REFCLK_CHU (7) */
706 	CTL_SST_TS_LF,		/* REFCLOCK_PARSE (default) (8) */
707 	CTL_SST_TS_LF,		/* REFCLK_GPS_MX4200 (9) */
708 	CTL_SST_TS_UHF,		/* REFCLK_GPS_AS2201 (10) */
709 	CTL_SST_TS_UHF,		/* REFCLK_GPS_ARBITER (11) */
710 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_TPRO (12) */
711 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_LEITCH (13) */
712 	CTL_SST_TS_LF,		/* deprecated REFCLK_MSF_EES (14) */
713 	CTL_SST_TS_NTP,		/* not used (15) */
714 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_BANCOMM (16) */
715 	CTL_SST_TS_UHF,		/* REFCLK_GPS_DATU (17) */
716 	CTL_SST_TS_TELEPHONE,	/* REFCLK_NIST_ACTS (18) */
717 	CTL_SST_TS_HF,		/* REFCLK_WWV_HEATH (19) */
718 	CTL_SST_TS_UHF,		/* REFCLK_GPS_NMEA (20) */
719 	CTL_SST_TS_UHF,		/* REFCLK_GPS_VME (21) */
720 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_PPS (22) */
721 	CTL_SST_TS_NTP,		/* not used (23) */
722 	CTL_SST_TS_NTP,		/* not used (24) */
723 	CTL_SST_TS_NTP,		/* not used (25) */
724 	CTL_SST_TS_UHF,		/* REFCLK_GPS_HP (26) */
725 	CTL_SST_TS_LF,		/* REFCLK_ARCRON_MSF (27) */
726 	CTL_SST_TS_UHF,		/* REFCLK_SHM (28) */
727 	CTL_SST_TS_UHF,		/* REFCLK_PALISADE (29) */
728 	CTL_SST_TS_UHF,		/* REFCLK_ONCORE (30) */
729 	CTL_SST_TS_UHF,		/* REFCLK_JUPITER (31) */
730 	CTL_SST_TS_LF,		/* REFCLK_CHRONOLOG (32) */
731 	CTL_SST_TS_LF,		/* REFCLK_DUMBCLOCK (33) */
732 	CTL_SST_TS_LF,		/* REFCLK_ULINK (34) */
733 	CTL_SST_TS_LF,		/* REFCLK_PCF (35) */
734 	CTL_SST_TS_HF,		/* REFCLK_WWV (36) */
735 	CTL_SST_TS_LF,		/* REFCLK_FG (37) */
736 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_SERIAL (38) */
737 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_PCI (39) */
738 	CTL_SST_TS_LF,		/* REFCLK_JJY (40) */
739 	CTL_SST_TS_UHF,		/* REFCLK_TT560 (41) */
740 	CTL_SST_TS_UHF,		/* REFCLK_ZYFER (42) */
741 	CTL_SST_TS_UHF,		/* REFCLK_RIPENCC (43) */
742 	CTL_SST_TS_UHF,		/* REFCLK_NEOCLOCK4X (44) */
743 	CTL_SST_TS_UHF,		/* REFCLK_TSYNCPCI (45) */
744 	CTL_SST_TS_UHF		/* REFCLK_GPSDJSON (46) */
745 };
746 #endif  /* REFCLOCK */
747 
748 
749 /*
750  * Keyid used for authenticating write requests.
751  */
752 keyid_t ctl_auth_keyid;
753 
754 /*
755  * We keep track of the last error reported by the system internally
756  */
757 static	u_char ctl_sys_last_event;
758 static	u_char ctl_sys_num_events;
759 
760 
761 /*
762  * Statistic counters to keep track of requests and responses.
763  */
764 u_long ctltimereset;		/* time stats reset */
765 u_long numctlreq;		/* number of requests we've received */
766 u_long numctlbadpkts;		/* number of bad control packets */
767 u_long numctlresponses;		/* number of resp packets sent with data */
768 u_long numctlfrags;		/* number of fragments sent */
769 u_long numctlerrors;		/* number of error responses sent */
770 u_long numctltooshort;		/* number of too short input packets */
771 u_long numctlinputresp;		/* number of responses on input */
772 u_long numctlinputfrag;		/* number of fragments on input */
773 u_long numctlinputerr;		/* number of input pkts with err bit set */
774 u_long numctlbadoffset;		/* number of input pkts with nonzero offset */
775 u_long numctlbadversion;	/* number of input pkts with unknown version */
776 u_long numctldatatooshort;	/* data too short for count */
777 u_long numctlbadop;		/* bad op code found in packet */
778 u_long numasyncmsgs;		/* number of async messages we've sent */
779 
780 /*
781  * Response packet used by these routines. Also some state information
782  * so that we can handle packet formatting within a common set of
783  * subroutines.  Note we try to enter data in place whenever possible,
784  * but the need to set the more bit correctly means we occasionally
785  * use the extra buffer and copy.
786  */
787 static struct ntp_control rpkt;
788 static u_char	res_version;
789 static u_char	res_opcode;
790 static associd_t res_associd;
791 static u_short	res_frags;	/* datagrams in this response */
792 static int	res_offset;	/* offset of payload in response */
793 static u_char * datapt;
794 static u_char * dataend;
795 static int	datalinelen;
796 static int	datasent;	/* flag to avoid initial ", " */
797 static int	datanotbinflag;
798 static sockaddr_u *rmt_addr;
799 static struct interface *lcl_inter;
800 
801 static u_char	res_authenticate;
802 static u_char	res_authokay;
803 static keyid_t	res_keyid;
804 
805 #define MAXDATALINELEN	(72)
806 
807 static u_char	res_async;	/* sending async trap response? */
808 
809 /*
810  * Pointers for saving state when decoding request packets
811  */
812 static	char *reqpt;
813 static	char *reqend;
814 
815 #ifndef MIN
816 #define MIN(a, b) (((a) <= (b)) ? (a) : (b))
817 #endif
818 
819 /*
820  * init_control - initialize request data
821  */
822 void
823 init_control(void)
824 {
825 	size_t i;
826 
827 #ifdef HAVE_UNAME
828 	uname(&utsnamebuf);
829 #endif /* HAVE_UNAME */
830 
831 	ctl_clr_stats();
832 
833 	ctl_auth_keyid = 0;
834 	ctl_sys_last_event = EVNT_UNSPEC;
835 	ctl_sys_num_events = 0;
836 
837 	num_ctl_traps = 0;
838 	for (i = 0; i < COUNTOF(ctl_traps); i++)
839 		ctl_traps[i].tr_flags = 0;
840 }
841 
842 
843 /*
844  * ctl_error - send an error response for the current request
845  */
846 static void
847 ctl_error(
848 	u_char errcode
849 	)
850 {
851 	size_t		maclen;
852 
853 	numctlerrors++;
854 	DPRINTF(3, ("sending control error %u\n", errcode));
855 
856 	/*
857 	 * Fill in the fields. We assume rpkt.sequence and rpkt.associd
858 	 * have already been filled in.
859 	 */
860 	rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
861 			(res_opcode & CTL_OP_MASK);
862 	rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
863 	rpkt.count = 0;
864 
865 	/*
866 	 * send packet and bump counters
867 	 */
868 	if (res_authenticate && sys_authenticate) {
869 		maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
870 				     CTL_HEADER_LEN);
871 		sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
872 			CTL_HEADER_LEN + maclen);
873 	} else
874 		sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
875 			CTL_HEADER_LEN);
876 }
877 
878 int/*BOOL*/
879 is_safe_filename(const char * name)
880 {
881 	/* We need a strict validation of filenames we should write: The
882 	 * daemon might run with special permissions and is remote
883 	 * controllable, so we better take care what we allow as file
884 	 * name!
885 	 *
886 	 * The first character must be digit or a letter from the ASCII
887 	 * base plane or a '_' ([_A-Za-z0-9]), the following characters
888 	 * must be from [-._+A-Za-z0-9].
889 	 *
890 	 * We do not trust the character classification much here: Since
891 	 * the NTP protocol makes no provisions for UTF-8 or local code
892 	 * pages, we strictly require the 7bit ASCII code page.
893 	 *
894 	 * The following table is a packed bit field of 128 two-bit
895 	 * groups. The LSB in each group tells us if a character is
896 	 * acceptable at the first position, the MSB if the character is
897 	 * accepted at any other position.
898 	 *
899 	 * This does not ensure that the file name is syntactically
900 	 * correct (multiple dots will not work with VMS...) but it will
901 	 * exclude potential globbing bombs and directory traversal. It
902 	 * also rules out drive selection. (For systems that have this
903 	 * notion, like Windows or VMS.)
904 	 */
905 	static const uint32_t chclass[8] = {
906 		0x00000000, 0x00000000,
907 		0x28800000, 0x000FFFFF,
908 		0xFFFFFFFC, 0xC03FFFFF,
909 		0xFFFFFFFC, 0x003FFFFF
910 	};
911 
912 	u_int widx, bidx, mask;
913 	if ( ! (name && *name))
914 		return FALSE;
915 
916 	mask = 1u;
917 	while (0 != (widx = (u_char)*name++)) {
918 		bidx = (widx & 15) << 1;
919 		widx = widx >> 4;
920 		if (widx >= sizeof(chclass)/sizeof(chclass[0]))
921 			return FALSE;
922 		if (0 == ((chclass[widx] >> bidx) & mask))
923 			return FALSE;
924 		mask = 2u;
925 	}
926 	return TRUE;
927 }
928 
929 
930 /*
931  * save_config - Implements ntpq -c "saveconfig <filename>"
932  *		 Writes current configuration including any runtime
933  *		 changes by ntpq's :config or config-from-file
934  *
935  * Note: There should be no buffer overflow or truncation in the
936  * processing of file names -- both cause security problems. This is bit
937  * painful to code but essential here.
938  */
939 void
940 save_config(
941 	struct recvbuf *rbufp,
942 	int restrict_mask
943 	)
944 {
945 	/* block directory traversal by searching for characters that
946 	 * indicate directory components in a file path.
947 	 *
948 	 * Conceptually we should be searching for DIRSEP in filename,
949 	 * however Windows actually recognizes both forward and
950 	 * backslashes as equivalent directory separators at the API
951 	 * level.  On POSIX systems we could allow '\\' but such
952 	 * filenames are tricky to manipulate from a shell, so just
953 	 * reject both types of slashes on all platforms.
954 	 */
955 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
956 	static const char * illegal_in_filename =
957 #if defined(VMS)
958 	    ":[]"	/* do not allow drive and path components here */
959 #elif defined(SYS_WINNT)
960 	    ":\\/"	/* path and drive separators */
961 #else
962 	    "\\/"	/* separator and critical char for POSIX */
963 #endif
964 	    ;
965 	char reply[128];
966 #ifdef SAVECONFIG
967 	static const char savedconfig_eq[] = "savedconfig=";
968 
969 	/* Build a safe open mode from the available mode flags. We want
970 	 * to create a new file and write it in text mode (when
971 	 * applicable -- only Windows does this...)
972 	 */
973 	static const int openmode = O_CREAT | O_TRUNC | O_WRONLY
974 #  if defined(O_EXCL)		/* posix, vms */
975 	    | O_EXCL
976 #  elif defined(_O_EXCL)	/* windows is alway very special... */
977 	    | _O_EXCL
978 #  endif
979 #  if defined(_O_TEXT)		/* windows, again */
980 	    | _O_TEXT
981 #endif
982 	    ;
983 
984 	char filespec[128];
985 	char filename[128];
986 	char fullpath[512];
987 	char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
988 	time_t now;
989 	int fd;
990 	FILE *fptr;
991 	int prc;
992 	size_t reqlen;
993 #endif
994 
995 	if (RES_NOMODIFY & restrict_mask) {
996 		ctl_printf("%s", "saveconfig prohibited by restrict ... nomodify");
997 		ctl_flushpkt(0);
998 		NLOG(NLOG_SYSINFO)
999 			msyslog(LOG_NOTICE,
1000 				"saveconfig from %s rejected due to nomodify restriction",
1001 				stoa(&rbufp->recv_srcadr));
1002 		sys_restricted++;
1003 		return;
1004 	}
1005 
1006 #ifdef SAVECONFIG
1007 	if (NULL == saveconfigdir) {
1008 		ctl_printf("%s", "saveconfig prohibited, no saveconfigdir configured");
1009 		ctl_flushpkt(0);
1010 		NLOG(NLOG_SYSINFO)
1011 			msyslog(LOG_NOTICE,
1012 				"saveconfig from %s rejected, no saveconfigdir",
1013 				stoa(&rbufp->recv_srcadr));
1014 		return;
1015 	}
1016 
1017 	/* The length checking stuff gets serious. Do not assume a NUL
1018 	 * byte can be found, but if so, use it to calculate the needed
1019 	 * buffer size. If the available buffer is too short, bail out;
1020 	 * likewise if there is no file spec. (The latter will not
1021 	 * happen when using NTPQ, but there are other ways to craft a
1022 	 * network packet!)
1023 	 */
1024 	reqlen = (size_t)(reqend - reqpt);
1025 	if (0 != reqlen) {
1026 		char * nulpos = (char*)memchr(reqpt, 0, reqlen);
1027 		if (NULL != nulpos)
1028 			reqlen = (size_t)(nulpos - reqpt);
1029 	}
1030 	if (0 == reqlen)
1031 		return;
1032 	if (reqlen >= sizeof(filespec)) {
1033 		ctl_printf("saveconfig exceeded maximum raw name length (%u)",
1034 			   (u_int)sizeof(filespec));
1035 		ctl_flushpkt(0);
1036 		msyslog(LOG_NOTICE,
1037 			"saveconfig exceeded maximum raw name length from %s",
1038 			stoa(&rbufp->recv_srcadr));
1039 		return;
1040 	}
1041 
1042 	/* copy data directly as we exactly know the size */
1043 	memcpy(filespec, reqpt, reqlen);
1044 	filespec[reqlen] = '\0';
1045 
1046 	/*
1047 	 * allow timestamping of the saved config filename with
1048 	 * strftime() format such as:
1049 	 *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
1050 	 * XXX: Nice feature, but not too safe.
1051 	 * YYY: The check for permitted characters in file names should
1052 	 *      weed out the worst. Let's hope 'strftime()' does not
1053 	 *      develop pathological problems.
1054 	 */
1055 	time(&now);
1056 	if (0 == strftime(filename, sizeof(filename), filespec,
1057 			  localtime(&now)))
1058 	{
1059 		/*
1060 		 * If we arrive here, 'strftime()' balked; most likely
1061 		 * the buffer was too short. (Or it encounterd an empty
1062 		 * format, or just a format that expands to an empty
1063 		 * string.) We try to use the original name, though this
1064 		 * is very likely to fail later if there are format
1065 		 * specs in the string. Note that truncation cannot
1066 		 * happen here as long as both buffers have the same
1067 		 * size!
1068 		 */
1069 		strlcpy(filename, filespec, sizeof(filename));
1070 	}
1071 
1072 	/*
1073 	 * Check the file name for sanity. This might/will rule out file
1074 	 * names that would be legal but problematic, and it blocks
1075 	 * directory traversal.
1076 	 */
1077 	if (!is_safe_filename(filename)) {
1078 		ctl_printf("saveconfig rejects unsafe file name '%s'",
1079 			   filename);
1080 		ctl_flushpkt(0);
1081 		msyslog(LOG_NOTICE,
1082 			"saveconfig rejects unsafe file name from %s",
1083 			stoa(&rbufp->recv_srcadr));
1084 		return;
1085 	}
1086 
1087 	/*
1088 	 * XXX: This next test may not be needed with is_safe_filename()
1089 	 */
1090 
1091 	/* block directory/drive traversal */
1092 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
1093 	if (NULL != strpbrk(filename, illegal_in_filename)) {
1094 		snprintf(reply, sizeof(reply),
1095 			 "saveconfig does not allow directory in filename");
1096 		ctl_putdata(reply, strlen(reply), 0);
1097 		ctl_flushpkt(0);
1098 		msyslog(LOG_NOTICE,
1099 			"saveconfig rejects unsafe file name from %s",
1100 			stoa(&rbufp->recv_srcadr));
1101 		return;
1102 	}
1103 
1104 	/* concatenation of directory and path can cause another
1105 	 * truncation...
1106 	 */
1107 	prc = snprintf(fullpath, sizeof(fullpath), "%s%s",
1108 		       saveconfigdir, filename);
1109 	if (prc < 0 || prc >= sizeof(fullpath)) {
1110 		ctl_printf("saveconfig exceeded maximum path length (%u)",
1111 			   (u_int)sizeof(fullpath));
1112 		ctl_flushpkt(0);
1113 		msyslog(LOG_NOTICE,
1114 			"saveconfig exceeded maximum path length from %s",
1115 			stoa(&rbufp->recv_srcadr));
1116 		return;
1117 	}
1118 
1119 	fd = open(fullpath, openmode, S_IRUSR | S_IWUSR);
1120 	if (-1 == fd)
1121 		fptr = NULL;
1122 	else
1123 		fptr = fdopen(fd, "w");
1124 
1125 	if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
1126 		ctl_printf("Unable to save configuration to file '%s': %m",
1127 			   filename);
1128 		msyslog(LOG_ERR,
1129 			"saveconfig %s from %s failed", filename,
1130 			stoa(&rbufp->recv_srcadr));
1131 	} else {
1132 		ctl_printf("Configuration saved to '%s'", filename);
1133 		msyslog(LOG_NOTICE,
1134 			"Configuration saved to '%s' (requested by %s)",
1135 			fullpath, stoa(&rbufp->recv_srcadr));
1136 		/*
1137 		 * save the output filename in system variable
1138 		 * savedconfig, retrieved with:
1139 		 *   ntpq -c "rv 0 savedconfig"
1140 		 * Note: the way 'savedconfig' is defined makes overflow
1141 		 * checks unnecessary here.
1142 		 */
1143 		snprintf(savedconfig, sizeof(savedconfig), "%s%s",
1144 			 savedconfig_eq, filename);
1145 		set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
1146 	}
1147 
1148 	if (NULL != fptr)
1149 		fclose(fptr);
1150 #else	/* !SAVECONFIG follows */
1151 	ctl_printf("%s",
1152 		   "saveconfig unavailable, configured with --disable-saveconfig");
1153 #endif
1154 	ctl_flushpkt(0);
1155 }
1156 
1157 
1158 /*
1159  * process_control - process an incoming control message
1160  */
1161 void
1162 process_control(
1163 	struct recvbuf *rbufp,
1164 	int restrict_mask
1165 	)
1166 {
1167 	struct ntp_control *pkt;
1168 	int req_count;
1169 	int req_data;
1170 	const struct ctl_proc *cc;
1171 	keyid_t *pkid;
1172 	int properlen;
1173 	size_t maclen;
1174 
1175 	DPRINTF(3, ("in process_control()\n"));
1176 
1177 	/*
1178 	 * Save the addresses for error responses
1179 	 */
1180 	numctlreq++;
1181 	rmt_addr = &rbufp->recv_srcadr;
1182 	lcl_inter = rbufp->dstadr;
1183 	pkt = (struct ntp_control *)&rbufp->recv_pkt;
1184 
1185 	/*
1186 	 * If the length is less than required for the header, or
1187 	 * it is a response or a fragment, ignore this.
1188 	 */
1189 	if (rbufp->recv_length < (int)CTL_HEADER_LEN
1190 	    || (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1191 	    || pkt->offset != 0) {
1192 		DPRINTF(1, ("invalid format in control packet\n"));
1193 		if (rbufp->recv_length < (int)CTL_HEADER_LEN)
1194 			numctltooshort++;
1195 		if (CTL_RESPONSE & pkt->r_m_e_op)
1196 			numctlinputresp++;
1197 		if (CTL_MORE & pkt->r_m_e_op)
1198 			numctlinputfrag++;
1199 		if (CTL_ERROR & pkt->r_m_e_op)
1200 			numctlinputerr++;
1201 		if (pkt->offset != 0)
1202 			numctlbadoffset++;
1203 		return;
1204 	}
1205 	res_version = PKT_VERSION(pkt->li_vn_mode);
1206 	if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1207 		DPRINTF(1, ("unknown version %d in control packet\n",
1208 			    res_version));
1209 		numctlbadversion++;
1210 		return;
1211 	}
1212 
1213 	/*
1214 	 * Pull enough data from the packet to make intelligent
1215 	 * responses
1216 	 */
1217 	rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1218 					 MODE_CONTROL);
1219 	res_opcode = pkt->r_m_e_op;
1220 	rpkt.sequence = pkt->sequence;
1221 	rpkt.associd = pkt->associd;
1222 	rpkt.status = 0;
1223 	res_frags = 1;
1224 	res_offset = 0;
1225 	res_associd = htons(pkt->associd);
1226 	res_async = FALSE;
1227 	res_authenticate = FALSE;
1228 	res_keyid = 0;
1229 	res_authokay = FALSE;
1230 	req_count = (int)ntohs(pkt->count);
1231 	datanotbinflag = FALSE;
1232 	datalinelen = 0;
1233 	datasent = 0;
1234 	datapt = rpkt.u.data;
1235 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1236 
1237 	if ((rbufp->recv_length & 0x3) != 0)
1238 		DPRINTF(3, ("Control packet length %d unrounded\n",
1239 			    rbufp->recv_length));
1240 
1241 	/*
1242 	 * We're set up now. Make sure we've got at least enough
1243 	 * incoming data space to match the count.
1244 	 */
1245 	req_data = rbufp->recv_length - CTL_HEADER_LEN;
1246 	if (req_data < req_count || rbufp->recv_length & 0x3) {
1247 		ctl_error(CERR_BADFMT);
1248 		numctldatatooshort++;
1249 		return;
1250 	}
1251 
1252 	properlen = req_count + CTL_HEADER_LEN;
1253 	/* round up proper len to a 8 octet boundary */
1254 
1255 	properlen = (properlen + 7) & ~7;
1256 	maclen = rbufp->recv_length - properlen;
1257 	if ((rbufp->recv_length & 3) == 0 &&
1258 	    maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1259 	    sys_authenticate) {
1260 		res_authenticate = TRUE;
1261 		pkid = (void *)((char *)pkt + properlen);
1262 		res_keyid = ntohl(*pkid);
1263 		DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1264 			    rbufp->recv_length, properlen, res_keyid,
1265 			    maclen));
1266 
1267 		if (!authistrusted(res_keyid))
1268 			DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1269 		else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1270 				     rbufp->recv_length - maclen,
1271 				     maclen)) {
1272 			res_authokay = TRUE;
1273 			DPRINTF(3, ("authenticated okay\n"));
1274 		} else {
1275 			res_keyid = 0;
1276 			DPRINTF(3, ("authentication failed\n"));
1277 		}
1278 	}
1279 
1280 	/*
1281 	 * Set up translate pointers
1282 	 */
1283 	reqpt = (char *)pkt->u.data;
1284 	reqend = reqpt + req_count;
1285 
1286 	/*
1287 	 * Look for the opcode processor
1288 	 */
1289 	for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1290 		if (cc->control_code == res_opcode) {
1291 			DPRINTF(3, ("opcode %d, found command handler\n",
1292 				    res_opcode));
1293 			if (cc->flags == AUTH
1294 			    && (!res_authokay
1295 				|| res_keyid != ctl_auth_keyid)) {
1296 				ctl_error(CERR_PERMISSION);
1297 				return;
1298 			}
1299 			(cc->handler)(rbufp, restrict_mask);
1300 			return;
1301 		}
1302 	}
1303 
1304 	/*
1305 	 * Can't find this one, return an error.
1306 	 */
1307 	numctlbadop++;
1308 	ctl_error(CERR_BADOP);
1309 	return;
1310 }
1311 
1312 
1313 /*
1314  * ctlpeerstatus - return a status word for this peer
1315  */
1316 u_short
1317 ctlpeerstatus(
1318 	register struct peer *p
1319 	)
1320 {
1321 	u_short status;
1322 
1323 	status = p->status;
1324 	if (FLAG_CONFIG & p->flags)
1325 		status |= CTL_PST_CONFIG;
1326 	if (p->keyid)
1327 		status |= CTL_PST_AUTHENABLE;
1328 	if (FLAG_AUTHENTIC & p->flags)
1329 		status |= CTL_PST_AUTHENTIC;
1330 	if (p->reach)
1331 		status |= CTL_PST_REACH;
1332 	if (MDF_TXONLY_MASK & p->cast_flags)
1333 		status |= CTL_PST_BCAST;
1334 
1335 	return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1336 }
1337 
1338 
1339 /*
1340  * ctlclkstatus - return a status word for this clock
1341  */
1342 #ifdef REFCLOCK
1343 static u_short
1344 ctlclkstatus(
1345 	struct refclockstat *pcs
1346 	)
1347 {
1348 	return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1349 }
1350 #endif
1351 
1352 
1353 /*
1354  * ctlsysstatus - return the system status word
1355  */
1356 u_short
1357 ctlsysstatus(void)
1358 {
1359 	register u_char this_clock;
1360 
1361 	this_clock = CTL_SST_TS_UNSPEC;
1362 #ifdef REFCLOCK
1363 	if (sys_peer != NULL) {
1364 		if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1365 			this_clock = sys_peer->sstclktype;
1366 		else if (sys_peer->refclktype < COUNTOF(clocktypes))
1367 			this_clock = clocktypes[sys_peer->refclktype];
1368 	}
1369 #else /* REFCLOCK */
1370 	if (sys_peer != 0)
1371 		this_clock = CTL_SST_TS_NTP;
1372 #endif /* REFCLOCK */
1373 	return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1374 			      ctl_sys_last_event);
1375 }
1376 
1377 
1378 /*
1379  * ctl_flushpkt - write out the current packet and prepare
1380  *		  another if necessary.
1381  */
1382 static void
1383 ctl_flushpkt(
1384 	u_char more
1385 	)
1386 {
1387 	size_t i;
1388 	size_t dlen;
1389 	size_t sendlen;
1390 	size_t maclen;
1391 	size_t totlen;
1392 	keyid_t keyid;
1393 
1394 	dlen = datapt - rpkt.u.data;
1395 	if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1396 		/*
1397 		 * Big hack, output a trailing \r\n
1398 		 */
1399 		*datapt++ = '\r';
1400 		*datapt++ = '\n';
1401 		dlen += 2;
1402 	}
1403 	sendlen = dlen + CTL_HEADER_LEN;
1404 
1405 	/*
1406 	 * Pad to a multiple of 32 bits
1407 	 */
1408 	while (sendlen & 0x3) {
1409 		*datapt++ = '\0';
1410 		sendlen++;
1411 	}
1412 
1413 	/*
1414 	 * Fill in the packet with the current info
1415 	 */
1416 	rpkt.r_m_e_op = CTL_RESPONSE | more |
1417 			(res_opcode & CTL_OP_MASK);
1418 	rpkt.count = htons((u_short)dlen);
1419 	rpkt.offset = htons((u_short)res_offset);
1420 	if (res_async) {
1421 		for (i = 0; i < COUNTOF(ctl_traps); i++) {
1422 			if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1423 				rpkt.li_vn_mode =
1424 				    PKT_LI_VN_MODE(
1425 					sys_leap,
1426 					ctl_traps[i].tr_version,
1427 					MODE_CONTROL);
1428 				rpkt.sequence =
1429 				    htons(ctl_traps[i].tr_sequence);
1430 				sendpkt(&ctl_traps[i].tr_addr,
1431 					ctl_traps[i].tr_localaddr, -4,
1432 					(struct pkt *)&rpkt, sendlen);
1433 				if (!more)
1434 					ctl_traps[i].tr_sequence++;
1435 				numasyncmsgs++;
1436 			}
1437 		}
1438 	} else {
1439 		if (res_authenticate && sys_authenticate) {
1440 			totlen = sendlen;
1441 			/*
1442 			 * If we are going to authenticate, then there
1443 			 * is an additional requirement that the MAC
1444 			 * begin on a 64 bit boundary.
1445 			 */
1446 			while (totlen & 7) {
1447 				*datapt++ = '\0';
1448 				totlen++;
1449 			}
1450 			keyid = htonl(res_keyid);
1451 			memcpy(datapt, &keyid, sizeof(keyid));
1452 			maclen = authencrypt(res_keyid,
1453 					     (u_int32 *)&rpkt, totlen);
1454 			sendpkt(rmt_addr, lcl_inter, -5,
1455 				(struct pkt *)&rpkt, totlen + maclen);
1456 		} else {
1457 			sendpkt(rmt_addr, lcl_inter, -6,
1458 				(struct pkt *)&rpkt, sendlen);
1459 		}
1460 		if (more)
1461 			numctlfrags++;
1462 		else
1463 			numctlresponses++;
1464 	}
1465 
1466 	/*
1467 	 * Set us up for another go around.
1468 	 */
1469 	res_frags++;
1470 	res_offset += dlen;
1471 	datapt = rpkt.u.data;
1472 }
1473 
1474 
1475 /*
1476  * ctl_putdata - write data into the packet, fragmenting and starting
1477  * another if this one is full.
1478  */
1479 static void
1480 ctl_putdata(
1481 	const char *dp,
1482 	unsigned int dlen,
1483 	int bin			/* set to 1 when data is binary */
1484 	)
1485 {
1486 	int overhead;
1487 	unsigned int currentlen;
1488 
1489 	overhead = 0;
1490 	if (!bin) {
1491 		datanotbinflag = TRUE;
1492 		overhead = 3;
1493 		if (datasent) {
1494 			*datapt++ = ',';
1495 			datalinelen++;
1496 			if ((dlen + datalinelen + 1) >= MAXDATALINELEN) {
1497 				*datapt++ = '\r';
1498 				*datapt++ = '\n';
1499 				datalinelen = 0;
1500 			} else {
1501 				*datapt++ = ' ';
1502 				datalinelen++;
1503 			}
1504 		}
1505 	}
1506 
1507 	/*
1508 	 * Save room for trailing junk
1509 	 */
1510 	while (dlen + overhead + datapt > dataend) {
1511 		/*
1512 		 * Not enough room in this one, flush it out.
1513 		 */
1514 		currentlen = MIN(dlen, (unsigned int)(dataend - datapt));
1515 
1516 		memcpy(datapt, dp, currentlen);
1517 
1518 		datapt += currentlen;
1519 		dp += currentlen;
1520 		dlen -= currentlen;
1521 		datalinelen += currentlen;
1522 
1523 		ctl_flushpkt(CTL_MORE);
1524 	}
1525 
1526 	memcpy(datapt, dp, dlen);
1527 	datapt += dlen;
1528 	datalinelen += dlen;
1529 	datasent = TRUE;
1530 }
1531 
1532 
1533 /*
1534  * ctl_putstr - write a tagged string into the response packet
1535  *		in the form:
1536  *
1537  *		tag="data"
1538  *
1539  *		len is the data length excluding the NUL terminator,
1540  *		as in ctl_putstr("var", "value", strlen("value"));
1541  */
1542 static void
1543 ctl_putstr(
1544 	const char *	tag,
1545 	const char *	data,
1546 	size_t		len
1547 	)
1548 {
1549 	char buffer[512];
1550 	int  rc;
1551 
1552 	INSIST(len < sizeof(buffer));
1553 	if (len)
1554 	    rc = snprintf(buffer, sizeof(buffer), "%s=\"%.*s\"", tag, (int)len, data);
1555 	else
1556 	    rc = snprintf(buffer, sizeof(buffer), "%s", tag);
1557 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1558 	ctl_putdata(buffer, (u_int)rc, 0);
1559 }
1560 
1561 
1562 /*
1563  * ctl_putunqstr - write a tagged string into the response packet
1564  *		   in the form:
1565  *
1566  *		   tag=data
1567  *
1568  *	len is the data length excluding the NUL terminator.
1569  *	data must not contain a comma or whitespace.
1570  */
1571 static void
1572 ctl_putunqstr(
1573 	const char *	tag,
1574 	const char *	data,
1575 	size_t		len
1576 	)
1577 {
1578 	char buffer[512];
1579 	int  rc;
1580 
1581 	INSIST(len < sizeof(buffer));
1582 	if (len)
1583 	    rc = snprintf(buffer, sizeof(buffer), "%s=%.*s", tag, (int)len, data);
1584 	else
1585 	    rc = snprintf(buffer, sizeof(buffer), "%s", tag);
1586 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1587 	ctl_putdata(buffer, (u_int)rc, 0);
1588 }
1589 
1590 
1591 /*
1592  * ctl_putdblf - write a tagged, signed double into the response packet
1593  */
1594 static void
1595 ctl_putdblf(
1596 	const char *	tag,
1597 	int		use_f,
1598 	int		precision,
1599 	double		d
1600 	)
1601 {
1602 	char buffer[200];
1603 	int  rc;
1604 
1605 	rc = snprintf(buffer, sizeof(buffer),
1606 		      (use_f ? "%s=%.*f" : "%s=%.*g"),
1607 		      tag, precision, d);
1608 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1609 	ctl_putdata(buffer, (u_int)rc, 0);
1610 }
1611 
1612 /*
1613  * ctl_putuint - write a tagged unsigned integer into the response
1614  */
1615 static void
1616 ctl_putuint(
1617 	const char *tag,
1618 	u_long uval
1619 	)
1620 {
1621 	char buffer[200];
1622 	int  rc;
1623 
1624 	rc = snprintf(buffer, sizeof(buffer), "%s=%lu", tag, uval);
1625 	INSIST(rc >= 0 && rc < sizeof(buffer));
1626 	ctl_putdata(buffer, (u_int)rc, 0);
1627 }
1628 
1629 /*
1630  * ctl_putcal - write a decoded calendar data into the response.
1631  * only used with AUTOKEY currently, so compiled conditional
1632  */
1633 #ifdef AUTOKEY
1634 static void
1635 ctl_putcal(
1636 	const char *tag,
1637 	const struct calendar *pcal
1638 	)
1639 {
1640 	char buffer[100];
1641 	int  rc;
1642 
1643 	rc = snprintf(buffer, sizeof(buffer),
1644 		      "%s=%04d%02d%02d%02d%02d",
1645 		      tag,
1646 		      pcal->year, pcal->month, pcal->monthday,
1647 		      pcal->hour, pcal->minute
1648 		);
1649 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1650 	ctl_putdata(buffer, (u_int)rc, 0);
1651 }
1652 #endif
1653 
1654 /*
1655  * ctl_putfs - write a decoded filestamp into the response
1656  */
1657 static void
1658 ctl_putfs(
1659 	const char *tag,
1660 	tstamp_t uval
1661 	)
1662 {
1663 	char buffer[200];
1664 	struct tm *tm = NULL;
1665 	time_t fstamp;
1666 	int    rc;
1667 
1668 	fstamp = (time_t)uval - JAN_1970;
1669 	tm = gmtime(&fstamp);
1670 	if (NULL == tm)
1671 		return;
1672 
1673 	rc = snprintf(buffer, sizeof(buffer),
1674 		      "%s=%04d%02d%02d%02d%02d",
1675 		      tag,
1676 		      tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
1677 		      tm->tm_hour, tm->tm_min);
1678 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1679 	ctl_putdata(buffer, (u_int)rc, 0);
1680 }
1681 
1682 
1683 /*
1684  * ctl_puthex - write a tagged unsigned integer, in hex, into the
1685  * response
1686  */
1687 static void
1688 ctl_puthex(
1689 	const char *tag,
1690 	u_long uval
1691 	)
1692 {
1693 	char buffer[200];
1694 	int  rc;
1695 
1696 	rc = snprintf(buffer, sizeof(buffer), "%s=0x%lx", tag, uval);
1697 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1698 	ctl_putdata(buffer, (u_int)rc, 0);
1699 }
1700 
1701 
1702 /*
1703  * ctl_putint - write a tagged signed integer into the response
1704  */
1705 static void
1706 ctl_putint(
1707 	const char *tag,
1708 	long ival
1709 	)
1710 {
1711 	char buffer[200];
1712 	int  rc;
1713 
1714 	rc = snprintf(buffer, sizeof(buffer), "%s=%ld", tag, ival);
1715 	INSIST(rc >= 0 && rc < sizeof(buffer));
1716 	ctl_putdata(buffer, (u_int)rc, 0);
1717 }
1718 
1719 
1720 /*
1721  * ctl_putts - write a tagged timestamp, in hex, into the response
1722  */
1723 static void
1724 ctl_putts(
1725 	const char *tag,
1726 	l_fp *ts
1727 	)
1728 {
1729 	char buffer[200];
1730 	int  rc;
1731 
1732 	rc = snprintf(buffer, sizeof(buffer),
1733 		      "%s=0x%08lx.%08lx",
1734 		      tag, (u_long)ts->l_ui, (u_long)ts->l_uf);
1735 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1736 	ctl_putdata(buffer, (u_int)rc, 0);
1737 }
1738 
1739 
1740 /*
1741  * ctl_putadr - write an IP address into the response
1742  */
1743 static void
1744 ctl_putadr(
1745 	const char *tag,
1746 	u_int32 addr32,
1747 	sockaddr_u *addr
1748 	)
1749 {
1750 	const char *cq;
1751 	char buffer[200];
1752 	int  rc;
1753 
1754 	if (NULL == addr)
1755 		cq = numtoa(addr32);
1756 	else
1757 		cq = stoa(addr);
1758 	rc = snprintf(buffer, sizeof(buffer), "%s=%s", tag, cq);
1759 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1760 	ctl_putdata(buffer, (u_int)rc, 0);
1761 }
1762 
1763 
1764 /*
1765  * ctl_putrefid - send a u_int32 refid as printable text
1766  */
1767 static void
1768 ctl_putrefid(
1769 	const char *	tag,
1770 	u_int32		refid
1771 	)
1772 {
1773 	char buffer[128];
1774 	int  rc, i;
1775 
1776 	union {
1777 		uint32_t w;
1778 		uint8_t  b[sizeof(uint32_t)];
1779 	} bytes;
1780 
1781 	bytes.w = refid;
1782 	for (i = 0; i < sizeof(bytes.b); ++i)
1783 		if (bytes.b[i] && !isprint(bytes.b[i]))
1784 			bytes.b[i] = '.';
1785 	rc = snprintf(buffer, sizeof(buffer), "%s=%.*s",
1786 		      tag, (int)sizeof(bytes.b), bytes.b);
1787 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1788 	ctl_putdata(buffer, (u_int)rc, FALSE);
1789 }
1790 
1791 
1792 /*
1793  * ctl_putarray - write a tagged eight element double array into the response
1794  */
1795 static void
1796 ctl_putarray(
1797 	const char *tag,
1798 	double *arr,
1799 	int start
1800 	)
1801 {
1802 	char *cp, *ep;
1803 	char buffer[200];
1804 	int  i, rc;
1805 
1806 	cp = buffer;
1807 	ep = buffer + sizeof(buffer);
1808 
1809 	rc  = snprintf(cp, (size_t)(ep - cp), "%s=", tag);
1810 	INSIST(rc >= 0 && rc < (ep - cp));
1811 	cp += rc;
1812 
1813 	i = start;
1814 	do {
1815 		if (i == 0)
1816 			i = NTP_SHIFT;
1817 		i--;
1818 		rc = snprintf(cp, (size_t)(ep - cp), " %.2f", arr[i] * 1e3);
1819 		INSIST(rc >= 0 && rc < (ep - cp));
1820 		cp += rc;
1821 	} while (i != start);
1822 	ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1823 }
1824 
1825 /*
1826  * ctl_printf - put a formatted string into the data buffer
1827  */
1828 static void
1829 ctl_printf(
1830 	const char * fmt,
1831 	...
1832 	)
1833 {
1834 	static const char * ellipsis = "[...]";
1835 	va_list va;
1836 	char    fmtbuf[128];
1837 	int     rc;
1838 
1839 	va_start(va, fmt);
1840 	rc = vsnprintf(fmtbuf, sizeof(fmtbuf), fmt, va);
1841 	va_end(va);
1842 	if (rc < 0 || rc >= sizeof(fmtbuf))
1843 		strcpy(fmtbuf + sizeof(fmtbuf) - strlen(ellipsis) - 1,
1844 		       ellipsis);
1845 	ctl_putdata(fmtbuf, strlen(fmtbuf), 0);
1846 }
1847 
1848 
1849 /*
1850  * ctl_putsys - output a system variable
1851  */
1852 static void
1853 ctl_putsys(
1854 	int varid
1855 	)
1856 {
1857 	l_fp tmp;
1858 	char str[256];
1859 	u_int u;
1860 	double kb;
1861 	double dtemp;
1862 	const char *ss;
1863 #ifdef AUTOKEY
1864 	struct cert_info *cp;
1865 #endif	/* AUTOKEY */
1866 #ifdef KERNEL_PLL
1867 	static struct timex ntx;
1868 	static u_long ntp_adjtime_time;
1869 
1870 	static const double to_ms =
1871 # ifdef STA_NANO
1872 		1.0e-6; /* nsec to msec */
1873 # else
1874 		1.0e-3; /* usec to msec */
1875 # endif
1876 
1877 	/*
1878 	 * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1879 	 */
1880 	if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1881 	    current_time != ntp_adjtime_time) {
1882 		ZERO(ntx);
1883 		if (ntp_adjtime(&ntx) < 0)
1884 			msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1885 		else
1886 			ntp_adjtime_time = current_time;
1887 	}
1888 #endif	/* KERNEL_PLL */
1889 
1890 	switch (varid) {
1891 
1892 	case CS_LEAP:
1893 		ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1894 		break;
1895 
1896 	case CS_STRATUM:
1897 		ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1898 		break;
1899 
1900 	case CS_PRECISION:
1901 		ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1902 		break;
1903 
1904 	case CS_ROOTDELAY:
1905 		ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1906 			   1e3);
1907 		break;
1908 
1909 	case CS_ROOTDISPERSION:
1910 		ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1911 			   sys_rootdisp * 1e3);
1912 		break;
1913 
1914 	case CS_REFID:
1915 		if (sys_stratum > 1 && sys_stratum < STRATUM_UNSPEC)
1916 			ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1917 		else
1918 			ctl_putrefid(sys_var[varid].text, sys_refid);
1919 		break;
1920 
1921 	case CS_REFTIME:
1922 		ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
1923 		break;
1924 
1925 	case CS_POLL:
1926 		ctl_putuint(sys_var[CS_POLL].text, sys_poll);
1927 		break;
1928 
1929 	case CS_PEERID:
1930 		if (sys_peer == NULL)
1931 			ctl_putuint(sys_var[CS_PEERID].text, 0);
1932 		else
1933 			ctl_putuint(sys_var[CS_PEERID].text,
1934 				    sys_peer->associd);
1935 		break;
1936 
1937 	case CS_PEERADR:
1938 		if (sys_peer != NULL && sys_peer->dstadr != NULL)
1939 			ss = sptoa(&sys_peer->srcadr);
1940 		else
1941 			ss = "0.0.0.0:0";
1942 		ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
1943 		break;
1944 
1945 	case CS_PEERMODE:
1946 		u = (sys_peer != NULL)
1947 			? sys_peer->hmode
1948 			: MODE_UNSPEC;
1949 		ctl_putuint(sys_var[CS_PEERMODE].text, u);
1950 		break;
1951 
1952 	case CS_OFFSET:
1953 		ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
1954 		break;
1955 
1956 	case CS_DRIFT:
1957 		ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
1958 		break;
1959 
1960 	case CS_JITTER:
1961 		ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
1962 		break;
1963 
1964 	case CS_ERROR:
1965 		ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
1966 		break;
1967 
1968 	case CS_CLOCK:
1969 		get_systime(&tmp);
1970 		ctl_putts(sys_var[CS_CLOCK].text, &tmp);
1971 		break;
1972 
1973 	case CS_PROCESSOR:
1974 #ifndef HAVE_UNAME
1975 		ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
1976 			   sizeof(str_processor) - 1);
1977 #else
1978 		ctl_putstr(sys_var[CS_PROCESSOR].text,
1979 			   utsnamebuf.machine, strlen(utsnamebuf.machine));
1980 #endif /* HAVE_UNAME */
1981 		break;
1982 
1983 	case CS_SYSTEM:
1984 #ifndef HAVE_UNAME
1985 		ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
1986 			   sizeof(str_system) - 1);
1987 #else
1988 		snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
1989 			 utsnamebuf.release);
1990 		ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
1991 #endif /* HAVE_UNAME */
1992 		break;
1993 
1994 	case CS_VERSION:
1995 		ctl_putstr(sys_var[CS_VERSION].text, Version,
1996 			   strlen(Version));
1997 		break;
1998 
1999 	case CS_STABIL:
2000 		ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
2001 			   1e6);
2002 		break;
2003 
2004 	case CS_VARLIST:
2005 	{
2006 		char buf[CTL_MAX_DATA_LEN];
2007 		//buffPointer, firstElementPointer, buffEndPointer
2008 		char *buffp, *buffend;
2009 		int firstVarName;
2010 		const char *ss1;
2011 		int len;
2012 		const struct ctl_var *k;
2013 
2014 		buffp = buf;
2015 		buffend = buf + sizeof(buf);
2016 		if (strlen(sys_var[CS_VARLIST].text) > (sizeof(buf) - 4))
2017 			break;	/* really long var name */
2018 
2019 		snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
2020 		buffp += strlen(buffp);
2021 		firstVarName = TRUE;
2022 		for (k = sys_var; !(k->flags & EOV); k++) {
2023 			if (k->flags & PADDING)
2024 				continue;
2025 			len = strlen(k->text);
2026 			if (len + 1 >= buffend - buffp)
2027 				break;
2028 			if (!firstVarName)
2029 				*buffp++ = ',';
2030 			else
2031 				firstVarName = FALSE;
2032 			memcpy(buffp, k->text, len);
2033 			buffp += len;
2034 		}
2035 
2036 		for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
2037 			if (k->flags & PADDING)
2038 				continue;
2039 			if (NULL == k->text)
2040 				continue;
2041 			ss1 = strchr(k->text, '=');
2042 			if (NULL == ss1)
2043 				len = strlen(k->text);
2044 			else
2045 				len = ss1 - k->text;
2046 			if (len + 1 >= buffend - buffp)
2047 				break;
2048 			if (firstVarName) {
2049 				*buffp++ = ',';
2050 				firstVarName = FALSE;
2051 			}
2052 			memcpy(buffp, k->text,(unsigned)len);
2053 			buffp += len;
2054 		}
2055 		if (2 >= buffend - buffp)
2056 			break;
2057 
2058 		*buffp++ = '"';
2059 		*buffp = '\0';
2060 
2061 		ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
2062 		break;
2063 	}
2064 
2065 	case CS_TAI:
2066 		if (sys_tai > 0)
2067 			ctl_putuint(sys_var[CS_TAI].text, sys_tai);
2068 		break;
2069 
2070 	case CS_LEAPTAB:
2071 	{
2072 		leap_signature_t lsig;
2073 		leapsec_getsig(&lsig);
2074 		if (lsig.ttime > 0)
2075 			ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
2076 		break;
2077 	}
2078 
2079 	case CS_LEAPEND:
2080 	{
2081 		leap_signature_t lsig;
2082 		leapsec_getsig(&lsig);
2083 		if (lsig.etime > 0)
2084 			ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
2085 		break;
2086 	}
2087 
2088 #ifdef LEAP_SMEAR
2089 	case CS_LEAPSMEARINTV:
2090 		if (leap_smear_intv > 0)
2091 			ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv);
2092 		break;
2093 
2094 	case CS_LEAPSMEAROFFS:
2095 		if (leap_smear_intv > 0)
2096 			ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text,
2097 				   leap_smear.doffset * 1e3);
2098 		break;
2099 #endif	/* LEAP_SMEAR */
2100 
2101 	case CS_RATE:
2102 		ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
2103 		break;
2104 
2105 	case CS_MRU_ENABLED:
2106 		ctl_puthex(sys_var[varid].text, mon_enabled);
2107 		break;
2108 
2109 	case CS_MRU_DEPTH:
2110 		ctl_putuint(sys_var[varid].text, mru_entries);
2111 		break;
2112 
2113 	case CS_MRU_MEM:
2114 		kb = mru_entries * (sizeof(mon_entry) / 1024.);
2115 		u = (u_int)kb;
2116 		if (kb - u >= 0.5)
2117 			u++;
2118 		ctl_putuint(sys_var[varid].text, u);
2119 		break;
2120 
2121 	case CS_MRU_DEEPEST:
2122 		ctl_putuint(sys_var[varid].text, mru_peakentries);
2123 		break;
2124 
2125 	case CS_MRU_MINDEPTH:
2126 		ctl_putuint(sys_var[varid].text, mru_mindepth);
2127 		break;
2128 
2129 	case CS_MRU_MAXAGE:
2130 		ctl_putint(sys_var[varid].text, mru_maxage);
2131 		break;
2132 
2133 	case CS_MRU_MAXDEPTH:
2134 		ctl_putuint(sys_var[varid].text, mru_maxdepth);
2135 		break;
2136 
2137 	case CS_MRU_MAXMEM:
2138 		kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
2139 		u = (u_int)kb;
2140 		if (kb - u >= 0.5)
2141 			u++;
2142 		ctl_putuint(sys_var[varid].text, u);
2143 		break;
2144 
2145 	case CS_SS_UPTIME:
2146 		ctl_putuint(sys_var[varid].text, current_time);
2147 		break;
2148 
2149 	case CS_SS_RESET:
2150 		ctl_putuint(sys_var[varid].text,
2151 			    current_time - sys_stattime);
2152 		break;
2153 
2154 	case CS_SS_RECEIVED:
2155 		ctl_putuint(sys_var[varid].text, sys_received);
2156 		break;
2157 
2158 	case CS_SS_THISVER:
2159 		ctl_putuint(sys_var[varid].text, sys_newversion);
2160 		break;
2161 
2162 	case CS_SS_OLDVER:
2163 		ctl_putuint(sys_var[varid].text, sys_oldversion);
2164 		break;
2165 
2166 	case CS_SS_BADFORMAT:
2167 		ctl_putuint(sys_var[varid].text, sys_badlength);
2168 		break;
2169 
2170 	case CS_SS_BADAUTH:
2171 		ctl_putuint(sys_var[varid].text, sys_badauth);
2172 		break;
2173 
2174 	case CS_SS_DECLINED:
2175 		ctl_putuint(sys_var[varid].text, sys_declined);
2176 		break;
2177 
2178 	case CS_SS_RESTRICTED:
2179 		ctl_putuint(sys_var[varid].text, sys_restricted);
2180 		break;
2181 
2182 	case CS_SS_LIMITED:
2183 		ctl_putuint(sys_var[varid].text, sys_limitrejected);
2184 		break;
2185 
2186 	case CS_SS_KODSENT:
2187 		ctl_putuint(sys_var[varid].text, sys_kodsent);
2188 		break;
2189 
2190 	case CS_SS_PROCESSED:
2191 		ctl_putuint(sys_var[varid].text, sys_processed);
2192 		break;
2193 
2194 	case CS_BCASTDELAY:
2195 		ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2196 		break;
2197 
2198 	case CS_AUTHDELAY:
2199 		LFPTOD(&sys_authdelay, dtemp);
2200 		ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2201 		break;
2202 
2203 	case CS_AUTHKEYS:
2204 		ctl_putuint(sys_var[varid].text, authnumkeys);
2205 		break;
2206 
2207 	case CS_AUTHFREEK:
2208 		ctl_putuint(sys_var[varid].text, authnumfreekeys);
2209 		break;
2210 
2211 	case CS_AUTHKLOOKUPS:
2212 		ctl_putuint(sys_var[varid].text, authkeylookups);
2213 		break;
2214 
2215 	case CS_AUTHKNOTFOUND:
2216 		ctl_putuint(sys_var[varid].text, authkeynotfound);
2217 		break;
2218 
2219 	case CS_AUTHKUNCACHED:
2220 		ctl_putuint(sys_var[varid].text, authkeyuncached);
2221 		break;
2222 
2223 	case CS_AUTHKEXPIRED:
2224 		ctl_putuint(sys_var[varid].text, authkeyexpired);
2225 		break;
2226 
2227 	case CS_AUTHENCRYPTS:
2228 		ctl_putuint(sys_var[varid].text, authencryptions);
2229 		break;
2230 
2231 	case CS_AUTHDECRYPTS:
2232 		ctl_putuint(sys_var[varid].text, authdecryptions);
2233 		break;
2234 
2235 	case CS_AUTHRESET:
2236 		ctl_putuint(sys_var[varid].text,
2237 			    current_time - auth_timereset);
2238 		break;
2239 
2240 		/*
2241 		 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2242 		 * unavailable, otherwise calls putfunc with args.
2243 		 */
2244 #ifndef KERNEL_PLL
2245 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2246 		ctl_putint(sys_var[varid].text, 0)
2247 #else
2248 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2249 		putfunc args
2250 #endif
2251 
2252 		/*
2253 		 * CTL_IF_KERNPPS() puts a zero if either the kernel
2254 		 * loop is unavailable, or kernel hard PPS is not
2255 		 * active, otherwise calls putfunc with args.
2256 		 */
2257 #ifndef KERNEL_PLL
2258 # define	CTL_IF_KERNPPS(putfunc, args)	\
2259 		ctl_putint(sys_var[varid].text, 0)
2260 #else
2261 # define	CTL_IF_KERNPPS(putfunc, args)			\
2262 		if (0 == ntx.shift)				\
2263 			ctl_putint(sys_var[varid].text, 0);	\
2264 		else						\
2265 			putfunc args	/* no trailing ; */
2266 #endif
2267 
2268 	case CS_K_OFFSET:
2269 		CTL_IF_KERNLOOP(
2270 			ctl_putdblf,
2271 			(sys_var[varid].text, 0, -1, to_ms * ntx.offset)
2272 		);
2273 		break;
2274 
2275 	case CS_K_FREQ:
2276 		CTL_IF_KERNLOOP(
2277 			ctl_putsfp,
2278 			(sys_var[varid].text, ntx.freq)
2279 		);
2280 		break;
2281 
2282 	case CS_K_MAXERR:
2283 		CTL_IF_KERNLOOP(
2284 			ctl_putdblf,
2285 			(sys_var[varid].text, 0, 6,
2286 			 to_ms * ntx.maxerror)
2287 		);
2288 		break;
2289 
2290 	case CS_K_ESTERR:
2291 		CTL_IF_KERNLOOP(
2292 			ctl_putdblf,
2293 			(sys_var[varid].text, 0, 6,
2294 			 to_ms * ntx.esterror)
2295 		);
2296 		break;
2297 
2298 	case CS_K_STFLAGS:
2299 #ifndef KERNEL_PLL
2300 		ss = "";
2301 #else
2302 		ss = k_st_flags(ntx.status);
2303 #endif
2304 		ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2305 		break;
2306 
2307 	case CS_K_TIMECONST:
2308 		CTL_IF_KERNLOOP(
2309 			ctl_putint,
2310 			(sys_var[varid].text, ntx.constant)
2311 		);
2312 		break;
2313 
2314 	case CS_K_PRECISION:
2315 		CTL_IF_KERNLOOP(
2316 			ctl_putdblf,
2317 			(sys_var[varid].text, 0, 6,
2318 			    to_ms * ntx.precision)
2319 		);
2320 		break;
2321 
2322 	case CS_K_FREQTOL:
2323 		CTL_IF_KERNLOOP(
2324 			ctl_putsfp,
2325 			(sys_var[varid].text, ntx.tolerance)
2326 		);
2327 		break;
2328 
2329 	case CS_K_PPS_FREQ:
2330 		CTL_IF_KERNPPS(
2331 			ctl_putsfp,
2332 			(sys_var[varid].text, ntx.ppsfreq)
2333 		);
2334 		break;
2335 
2336 	case CS_K_PPS_STABIL:
2337 		CTL_IF_KERNPPS(
2338 			ctl_putsfp,
2339 			(sys_var[varid].text, ntx.stabil)
2340 		);
2341 		break;
2342 
2343 	case CS_K_PPS_JITTER:
2344 		CTL_IF_KERNPPS(
2345 			ctl_putdbl,
2346 			(sys_var[varid].text, to_ms * ntx.jitter)
2347 		);
2348 		break;
2349 
2350 	case CS_K_PPS_CALIBDUR:
2351 		CTL_IF_KERNPPS(
2352 			ctl_putint,
2353 			(sys_var[varid].text, 1 << ntx.shift)
2354 		);
2355 		break;
2356 
2357 	case CS_K_PPS_CALIBS:
2358 		CTL_IF_KERNPPS(
2359 			ctl_putint,
2360 			(sys_var[varid].text, ntx.calcnt)
2361 		);
2362 		break;
2363 
2364 	case CS_K_PPS_CALIBERRS:
2365 		CTL_IF_KERNPPS(
2366 			ctl_putint,
2367 			(sys_var[varid].text, ntx.errcnt)
2368 		);
2369 		break;
2370 
2371 	case CS_K_PPS_JITEXC:
2372 		CTL_IF_KERNPPS(
2373 			ctl_putint,
2374 			(sys_var[varid].text, ntx.jitcnt)
2375 		);
2376 		break;
2377 
2378 	case CS_K_PPS_STBEXC:
2379 		CTL_IF_KERNPPS(
2380 			ctl_putint,
2381 			(sys_var[varid].text, ntx.stbcnt)
2382 		);
2383 		break;
2384 
2385 	case CS_IOSTATS_RESET:
2386 		ctl_putuint(sys_var[varid].text,
2387 			    current_time - io_timereset);
2388 		break;
2389 
2390 	case CS_TOTAL_RBUF:
2391 		ctl_putuint(sys_var[varid].text, total_recvbuffs());
2392 		break;
2393 
2394 	case CS_FREE_RBUF:
2395 		ctl_putuint(sys_var[varid].text, free_recvbuffs());
2396 		break;
2397 
2398 	case CS_USED_RBUF:
2399 		ctl_putuint(sys_var[varid].text, full_recvbuffs());
2400 		break;
2401 
2402 	case CS_RBUF_LOWATER:
2403 		ctl_putuint(sys_var[varid].text, lowater_additions());
2404 		break;
2405 
2406 	case CS_IO_DROPPED:
2407 		ctl_putuint(sys_var[varid].text, packets_dropped);
2408 		break;
2409 
2410 	case CS_IO_IGNORED:
2411 		ctl_putuint(sys_var[varid].text, packets_ignored);
2412 		break;
2413 
2414 	case CS_IO_RECEIVED:
2415 		ctl_putuint(sys_var[varid].text, packets_received);
2416 		break;
2417 
2418 	case CS_IO_SENT:
2419 		ctl_putuint(sys_var[varid].text, packets_sent);
2420 		break;
2421 
2422 	case CS_IO_SENDFAILED:
2423 		ctl_putuint(sys_var[varid].text, packets_notsent);
2424 		break;
2425 
2426 	case CS_IO_WAKEUPS:
2427 		ctl_putuint(sys_var[varid].text, handler_calls);
2428 		break;
2429 
2430 	case CS_IO_GOODWAKEUPS:
2431 		ctl_putuint(sys_var[varid].text, handler_pkts);
2432 		break;
2433 
2434 	case CS_TIMERSTATS_RESET:
2435 		ctl_putuint(sys_var[varid].text,
2436 			    current_time - timer_timereset);
2437 		break;
2438 
2439 	case CS_TIMER_OVERRUNS:
2440 		ctl_putuint(sys_var[varid].text, alarm_overflow);
2441 		break;
2442 
2443 	case CS_TIMER_XMTS:
2444 		ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2445 		break;
2446 
2447 	case CS_FUZZ:
2448 		ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2449 		break;
2450 	case CS_WANDER_THRESH:
2451 		ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
2452 		break;
2453 #ifdef AUTOKEY
2454 	case CS_FLAGS:
2455 		if (crypto_flags)
2456 			ctl_puthex(sys_var[CS_FLAGS].text,
2457 			    crypto_flags);
2458 		break;
2459 
2460 	case CS_DIGEST:
2461 		if (crypto_flags) {
2462 			strlcpy(str, OBJ_nid2ln(crypto_nid),
2463 			    COUNTOF(str));
2464 			ctl_putstr(sys_var[CS_DIGEST].text, str,
2465 			    strlen(str));
2466 		}
2467 		break;
2468 
2469 	case CS_SIGNATURE:
2470 		if (crypto_flags) {
2471 			const EVP_MD *dp;
2472 
2473 			dp = EVP_get_digestbynid(crypto_flags >> 16);
2474 			strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2475 			    COUNTOF(str));
2476 			ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2477 			    strlen(str));
2478 		}
2479 		break;
2480 
2481 	case CS_HOST:
2482 		if (hostval.ptr != NULL)
2483 			ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2484 			    strlen(hostval.ptr));
2485 		break;
2486 
2487 	case CS_IDENT:
2488 		if (sys_ident != NULL)
2489 			ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2490 			    strlen(sys_ident));
2491 		break;
2492 
2493 	case CS_CERTIF:
2494 		for (cp = cinfo; cp != NULL; cp = cp->link) {
2495 			snprintf(str, sizeof(str), "%s %s 0x%x",
2496 			    cp->subject, cp->issuer, cp->flags);
2497 			ctl_putstr(sys_var[CS_CERTIF].text, str,
2498 			    strlen(str));
2499 			ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
2500 		}
2501 		break;
2502 
2503 	case CS_PUBLIC:
2504 		if (hostval.tstamp != 0)
2505 			ctl_putfs(sys_var[CS_PUBLIC].text,
2506 			    ntohl(hostval.tstamp));
2507 		break;
2508 #endif	/* AUTOKEY */
2509 
2510 	default:
2511 		break;
2512 	}
2513 }
2514 
2515 
2516 /*
2517  * ctl_putpeer - output a peer variable
2518  */
2519 static void
2520 ctl_putpeer(
2521 	int id,
2522 	struct peer *p
2523 	)
2524 {
2525 	char buf[CTL_MAX_DATA_LEN];
2526 	char *s;
2527 	char *t;
2528 	char *be;
2529 	int i;
2530 	const struct ctl_var *k;
2531 #ifdef AUTOKEY
2532 	struct autokey *ap;
2533 	const EVP_MD *dp;
2534 	const char *str;
2535 #endif	/* AUTOKEY */
2536 
2537 	switch (id) {
2538 
2539 	case CP_CONFIG:
2540 		ctl_putuint(peer_var[id].text,
2541 			    !(FLAG_PREEMPT & p->flags));
2542 		break;
2543 
2544 	case CP_AUTHENABLE:
2545 		ctl_putuint(peer_var[id].text, !(p->keyid));
2546 		break;
2547 
2548 	case CP_AUTHENTIC:
2549 		ctl_putuint(peer_var[id].text,
2550 			    !!(FLAG_AUTHENTIC & p->flags));
2551 		break;
2552 
2553 	case CP_SRCADR:
2554 		ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2555 		break;
2556 
2557 	case CP_SRCPORT:
2558 		ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2559 		break;
2560 
2561 	case CP_SRCHOST:
2562 		if (p->hostname != NULL)
2563 			ctl_putstr(peer_var[id].text, p->hostname,
2564 				   strlen(p->hostname));
2565 		break;
2566 
2567 	case CP_DSTADR:
2568 		ctl_putadr(peer_var[id].text, 0,
2569 			   (p->dstadr != NULL)
2570 				? &p->dstadr->sin
2571 				: NULL);
2572 		break;
2573 
2574 	case CP_DSTPORT:
2575 		ctl_putuint(peer_var[id].text,
2576 			    (p->dstadr != NULL)
2577 				? SRCPORT(&p->dstadr->sin)
2578 				: 0);
2579 		break;
2580 
2581 	case CP_IN:
2582 		if (p->r21 > 0.)
2583 			ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2584 		break;
2585 
2586 	case CP_OUT:
2587 		if (p->r34 > 0.)
2588 			ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2589 		break;
2590 
2591 	case CP_RATE:
2592 		ctl_putuint(peer_var[id].text, p->throttle);
2593 		break;
2594 
2595 	case CP_LEAP:
2596 		ctl_putuint(peer_var[id].text, p->leap);
2597 		break;
2598 
2599 	case CP_HMODE:
2600 		ctl_putuint(peer_var[id].text, p->hmode);
2601 		break;
2602 
2603 	case CP_STRATUM:
2604 		ctl_putuint(peer_var[id].text, p->stratum);
2605 		break;
2606 
2607 	case CP_PPOLL:
2608 		ctl_putuint(peer_var[id].text, p->ppoll);
2609 		break;
2610 
2611 	case CP_HPOLL:
2612 		ctl_putuint(peer_var[id].text, p->hpoll);
2613 		break;
2614 
2615 	case CP_PRECISION:
2616 		ctl_putint(peer_var[id].text, p->precision);
2617 		break;
2618 
2619 	case CP_ROOTDELAY:
2620 		ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2621 		break;
2622 
2623 	case CP_ROOTDISPERSION:
2624 		ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2625 		break;
2626 
2627 	case CP_REFID:
2628 #ifdef REFCLOCK
2629 		if (p->flags & FLAG_REFCLOCK) {
2630 			ctl_putrefid(peer_var[id].text, p->refid);
2631 			break;
2632 		}
2633 #endif
2634 		if (p->stratum > 1 && p->stratum < STRATUM_UNSPEC)
2635 			ctl_putadr(peer_var[id].text, p->refid,
2636 				   NULL);
2637 		else
2638 			ctl_putrefid(peer_var[id].text, p->refid);
2639 		break;
2640 
2641 	case CP_REFTIME:
2642 		ctl_putts(peer_var[id].text, &p->reftime);
2643 		break;
2644 
2645 	case CP_ORG:
2646 		ctl_putts(peer_var[id].text, &p->aorg);
2647 		break;
2648 
2649 	case CP_REC:
2650 		ctl_putts(peer_var[id].text, &p->dst);
2651 		break;
2652 
2653 	case CP_XMT:
2654 		if (p->xleave)
2655 			ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2656 		break;
2657 
2658 	case CP_BIAS:
2659 		if (p->bias != 0.)
2660 			ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2661 		break;
2662 
2663 	case CP_REACH:
2664 		ctl_puthex(peer_var[id].text, p->reach);
2665 		break;
2666 
2667 	case CP_FLASH:
2668 		ctl_puthex(peer_var[id].text, p->flash);
2669 		break;
2670 
2671 	case CP_TTL:
2672 #ifdef REFCLOCK
2673 		if (p->flags & FLAG_REFCLOCK) {
2674 			ctl_putuint(peer_var[id].text, p->ttl);
2675 			break;
2676 		}
2677 #endif
2678 		if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2679 			ctl_putint(peer_var[id].text,
2680 				   sys_ttl[p->ttl]);
2681 		break;
2682 
2683 	case CP_UNREACH:
2684 		ctl_putuint(peer_var[id].text, p->unreach);
2685 		break;
2686 
2687 	case CP_TIMER:
2688 		ctl_putuint(peer_var[id].text,
2689 			    p->nextdate - current_time);
2690 		break;
2691 
2692 	case CP_DELAY:
2693 		ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2694 		break;
2695 
2696 	case CP_OFFSET:
2697 		ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2698 		break;
2699 
2700 	case CP_JITTER:
2701 		ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2702 		break;
2703 
2704 	case CP_DISPERSION:
2705 		ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2706 		break;
2707 
2708 	case CP_KEYID:
2709 		if (p->keyid > NTP_MAXKEY)
2710 			ctl_puthex(peer_var[id].text, p->keyid);
2711 		else
2712 			ctl_putuint(peer_var[id].text, p->keyid);
2713 		break;
2714 
2715 	case CP_FILTDELAY:
2716 		ctl_putarray(peer_var[id].text, p->filter_delay,
2717 			     p->filter_nextpt);
2718 		break;
2719 
2720 	case CP_FILTOFFSET:
2721 		ctl_putarray(peer_var[id].text, p->filter_offset,
2722 			     p->filter_nextpt);
2723 		break;
2724 
2725 	case CP_FILTERROR:
2726 		ctl_putarray(peer_var[id].text, p->filter_disp,
2727 			     p->filter_nextpt);
2728 		break;
2729 
2730 	case CP_PMODE:
2731 		ctl_putuint(peer_var[id].text, p->pmode);
2732 		break;
2733 
2734 	case CP_RECEIVED:
2735 		ctl_putuint(peer_var[id].text, p->received);
2736 		break;
2737 
2738 	case CP_SENT:
2739 		ctl_putuint(peer_var[id].text, p->sent);
2740 		break;
2741 
2742 	case CP_VARLIST:
2743 		s = buf;
2744 		be = buf + sizeof(buf);
2745 		if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2746 			break;	/* really long var name */
2747 
2748 		snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2749 		s += strlen(s);
2750 		t = s;
2751 		for (k = peer_var; !(EOV & k->flags); k++) {
2752 			if (PADDING & k->flags)
2753 				continue;
2754 			i = strlen(k->text);
2755 			if (s + i + 1 >= be)
2756 				break;
2757 			if (s != t)
2758 				*s++ = ',';
2759 			memcpy(s, k->text, i);
2760 			s += i;
2761 		}
2762 		if (s + 2 < be) {
2763 			*s++ = '"';
2764 			*s = '\0';
2765 			ctl_putdata(buf, (u_int)(s - buf), 0);
2766 		}
2767 		break;
2768 
2769 	case CP_TIMEREC:
2770 		ctl_putuint(peer_var[id].text,
2771 			    current_time - p->timereceived);
2772 		break;
2773 
2774 	case CP_TIMEREACH:
2775 		ctl_putuint(peer_var[id].text,
2776 			    current_time - p->timereachable);
2777 		break;
2778 
2779 	case CP_BADAUTH:
2780 		ctl_putuint(peer_var[id].text, p->badauth);
2781 		break;
2782 
2783 	case CP_BOGUSORG:
2784 		ctl_putuint(peer_var[id].text, p->bogusorg);
2785 		break;
2786 
2787 	case CP_OLDPKT:
2788 		ctl_putuint(peer_var[id].text, p->oldpkt);
2789 		break;
2790 
2791 	case CP_SELDISP:
2792 		ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2793 		break;
2794 
2795 	case CP_SELBROKEN:
2796 		ctl_putuint(peer_var[id].text, p->selbroken);
2797 		break;
2798 
2799 	case CP_CANDIDATE:
2800 		ctl_putuint(peer_var[id].text, p->status);
2801 		break;
2802 #ifdef AUTOKEY
2803 	case CP_FLAGS:
2804 		if (p->crypto)
2805 			ctl_puthex(peer_var[id].text, p->crypto);
2806 		break;
2807 
2808 	case CP_SIGNATURE:
2809 		if (p->crypto) {
2810 			dp = EVP_get_digestbynid(p->crypto >> 16);
2811 			str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2812 			ctl_putstr(peer_var[id].text, str, strlen(str));
2813 		}
2814 		break;
2815 
2816 	case CP_HOST:
2817 		if (p->subject != NULL)
2818 			ctl_putstr(peer_var[id].text, p->subject,
2819 			    strlen(p->subject));
2820 		break;
2821 
2822 	case CP_VALID:		/* not used */
2823 		break;
2824 
2825 	case CP_INITSEQ:
2826 		if (NULL == (ap = p->recval.ptr))
2827 			break;
2828 
2829 		ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2830 		ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2831 		ctl_putfs(peer_var[CP_INITTSP].text,
2832 			  ntohl(p->recval.tstamp));
2833 		break;
2834 
2835 	case CP_IDENT:
2836 		if (p->ident != NULL)
2837 			ctl_putstr(peer_var[id].text, p->ident,
2838 			    strlen(p->ident));
2839 		break;
2840 
2841 
2842 #endif	/* AUTOKEY */
2843 	}
2844 }
2845 
2846 
2847 #ifdef REFCLOCK
2848 /*
2849  * ctl_putclock - output clock variables
2850  */
2851 static void
2852 ctl_putclock(
2853 	int id,
2854 	struct refclockstat *pcs,
2855 	int mustput
2856 	)
2857 {
2858 	char buf[CTL_MAX_DATA_LEN];
2859 	char *s, *t, *be;
2860 	const char *ss;
2861 	int i;
2862 	const struct ctl_var *k;
2863 
2864 	switch (id) {
2865 
2866 	case CC_TYPE:
2867 		if (mustput || pcs->clockdesc == NULL
2868 		    || *(pcs->clockdesc) == '\0') {
2869 			ctl_putuint(clock_var[id].text, pcs->type);
2870 		}
2871 		break;
2872 	case CC_TIMECODE:
2873 		ctl_putstr(clock_var[id].text,
2874 			   pcs->p_lastcode,
2875 			   (unsigned)pcs->lencode);
2876 		break;
2877 
2878 	case CC_POLL:
2879 		ctl_putuint(clock_var[id].text, pcs->polls);
2880 		break;
2881 
2882 	case CC_NOREPLY:
2883 		ctl_putuint(clock_var[id].text,
2884 			    pcs->noresponse);
2885 		break;
2886 
2887 	case CC_BADFORMAT:
2888 		ctl_putuint(clock_var[id].text,
2889 			    pcs->badformat);
2890 		break;
2891 
2892 	case CC_BADDATA:
2893 		ctl_putuint(clock_var[id].text,
2894 			    pcs->baddata);
2895 		break;
2896 
2897 	case CC_FUDGETIME1:
2898 		if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2899 			ctl_putdbl(clock_var[id].text,
2900 				   pcs->fudgetime1 * 1e3);
2901 		break;
2902 
2903 	case CC_FUDGETIME2:
2904 		if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2905 			ctl_putdbl(clock_var[id].text,
2906 				   pcs->fudgetime2 * 1e3);
2907 		break;
2908 
2909 	case CC_FUDGEVAL1:
2910 		if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2911 			ctl_putint(clock_var[id].text,
2912 				   pcs->fudgeval1);
2913 		break;
2914 
2915 	case CC_FUDGEVAL2:
2916 		if (mustput || (pcs->haveflags & CLK_HAVEVAL2)) {
2917 			if (pcs->fudgeval1 > 1)
2918 				ctl_putadr(clock_var[id].text,
2919 					   pcs->fudgeval2, NULL);
2920 			else
2921 				ctl_putrefid(clock_var[id].text,
2922 					     pcs->fudgeval2);
2923 		}
2924 		break;
2925 
2926 	case CC_FLAGS:
2927 		ctl_putuint(clock_var[id].text, pcs->flags);
2928 		break;
2929 
2930 	case CC_DEVICE:
2931 		if (pcs->clockdesc == NULL ||
2932 		    *(pcs->clockdesc) == '\0') {
2933 			if (mustput)
2934 				ctl_putstr(clock_var[id].text,
2935 					   "", 0);
2936 		} else {
2937 			ctl_putstr(clock_var[id].text,
2938 				   pcs->clockdesc,
2939 				   strlen(pcs->clockdesc));
2940 		}
2941 		break;
2942 
2943 	case CC_VARLIST:
2944 		s = buf;
2945 		be = buf + sizeof(buf);
2946 		if (strlen(clock_var[CC_VARLIST].text) + 4 >
2947 		    sizeof(buf))
2948 			break;	/* really long var name */
2949 
2950 		snprintf(s, sizeof(buf), "%s=\"",
2951 			 clock_var[CC_VARLIST].text);
2952 		s += strlen(s);
2953 		t = s;
2954 
2955 		for (k = clock_var; !(EOV & k->flags); k++) {
2956 			if (PADDING & k->flags)
2957 				continue;
2958 
2959 			i = strlen(k->text);
2960 			if (s + i + 1 >= be)
2961 				break;
2962 
2963 			if (s != t)
2964 				*s++ = ',';
2965 			memcpy(s, k->text, i);
2966 			s += i;
2967 		}
2968 
2969 		for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
2970 			if (PADDING & k->flags)
2971 				continue;
2972 
2973 			ss = k->text;
2974 			if (NULL == ss)
2975 				continue;
2976 
2977 			while (*ss && *ss != '=')
2978 				ss++;
2979 			i = ss - k->text;
2980 			if (s + i + 1 >= be)
2981 				break;
2982 
2983 			if (s != t)
2984 				*s++ = ',';
2985 			memcpy(s, k->text, (unsigned)i);
2986 			s += i;
2987 			*s = '\0';
2988 		}
2989 		if (s + 2 >= be)
2990 			break;
2991 
2992 		*s++ = '"';
2993 		*s = '\0';
2994 		ctl_putdata(buf, (unsigned)(s - buf), 0);
2995 		break;
2996 	}
2997 }
2998 #endif
2999 
3000 
3001 
3002 /*
3003  * ctl_getitem - get the next data item from the incoming packet
3004  */
3005 static const struct ctl_var *
3006 ctl_getitem(
3007 	const struct ctl_var *var_list,
3008 	char **data
3009 	)
3010 {
3011 	/* [Bug 3008] First check the packet data sanity, then search
3012 	 * the key. This improves the consistency of result values: If
3013 	 * the result is NULL once, it will never be EOV again for this
3014 	 * packet; If it's EOV, it will never be NULL again until the
3015 	 * variable is found and processed in a given 'var_list'. (That
3016 	 * is, a result is returned that is neither NULL nor EOV).
3017 	 */
3018 	static const struct ctl_var eol = { 0, EOV, NULL };
3019 	static char buf[128];
3020 	static u_long quiet_until;
3021 	const struct ctl_var *v;
3022 	char *cp;
3023 	char *tp;
3024 
3025 	/*
3026 	 * Part One: Validate the packet state
3027 	 */
3028 
3029 	/* Delete leading commas and white space */
3030 	while (reqpt < reqend && (*reqpt == ',' ||
3031 				  isspace((unsigned char)*reqpt)))
3032 		reqpt++;
3033 	if (reqpt >= reqend)
3034 		return NULL;
3035 
3036 	/* Scan the string in the packet until we hit comma or
3037 	 * EoB. Register position of first '=' on the fly. */
3038 	for (tp = NULL, cp = reqpt; cp != reqend; ++cp) {
3039 		if (*cp == '=' && tp == NULL)
3040 			tp = cp;
3041 		if (*cp == ',')
3042 			break;
3043 	}
3044 
3045 	/* Process payload, if any. */
3046 	*data = NULL;
3047 	if (NULL != tp) {
3048 		/* eventually strip white space from argument. */
3049 		const char *plhead = tp + 1; /* skip the '=' */
3050 		const char *pltail = cp;
3051 		size_t      plsize;
3052 
3053 		while (plhead != pltail && isspace((u_char)plhead[0]))
3054 			++plhead;
3055 		while (plhead != pltail && isspace((u_char)pltail[-1]))
3056 			--pltail;
3057 
3058 		/* check payload size, terminate packet on overflow */
3059 		plsize = (size_t)(pltail - plhead);
3060 		if (plsize >= sizeof(buf))
3061 			goto badpacket;
3062 
3063 		/* copy data, NUL terminate, and set result data ptr */
3064 		memcpy(buf, plhead, plsize);
3065 		buf[plsize] = '\0';
3066 		*data = buf;
3067 	} else {
3068 		/* no payload, current end --> current name termination */
3069 		tp = cp;
3070 	}
3071 
3072 	/* Part Two
3073 	 *
3074 	 * Now we're sure that the packet data itself is sane. Scan the
3075 	 * list now. Make sure a NULL list is properly treated by
3076 	 * returning a synthetic End-Of-Values record. We must not
3077 	 * return NULL pointers after this point, or the behaviour would
3078 	 * become inconsistent if called several times with different
3079 	 * variable lists after an EoV was returned.  (Such a behavior
3080 	 * actually caused Bug 3008.)
3081 	 */
3082 
3083 	if (NULL == var_list)
3084 		return &eol;
3085 
3086 	for (v = var_list; !(EOV & v->flags); ++v)
3087 		if (!(PADDING & v->flags)) {
3088 			/* Check if the var name matches the buffer. The
3089 			 * name is bracketed by [reqpt..tp] and not NUL
3090 			 * terminated, and it contains no '=' char. The
3091 			 * lookup value IS NUL-terminated but might
3092 			 * include a '='... We have to look out for
3093 			 * that!
3094 			 */
3095 			const char *sp1 = reqpt;
3096 			const char *sp2 = v->text;
3097 
3098 			while ((sp1 != tp) && (*sp1 == *sp2)) {
3099 				++sp1;
3100 				++sp2;
3101 			}
3102 			if (sp1 == tp && (*sp2 == '\0' || *sp2 == '='))
3103 				break;
3104 		}
3105 
3106 	/* See if we have found a valid entry or not. If found, advance
3107 	 * the request pointer for the next round; if not, clear the
3108 	 * data pointer so we have no dangling garbage here.
3109 	 */
3110 	if (EOV & v->flags)
3111 		*data = NULL;
3112 	else
3113 		reqpt = cp + (cp != reqend);
3114 	return v;
3115 
3116   badpacket:
3117 	/*TODO? somehow indicate this packet was bad, apart from syslog? */
3118 	numctlbadpkts++;
3119 	NLOG(NLOG_SYSEVENT)
3120 	    if (quiet_until <= current_time) {
3121 		    quiet_until = current_time + 300;
3122 		    msyslog(LOG_WARNING,
3123 			    "Possible 'ntpdx' exploit from %s#%u (possibly spoofed)",
3124 			    stoa(rmt_addr), SRCPORT(rmt_addr));
3125 	    }
3126 	reqpt = reqend; /* never again for this packet! */
3127 	return NULL;
3128 }
3129 
3130 
3131 /*
3132  * control_unspec - response to an unspecified op-code
3133  */
3134 /*ARGSUSED*/
3135 static void
3136 control_unspec(
3137 	struct recvbuf *rbufp,
3138 	int restrict_mask
3139 	)
3140 {
3141 	struct peer *peer;
3142 
3143 	/*
3144 	 * What is an appropriate response to an unspecified op-code?
3145 	 * I return no errors and no data, unless a specified assocation
3146 	 * doesn't exist.
3147 	 */
3148 	if (res_associd) {
3149 		peer = findpeerbyassoc(res_associd);
3150 		if (NULL == peer) {
3151 			ctl_error(CERR_BADASSOC);
3152 			return;
3153 		}
3154 		rpkt.status = htons(ctlpeerstatus(peer));
3155 	} else
3156 		rpkt.status = htons(ctlsysstatus());
3157 	ctl_flushpkt(0);
3158 }
3159 
3160 
3161 /*
3162  * read_status - return either a list of associd's, or a particular
3163  * peer's status.
3164  */
3165 /*ARGSUSED*/
3166 static void
3167 read_status(
3168 	struct recvbuf *rbufp,
3169 	int restrict_mask
3170 	)
3171 {
3172 	struct peer *peer;
3173 	const u_char *cp;
3174 	size_t n;
3175 	/* a_st holds association ID, status pairs alternating */
3176 	u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
3177 
3178 #ifdef DEBUG
3179 	if (debug > 2)
3180 		printf("read_status: ID %d\n", res_associd);
3181 #endif
3182 	/*
3183 	 * Two choices here. If the specified association ID is
3184 	 * zero we return all known assocation ID's.  Otherwise
3185 	 * we return a bunch of stuff about the particular peer.
3186 	 */
3187 	if (res_associd) {
3188 		peer = findpeerbyassoc(res_associd);
3189 		if (NULL == peer) {
3190 			ctl_error(CERR_BADASSOC);
3191 			return;
3192 		}
3193 		rpkt.status = htons(ctlpeerstatus(peer));
3194 		if (res_authokay)
3195 			peer->num_events = 0;
3196 		/*
3197 		 * For now, output everything we know about the
3198 		 * peer. May be more selective later.
3199 		 */
3200 		for (cp = def_peer_var; *cp != 0; cp++)
3201 			ctl_putpeer((int)*cp, peer);
3202 		ctl_flushpkt(0);
3203 		return;
3204 	}
3205 	n = 0;
3206 	rpkt.status = htons(ctlsysstatus());
3207 	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3208 		a_st[n++] = htons(peer->associd);
3209 		a_st[n++] = htons(ctlpeerstatus(peer));
3210 		/* two entries each loop iteration, so n + 1 */
3211 		if (n + 1 >= COUNTOF(a_st)) {
3212 			ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
3213 				    1);
3214 			n = 0;
3215 		}
3216 	}
3217 	if (n)
3218 		ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3219 	ctl_flushpkt(0);
3220 }
3221 
3222 
3223 /*
3224  * read_peervars - half of read_variables() implementation
3225  */
3226 static void
3227 read_peervars(void)
3228 {
3229 	const struct ctl_var *v;
3230 	struct peer *peer;
3231 	const u_char *cp;
3232 	size_t i;
3233 	char *	valuep;
3234 	u_char	wants[CP_MAXCODE + 1];
3235 	u_int	gotvar;
3236 
3237 	/*
3238 	 * Wants info for a particular peer. See if we know
3239 	 * the guy.
3240 	 */
3241 	peer = findpeerbyassoc(res_associd);
3242 	if (NULL == peer) {
3243 		ctl_error(CERR_BADASSOC);
3244 		return;
3245 	}
3246 	rpkt.status = htons(ctlpeerstatus(peer));
3247 	if (res_authokay)
3248 		peer->num_events = 0;
3249 	ZERO(wants);
3250 	gotvar = 0;
3251 	while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3252 		if (v->flags & EOV) {
3253 			ctl_error(CERR_UNKNOWNVAR);
3254 			return;
3255 		}
3256 		INSIST(v->code < COUNTOF(wants));
3257 		wants[v->code] = 1;
3258 		gotvar = 1;
3259 	}
3260 	if (gotvar) {
3261 		for (i = 1; i < COUNTOF(wants); i++)
3262 			if (wants[i])
3263 				ctl_putpeer(i, peer);
3264 	} else
3265 		for (cp = def_peer_var; *cp != 0; cp++)
3266 			ctl_putpeer((int)*cp, peer);
3267 	ctl_flushpkt(0);
3268 }
3269 
3270 
3271 /*
3272  * read_sysvars - half of read_variables() implementation
3273  */
3274 static void
3275 read_sysvars(void)
3276 {
3277 	const struct ctl_var *v;
3278 	struct ctl_var *kv;
3279 	u_int	n;
3280 	u_int	gotvar;
3281 	const u_char *cs;
3282 	char *	valuep;
3283 	const char * pch;
3284 	u_char *wants;
3285 	size_t	wants_count;
3286 
3287 	/*
3288 	 * Wants system variables. Figure out which he wants
3289 	 * and give them to him.
3290 	 */
3291 	rpkt.status = htons(ctlsysstatus());
3292 	if (res_authokay)
3293 		ctl_sys_num_events = 0;
3294 	wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3295 	wants = emalloc_zero(wants_count);
3296 	gotvar = 0;
3297 	while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3298 		if (!(EOV & v->flags)) {
3299 			INSIST(v->code < wants_count);
3300 			wants[v->code] = 1;
3301 			gotvar = 1;
3302 		} else {
3303 			v = ctl_getitem(ext_sys_var, &valuep);
3304 			if (NULL == v) {
3305 				ctl_error(CERR_BADVALUE);
3306 				free(wants);
3307 				return;
3308 			}
3309 			if (EOV & v->flags) {
3310 				ctl_error(CERR_UNKNOWNVAR);
3311 				free(wants);
3312 				return;
3313 			}
3314 			n = v->code + CS_MAXCODE + 1;
3315 			INSIST(n < wants_count);
3316 			wants[n] = 1;
3317 			gotvar = 1;
3318 		}
3319 	}
3320 	if (gotvar) {
3321 		for (n = 1; n <= CS_MAXCODE; n++)
3322 			if (wants[n])
3323 				ctl_putsys(n);
3324 		for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3325 			if (wants[n + CS_MAXCODE + 1]) {
3326 				pch = ext_sys_var[n].text;
3327 				ctl_putdata(pch, strlen(pch), 0);
3328 			}
3329 	} else {
3330 		for (cs = def_sys_var; *cs != 0; cs++)
3331 			ctl_putsys((int)*cs);
3332 		for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3333 			if (DEF & kv->flags)
3334 				ctl_putdata(kv->text, strlen(kv->text),
3335 					    0);
3336 	}
3337 	free(wants);
3338 	ctl_flushpkt(0);
3339 }
3340 
3341 
3342 /*
3343  * read_variables - return the variables the caller asks for
3344  */
3345 /*ARGSUSED*/
3346 static void
3347 read_variables(
3348 	struct recvbuf *rbufp,
3349 	int restrict_mask
3350 	)
3351 {
3352 	if (res_associd)
3353 		read_peervars();
3354 	else
3355 		read_sysvars();
3356 }
3357 
3358 
3359 /*
3360  * write_variables - write into variables. We only allow leap bit
3361  * writing this way.
3362  */
3363 /*ARGSUSED*/
3364 static void
3365 write_variables(
3366 	struct recvbuf *rbufp,
3367 	int restrict_mask
3368 	)
3369 {
3370 	const struct ctl_var *v;
3371 	int ext_var;
3372 	char *valuep;
3373 	long val;
3374 	size_t octets;
3375 	char *vareqv;
3376 	const char *t;
3377 	char *tt;
3378 
3379 	val = 0;
3380 	/*
3381 	 * If he's trying to write into a peer tell him no way
3382 	 */
3383 	if (res_associd != 0) {
3384 		ctl_error(CERR_PERMISSION);
3385 		return;
3386 	}
3387 
3388 	/*
3389 	 * Set status
3390 	 */
3391 	rpkt.status = htons(ctlsysstatus());
3392 
3393 	/*
3394 	 * Look through the variables. Dump out at the first sign of
3395 	 * trouble.
3396 	 */
3397 	while ((v = ctl_getitem(sys_var, &valuep)) != 0) {
3398 		ext_var = 0;
3399 		if (v->flags & EOV) {
3400 			if ((v = ctl_getitem(ext_sys_var, &valuep)) !=
3401 			    0) {
3402 				if (v->flags & EOV) {
3403 					ctl_error(CERR_UNKNOWNVAR);
3404 					return;
3405 				}
3406 				ext_var = 1;
3407 			} else {
3408 				break;
3409 			}
3410 		}
3411 		if (!(v->flags & CAN_WRITE)) {
3412 			ctl_error(CERR_PERMISSION);
3413 			return;
3414 		}
3415 		if (!ext_var && (*valuep == '\0' || !atoint(valuep,
3416 							    &val))) {
3417 			ctl_error(CERR_BADFMT);
3418 			return;
3419 		}
3420 		if (!ext_var && (val & ~LEAP_NOTINSYNC) != 0) {
3421 			ctl_error(CERR_BADVALUE);
3422 			return;
3423 		}
3424 
3425 		if (ext_var) {
3426 			octets = strlen(v->text) + strlen(valuep) + 2;
3427 			vareqv = emalloc(octets);
3428 			tt = vareqv;
3429 			t = v->text;
3430 			while (*t && *t != '=')
3431 				*tt++ = *t++;
3432 			*tt++ = '=';
3433 			memcpy(tt, valuep, 1 + strlen(valuep));
3434 			set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3435 			free(vareqv);
3436 		} else {
3437 			ctl_error(CERR_UNSPEC); /* really */
3438 			return;
3439 		}
3440 	}
3441 
3442 	/*
3443 	 * If we got anything, do it. xxx nothing to do ***
3444 	 */
3445 	/*
3446 	  if (leapind != ~0 || leapwarn != ~0) {
3447 	  if (!leap_setleap((int)leapind, (int)leapwarn)) {
3448 	  ctl_error(CERR_PERMISSION);
3449 	  return;
3450 	  }
3451 	  }
3452 	*/
3453 	ctl_flushpkt(0);
3454 }
3455 
3456 
3457 /*
3458  * configure() processes ntpq :config/config-from-file, allowing
3459  *		generic runtime reconfiguration.
3460  */
3461 static void configure(
3462 	struct recvbuf *rbufp,
3463 	int restrict_mask
3464 	)
3465 {
3466 	size_t data_count;
3467 	int retval;
3468 
3469 	/* I haven't yet implemented changes to an existing association.
3470 	 * Hence check if the association id is 0
3471 	 */
3472 	if (res_associd != 0) {
3473 		ctl_error(CERR_BADVALUE);
3474 		return;
3475 	}
3476 
3477 	if (RES_NOMODIFY & restrict_mask) {
3478 		snprintf(remote_config.err_msg,
3479 			 sizeof(remote_config.err_msg),
3480 			 "runtime configuration prohibited by restrict ... nomodify");
3481 		ctl_putdata(remote_config.err_msg,
3482 			    strlen(remote_config.err_msg), 0);
3483 		ctl_flushpkt(0);
3484 		NLOG(NLOG_SYSINFO)
3485 			msyslog(LOG_NOTICE,
3486 				"runtime config from %s rejected due to nomodify restriction",
3487 				stoa(&rbufp->recv_srcadr));
3488 		sys_restricted++;
3489 		return;
3490 	}
3491 
3492 	/* Initialize the remote config buffer */
3493 	data_count = remoteconfig_cmdlength(reqpt, reqend);
3494 
3495 	if (data_count > sizeof(remote_config.buffer) - 2) {
3496 		snprintf(remote_config.err_msg,
3497 			 sizeof(remote_config.err_msg),
3498 			 "runtime configuration failed: request too long");
3499 		ctl_putdata(remote_config.err_msg,
3500 			    strlen(remote_config.err_msg), 0);
3501 		ctl_flushpkt(0);
3502 		msyslog(LOG_NOTICE,
3503 			"runtime config from %s rejected: request too long",
3504 			stoa(&rbufp->recv_srcadr));
3505 		return;
3506 	}
3507 	/* Bug 2853 -- check if all characters were acceptable */
3508 	if (data_count != (size_t)(reqend - reqpt)) {
3509 		snprintf(remote_config.err_msg,
3510 			 sizeof(remote_config.err_msg),
3511 			 "runtime configuration failed: request contains an unprintable character");
3512 		ctl_putdata(remote_config.err_msg,
3513 			    strlen(remote_config.err_msg), 0);
3514 		ctl_flushpkt(0);
3515 		msyslog(LOG_NOTICE,
3516 			"runtime config from %s rejected: request contains an unprintable character: %0x",
3517 			stoa(&rbufp->recv_srcadr),
3518 			reqpt[data_count]);
3519 		return;
3520 	}
3521 
3522 	memcpy(remote_config.buffer, reqpt, data_count);
3523 	/* The buffer has no trailing linefeed or NUL right now. For
3524 	 * logging, we do not want a newline, so we do that first after
3525 	 * adding the necessary NUL byte.
3526 	 */
3527 	remote_config.buffer[data_count] = '\0';
3528 	DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3529 		remote_config.buffer));
3530 	msyslog(LOG_NOTICE, "%s config: %s",
3531 		stoa(&rbufp->recv_srcadr),
3532 		remote_config.buffer);
3533 
3534 	/* Now we have to make sure there is a NL/NUL sequence at the
3535 	 * end of the buffer before we parse it.
3536 	 */
3537 	remote_config.buffer[data_count++] = '\n';
3538 	remote_config.buffer[data_count] = '\0';
3539 	remote_config.pos = 0;
3540 	remote_config.err_pos = 0;
3541 	remote_config.no_errors = 0;
3542 	config_remotely(&rbufp->recv_srcadr);
3543 
3544 	/*
3545 	 * Check if errors were reported. If not, output 'Config
3546 	 * Succeeded'.  Else output the error count.  It would be nice
3547 	 * to output any parser error messages.
3548 	 */
3549 	if (0 == remote_config.no_errors) {
3550 		retval = snprintf(remote_config.err_msg,
3551 				  sizeof(remote_config.err_msg),
3552 				  "Config Succeeded");
3553 		if (retval > 0)
3554 			remote_config.err_pos += retval;
3555 	}
3556 
3557 	ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3558 	ctl_flushpkt(0);
3559 
3560 	DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3561 
3562 	if (remote_config.no_errors > 0)
3563 		msyslog(LOG_NOTICE, "%d error in %s config",
3564 			remote_config.no_errors,
3565 			stoa(&rbufp->recv_srcadr));
3566 }
3567 
3568 
3569 /*
3570  * derive_nonce - generate client-address-specific nonce value
3571  *		  associated with a given timestamp.
3572  */
3573 static u_int32 derive_nonce(
3574 	sockaddr_u *	addr,
3575 	u_int32		ts_i,
3576 	u_int32		ts_f
3577 	)
3578 {
3579 	static u_int32	salt[4];
3580 	static u_long	last_salt_update;
3581 	union d_tag {
3582 		u_char	digest[EVP_MAX_MD_SIZE];
3583 		u_int32 extract;
3584 	}		d;
3585 	EVP_MD_CTX	*ctx;
3586 	u_int		len;
3587 
3588 	while (!salt[0] || current_time - last_salt_update >= 3600) {
3589 		salt[0] = ntp_random();
3590 		salt[1] = ntp_random();
3591 		salt[2] = ntp_random();
3592 		salt[3] = ntp_random();
3593 		last_salt_update = current_time;
3594 	}
3595 
3596 	ctx = EVP_MD_CTX_new();
3597 	EVP_DigestInit(ctx, EVP_get_digestbynid(NID_md5));
3598 	EVP_DigestUpdate(ctx, salt, sizeof(salt));
3599 	EVP_DigestUpdate(ctx, &ts_i, sizeof(ts_i));
3600 	EVP_DigestUpdate(ctx, &ts_f, sizeof(ts_f));
3601 	if (IS_IPV4(addr))
3602 		EVP_DigestUpdate(ctx, &SOCK_ADDR4(addr),
3603 			         sizeof(SOCK_ADDR4(addr)));
3604 	else
3605 		EVP_DigestUpdate(ctx, &SOCK_ADDR6(addr),
3606 			         sizeof(SOCK_ADDR6(addr)));
3607 	EVP_DigestUpdate(ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
3608 	EVP_DigestUpdate(ctx, salt, sizeof(salt));
3609 	EVP_DigestFinal(ctx, d.digest, &len);
3610 	EVP_MD_CTX_free(ctx);
3611 
3612 	return d.extract;
3613 }
3614 
3615 
3616 /*
3617  * generate_nonce - generate client-address-specific nonce string.
3618  */
3619 static void generate_nonce(
3620 	struct recvbuf *	rbufp,
3621 	char *			nonce,
3622 	size_t			nonce_octets
3623 	)
3624 {
3625 	u_int32 derived;
3626 
3627 	derived = derive_nonce(&rbufp->recv_srcadr,
3628 			       rbufp->recv_time.l_ui,
3629 			       rbufp->recv_time.l_uf);
3630 	snprintf(nonce, nonce_octets, "%08x%08x%08x",
3631 		 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3632 }
3633 
3634 
3635 /*
3636  * validate_nonce - validate client-address-specific nonce string.
3637  *
3638  * Returns TRUE if the local calculation of the nonce matches the
3639  * client-provided value and the timestamp is recent enough.
3640  */
3641 static int validate_nonce(
3642 	const char *		pnonce,
3643 	struct recvbuf *	rbufp
3644 	)
3645 {
3646 	u_int	ts_i;
3647 	u_int	ts_f;
3648 	l_fp	ts;
3649 	l_fp	now_delta;
3650 	u_int	supposed;
3651 	u_int	derived;
3652 
3653 	if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3654 		return FALSE;
3655 
3656 	ts.l_ui = (u_int32)ts_i;
3657 	ts.l_uf = (u_int32)ts_f;
3658 	derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3659 	get_systime(&now_delta);
3660 	L_SUB(&now_delta, &ts);
3661 
3662 	return (supposed == derived && now_delta.l_ui < 16);
3663 }
3664 
3665 
3666 /*
3667  * send_random_tag_value - send a randomly-generated three character
3668  *			   tag prefix, a '.', an index, a '=' and a
3669  *			   random integer value.
3670  *
3671  * To try to force clients to ignore unrecognized tags in mrulist,
3672  * reslist, and ifstats responses, the first and last rows are spiced
3673  * with randomly-generated tag names with correct .# index.  Make it
3674  * three characters knowing that none of the currently-used subscripted
3675  * tags have that length, avoiding the need to test for
3676  * tag collision.
3677  */
3678 static void
3679 send_random_tag_value(
3680 	int	indx
3681 	)
3682 {
3683 	int	noise;
3684 	char	buf[32];
3685 
3686 	noise = rand() ^ (rand() << 16);
3687 	buf[0] = 'a' + noise % 26;
3688 	noise >>= 5;
3689 	buf[1] = 'a' + noise % 26;
3690 	noise >>= 5;
3691 	buf[2] = 'a' + noise % 26;
3692 	noise >>= 5;
3693 	buf[3] = '.';
3694 	snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3695 	ctl_putuint(buf, noise);
3696 }
3697 
3698 
3699 /*
3700  * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3701  *
3702  * To keep clients honest about not depending on the order of values,
3703  * and thereby avoid being locked into ugly workarounds to maintain
3704  * backward compatibility later as new fields are added to the response,
3705  * the order is random.
3706  */
3707 static void
3708 send_mru_entry(
3709 	mon_entry *	mon,
3710 	int		count
3711 	)
3712 {
3713 	const char first_fmt[] =	"first.%d";
3714 	const char ct_fmt[] =		"ct.%d";
3715 	const char mv_fmt[] =		"mv.%d";
3716 	const char rs_fmt[] =		"rs.%d";
3717 	char	tag[32];
3718 	u_char	sent[6]; /* 6 tag=value pairs */
3719 	u_int32 noise;
3720 	u_int	which;
3721 	u_int	remaining;
3722 	const char * pch;
3723 
3724 	remaining = COUNTOF(sent);
3725 	ZERO(sent);
3726 	noise = (u_int32)(rand() ^ (rand() << 16));
3727 	while (remaining > 0) {
3728 		which = (noise & 7) % COUNTOF(sent);
3729 		noise >>= 3;
3730 		while (sent[which])
3731 			which = (which + 1) % COUNTOF(sent);
3732 
3733 		switch (which) {
3734 
3735 		case 0:
3736 			snprintf(tag, sizeof(tag), addr_fmt, count);
3737 			pch = sptoa(&mon->rmtadr);
3738 			ctl_putunqstr(tag, pch, strlen(pch));
3739 			break;
3740 
3741 		case 1:
3742 			snprintf(tag, sizeof(tag), last_fmt, count);
3743 			ctl_putts(tag, &mon->last);
3744 			break;
3745 
3746 		case 2:
3747 			snprintf(tag, sizeof(tag), first_fmt, count);
3748 			ctl_putts(tag, &mon->first);
3749 			break;
3750 
3751 		case 3:
3752 			snprintf(tag, sizeof(tag), ct_fmt, count);
3753 			ctl_putint(tag, mon->count);
3754 			break;
3755 
3756 		case 4:
3757 			snprintf(tag, sizeof(tag), mv_fmt, count);
3758 			ctl_putuint(tag, mon->vn_mode);
3759 			break;
3760 
3761 		case 5:
3762 			snprintf(tag, sizeof(tag), rs_fmt, count);
3763 			ctl_puthex(tag, mon->flags);
3764 			break;
3765 		}
3766 		sent[which] = TRUE;
3767 		remaining--;
3768 	}
3769 }
3770 
3771 
3772 /*
3773  * read_mru_list - supports ntpq's mrulist command.
3774  *
3775  * The challenge here is to match ntpdc's monlist functionality without
3776  * being limited to hundreds of entries returned total, and without
3777  * requiring state on the server.  If state were required, ntpq's
3778  * mrulist command would require authentication.
3779  *
3780  * The approach was suggested by Ry Jones.  A finite and variable number
3781  * of entries are retrieved per request, to avoid having responses with
3782  * such large numbers of packets that socket buffers are overflowed and
3783  * packets lost.  The entries are retrieved oldest-first, taking into
3784  * account that the MRU list will be changing between each request.  We
3785  * can expect to see duplicate entries for addresses updated in the MRU
3786  * list during the fetch operation.  In the end, the client can assemble
3787  * a close approximation of the MRU list at the point in time the last
3788  * response was sent by ntpd.  The only difference is it may be longer,
3789  * containing some number of oldest entries which have since been
3790  * reclaimed.  If necessary, the protocol could be extended to zap those
3791  * from the client snapshot at the end, but so far that doesn't seem
3792  * useful.
3793  *
3794  * To accomodate the changing MRU list, the starting point for requests
3795  * after the first request is supplied as a series of last seen
3796  * timestamps and associated addresses, the newest ones the client has
3797  * received.  As long as at least one of those entries hasn't been
3798  * bumped to the head of the MRU list, ntpd can pick up at that point.
3799  * Otherwise, the request is failed and it is up to ntpq to back up and
3800  * provide the next newest entry's timestamps and addresses, conceivably
3801  * backing up all the way to the starting point.
3802  *
3803  * input parameters:
3804  *	nonce=		Regurgitated nonce retrieved by the client
3805  *			previously using CTL_OP_REQ_NONCE, demonstrating
3806  *			ability to receive traffic sent to its address.
3807  *	frags=		Limit on datagrams (fragments) in response.  Used
3808  *			by newer ntpq versions instead of limit= when
3809  *			retrieving multiple entries.
3810  *	limit=		Limit on MRU entries returned.  One of frags= or
3811  *			limit= must be provided.
3812  *			limit=1 is a special case:  Instead of fetching
3813  *			beginning with the supplied starting point's
3814  *			newer neighbor, fetch the supplied entry, and
3815  *			in that case the #.last timestamp can be zero.
3816  *			This enables fetching a single entry by IP
3817  *			address.  When limit is not one and frags= is
3818  *			provided, the fragment limit controls.
3819  *	mincount=	(decimal) Return entries with count >= mincount.
3820  *	laddr=		Return entries associated with the server's IP
3821  *			address given.  No port specification is needed,
3822  *			and any supplied is ignored.
3823  *	resall=		0x-prefixed hex restrict bits which must all be
3824  *			lit for an MRU entry to be included.
3825  *			Has precedence over any resany=.
3826  *	resany=		0x-prefixed hex restrict bits, at least one of
3827  *			which must be list for an MRU entry to be
3828  *			included.
3829  *	last.0=		0x-prefixed hex l_fp timestamp of newest entry
3830  *			which client previously received.
3831  *	addr.0=		text of newest entry's IP address and port,
3832  *			IPv6 addresses in bracketed form: [::]:123
3833  *	last.1=		timestamp of 2nd newest entry client has.
3834  *	addr.1=		address of 2nd newest entry.
3835  *	[...]
3836  *
3837  * ntpq provides as many last/addr pairs as will fit in a single request
3838  * packet, except for the first request in a MRU fetch operation.
3839  *
3840  * The response begins with a new nonce value to be used for any
3841  * followup request.  Following the nonce is the next newer entry than
3842  * referred to by last.0 and addr.0, if the "0" entry has not been
3843  * bumped to the front.  If it has, the first entry returned will be the
3844  * next entry newer than referred to by last.1 and addr.1, and so on.
3845  * If none of the referenced entries remain unchanged, the request fails
3846  * and ntpq backs up to the next earlier set of entries to resync.
3847  *
3848  * Except for the first response, the response begins with confirmation
3849  * of the entry that precedes the first additional entry provided:
3850  *
3851  *	last.older=	hex l_fp timestamp matching one of the input
3852  *			.last timestamps, which entry now precedes the
3853  *			response 0. entry in the MRU list.
3854  *	addr.older=	text of address corresponding to older.last.
3855  *
3856  * And in any case, a successful response contains sets of values
3857  * comprising entries, with the oldest numbered 0 and incrementing from
3858  * there:
3859  *
3860  *	addr.#		text of IPv4 or IPv6 address and port
3861  *	last.#		hex l_fp timestamp of last receipt
3862  *	first.#		hex l_fp timestamp of first receipt
3863  *	ct.#		count of packets received
3864  *	mv.#		mode and version
3865  *	rs.#		restriction mask (RES_* bits)
3866  *
3867  * Note the code currently assumes there are no valid three letter
3868  * tags sent with each row, and needs to be adjusted if that changes.
3869  *
3870  * The client should accept the values in any order, and ignore .#
3871  * values which it does not understand, to allow a smooth path to
3872  * future changes without requiring a new opcode.  Clients can rely
3873  * on all *.0 values preceding any *.1 values, that is all values for
3874  * a given index number are together in the response.
3875  *
3876  * The end of the response list is noted with one or two tag=value
3877  * pairs.  Unconditionally:
3878  *
3879  *	now=		0x-prefixed l_fp timestamp at the server marking
3880  *			the end of the operation.
3881  *
3882  * If any entries were returned, now= is followed by:
3883  *
3884  *	last.newest=	hex l_fp identical to last.# of the prior
3885  *			entry.
3886  */
3887 static void read_mru_list(
3888 	struct recvbuf *rbufp,
3889 	int restrict_mask
3890 	)
3891 {
3892 	static const char	nulltxt[1] = 		{ '\0' };
3893 	static const char	nonce_text[] =		"nonce";
3894 	static const char	frags_text[] =		"frags";
3895 	static const char	limit_text[] =		"limit";
3896 	static const char	mincount_text[] =	"mincount";
3897 	static const char	resall_text[] =		"resall";
3898 	static const char	resany_text[] =		"resany";
3899 	static const char	maxlstint_text[] =	"maxlstint";
3900 	static const char	laddr_text[] =		"laddr";
3901 	static const char	resaxx_fmt[] =		"0x%hx";
3902 
3903 	u_int			limit;
3904 	u_short			frags;
3905 	u_short			resall;
3906 	u_short			resany;
3907 	int			mincount;
3908 	u_int			maxlstint;
3909 	sockaddr_u		laddr;
3910 	struct interface *	lcladr;
3911 	u_int			count;
3912 	u_int			ui;
3913 	u_int			uf;
3914 	l_fp			last[16];
3915 	sockaddr_u		addr[COUNTOF(last)];
3916 	char			buf[128];
3917 	struct ctl_var *	in_parms;
3918 	const struct ctl_var *	v;
3919 	const char *		val;
3920 	const char *		pch;
3921 	char *			pnonce;
3922 	int			nonce_valid;
3923 	size_t			i;
3924 	int			priors;
3925 	u_short			hash;
3926 	mon_entry *		mon;
3927 	mon_entry *		prior_mon;
3928 	l_fp			now;
3929 
3930 	if (RES_NOMRULIST & restrict_mask) {
3931 		ctl_error(CERR_PERMISSION);
3932 		NLOG(NLOG_SYSINFO)
3933 			msyslog(LOG_NOTICE,
3934 				"mrulist from %s rejected due to nomrulist restriction",
3935 				stoa(&rbufp->recv_srcadr));
3936 		sys_restricted++;
3937 		return;
3938 	}
3939 	/*
3940 	 * fill in_parms var list with all possible input parameters.
3941 	 */
3942 	in_parms = NULL;
3943 	set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
3944 	set_var(&in_parms, frags_text, sizeof(frags_text), 0);
3945 	set_var(&in_parms, limit_text, sizeof(limit_text), 0);
3946 	set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
3947 	set_var(&in_parms, resall_text, sizeof(resall_text), 0);
3948 	set_var(&in_parms, resany_text, sizeof(resany_text), 0);
3949 	set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
3950 	set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
3951 	for (i = 0; i < COUNTOF(last); i++) {
3952 		snprintf(buf, sizeof(buf), last_fmt, (int)i);
3953 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
3954 		snprintf(buf, sizeof(buf), addr_fmt, (int)i);
3955 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
3956 	}
3957 
3958 	/* decode input parms */
3959 	pnonce = NULL;
3960 	frags = 0;
3961 	limit = 0;
3962 	mincount = 0;
3963 	resall = 0;
3964 	resany = 0;
3965 	maxlstint = 0;
3966 	lcladr = NULL;
3967 	priors = 0;
3968 	ZERO(last);
3969 	ZERO(addr);
3970 
3971 	/* have to go through '(void*)' to drop 'const' property from pointer.
3972 	 * ctl_getitem()' needs some cleanup, too.... perlinger@ntp.org
3973 	 */
3974 	while (NULL != (v = ctl_getitem(in_parms, (void*)&val)) &&
3975 	       !(EOV & v->flags)) {
3976 		int si;
3977 
3978 		if (NULL == val)
3979 			val = nulltxt;
3980 
3981 		if (!strcmp(nonce_text, v->text)) {
3982 			free(pnonce);
3983 			pnonce = (*val) ? estrdup(val) : NULL;
3984 		} else if (!strcmp(frags_text, v->text)) {
3985 			if (1 != sscanf(val, "%hu", &frags))
3986 				goto blooper;
3987 		} else if (!strcmp(limit_text, v->text)) {
3988 			if (1 != sscanf(val, "%u", &limit))
3989 				goto blooper;
3990 		} else if (!strcmp(mincount_text, v->text)) {
3991 			if (1 != sscanf(val, "%d", &mincount))
3992 				goto blooper;
3993 			if (mincount < 0)
3994 				mincount = 0;
3995 		} else if (!strcmp(resall_text, v->text)) {
3996 			if (1 != sscanf(val, resaxx_fmt, &resall))
3997 				goto blooper;
3998 		} else if (!strcmp(resany_text, v->text)) {
3999 			if (1 != sscanf(val, resaxx_fmt, &resany))
4000 				goto blooper;
4001 		} else if (!strcmp(maxlstint_text, v->text)) {
4002 			if (1 != sscanf(val, "%u", &maxlstint))
4003 				goto blooper;
4004 		} else if (!strcmp(laddr_text, v->text)) {
4005 			if (!decodenetnum(val, &laddr))
4006 				goto blooper;
4007 			lcladr = getinterface(&laddr, 0);
4008 		} else if (1 == sscanf(v->text, last_fmt, &si) &&
4009 			   (size_t)si < COUNTOF(last)) {
4010 			if (2 != sscanf(val, "0x%08x.%08x", &ui, &uf))
4011 				goto blooper;
4012 			last[si].l_ui = ui;
4013 			last[si].l_uf = uf;
4014 			if (!SOCK_UNSPEC(&addr[si]) && si == priors)
4015 				priors++;
4016 		} else if (1 == sscanf(v->text, addr_fmt, &si) &&
4017 			   (size_t)si < COUNTOF(addr)) {
4018 			if (!decodenetnum(val, &addr[si]))
4019 				goto blooper;
4020 			if (last[si].l_ui && last[si].l_uf && si == priors)
4021 				priors++;
4022 		} else {
4023 			DPRINTF(1, ("read_mru_list: invalid key item: '%s' (ignored)\n",
4024 				    v->text));
4025 			continue;
4026 
4027 		blooper:
4028 			DPRINTF(1, ("read_mru_list: invalid param for '%s': '%s' (bailing)\n",
4029 				    v->text, val));
4030 			free(pnonce);
4031 			pnonce = NULL;
4032 			break;
4033 		}
4034 	}
4035 	free_varlist(in_parms);
4036 	in_parms = NULL;
4037 
4038 	/* return no responses until the nonce is validated */
4039 	if (NULL == pnonce)
4040 		return;
4041 
4042 	nonce_valid = validate_nonce(pnonce, rbufp);
4043 	free(pnonce);
4044 	if (!nonce_valid)
4045 		return;
4046 
4047 	if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
4048 	    frags > MRU_FRAGS_LIMIT) {
4049 		ctl_error(CERR_BADVALUE);
4050 		return;
4051 	}
4052 
4053 	/*
4054 	 * If either frags or limit is not given, use the max.
4055 	 */
4056 	if (0 != frags && 0 == limit)
4057 		limit = UINT_MAX;
4058 	else if (0 != limit && 0 == frags)
4059 		frags = MRU_FRAGS_LIMIT;
4060 
4061 	/*
4062 	 * Find the starting point if one was provided.
4063 	 */
4064 	mon = NULL;
4065 	for (i = 0; i < (size_t)priors; i++) {
4066 		hash = MON_HASH(&addr[i]);
4067 		for (mon = mon_hash[hash];
4068 		     mon != NULL;
4069 		     mon = mon->hash_next)
4070 			if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
4071 				break;
4072 		if (mon != NULL) {
4073 			if (L_ISEQU(&mon->last, &last[i]))
4074 				break;
4075 			mon = NULL;
4076 		}
4077 	}
4078 
4079 	/* If a starting point was provided... */
4080 	if (priors) {
4081 		/* and none could be found unmodified... */
4082 		if (NULL == mon) {
4083 			/* tell ntpq to try again with older entries */
4084 			ctl_error(CERR_UNKNOWNVAR);
4085 			return;
4086 		}
4087 		/* confirm the prior entry used as starting point */
4088 		ctl_putts("last.older", &mon->last);
4089 		pch = sptoa(&mon->rmtadr);
4090 		ctl_putunqstr("addr.older", pch, strlen(pch));
4091 
4092 		/*
4093 		 * Move on to the first entry the client doesn't have,
4094 		 * except in the special case of a limit of one.  In
4095 		 * that case return the starting point entry.
4096 		 */
4097 		if (limit > 1)
4098 			mon = PREV_DLIST(mon_mru_list, mon, mru);
4099 	} else {	/* start with the oldest */
4100 		mon = TAIL_DLIST(mon_mru_list, mru);
4101 	}
4102 
4103 	/*
4104 	 * send up to limit= entries in up to frags= datagrams
4105 	 */
4106 	get_systime(&now);
4107 	generate_nonce(rbufp, buf, sizeof(buf));
4108 	ctl_putunqstr("nonce", buf, strlen(buf));
4109 	prior_mon = NULL;
4110 	for (count = 0;
4111 	     mon != NULL && res_frags < frags && count < limit;
4112 	     mon = PREV_DLIST(mon_mru_list, mon, mru)) {
4113 
4114 		if (mon->count < mincount)
4115 			continue;
4116 		if (resall && resall != (resall & mon->flags))
4117 			continue;
4118 		if (resany && !(resany & mon->flags))
4119 			continue;
4120 		if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
4121 		    maxlstint)
4122 			continue;
4123 		if (lcladr != NULL && mon->lcladr != lcladr)
4124 			continue;
4125 
4126 		send_mru_entry(mon, count);
4127 		if (!count)
4128 			send_random_tag_value(0);
4129 		count++;
4130 		prior_mon = mon;
4131 	}
4132 
4133 	/*
4134 	 * If this batch completes the MRU list, say so explicitly with
4135 	 * a now= l_fp timestamp.
4136 	 */
4137 	if (NULL == mon) {
4138 		if (count > 1)
4139 			send_random_tag_value(count - 1);
4140 		ctl_putts("now", &now);
4141 		/* if any entries were returned confirm the last */
4142 		if (prior_mon != NULL)
4143 			ctl_putts("last.newest", &prior_mon->last);
4144 	}
4145 	ctl_flushpkt(0);
4146 }
4147 
4148 
4149 /*
4150  * Send a ifstats entry in response to a "ntpq -c ifstats" request.
4151  *
4152  * To keep clients honest about not depending on the order of values,
4153  * and thereby avoid being locked into ugly workarounds to maintain
4154  * backward compatibility later as new fields are added to the response,
4155  * the order is random.
4156  */
4157 static void
4158 send_ifstats_entry(
4159 	endpt *	la,
4160 	u_int	ifnum
4161 	)
4162 {
4163 	const char addr_fmtu[] =	"addr.%u";
4164 	const char bcast_fmt[] =	"bcast.%u";
4165 	const char en_fmt[] =		"en.%u";	/* enabled */
4166 	const char name_fmt[] =		"name.%u";
4167 	const char flags_fmt[] =	"flags.%u";
4168 	const char tl_fmt[] =		"tl.%u";	/* ttl */
4169 	const char mc_fmt[] =		"mc.%u";	/* mcast count */
4170 	const char rx_fmt[] =		"rx.%u";
4171 	const char tx_fmt[] =		"tx.%u";
4172 	const char txerr_fmt[] =	"txerr.%u";
4173 	const char pc_fmt[] =		"pc.%u";	/* peer count */
4174 	const char up_fmt[] =		"up.%u";	/* uptime */
4175 	char	tag[32];
4176 	u_char	sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
4177 	int	noisebits;
4178 	u_int32 noise;
4179 	u_int	which;
4180 	u_int	remaining;
4181 	const char *pch;
4182 
4183 	remaining = COUNTOF(sent);
4184 	ZERO(sent);
4185 	noise = 0;
4186 	noisebits = 0;
4187 	while (remaining > 0) {
4188 		if (noisebits < 4) {
4189 			noise = rand() ^ (rand() << 16);
4190 			noisebits = 31;
4191 		}
4192 		which = (noise & 0xf) % COUNTOF(sent);
4193 		noise >>= 4;
4194 		noisebits -= 4;
4195 
4196 		while (sent[which])
4197 			which = (which + 1) % COUNTOF(sent);
4198 
4199 		switch (which) {
4200 
4201 		case 0:
4202 			snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
4203 			pch = sptoa(&la->sin);
4204 			ctl_putunqstr(tag, pch, strlen(pch));
4205 			break;
4206 
4207 		case 1:
4208 			snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
4209 			if (INT_BCASTOPEN & la->flags)
4210 				pch = sptoa(&la->bcast);
4211 			else
4212 				pch = "";
4213 			ctl_putunqstr(tag, pch, strlen(pch));
4214 			break;
4215 
4216 		case 2:
4217 			snprintf(tag, sizeof(tag), en_fmt, ifnum);
4218 			ctl_putint(tag, !la->ignore_packets);
4219 			break;
4220 
4221 		case 3:
4222 			snprintf(tag, sizeof(tag), name_fmt, ifnum);
4223 			ctl_putstr(tag, la->name, strlen(la->name));
4224 			break;
4225 
4226 		case 4:
4227 			snprintf(tag, sizeof(tag), flags_fmt, ifnum);
4228 			ctl_puthex(tag, (u_int)la->flags);
4229 			break;
4230 
4231 		case 5:
4232 			snprintf(tag, sizeof(tag), tl_fmt, ifnum);
4233 			ctl_putint(tag, la->last_ttl);
4234 			break;
4235 
4236 		case 6:
4237 			snprintf(tag, sizeof(tag), mc_fmt, ifnum);
4238 			ctl_putint(tag, la->num_mcast);
4239 			break;
4240 
4241 		case 7:
4242 			snprintf(tag, sizeof(tag), rx_fmt, ifnum);
4243 			ctl_putint(tag, la->received);
4244 			break;
4245 
4246 		case 8:
4247 			snprintf(tag, sizeof(tag), tx_fmt, ifnum);
4248 			ctl_putint(tag, la->sent);
4249 			break;
4250 
4251 		case 9:
4252 			snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
4253 			ctl_putint(tag, la->notsent);
4254 			break;
4255 
4256 		case 10:
4257 			snprintf(tag, sizeof(tag), pc_fmt, ifnum);
4258 			ctl_putuint(tag, la->peercnt);
4259 			break;
4260 
4261 		case 11:
4262 			snprintf(tag, sizeof(tag), up_fmt, ifnum);
4263 			ctl_putuint(tag, current_time - la->starttime);
4264 			break;
4265 		}
4266 		sent[which] = TRUE;
4267 		remaining--;
4268 	}
4269 	send_random_tag_value((int)ifnum);
4270 }
4271 
4272 
4273 /*
4274  * read_ifstats - send statistics for each local address, exposed by
4275  *		  ntpq -c ifstats
4276  */
4277 static void
4278 read_ifstats(
4279 	struct recvbuf *	rbufp
4280 	)
4281 {
4282 	u_int	ifidx;
4283 	endpt *	la;
4284 
4285 	/*
4286 	 * loop over [0..sys_ifnum] searching ep_list for each
4287 	 * ifnum in turn.
4288 	 */
4289 	for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4290 		for (la = ep_list; la != NULL; la = la->elink)
4291 			if (ifidx == la->ifnum)
4292 				break;
4293 		if (NULL == la)
4294 			continue;
4295 		/* return stats for one local address */
4296 		send_ifstats_entry(la, ifidx);
4297 	}
4298 	ctl_flushpkt(0);
4299 }
4300 
4301 static void
4302 sockaddrs_from_restrict_u(
4303 	sockaddr_u *	psaA,
4304 	sockaddr_u *	psaM,
4305 	restrict_u *	pres,
4306 	int		ipv6
4307 	)
4308 {
4309 	ZERO(*psaA);
4310 	ZERO(*psaM);
4311 	if (!ipv6) {
4312 		psaA->sa.sa_family = AF_INET;
4313 		psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
4314 		psaM->sa.sa_family = AF_INET;
4315 		psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
4316 	} else {
4317 		psaA->sa.sa_family = AF_INET6;
4318 		memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
4319 		       sizeof(psaA->sa6.sin6_addr));
4320 		psaM->sa.sa_family = AF_INET6;
4321 		memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
4322 		       sizeof(psaA->sa6.sin6_addr));
4323 	}
4324 }
4325 
4326 
4327 /*
4328  * Send a restrict entry in response to a "ntpq -c reslist" request.
4329  *
4330  * To keep clients honest about not depending on the order of values,
4331  * and thereby avoid being locked into ugly workarounds to maintain
4332  * backward compatibility later as new fields are added to the response,
4333  * the order is random.
4334  */
4335 static void
4336 send_restrict_entry(
4337 	restrict_u *	pres,
4338 	int		ipv6,
4339 	u_int		idx
4340 	)
4341 {
4342 	const char addr_fmtu[] =	"addr.%u";
4343 	const char mask_fmtu[] =	"mask.%u";
4344 	const char hits_fmt[] =		"hits.%u";
4345 	const char flags_fmt[] =	"flags.%u";
4346 	char		tag[32];
4347 	u_char		sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4348 	int		noisebits;
4349 	u_int32		noise;
4350 	u_int		which;
4351 	u_int		remaining;
4352 	sockaddr_u	addr;
4353 	sockaddr_u	mask;
4354 	const char *	pch;
4355 	char *		buf;
4356 	const char *	match_str;
4357 	const char *	access_str;
4358 
4359 	sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
4360 	remaining = COUNTOF(sent);
4361 	ZERO(sent);
4362 	noise = 0;
4363 	noisebits = 0;
4364 	while (remaining > 0) {
4365 		if (noisebits < 2) {
4366 			noise = rand() ^ (rand() << 16);
4367 			noisebits = 31;
4368 		}
4369 		which = (noise & 0x3) % COUNTOF(sent);
4370 		noise >>= 2;
4371 		noisebits -= 2;
4372 
4373 		while (sent[which])
4374 			which = (which + 1) % COUNTOF(sent);
4375 
4376 		switch (which) {
4377 
4378 		case 0:
4379 			snprintf(tag, sizeof(tag), addr_fmtu, idx);
4380 			pch = stoa(&addr);
4381 			ctl_putunqstr(tag, pch, strlen(pch));
4382 			break;
4383 
4384 		case 1:
4385 			snprintf(tag, sizeof(tag), mask_fmtu, idx);
4386 			pch = stoa(&mask);
4387 			ctl_putunqstr(tag, pch, strlen(pch));
4388 			break;
4389 
4390 		case 2:
4391 			snprintf(tag, sizeof(tag), hits_fmt, idx);
4392 			ctl_putuint(tag, pres->count);
4393 			break;
4394 
4395 		case 3:
4396 			snprintf(tag, sizeof(tag), flags_fmt, idx);
4397 			match_str = res_match_flags(pres->mflags);
4398 			access_str = res_access_flags(pres->flags);
4399 			if ('\0' == match_str[0]) {
4400 				pch = access_str;
4401 			} else {
4402 				LIB_GETBUF(buf);
4403 				snprintf(buf, LIB_BUFLENGTH, "%s %s",
4404 					 match_str, access_str);
4405 				pch = buf;
4406 			}
4407 			ctl_putunqstr(tag, pch, strlen(pch));
4408 			break;
4409 		}
4410 		sent[which] = TRUE;
4411 		remaining--;
4412 	}
4413 	send_random_tag_value((int)idx);
4414 }
4415 
4416 
4417 static void
4418 send_restrict_list(
4419 	restrict_u *	pres,
4420 	int		ipv6,
4421 	u_int *		pidx
4422 	)
4423 {
4424 	for ( ; pres != NULL; pres = pres->link) {
4425 		send_restrict_entry(pres, ipv6, *pidx);
4426 		(*pidx)++;
4427 	}
4428 }
4429 
4430 
4431 /*
4432  * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4433  */
4434 static void
4435 read_addr_restrictions(
4436 	struct recvbuf *	rbufp
4437 )
4438 {
4439 	u_int idx;
4440 
4441 	idx = 0;
4442 	send_restrict_list(restrictlist4, FALSE, &idx);
4443 	send_restrict_list(restrictlist6, TRUE, &idx);
4444 	ctl_flushpkt(0);
4445 }
4446 
4447 
4448 /*
4449  * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4450  */
4451 static void
4452 read_ordlist(
4453 	struct recvbuf *	rbufp,
4454 	int			restrict_mask
4455 	)
4456 {
4457 	const char ifstats_s[] = "ifstats";
4458 	const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4459 	const char addr_rst_s[] = "addr_restrictions";
4460 	const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4461 	struct ntp_control *	cpkt;
4462 	u_short			qdata_octets;
4463 
4464 	/*
4465 	 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4466 	 * used only for ntpq -c ifstats.  With the addition of reslist
4467 	 * the same opcode was generalized to retrieve ordered lists
4468 	 * which require authentication.  The request data is empty or
4469 	 * contains "ifstats" (not null terminated) to retrieve local
4470 	 * addresses and associated stats.  It is "addr_restrictions"
4471 	 * to retrieve the IPv4 then IPv6 remote address restrictions,
4472 	 * which are access control lists.  Other request data return
4473 	 * CERR_UNKNOWNVAR.
4474 	 */
4475 	cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4476 	qdata_octets = ntohs(cpkt->count);
4477 	if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4478 	    !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4479 		read_ifstats(rbufp);
4480 		return;
4481 	}
4482 	if (a_r_chars == qdata_octets &&
4483 	    !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4484 		read_addr_restrictions(rbufp);
4485 		return;
4486 	}
4487 	ctl_error(CERR_UNKNOWNVAR);
4488 }
4489 
4490 
4491 /*
4492  * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4493  */
4494 static void req_nonce(
4495 	struct recvbuf *	rbufp,
4496 	int			restrict_mask
4497 	)
4498 {
4499 	char	buf[64];
4500 
4501 	generate_nonce(rbufp, buf, sizeof(buf));
4502 	ctl_putunqstr("nonce", buf, strlen(buf));
4503 	ctl_flushpkt(0);
4504 }
4505 
4506 
4507 /*
4508  * read_clockstatus - return clock radio status
4509  */
4510 /*ARGSUSED*/
4511 static void
4512 read_clockstatus(
4513 	struct recvbuf *rbufp,
4514 	int restrict_mask
4515 	)
4516 {
4517 #ifndef REFCLOCK
4518 	/*
4519 	 * If no refclock support, no data to return
4520 	 */
4521 	ctl_error(CERR_BADASSOC);
4522 #else
4523 	const struct ctl_var *	v;
4524 	int			i;
4525 	struct peer *		peer;
4526 	char *			valuep;
4527 	u_char *		wants;
4528 	size_t			wants_alloc;
4529 	int			gotvar;
4530 	const u_char *		cc;
4531 	struct ctl_var *	kv;
4532 	struct refclockstat	cs;
4533 
4534 	if (res_associd != 0) {
4535 		peer = findpeerbyassoc(res_associd);
4536 	} else {
4537 		/*
4538 		 * Find a clock for this jerk.	If the system peer
4539 		 * is a clock use it, else search peer_list for one.
4540 		 */
4541 		if (sys_peer != NULL && (FLAG_REFCLOCK &
4542 		    sys_peer->flags))
4543 			peer = sys_peer;
4544 		else
4545 			for (peer = peer_list;
4546 			     peer != NULL;
4547 			     peer = peer->p_link)
4548 				if (FLAG_REFCLOCK & peer->flags)
4549 					break;
4550 	}
4551 	if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4552 		ctl_error(CERR_BADASSOC);
4553 		return;
4554 	}
4555 	/*
4556 	 * If we got here we have a peer which is a clock. Get his
4557 	 * status.
4558 	 */
4559 	cs.kv_list = NULL;
4560 	refclock_control(&peer->srcadr, NULL, &cs);
4561 	kv = cs.kv_list;
4562 	/*
4563 	 * Look for variables in the packet.
4564 	 */
4565 	rpkt.status = htons(ctlclkstatus(&cs));
4566 	wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4567 	wants = emalloc_zero(wants_alloc);
4568 	gotvar = FALSE;
4569 	while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4570 		if (!(EOV & v->flags)) {
4571 			wants[v->code] = TRUE;
4572 			gotvar = TRUE;
4573 		} else {
4574 			v = ctl_getitem(kv, &valuep);
4575 			if (NULL == v) {
4576 				ctl_error(CERR_BADVALUE);
4577 				free(wants);
4578 				free_varlist(cs.kv_list);
4579 				return;
4580 			}
4581 			if (EOV & v->flags) {
4582 				ctl_error(CERR_UNKNOWNVAR);
4583 				free(wants);
4584 				free_varlist(cs.kv_list);
4585 				return;
4586 			}
4587 			wants[CC_MAXCODE + 1 + v->code] = TRUE;
4588 			gotvar = TRUE;
4589 		}
4590 	}
4591 
4592 	if (gotvar) {
4593 		for (i = 1; i <= CC_MAXCODE; i++)
4594 			if (wants[i])
4595 				ctl_putclock(i, &cs, TRUE);
4596 		if (kv != NULL)
4597 			for (i = 0; !(EOV & kv[i].flags); i++)
4598 				if (wants[i + CC_MAXCODE + 1])
4599 					ctl_putdata(kv[i].text,
4600 						    strlen(kv[i].text),
4601 						    FALSE);
4602 	} else {
4603 		for (cc = def_clock_var; *cc != 0; cc++)
4604 			ctl_putclock((int)*cc, &cs, FALSE);
4605 		for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4606 			if (DEF & kv->flags)
4607 				ctl_putdata(kv->text, strlen(kv->text),
4608 					    FALSE);
4609 	}
4610 
4611 	free(wants);
4612 	free_varlist(cs.kv_list);
4613 
4614 	ctl_flushpkt(0);
4615 #endif
4616 }
4617 
4618 
4619 /*
4620  * write_clockstatus - we don't do this
4621  */
4622 /*ARGSUSED*/
4623 static void
4624 write_clockstatus(
4625 	struct recvbuf *rbufp,
4626 	int restrict_mask
4627 	)
4628 {
4629 	ctl_error(CERR_PERMISSION);
4630 }
4631 
4632 /*
4633  * Trap support from here on down. We send async trap messages when the
4634  * upper levels report trouble. Traps can by set either by control
4635  * messages or by configuration.
4636  */
4637 /*
4638  * set_trap - set a trap in response to a control message
4639  */
4640 static void
4641 set_trap(
4642 	struct recvbuf *rbufp,
4643 	int restrict_mask
4644 	)
4645 {
4646 	int traptype;
4647 
4648 	/*
4649 	 * See if this guy is allowed
4650 	 */
4651 	if (restrict_mask & RES_NOTRAP) {
4652 		ctl_error(CERR_PERMISSION);
4653 		return;
4654 	}
4655 
4656 	/*
4657 	 * Determine his allowed trap type.
4658 	 */
4659 	traptype = TRAP_TYPE_PRIO;
4660 	if (restrict_mask & RES_LPTRAP)
4661 		traptype = TRAP_TYPE_NONPRIO;
4662 
4663 	/*
4664 	 * Call ctlsettrap() to do the work.  Return
4665 	 * an error if it can't assign the trap.
4666 	 */
4667 	if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4668 			(int)res_version))
4669 		ctl_error(CERR_NORESOURCE);
4670 	ctl_flushpkt(0);
4671 }
4672 
4673 
4674 /*
4675  * unset_trap - unset a trap in response to a control message
4676  */
4677 static void
4678 unset_trap(
4679 	struct recvbuf *rbufp,
4680 	int restrict_mask
4681 	)
4682 {
4683 	int traptype;
4684 
4685 	/*
4686 	 * We don't prevent anyone from removing his own trap unless the
4687 	 * trap is configured. Note we also must be aware of the
4688 	 * possibility that restriction flags were changed since this
4689 	 * guy last set his trap. Set the trap type based on this.
4690 	 */
4691 	traptype = TRAP_TYPE_PRIO;
4692 	if (restrict_mask & RES_LPTRAP)
4693 		traptype = TRAP_TYPE_NONPRIO;
4694 
4695 	/*
4696 	 * Call ctlclrtrap() to clear this out.
4697 	 */
4698 	if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4699 		ctl_error(CERR_BADASSOC);
4700 	ctl_flushpkt(0);
4701 }
4702 
4703 
4704 /*
4705  * ctlsettrap - called to set a trap
4706  */
4707 int
4708 ctlsettrap(
4709 	sockaddr_u *raddr,
4710 	struct interface *linter,
4711 	int traptype,
4712 	int version
4713 	)
4714 {
4715 	size_t n;
4716 	struct ctl_trap *tp;
4717 	struct ctl_trap *tptouse;
4718 
4719 	/*
4720 	 * See if we can find this trap.  If so, we only need update
4721 	 * the flags and the time.
4722 	 */
4723 	if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4724 		switch (traptype) {
4725 
4726 		case TRAP_TYPE_CONFIG:
4727 			tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4728 			break;
4729 
4730 		case TRAP_TYPE_PRIO:
4731 			if (tp->tr_flags & TRAP_CONFIGURED)
4732 				return (1); /* don't change anything */
4733 			tp->tr_flags = TRAP_INUSE;
4734 			break;
4735 
4736 		case TRAP_TYPE_NONPRIO:
4737 			if (tp->tr_flags & TRAP_CONFIGURED)
4738 				return (1); /* don't change anything */
4739 			tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4740 			break;
4741 		}
4742 		tp->tr_settime = current_time;
4743 		tp->tr_resets++;
4744 		return (1);
4745 	}
4746 
4747 	/*
4748 	 * First we heard of this guy.	Try to find a trap structure
4749 	 * for him to use, clearing out lesser priority guys if we
4750 	 * have to. Clear out anyone who's expired while we're at it.
4751 	 */
4752 	tptouse = NULL;
4753 	for (n = 0; n < COUNTOF(ctl_traps); n++) {
4754 		tp = &ctl_traps[n];
4755 		if ((TRAP_INUSE & tp->tr_flags) &&
4756 		    !(TRAP_CONFIGURED & tp->tr_flags) &&
4757 		    ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4758 			tp->tr_flags = 0;
4759 			num_ctl_traps--;
4760 		}
4761 		if (!(TRAP_INUSE & tp->tr_flags)) {
4762 			tptouse = tp;
4763 		} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4764 			switch (traptype) {
4765 
4766 			case TRAP_TYPE_CONFIG:
4767 				if (tptouse == NULL) {
4768 					tptouse = tp;
4769 					break;
4770 				}
4771 				if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4772 				    !(TRAP_NONPRIO & tp->tr_flags))
4773 					break;
4774 
4775 				if (!(TRAP_NONPRIO & tptouse->tr_flags)
4776 				    && (TRAP_NONPRIO & tp->tr_flags)) {
4777 					tptouse = tp;
4778 					break;
4779 				}
4780 				if (tptouse->tr_origtime <
4781 				    tp->tr_origtime)
4782 					tptouse = tp;
4783 				break;
4784 
4785 			case TRAP_TYPE_PRIO:
4786 				if ( TRAP_NONPRIO & tp->tr_flags) {
4787 					if (tptouse == NULL ||
4788 					    ((TRAP_INUSE &
4789 					      tptouse->tr_flags) &&
4790 					     tptouse->tr_origtime <
4791 					     tp->tr_origtime))
4792 						tptouse = tp;
4793 				}
4794 				break;
4795 
4796 			case TRAP_TYPE_NONPRIO:
4797 				break;
4798 			}
4799 		}
4800 	}
4801 
4802 	/*
4803 	 * If we don't have room for him return an error.
4804 	 */
4805 	if (tptouse == NULL)
4806 		return (0);
4807 
4808 	/*
4809 	 * Set up this structure for him.
4810 	 */
4811 	tptouse->tr_settime = tptouse->tr_origtime = current_time;
4812 	tptouse->tr_count = tptouse->tr_resets = 0;
4813 	tptouse->tr_sequence = 1;
4814 	tptouse->tr_addr = *raddr;
4815 	tptouse->tr_localaddr = linter;
4816 	tptouse->tr_version = (u_char) version;
4817 	tptouse->tr_flags = TRAP_INUSE;
4818 	if (traptype == TRAP_TYPE_CONFIG)
4819 		tptouse->tr_flags |= TRAP_CONFIGURED;
4820 	else if (traptype == TRAP_TYPE_NONPRIO)
4821 		tptouse->tr_flags |= TRAP_NONPRIO;
4822 	num_ctl_traps++;
4823 	return (1);
4824 }
4825 
4826 
4827 /*
4828  * ctlclrtrap - called to clear a trap
4829  */
4830 int
4831 ctlclrtrap(
4832 	sockaddr_u *raddr,
4833 	struct interface *linter,
4834 	int traptype
4835 	)
4836 {
4837 	register struct ctl_trap *tp;
4838 
4839 	if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4840 		return (0);
4841 
4842 	if (tp->tr_flags & TRAP_CONFIGURED
4843 	    && traptype != TRAP_TYPE_CONFIG)
4844 		return (0);
4845 
4846 	tp->tr_flags = 0;
4847 	num_ctl_traps--;
4848 	return (1);
4849 }
4850 
4851 
4852 /*
4853  * ctlfindtrap - find a trap given the remote and local addresses
4854  */
4855 static struct ctl_trap *
4856 ctlfindtrap(
4857 	sockaddr_u *raddr,
4858 	struct interface *linter
4859 	)
4860 {
4861 	size_t	n;
4862 
4863 	for (n = 0; n < COUNTOF(ctl_traps); n++)
4864 		if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4865 		    && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4866 		    && (linter == ctl_traps[n].tr_localaddr))
4867 			return &ctl_traps[n];
4868 
4869 	return NULL;
4870 }
4871 
4872 
4873 /*
4874  * report_event - report an event to the trappers
4875  */
4876 void
4877 report_event(
4878 	int	err,		/* error code */
4879 	struct peer *peer,	/* peer structure pointer */
4880 	const char *str		/* protostats string */
4881 	)
4882 {
4883 	char	statstr[NTP_MAXSTRLEN];
4884 	int	i;
4885 	size_t	len;
4886 
4887 	/*
4888 	 * Report the error to the protostats file, system log and
4889 	 * trappers.
4890 	 */
4891 	if (peer == NULL) {
4892 
4893 		/*
4894 		 * Discard a system report if the number of reports of
4895 		 * the same type exceeds the maximum.
4896 		 */
4897 		if (ctl_sys_last_event != (u_char)err)
4898 			ctl_sys_num_events= 0;
4899 		if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
4900 			return;
4901 
4902 		ctl_sys_last_event = (u_char)err;
4903 		ctl_sys_num_events++;
4904 		snprintf(statstr, sizeof(statstr),
4905 		    "0.0.0.0 %04x %02x %s",
4906 		    ctlsysstatus(), err, eventstr(err));
4907 		if (str != NULL) {
4908 			len = strlen(statstr);
4909 			snprintf(statstr + len, sizeof(statstr) - len,
4910 			    " %s", str);
4911 		}
4912 		NLOG(NLOG_SYSEVENT)
4913 			msyslog(LOG_INFO, "%s", statstr);
4914 	} else {
4915 
4916 		/*
4917 		 * Discard a peer report if the number of reports of
4918 		 * the same type exceeds the maximum for that peer.
4919 		 */
4920 		const char *	src;
4921 		u_char		errlast;
4922 
4923 		errlast = (u_char)err & ~PEER_EVENT;
4924 		if (peer->last_event != errlast)
4925 			peer->num_events = 0;
4926 		if (peer->num_events >= CTL_PEER_MAXEVENTS)
4927 			return;
4928 
4929 		peer->last_event = errlast;
4930 		peer->num_events++;
4931 		if (ISREFCLOCKADR(&peer->srcadr))
4932 			src = refnumtoa(&peer->srcadr);
4933 		else
4934 			src = stoa(&peer->srcadr);
4935 
4936 		snprintf(statstr, sizeof(statstr),
4937 		    "%s %04x %02x %s", src,
4938 		    ctlpeerstatus(peer), err, eventstr(err));
4939 		if (str != NULL) {
4940 			len = strlen(statstr);
4941 			snprintf(statstr + len, sizeof(statstr) - len,
4942 			    " %s", str);
4943 		}
4944 		NLOG(NLOG_PEEREVENT)
4945 			msyslog(LOG_INFO, "%s", statstr);
4946 	}
4947 	record_proto_stats(statstr);
4948 #if DEBUG
4949 	if (debug)
4950 		printf("event at %lu %s\n", current_time, statstr);
4951 #endif
4952 
4953 	/*
4954 	 * If no trappers, return.
4955 	 */
4956 	if (num_ctl_traps <= 0)
4957 		return;
4958 
4959 	/* [Bug 3119]
4960 	 * Peer Events should be associated with a peer -- hence the
4961 	 * name. But there are instances where this function is called
4962 	 * *without* a valid peer. This happens e.g. with an unsolicited
4963 	 * CryptoNAK, or when a leap second alarm is going off while
4964 	 * currently without a system peer.
4965 	 *
4966 	 * The most sensible approach to this seems to bail out here if
4967 	 * this happens. Avoiding to call this function would also
4968 	 * bypass the log reporting in the first part of this function,
4969 	 * and this is probably not the best of all options.
4970 	 *   -*-perlinger@ntp.org-*-
4971 	 */
4972 	if ((err & PEER_EVENT) && !peer)
4973 		return;
4974 
4975 	/*
4976 	 * Set up the outgoing packet variables
4977 	 */
4978 	res_opcode = CTL_OP_ASYNCMSG;
4979 	res_offset = 0;
4980 	res_async = TRUE;
4981 	res_authenticate = FALSE;
4982 	datapt = rpkt.u.data;
4983 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
4984 	if (!(err & PEER_EVENT)) {
4985 		rpkt.associd = 0;
4986 		rpkt.status = htons(ctlsysstatus());
4987 
4988 		/* Include the core system variables and the list. */
4989 		for (i = 1; i <= CS_VARLIST; i++)
4990 			ctl_putsys(i);
4991 	} else if (NULL != peer) { /* paranoia -- skip output */
4992 		rpkt.associd = htons(peer->associd);
4993 		rpkt.status = htons(ctlpeerstatus(peer));
4994 
4995 		/* Dump it all. Later, maybe less. */
4996 		for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
4997 			ctl_putpeer(i, peer);
4998 #	    ifdef REFCLOCK
4999 		/*
5000 		 * for clock exception events: add clock variables to
5001 		 * reflect info on exception
5002 		 */
5003 		if (err == PEVNT_CLOCK) {
5004 			struct refclockstat cs;
5005 			struct ctl_var *kv;
5006 
5007 			cs.kv_list = NULL;
5008 			refclock_control(&peer->srcadr, NULL, &cs);
5009 
5010 			ctl_puthex("refclockstatus",
5011 				   ctlclkstatus(&cs));
5012 
5013 			for (i = 1; i <= CC_MAXCODE; i++)
5014 				ctl_putclock(i, &cs, FALSE);
5015 			for (kv = cs.kv_list;
5016 			     kv != NULL && !(EOV & kv->flags);
5017 			     kv++)
5018 				if (DEF & kv->flags)
5019 					ctl_putdata(kv->text,
5020 						    strlen(kv->text),
5021 						    FALSE);
5022 			free_varlist(cs.kv_list);
5023 		}
5024 #	    endif /* REFCLOCK */
5025 	}
5026 
5027 	/*
5028 	 * We're done, return.
5029 	 */
5030 	ctl_flushpkt(0);
5031 }
5032 
5033 
5034 /*
5035  * mprintf_event - printf-style varargs variant of report_event()
5036  */
5037 int
5038 mprintf_event(
5039 	int		evcode,		/* event code */
5040 	struct peer *	p,		/* may be NULL */
5041 	const char *	fmt,		/* msnprintf format */
5042 	...
5043 	)
5044 {
5045 	va_list	ap;
5046 	int	rc;
5047 	char	msg[512];
5048 
5049 	va_start(ap, fmt);
5050 	rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
5051 	va_end(ap);
5052 	report_event(evcode, p, msg);
5053 
5054 	return rc;
5055 }
5056 
5057 
5058 /*
5059  * ctl_clr_stats - clear stat counters
5060  */
5061 void
5062 ctl_clr_stats(void)
5063 {
5064 	ctltimereset = current_time;
5065 	numctlreq = 0;
5066 	numctlbadpkts = 0;
5067 	numctlresponses = 0;
5068 	numctlfrags = 0;
5069 	numctlerrors = 0;
5070 	numctlfrags = 0;
5071 	numctltooshort = 0;
5072 	numctlinputresp = 0;
5073 	numctlinputfrag = 0;
5074 	numctlinputerr = 0;
5075 	numctlbadoffset = 0;
5076 	numctlbadversion = 0;
5077 	numctldatatooshort = 0;
5078 	numctlbadop = 0;
5079 	numasyncmsgs = 0;
5080 }
5081 
5082 static u_short
5083 count_var(
5084 	const struct ctl_var *k
5085 	)
5086 {
5087 	u_int c;
5088 
5089 	if (NULL == k)
5090 		return 0;
5091 
5092 	c = 0;
5093 	while (!(EOV & (k++)->flags))
5094 		c++;
5095 
5096 	ENSURE(c <= USHRT_MAX);
5097 	return (u_short)c;
5098 }
5099 
5100 
5101 char *
5102 add_var(
5103 	struct ctl_var **kv,
5104 	u_long size,
5105 	u_short def
5106 	)
5107 {
5108 	u_short		c;
5109 	struct ctl_var *k;
5110 	char *		buf;
5111 
5112 	c = count_var(*kv);
5113 	*kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
5114 	k = *kv;
5115 	buf = emalloc(size);
5116 	k[c].code  = c;
5117 	k[c].text  = buf;
5118 	k[c].flags = def;
5119 	k[c + 1].code  = 0;
5120 	k[c + 1].text  = NULL;
5121 	k[c + 1].flags = EOV;
5122 
5123 	return buf;
5124 }
5125 
5126 
5127 void
5128 set_var(
5129 	struct ctl_var **kv,
5130 	const char *data,
5131 	u_long size,
5132 	u_short def
5133 	)
5134 {
5135 	struct ctl_var *k;
5136 	const char *s;
5137 	const char *t;
5138 	char *td;
5139 
5140 	if (NULL == data || !size)
5141 		return;
5142 
5143 	k = *kv;
5144 	if (k != NULL) {
5145 		while (!(EOV & k->flags)) {
5146 			if (NULL == k->text)	{
5147 				td = emalloc(size);
5148 				memcpy(td, data, size);
5149 				k->text = td;
5150 				k->flags = def;
5151 				return;
5152 			} else {
5153 				s = data;
5154 				t = k->text;
5155 				while (*t != '=' && *s == *t) {
5156 					s++;
5157 					t++;
5158 				}
5159 				if (*s == *t && ((*t == '=') || !*t)) {
5160 					td = erealloc((void *)(intptr_t)k->text, size);
5161 					memcpy(td, data, size);
5162 					k->text = td;
5163 					k->flags = def;
5164 					return;
5165 				}
5166 			}
5167 			k++;
5168 		}
5169 	}
5170 	td = add_var(kv, size, def);
5171 	memcpy(td, data, size);
5172 }
5173 
5174 
5175 void
5176 set_sys_var(
5177 	const char *data,
5178 	u_long size,
5179 	u_short def
5180 	)
5181 {
5182 	set_var(&ext_sys_var, data, size, def);
5183 }
5184 
5185 
5186 /*
5187  * get_ext_sys_var() retrieves the value of a user-defined variable or
5188  * NULL if the variable has not been setvar'd.
5189  */
5190 const char *
5191 get_ext_sys_var(const char *tag)
5192 {
5193 	struct ctl_var *	v;
5194 	size_t			c;
5195 	const char *		val;
5196 
5197 	val = NULL;
5198 	c = strlen(tag);
5199 	for (v = ext_sys_var; !(EOV & v->flags); v++) {
5200 		if (NULL != v->text && !memcmp(tag, v->text, c)) {
5201 			if ('=' == v->text[c]) {
5202 				val = v->text + c + 1;
5203 				break;
5204 			} else if ('\0' == v->text[c]) {
5205 				val = "";
5206 				break;
5207 			}
5208 		}
5209 	}
5210 
5211 	return val;
5212 }
5213 
5214 
5215 void
5216 free_varlist(
5217 	struct ctl_var *kv
5218 	)
5219 {
5220 	struct ctl_var *k;
5221 	if (kv) {
5222 		for (k = kv; !(k->flags & EOV); k++)
5223 			free((void *)(intptr_t)k->text);
5224 		free((void *)kv);
5225 	}
5226 }
5227