1 /* 2 * keyword-gen.c -- generate keyword scanner finite state machine and 3 * keyword_text array. 4 * 5 * This program is run to generate ntp_keyword.h 6 * After making a change here, two output files should be committed at 7 * the same time as keyword-gen.c: 8 * ntp_keyword.h 9 * keyword-gen-utd 10 * 11 * keyword-gen-utd is a sentinel used by Makefile.am to avoid compiling 12 * keyword_gen.c and generating ntp_keyword.h if the input keyword-gen.c 13 * has not changed. This is not solely an optimization, it also breaks 14 * a dependency chain that otherwise would cause programs to be compiled 15 * when running "make dist" or "make distdir". We want these to package 16 * the existing source without building anything but a tarball. See 17 * [Bug 1470]. 18 */ 19 #include <config.h> 20 #include <stdio.h> 21 #include <stdlib.h> 22 #include <time.h> 23 24 #include <ntp_stdlib.h> 25 #include <ntp_config.h> 26 #include <lib_strbuf.h> 27 #include "ntp_scanner.h" 28 #include "ntp_parser.h" 29 30 31 /* Define a structure to hold a (keyword, token) pair */ 32 struct key_tok { 33 char * key; /* Keyword */ 34 u_short token; /* Associated Token */ 35 follby followedby; /* nonzero indicates the next token(s) 36 forced to be string(s) */ 37 }; 38 39 struct key_tok ntp_keywords[] = { 40 { "...", T_Ellipsis, FOLLBY_TOKEN }, 41 { "allpeers", T_Allpeers, FOLLBY_TOKEN }, 42 { "automax", T_Automax, FOLLBY_TOKEN }, 43 { "broadcast", T_Broadcast, FOLLBY_STRING }, 44 { "broadcastclient", T_Broadcastclient, FOLLBY_TOKEN }, 45 { "broadcastdelay", T_Broadcastdelay, FOLLBY_TOKEN }, 46 { "checkhash", T_Checkhash, FOLLBY_TOKEN }, 47 { "ctl", T_Ctl, FOLLBY_TOKEN }, 48 { "device", T_Device, FOLLBY_STRING }, 49 { "disable", T_Disable, FOLLBY_TOKEN }, 50 { "driftfile", T_Driftfile, FOLLBY_STRING }, 51 { "dscp", T_Dscp, FOLLBY_TOKEN }, 52 { "enable", T_Enable, FOLLBY_TOKEN }, 53 { "end", T_End, FOLLBY_TOKEN }, 54 { "filegen", T_Filegen, FOLLBY_TOKEN }, 55 { "fudge", T_Fudge, FOLLBY_STRING }, 56 { "ignorehash", T_Ignorehash, FOLLBY_TOKEN }, 57 { "io", T_Io, FOLLBY_TOKEN }, 58 { "includefile", T_Includefile, FOLLBY_STRING }, 59 { "leapfile", T_Leapfile, FOLLBY_STRING }, 60 { "leapsmearinterval", T_Leapsmearinterval, FOLLBY_TOKEN }, 61 { "logconfig", T_Logconfig, FOLLBY_STRINGS_TO_EOC }, 62 { "logfile", T_Logfile, FOLLBY_STRING }, 63 { "manycastclient", T_Manycastclient, FOLLBY_STRING }, 64 { "manycastserver", T_Manycastserver, FOLLBY_STRINGS_TO_EOC }, 65 { "mem", T_Mem, FOLLBY_TOKEN }, 66 { "multicastclient", T_Multicastclient, FOLLBY_STRINGS_TO_EOC }, 67 { "peer", T_Peer, FOLLBY_STRING }, 68 { "phone", T_Phone, FOLLBY_STRINGS_TO_EOC }, 69 { "pidfile", T_Pidfile, FOLLBY_STRING }, 70 { "pollskewlist", T_PollSkewList, FOLLBY_TOKEN }, 71 { "pool", T_Pool, FOLLBY_STRING }, 72 { "discard", T_Discard, FOLLBY_TOKEN }, 73 { "reset", T_Reset, FOLLBY_TOKEN }, 74 { "restrict", T_Restrict, FOLLBY_TOKEN }, 75 { "rlimit", T_Rlimit, FOLLBY_TOKEN }, 76 { "server", T_Server, FOLLBY_STRING }, 77 { "serverresponse", T_Serverresponse, FOLLBY_TOKEN }, 78 { "fuzz", T_Fuzz, FOLLBY_TOKEN }, 79 { "poll", T_Poll, FOLLBY_TOKEN }, 80 { "setvar", T_Setvar, FOLLBY_STRING }, 81 { "statistics", T_Statistics, FOLLBY_TOKEN }, 82 { "statsdir", T_Statsdir, FOLLBY_STRING }, 83 { "sys", T_Sys, FOLLBY_TOKEN }, 84 { "tick", T_Tick, FOLLBY_TOKEN }, 85 { "timer", T_Timer, FOLLBY_TOKEN }, 86 { "tinker", T_Tinker, FOLLBY_TOKEN }, 87 { "tos", T_Tos, FOLLBY_TOKEN }, 88 { "trap", T_Trap, FOLLBY_STRING }, 89 { "unconfig", T_Unconfig, FOLLBY_STRING }, 90 { "unpeer", T_Unpeer, FOLLBY_STRING }, 91 { "xmtnonce", T_Xmtnonce, FOLLBY_TOKEN }, 92 /* authentication_command */ 93 { "controlkey", T_ControlKey, FOLLBY_TOKEN }, 94 { "crypto", T_Crypto, FOLLBY_TOKEN }, 95 { "keys", T_Keys, FOLLBY_STRING }, 96 { "keysdir", T_Keysdir, FOLLBY_STRING }, 97 { "ntpsigndsocket", T_NtpSignDsocket, FOLLBY_STRING }, 98 { "requestkey", T_Requestkey, FOLLBY_TOKEN }, 99 { "revoke", T_Revoke, FOLLBY_TOKEN }, 100 { "trustedkey", T_Trustedkey, FOLLBY_TOKEN }, 101 /* IPv4/IPv6 protocol override flag */ 102 { "-4", T_Ipv4_flag, FOLLBY_TOKEN }, 103 { "-6", T_Ipv6_flag, FOLLBY_TOKEN }, 104 /* option */ 105 { "autokey", T_Autokey, FOLLBY_TOKEN }, 106 { "burst", T_Burst, FOLLBY_TOKEN }, 107 { "iburst", T_Iburst, FOLLBY_TOKEN }, 108 { "key", T_Key, FOLLBY_TOKEN }, 109 { "maxpoll", T_Maxpoll, FOLLBY_TOKEN }, 110 { "mdnstries", T_Mdnstries, FOLLBY_TOKEN }, 111 { "minpoll", T_Minpoll, FOLLBY_TOKEN }, 112 { "mode", T_Mode, FOLLBY_TOKEN }, 113 { "noselect", T_Noselect, FOLLBY_TOKEN }, 114 { "preempt", T_Preempt, FOLLBY_TOKEN }, 115 { "true", T_True, FOLLBY_TOKEN }, 116 { "prefer", T_Prefer, FOLLBY_TOKEN }, 117 { "ttl", T_Ttl, FOLLBY_TOKEN }, 118 { "version", T_Version, FOLLBY_TOKEN }, 119 { "xleave", T_Xleave, FOLLBY_TOKEN }, 120 /* crypto_command */ 121 { "host", T_Host, FOLLBY_STRING }, 122 { "ident", T_Ident, FOLLBY_STRING }, 123 { "pw", T_Pw, FOLLBY_STRING }, 124 { "randfile", T_Randfile, FOLLBY_STRING }, 125 { "digest", T_Digest, FOLLBY_STRING }, 126 /*** MONITORING COMMANDS ***/ 127 /* stat */ 128 { "clockstats", T_Clockstats, FOLLBY_TOKEN }, 129 { "cryptostats", T_Cryptostats, FOLLBY_TOKEN }, 130 { "loopstats", T_Loopstats, FOLLBY_TOKEN }, 131 { "peerstats", T_Peerstats, FOLLBY_TOKEN }, 132 { "rawstats", T_Rawstats, FOLLBY_TOKEN }, 133 { "sysstats", T_Sysstats, FOLLBY_TOKEN }, 134 { "protostats", T_Protostats, FOLLBY_TOKEN }, 135 { "timingstats", T_Timingstats, FOLLBY_TOKEN }, 136 /* filegen_option */ 137 { "file", T_File, FOLLBY_STRING }, 138 { "link", T_Link, FOLLBY_TOKEN }, 139 { "nolink", T_Nolink, FOLLBY_TOKEN }, 140 { "type", T_Type, FOLLBY_TOKEN }, 141 /* filegen_type */ 142 { "age", T_Age, FOLLBY_TOKEN }, 143 { "day", T_Day, FOLLBY_TOKEN }, 144 { "month", T_Month, FOLLBY_TOKEN }, 145 { "none", T_None, FOLLBY_TOKEN }, 146 { "pid", T_Pid, FOLLBY_TOKEN }, 147 { "week", T_Week, FOLLBY_TOKEN }, 148 { "year", T_Year, FOLLBY_TOKEN }, 149 /*** ORPHAN MODE COMMANDS ***/ 150 /* tos_option */ 151 { "minclock", T_Minclock, FOLLBY_TOKEN }, 152 { "maxclock", T_Maxclock, FOLLBY_TOKEN }, 153 { "minsane", T_Minsane, FOLLBY_TOKEN }, 154 { "floor", T_Floor, FOLLBY_TOKEN }, 155 { "ceiling", T_Ceiling, FOLLBY_TOKEN }, 156 { "cohort", T_Cohort, FOLLBY_TOKEN }, 157 { "mindist", T_Mindist, FOLLBY_TOKEN }, 158 { "maxdist", T_Maxdist, FOLLBY_TOKEN }, 159 { "bcpollbstep", T_Bcpollbstep, FOLLBY_TOKEN }, 160 { "beacon", T_Beacon, FOLLBY_TOKEN }, 161 { "orphan", T_Orphan, FOLLBY_TOKEN }, 162 { "orphanwait", T_Orphanwait, FOLLBY_TOKEN }, 163 { "nonvolatile", T_Nonvolatile, FOLLBY_TOKEN }, 164 { "basedate", T_Basedate, FOLLBY_STRING }, 165 /* access_control_flag */ 166 { "default", T_Default, FOLLBY_TOKEN }, 167 { "source", T_Source, FOLLBY_TOKEN }, 168 { "epeer", T_Epeer, FOLLBY_TOKEN }, 169 { "noepeer", T_Noepeer, FOLLBY_TOKEN }, 170 { "flake", T_Flake, FOLLBY_TOKEN }, 171 { "ignore", T_Ignore, FOLLBY_TOKEN }, 172 { "ippeerlimit", T_Ippeerlimit, FOLLBY_TOKEN }, 173 { "limited", T_Limited, FOLLBY_TOKEN }, 174 { "mssntp", T_Mssntp, FOLLBY_TOKEN }, 175 { "kod", T_Kod, FOLLBY_TOKEN }, 176 { "lowpriotrap", T_Lowpriotrap, FOLLBY_TOKEN }, 177 { "mask", T_Mask, FOLLBY_TOKEN }, 178 { "nomodify", T_Nomodify, FOLLBY_TOKEN }, 179 { "nomrulist", T_Nomrulist, FOLLBY_TOKEN }, 180 { "nopeer", T_Nopeer, FOLLBY_TOKEN }, 181 { "noquery", T_Noquery, FOLLBY_TOKEN }, 182 { "noserve", T_Noserve, FOLLBY_TOKEN }, 183 { "notrap", T_Notrap, FOLLBY_TOKEN }, 184 { "notrust", T_Notrust, FOLLBY_TOKEN }, 185 { "ntpport", T_Ntpport, FOLLBY_TOKEN }, 186 /* discard_option */ 187 { "average", T_Average, FOLLBY_TOKEN }, 188 { "minimum", T_Minimum, FOLLBY_TOKEN }, 189 { "monitor", T_Monitor, FOLLBY_TOKEN }, 190 /* mru_option */ 191 { "incalloc", T_Incalloc, FOLLBY_TOKEN }, 192 { "incmem", T_Incmem, FOLLBY_TOKEN }, 193 { "initalloc", T_Initalloc, FOLLBY_TOKEN }, 194 { "initmem", T_Initmem, FOLLBY_TOKEN }, 195 { "mindepth", T_Mindepth, FOLLBY_TOKEN }, 196 { "maxage", T_Maxage, FOLLBY_TOKEN }, 197 { "maxdepth", T_Maxdepth, FOLLBY_TOKEN }, 198 { "maxmem", T_Maxmem, FOLLBY_TOKEN }, 199 { "mru", T_Mru, FOLLBY_TOKEN }, 200 /* fudge_factor */ 201 { "abbrev", T_Abbrev, FOLLBY_STRING }, 202 { "flag1", T_Flag1, FOLLBY_TOKEN }, 203 { "flag2", T_Flag2, FOLLBY_TOKEN }, 204 { "flag3", T_Flag3, FOLLBY_TOKEN }, 205 { "flag4", T_Flag4, FOLLBY_TOKEN }, 206 { "refid", T_Refid, FOLLBY_STRING }, 207 { "stratum", T_Stratum, FOLLBY_TOKEN }, 208 { "time1", T_Time1, FOLLBY_TOKEN }, 209 { "time2", T_Time2, FOLLBY_TOKEN }, 210 { "minjitter", T_Minjitter, FOLLBY_TOKEN }, 211 /* device spec */ 212 { "ppsdata", T_PpsData, FOLLBY_STRING }, 213 { "timedata", T_TimeData, FOLLBY_STRING }, 214 /* system_option */ 215 { "auth", T_Auth, FOLLBY_TOKEN }, 216 { "bclient", T_Bclient, FOLLBY_TOKEN }, 217 { "calibrate", T_Calibrate, FOLLBY_TOKEN }, 218 { "kernel", T_Kernel, FOLLBY_TOKEN }, 219 { "mode7", T_Mode7, FOLLBY_TOKEN }, 220 { "ntp", T_Ntp, FOLLBY_TOKEN }, 221 { "peer_clear_digest_early", T_PCEdigest, FOLLBY_TOKEN }, 222 { "stats", T_Stats, FOLLBY_TOKEN }, 223 { "unpeer_crypto_early", T_UEcrypto, FOLLBY_TOKEN }, 224 { "unpeer_crypto_nak_early", T_UEcryptonak, FOLLBY_TOKEN }, 225 { "unpeer_digest_early", T_UEdigest, FOLLBY_TOKEN }, 226 /* rlimit_option */ 227 { "memlock", T_Memlock, FOLLBY_TOKEN }, 228 { "stacksize", T_Stacksize, FOLLBY_TOKEN }, 229 { "filenum", T_Filenum, FOLLBY_TOKEN }, 230 /* tinker_option */ 231 { "step", T_Step, FOLLBY_TOKEN }, 232 { "stepback", T_Stepback, FOLLBY_TOKEN }, 233 { "stepfwd", T_Stepfwd, FOLLBY_TOKEN }, 234 { "panic", T_Panic, FOLLBY_TOKEN }, 235 { "dispersion", T_Dispersion, FOLLBY_TOKEN }, 236 { "stepout", T_Stepout, FOLLBY_TOKEN }, 237 { "allan", T_Allan, FOLLBY_TOKEN }, 238 { "huffpuff", T_Huffpuff, FOLLBY_TOKEN }, 239 { "freq", T_Freq, FOLLBY_TOKEN }, 240 /* miscellaneous_command */ 241 { "port", T_Port, FOLLBY_TOKEN }, 242 { "interface", T_Interface, FOLLBY_TOKEN }, 243 { "saveconfigdir", T_Saveconfigdir, FOLLBY_STRING }, 244 /* interface_command (ignore and interface already defined) */ 245 { "nic", T_Nic, FOLLBY_TOKEN }, 246 { "all", T_All, FOLLBY_TOKEN }, 247 { "ipv4", T_Ipv4, FOLLBY_TOKEN }, 248 { "ipv6", T_Ipv6, FOLLBY_TOKEN }, 249 { "wildcard", T_Wildcard, FOLLBY_TOKEN }, 250 { "listen", T_Listen, FOLLBY_TOKEN }, 251 { "drop", T_Drop, FOLLBY_TOKEN }, 252 /* simulator commands */ 253 { "simulate", T_Simulate, FOLLBY_TOKEN }, 254 { "simulation_duration",T_Sim_Duration, FOLLBY_TOKEN }, 255 { "beep_delay", T_Beep_Delay, FOLLBY_TOKEN }, 256 { "duration", T_Duration, FOLLBY_TOKEN }, 257 { "server_offset", T_Server_Offset, FOLLBY_TOKEN }, 258 { "freq_offset", T_Freq_Offset, FOLLBY_TOKEN }, 259 { "wander", T_Wander, FOLLBY_TOKEN }, 260 { "jitter", T_Jitter, FOLLBY_TOKEN }, 261 { "prop_delay", T_Prop_Delay, FOLLBY_TOKEN }, 262 { "proc_delay", T_Proc_Delay, FOLLBY_TOKEN }, 263 }; 264 265 typedef struct big_scan_state_tag { 266 char ch; /* Character this state matches on */ 267 char followedby; /* Forces next token(s) to T_String */ 268 u_short finishes_token; /* nonzero ID if last keyword char */ 269 u_short match_next_s; /* next state to check matching ch */ 270 u_short other_next_s; /* next state to check if not ch */ 271 } big_scan_state; 272 273 /* 274 * Note: to increase MAXSTATES beyond 2048, be aware it is currently 275 * crammed into 11 bits in scan_state form. Raising to 4096 would be 276 * relatively easy by storing the followedby value in a separate 277 * array with one entry per token, and shrinking the char value to 278 * 7 bits to free a bit for accepting/non-accepting. More than 4096 279 * states will require expanding scan_state beyond 32 bits each. 280 */ 281 #define MAXSTATES 2048 282 #define MAX_TOK_LEN 63 283 284 const char * current_keyword;/* for error reporting */ 285 big_scan_state sst[MAXSTATES]; /* scanner FSM state entries */ 286 u_short sst_highwater; /* next entry index to consider */ 287 char * symb[1024]; /* map token ID to symbolic name */ 288 289 /* for libntp */ 290 const char * progname = "keyword-gen"; 291 292 int main (int, char **); 293 static void generate_preamble (void); 294 static void generate_fsm (void); 295 static void generate_token_text (void); 296 static u_short create_keyword_scanner (void); 297 static u_short create_scan_states (char *, u_short, follby, u_short); 298 int compare_key_tok_id (const void *, const void *); 299 int compare_key_tok_text (const void *, const void *); 300 void populate_symb (char *); 301 const char * symbname (u_short); 302 303 304 int main(int argc, char **argv) 305 { 306 if (argc < 2) { 307 fprintf(stderr, "Usage:\n%s t_header.h\n", argv[0]); 308 exit(1); 309 } 310 debug = 1; 311 312 populate_symb(argv[1]); 313 314 generate_preamble(); 315 generate_token_text(); 316 generate_fsm(); 317 318 return 0; 319 } 320 321 322 static void 323 generate_preamble(void) 324 { 325 time_t now; 326 char timestamp[128]; 327 char preamble[] = 328 "/*\n" 329 " * ntp_keyword.h\n" 330 " * \n" 331 " * NOTE: edit this file with caution, it is generated by keyword-gen.c\n" 332 " *\t Generated %s UTC diff_ignore_line\n" 333 " *\n" 334 " */\n" 335 "#include \"ntp_scanner.h\"\n" 336 "#include \"ntp_parser.h\"\n" 337 "\n"; 338 339 time(&now); 340 if (!strftime(timestamp, sizeof(timestamp), 341 "%Y-%m-%d %H:%M:%S", gmtime(&now))) 342 timestamp[0] = '\0'; 343 344 printf(preamble, timestamp); 345 } 346 347 348 static void 349 generate_fsm(void) 350 { 351 char rprefix[MAX_TOK_LEN + 1]; 352 char prefix[MAX_TOK_LEN + 1]; 353 char token_id_comment[16 + MAX_TOK_LEN + 1]; 354 size_t prefix_len; 355 char *p; 356 char *r; 357 u_short initial_state; 358 u_short this_state; 359 u_short state; 360 u_short i; 361 u_short token; 362 363 /* 364 * Sort ntp_keywords in alphabetical keyword order. This is 365 * not necessary, but minimizes nonfunctional changes in the 366 * generated finite state machine when keywords are modified. 367 */ 368 qsort(ntp_keywords, COUNTOF(ntp_keywords), 369 sizeof(ntp_keywords[0]), compare_key_tok_text); 370 371 /* 372 * To save space, reserve the state array entry matching each 373 * token number for its terminal state, so the token identifier 374 * does not need to be stored in each state, but can be 375 * recovered trivially. To mark the entry reserved, 376 * finishes_token is nonzero. 377 */ 378 379 for (i = 0; i < COUNTOF(ntp_keywords); i++) { 380 token = ntp_keywords[i].token; 381 if (1 > token || token >= COUNTOF(sst)) { 382 fprintf(stderr, 383 "keyword-gen sst[%u] too small " 384 "for keyword '%s' id %d\n", 385 (int)COUNTOF(sst), 386 ntp_keywords[i].key, 387 token); 388 exit(4); 389 } 390 sst[token].finishes_token = token; 391 } 392 393 initial_state = create_keyword_scanner(); 394 395 fprintf(stderr, 396 "%d keywords consumed %d states of %d max.\n", 397 (int)COUNTOF(ntp_keywords), 398 sst_highwater - 1, 399 (int)COUNTOF(sst) - 1); 400 401 printf("#define SCANNER_INIT_S %d\n\n", initial_state); 402 403 printf("const scan_state sst[%d] = {\n" 404 "/*SS_T( ch,\tf-by, match, other ),\t\t\t\t */\n" 405 " 0,\t\t\t\t /* %5d %-17s */\n", 406 sst_highwater, 407 0, ""); 408 409 for (i = 1; i < sst_highwater; i++) { 410 411 /* verify fields will fit */ 412 if (sst[i].followedby & ~0x3) { 413 fprintf(stderr, 414 "keyword-gen internal error " 415 "sst[%d].followedby %d too big\n", 416 i, sst[i].followedby); 417 exit(7); 418 } 419 420 if (sst_highwater <= sst[i].match_next_s 421 || sst[i].match_next_s & ~0x7ff) { 422 fprintf(stderr, 423 "keyword-gen internal error " 424 "sst[%d].match_next_s %d too big\n", 425 i, sst[i].match_next_s); 426 exit(8); 427 } 428 429 if (sst_highwater <= sst[i].other_next_s 430 || sst[i].other_next_s & ~0x7ff) { 431 fprintf(stderr, 432 "keyword-gen internal error " 433 "sst[%d].other_next_s %d too big\n", 434 i, sst[i].other_next_s); 435 exit(9); 436 } 437 438 if (sst[i].finishes_token) { 439 snprintf(token_id_comment, 440 sizeof(token_id_comment), "%5d %-17s", 441 i, symbname(sst[i].finishes_token)); 442 if (i != sst[i].finishes_token) { 443 fprintf(stderr, 444 "keyword-gen internal error " 445 "entry %d finishes token %d\n", 446 i, sst[i].finishes_token); 447 exit(5); 448 } 449 } else { 450 /* 451 * Determine the keyword prefix that leads to this 452 * state. This is expensive but keyword-gen is run 453 * only when it changes. Distributing keyword-gen-utd 454 * achieves that, which is why it must be committed 455 * at the same time as keyword-gen.c and ntp_keyword.h. 456 * 457 * Scan the state array iteratively looking for a state 458 * which leads to the current one, collecting matching 459 * characters along the way. There is only one such 460 * path back to the starting state given the way our 461 * scanner state machine is built and the practice of 462 * using the spelling of the keyword as its T_* token 463 * identifier, which results in never having two 464 * spellings result in the same T_* value. 465 */ 466 prefix_len = 0; 467 this_state = i; 468 do { 469 for (state = 1; state < sst_highwater; state++) 470 if (sst[state].other_next_s == this_state) { 471 this_state = state; 472 break; 473 } else if (sst[state].match_next_s == this_state) { 474 this_state = state; 475 rprefix[prefix_len] = sst[state].ch; 476 prefix_len++; 477 break; 478 } 479 } while (this_state != initial_state); 480 481 if (prefix_len) { 482 /* reverse rprefix into prefix */ 483 p = prefix + prefix_len; 484 r = rprefix; 485 while (r < rprefix + prefix_len) 486 *--p = *r++; 487 } 488 prefix[prefix_len] = '\0'; 489 490 snprintf(token_id_comment, 491 sizeof(token_id_comment), "%5d %-17s", 492 i, (initial_state == i) 493 ? "[initial state]" 494 : prefix); 495 } 496 497 printf(" S_ST( '%c',\t%d, %5u, %5u )%s /* %s */\n", 498 sst[i].ch, 499 sst[i].followedby, 500 sst[i].match_next_s, 501 sst[i].other_next_s, 502 (i + 1 < sst_highwater) 503 ? "," 504 : " ", 505 token_id_comment); 506 } 507 508 printf("};\n\n"); 509 } 510 511 512 /* Define a function to create the states of the scanner. This function 513 * is used by the create_keyword_scanner function below. 514 * 515 * This function takes a suffix of a keyword, the token to be returned on 516 * recognizing the complete keyword, and any pre-existing state that exists 517 * for some other keyword that has the same prefix as the current one. 518 */ 519 static u_short 520 create_scan_states( 521 char * text, 522 u_short token, 523 follby followedby, 524 u_short prev_state 525 ) 526 { 527 u_short my_state; 528 u_short return_state; 529 u_short prev_char_s; 530 u_short curr_char_s; 531 532 return_state = prev_state; 533 curr_char_s = prev_state; 534 prev_char_s = 0; 535 536 /* Find the correct position to insert the state. 537 * All states should be in alphabetical order 538 */ 539 while (curr_char_s && (text[0] < sst[curr_char_s].ch)) { 540 prev_char_s = curr_char_s; 541 curr_char_s = sst[curr_char_s].other_next_s; 542 } 543 544 /* 545 * Check if a previously seen keyword has the same prefix as 546 * the current keyword. If so, simply use the state for that 547 * keyword as my_state, otherwise, allocate a new state. 548 */ 549 if (curr_char_s && (text[0] == sst[curr_char_s].ch)) { 550 my_state = curr_char_s; 551 if ('\0' == text[1]) { 552 fprintf(stderr, 553 "Duplicate entries for keyword '%s' in" 554 " keyword_gen.c ntp_keywords[].\n", 555 current_keyword); 556 exit(2); 557 } 558 } else { 559 do 560 my_state = sst_highwater++; 561 while (my_state < COUNTOF(sst) 562 && sst[my_state].finishes_token); 563 if (my_state >= COUNTOF(sst)) { 564 fprintf(stderr, 565 "fatal, keyword scanner state array " 566 "sst[%d] is too small, modify\n" 567 "keyword-gen.c to increase.\n", 568 (int)COUNTOF(sst)); 569 exit(3); 570 } 571 /* Store the next character of the keyword */ 572 sst[my_state].ch = text[0]; 573 sst[my_state].other_next_s = curr_char_s; 574 sst[my_state].followedby = FOLLBY_NON_ACCEPTING; 575 576 if (prev_char_s) 577 sst[prev_char_s].other_next_s = my_state; 578 else 579 return_state = my_state; 580 } 581 582 /* Check if the next character is '\0'. 583 * If yes, we are done with the recognition and this is an accepting 584 * state. 585 * If not, we need to continue scanning 586 */ 587 if ('\0' == text[1]) { 588 sst[my_state].finishes_token = (u_short)token; 589 sst[my_state].followedby = (char)followedby; 590 591 if (sst[token].finishes_token != (u_short)token) { 592 fprintf(stderr, 593 "fatal, sst[%d] not reserved for %s.\n", 594 token, symbname(token)); 595 exit(6); 596 } 597 /* relocate so token id is sst[] index */ 598 if (my_state != token) { 599 sst[token] = sst[my_state]; 600 ZERO(sst[my_state]); 601 do 602 sst_highwater--; 603 while (sst[sst_highwater].finishes_token); 604 my_state = token; 605 if (prev_char_s) 606 sst[prev_char_s].other_next_s = my_state; 607 else 608 return_state = my_state; 609 } 610 } else 611 sst[my_state].match_next_s = 612 create_scan_states( 613 &text[1], 614 token, 615 followedby, 616 sst[my_state].match_next_s); 617 618 return return_state; 619 } 620 621 622 /* Define a function that takes a list of (keyword, token) values and 623 * creates a keywords scanner out of it. 624 */ 625 626 static u_short 627 create_keyword_scanner(void) 628 { 629 u_short scanner; 630 u_short i; 631 632 sst_highwater = 1; /* index 0 invalid, unused */ 633 scanner = 0; 634 635 for (i = 0; i < COUNTOF(ntp_keywords); i++) { 636 current_keyword = ntp_keywords[i].key; 637 scanner = 638 create_scan_states( 639 ntp_keywords[i].key, 640 ntp_keywords[i].token, 641 ntp_keywords[i].followedby, 642 scanner); 643 } 644 645 return scanner; 646 } 647 648 649 static void 650 generate_token_text(void) 651 { 652 u_short lowest_id; 653 u_short highest_id; 654 u_short id_count; 655 u_short id; 656 u_short i; 657 658 /* sort ntp_keywords in token ID order */ 659 qsort(ntp_keywords, COUNTOF(ntp_keywords), 660 sizeof(ntp_keywords[0]), compare_key_tok_id); 661 662 lowest_id = ntp_keywords[0].token; 663 highest_id = ntp_keywords[COUNTOF(ntp_keywords) - 1].token; 664 id_count = highest_id - lowest_id + 1; 665 666 printf("#define LOWEST_KEYWORD_ID %d\n\n", lowest_id); 667 668 printf("const char * const keyword_text[%d] = {", id_count); 669 670 id = lowest_id; 671 i = 0; 672 while (i < COUNTOF(ntp_keywords)) { 673 while (id < ntp_keywords[i].token) { 674 printf(",\n\t/* %-5d %5d %20s */\tNULL", 675 id - lowest_id, id, symbname(id)); 676 id++; 677 } 678 if (i > 0) 679 printf(","); 680 printf("\n\t/* %-5d %5d %20s */\t\"%s\"", 681 id - lowest_id, id, symbname(id), 682 ntp_keywords[i].key); 683 i++; 684 id++; 685 } 686 687 printf("\n};\n\n"); 688 } 689 690 691 int 692 compare_key_tok_id( 693 const void *a1, 694 const void *a2 695 ) 696 { 697 const struct key_tok *p1 = a1; 698 const struct key_tok *p2 = a2; 699 700 if (p1->token == p2->token) 701 return 0; 702 703 if (p1->token < p2->token) 704 return -1; 705 else 706 return 1; 707 } 708 709 710 int 711 compare_key_tok_text( 712 const void *a1, 713 const void *a2 714 ) 715 { 716 const struct key_tok *p1 = a1; 717 const struct key_tok *p2 = a2; 718 719 return strcmp(p1->key, p2->key); 720 } 721 722 723 /* 724 * populate_symb() - populate symb[] lookup array with symbolic token 725 * names such that symb[T_Age] == "T_Age", etc. 726 */ 727 void 728 populate_symb( 729 char *header_file 730 ) 731 { 732 FILE * yh; 733 char line[2 * MAX_TOK_LEN]; 734 char name[2 * MAX_TOK_LEN]; 735 int token; 736 737 yh = fopen(header_file, "r"); 738 if (NULL == yh) { 739 perror("unable to open yacc/bison header file"); 740 exit(4); 741 } 742 743 while (NULL != fgets(line, sizeof(line), yh)) 744 if (2 == sscanf(line, "#define %s %d", name, &token) 745 && 'T' == name[0] && '_' == name[1] && token >= 0 746 && token < COUNTOF(symb)) { 747 748 symb[token] = estrdup(name); 749 if (strlen(name) > MAX_TOK_LEN) { 750 fprintf(stderr, 751 "MAX_TOK_LEN %d too small for '%s'\n" 752 "Edit keyword-gen.c to raise.\n", 753 MAX_TOK_LEN, name); 754 exit(10); 755 } 756 } 757 fclose(yh); 758 } 759 760 761 const char * 762 symbname( 763 u_short token 764 ) 765 { 766 char *name; 767 768 if (token < COUNTOF(symb) && symb[token] != NULL) { 769 name = symb[token]; 770 } else { 771 LIB_GETBUF(name); 772 snprintf(name, LIB_BUFLENGTH, "%d", token); 773 } 774 775 return name; 776 } 777