xref: /freebsd/contrib/ntp/libntp/timespecops.c (revision a90b9d0159070121c221b966469c3e36d912bf82)
1 /*
2  * timespecops.c -- calculations on 'struct timespec' values
3  *
4  * Written by Juergen Perlinger (perlinger@ntp.org) for the NTP project.
5  * The contents of 'html/copyright.html' apply.
6  *
7  */
8 
9 #include "config.h"
10 
11 #include <sys/types.h>
12 #include <stdio.h>
13 #include <math.h>
14 
15 #include "ntp.h"
16 #include "timetoa.h"
17 #include "timespecops.h"
18 
19 
20 /* nanoseconds per second */
21 #define NANOSECONDS 1000000000
22 
23 /* conversion between l_fp fractions and nanoseconds */
24 #ifdef HAVE_U_INT64
25 # define FTOTVN(tsf)						\
26 	((int32)						\
27 	 (((u_int64)(tsf) * NANOSECONDS + 0x80000000) >> 32))
28 # define TVNTOF(tvu)						\
29 	((u_int32)						\
30 	 ((((u_int64)(tvu) << 32) + NANOSECONDS / 2) /		\
31 	  NANOSECONDS))
32 #else
33 # define NSECFRAC	(FRAC / NANOSECONDS)
34 # define FTOTVN(tsf)						\
35 	((int32)((tsf) / NSECFRAC + 0.5))
36 # define TVNTOF(tvu)						\
37 	((u_int32)((tvu) * NSECFRAC + 0.5))
38 #endif
39 
40 
41 
42 /* make sure nanoseconds are in nominal range */
43 struct timespec
44 normalize_tspec(
45 	struct timespec x
46 	)
47 {
48 #if SIZEOF_LONG > 4
49 	long	z;
50 
51 	/*
52 	 * tv_nsec is of type 'long', and on a 64-bit machine using only
53 	 * loops becomes prohibitive once the upper 32 bits get
54 	 * involved. On the other hand, division by constant should be
55 	 * fast enough; so we do a division of the nanoseconds in that
56 	 * case. The floor adjustment step follows with the standard
57 	 * normalisation loops. And labs() is intentionally not used
58 	 * here: it has implementation-defined behaviour when applied
59 	 * to LONG_MIN.
60 	 */
61 	if (x.tv_nsec < -3l * NANOSECONDS ||
62 	    x.tv_nsec > 3l * NANOSECONDS) {
63 		z = x.tv_nsec / NANOSECONDS;
64 		x.tv_nsec -= z * NANOSECONDS;
65 		x.tv_sec += z;
66 	}
67 #endif
68 	/* since 10**9 is close to 2**32, we don't divide but do a
69 	 * normalisation in a loop; this takes 3 steps max, and should
70 	 * outperform a division even if the mul-by-inverse trick is
71 	 * employed. */
72 	if (x.tv_nsec < 0)
73 		do {
74 			x.tv_nsec += NANOSECONDS;
75 			x.tv_sec--;
76 		} while (x.tv_nsec < 0);
77 	else if (x.tv_nsec >= NANOSECONDS)
78 		do {
79 			x.tv_nsec -= NANOSECONDS;
80 			x.tv_sec++;
81 		} while (x.tv_nsec >= NANOSECONDS);
82 
83 	return x;
84 }
85 
86 /* x = abs(a) */
87 struct timespec
88 abs_tspec(
89 	struct timespec	a
90 	)
91 {
92 	struct timespec	c;
93 
94 	c = normalize_tspec(a);
95 	if (c.tv_sec < 0) {
96 		if (c.tv_nsec != 0) {
97 			c.tv_sec = -c.tv_sec - 1;
98 			c.tv_nsec = NANOSECONDS - c.tv_nsec;
99 		} else {
100 			c.tv_sec = -c.tv_sec;
101 		}
102 	}
103 
104 	return c;
105 }
106 
107 /*
108  * compare previously-normalised a and b
109  * return 1 / 0 / -1 if a < / == / > b
110  */
111 int
112 cmp_tspec(
113 	struct timespec a,
114 	struct timespec b
115 	)
116 {
117 	int r;
118 
119 	r = (a.tv_sec > b.tv_sec) - (a.tv_sec < b.tv_sec);
120 	if (0 == r)
121 		r = (a.tv_nsec > b.tv_nsec) -
122 		    (a.tv_nsec < b.tv_nsec);
123 
124 	return r;
125 }
126 
127 /*
128  * test previously-normalised a
129  * return 1 / 0 / -1 if a < / == / > 0
130  */
131 int
132 test_tspec(
133 	struct timespec	a
134 	)
135 {
136 	int		r;
137 
138 	r = (a.tv_sec > 0) - (a.tv_sec < 0);
139 	if (r == 0)
140 		r = (a.tv_nsec > 0);
141 
142 	return r;
143 }
144 
145 /*
146  *  convert to l_fp type, relative and absolute
147  */
148 
149 /* convert from timespec duration to l_fp duration */
150 l_fp
151 tspec_intv_to_lfp(
152 	struct timespec	x
153 	)
154 {
155 	struct timespec	v;
156 	l_fp		y;
157 
158 	v = normalize_tspec(x);
159 	y.l_uf = TVNTOF(v.tv_nsec);
160 	y.l_i = (int32)v.tv_sec;
161 
162 	return y;
163 }
164 
165 /* convert from l_fp type, relative signed/unsigned and absolute */
166 struct timespec
167 lfp_intv_to_tspec(
168 	l_fp		x
169 	)
170 {
171 	struct timespec out;
172 	l_fp		absx;
173 	int		neg;
174 
175 	neg = L_ISNEG(&x);
176 	absx = x;
177 	if (neg) {
178 		L_NEG(&absx);
179 	}
180 	out.tv_nsec = FTOTVN(absx.l_uf);
181 	out.tv_sec = absx.l_i;
182 	if (neg) {
183 		out.tv_sec = -out.tv_sec;
184 		out.tv_nsec = -out.tv_nsec;
185 		out = normalize_tspec(out);
186 	}
187 
188 	return out;
189 }
190 
191 struct timespec
192 lfp_uintv_to_tspec(
193 	l_fp		x
194 	)
195 {
196 	struct timespec	out;
197 
198 	out.tv_nsec = FTOTVN(x.l_uf);
199 	out.tv_sec = x.l_ui;
200 
201 	return out;
202 }
203 
204 /*
205  * absolute (timestamp) conversion. Input is time in NTP epoch, output
206  * is in UN*X epoch. The NTP time stamp will be expanded around the
207  * pivot time *p or the current time, if p is NULL.
208  */
209 struct timespec
210 lfp_stamp_to_tspec(
211 	l_fp		x,
212 	const time_t *	p
213 	)
214 {
215 	struct timespec	out;
216 	vint64		sec;
217 
218 	sec = ntpcal_ntp_to_time(x.l_ui, p);
219 	out.tv_nsec = FTOTVN(x.l_uf);
220 
221 	/* copying a vint64 to a time_t needs some care... */
222 #if SIZEOF_TIME_T <= 4
223 	out.tv_sec = (time_t)sec.d_s.lo;
224 #elif defined(HAVE_INT64)
225 	out.tv_sec = (time_t)sec.q_s;
226 #else
227 	out.tv_sec = ((time_t)sec.d_s.hi << 32) | sec.d_s.lo;
228 #endif
229 
230 	return out;
231 }
232 
233 /* -*-EOF-*- */
234