xref: /freebsd/contrib/ntp/libntp/prettydate.c (revision dbfb4063ae95b956a2b0021c37c9a8be4c2e4393)
1 /*
2  * prettydate - convert a time stamp to something readable
3  */
4 #include <config.h>
5 #include <stdio.h>
6 
7 #include "ntp_fp.h"
8 #include "ntp_unixtime.h"	/* includes <sys/time.h> */
9 #include "lib_strbuf.h"
10 #include "ntp_stdlib.h"
11 #include "ntp_assert.h"
12 #include "ntp_calendar.h"
13 
14 #if SIZEOF_TIME_T < 4
15 # error sizeof(time_t) < 4 -- this will not work!
16 #endif
17 
18 static char *common_prettydate(l_fp *, int);
19 
20 const char * const months[12] = {
21   "Jan", "Feb", "Mar", "Apr", "May", "Jun",
22   "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
23 };
24 
25 const char * const daynames[7] = {
26   "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
27 };
28 
29 /* Helper function to handle possible wraparound of the ntp epoch.
30  *
31  * Works by periodic extension of the ntp time stamp in the UN*X epoch.
32  * If the 'time_t' is 32 bit, use solar cycle warping to get the value
33  * in a suitable range. Also uses solar cycle warping to work around
34  * really buggy implementations of 'gmtime()' / 'localtime()' that
35  * cannot work with a negative time value, that is, times before
36  * 1970-01-01. (MSVCRT...)
37  *
38  * Apart from that we're assuming that the localtime/gmtime library
39  * functions have been updated so that they work...
40  *
41  * An explanation: The julian calendar repeats ever 28 years, because
42  * it's the LCM of 7 and 1461, the week and leap year cycles. This is
43  * called a 'solar cycle'. The gregorian calendar does the same as
44  * long as no centennial year (divisible by 100, but not 400) goes in
45  * the way. So between 1901 and 2099 (inclusive) we can warp time
46  * stamps by 28 years to make them suitable for localtime() and
47  * gmtime() if we have trouble. Of course this will play hubbubb with
48  * the DST zone switches, so we should do it only if necessary; but as
49  * we NEED a proper conversion to dates via gmtime() we should try to
50  * cope with as many idiosyncrasies as possible.
51  *
52  */
53 
54 /*
55  * solar cycle in unsigned secs and years, and the cycle limits.
56  */
57 #define SOLAR_CYCLE_SECS   0x34AADC80UL	/* 7*1461*86400*/
58 #define SOLAR_CYCLE_YEARS  28
59 #define MINFOLD -3
60 #define MAXFOLD	 3
61 
62 static struct tm *
63 get_struct_tm(
64 	const vint64 *stamp,
65 	int	      local)
66 {
67 	struct tm *tm	 = NULL;
68 	int32	   folds = 0;
69 	time_t	   ts;
70 
71 #ifdef HAVE_INT64
72 
73 	int64 tl;
74 	ts = tl = stamp->q_s;
75 
76 	/*
77 	 * If there is chance of truncation, try to fix it. Let the
78 	 * compiler find out if this can happen at all.
79 	 */
80 	while (ts != tl) { /* truncation? */
81 		if (tl < 0) {
82 			if (--folds < MINFOLD)
83 				return NULL;
84 			tl += SOLAR_CYCLE_SECS;
85 		} else {
86 			if (++folds > MAXFOLD)
87 				return NULL;
88 			tl -= SOLAR_CYCLE_SECS;
89 		}
90 		ts = tl; /* next try... */
91 	}
92 #else
93 
94 	/*
95 	 * since we do not have 64-bit scalars, it's not likely we have
96 	 * 64-bit time_t. Assume 32 bits and properly reduce the value.
97 	 */
98 	u_int32 hi, lo;
99 
100 	hi = stamp->D_s.hi;
101 	lo = stamp->D_s.lo;
102 
103 	while ((hi && ~hi) || ((hi ^ lo) & 0x80000000u)) {
104 		if (M_ISNEG(hi, lo)) {
105 			if (--folds < MINFOLD)
106 				return NULL;
107 			M_ADD(hi, lo, 0, SOLAR_CYCLE_SECS);
108 		} else {
109 			if (++folds > MAXFOLD)
110 				return NULL;
111 			M_SUB(hi, lo, 0, SOLAR_CYCLE_SECS);
112 		}
113 	}
114 	ts = (int32)lo;
115 
116 #endif
117 
118 	/*
119 	 * 'ts' should be a suitable value by now. Just go ahead, but
120 	 * with care:
121 	 *
122 	 * There are some pathological implementations of 'gmtime()'
123 	 * and 'localtime()' out there. No matter if we have 32-bit or
124 	 * 64-bit 'time_t', try to fix this by solar cycle warping
125 	 * again...
126 	 *
127 	 * At least the MSDN says that the (Microsoft) Windoze
128 	 * versions of 'gmtime()' and 'localtime()' will bark on time
129 	 * stamps < 0.
130 	 */
131 	while ((tm = (*(local ? localtime : gmtime))(&ts)) == NULL)
132 		if (ts < 0) {
133 			if (--folds < MINFOLD)
134 				return NULL;
135 			ts += SOLAR_CYCLE_SECS;
136 		} else if (ts >= (time_t)SOLAR_CYCLE_SECS) {
137 			if (++folds > MAXFOLD)
138 				return NULL;
139 			ts -= SOLAR_CYCLE_SECS;
140 		} else
141 			return NULL; /* That's truly pathological! */
142 
143 	/* 'tm' surely not NULL here! */
144 	INSIST(tm != NULL);
145 	if (folds != 0) {
146 		tm->tm_year += folds * SOLAR_CYCLE_YEARS;
147 		if (tm->tm_year <= 0 || tm->tm_year >= 200)
148 			return NULL;	/* left warp range... can't help here! */
149 	}
150 
151 	return tm;
152 }
153 
154 static char *
155 common_prettydate(
156 	l_fp *ts,
157 	int local
158 	)
159 {
160 	static const char pfmt0[] =
161 	    "%08lx.%08lx  %s, %s %2d %4d %2d:%02d:%02d.%03u";
162 	static const char pfmt1[] =
163 	    "%08lx.%08lx [%s, %s %2d %4d %2d:%02d:%02d.%03u UTC]";
164 
165 	char	    *bp;
166 	struct tm   *tm;
167 	u_int	     msec;
168 	u_int32	     ntps;
169 	vint64	     sec;
170 
171 	LIB_GETBUF(bp);
172 
173 	if (ts->l_ui == 0 && ts->l_uf == 0) {
174 		strlcpy (bp, "(no time)", LIB_BUFLENGTH);
175 		return (bp);
176 	}
177 
178 	/* get & fix milliseconds */
179 	ntps = ts->l_ui;
180 	msec = ts->l_uf / 4294967;	/* fract / (2 ** 32 / 1000) */
181 	if (msec >= 1000u) {
182 		msec -= 1000u;
183 		ntps++;
184 	}
185 	sec = ntpcal_ntp_to_time(ntps, NULL);
186 	tm  = get_struct_tm(&sec, local);
187 	if (!tm) {
188 		/*
189 		 * get a replacement, but always in UTC, using
190 		 * ntpcal_time_to_date()
191 		 */
192 		struct calendar jd;
193 		ntpcal_time_to_date(&jd, &sec);
194 		snprintf(bp, LIB_BUFLENGTH, local ? pfmt1 : pfmt0,
195 			 (u_long)ts->l_ui, (u_long)ts->l_uf,
196 			 daynames[jd.weekday], months[jd.month-1],
197 			 jd.monthday, jd.year, jd.hour,
198 			 jd.minute, jd.second, msec);
199 	} else
200 		snprintf(bp, LIB_BUFLENGTH, pfmt0,
201 			 (u_long)ts->l_ui, (u_long)ts->l_uf,
202 			 daynames[tm->tm_wday], months[tm->tm_mon],
203 			 tm->tm_mday, 1900 + tm->tm_year, tm->tm_hour,
204 			 tm->tm_min, tm->tm_sec, msec);
205 	return bp;
206 }
207 
208 
209 char *
210 prettydate(
211 	l_fp *ts
212 	)
213 {
214 	return common_prettydate(ts, 1);
215 }
216 
217 
218 char *
219 gmprettydate(
220 	l_fp *ts
221 	)
222 {
223 	return common_prettydate(ts, 0);
224 }
225 
226 
227 struct tm *
228 ntp2unix_tm(
229 	u_int32 ntp, int local
230 	)
231 {
232 	vint64 vl;
233 	vl = ntpcal_ntp_to_time(ntp, NULL);
234 	return get_struct_tm(&vl, local);
235 }
236 
237