xref: /freebsd/contrib/ntp/libntp/ntp_calendar.c (revision d0b2dbfa0ecf2bbc9709efc5e20baf8e4b44bbbf)
1 /*
2  * ntp_calendar.c - calendar and helper functions
3  *
4  * Written by Juergen Perlinger (perlinger@ntp.org) for the NTP project.
5  * The contents of 'html/copyright.html' apply.
6  *
7  * --------------------------------------------------------------------
8  * Some notes on the implementation:
9  *
10  * Calendar algorithms thrive on the division operation, which is one of
11  * the slowest numerical operations in any CPU. What saves us here from
12  * abysmal performance is the fact that all divisions are divisions by
13  * constant numbers, and most compilers can do this by a multiplication
14  * operation.  But this might not work when using the div/ldiv/lldiv
15  * function family, because many compilers are not able to do inline
16  * expansion of the code with following optimisation for the
17  * constant-divider case.
18  *
19  * Also div/ldiv/lldiv are defined in terms of int/long/longlong, which
20  * are inherently target dependent. Nothing that could not be cured with
21  * autoconf, but still a mess...
22  *
23  * Furthermore, we need floor division in many places. C either leaves
24  * the division behaviour undefined (< C99) or demands truncation to
25  * zero (>= C99), so additional steps are required to make sure the
26  * algorithms work. The {l,ll}div function family is requested to
27  * truncate towards zero, which is also the wrong direction for our
28  * purpose.
29  *
30  * For all this, all divisions by constant are coded manually, even when
31  * there is a joined div/mod operation: The optimiser should sort that
32  * out, if possible. Most of the calculations are done with unsigned
33  * types, explicitely using two's complement arithmetics where
34  * necessary. This minimises the dependecies to compiler and target,
35  * while still giving reasonable to good performance.
36  *
37  * The implementation uses a few tricks that exploit properties of the
38  * two's complement: Floor division on negative dividents can be
39  * executed by using the one's complement of the divident. One's
40  * complement can be easily created using XOR and a mask.
41  *
42  * Finally, check for overflow conditions is minimal. There are only two
43  * calculation steps in the whole calendar that potentially suffer from
44  * an internal overflow, and these are coded in a way that avoids
45  * it. All other functions do not suffer from internal overflow and
46  * simply return the result truncated to 32 bits.
47  */
48 
49 #include <config.h>
50 #include <sys/types.h>
51 
52 #include "ntp_types.h"
53 #include "ntp_calendar.h"
54 #include "ntp_stdlib.h"
55 #include "ntp_fp.h"
56 #include "ntp_unixtime.h"
57 
58 #include "ntpd.h"
59 #include "lib_strbuf.h"
60 
61 /* For now, let's take the conservative approach: if the target property
62  * macros are not defined, check a few well-known compiler/architecture
63  * settings. Default is to assume that the representation of signed
64  * integers is unknown and shift-arithmetic-right is not available.
65  */
66 #ifndef TARGET_HAS_2CPL
67 # if defined(__GNUC__)
68 #  if defined(__i386__) || defined(__x86_64__) || defined(__arm__)
69 #   define TARGET_HAS_2CPL 1
70 #  else
71 #   define TARGET_HAS_2CPL 0
72 #  endif
73 # elif defined(_MSC_VER)
74 #  if defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM)
75 #   define TARGET_HAS_2CPL 1
76 #  else
77 #   define TARGET_HAS_2CPL 0
78 #  endif
79 # else
80 #  define TARGET_HAS_2CPL 0
81 # endif
82 #endif
83 
84 #ifndef TARGET_HAS_SAR
85 # define TARGET_HAS_SAR 0
86 #endif
87 
88 #if !defined(HAVE_64BITREGS) && defined(UINT64_MAX) && (SIZE_MAX >= UINT64_MAX)
89 # define HAVE_64BITREGS
90 #endif
91 
92 /*
93  *---------------------------------------------------------------------
94  * replacing the 'time()' function
95  *---------------------------------------------------------------------
96  */
97 
98 static systime_func_ptr systime_func = &time;
99 static inline time_t now(void);
100 
101 
102 systime_func_ptr
103 ntpcal_set_timefunc(
104 	systime_func_ptr nfunc
105 	)
106 {
107 	systime_func_ptr res;
108 
109 	res = systime_func;
110 	if (NULL == nfunc)
111 		nfunc = &time;
112 	systime_func = nfunc;
113 
114 	return res;
115 }
116 
117 
118 static inline time_t
119 now(void)
120 {
121 	return (*systime_func)(NULL);
122 }
123 
124 /*
125  *---------------------------------------------------------------------
126  * Get sign extension mask and unsigned 2cpl rep for a signed integer
127  *---------------------------------------------------------------------
128  */
129 
130 static inline uint32_t
131 int32_sflag(
132 	const int32_t v)
133 {
134 #   if TARGET_HAS_2CPL && TARGET_HAS_SAR && SIZEOF_INT >= 4
135 
136 	/* Let's assume that shift is the fastest way to get the sign
137 	 * extension of of a signed integer. This might not always be
138 	 * true, though -- On 8bit CPUs or machines without barrel
139 	 * shifter this will kill the performance. So we make sure
140 	 * we do this only if 'int' has at least 4 bytes.
141 	 */
142 	return (uint32_t)(v >> 31);
143 
144 #   else
145 
146 	/* This should be a rather generic approach for getting a sign
147 	 * extension mask...
148 	 */
149 	return UINT32_C(0) - (uint32_t)(v < 0);
150 
151 #   endif
152 }
153 
154 static inline int32_t
155 uint32_2cpl_to_int32(
156 	const uint32_t vu)
157 {
158 	int32_t v;
159 
160 #   if TARGET_HAS_2CPL
161 
162 	/* Just copy through the 32 bits from the unsigned value if
163 	 * we're on a two's complement target.
164 	 */
165 	v = (int32_t)vu;
166 
167 #   else
168 
169 	/* Convert to signed integer, making sure signed integer
170 	 * overflow cannot happen. Again, the optimiser might or might
171 	 * not find out that this is just a copy of 32 bits on a target
172 	 * with two's complement representation for signed integers.
173 	 */
174 	if (vu > INT32_MAX)
175 		v = -(int32_t)(~vu) - 1;
176 	else
177 		v = (int32_t)vu;
178 
179 #   endif
180 
181 	return v;
182 }
183 
184 /*
185  *---------------------------------------------------------------------
186  * Convert between 'time_t' and 'vint64'
187  *---------------------------------------------------------------------
188  */
189 vint64
190 time_to_vint64(
191 	const time_t * ptt
192 	)
193 {
194 	vint64 res;
195 	time_t tt;
196 
197 	tt = *ptt;
198 
199 #   if SIZEOF_TIME_T <= 4
200 
201 	res.D_s.hi = 0;
202 	if (tt < 0) {
203 		res.D_s.lo = (uint32_t)-tt;
204 		M_NEG(res.D_s.hi, res.D_s.lo);
205 	} else {
206 		res.D_s.lo = (uint32_t)tt;
207 	}
208 
209 #   elif defined(HAVE_INT64)
210 
211 	res.q_s = tt;
212 
213 #   else
214 	/*
215 	 * shifting negative signed quantities is compiler-dependent, so
216 	 * we better avoid it and do it all manually. And shifting more
217 	 * than the width of a quantity is undefined. Also a don't do!
218 	 */
219 	if (tt < 0) {
220 		tt = -tt;
221 		res.D_s.lo = (uint32_t)tt;
222 		res.D_s.hi = (uint32_t)(tt >> 32);
223 		M_NEG(res.D_s.hi, res.D_s.lo);
224 	} else {
225 		res.D_s.lo = (uint32_t)tt;
226 		res.D_s.hi = (uint32_t)(tt >> 32);
227 	}
228 
229 #   endif
230 
231 	return res;
232 }
233 
234 
235 time_t
236 vint64_to_time(
237 	const vint64 *tv
238 	)
239 {
240 	time_t res;
241 
242 #   if SIZEOF_TIME_T <= 4
243 
244 	res = (time_t)tv->D_s.lo;
245 
246 #   elif defined(HAVE_INT64)
247 
248 	res = (time_t)tv->q_s;
249 
250 #   else
251 
252 	res = ((time_t)tv->d_s.hi << 32) | tv->D_s.lo;
253 
254 #   endif
255 
256 	return res;
257 }
258 
259 /*
260  *---------------------------------------------------------------------
261  * Get the build date & time
262  *---------------------------------------------------------------------
263  */
264 int
265 ntpcal_get_build_date(
266 	struct calendar * jd
267 	)
268 {
269 	/* The C standard tells us the format of '__DATE__':
270 	 *
271 	 * __DATE__ The date of translation of the preprocessing
272 	 * translation unit: a character string literal of the form "Mmm
273 	 * dd yyyy", where the names of the months are the same as those
274 	 * generated by the asctime function, and the first character of
275 	 * dd is a space character if the value is less than 10. If the
276 	 * date of translation is not available, an
277 	 * implementation-defined valid date shall be supplied.
278 	 *
279 	 * __TIME__ The time of translation of the preprocessing
280 	 * translation unit: a character string literal of the form
281 	 * "hh:mm:ss" as in the time generated by the asctime
282 	 * function. If the time of translation is not available, an
283 	 * implementation-defined valid time shall be supplied.
284 	 *
285 	 * Note that MSVC declares DATE and TIME to be in the local time
286 	 * zone, while neither the C standard nor the GCC docs make any
287 	 * statement about this. As a result, we may be +/-12hrs off
288 	 * UTC.	 But for practical purposes, this should not be a
289 	 * problem.
290 	 *
291 	 */
292 #   ifdef MKREPRO_DATE
293 	static const char build[] = MKREPRO_TIME "/" MKREPRO_DATE;
294 #   else
295 	static const char build[] = __TIME__ "/" __DATE__;
296 #   endif
297 	static const char mlist[] = "JanFebMarAprMayJunJulAugSepOctNovDec";
298 
299 	char		  monstr[4];
300 	const char *	  cp;
301 	unsigned short	  hour, minute, second, day, year;
302 	/* Note: The above quantities are used for sscanf 'hu' format,
303 	 * so using 'uint16_t' is contra-indicated!
304 	 */
305 
306 #   ifdef DEBUG
307 	static int	  ignore  = 0;
308 #   endif
309 
310 	ZERO(*jd);
311 	jd->year     = 1970;
312 	jd->month    = 1;
313 	jd->monthday = 1;
314 
315 #   ifdef DEBUG
316 	/* check environment if build date should be ignored */
317 	if (0 == ignore) {
318 	    const char * envstr;
319 	    envstr = getenv("NTPD_IGNORE_BUILD_DATE");
320 	    ignore = 1 + (envstr && (!*envstr || !strcasecmp(envstr, "yes")));
321 	}
322 	if (ignore > 1)
323 	    return FALSE;
324 #   endif
325 
326 	if (6 == sscanf(build, "%hu:%hu:%hu/%3s %hu %hu",
327 			&hour, &minute, &second, monstr, &day, &year)) {
328 		cp = strstr(mlist, monstr);
329 		if (NULL != cp) {
330 			jd->year     = year;
331 			jd->month    = (uint8_t)((cp - mlist) / 3 + 1);
332 			jd->monthday = (uint8_t)day;
333 			jd->hour     = (uint8_t)hour;
334 			jd->minute   = (uint8_t)minute;
335 			jd->second   = (uint8_t)second;
336 
337 			return TRUE;
338 		}
339 	}
340 
341 	return FALSE;
342 }
343 
344 
345 /*
346  *---------------------------------------------------------------------
347  * basic calendar stuff
348  *---------------------------------------------------------------------
349  */
350 
351 /*
352  * Some notes on the terminology:
353  *
354  * We use the proleptic Gregorian calendar, which is the Gregorian
355  * calendar extended in both directions ad infinitum. This totally
356  * disregards the fact that this calendar was invented in 1582, and
357  * was adopted at various dates over the world; sometimes even after
358  * the start of the NTP epoch.
359  *
360  * Normally date parts are given as current cycles, while time parts
361  * are given as elapsed cycles:
362  *
363  * 1970-01-01/03:04:05 means 'IN the 1970st. year, IN the first month,
364  * ON the first day, with 3hrs, 4minutes and 5 seconds elapsed.
365  *
366  * The basic calculations for this calendar implementation deal with
367  * ELAPSED date units, which is the number of full years, full months
368  * and full days before a date: 1970-01-01 would be (1969, 0, 0) in
369  * that notation.
370  *
371  * To ease the numeric computations, month and day values outside the
372  * normal range are acceptable: 2001-03-00 will be treated as the day
373  * before 2001-03-01, 2000-13-32 will give the same result as
374  * 2001-02-01 and so on.
375  *
376  * 'rd' or 'RD' is used as an abbreviation for the latin 'rata die'
377  * (day number).  This is the number of days elapsed since 0000-12-31
378  * in the proleptic Gregorian calendar. The begin of the Christian Era
379  * (0001-01-01) is RD(1).
380  */
381 
382 /*
383  * ====================================================================
384  *
385  * General algorithmic stuff
386  *
387  * ====================================================================
388  */
389 
390 /*
391  *---------------------------------------------------------------------
392  * fast modulo 7 operations (floor/mathematical convention)
393  *---------------------------------------------------------------------
394  */
395 int
396 u32mod7(
397 	uint32_t x
398 	)
399 {
400 	/* This is a combination of tricks from "Hacker's Delight" with
401 	 * some modifications, like a multiplication that rounds up to
402 	 * drop the final adjustment stage.
403 	 *
404 	 * Do a partial reduction by digit sum to keep the value in the
405 	 * range permitted for the mul/shift stage. There are several
406 	 * possible and absolutely equivalent shift/mask combinations;
407 	 * this one is ARM-friendly because of a mask that fits into 16
408 	 * bit.
409 	 */
410 	x = (x >> 15) + (x & UINT32_C(0x7FFF));
411 	/* Take reminder as (mod 8) by mul/shift. Since the multiplier
412 	 * was calculated using ceil() instead of floor(), it skips the
413 	 * value '7' properly.
414 	 *    M <- ceil(ldexp(8/7, 29))
415 	 */
416 	return (int)((x * UINT32_C(0x24924925)) >> 29);
417 }
418 
419 int
420 i32mod7(
421 	int32_t x
422 	)
423 {
424 	/* We add (2**32 - 2**32 % 7), which is (2**32 - 4), to negative
425 	 * numbers to map them into the postive range. Only the term '-4'
426 	 * survives, obviously.
427 	 */
428 	uint32_t ux = (uint32_t)x;
429 	return u32mod7((x < 0) ? (ux - 4u) : ux);
430 }
431 
432 uint32_t
433 i32fmod(
434 	int32_t	 x,
435 	uint32_t d
436 	)
437 {
438 	uint32_t ux = (uint32_t)x;
439 	uint32_t sf = UINT32_C(0) - (x < 0);
440 	ux = (sf ^ ux ) % d;
441 	return (d & sf) + (sf ^ ux);
442 }
443 
444 /*
445  *---------------------------------------------------------------------
446  * Do a periodic extension of 'value' around 'pivot' with a period of
447  * 'cycle'.
448  *
449  * The result 'res' is a number that holds to the following properties:
450  *
451  *   1)	 res MOD cycle == value MOD cycle
452  *   2)	 pivot <= res < pivot + cycle
453  *	 (replace </<= with >/>= for negative cycles)
454  *
455  * where 'MOD' denotes the modulo operator for FLOOR DIVISION, which
456  * is not the same as the '%' operator in C: C requires division to be
457  * a truncated division, where remainder and dividend have the same
458  * sign if the remainder is not zero, whereas floor division requires
459  * divider and modulus to have the same sign for a non-zero modulus.
460  *
461  * This function has some useful applications:
462  *
463  * + let Y be a calendar year and V a truncated 2-digit year: then
464  *	periodic_extend(Y-50, V, 100)
465  *   is the closest expansion of the truncated year with respect to
466  *   the full year, that is a 4-digit year with a difference of less
467  *   than 50 years to the year Y. ("century unfolding")
468  *
469  * + let T be a UN*X time stamp and V be seconds-of-day: then
470  *	perodic_extend(T-43200, V, 86400)
471  *   is a time stamp that has the same seconds-of-day as the input
472  *   value, with an absolute difference to T of <= 12hrs.  ("day
473  *   unfolding")
474  *
475  * + Wherever you have a truncated periodic value and a non-truncated
476  *   base value and you want to match them somehow...
477  *
478  * Basically, the function delivers 'pivot + (value - pivot) % cycle',
479  * but the implementation takes some pains to avoid internal signed
480  * integer overflows in the '(value - pivot) % cycle' part and adheres
481  * to the floor division convention.
482  *
483  * If 64bit scalars where available on all intended platforms, writing a
484  * version that uses 64 bit ops would be easy; writing a general
485  * division routine for 64bit ops on a platform that can only do
486  * 32/16bit divisions and is still performant is a bit more
487  * difficult. Since most usecases can be coded in a way that does only
488  * require the 32bit version a 64bit version is NOT provided here.
489  *---------------------------------------------------------------------
490  */
491 int32_t
492 ntpcal_periodic_extend(
493 	int32_t pivot,
494 	int32_t value,
495 	int32_t cycle
496 	)
497 {
498 	/* Implement a 4-quadrant modulus calculation by 2 2-quadrant
499 	 * branches, one for positive and one for negative dividers.
500 	 * Everything else can be handled by bit level logic and
501 	 * conditional one's complement arithmetic.  By convention, we
502 	 * assume
503 	 *
504 	 * x % b == 0  if  |b| < 2
505 	 *
506 	 * that is, we don't actually divide for cycles of -1,0,1 and
507 	 * return the pivot value in that case.
508 	 */
509 	uint32_t	uv = (uint32_t)value;
510 	uint32_t	up = (uint32_t)pivot;
511 	uint32_t	uc, sf;
512 
513 	if (cycle > 1)
514 	{
515 		uc = (uint32_t)cycle;
516 		sf = UINT32_C(0) - (value < pivot);
517 
518 		uv = sf ^ (uv - up);
519 		uv %= uc;
520 		pivot += (uc & sf) + (sf ^ uv);
521 	}
522 	else if (cycle < -1)
523 	{
524 		uc = ~(uint32_t)cycle + 1;
525 		sf = UINT32_C(0) - (value > pivot);
526 
527 		uv = sf ^ (up - uv);
528 		uv %= uc;
529 		pivot -= (uc & sf) + (sf ^ uv);
530 	}
531 	return pivot;
532 }
533 
534 /*---------------------------------------------------------------------
535  * Note to the casual reader
536  *
537  * In the next two functions you will find (or would have found...)
538  * the expression
539  *
540  *   res.Q_s -= 0x80000000;
541  *
542  * There was some ruckus about a possible programming error due to
543  * integer overflow and sign propagation.
544  *
545  * This assumption is based on a lack of understanding of the C
546  * standard. (Though this is admittedly not one of the most 'natural'
547  * aspects of the 'C' language and easily to get wrong.)
548  *
549  * see
550  *	http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
551  *	"ISO/IEC 9899:201x Committee Draft — April 12, 2011"
552  *	6.4.4.1 Integer constants, clause 5
553  *
554  * why there is no sign extension/overflow problem here.
555  *
556  * But to ease the minds of the doubtful, I added back the 'u' qualifiers
557  * that somehow got lost over the last years.
558  */
559 
560 
561 /*
562  *---------------------------------------------------------------------
563  * Convert a timestamp in NTP scale to a 64bit seconds value in the UN*X
564  * scale with proper epoch unfolding around a given pivot or the current
565  * system time. This function happily accepts negative pivot values as
566  * timestamps before 1970-01-01, so be aware of possible trouble on
567  * platforms with 32bit 'time_t'!
568  *
569  * This is also a periodic extension, but since the cycle is 2^32 and
570  * the shift is 2^31, we can do some *very* fast math without explicit
571  * divisions.
572  *---------------------------------------------------------------------
573  */
574 vint64
575 ntpcal_ntp_to_time(
576 	uint32_t	ntp,
577 	const time_t *	pivot
578 	)
579 {
580 	vint64 res;
581 
582 #   if defined(HAVE_INT64)
583 
584 	res.q_s = (pivot != NULL)
585 		      ? *pivot
586 		      : now();
587 	res.Q_s -= 0x80000000u;		/* unshift of half range */
588 	ntp	-= (uint32_t)JAN_1970;	/* warp into UN*X domain */
589 	ntp	-= res.D_s.lo;		/* cycle difference	 */
590 	res.Q_s += (uint64_t)ntp;	/* get expanded time	 */
591 
592 #   else /* no 64bit scalars */
593 
594 	time_t tmp;
595 
596 	tmp = (pivot != NULL)
597 		  ? *pivot
598 		  : now();
599 	res = time_to_vint64(&tmp);
600 	M_SUB(res.D_s.hi, res.D_s.lo, 0, 0x80000000u);
601 	ntp -= (uint32_t)JAN_1970;	/* warp into UN*X domain */
602 	ntp -= res.D_s.lo;		/* cycle difference	 */
603 	M_ADD(res.D_s.hi, res.D_s.lo, 0, ntp);
604 
605 #   endif /* no 64bit scalars */
606 
607 	return res;
608 }
609 
610 /*
611  *---------------------------------------------------------------------
612  * Convert a timestamp in NTP scale to a 64bit seconds value in the NTP
613  * scale with proper epoch unfolding around a given pivot or the current
614  * system time.
615  *
616  * Note: The pivot must be given in the UN*X time domain!
617  *
618  * This is also a periodic extension, but since the cycle is 2^32 and
619  * the shift is 2^31, we can do some *very* fast math without explicit
620  * divisions.
621  *---------------------------------------------------------------------
622  */
623 vint64
624 ntpcal_ntp_to_ntp(
625 	uint32_t      ntp,
626 	const time_t *pivot
627 	)
628 {
629 	vint64 res;
630 
631 #   if defined(HAVE_INT64)
632 
633 	res.q_s = (pivot)
634 		      ? *pivot
635 		      : now();
636 	res.Q_s -= 0x80000000u;		/* unshift of half range */
637 	res.Q_s += (uint32_t)JAN_1970;	/* warp into NTP domain	 */
638 	ntp	-= res.D_s.lo;		/* cycle difference	 */
639 	res.Q_s += (uint64_t)ntp;	/* get expanded time	 */
640 
641 #   else /* no 64bit scalars */
642 
643 	time_t tmp;
644 
645 	tmp = (pivot)
646 		  ? *pivot
647 		  : now();
648 	res = time_to_vint64(&tmp);
649 	M_SUB(res.D_s.hi, res.D_s.lo, 0, 0x80000000u);
650 	M_ADD(res.D_s.hi, res.D_s.lo, 0, (uint32_t)JAN_1970);/*into NTP */
651 	ntp -= res.D_s.lo;		/* cycle difference	 */
652 	M_ADD(res.D_s.hi, res.D_s.lo, 0, ntp);
653 
654 #   endif /* no 64bit scalars */
655 
656 	return res;
657 }
658 
659 
660 /*
661  * ====================================================================
662  *
663  * Splitting values to composite entities
664  *
665  * ====================================================================
666  */
667 
668 /*
669  *---------------------------------------------------------------------
670  * Split a 64bit seconds value into elapsed days in 'res.hi' and
671  * elapsed seconds since midnight in 'res.lo' using explicit floor
672  * division. This function happily accepts negative time values as
673  * timestamps before the respective epoch start.
674  *---------------------------------------------------------------------
675  */
676 ntpcal_split
677 ntpcal_daysplit(
678 	const vint64 *ts
679 	)
680 {
681 	ntpcal_split res;
682 	uint32_t Q, R;
683 
684 #   if defined(HAVE_64BITREGS)
685 
686 	/* Assume we have 64bit registers an can do a divison by
687 	 * constant reasonably fast using the one's complement trick..
688 	 */
689 	uint64_t sf64 = (uint64_t)-(ts->q_s < 0);
690 	Q = (uint32_t)(sf64 ^ ((sf64 ^ ts->Q_s) / SECSPERDAY));
691 	R = (uint32_t)(ts->Q_s - Q * SECSPERDAY);
692 
693 #   elif defined(UINT64_MAX) && !defined(__arm__)
694 
695 	/* We rely on the compiler to do efficient 64bit divisions as
696 	 * good as possible. Which might or might not be true. At least
697 	 * for ARM CPUs, the sum-by-digit code in the next section is
698 	 * faster for many compilers. (This might change over time, but
699 	 * the 64bit-by-32bit division will never outperform the exact
700 	 * division by a substantial factor....)
701 	 */
702 	if (ts->q_s < 0)
703 		Q = ~(uint32_t)(~ts->Q_s / SECSPERDAY);
704 	else
705 		Q =  (uint32_t)( ts->Q_s / SECSPERDAY);
706 	R = ts->D_s.lo - Q * SECSPERDAY;
707 
708 #   else
709 
710 	/* We don't have 64bit regs. That hurts a bit.
711 	 *
712 	 * Here we use a mean trick to get away with just one explicit
713 	 * modulo operation and pure 32bit ops.
714 	 *
715 	 * Remember: 86400 <--> 128 * 675
716 	 *
717 	 * So we discard the lowest 7 bit and do an exact division by
718 	 * 675, modulo 2**32.
719 	 *
720 	 * First we shift out the lower 7 bits.
721 	 *
722 	 * Then we use a digit-wise pseudo-reduction, where a 'digit' is
723 	 * actually a 16-bit group. This is followed by a full reduction
724 	 * with a 'true' division step. This yields the modulus of the
725 	 * full 64bit value. The sign bit gets some extra treatment.
726 	 *
727 	 * Then we decrement the lower limb by that modulus, so it is
728 	 * exactly divisible by 675. [*]
729 	 *
730 	 * Then we multiply with the modular inverse of 675 (mod 2**32)
731 	 * and voila, we have the result.
732 	 *
733 	 * Special Thanks to Henry S. Warren and his "Hacker's delight"
734 	 * for giving that idea.
735 	 *
736 	 * (Note[*]: that's not the full truth. We would have to
737 	 * subtract the modulus from the full 64 bit number to get a
738 	 * number that is divisible by 675. But since we use the
739 	 * multiplicative inverse (mod 2**32) there's no reason to carry
740 	 * the subtraction into the upper bits!)
741 	 */
742 	uint32_t al = ts->D_s.lo;
743 	uint32_t ah = ts->D_s.hi;
744 
745 	/* shift out the lower 7 bits, smash sign bit */
746 	al = (al >> 7) | (ah << 25);
747 	ah = (ah >> 7) & 0x00FFFFFFu;
748 
749 	R  = (ts->d_s.hi < 0) ? 239 : 0;/* sign bit value */
750 	R += (al & 0xFFFF);
751 	R += (al >> 16	 ) * 61u;	/* 2**16 % 675 */
752 	R += (ah & 0xFFFF) * 346u;	/* 2**32 % 675 */
753 	R += (ah >> 16	 ) * 181u;	/* 2**48 % 675 */
754 	R %= 675u;			/* final reduction */
755 	Q  = (al - R) * 0x2D21C10Bu;	/* modinv(675, 2**32) */
756 	R  = (R << 7) | (ts->d_s.lo & 0x07F);
757 
758 #   endif
759 
760 	res.hi = uint32_2cpl_to_int32(Q);
761 	res.lo = R;
762 
763 	return res;
764 }
765 
766 /*
767  *---------------------------------------------------------------------
768  * Split a 64bit seconds value into elapsed weeks in 'res.hi' and
769  * elapsed seconds since week start in 'res.lo' using explicit floor
770  * division. This function happily accepts negative time values as
771  * timestamps before the respective epoch start.
772  *---------------------------------------------------------------------
773  */
774 ntpcal_split
775 ntpcal_weeksplit(
776 	const vint64 *ts
777 	)
778 {
779 	ntpcal_split res;
780 	uint32_t Q, R;
781 
782 	/* This is a very close relative to the day split function; for
783 	 * details, see there!
784 	 */
785 
786 #   if defined(HAVE_64BITREGS)
787 
788 	uint64_t sf64 = (uint64_t)-(ts->q_s < 0);
789 	Q = (uint32_t)(sf64 ^ ((sf64 ^ ts->Q_s) / SECSPERWEEK));
790 	R = (uint32_t)(ts->Q_s - Q * SECSPERWEEK);
791 
792 #   elif defined(UINT64_MAX) && !defined(__arm__)
793 
794 	if (ts->q_s < 0)
795 		Q = ~(uint32_t)(~ts->Q_s / SECSPERWEEK);
796 	else
797 		Q =  (uint32_t)( ts->Q_s / SECSPERWEEK);
798 	R = ts->D_s.lo - Q * SECSPERWEEK;
799 
800 #   else
801 
802 	/* Remember: 7*86400 <--> 604800 <--> 128 * 4725 */
803 	uint32_t al = ts->D_s.lo;
804 	uint32_t ah = ts->D_s.hi;
805 
806 	al = (al >> 7) | (ah << 25);
807 	ah = (ah >> 7) & 0x00FFFFFF;
808 
809 	R  = (ts->d_s.hi < 0) ? 2264 : 0;/* sign bit value */
810 	R += (al & 0xFFFF);
811 	R += (al >> 16	 ) * 4111u;	/* 2**16 % 4725 */
812 	R += (ah & 0xFFFF) * 3721u;	/* 2**32 % 4725 */
813 	R += (ah >> 16	 ) * 2206u;	/* 2**48 % 4725 */
814 	R %= 4725u;			/* final reduction */
815 	Q  = (al - R) * 0x98BBADDDu;	/* modinv(4725, 2**32) */
816 	R  = (R << 7) | (ts->d_s.lo & 0x07F);
817 
818 #   endif
819 
820 	res.hi = uint32_2cpl_to_int32(Q);
821 	res.lo = R;
822 
823 	return res;
824 }
825 
826 /*
827  *---------------------------------------------------------------------
828  * Split a 32bit seconds value into h/m/s and excessive days.  This
829  * function happily accepts negative time values as timestamps before
830  * midnight.
831  *---------------------------------------------------------------------
832  */
833 static int32_t
834 priv_timesplit(
835 	int32_t split[3],
836 	int32_t ts
837 	)
838 {
839 	/* Do 3 chained floor divisions by positive constants, using the
840 	 * one's complement trick and factoring out the intermediate XOR
841 	 * ops to reduce the number of operations.
842 	 */
843 	uint32_t us, um, uh, ud, sf32;
844 
845 	sf32 = int32_sflag(ts);
846 
847 	us = (uint32_t)ts;
848 	um = (sf32 ^ us) / SECSPERMIN;
849 	uh = um / MINSPERHR;
850 	ud = uh / HRSPERDAY;
851 
852 	um ^= sf32;
853 	uh ^= sf32;
854 	ud ^= sf32;
855 
856 	split[0] = (int32_t)(uh - ud * HRSPERDAY );
857 	split[1] = (int32_t)(um - uh * MINSPERHR );
858 	split[2] = (int32_t)(us - um * SECSPERMIN);
859 
860 	return uint32_2cpl_to_int32(ud);
861 }
862 
863 /*
864  *---------------------------------------------------------------------
865  * Given the number of elapsed days in the calendar era, split this
866  * number into the number of elapsed years in 'res.hi' and the number
867  * of elapsed days of that year in 'res.lo'.
868  *
869  * if 'isleapyear' is not NULL, it will receive an integer that is 0 for
870  * regular years and a non-zero value for leap years.
871  *---------------------------------------------------------------------
872  */
873 ntpcal_split
874 ntpcal_split_eradays(
875 	int32_t days,
876 	int  *isleapyear
877 	)
878 {
879 	/* Use the fast cycle split algorithm here, to calculate the
880 	 * centuries and years in a century with one division each. This
881 	 * reduces the number of division operations to two, but is
882 	 * susceptible to internal range overflow. We take some extra
883 	 * steps to avoid the gap.
884 	 */
885 	ntpcal_split res;
886 	int32_t	 n100, n001; /* calendar year cycles */
887 	uint32_t uday, Q;
888 
889 	/* split off centuries first
890 	 *
891 	 * We want to execute '(days * 4 + 3) /% 146097' under floor
892 	 * division rules in the first step. Well, actually we want to
893 	 * calculate 'floor((days + 0.75) / 36524.25)', but we want to
894 	 * do it in scaled integer calculation.
895 	 */
896 #   if defined(HAVE_64BITREGS)
897 
898 	/* not too complicated with an intermediate 64bit value */
899 	uint64_t	ud64, sf64;
900 	ud64 = ((uint64_t)days << 2) | 3u;
901 	sf64 = (uint64_t)-(days < 0);
902 	Q    = (uint32_t)(sf64 ^ ((sf64 ^ ud64) / GREGORIAN_CYCLE_DAYS));
903 	uday = (uint32_t)(ud64 - Q * GREGORIAN_CYCLE_DAYS);
904 	n100 = uint32_2cpl_to_int32(Q);
905 
906 #   else
907 
908 	/* '4*days+3' suffers from range overflow when going to the
909 	 * limits. We solve this by doing an exact division (mod 2^32)
910 	 * after caclulating the remainder first.
911 	 *
912 	 * We start with a partial reduction by digit sums, extracting
913 	 * the upper bits from the original value before they get lost
914 	 * by scaling, and do one full division step to get the true
915 	 * remainder.  Then a final multiplication with the
916 	 * multiplicative inverse of 146097 (mod 2^32) gives us the full
917 	 * quotient.
918 	 *
919 	 * (-2^33) % 146097	--> 130717    : the sign bit value
920 	 * ( 2^20) % 146097	--> 25897     : the upper digit value
921 	 * modinv(146097, 2^32) --> 660721233 : the inverse
922 	 */
923 	uint32_t ux = ((uint32_t)days << 2) | 3;
924 	uday  = (days < 0) ? 130717u : 0u;	    /* sign dgt */
925 	uday += ((days >> 18) & 0x01FFFu) * 25897u; /* hi dgt (src!) */
926 	uday += (ux & 0xFFFFFu);		    /* lo dgt */
927 	uday %= GREGORIAN_CYCLE_DAYS;		    /* full reduction */
928 	Q     = (ux  - uday) * 660721233u;	    /* exact div */
929 	n100  = uint32_2cpl_to_int32(Q);
930 
931 #   endif
932 
933 	/* Split off years in century -- days >= 0 here, and we're far
934 	 * away from integer overflow trouble now. */
935 	uday |= 3;
936 	n001  = uday / GREGORIAN_NORMAL_LEAP_CYCLE_DAYS;
937 	uday -= n001 * GREGORIAN_NORMAL_LEAP_CYCLE_DAYS;
938 
939 	/* Assemble the year and day in year */
940 	res.hi = n100 * 100 + n001;
941 	res.lo = uday / 4u;
942 
943 	/* Possibly set the leap year flag */
944 	if (isleapyear) {
945 		uint32_t tc = (uint32_t)n100 + 1;
946 		uint32_t ty = (uint32_t)n001 + 1;
947 		*isleapyear = !(ty & 3)
948 		    && ((ty != 100) || !(tc & 3));
949 	}
950 	return res;
951 }
952 
953 /*
954  *---------------------------------------------------------------------
955  * Given a number of elapsed days in a year and a leap year indicator,
956  * split the number of elapsed days into the number of elapsed months in
957  * 'res.hi' and the number of elapsed days of that month in 'res.lo'.
958  *
959  * This function will fail and return {-1,-1} if the number of elapsed
960  * days is not in the valid range!
961  *---------------------------------------------------------------------
962  */
963 ntpcal_split
964 ntpcal_split_yeardays(
965 	int32_t eyd,
966 	int	isleap
967 	)
968 {
969 	/* Use the unshifted-year, February-with-30-days approach here.
970 	 * Fractional interpolations are used in both directions, with
971 	 * the smallest power-of-two divider to avoid any true division.
972 	 */
973 	ntpcal_split	res = {-1, -1};
974 
975 	/* convert 'isleap' to number of defective days */
976 	isleap = 1 + !isleap;
977 	/* adjust for February of 30 nominal days */
978 	if (eyd >= 61 - isleap)
979 		eyd += isleap;
980 	/* if in range, convert to months and days in month */
981 	if (eyd >= 0 && eyd < 367) {
982 		res.hi = (eyd * 67 + 32) >> 11;
983 		res.lo = eyd - ((489 * res.hi + 8) >> 4);
984 	}
985 
986 	return res;
987 }
988 
989 /*
990  *---------------------------------------------------------------------
991  * Convert a RD into the date part of a 'struct calendar'.
992  *---------------------------------------------------------------------
993  */
994 int
995 ntpcal_rd_to_date(
996 	struct calendar *jd,
997 	int32_t		 rd
998 	)
999 {
1000 	ntpcal_split split;
1001 	int	     leapy;
1002 	u_int	     ymask;
1003 
1004 	/* Get day-of-week first. It's simply the RD (mod 7)... */
1005 	jd->weekday = i32mod7(rd);
1006 
1007 	split = ntpcal_split_eradays(rd - 1, &leapy);
1008 	/* Get year and day-of-year, with overflow check. If any of the
1009 	 * upper 16 bits is set after shifting to unity-based years, we
1010 	 * will have an overflow when converting to an unsigned 16bit
1011 	 * year. Shifting to the right is OK here, since it does not
1012 	 * matter if the shift is logic or arithmetic.
1013 	 */
1014 	split.hi += 1;
1015 	ymask = 0u - ((split.hi >> 16) == 0);
1016 	jd->year = (uint16_t)(split.hi & ymask);
1017 	jd->yearday = (uint16_t)split.lo + 1;
1018 
1019 	/* convert to month and mday */
1020 	split = ntpcal_split_yeardays(split.lo, leapy);
1021 	jd->month    = (uint8_t)split.hi + 1;
1022 	jd->monthday = (uint8_t)split.lo + 1;
1023 
1024 	return ymask ? leapy : -1;
1025 }
1026 
1027 /*
1028  *---------------------------------------------------------------------
1029  * Convert a RD into the date part of a 'struct tm'.
1030  *---------------------------------------------------------------------
1031  */
1032 int
1033 ntpcal_rd_to_tm(
1034 	struct tm  *utm,
1035 	int32_t	    rd
1036 	)
1037 {
1038 	ntpcal_split split;
1039 	int	     leapy;
1040 
1041 	/* get day-of-week first */
1042 	utm->tm_wday = i32mod7(rd);
1043 
1044 	/* get year and day-of-year */
1045 	split = ntpcal_split_eradays(rd - 1, &leapy);
1046 	utm->tm_year = split.hi - 1899;
1047 	utm->tm_yday = split.lo;	/* 0-based */
1048 
1049 	/* convert to month and mday */
1050 	split = ntpcal_split_yeardays(split.lo, leapy);
1051 	utm->tm_mon  = split.hi;	/* 0-based */
1052 	utm->tm_mday = split.lo + 1;	/* 1-based */
1053 
1054 	return leapy;
1055 }
1056 
1057 /*
1058  *---------------------------------------------------------------------
1059  * Take a value of seconds since midnight and split it into hhmmss in a
1060  * 'struct calendar'.
1061  *---------------------------------------------------------------------
1062  */
1063 int32_t
1064 ntpcal_daysec_to_date(
1065 	struct calendar *jd,
1066 	int32_t		sec
1067 	)
1068 {
1069 	int32_t days;
1070 	int   ts[3];
1071 
1072 	days = priv_timesplit(ts, sec);
1073 	jd->hour   = (uint8_t)ts[0];
1074 	jd->minute = (uint8_t)ts[1];
1075 	jd->second = (uint8_t)ts[2];
1076 
1077 	return days;
1078 }
1079 
1080 /*
1081  *---------------------------------------------------------------------
1082  * Take a value of seconds since midnight and split it into hhmmss in a
1083  * 'struct tm'.
1084  *---------------------------------------------------------------------
1085  */
1086 int32_t
1087 ntpcal_daysec_to_tm(
1088 	struct tm *utm,
1089 	int32_t	   sec
1090 	)
1091 {
1092 	int32_t days;
1093 	int32_t ts[3];
1094 
1095 	days = priv_timesplit(ts, sec);
1096 	utm->tm_hour = ts[0];
1097 	utm->tm_min  = ts[1];
1098 	utm->tm_sec  = ts[2];
1099 
1100 	return days;
1101 }
1102 
1103 /*
1104  *---------------------------------------------------------------------
1105  * take a split representation for day/second-of-day and day offset
1106  * and convert it to a 'struct calendar'. The seconds will be normalised
1107  * into the range of a day, and the day will be adjusted accordingly.
1108  *
1109  * returns >0 if the result is in a leap year, 0 if in a regular
1110  * year and <0 if the result did not fit into the calendar struct.
1111  *---------------------------------------------------------------------
1112  */
1113 int
1114 ntpcal_daysplit_to_date(
1115 	struct calendar	   *jd,
1116 	const ntpcal_split *ds,
1117 	int32_t		    dof
1118 	)
1119 {
1120 	dof += ntpcal_daysec_to_date(jd, ds->lo);
1121 	return ntpcal_rd_to_date(jd, ds->hi + dof);
1122 }
1123 
1124 /*
1125  *---------------------------------------------------------------------
1126  * take a split representation for day/second-of-day and day offset
1127  * and convert it to a 'struct tm'. The seconds will be normalised
1128  * into the range of a day, and the day will be adjusted accordingly.
1129  *
1130  * returns 1 if the result is in a leap year and zero if in a regular
1131  * year.
1132  *---------------------------------------------------------------------
1133  */
1134 int
1135 ntpcal_daysplit_to_tm(
1136 	struct tm	   *utm,
1137 	const ntpcal_split *ds ,
1138 	int32_t		    dof
1139 	)
1140 {
1141 	dof += ntpcal_daysec_to_tm(utm, ds->lo);
1142 
1143 	return ntpcal_rd_to_tm(utm, ds->hi + dof);
1144 }
1145 
1146 /*
1147  *---------------------------------------------------------------------
1148  * Take a UN*X time and convert to a calendar structure.
1149  *---------------------------------------------------------------------
1150  */
1151 int
1152 ntpcal_time_to_date(
1153 	struct calendar	*jd,
1154 	const vint64	*ts
1155 	)
1156 {
1157 	ntpcal_split ds;
1158 
1159 	ds = ntpcal_daysplit(ts);
1160 	ds.hi += ntpcal_daysec_to_date(jd, ds.lo);
1161 	ds.hi += DAY_UNIX_STARTS;
1162 
1163 	return ntpcal_rd_to_date(jd, ds.hi);
1164 }
1165 
1166 
1167 /*
1168  * ====================================================================
1169  *
1170  * merging composite entities
1171  *
1172  * ====================================================================
1173  */
1174 
1175 #if !defined(HAVE_INT64)
1176 /* multiplication helper. Seconds in days and weeks are multiples of 128,
1177  * and without that factor fit well into 16 bit. So a multiplication
1178  * of 32bit by 16bit and some shifting can be used on pure 32bit machines
1179  * with compilers that do not support 64bit integers.
1180  *
1181  * Calculate ( hi * mul * 128 ) + lo
1182  */
1183 static vint64
1184 _dwjoin(
1185 	uint16_t	mul,
1186 	int32_t		hi,
1187 	int32_t		lo
1188 	)
1189 {
1190 	vint64		res;
1191 	uint32_t	p1, p2, sf;
1192 
1193 	/* get sign flag and absolute value of 'hi' in p1 */
1194 	sf = (uint32_t)-(hi < 0);
1195 	p1 = ((uint32_t)hi + sf) ^ sf;
1196 
1197 	/* assemble major units: res <- |hi| * mul */
1198 	res.D_s.lo = (p1 & 0xFFFF) * mul;
1199 	res.D_s.hi = 0;
1200 	p1 = (p1 >> 16) * mul;
1201 	p2 = p1 >> 16;
1202 	p1 = p1 << 16;
1203 	M_ADD(res.D_s.hi, res.D_s.lo, p2, p1);
1204 
1205 	/* mul by 128, using shift: res <-- res << 7 */
1206 	res.D_s.hi = (res.D_s.hi << 7) | (res.D_s.lo >> 25);
1207 	res.D_s.lo = (res.D_s.lo << 7);
1208 
1209 	/* fix up sign: res <-- (res + [sf|sf]) ^ [sf|sf] */
1210 	M_ADD(res.D_s.hi, res.D_s.lo, sf, sf);
1211 	res.D_s.lo ^= sf;
1212 	res.D_s.hi ^= sf;
1213 
1214 	/* properly add seconds: res <-- res + [sx(lo)|lo] */
1215 	p2 = (uint32_t)-(lo < 0);
1216 	p1 = (uint32_t)lo;
1217 	M_ADD(res.D_s.hi, res.D_s.lo, p2, p1);
1218 	return res;
1219 }
1220 #endif
1221 
1222 /*
1223  *---------------------------------------------------------------------
1224  * Merge a number of days and a number of seconds into seconds,
1225  * expressed in 64 bits to avoid overflow.
1226  *---------------------------------------------------------------------
1227  */
1228 vint64
1229 ntpcal_dayjoin(
1230 	int32_t days,
1231 	int32_t secs
1232 	)
1233 {
1234 	vint64 res;
1235 
1236 #   if defined(HAVE_INT64)
1237 
1238 	res.q_s	 = days;
1239 	res.q_s *= SECSPERDAY;
1240 	res.q_s += secs;
1241 
1242 #   else
1243 
1244 	res = _dwjoin(675, days, secs);
1245 
1246 #   endif
1247 
1248 	return res;
1249 }
1250 
1251 /*
1252  *---------------------------------------------------------------------
1253  * Merge a number of weeks and a number of seconds into seconds,
1254  * expressed in 64 bits to avoid overflow.
1255  *---------------------------------------------------------------------
1256  */
1257 vint64
1258 ntpcal_weekjoin(
1259 	int32_t week,
1260 	int32_t secs
1261 	)
1262 {
1263 	vint64 res;
1264 
1265 #   if defined(HAVE_INT64)
1266 
1267 	res.q_s	 = week;
1268 	res.q_s *= SECSPERWEEK;
1269 	res.q_s += secs;
1270 
1271 #   else
1272 
1273 	res = _dwjoin(4725, week, secs);
1274 
1275 #   endif
1276 
1277 	return res;
1278 }
1279 
1280 /*
1281  *---------------------------------------------------------------------
1282  * get leap years since epoch in elapsed years
1283  *---------------------------------------------------------------------
1284  */
1285 int32_t
1286 ntpcal_leapyears_in_years(
1287 	int32_t years
1288 	)
1289 {
1290 	/* We use the in-out-in algorithm here, using the one's
1291 	 * complement division trick for negative numbers. The chained
1292 	 * division sequence by 4/25/4 gives the compiler the chance to
1293 	 * get away with only one true division and doing shifts otherwise.
1294 	 */
1295 
1296 	uint32_t sf32, sum, uyear;
1297 
1298 	sf32  = int32_sflag(years);
1299 	uyear = (uint32_t)years;
1300 	uyear ^= sf32;
1301 
1302 	sum  = (uyear /=  4u);	/*   4yr rule --> IN  */
1303 	sum -= (uyear /= 25u);	/* 100yr rule --> OUT */
1304 	sum += (uyear /=  4u);	/* 400yr rule --> IN  */
1305 
1306 	/* Thanks to the alternation of IN/OUT/IN we can do the sum
1307 	 * directly and have a single one's complement operation
1308 	 * here. (Only if the years are negative, of course.) Otherwise
1309 	 * the one's complement would have to be done when
1310 	 * adding/subtracting the terms.
1311 	 */
1312 	return uint32_2cpl_to_int32(sf32 ^ sum);
1313 }
1314 
1315 /*
1316  *---------------------------------------------------------------------
1317  * Convert elapsed years in Era into elapsed days in Era.
1318  *---------------------------------------------------------------------
1319  */
1320 int32_t
1321 ntpcal_days_in_years(
1322 	int32_t years
1323 	)
1324 {
1325 	return years * DAYSPERYEAR + ntpcal_leapyears_in_years(years);
1326 }
1327 
1328 /*
1329  *---------------------------------------------------------------------
1330  * Convert a number of elapsed month in a year into elapsed days in year.
1331  *
1332  * The month will be normalized, and 'res.hi' will contain the
1333  * excessive years that must be considered when converting the years,
1334  * while 'res.lo' will contain the number of elapsed days since start
1335  * of the year.
1336  *
1337  * This code uses the shifted-month-approach to convert month to days,
1338  * because then there is no need to have explicit leap year
1339  * information.	 The slight disadvantage is that for most month values
1340  * the result is a negative value, and the year excess is one; the
1341  * conversion is then simply based on the start of the following year.
1342  *---------------------------------------------------------------------
1343  */
1344 ntpcal_split
1345 ntpcal_days_in_months(
1346 	int32_t m
1347 	)
1348 {
1349 	ntpcal_split res;
1350 
1351 	/* Add ten months with proper year adjustment. */
1352 	if (m < 2) {
1353 	    res.lo  = m + 10;
1354 	    res.hi  = 0;
1355 	} else {
1356 	    res.lo  = m - 2;
1357 	    res.hi  = 1;
1358 	}
1359 
1360 	/* Possibly normalise by floor division. This does not hapen for
1361 	 * input in normal range. */
1362 	if (res.lo < 0 || res.lo >= 12) {
1363 		uint32_t mu, Q, sf32;
1364 		sf32 = int32_sflag(res.lo);
1365 		mu   = (uint32_t)res.lo;
1366 		Q    = sf32 ^ ((sf32 ^ mu) / 12u);
1367 
1368 		res.hi += uint32_2cpl_to_int32(Q);
1369 		res.lo	= mu - Q * 12u;
1370 	}
1371 
1372 	/* Get cummulated days in year with unshift. Use the fractional
1373 	 * interpolation with smallest possible power of two in the
1374 	 * divider.
1375 	 */
1376 	res.lo = ((res.lo * 979 + 16) >> 5) - 306;
1377 
1378 	return res;
1379 }
1380 
1381 /*
1382  *---------------------------------------------------------------------
1383  * Convert ELAPSED years/months/days of gregorian calendar to elapsed
1384  * days in Gregorian epoch.
1385  *
1386  * If you want to convert years and days-of-year, just give a month of
1387  * zero.
1388  *---------------------------------------------------------------------
1389  */
1390 int32_t
1391 ntpcal_edate_to_eradays(
1392 	int32_t years,
1393 	int32_t mons,
1394 	int32_t mdays
1395 	)
1396 {
1397 	ntpcal_split tmp;
1398 	int32_t	     res;
1399 
1400 	if (mons) {
1401 		tmp = ntpcal_days_in_months(mons);
1402 		res = ntpcal_days_in_years(years + tmp.hi) + tmp.lo;
1403 	} else
1404 		res = ntpcal_days_in_years(years);
1405 	res += mdays;
1406 
1407 	return res;
1408 }
1409 
1410 /*
1411  *---------------------------------------------------------------------
1412  * Convert ELAPSED years/months/days of gregorian calendar to elapsed
1413  * days in year.
1414  *
1415  * Note: This will give the true difference to the start of the given
1416  * year, even if months & days are off-scale.
1417  *---------------------------------------------------------------------
1418  */
1419 int32_t
1420 ntpcal_edate_to_yeardays(
1421 	int32_t years,
1422 	int32_t mons,
1423 	int32_t mdays
1424 	)
1425 {
1426 	ntpcal_split tmp;
1427 
1428 	if (0 <= mons && mons < 12) {
1429 		if (mons >= 2)
1430 			mdays -= 2 - is_leapyear(years+1);
1431 		mdays += (489 * mons + 8) >> 4;
1432 	} else {
1433 		tmp = ntpcal_days_in_months(mons);
1434 		mdays += tmp.lo
1435 		       + ntpcal_days_in_years(years + tmp.hi)
1436 		       - ntpcal_days_in_years(years);
1437 	}
1438 
1439 	return mdays;
1440 }
1441 
1442 /*
1443  *---------------------------------------------------------------------
1444  * Convert elapsed days and the hour/minute/second information into
1445  * total seconds.
1446  *
1447  * If 'isvalid' is not NULL, do a range check on the time specification
1448  * and tell if the time input is in the normal range, permitting for a
1449  * single leapsecond.
1450  *---------------------------------------------------------------------
1451  */
1452 int32_t
1453 ntpcal_etime_to_seconds(
1454 	int32_t hours,
1455 	int32_t minutes,
1456 	int32_t seconds
1457 	)
1458 {
1459 	int32_t res;
1460 
1461 	res = (hours * MINSPERHR + minutes) * SECSPERMIN + seconds;
1462 
1463 	return res;
1464 }
1465 
1466 /*
1467  *---------------------------------------------------------------------
1468  * Convert the date part of a 'struct tm' (that is, year, month,
1469  * day-of-month) into the RD of that day.
1470  *---------------------------------------------------------------------
1471  */
1472 int32_t
1473 ntpcal_tm_to_rd(
1474 	const struct tm *utm
1475 	)
1476 {
1477 	return ntpcal_edate_to_eradays(utm->tm_year + 1899,
1478 				       utm->tm_mon,
1479 				       utm->tm_mday - 1) + 1;
1480 }
1481 
1482 /*
1483  *---------------------------------------------------------------------
1484  * Convert the date part of a 'struct calendar' (that is, year, month,
1485  * day-of-month) into the RD of that day.
1486  *---------------------------------------------------------------------
1487  */
1488 int32_t
1489 ntpcal_date_to_rd(
1490 	const struct calendar *jd
1491 	)
1492 {
1493 	return ntpcal_edate_to_eradays((int32_t)jd->year - 1,
1494 				       (int32_t)jd->month - 1,
1495 				       (int32_t)jd->monthday - 1) + 1;
1496 }
1497 
1498 /*
1499  *---------------------------------------------------------------------
1500  * convert a year number to rata die of year start
1501  *---------------------------------------------------------------------
1502  */
1503 int32_t
1504 ntpcal_year_to_ystart(
1505 	int32_t year
1506 	)
1507 {
1508 	return ntpcal_days_in_years(year - 1) + 1;
1509 }
1510 
1511 /*
1512  *---------------------------------------------------------------------
1513  * For a given RD, get the RD of the associated year start,
1514  * that is, the RD of the last January,1st on or before that day.
1515  *---------------------------------------------------------------------
1516  */
1517 int32_t
1518 ntpcal_rd_to_ystart(
1519 	int32_t rd
1520 	)
1521 {
1522 	/*
1523 	 * Rather simple exercise: split the day number into elapsed
1524 	 * years and elapsed days, then remove the elapsed days from the
1525 	 * input value. Nice'n sweet...
1526 	 */
1527 	return rd - ntpcal_split_eradays(rd - 1, NULL).lo;
1528 }
1529 
1530 /*
1531  *---------------------------------------------------------------------
1532  * For a given RD, get the RD of the associated month start.
1533  *---------------------------------------------------------------------
1534  */
1535 int32_t
1536 ntpcal_rd_to_mstart(
1537 	int32_t rd
1538 	)
1539 {
1540 	ntpcal_split split;
1541 	int	     leaps;
1542 
1543 	split = ntpcal_split_eradays(rd - 1, &leaps);
1544 	split = ntpcal_split_yeardays(split.lo, leaps);
1545 
1546 	return rd - split.lo;
1547 }
1548 
1549 /*
1550  *---------------------------------------------------------------------
1551  * take a 'struct calendar' and get the seconds-of-day from it.
1552  *---------------------------------------------------------------------
1553  */
1554 int32_t
1555 ntpcal_date_to_daysec(
1556 	const struct calendar *jd
1557 	)
1558 {
1559 	return ntpcal_etime_to_seconds(jd->hour, jd->minute,
1560 				       jd->second);
1561 }
1562 
1563 /*
1564  *---------------------------------------------------------------------
1565  * take a 'struct tm' and get the seconds-of-day from it.
1566  *---------------------------------------------------------------------
1567  */
1568 int32_t
1569 ntpcal_tm_to_daysec(
1570 	const struct tm *utm
1571 	)
1572 {
1573 	return ntpcal_etime_to_seconds(utm->tm_hour, utm->tm_min,
1574 				       utm->tm_sec);
1575 }
1576 
1577 /*
1578  *---------------------------------------------------------------------
1579  * take a 'struct calendar' and convert it to a 'time_t'
1580  *---------------------------------------------------------------------
1581  */
1582 time_t
1583 ntpcal_date_to_time(
1584 	const struct calendar *jd
1585 	)
1586 {
1587 	vint64	join;
1588 	int32_t days, secs;
1589 
1590 	days = ntpcal_date_to_rd(jd) - DAY_UNIX_STARTS;
1591 	secs = ntpcal_date_to_daysec(jd);
1592 	join = ntpcal_dayjoin(days, secs);
1593 
1594 	return vint64_to_time(&join);
1595 }
1596 
1597 
1598 /*
1599  * ====================================================================
1600  *
1601  * extended and unchecked variants of caljulian/caltontp
1602  *
1603  * ====================================================================
1604  */
1605 int
1606 ntpcal_ntp64_to_date(
1607 	struct calendar *jd,
1608 	const vint64	*ntp
1609 	)
1610 {
1611 	ntpcal_split ds;
1612 
1613 	ds = ntpcal_daysplit(ntp);
1614 	ds.hi += ntpcal_daysec_to_date(jd, ds.lo);
1615 
1616 	return ntpcal_rd_to_date(jd, ds.hi + DAY_NTP_STARTS);
1617 }
1618 
1619 int
1620 ntpcal_ntp_to_date(
1621 	struct calendar *jd,
1622 	uint32_t	 ntp,
1623 	const time_t	*piv
1624 	)
1625 {
1626 	vint64	ntp64;
1627 
1628 	/*
1629 	 * Unfold ntp time around current time into NTP domain. Split
1630 	 * into days and seconds, shift days into CE domain and
1631 	 * process the parts.
1632 	 */
1633 	ntp64 = ntpcal_ntp_to_ntp(ntp, piv);
1634 	return ntpcal_ntp64_to_date(jd, &ntp64);
1635 }
1636 
1637 
1638 vint64
1639 ntpcal_date_to_ntp64(
1640 	const struct calendar *jd
1641 	)
1642 {
1643 	/*
1644 	 * Convert date to NTP. Ignore yearday, use d/m/y only.
1645 	 */
1646 	return ntpcal_dayjoin(ntpcal_date_to_rd(jd) - DAY_NTP_STARTS,
1647 			      ntpcal_date_to_daysec(jd));
1648 }
1649 
1650 
1651 uint32_t
1652 ntpcal_date_to_ntp(
1653 	const struct calendar *jd
1654 	)
1655 {
1656 	/*
1657 	 * Get lower half of 64bit NTP timestamp from date/time.
1658 	 */
1659 	return ntpcal_date_to_ntp64(jd).d_s.lo;
1660 }
1661 
1662 
1663 
1664 /*
1665  * ====================================================================
1666  *
1667  * day-of-week calculations
1668  *
1669  * ====================================================================
1670  */
1671 /*
1672  * Given a RataDie and a day-of-week, calculate a RDN that is reater-than,
1673  * greater-or equal, closest, less-or-equal or less-than the given RDN
1674  * and denotes the given day-of-week
1675  */
1676 int32_t
1677 ntpcal_weekday_gt(
1678 	int32_t rdn,
1679 	int32_t dow
1680 	)
1681 {
1682 	return ntpcal_periodic_extend(rdn+1, dow, 7);
1683 }
1684 
1685 int32_t
1686 ntpcal_weekday_ge(
1687 	int32_t rdn,
1688 	int32_t dow
1689 	)
1690 {
1691 	return ntpcal_periodic_extend(rdn, dow, 7);
1692 }
1693 
1694 int32_t
1695 ntpcal_weekday_close(
1696 	int32_t rdn,
1697 	int32_t dow
1698 	)
1699 {
1700 	return ntpcal_periodic_extend(rdn-3, dow, 7);
1701 }
1702 
1703 int32_t
1704 ntpcal_weekday_le(
1705 	int32_t rdn,
1706 	int32_t dow
1707 	)
1708 {
1709 	return ntpcal_periodic_extend(rdn, dow, -7);
1710 }
1711 
1712 int32_t
1713 ntpcal_weekday_lt(
1714 	int32_t rdn,
1715 	int32_t dow
1716 	)
1717 {
1718 	return ntpcal_periodic_extend(rdn-1, dow, -7);
1719 }
1720 
1721 /*
1722  * ====================================================================
1723  *
1724  * ISO week-calendar conversions
1725  *
1726  * The ISO8601 calendar defines a calendar of years, weeks and weekdays.
1727  * It is related to the Gregorian calendar, and a ISO year starts at the
1728  * Monday closest to Jan,1st of the corresponding Gregorian year.  A ISO
1729  * calendar year has always 52 or 53 weeks, and like the Grogrian
1730  * calendar the ISO8601 calendar repeats itself every 400 years, or
1731  * 146097 days, or 20871 weeks.
1732  *
1733  * While it is possible to write ISO calendar functions based on the
1734  * Gregorian calendar functions, the following implementation takes a
1735  * different approach, based directly on years and weeks.
1736  *
1737  * Analysis of the tabulated data shows that it is not possible to
1738  * interpolate from years to weeks over a full 400 year range; cyclic
1739  * shifts over 400 years do not provide a solution here. But it *is*
1740  * possible to interpolate over every single century of the 400-year
1741  * cycle. (The centennial leap year rule seems to be the culprit here.)
1742  *
1743  * It can be shown that a conversion from years to weeks can be done
1744  * using a linear transformation of the form
1745  *
1746  *   w = floor( y * a + b )
1747  *
1748  * where the slope a must hold to
1749  *
1750  *  52.1780821918 <= a < 52.1791044776
1751  *
1752  * and b must be chosen according to the selected slope and the number
1753  * of the century in a 400-year period.
1754  *
1755  * The inverse calculation can also be done in this way. Careful scaling
1756  * provides an unlimited set of integer coefficients a,k,b that enable
1757  * us to write the calulation in the form
1758  *
1759  *   w = (y * a	 + b ) / k
1760  *   y = (w * a' + b') / k'
1761  *
1762  * In this implementation the values of k and k' are chosen to be the
1763  * smallest possible powers of two, so the division can be implemented
1764  * as shifts if the optimiser chooses to do so.
1765  *
1766  * ====================================================================
1767  */
1768 
1769 /*
1770  * Given a number of elapsed (ISO-)years since the begin of the
1771  * christian era, return the number of elapsed weeks corresponding to
1772  * the number of years.
1773  */
1774 int32_t
1775 isocal_weeks_in_years(
1776 	int32_t years
1777 	)
1778 {
1779 	/*
1780 	 * use: w = (y * 53431 + b[c]) / 1024 as interpolation
1781 	 */
1782 	static const uint16_t bctab[4] = { 157, 449, 597, 889 };
1783 
1784 	int32_t	 cs, cw;
1785 	uint32_t cc, ci, yu, sf32;
1786 
1787 	sf32 = int32_sflag(years);
1788 	yu   = (uint32_t)years;
1789 
1790 	/* split off centuries, using floor division */
1791 	cc  = sf32 ^ ((sf32 ^ yu) / 100u);
1792 	yu -= cc * 100u;
1793 
1794 	/* calculate century cycles shift and cycle index:
1795 	 * Assuming a century is 5217 weeks, we have to add a cycle
1796 	 * shift that is 3 for every 4 centuries, because 3 of the four
1797 	 * centuries have 5218 weeks. So '(cc*3 + 1) / 4' is the actual
1798 	 * correction, and the second century is the defective one.
1799 	 *
1800 	 * Needs floor division by 4, which is done with masking and
1801 	 * shifting.
1802 	 */
1803 	ci = cc * 3u + 1;
1804 	cs = uint32_2cpl_to_int32(sf32 ^ ((sf32 ^ ci) >> 2));
1805 	ci = ci & 3u;
1806 
1807 	/* Get weeks in century. Can use plain division here as all ops
1808 	 * are >= 0,  and let the compiler sort out the possible
1809 	 * optimisations.
1810 	 */
1811 	cw = (yu * 53431u + bctab[ci]) / 1024u;
1812 
1813 	return uint32_2cpl_to_int32(cc) * 5217 + cs + cw;
1814 }
1815 
1816 /*
1817  * Given a number of elapsed weeks since the begin of the christian
1818  * era, split this number into the number of elapsed years in res.hi
1819  * and the excessive number of weeks in res.lo. (That is, res.lo is
1820  * the number of elapsed weeks in the remaining partial year.)
1821  */
1822 ntpcal_split
1823 isocal_split_eraweeks(
1824 	int32_t weeks
1825 	)
1826 {
1827 	/*
1828 	 * use: y = (w * 157 + b[c]) / 8192 as interpolation
1829 	 */
1830 
1831 	static const uint16_t bctab[4] = { 85, 130, 17, 62 };
1832 
1833 	ntpcal_split res;
1834 	int32_t	 cc, ci;
1835 	uint32_t sw, cy, Q;
1836 
1837 	/* Use two fast cycle-split divisions again. Herew e want to
1838 	 * execute '(weeks * 4 + 2) /% 20871' under floor division rules
1839 	 * in the first step.
1840 	 *
1841 	 * This is of course (again) susceptible to internal overflow if
1842 	 * coded directly in 32bit. And again we use 64bit division on
1843 	 * a 64bit target and exact division after calculating the
1844 	 * remainder first on a 32bit target. With the smaller divider,
1845 	 * that's even a bit neater.
1846 	 */
1847 #   if defined(HAVE_64BITREGS)
1848 
1849 	/* Full floor division with 64bit values. */
1850 	uint64_t sf64, sw64;
1851 	sf64 = (uint64_t)-(weeks < 0);
1852 	sw64 = ((uint64_t)weeks << 2) | 2u;
1853 	Q    = (uint32_t)(sf64 ^ ((sf64 ^ sw64) / GREGORIAN_CYCLE_WEEKS));
1854 	sw   = (uint32_t)(sw64 - Q * GREGORIAN_CYCLE_WEEKS);
1855 
1856 #   else
1857 
1858 	/* Exact division after calculating the remainder via partial
1859 	 * reduction by digit sum.
1860 	 * (-2^33) % 20871     --> 5491	     : the sign bit value
1861 	 * ( 2^20) % 20871     --> 5026	     : the upper digit value
1862 	 * modinv(20871, 2^32) --> 330081335 : the inverse
1863 	 */
1864 	uint32_t ux = ((uint32_t)weeks << 2) | 2;
1865 	sw  = (weeks < 0) ? 5491u : 0u;		  /* sign dgt */
1866 	sw += ((weeks >> 18) & 0x01FFFu) * 5026u; /* hi dgt (src!) */
1867 	sw += (ux & 0xFFFFFu);			  /* lo dgt */
1868 	sw %= GREGORIAN_CYCLE_WEEKS;		  /* full reduction */
1869 	Q   = (ux  - sw) * 330081335u;		  /* exact div */
1870 
1871 #   endif
1872 
1873 	ci  = Q & 3u;
1874 	cc  = uint32_2cpl_to_int32(Q);
1875 
1876 	/* Split off years; sw >= 0 here! The scaled weeks in the years
1877 	 * are scaled up by 157 afterwards.
1878 	 */
1879 	sw  = (sw / 4u) * 157u + bctab[ci];
1880 	cy  = sw / 8192u;	/* sw >> 13 , let the compiler sort it out */
1881 	sw  = sw % 8192u;	/* sw & 8191, let the compiler sort it out */
1882 
1883 	/* assemble elapsed years and downscale the elapsed weeks in
1884 	 * the year.
1885 	 */
1886 	res.hi = 100*cc + cy;
1887 	res.lo = sw / 157u;
1888 
1889 	return res;
1890 }
1891 
1892 /*
1893  * Given a second in the NTP time scale and a pivot, expand the NTP
1894  * time stamp around the pivot and convert into an ISO calendar time
1895  * stamp.
1896  */
1897 int
1898 isocal_ntp64_to_date(
1899 	struct isodate *id,
1900 	const vint64   *ntp
1901 	)
1902 {
1903 	ntpcal_split ds;
1904 	int32_t	     ts[3];
1905 	uint32_t     uw, ud, sf32;
1906 
1907 	/*
1908 	 * Split NTP time into days and seconds, shift days into CE
1909 	 * domain and process the parts.
1910 	 */
1911 	ds = ntpcal_daysplit(ntp);
1912 
1913 	/* split time part */
1914 	ds.hi += priv_timesplit(ts, ds.lo);
1915 	id->hour   = (uint8_t)ts[0];
1916 	id->minute = (uint8_t)ts[1];
1917 	id->second = (uint8_t)ts[2];
1918 
1919 	/* split days into days and weeks, using floor division in unsigned */
1920 	ds.hi += DAY_NTP_STARTS - 1; /* shift from NTP to RDN */
1921 	sf32 = int32_sflag(ds.hi);
1922 	ud   = (uint32_t)ds.hi;
1923 	uw   = sf32 ^ ((sf32 ^ ud) / DAYSPERWEEK);
1924 	ud  -= uw * DAYSPERWEEK;
1925 
1926 	ds.hi = uint32_2cpl_to_int32(uw);
1927 	ds.lo = ud;
1928 
1929 	id->weekday = (uint8_t)ds.lo + 1;	/* weekday result    */
1930 
1931 	/* get year and week in year */
1932 	ds = isocal_split_eraweeks(ds.hi);	/* elapsed years&week*/
1933 	id->year = (uint16_t)ds.hi + 1;		/* shift to current  */
1934 	id->week = (uint8_t )ds.lo + 1;
1935 
1936 	return (ds.hi >= 0 && ds.hi < 0x0000FFFF);
1937 }
1938 
1939 int
1940 isocal_ntp_to_date(
1941 	struct isodate *id,
1942 	uint32_t	ntp,
1943 	const time_t   *piv
1944 	)
1945 {
1946 	vint64	ntp64;
1947 
1948 	/*
1949 	 * Unfold ntp time around current time into NTP domain, then
1950 	 * convert the full time stamp.
1951 	 */
1952 	ntp64 = ntpcal_ntp_to_ntp(ntp, piv);
1953 	return isocal_ntp64_to_date(id, &ntp64);
1954 }
1955 
1956 /*
1957  * Convert a ISO date spec into a second in the NTP time scale,
1958  * properly truncated to 32 bit.
1959  */
1960 vint64
1961 isocal_date_to_ntp64(
1962 	const struct isodate *id
1963 	)
1964 {
1965 	int32_t weeks, days, secs;
1966 
1967 	weeks = isocal_weeks_in_years((int32_t)id->year - 1)
1968 	      + (int32_t)id->week - 1;
1969 	days = weeks * 7 + (int32_t)id->weekday;
1970 	/* days is RDN of ISO date now */
1971 	secs = ntpcal_etime_to_seconds(id->hour, id->minute, id->second);
1972 
1973 	return ntpcal_dayjoin(days - DAY_NTP_STARTS, secs);
1974 }
1975 
1976 uint32_t
1977 isocal_date_to_ntp(
1978 	const struct isodate *id
1979 	)
1980 {
1981 	/*
1982 	 * Get lower half of 64bit NTP timestamp from date/time.
1983 	 */
1984 	return isocal_date_to_ntp64(id).d_s.lo;
1985 }
1986 
1987 /*
1988  * ====================================================================
1989  * 'basedate' support functions
1990  * ====================================================================
1991  */
1992 
1993 static int32_t s_baseday = NTP_TO_UNIX_DAYS;
1994 static int32_t s_gpsweek = 0;
1995 
1996 int32_t
1997 basedate_eval_buildstamp(void)
1998 {
1999 	struct calendar jd;
2000 	int32_t		ed;
2001 
2002 	if (!ntpcal_get_build_date(&jd))
2003 		return NTP_TO_UNIX_DAYS;
2004 
2005 	/* The time zone of the build stamp is unspecified; we remove
2006 	 * one day to provide a certain slack. And in case somebody
2007 	 * fiddled with the system clock, we make sure we do not go
2008 	 * before the UNIX epoch (1970-01-01). It's probably not possible
2009 	 * to do this to the clock on most systems, but there are other
2010 	 * ways to tweak the build stamp.
2011 	 */
2012 	jd.monthday -= 1;
2013 	ed = ntpcal_date_to_rd(&jd) - DAY_NTP_STARTS;
2014 	return (ed < NTP_TO_UNIX_DAYS) ? NTP_TO_UNIX_DAYS : ed;
2015 }
2016 
2017 int32_t
2018 basedate_eval_string(
2019 	const char * str
2020 	)
2021 {
2022 	u_short	y,m,d;
2023 	u_long	ned;
2024 	int	rc, nc;
2025 	size_t	sl;
2026 
2027 	sl = strlen(str);
2028 	rc = sscanf(str, "%4hu-%2hu-%2hu%n", &y, &m, &d, &nc);
2029 	if (rc == 3 && (size_t)nc == sl) {
2030 		if (m >= 1 && m <= 12 && d >= 1 && d <= 31)
2031 			return ntpcal_edate_to_eradays(y-1, m-1, d)
2032 			    - DAY_NTP_STARTS;
2033 		goto buildstamp;
2034 	}
2035 
2036 	rc = sscanf(str, "%lu%n", &ned, &nc);
2037 	if (rc == 1 && (size_t)nc == sl) {
2038 		if (ned <= INT32_MAX)
2039 			return (int32_t)ned;
2040 		goto buildstamp;
2041 	}
2042 
2043   buildstamp:
2044 	msyslog(LOG_WARNING,
2045 		"basedate string \"%s\" invalid, build date substituted!",
2046 		str);
2047 	return basedate_eval_buildstamp();
2048 }
2049 
2050 uint32_t
2051 basedate_get_day(void)
2052 {
2053 	return s_baseday;
2054 }
2055 
2056 int32_t
2057 basedate_set_day(
2058 	int32_t day
2059 	)
2060 {
2061 	struct calendar	jd;
2062 	int32_t		retv;
2063 
2064 	/* set NTP base date for NTP era unfolding */
2065 	if (day < NTP_TO_UNIX_DAYS) {
2066 		msyslog(LOG_WARNING,
2067 			"baseday_set_day: invalid day (%lu), UNIX epoch substituted",
2068 			(unsigned long)day);
2069 		day = NTP_TO_UNIX_DAYS;
2070 	}
2071 	retv = s_baseday;
2072 	s_baseday = day;
2073 	ntpcal_rd_to_date(&jd, day + DAY_NTP_STARTS);
2074 	msyslog(LOG_INFO, "basedate set to %04hu-%02hu-%02hu",
2075 		jd.year, (u_short)jd.month, (u_short)jd.monthday);
2076 
2077 	/* set GPS base week for GPS week unfolding */
2078 	day = ntpcal_weekday_ge(day + DAY_NTP_STARTS, CAL_SUNDAY)
2079 	    - DAY_NTP_STARTS;
2080 	if (day < NTP_TO_GPS_DAYS)
2081 	    day = NTP_TO_GPS_DAYS;
2082 	s_gpsweek = (day - NTP_TO_GPS_DAYS) / DAYSPERWEEK;
2083 	ntpcal_rd_to_date(&jd, day + DAY_NTP_STARTS);
2084 	msyslog(LOG_INFO, "gps base set to %04hu-%02hu-%02hu (week %d)",
2085 		jd.year, (u_short)jd.month, (u_short)jd.monthday, s_gpsweek);
2086 
2087 	return retv;
2088 }
2089 
2090 time_t
2091 basedate_get_eracenter(void)
2092 {
2093 	time_t retv;
2094 	retv  = (time_t)(s_baseday - NTP_TO_UNIX_DAYS);
2095 	retv *= SECSPERDAY;
2096 	retv += (UINT32_C(1) << 31);
2097 	return retv;
2098 }
2099 
2100 time_t
2101 basedate_get_erabase(void)
2102 {
2103 	time_t retv;
2104 	retv  = (time_t)(s_baseday - NTP_TO_UNIX_DAYS);
2105 	retv *= SECSPERDAY;
2106 	return retv;
2107 }
2108 
2109 uint32_t
2110 basedate_get_gpsweek(void)
2111 {
2112     return s_gpsweek;
2113 }
2114 
2115 uint32_t
2116 basedate_expand_gpsweek(
2117     unsigned short weekno
2118     )
2119 {
2120     /* We do a fast modulus expansion here. Since all quantities are
2121      * unsigned and we cannot go before the start of the GPS epoch
2122      * anyway, and since the truncated GPS week number is 10 bit, the
2123      * expansion becomes a simple sub/and/add sequence.
2124      */
2125     #if GPSWEEKS != 1024
2126     # error GPSWEEKS defined wrong -- should be 1024!
2127     #endif
2128 
2129     uint32_t diff;
2130     diff = ((uint32_t)weekno - s_gpsweek) & (GPSWEEKS - 1);
2131     return s_gpsweek + diff;
2132 }
2133 
2134 /*
2135  * ====================================================================
2136  * misc. helpers
2137  * ====================================================================
2138  */
2139 
2140 /* --------------------------------------------------------------------
2141  * reconstruct the centrury from a truncated date and a day-of-week
2142  *
2143  * Given a date with truncated year (2-digit, 0..99) and a day-of-week
2144  * from 1(Mon) to 7(Sun), recover the full year between 1900AD and 2300AD.
2145  */
2146 int32_t
2147 ntpcal_expand_century(
2148 	uint32_t y,
2149 	uint32_t m,
2150 	uint32_t d,
2151 	uint32_t wd)
2152 {
2153 	/* This algorithm is short but tricky... It's related to
2154 	 * Zeller's congruence, partially done backwards.
2155 	 *
2156 	 * A few facts to remember:
2157 	 *  1) The Gregorian calendar has a cycle of 400 years.
2158 	 *  2) The weekday of the 1st day of a century shifts by 5 days
2159 	 *     during a great cycle.
2160 	 *  3) For calendar math, a century starts with the 1st year,
2161 	 *     which is year 1, !not! zero.
2162 	 *
2163 	 * So we start with taking the weekday difference (mod 7)
2164 	 * between the truncated date (which is taken as an absolute
2165 	 * date in the 1st century in the proleptic calendar) and the
2166 	 * weekday given.
2167 	 *
2168 	 * When dividing this residual by 5, we obtain the number of
2169 	 * centuries to add to the base. But since the residual is (mod
2170 	 * 7), we have to make this an exact division by multiplication
2171 	 * with the modular inverse of 5 (mod 7), which is 3:
2172 	 *    3*5 === 1 (mod 7).
2173 	 *
2174 	 * If this yields a result of 4/5/6, the given date/day-of-week
2175 	 * combination is impossible, and we return zero as resulting
2176 	 * year to indicate failure.
2177 	 *
2178 	 * Then we remap the century to the range starting with year
2179 	 * 1900.
2180 	 */
2181 
2182 	uint32_t c;
2183 
2184 	/* check basic constraints */
2185 	if ((y >= 100u) || (--m >= 12u) || (--d >= 31u))
2186 		return 0;
2187 
2188 	if ((m += 10u) >= 12u)		/* shift base to prev. March,1st */
2189 		m -= 12u;
2190 	else if (--y >= 100u)
2191 		y += 100u;
2192 	d += y + (y >> 2) + 2u;		/* year share */
2193 	d += (m * 83u + 16u) >> 5;	/* month share */
2194 
2195 	/* get (wd - d), shifted to positive value, and multiply with
2196 	 * 3(mod 7). (Exact division, see to comment)
2197 	 * Note: 1) d <= 184 at this point.
2198 	 *	 2) 252 % 7 == 0, but 'wd' is off by one since we did
2199 	 *	    '--d' above, so we add just 251 here!
2200 	 */
2201 	c = u32mod7(3 * (251u + wd - d));
2202 	if (c > 3u)
2203 		return 0;
2204 
2205 	if ((m > 9u) && (++y >= 100u)) {/* undo base shift */
2206 		y -= 100u;
2207 		c = (c + 1) & 3u;
2208 	}
2209 	y += (c * 100u);		/* combine into 1st cycle */
2210 	y += (y < 300u) ? 2000 : 1600;	/* map to destination era */
2211 	return (int)y;
2212 }
2213 
2214 char *
2215 ntpcal_iso8601std(
2216 	char *		buf,
2217 	size_t		len,
2218 	TcCivilDate *	cdp
2219 	)
2220 {
2221 	if (!buf) {
2222 		LIB_GETBUF(buf);
2223 		len = LIB_BUFLENGTH;
2224 	}
2225 	if (len) {
2226 		len = snprintf(buf, len, "%04u-%02u-%02uT%02u:%02u:%02u",
2227 			       cdp->year, cdp->month, cdp->monthday,
2228 			       cdp->hour, cdp->minute, cdp->second);
2229 		if (len < 0)
2230 			*buf = '\0';
2231 	}
2232 	return buf;
2233 }
2234 
2235 /* -*-EOF-*- */
2236