xref: /freebsd/contrib/ntp/libntp/ntp_calendar.c (revision 11d38a5764295585a2472d5e861fa8abe1a11eb2)
1 /*
2  * ntp_calendar.c - calendar and helper functions
3  *
4  * Written by Juergen Perlinger (perlinger@ntp.org) for the NTP project.
5  * The contents of 'html/copyright.html' apply.
6  *
7  * --------------------------------------------------------------------
8  * Some notes on the implementation:
9  *
10  * Calendar algorithms thrive on the division operation, which is one of
11  * the slowest numerical operations in any CPU. What saves us here from
12  * abysmal performance is the fact that all divisions are divisions by
13  * constant numbers, and most compilers can do this by a multiplication
14  * operation.  But this might not work when using the div/ldiv/lldiv
15  * function family, because many compilers are not able to do inline
16  * expansion of the code with following optimisation for the
17  * constant-divider case.
18  *
19  * Also div/ldiv/lldiv are defined in terms of int/long/longlong, which
20  * are inherently target dependent. Nothing that could not be cured with
21  * autoconf, but still a mess...
22  *
23  * Furthermore, we need floor division in many places. C either leaves
24  * the division behaviour undefined (< C99) or demands truncation to
25  * zero (>= C99), so additional steps are required to make sure the
26  * algorithms work. The {l,ll}div function family is requested to
27  * truncate towards zero, which is also the wrong direction for our
28  * purpose.
29  *
30  * For all this, all divisions by constant are coded manually, even when
31  * there is a joined div/mod operation: The optimiser should sort that
32  * out, if possible. Most of the calculations are done with unsigned
33  * types, explicitely using two's complement arithmetics where
34  * necessary. This minimises the dependecies to compiler and target,
35  * while still giving reasonable to good performance.
36  *
37  * The implementation uses a few tricks that exploit properties of the
38  * two's complement: Floor division on negative dividents can be
39  * executed by using the one's complement of the divident. One's
40  * complement can be easily created using XOR and a mask.
41  *
42  * Finally, check for overflow conditions is minimal. There are only two
43  * calculation steps in the whole calendar that suffer from an internal
44  * overflow, and these conditions are checked: errno is set to EDOM and
45  * the results are clamped/saturated in this case.  All other functions
46  * do not suffer from internal overflow and simply return the result
47  * truncated to 32 bits.
48  *
49  * This is a sacrifice made for execution speed.  Since a 32-bit day
50  * counter covers +/- 5,879,610 years and the clamp limits the effective
51  * range to +/-2.9 million years, this should not pose a problem here.
52  *
53  */
54 
55 #include <config.h>
56 #include <sys/types.h>
57 
58 #include "ntp_types.h"
59 #include "ntp_calendar.h"
60 #include "ntp_stdlib.h"
61 #include "ntp_fp.h"
62 #include "ntp_unixtime.h"
63 
64 /* For now, let's take the conservative approach: if the target property
65  * macros are not defined, check a few well-known compiler/architecture
66  * settings. Default is to assume that the representation of signed
67  * integers is unknown and shift-arithmetic-right is not available.
68  */
69 #ifndef TARGET_HAS_2CPL
70 # if defined(__GNUC__)
71 #  if defined(__i386__) || defined(__x86_64__) || defined(__arm__)
72 #   define TARGET_HAS_2CPL 1
73 #  else
74 #   define TARGET_HAS_2CPL 0
75 #  endif
76 # elif defined(_MSC_VER)
77 #  if defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM)
78 #   define TARGET_HAS_2CPL 1
79 #  else
80 #   define TARGET_HAS_2CPL 0
81 #  endif
82 # else
83 #  define TARGET_HAS_2CPL 0
84 # endif
85 #endif
86 
87 #ifndef TARGET_HAS_SAR
88 # define TARGET_HAS_SAR 0
89 #endif
90 
91 /*
92  *---------------------------------------------------------------------
93  * replacing the 'time()' function
94  * --------------------------------------------------------------------
95  */
96 
97 static systime_func_ptr systime_func = &time;
98 static inline time_t now(void);
99 
100 
101 systime_func_ptr
102 ntpcal_set_timefunc(
103 	systime_func_ptr nfunc
104 	)
105 {
106 	systime_func_ptr res;
107 
108 	res = systime_func;
109 	if (NULL == nfunc)
110 		nfunc = &time;
111 	systime_func = nfunc;
112 
113 	return res;
114 }
115 
116 
117 static inline time_t
118 now(void)
119 {
120 	return (*systime_func)(NULL);
121 }
122 
123 /*
124  *---------------------------------------------------------------------
125  * Get sign extension mask and unsigned 2cpl rep for a signed integer
126  *---------------------------------------------------------------------
127  */
128 
129 static inline uint32_t
130 int32_sflag(
131 	const int32_t v)
132 {
133 #   if TARGET_HAS_2CPL && TARGET_HAS_SAR && SIZEOF_INT >= 4
134 
135 	/* Let's assume that shift is the fastest way to get the sign
136 	 * extension of of a signed integer. This might not always be
137 	 * true, though -- On 8bit CPUs or machines without barrel
138 	 * shifter this will kill the performance. So we make sure
139 	 * we do this only if 'int' has at least 4 bytes.
140 	 */
141 	return (uint32_t)(v >> 31);
142 
143 #   else
144 
145 	/* This should be a rather generic approach for getting a sign
146 	 * extension mask...
147 	 */
148 	return UINT32_C(0) - (uint32_t)(v < 0);
149 
150 #   endif
151 }
152 
153 static inline uint32_t
154 int32_to_uint32_2cpl(
155 	const int32_t v)
156 {
157 	uint32_t vu;
158 
159 #   if TARGET_HAS_2CPL
160 
161 	/* Just copy through the 32 bits from the signed value if we're
162 	 * on a two's complement target.
163 	 */
164 	vu = (uint32_t)v;
165 
166 #   else
167 
168 	/* Convert from signed int to unsigned int two's complement. Do
169 	 * not make any assumptions about the representation of signed
170 	 * integers, but make sure signed integer overflow cannot happen
171 	 * here. A compiler on a two's complement target *might* find
172 	 * out that this is just a complicated cast (as above), but your
173 	 * mileage might vary.
174 	 */
175 	if (v < 0)
176 		vu = ~(uint32_t)(-(v + 1));
177 	else
178 		vu = (uint32_t)v;
179 
180 #   endif
181 
182 	return vu;
183 }
184 
185 static inline int32_t
186 uint32_2cpl_to_int32(
187 	const uint32_t vu)
188 {
189 	int32_t v;
190 
191 #   if TARGET_HAS_2CPL
192 
193 	/* Just copy through the 32 bits from the unsigned value if
194 	 * we're on a two's complement target.
195 	 */
196 	v = (int32_t)vu;
197 
198 #   else
199 
200 	/* Convert to signed integer, making sure signed integer
201 	 * overflow cannot happen. Again, the optimiser might or might
202 	 * not find out that this is just a copy of 32 bits on a target
203 	 * with two's complement representation for signed integers.
204 	 */
205 	if (vu > INT32_MAX)
206 		v = -(int32_t)(~vu) - 1;
207 	else
208 		v = (int32_t)vu;
209 
210 #   endif
211 
212 	return v;
213 }
214 
215 /* Some of the calculations need to multiply the input by 4 before doing
216  * a division. This can cause overflow and strange results. Therefore we
217  * clamp / saturate the input operand. And since we do the calculations
218  * in unsigned int with an extra sign flag/mask, we only loose one bit
219  * of the input value range.
220  */
221 static inline uint32_t
222 uint32_saturate(
223 	uint32_t vu,
224 	uint32_t mu)
225 {
226 	static const uint32_t limit = UINT32_MAX/4u;
227 	if ((mu ^ vu) > limit) {
228 		vu    = mu ^ limit;
229 		errno = EDOM;
230 	}
231 	return vu;
232 }
233 
234 /*
235  *---------------------------------------------------------------------
236  * Convert between 'time_t' and 'vint64'
237  *---------------------------------------------------------------------
238  */
239 vint64
240 time_to_vint64(
241 	const time_t * ptt
242 	)
243 {
244 	vint64 res;
245 	time_t tt;
246 
247 	tt = *ptt;
248 
249 #   if SIZEOF_TIME_T <= 4
250 
251 	res.D_s.hi = 0;
252 	if (tt < 0) {
253 		res.D_s.lo = (uint32_t)-tt;
254 		M_NEG(res.D_s.hi, res.D_s.lo);
255 	} else {
256 		res.D_s.lo = (uint32_t)tt;
257 	}
258 
259 #   elif defined(HAVE_INT64)
260 
261 	res.q_s = tt;
262 
263 #   else
264 	/*
265 	 * shifting negative signed quantities is compiler-dependent, so
266 	 * we better avoid it and do it all manually. And shifting more
267 	 * than the width of a quantity is undefined. Also a don't do!
268 	 */
269 	if (tt < 0) {
270 		tt = -tt;
271 		res.D_s.lo = (uint32_t)tt;
272 		res.D_s.hi = (uint32_t)(tt >> 32);
273 		M_NEG(res.D_s.hi, res.D_s.lo);
274 	} else {
275 		res.D_s.lo = (uint32_t)tt;
276 		res.D_s.hi = (uint32_t)(tt >> 32);
277 	}
278 
279 #   endif
280 
281 	return res;
282 }
283 
284 
285 time_t
286 vint64_to_time(
287 	const vint64 *tv
288 	)
289 {
290 	time_t res;
291 
292 #   if SIZEOF_TIME_T <= 4
293 
294 	res = (time_t)tv->D_s.lo;
295 
296 #   elif defined(HAVE_INT64)
297 
298 	res = (time_t)tv->q_s;
299 
300 #   else
301 
302 	res = ((time_t)tv->d_s.hi << 32) | tv->D_s.lo;
303 
304 #   endif
305 
306 	return res;
307 }
308 
309 /*
310  *---------------------------------------------------------------------
311  * Get the build date & time
312  *---------------------------------------------------------------------
313  */
314 int
315 ntpcal_get_build_date(
316 	struct calendar * jd
317 	)
318 {
319 	/* The C standard tells us the format of '__DATE__':
320 	 *
321 	 * __DATE__ The date of translation of the preprocessing
322 	 * translation unit: a character string literal of the form "Mmm
323 	 * dd yyyy", where the names of the months are the same as those
324 	 * generated by the asctime function, and the first character of
325 	 * dd is a space character if the value is less than 10. If the
326 	 * date of translation is not available, an
327 	 * implementation-defined valid date shall be supplied.
328 	 *
329 	 * __TIME__ The time of translation of the preprocessing
330 	 * translation unit: a character string literal of the form
331 	 * "hh:mm:ss" as in the time generated by the asctime
332 	 * function. If the time of translation is not available, an
333 	 * implementation-defined valid time shall be supplied.
334 	 *
335 	 * Note that MSVC declares DATE and TIME to be in the local time
336 	 * zone, while neither the C standard nor the GCC docs make any
337 	 * statement about this. As a result, we may be +/-12hrs off
338 	 * UTC.  But for practical purposes, this should not be a
339 	 * problem.
340 	 *
341 	 */
342 #   ifdef MKREPRO_DATE
343 	static const char build[] = MKREPRO_TIME "/" MKREPRO_DATE;
344 #   else
345 	static const char build[] = __TIME__ "/" __DATE__;
346 #   endif
347 	static const char mlist[] = "JanFebMarAprMayJunJulAugSepOctNovDec";
348 
349 	char		  monstr[4];
350 	const char *	  cp;
351 	unsigned short	  hour, minute, second, day, year;
352  	/* Note: The above quantities are used for sscanf 'hu' format,
353 	 * so using 'uint16_t' is contra-indicated!
354 	 */
355 
356 #   ifdef DEBUG
357 	static int        ignore  = 0;
358 #   endif
359 
360 	ZERO(*jd);
361 	jd->year     = 1970;
362 	jd->month    = 1;
363 	jd->monthday = 1;
364 
365 #   ifdef DEBUG
366 	/* check environment if build date should be ignored */
367 	if (0 == ignore) {
368 	    const char * envstr;
369 	    envstr = getenv("NTPD_IGNORE_BUILD_DATE");
370 	    ignore = 1 + (envstr && (!*envstr || !strcasecmp(envstr, "yes")));
371 	}
372 	if (ignore > 1)
373 	    return FALSE;
374 #   endif
375 
376 	if (6 == sscanf(build, "%hu:%hu:%hu/%3s %hu %hu",
377 			&hour, &minute, &second, monstr, &day, &year)) {
378 		cp = strstr(mlist, monstr);
379 		if (NULL != cp) {
380 			jd->year     = year;
381 			jd->month    = (uint8_t)((cp - mlist) / 3 + 1);
382 			jd->monthday = (uint8_t)day;
383 			jd->hour     = (uint8_t)hour;
384 			jd->minute   = (uint8_t)minute;
385 			jd->second   = (uint8_t)second;
386 
387 			return TRUE;
388 		}
389 	}
390 
391 	return FALSE;
392 }
393 
394 
395 /*
396  *---------------------------------------------------------------------
397  * basic calendar stuff
398  * --------------------------------------------------------------------
399  */
400 
401 /* month table for a year starting with March,1st */
402 static const uint16_t shift_month_table[13] = {
403 	0, 31, 61, 92, 122, 153, 184, 214, 245, 275, 306, 337, 366
404 };
405 
406 /* month tables for years starting with January,1st; regular & leap */
407 static const uint16_t real_month_table[2][13] = {
408 	/* -*- table for regular years -*- */
409 	{ 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 },
410 	/* -*- table for leap years -*- */
411 	{ 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 }
412 };
413 
414 /*
415  * Some notes on the terminology:
416  *
417  * We use the proleptic Gregorian calendar, which is the Gregorian
418  * calendar extended in both directions ad infinitum. This totally
419  * disregards the fact that this calendar was invented in 1582, and
420  * was adopted at various dates over the world; sometimes even after
421  * the start of the NTP epoch.
422  *
423  * Normally date parts are given as current cycles, while time parts
424  * are given as elapsed cycles:
425  *
426  * 1970-01-01/03:04:05 means 'IN the 1970st. year, IN the first month,
427  * ON the first day, with 3hrs, 4minutes and 5 seconds elapsed.
428  *
429  * The basic calculations for this calendar implementation deal with
430  * ELAPSED date units, which is the number of full years, full months
431  * and full days before a date: 1970-01-01 would be (1969, 0, 0) in
432  * that notation.
433  *
434  * To ease the numeric computations, month and day values outside the
435  * normal range are acceptable: 2001-03-00 will be treated as the day
436  * before 2001-03-01, 2000-13-32 will give the same result as
437  * 2001-02-01 and so on.
438  *
439  * 'rd' or 'RD' is used as an abbreviation for the latin 'rata die'
440  * (day number).  This is the number of days elapsed since 0000-12-31
441  * in the proleptic Gregorian calendar. The begin of the Christian Era
442  * (0001-01-01) is RD(1).
443  */
444 
445 /*
446  * ==================================================================
447  *
448  * General algorithmic stuff
449  *
450  * ==================================================================
451  */
452 
453 /*
454  *---------------------------------------------------------------------
455  * Do a periodic extension of 'value' around 'pivot' with a period of
456  * 'cycle'.
457  *
458  * The result 'res' is a number that holds to the following properties:
459  *
460  *   1)	 res MOD cycle == value MOD cycle
461  *   2)	 pivot <= res < pivot + cycle
462  *	 (replace </<= with >/>= for negative cycles)
463  *
464  * where 'MOD' denotes the modulo operator for FLOOR DIVISION, which
465  * is not the same as the '%' operator in C: C requires division to be
466  * a truncated division, where remainder and dividend have the same
467  * sign if the remainder is not zero, whereas floor division requires
468  * divider and modulus to have the same sign for a non-zero modulus.
469  *
470  * This function has some useful applications:
471  *
472  * + let Y be a calendar year and V a truncated 2-digit year: then
473  *	periodic_extend(Y-50, V, 100)
474  *   is the closest expansion of the truncated year with respect to
475  *   the full year, that is a 4-digit year with a difference of less
476  *   than 50 years to the year Y. ("century unfolding")
477  *
478  * + let T be a UN*X time stamp and V be seconds-of-day: then
479  *	perodic_extend(T-43200, V, 86400)
480  *   is a time stamp that has the same seconds-of-day as the input
481  *   value, with an absolute difference to T of <= 12hrs.  ("day
482  *   unfolding")
483  *
484  * + Wherever you have a truncated periodic value and a non-truncated
485  *   base value and you want to match them somehow...
486  *
487  * Basically, the function delivers 'pivot + (value - pivot) % cycle',
488  * but the implementation takes some pains to avoid internal signed
489  * integer overflows in the '(value - pivot) % cycle' part and adheres
490  * to the floor division convention.
491  *
492  * If 64bit scalars where available on all intended platforms, writing a
493  * version that uses 64 bit ops would be easy; writing a general
494  * division routine for 64bit ops on a platform that can only do
495  * 32/16bit divisions and is still performant is a bit more
496  * difficult. Since most usecases can be coded in a way that does only
497  * require the 32-bit version a 64bit version is NOT provided here.
498  * ---------------------------------------------------------------------
499  */
500 int32_t
501 ntpcal_periodic_extend(
502 	int32_t pivot,
503 	int32_t value,
504 	int32_t cycle
505 	)
506 {
507 	uint32_t diff;
508 	char	 cpl = 0; /* modulo complement flag */
509 	char	 neg = 0; /* sign change flag	    */
510 
511 	/* make the cycle positive and adjust the flags */
512 	if (cycle < 0) {
513 		cycle = - cycle;
514 		neg ^= 1;
515 		cpl ^= 1;
516 	}
517 	/* guard against div by zero or one */
518 	if (cycle > 1) {
519 		/*
520 		 * Get absolute difference as unsigned quantity and
521 		 * the complement flag. This is done by always
522 		 * subtracting the smaller value from the bigger
523 		 * one.
524 		 */
525 		if (value >= pivot) {
526 			diff = int32_to_uint32_2cpl(value)
527 			     - int32_to_uint32_2cpl(pivot);
528 		} else {
529 			diff = int32_to_uint32_2cpl(pivot)
530 			     - int32_to_uint32_2cpl(value);
531 			cpl ^= 1;
532 		}
533 		diff %= (uint32_t)cycle;
534 		if (diff) {
535 			if (cpl)
536 				diff = (uint32_t)cycle - diff;
537 			if (neg)
538 				diff = ~diff + 1;
539 			pivot += uint32_2cpl_to_int32(diff);
540 		}
541 	}
542 	return pivot;
543 }
544 
545 /*
546  *-------------------------------------------------------------------
547  * Convert a timestamp in NTP scale to a 64bit seconds value in the UN*X
548  * scale with proper epoch unfolding around a given pivot or the current
549  * system time. This function happily accepts negative pivot values as
550  * timestamps befor 1970-01-01, so be aware of possible trouble on
551  * platforms with 32bit 'time_t'!
552  *
553  * This is also a periodic extension, but since the cycle is 2^32 and
554  * the shift is 2^31, we can do some *very* fast math without explicit
555  * divisions.
556  *-------------------------------------------------------------------
557  */
558 vint64
559 ntpcal_ntp_to_time(
560 	uint32_t	ntp,
561 	const time_t *	pivot
562 	)
563 {
564 	vint64 res;
565 
566 #   if defined(HAVE_INT64)
567 
568 	res.q_s = (pivot != NULL)
569 		      ? *pivot
570 		      : now();
571 	res.Q_s -= 0x80000000;		/* unshift of half range */
572 	ntp	-= (uint32_t)JAN_1970;	/* warp into UN*X domain */
573 	ntp	-= res.D_s.lo;		/* cycle difference	 */
574 	res.Q_s += (uint64_t)ntp;	/* get expanded time	 */
575 
576 #   else /* no 64bit scalars */
577 
578 	time_t tmp;
579 
580 	tmp = (pivot != NULL)
581 		  ? *pivot
582 		  : now();
583 	res = time_to_vint64(&tmp);
584 	M_SUB(res.D_s.hi, res.D_s.lo, 0, 0x80000000);
585 	ntp -= (uint32_t)JAN_1970;	/* warp into UN*X domain */
586 	ntp -= res.D_s.lo;		/* cycle difference	 */
587 	M_ADD(res.D_s.hi, res.D_s.lo, 0, ntp);
588 
589 #   endif /* no 64bit scalars */
590 
591 	return res;
592 }
593 
594 /*
595  *-------------------------------------------------------------------
596  * Convert a timestamp in NTP scale to a 64bit seconds value in the NTP
597  * scale with proper epoch unfolding around a given pivot or the current
598  * system time.
599  *
600  * Note: The pivot must be given in the UN*X time domain!
601  *
602  * This is also a periodic extension, but since the cycle is 2^32 and
603  * the shift is 2^31, we can do some *very* fast math without explicit
604  * divisions.
605  *-------------------------------------------------------------------
606  */
607 vint64
608 ntpcal_ntp_to_ntp(
609 	uint32_t      ntp,
610 	const time_t *pivot
611 	)
612 {
613 	vint64 res;
614 
615 #   if defined(HAVE_INT64)
616 
617 	res.q_s = (pivot)
618 		      ? *pivot
619 		      : now();
620 	res.Q_s -= 0x80000000;		/* unshift of half range */
621 	res.Q_s += (uint32_t)JAN_1970;	/* warp into NTP domain	 */
622 	ntp	-= res.D_s.lo;		/* cycle difference	 */
623 	res.Q_s += (uint64_t)ntp;	/* get expanded time	 */
624 
625 #   else /* no 64bit scalars */
626 
627 	time_t tmp;
628 
629 	tmp = (pivot)
630 		  ? *pivot
631 		  : now();
632 	res = time_to_vint64(&tmp);
633 	M_SUB(res.D_s.hi, res.D_s.lo, 0, 0x80000000u);
634 	M_ADD(res.D_s.hi, res.D_s.lo, 0, (uint32_t)JAN_1970);/*into NTP */
635 	ntp -= res.D_s.lo;		/* cycle difference	 */
636 	M_ADD(res.D_s.hi, res.D_s.lo, 0, ntp);
637 
638 #   endif /* no 64bit scalars */
639 
640 	return res;
641 }
642 
643 
644 /*
645  * ==================================================================
646  *
647  * Splitting values to composite entities
648  *
649  * ==================================================================
650  */
651 
652 /*
653  *-------------------------------------------------------------------
654  * Split a 64bit seconds value into elapsed days in 'res.hi' and
655  * elapsed seconds since midnight in 'res.lo' using explicit floor
656  * division. This function happily accepts negative time values as
657  * timestamps before the respective epoch start.
658  * -------------------------------------------------------------------
659  */
660 ntpcal_split
661 ntpcal_daysplit(
662 	const vint64 *ts
663 	)
664 {
665 	ntpcal_split res;
666 	uint32_t Q;
667 
668 #   if defined(HAVE_INT64)
669 
670 	/* Manual floor division by SECSPERDAY. This uses the one's
671 	 * complement trick, too, but without an extra flag value: The
672 	 * flag would be 64bit, and that's a bit of overkill on a 32bit
673 	 * target that has to use a register pair for a 64bit number.
674 	 */
675 	if (ts->q_s < 0)
676 		Q = ~(uint32_t)(~ts->Q_s / SECSPERDAY);
677 	else
678 		Q = (uint32_t)(ts->Q_s / SECSPERDAY);
679 
680 #   else
681 
682 	uint32_t ah, al, sflag, A;
683 
684 	/* get operand into ah/al (either ts or ts' one's complement,
685 	 * for later floor division)
686 	 */
687 	sflag = int32_sflag(ts->d_s.hi);
688 	ah = sflag ^ ts->D_s.hi;
689 	al = sflag ^ ts->D_s.lo;
690 
691 	/* Since 86400 == 128*675 we can drop the least 7 bits and
692 	 * divide by 675 instead of 86400. Then the maximum remainder
693 	 * after each devision step is 674, and we need 10 bits for
694 	 * that. So in the next step we can shift in 22 bits from the
695 	 * numerator.
696 	 *
697 	 * Therefore we load the accu with the top 13 bits (51..63) in
698 	 * the first shot. We don't have to remember the quotient -- it
699 	 * would be shifted out anyway.
700 	 */
701 	A = ah >> 19;
702 	if (A >= 675)
703 		A = (A % 675u);
704 
705 	/* Now assemble the remainder with bits 29..50 from the
706 	 * numerator and divide. This creates the upper ten bits of the
707 	 * quotient. (Well, the top 22 bits of a 44bit result. But that
708 	 * will be truncated to 32 bits anyway.)
709 	 */
710 	A = (A << 19) | (ah & 0x0007FFFFu);
711 	A = (A <<  3) | (al >> 29);
712 	Q = A / 675u;
713 	A = A % 675u;
714 
715 	/* Now assemble the remainder with bits 7..28 from the numerator
716 	 * and do a final division step.
717 	 */
718 	A = (A << 22) | ((al >> 7) & 0x003FFFFFu);
719 	Q = (Q << 22) | (A / 675u);
720 
721 	/* The last 7 bits get simply dropped, as they have no affect on
722 	 * the quotient when dividing by 86400.
723 	 */
724 
725 	/* apply sign correction and calculate the true floor
726 	 * remainder.
727 	 */
728 	Q ^= sflag;
729 
730 #   endif
731 
732 	res.hi = uint32_2cpl_to_int32(Q);
733 	res.lo = ts->D_s.lo - Q * SECSPERDAY;
734 
735 	return res;
736 }
737 
738 /*
739  *-------------------------------------------------------------------
740  * Split a 32bit seconds value into h/m/s and excessive days.  This
741  * function happily accepts negative time values as timestamps before
742  * midnight.
743  * -------------------------------------------------------------------
744  */
745 static int32_t
746 priv_timesplit(
747 	int32_t split[3],
748 	int32_t ts
749 	)
750 {
751 	/* Do 3 chained floor divisions by positive constants, using the
752 	 * one's complement trick and factoring out the intermediate XOR
753 	 * ops to reduce the number of operations.
754 	 */
755 	uint32_t us, um, uh, ud, sflag;
756 
757 	sflag = int32_sflag(ts);
758 	us    = int32_to_uint32_2cpl(ts);
759 
760 	um = (sflag ^ us) / SECSPERMIN;
761 	uh = um / MINSPERHR;
762 	ud = uh / HRSPERDAY;
763 
764 	um ^= sflag;
765 	uh ^= sflag;
766 	ud ^= sflag;
767 
768 	split[0] = (int32_t)(uh - ud * HRSPERDAY );
769 	split[1] = (int32_t)(um - uh * MINSPERHR );
770 	split[2] = (int32_t)(us - um * SECSPERMIN);
771 
772 	return uint32_2cpl_to_int32(ud);
773 }
774 
775 /*
776  * ---------------------------------------------------------------------
777  * Given the number of elapsed days in the calendar era, split this
778  * number into the number of elapsed years in 'res.hi' and the number
779  * of elapsed days of that year in 'res.lo'.
780  *
781  * if 'isleapyear' is not NULL, it will receive an integer that is 0 for
782  * regular years and a non-zero value for leap years.
783  *---------------------------------------------------------------------
784  */
785 ntpcal_split
786 ntpcal_split_eradays(
787 	int32_t days,
788 	int  *isleapyear
789 	)
790 {
791 	/* Use the fast cyclesplit algorithm here, to calculate the
792 	 * centuries and years in a century with one division each. This
793 	 * reduces the number of division operations to two, but is
794 	 * susceptible to internal range overflow. We make sure the
795 	 * input operands are in the safe range; this still gives us
796 	 * approx +/-2.9 million years.
797 	 */
798 	ntpcal_split res;
799 	int32_t	 n100, n001; /* calendar year cycles */
800 	uint32_t uday, Q, sflag;
801 
802 	/* split off centuries first */
803 	sflag = int32_sflag(days);
804 	uday  = uint32_saturate(int32_to_uint32_2cpl(days), sflag);
805 	uday  = (4u * uday) | 3u;
806 	Q    = sflag ^ ((sflag ^ uday) / GREGORIAN_CYCLE_DAYS);
807 	uday = uday - Q * GREGORIAN_CYCLE_DAYS;
808 	n100 = uint32_2cpl_to_int32(Q);
809 
810 	/* Split off years in century -- days >= 0 here, and we're far
811 	 * away from integer overflow trouble now. */
812 	uday |= 3;
813 	n001 = uday / GREGORIAN_NORMAL_LEAP_CYCLE_DAYS;
814 	uday = uday % GREGORIAN_NORMAL_LEAP_CYCLE_DAYS;
815 
816 	/* Assemble the year and day in year */
817 	res.hi = n100 * 100 + n001;
818 	res.lo = uday / 4u;
819 
820 	/* Eventually set the leap year flag. Note: 0 <= n001 <= 99 and
821 	 * Q is still the two's complement representation of the
822 	 * centuries: The modulo 4 ops can be done with masking here.
823 	 * We also shift the year and the century by one, so the tests
824 	 * can be done against zero instead of 3.
825 	 */
826 	if (isleapyear)
827 		*isleapyear = !((n001+1) & 3)
828 		    && ((n001 != 99) || !((Q+1) & 3));
829 
830 	return res;
831 }
832 
833 /*
834  *---------------------------------------------------------------------
835  * Given a number of elapsed days in a year and a leap year indicator,
836  * split the number of elapsed days into the number of elapsed months in
837  * 'res.hi' and the number of elapsed days of that month in 'res.lo'.
838  *
839  * This function will fail and return {-1,-1} if the number of elapsed
840  * days is not in the valid range!
841  *---------------------------------------------------------------------
842  */
843 ntpcal_split
844 ntpcal_split_yeardays(
845 	int32_t eyd,
846 	int     isleapyear
847 	)
848 {
849 	ntpcal_split    res;
850 	const uint16_t *lt;	/* month length table	*/
851 
852 	/* check leap year flag and select proper table */
853 	lt = real_month_table[(isleapyear != 0)];
854 	if (0 <= eyd && eyd < lt[12]) {
855 		/* get zero-based month by approximation & correction step */
856 		res.hi = eyd >> 5;	   /* approx month; might be 1 too low */
857 		if (lt[res.hi + 1] <= eyd) /* fixup approximative month value  */
858 			res.hi += 1;
859 		res.lo = eyd - lt[res.hi];
860 	} else {
861 		res.lo = res.hi = -1;
862 	}
863 
864 	return res;
865 }
866 
867 /*
868  *---------------------------------------------------------------------
869  * Convert a RD into the date part of a 'struct calendar'.
870  *---------------------------------------------------------------------
871  */
872 int
873 ntpcal_rd_to_date(
874 	struct calendar *jd,
875 	int32_t		 rd
876 	)
877 {
878 	ntpcal_split split;
879 	int	     leapy;
880 	u_int	     ymask;
881 
882 	/* Get day-of-week first. Since rd is signed, the remainder can
883 	 * be in the range [-6..+6], but the assignment to an unsigned
884 	 * variable maps the negative values to positive values >=7.
885 	 * This makes the sign correction look strange, but adding 7
886 	 * causes the needed wrap-around into the desired value range of
887 	 * zero to six, both inclusive.
888 	 */
889 	jd->weekday = rd % DAYSPERWEEK;
890 	if (jd->weekday >= DAYSPERWEEK)	/* weekday is unsigned! */
891 		jd->weekday += DAYSPERWEEK;
892 
893 	split = ntpcal_split_eradays(rd - 1, &leapy);
894 	/* Get year and day-of-year, with overflow check. If any of the
895 	 * upper 16 bits is set after shifting to unity-based years, we
896 	 * will have an overflow when converting to an unsigned 16bit
897 	 * year. Shifting to the right is OK here, since it does not
898 	 * matter if the shift is logic or arithmetic.
899 	 */
900 	split.hi += 1;
901 	ymask = 0u - ((split.hi >> 16) == 0);
902 	jd->year = (uint16_t)(split.hi & ymask);
903 	jd->yearday = (uint16_t)split.lo + 1;
904 
905 	/* convert to month and mday */
906 	split = ntpcal_split_yeardays(split.lo, leapy);
907 	jd->month    = (uint8_t)split.hi + 1;
908 	jd->monthday = (uint8_t)split.lo + 1;
909 
910 	return ymask ? leapy : -1;
911 }
912 
913 /*
914  *---------------------------------------------------------------------
915  * Convert a RD into the date part of a 'struct tm'.
916  *---------------------------------------------------------------------
917  */
918 int
919 ntpcal_rd_to_tm(
920 	struct tm  *utm,
921 	int32_t	    rd
922 	)
923 {
924 	ntpcal_split split;
925 	int	     leapy;
926 
927 	/* get day-of-week first */
928 	utm->tm_wday = rd % DAYSPERWEEK;
929 	if (utm->tm_wday < 0)
930 		utm->tm_wday += DAYSPERWEEK;
931 
932 	/* get year and day-of-year */
933 	split = ntpcal_split_eradays(rd - 1, &leapy);
934 	utm->tm_year = split.hi - 1899;
935 	utm->tm_yday = split.lo;	/* 0-based */
936 
937 	/* convert to month and mday */
938 	split = ntpcal_split_yeardays(split.lo, leapy);
939 	utm->tm_mon  = split.hi;	/* 0-based */
940 	utm->tm_mday = split.lo + 1;	/* 1-based */
941 
942 	return leapy;
943 }
944 
945 /*
946  *---------------------------------------------------------------------
947  * Take a value of seconds since midnight and split it into hhmmss in a
948  * 'struct calendar'.
949  *---------------------------------------------------------------------
950  */
951 int32_t
952 ntpcal_daysec_to_date(
953 	struct calendar *jd,
954 	int32_t		sec
955 	)
956 {
957 	int32_t days;
958 	int   ts[3];
959 
960 	days = priv_timesplit(ts, sec);
961 	jd->hour   = (uint8_t)ts[0];
962 	jd->minute = (uint8_t)ts[1];
963 	jd->second = (uint8_t)ts[2];
964 
965 	return days;
966 }
967 
968 /*
969  *---------------------------------------------------------------------
970  * Take a value of seconds since midnight and split it into hhmmss in a
971  * 'struct tm'.
972  *---------------------------------------------------------------------
973  */
974 int32_t
975 ntpcal_daysec_to_tm(
976 	struct tm *utm,
977 	int32_t	   sec
978 	)
979 {
980 	int32_t days;
981 	int32_t ts[3];
982 
983 	days = priv_timesplit(ts, sec);
984 	utm->tm_hour = ts[0];
985 	utm->tm_min  = ts[1];
986 	utm->tm_sec  = ts[2];
987 
988 	return days;
989 }
990 
991 /*
992  *---------------------------------------------------------------------
993  * take a split representation for day/second-of-day and day offset
994  * and convert it to a 'struct calendar'. The seconds will be normalised
995  * into the range of a day, and the day will be adjusted accordingly.
996  *
997  * returns >0 if the result is in a leap year, 0 if in a regular
998  * year and <0 if the result did not fit into the calendar struct.
999  *---------------------------------------------------------------------
1000  */
1001 int
1002 ntpcal_daysplit_to_date(
1003 	struct calendar	   *jd,
1004 	const ntpcal_split *ds,
1005 	int32_t		    dof
1006 	)
1007 {
1008 	dof += ntpcal_daysec_to_date(jd, ds->lo);
1009 	return ntpcal_rd_to_date(jd, ds->hi + dof);
1010 }
1011 
1012 /*
1013  *---------------------------------------------------------------------
1014  * take a split representation for day/second-of-day and day offset
1015  * and convert it to a 'struct tm'. The seconds will be normalised
1016  * into the range of a day, and the day will be adjusted accordingly.
1017  *
1018  * returns 1 if the result is in a leap year and zero if in a regular
1019  * year.
1020  *---------------------------------------------------------------------
1021  */
1022 int
1023 ntpcal_daysplit_to_tm(
1024 	struct tm	   *utm,
1025 	const ntpcal_split *ds ,
1026 	int32_t		    dof
1027 	)
1028 {
1029 	dof += ntpcal_daysec_to_tm(utm, ds->lo);
1030 
1031 	return ntpcal_rd_to_tm(utm, ds->hi + dof);
1032 }
1033 
1034 /*
1035  *---------------------------------------------------------------------
1036  * Take a UN*X time and convert to a calendar structure.
1037  *---------------------------------------------------------------------
1038  */
1039 int
1040 ntpcal_time_to_date(
1041 	struct calendar	*jd,
1042 	const vint64	*ts
1043 	)
1044 {
1045 	ntpcal_split ds;
1046 
1047 	ds = ntpcal_daysplit(ts);
1048 	ds.hi += ntpcal_daysec_to_date(jd, ds.lo);
1049 	ds.hi += DAY_UNIX_STARTS;
1050 
1051 	return ntpcal_rd_to_date(jd, ds.hi);
1052 }
1053 
1054 
1055 /*
1056  * ==================================================================
1057  *
1058  * merging composite entities
1059  *
1060  * ==================================================================
1061  */
1062 
1063 /*
1064  *---------------------------------------------------------------------
1065  * Merge a number of days and a number of seconds into seconds,
1066  * expressed in 64 bits to avoid overflow.
1067  *---------------------------------------------------------------------
1068  */
1069 vint64
1070 ntpcal_dayjoin(
1071 	int32_t days,
1072 	int32_t secs
1073 	)
1074 {
1075 	vint64 res;
1076 
1077 #   if defined(HAVE_INT64)
1078 
1079 	res.q_s	 = days;
1080 	res.q_s *= SECSPERDAY;
1081 	res.q_s += secs;
1082 
1083 #   else
1084 
1085 	uint32_t p1, p2;
1086 	int	 isneg;
1087 
1088 	/*
1089 	 * res = days *86400 + secs, using manual 16/32 bit
1090 	 * multiplications and shifts.
1091 	 */
1092 	isneg = (days < 0);
1093 	if (isneg)
1094 		days = -days;
1095 
1096 	/* assemble days * 675 */
1097 	res.D_s.lo = (days & 0xFFFF) * 675u;
1098 	res.D_s.hi = 0;
1099 	p1 = (days >> 16) * 675u;
1100 	p2 = p1 >> 16;
1101 	p1 = p1 << 16;
1102 	M_ADD(res.D_s.hi, res.D_s.lo, p2, p1);
1103 
1104 	/* mul by 128, using shift */
1105 	res.D_s.hi = (res.D_s.hi << 7) | (res.D_s.lo >> 25);
1106 	res.D_s.lo = (res.D_s.lo << 7);
1107 
1108 	/* fix sign */
1109 	if (isneg)
1110 		M_NEG(res.D_s.hi, res.D_s.lo);
1111 
1112 	/* properly add seconds */
1113 	p2 = 0;
1114 	if (secs < 0) {
1115 		p1 = (uint32_t)-secs;
1116 		M_NEG(p2, p1);
1117 	} else {
1118 		p1 = (uint32_t)secs;
1119 	}
1120 	M_ADD(res.D_s.hi, res.D_s.lo, p2, p1);
1121 
1122 #   endif
1123 
1124 	return res;
1125 }
1126 
1127 /*
1128  *---------------------------------------------------------------------
1129  * get leap years since epoch in elapsed years
1130  *---------------------------------------------------------------------
1131  */
1132 int32_t
1133 ntpcal_leapyears_in_years(
1134 	int32_t years
1135 	)
1136 {
1137 	/* We use the in-out-in algorithm here, using the one's
1138 	 * complement division trick for negative numbers. The chained
1139 	 * division sequence by 4/25/4 gives the compiler the chance to
1140 	 * get away with only one true division and doing shifts otherwise.
1141 	 */
1142 
1143 	uint32_t sflag, sum, uyear;
1144 
1145 	sflag = int32_sflag(years);
1146 	uyear = int32_to_uint32_2cpl(years);
1147 	uyear ^= sflag;
1148 
1149 	sum  = (uyear /=  4u);	/*   4yr rule --> IN  */
1150 	sum -= (uyear /= 25u);	/* 100yr rule --> OUT */
1151 	sum += (uyear /=  4u);	/* 400yr rule --> IN  */
1152 
1153 	/* Thanks to the alternation of IN/OUT/IN we can do the sum
1154 	 * directly and have a single one's complement operation
1155 	 * here. (Only if the years are negative, of course.) Otherwise
1156 	 * the one's complement would have to be done when
1157 	 * adding/subtracting the terms.
1158 	 */
1159 	return uint32_2cpl_to_int32(sflag ^ sum);
1160 }
1161 
1162 /*
1163  *---------------------------------------------------------------------
1164  * Convert elapsed years in Era into elapsed days in Era.
1165  *---------------------------------------------------------------------
1166  */
1167 int32_t
1168 ntpcal_days_in_years(
1169 	int32_t years
1170 	)
1171 {
1172 	return years * DAYSPERYEAR + ntpcal_leapyears_in_years(years);
1173 }
1174 
1175 /*
1176  *---------------------------------------------------------------------
1177  * Convert a number of elapsed month in a year into elapsed days in year.
1178  *
1179  * The month will be normalized, and 'res.hi' will contain the
1180  * excessive years that must be considered when converting the years,
1181  * while 'res.lo' will contain the number of elapsed days since start
1182  * of the year.
1183  *
1184  * This code uses the shifted-month-approach to convert month to days,
1185  * because then there is no need to have explicit leap year
1186  * information.	 The slight disadvantage is that for most month values
1187  * the result is a negative value, and the year excess is one; the
1188  * conversion is then simply based on the start of the following year.
1189  *---------------------------------------------------------------------
1190  */
1191 ntpcal_split
1192 ntpcal_days_in_months(
1193 	int32_t m
1194 	)
1195 {
1196 	ntpcal_split res;
1197 
1198 	/* Add ten months and correct if needed. (It likely is...) */
1199 	res.lo  = m + 10;
1200 	res.hi  = (res.lo >= 12);
1201 	if (res.hi)
1202 		res.lo -= 12;
1203 
1204 	/* if still out of range, normalise by floor division ... */
1205 	if (res.lo < 0 || res.lo >= 12) {
1206 		uint32_t mu, Q, sflag;
1207 		sflag = int32_sflag(res.lo);
1208 		mu    = int32_to_uint32_2cpl(res.lo);
1209 		Q     = sflag ^ ((sflag ^ mu) / 12u);
1210 		res.hi += uint32_2cpl_to_int32(Q);
1211 		res.lo  = mu - Q * 12u;
1212 	}
1213 
1214 	/* get cummulated days in year with unshift */
1215 	res.lo = shift_month_table[res.lo] - 306;
1216 
1217 	return res;
1218 }
1219 
1220 /*
1221  *---------------------------------------------------------------------
1222  * Convert ELAPSED years/months/days of gregorian calendar to elapsed
1223  * days in Gregorian epoch.
1224  *
1225  * If you want to convert years and days-of-year, just give a month of
1226  * zero.
1227  *---------------------------------------------------------------------
1228  */
1229 int32_t
1230 ntpcal_edate_to_eradays(
1231 	int32_t years,
1232 	int32_t mons,
1233 	int32_t mdays
1234 	)
1235 {
1236 	ntpcal_split tmp;
1237 	int32_t	     res;
1238 
1239 	if (mons) {
1240 		tmp = ntpcal_days_in_months(mons);
1241 		res = ntpcal_days_in_years(years + tmp.hi) + tmp.lo;
1242 	} else
1243 		res = ntpcal_days_in_years(years);
1244 	res += mdays;
1245 
1246 	return res;
1247 }
1248 
1249 /*
1250  *---------------------------------------------------------------------
1251  * Convert ELAPSED years/months/days of gregorian calendar to elapsed
1252  * days in year.
1253  *
1254  * Note: This will give the true difference to the start of the given year,
1255  * even if months & days are off-scale.
1256  *---------------------------------------------------------------------
1257  */
1258 int32_t
1259 ntpcal_edate_to_yeardays(
1260 	int32_t years,
1261 	int32_t mons,
1262 	int32_t mdays
1263 	)
1264 {
1265 	ntpcal_split tmp;
1266 
1267 	if (0 <= mons && mons < 12) {
1268 		years += 1;
1269 		mdays += real_month_table[is_leapyear(years)][mons];
1270 	} else {
1271 		tmp = ntpcal_days_in_months(mons);
1272 		mdays += tmp.lo
1273 		       + ntpcal_days_in_years(years + tmp.hi)
1274 		       - ntpcal_days_in_years(years);
1275 	}
1276 
1277 	return mdays;
1278 }
1279 
1280 /*
1281  *---------------------------------------------------------------------
1282  * Convert elapsed days and the hour/minute/second information into
1283  * total seconds.
1284  *
1285  * If 'isvalid' is not NULL, do a range check on the time specification
1286  * and tell if the time input is in the normal range, permitting for a
1287  * single leapsecond.
1288  *---------------------------------------------------------------------
1289  */
1290 int32_t
1291 ntpcal_etime_to_seconds(
1292 	int32_t hours,
1293 	int32_t minutes,
1294 	int32_t seconds
1295 	)
1296 {
1297 	int32_t res;
1298 
1299 	res = (hours * MINSPERHR + minutes) * SECSPERMIN + seconds;
1300 
1301 	return res;
1302 }
1303 
1304 /*
1305  *---------------------------------------------------------------------
1306  * Convert the date part of a 'struct tm' (that is, year, month,
1307  * day-of-month) into the RD of that day.
1308  *---------------------------------------------------------------------
1309  */
1310 int32_t
1311 ntpcal_tm_to_rd(
1312 	const struct tm *utm
1313 	)
1314 {
1315 	return ntpcal_edate_to_eradays(utm->tm_year + 1899,
1316 				       utm->tm_mon,
1317 				       utm->tm_mday - 1) + 1;
1318 }
1319 
1320 /*
1321  *---------------------------------------------------------------------
1322  * Convert the date part of a 'struct calendar' (that is, year, month,
1323  * day-of-month) into the RD of that day.
1324  *---------------------------------------------------------------------
1325  */
1326 int32_t
1327 ntpcal_date_to_rd(
1328 	const struct calendar *jd
1329 	)
1330 {
1331 	return ntpcal_edate_to_eradays((int32_t)jd->year - 1,
1332 				       (int32_t)jd->month - 1,
1333 				       (int32_t)jd->monthday - 1) + 1;
1334 }
1335 
1336 /*
1337  *---------------------------------------------------------------------
1338  * convert a year number to rata die of year start
1339  *---------------------------------------------------------------------
1340  */
1341 int32_t
1342 ntpcal_year_to_ystart(
1343 	int32_t year
1344 	)
1345 {
1346 	return ntpcal_days_in_years(year - 1) + 1;
1347 }
1348 
1349 /*
1350  *---------------------------------------------------------------------
1351  * For a given RD, get the RD of the associated year start,
1352  * that is, the RD of the last January,1st on or before that day.
1353  *---------------------------------------------------------------------
1354  */
1355 int32_t
1356 ntpcal_rd_to_ystart(
1357 	int32_t rd
1358 	)
1359 {
1360 	/*
1361 	 * Rather simple exercise: split the day number into elapsed
1362 	 * years and elapsed days, then remove the elapsed days from the
1363 	 * input value. Nice'n sweet...
1364 	 */
1365 	return rd - ntpcal_split_eradays(rd - 1, NULL).lo;
1366 }
1367 
1368 /*
1369  *---------------------------------------------------------------------
1370  * For a given RD, get the RD of the associated month start.
1371  *---------------------------------------------------------------------
1372  */
1373 int32_t
1374 ntpcal_rd_to_mstart(
1375 	int32_t rd
1376 	)
1377 {
1378 	ntpcal_split split;
1379 	int	     leaps;
1380 
1381 	split = ntpcal_split_eradays(rd - 1, &leaps);
1382 	split = ntpcal_split_yeardays(split.lo, leaps);
1383 
1384 	return rd - split.lo;
1385 }
1386 
1387 /*
1388  *---------------------------------------------------------------------
1389  * take a 'struct calendar' and get the seconds-of-day from it.
1390  *---------------------------------------------------------------------
1391  */
1392 int32_t
1393 ntpcal_date_to_daysec(
1394 	const struct calendar *jd
1395 	)
1396 {
1397 	return ntpcal_etime_to_seconds(jd->hour, jd->minute,
1398 				       jd->second);
1399 }
1400 
1401 /*
1402  *---------------------------------------------------------------------
1403  * take a 'struct tm' and get the seconds-of-day from it.
1404  *---------------------------------------------------------------------
1405  */
1406 int32_t
1407 ntpcal_tm_to_daysec(
1408 	const struct tm *utm
1409 	)
1410 {
1411 	return ntpcal_etime_to_seconds(utm->tm_hour, utm->tm_min,
1412 				       utm->tm_sec);
1413 }
1414 
1415 /*
1416  *---------------------------------------------------------------------
1417  * take a 'struct calendar' and convert it to a 'time_t'
1418  *---------------------------------------------------------------------
1419  */
1420 time_t
1421 ntpcal_date_to_time(
1422 	const struct calendar *jd
1423 	)
1424 {
1425 	vint64  join;
1426 	int32_t days, secs;
1427 
1428 	days = ntpcal_date_to_rd(jd) - DAY_UNIX_STARTS;
1429 	secs = ntpcal_date_to_daysec(jd);
1430 	join = ntpcal_dayjoin(days, secs);
1431 
1432 	return vint64_to_time(&join);
1433 }
1434 
1435 
1436 /*
1437  * ==================================================================
1438  *
1439  * extended and unchecked variants of caljulian/caltontp
1440  *
1441  * ==================================================================
1442  */
1443 int
1444 ntpcal_ntp64_to_date(
1445 	struct calendar *jd,
1446 	const vint64    *ntp
1447 	)
1448 {
1449 	ntpcal_split ds;
1450 
1451 	ds = ntpcal_daysplit(ntp);
1452 	ds.hi += ntpcal_daysec_to_date(jd, ds.lo);
1453 
1454 	return ntpcal_rd_to_date(jd, ds.hi + DAY_NTP_STARTS);
1455 }
1456 
1457 int
1458 ntpcal_ntp_to_date(
1459 	struct calendar *jd,
1460 	uint32_t	 ntp,
1461 	const time_t	*piv
1462 	)
1463 {
1464 	vint64	ntp64;
1465 
1466 	/*
1467 	 * Unfold ntp time around current time into NTP domain. Split
1468 	 * into days and seconds, shift days into CE domain and
1469 	 * process the parts.
1470 	 */
1471 	ntp64 = ntpcal_ntp_to_ntp(ntp, piv);
1472 	return ntpcal_ntp64_to_date(jd, &ntp64);
1473 }
1474 
1475 
1476 vint64
1477 ntpcal_date_to_ntp64(
1478 	const struct calendar *jd
1479 	)
1480 {
1481 	/*
1482 	 * Convert date to NTP. Ignore yearday, use d/m/y only.
1483 	 */
1484 	return ntpcal_dayjoin(ntpcal_date_to_rd(jd) - DAY_NTP_STARTS,
1485 			      ntpcal_date_to_daysec(jd));
1486 }
1487 
1488 
1489 uint32_t
1490 ntpcal_date_to_ntp(
1491 	const struct calendar *jd
1492 	)
1493 {
1494 	/*
1495 	 * Get lower half of 64-bit NTP timestamp from date/time.
1496 	 */
1497 	return ntpcal_date_to_ntp64(jd).d_s.lo;
1498 }
1499 
1500 
1501 
1502 /*
1503  * ==================================================================
1504  *
1505  * day-of-week calculations
1506  *
1507  * ==================================================================
1508  */
1509 /*
1510  * Given a RataDie and a day-of-week, calculate a RDN that is reater-than,
1511  * greater-or equal, closest, less-or-equal or less-than the given RDN
1512  * and denotes the given day-of-week
1513  */
1514 int32_t
1515 ntpcal_weekday_gt(
1516 	int32_t rdn,
1517 	int32_t dow
1518 	)
1519 {
1520 	return ntpcal_periodic_extend(rdn+1, dow, 7);
1521 }
1522 
1523 int32_t
1524 ntpcal_weekday_ge(
1525 	int32_t rdn,
1526 	int32_t dow
1527 	)
1528 {
1529 	return ntpcal_periodic_extend(rdn, dow, 7);
1530 }
1531 
1532 int32_t
1533 ntpcal_weekday_close(
1534 	int32_t rdn,
1535 	int32_t dow
1536 	)
1537 {
1538 	return ntpcal_periodic_extend(rdn-3, dow, 7);
1539 }
1540 
1541 int32_t
1542 ntpcal_weekday_le(
1543 	int32_t rdn,
1544 	int32_t dow
1545 	)
1546 {
1547 	return ntpcal_periodic_extend(rdn, dow, -7);
1548 }
1549 
1550 int32_t
1551 ntpcal_weekday_lt(
1552 	int32_t rdn,
1553 	int32_t dow
1554 	)
1555 {
1556 	return ntpcal_periodic_extend(rdn-1, dow, -7);
1557 }
1558 
1559 /*
1560  * ==================================================================
1561  *
1562  * ISO week-calendar conversions
1563  *
1564  * The ISO8601 calendar defines a calendar of years, weeks and weekdays.
1565  * It is related to the Gregorian calendar, and a ISO year starts at the
1566  * Monday closest to Jan,1st of the corresponding Gregorian year.  A ISO
1567  * calendar year has always 52 or 53 weeks, and like the Grogrian
1568  * calendar the ISO8601 calendar repeats itself every 400 years, or
1569  * 146097 days, or 20871 weeks.
1570  *
1571  * While it is possible to write ISO calendar functions based on the
1572  * Gregorian calendar functions, the following implementation takes a
1573  * different approach, based directly on years and weeks.
1574  *
1575  * Analysis of the tabulated data shows that it is not possible to
1576  * interpolate from years to weeks over a full 400 year range; cyclic
1577  * shifts over 400 years do not provide a solution here. But it *is*
1578  * possible to interpolate over every single century of the 400-year
1579  * cycle. (The centennial leap year rule seems to be the culprit here.)
1580  *
1581  * It can be shown that a conversion from years to weeks can be done
1582  * using a linear transformation of the form
1583  *
1584  *   w = floor( y * a + b )
1585  *
1586  * where the slope a must hold to
1587  *
1588  *  52.1780821918 <= a < 52.1791044776
1589  *
1590  * and b must be chosen according to the selected slope and the number
1591  * of the century in a 400-year period.
1592  *
1593  * The inverse calculation can also be done in this way. Careful scaling
1594  * provides an unlimited set of integer coefficients a,k,b that enable
1595  * us to write the calulation in the form
1596  *
1597  *   w = (y * a	 + b ) / k
1598  *   y = (w * a' + b') / k'
1599  *
1600  * In this implementation the values of k and k' are chosen to be
1601  * smallest possible powers of two, so the division can be implemented
1602  * as shifts if the optimiser chooses to do so.
1603  *
1604  * ==================================================================
1605  */
1606 
1607 /*
1608  * Given a number of elapsed (ISO-)years since the begin of the
1609  * christian era, return the number of elapsed weeks corresponding to
1610  * the number of years.
1611  */
1612 int32_t
1613 isocal_weeks_in_years(
1614 	int32_t years
1615 	)
1616 {
1617 	/*
1618 	 * use: w = (y * 53431 + b[c]) / 1024 as interpolation
1619 	 */
1620 	static const uint16_t bctab[4] = { 157, 449, 597, 889 };
1621 
1622 	int32_t  cs, cw;
1623 	uint32_t cc, ci, yu, sflag;
1624 
1625 	sflag = int32_sflag(years);
1626 	yu    = int32_to_uint32_2cpl(years);
1627 
1628 	/* split off centuries, using floor division */
1629 	cc  = sflag ^ ((sflag ^ yu) / 100u);
1630 	yu -= cc * 100u;
1631 
1632 	/* calculate century cycles shift and cycle index:
1633 	 * Assuming a century is 5217 weeks, we have to add a cycle
1634 	 * shift that is 3 for every 4 centuries, because 3 of the four
1635 	 * centuries have 5218 weeks. So '(cc*3 + 1) / 4' is the actual
1636 	 * correction, and the second century is the defective one.
1637 	 *
1638 	 * Needs floor division by 4, which is done with masking and
1639 	 * shifting.
1640 	 */
1641 	ci = cc * 3u + 1;
1642 	cs = uint32_2cpl_to_int32(sflag ^ ((sflag ^ ci) / 4u));
1643 	ci = ci % 4u;
1644 
1645 	/* Get weeks in century. Can use plain division here as all ops
1646 	 * are >= 0,  and let the compiler sort out the possible
1647 	 * optimisations.
1648 	 */
1649 	cw = (yu * 53431u + bctab[ci]) / 1024u;
1650 
1651 	return uint32_2cpl_to_int32(cc) * 5217 + cs + cw;
1652 }
1653 
1654 /*
1655  * Given a number of elapsed weeks since the begin of the christian
1656  * era, split this number into the number of elapsed years in res.hi
1657  * and the excessive number of weeks in res.lo. (That is, res.lo is
1658  * the number of elapsed weeks in the remaining partial year.)
1659  */
1660 ntpcal_split
1661 isocal_split_eraweeks(
1662 	int32_t weeks
1663 	)
1664 {
1665 	/*
1666 	 * use: y = (w * 157 + b[c]) / 8192 as interpolation
1667 	 */
1668 
1669 	static const uint16_t bctab[4] = { 85, 130, 17, 62 };
1670 
1671 	ntpcal_split res;
1672 	int32_t  cc, ci;
1673 	uint32_t sw, cy, Q, sflag;
1674 
1675 	/* Use two fast cycle-split divisions here. This is again
1676 	 * susceptible to internal overflow, so we check the range. This
1677 	 * still permits more than +/-20 million years, so this is
1678 	 * likely a pure academical problem.
1679 	 *
1680 	 * We want to execute '(weeks * 4 + 2) /% 20871' under floor
1681 	 * division rules in the first step.
1682 	 */
1683 	sflag = int32_sflag(weeks);
1684 	sw  = uint32_saturate(int32_to_uint32_2cpl(weeks), sflag);
1685 	sw  = 4u * sw + 2;
1686 	Q   = sflag ^ ((sflag ^ sw) / GREGORIAN_CYCLE_WEEKS);
1687 	sw -= Q * GREGORIAN_CYCLE_WEEKS;
1688 	ci  = Q % 4u;
1689 	cc  = uint32_2cpl_to_int32(Q);
1690 
1691 	/* Split off years; sw >= 0 here! The scaled weeks in the years
1692 	 * are scaled up by 157 afterwards.
1693 	 */
1694 	sw  = (sw / 4u) * 157u + bctab[ci];
1695 	cy  = sw / 8192u;	/* ws >> 13 , let the compiler sort it out */
1696 	sw  = sw % 8192u;	/* ws & 8191, let the compiler sort it out */
1697 
1698 	/* assemble elapsed years and downscale the elapsed weeks in
1699 	 * the year.
1700 	 */
1701 	res.hi = 100*cc + cy;
1702 	res.lo = sw / 157u;
1703 
1704 	return res;
1705 }
1706 
1707 /*
1708  * Given a second in the NTP time scale and a pivot, expand the NTP
1709  * time stamp around the pivot and convert into an ISO calendar time
1710  * stamp.
1711  */
1712 int
1713 isocal_ntp64_to_date(
1714 	struct isodate *id,
1715 	const vint64   *ntp
1716 	)
1717 {
1718 	ntpcal_split ds;
1719 	int32_t      ts[3];
1720 	uint32_t     uw, ud, sflag;
1721 
1722 	/*
1723 	 * Split NTP time into days and seconds, shift days into CE
1724 	 * domain and process the parts.
1725 	 */
1726 	ds = ntpcal_daysplit(ntp);
1727 
1728 	/* split time part */
1729 	ds.hi += priv_timesplit(ts, ds.lo);
1730 	id->hour   = (uint8_t)ts[0];
1731 	id->minute = (uint8_t)ts[1];
1732 	id->second = (uint8_t)ts[2];
1733 
1734 	/* split days into days and weeks, using floor division in unsigned */
1735 	ds.hi += DAY_NTP_STARTS - 1; /* shift from NTP to RDN */
1736 	sflag = int32_sflag(ds.hi);
1737 	ud  = int32_to_uint32_2cpl(ds.hi);
1738 	uw  = sflag ^ ((sflag ^ ud) / DAYSPERWEEK);
1739 	ud -= uw * DAYSPERWEEK;
1740 	ds.hi = uint32_2cpl_to_int32(uw);
1741 	ds.lo = ud;
1742 
1743 	id->weekday = (uint8_t)ds.lo + 1;	/* weekday result    */
1744 
1745 	/* get year and week in year */
1746 	ds = isocal_split_eraweeks(ds.hi);	/* elapsed years&week*/
1747 	id->year = (uint16_t)ds.hi + 1;		/* shift to current  */
1748 	id->week = (uint8_t )ds.lo + 1;
1749 
1750 	return (ds.hi >= 0 && ds.hi < 0x0000FFFF);
1751 }
1752 
1753 int
1754 isocal_ntp_to_date(
1755 	struct isodate *id,
1756 	uint32_t	ntp,
1757 	const time_t   *piv
1758 	)
1759 {
1760 	vint64	ntp64;
1761 
1762 	/*
1763 	 * Unfold ntp time around current time into NTP domain, then
1764 	 * convert the full time stamp.
1765 	 */
1766 	ntp64 = ntpcal_ntp_to_ntp(ntp, piv);
1767 	return isocal_ntp64_to_date(id, &ntp64);
1768 }
1769 
1770 /*
1771  * Convert a ISO date spec into a second in the NTP time scale,
1772  * properly truncated to 32 bit.
1773  */
1774 vint64
1775 isocal_date_to_ntp64(
1776 	const struct isodate *id
1777 	)
1778 {
1779 	int32_t weeks, days, secs;
1780 
1781 	weeks = isocal_weeks_in_years((int32_t)id->year - 1)
1782 	      + (int32_t)id->week - 1;
1783 	days = weeks * 7 + (int32_t)id->weekday;
1784 	/* days is RDN of ISO date now */
1785 	secs = ntpcal_etime_to_seconds(id->hour, id->minute, id->second);
1786 
1787 	return ntpcal_dayjoin(days - DAY_NTP_STARTS, secs);
1788 }
1789 
1790 uint32_t
1791 isocal_date_to_ntp(
1792 	const struct isodate *id
1793 	)
1794 {
1795 	/*
1796 	 * Get lower half of 64-bit NTP timestamp from date/time.
1797 	 */
1798 	return isocal_date_to_ntp64(id).d_s.lo;
1799 }
1800 
1801 /* -*-EOF-*- */
1802