xref: /freebsd/contrib/ntp/libntp/clocktime.c (revision e8d8bef961a50d4dc22501cde4fb9fb0be1b2532)
1 /*
2  * clocktime - compute the NTP date from a day of year, hour, minute
3  *	       and second.
4  */
5 #include <config.h>
6 #include "ntp_fp.h"
7 #include "ntp_unixtime.h"
8 #include "ntp_stdlib.h"
9 #include "ntp_calendar.h"
10 
11 /*
12  * We check that the time be within CLOSETIME seconds of the receive
13  * time stamp.	This is about 4 hours, which hopefully should be wide
14  * enough to collect most data, while close enough to keep things from
15  * getting confused.
16  */
17 #define	CLOSETIME	(4u*60u*60u)
18 
19 /*
20  * Since we try to match years, the result of a full search will not
21  * change when we are already less than a half year from the receive
22  * time stamp.	Since the length of a year is variable we use a
23  * slightly narrower limit; this might require a full evaluation near
24  * the edge, but will make sure we always get the correct result.
25  */
26 #define NEARTIME	(182u * SECSPERDAY)
27 
28 /*
29  * local calendar helpers
30  */
31 static int32   ntp_to_year(u_int32);
32 static u_int32 year_to_ntp(int32);
33 
34 /*
35  * Take a time spec given as day-of-year, hour, minute and second as
36  * well as a GMT offset in hours and convert it to a NTP time stamp in
37  * '*ts_ui'. The value will be in the range (rec_ui-0.5yrs) to
38  * (rec_ui+0.5yrs). A hint for the current start-of-year will be
39  * read from '*yearstart'.
40  *
41  * On return '*ts_ui' will always the best matching solution, and
42  * '*yearstart' will receive the associated start-of-year.
43  *
44  * The function will tell if the result in 'ts_ui' is in CLOSETIME
45  * (+/-4hrs) around the receive time by returning a non-zero value.
46  *
47  * Note: The function puts no constraints on the value ranges for the
48  * time specification, but evaluates the effective seconds in
49  * 32-bit arithmetic.
50  */
51 int
52 clocktime(
53 	int	yday	 ,	/* day-of-year */
54 	int	hour	 ,	/* hour of day */
55 	int	minute	 ,	/* minute of hour */
56 	int	second	 ,	/* second of minute */
57 	int	tzoff	 ,	/* hours west of GMT */
58 	u_int32 rec_ui	 ,	/* pivot value */
59 	u_long *yearstart,	/* cached start-of-year, should be fixed to u_int32 */
60 	u_int32 *ts_ui	 )	/* effective time stamp */
61 {
62 	u_int32 ystt[3];	/* year start */
63 	u_int32 test[3];	/* result time stamp */
64 	u_int32 diff[3];	/* abs difference to receive */
65 	int32 y, tmp, idx, min;
66 
67 	/*
68 	 * Compute the offset into the year in seconds.	 Note that
69 	 * this could come out to be a negative number.
70 	 */
71 	tmp = ((int32)second +
72 	       SECSPERMIN * ((int32)minute +
73 			     MINSPERHR * ((int32)hour + (int32)tzoff +
74 					  HRSPERDAY * ((int32)yday - 1))));
75 	/*
76 	 * Based on the cached year start, do a first attempt. Be
77 	 * happy and return if this gets us better than NEARTIME to
78 	 * the receive time stamp. Do this only if the cached year
79 	 * start is not zero, which will not happen after 1900 for the
80 	 * next few thousand years.
81 	 */
82 	if (*yearstart) {
83 		/* -- get time stamp of potential solution */
84 		test[0] = (u_int32)(*yearstart) + tmp;
85 		/* -- calc absolute difference to receive time */
86 		diff[0] = test[0] - rec_ui;
87 		if (diff[0] >= 0x80000000u)
88 			diff[0] = ~diff[0] + 1;
89 		/* -- can't get closer if diff < NEARTIME */
90 		if (diff[0] < NEARTIME) {
91 			*ts_ui = test[0];
92 			return diff[0] < CLOSETIME;
93 		}
94 	}
95 
96 	/*
97 	 * Now the dance begins. Based on the receive time stamp and
98 	 * the seconds offset in 'tmp', we make an educated guess
99 	 * about the year to start with. This takes us on the spot
100 	 * with a fuzz of +/-1 year.
101 	 *
102 	 * We calculate the effective timestamps for the three years
103 	 * around the guess and select the entry with the minimum
104 	 * absolute difference to the receive time stamp.
105 	 */
106 	y = ntp_to_year(rec_ui - tmp);
107 	for (idx = 0; idx < 3; idx++) {
108 		/* -- get year start of potential solution */
109 		ystt[idx] = year_to_ntp(y + idx - 1);
110 		/* -- get time stamp of potential solution */
111 		test[idx] = ystt[idx] + tmp;
112 		/* -- calc absolute difference to receive time */
113 		diff[idx] = test[idx] - rec_ui;
114 		if (diff[idx] >= 0x80000000u)
115 			diff[idx] = ~diff[idx] + 1;
116 	}
117 	/* -*- assume current year fits best, then search best fit */
118 	for (min = 1, idx = 0; idx < 3; idx++)
119 		if (diff[idx] < diff[min])
120 			min = idx;
121 	/* -*- store results and update year start */
122 	*ts_ui	   = test[min];
123 	*yearstart = ystt[min];
124 
125 	/* -*- tell if we could get into CLOSETIME*/
126 	return diff[min] < CLOSETIME;
127 }
128 
129 static int32
130 ntp_to_year(
131 	u_int32 ntp)
132 {
133 	vint64	     t;
134 	ntpcal_split s;
135 
136 	t = ntpcal_ntp_to_ntp(ntp, NULL);
137 	s = ntpcal_daysplit(&t);
138 	s = ntpcal_split_eradays(s.hi + DAY_NTP_STARTS - 1, NULL);
139 	return s.hi + 1;
140 }
141 
142 static u_int32
143 year_to_ntp(
144 	int32 year)
145 {
146 	u_int32 days;
147 	days = ntpcal_days_in_years(year-1) - DAY_NTP_STARTS + 1;
148 	return days * SECSPERDAY;
149 }
150