xref: /freebsd/contrib/ntp/libntp/authkeys.c (revision 43a5ec4eb41567cc92586503212743d89686d78f)
1 /*
2  * authkeys.c - routines to manage the storage of authentication keys
3  */
4 #ifdef HAVE_CONFIG_H
5 # include <config.h>
6 #endif
7 
8 #include <math.h>
9 #include <stdio.h>
10 
11 #include "ntp.h"
12 #include "ntp_fp.h"
13 #include "ntpd.h"
14 #include "ntp_lists.h"
15 #include "ntp_string.h"
16 #include "ntp_malloc.h"
17 #include "ntp_stdlib.h"
18 #include "ntp_keyacc.h"
19 
20 /*
21  * Structure to store keys in in the hash table.
22  */
23 typedef struct savekey symkey;
24 
25 struct savekey {
26 	symkey *	hlink;		/* next in hash bucket */
27 	DECL_DLIST_LINK(symkey, llink);	/* for overall & free lists */
28 	u_char *	secret;		/* shared secret */
29 	KeyAccT *	keyacclist;	/* Private key access list */
30 	u_long		lifetime;	/* remaining lifetime */
31 	keyid_t		keyid;		/* key identifier */
32 	u_short		type;		/* OpenSSL digest NID */
33 	size_t		secretsize;	/* secret octets */
34 	u_short		flags;		/* KEY_ flags that wave */
35 };
36 
37 /* define the payload region of symkey beyond the list pointers */
38 #define symkey_payload	secret
39 
40 #define	KEY_TRUSTED	0x001	/* this key is trusted */
41 
42 #ifdef DEBUG
43 typedef struct symkey_alloc_tag symkey_alloc;
44 
45 struct symkey_alloc_tag {
46 	symkey_alloc *	link;
47 	void *		mem;		/* enable free() atexit */
48 };
49 
50 symkey_alloc *	authallocs;
51 #endif	/* DEBUG */
52 
53 static u_short	auth_log2(size_t);
54 static void		auth_resize_hashtable(void);
55 static void		allocsymkey(keyid_t,	u_short,
56 				    u_short, u_long, size_t, u_char *, KeyAccT *);
57 static void		freesymkey(symkey *);
58 #ifdef DEBUG
59 static void		free_auth_mem(void);
60 #endif
61 
62 symkey	key_listhead;		/* list of all in-use keys */;
63 /*
64  * The hash table. This is indexed by the low order bits of the
65  * keyid. We make this fairly big for potentially busy servers.
66  */
67 #define	DEF_AUTHHASHSIZE	64
68 /*#define	HASHMASK	((HASHSIZE)-1)*/
69 #define	KEYHASH(keyid)	((keyid) & authhashmask)
70 
71 int	authhashdisabled;
72 u_short	authhashbuckets = DEF_AUTHHASHSIZE;
73 u_short authhashmask = DEF_AUTHHASHSIZE - 1;
74 symkey **key_hash;
75 
76 u_long authkeynotfound;		/* keys not found */
77 u_long authkeylookups;		/* calls to lookup keys */
78 u_long authnumkeys;		/* number of active keys */
79 u_long authkeyexpired;		/* key lifetime expirations */
80 u_long authkeyuncached;		/* cache misses */
81 u_long authnokey;		/* calls to encrypt with no key */
82 u_long authencryptions;		/* calls to encrypt */
83 u_long authdecryptions;		/* calls to decrypt */
84 
85 /*
86  * Storage for free symkey structures.  We malloc() such things but
87  * never free them.
88  */
89 symkey *authfreekeys;
90 int authnumfreekeys;
91 
92 #define	MEMINC	16		/* number of new free ones to get */
93 
94 /*
95  * The key cache. We cache the last key we looked at here.
96  * Note: this should hold the last *trusted* key. Also the
97  * cache is only loaded when the digest type / MAC algorithm
98  * is valid.
99  */
100 keyid_t	cache_keyid;		/* key identifier */
101 u_char *cache_secret;		/* secret */
102 size_t	cache_secretsize;	/* secret length */
103 int	cache_type;		/* OpenSSL digest NID */
104 u_short cache_flags;		/* flags that wave */
105 KeyAccT *cache_keyacclist;	/* key access list */
106 
107 /* --------------------------------------------------------------------
108  * manage key access lists
109  * --------------------------------------------------------------------
110  */
111 /* allocate and populate new access node and pushes it on the list.
112  * Returns the new head.
113  */
114 KeyAccT*
115 keyacc_new_push(
116 	KeyAccT          * head,
117 	const sockaddr_u * addr,
118 	unsigned int	   subnetbits
119 	)
120 {
121 	KeyAccT *	node = emalloc(sizeof(KeyAccT));
122 
123 	memcpy(&node->addr, addr, sizeof(sockaddr_u));
124 	node->subnetbits = subnetbits;
125 	node->next = head;
126 
127 	return node;
128 }
129 
130 /* ----------------------------------------------------------------- */
131 /* pop and deallocate the first node of a list of access nodes, if
132  * the list is not empty. Returns the tail of the list.
133  */
134 KeyAccT*
135 keyacc_pop_free(
136 	KeyAccT *head
137 	)
138 {
139 	KeyAccT *	next = NULL;
140 	if (head) {
141 		next = head->next;
142 		free(head);
143 	}
144 	return next;
145 }
146 
147 /* ----------------------------------------------------------------- */
148 /* deallocate the list; returns an empty list. */
149 KeyAccT*
150 keyacc_all_free(
151 	KeyAccT * head
152 	)
153 {
154 	while (head)
155 		head = keyacc_pop_free(head);
156 	return head;
157 }
158 
159 /* ----------------------------------------------------------------- */
160 /* scan a list to see if it contains a given address. Return the
161  * default result value in case of an empty list.
162  */
163 int /*BOOL*/
164 keyacc_contains(
165 	const KeyAccT    *head,
166 	const sockaddr_u *addr,
167 	int               defv)
168 {
169 	if (head) {
170 		do {
171 			if (keyacc_amatch(&head->addr, addr,
172 					  head->subnetbits))
173 				return TRUE;
174 		} while (NULL != (head = head->next));
175 		return FALSE;
176 	} else {
177 		return !!defv;
178 	}
179 }
180 
181 #if CHAR_BIT != 8
182 # error "don't know how to handle bytes with that bit size"
183 #endif
184 
185 /* ----------------------------------------------------------------- */
186 /* check two addresses for a match, taking a prefix length into account
187  * when doing the compare.
188  *
189  * The ISC lib contains a similar function with not entirely specified
190  * semantics, so it seemed somewhat cleaner to do this from scratch.
191  *
192  * Note 1: It *is* assumed that the addresses are stored in network byte
193  * order, that is, most significant byte first!
194  *
195  * Note 2: "no address" compares unequal to all other addresses, even to
196  * itself. This has the same semantics as NaNs have for floats: *any*
197  * relational or equality operation involving a NaN returns FALSE, even
198  * equality with itself. "no address" is either a NULL pointer argument
199  * or an address of type AF_UNSPEC.
200  */
201 int/*BOOL*/
202 keyacc_amatch(
203 	const sockaddr_u *	a1,
204 	const sockaddr_u *	a2,
205 	unsigned int		mbits
206 	)
207 {
208 	const uint8_t * pm1;
209 	const uint8_t * pm2;
210 	uint8_t         msk;
211 	unsigned int    len;
212 
213 	/* 1st check: If any address is not an address, it's inequal. */
214 	if ( !a1 || (AF_UNSPEC == AF(a1)) ||
215 	     !a2 || (AF_UNSPEC == AF(a2))  )
216 		return FALSE;
217 
218 	/* We could check pointers for equality here and shortcut the
219 	 * other checks if we find object identity. But that use case is
220 	 * too rare to care for it.
221 	 */
222 
223 	/* 2nd check: Address families must be the same. */
224 	if (AF(a1) != AF(a2))
225 		return FALSE;
226 
227 	/* type check: address family determines buffer & size */
228 	switch (AF(a1)) {
229 	case AF_INET:
230 		/* IPv4 is easy: clamp size, get byte pointers */
231 		if (mbits > sizeof(NSRCADR(a1)) * 8)
232 			mbits = sizeof(NSRCADR(a1)) * 8;
233 		pm1 = (const void*)&NSRCADR(a1);
234 		pm2 = (const void*)&NSRCADR(a2);
235 		break;
236 
237 	case AF_INET6:
238 		/* IPv6 is slightly different: Both scopes must match,
239 		 * too, before we even consider doing a match!
240 		 */
241 		if ( ! SCOPE_EQ(a1, a2))
242 			return FALSE;
243 		if (mbits > sizeof(NSRCADR6(a1)) * 8)
244 			mbits = sizeof(NSRCADR6(a1)) * 8;
245 		pm1 = (const void*)&NSRCADR6(a1);
246 		pm2 = (const void*)&NSRCADR6(a2);
247 		break;
248 
249 	default:
250 		/* don't know how to compare that!?! */
251 		return FALSE;
252 	}
253 
254 	/* Split bit length into byte length and partial byte mask.
255 	 * Note that the byte mask extends from the MSB of a byte down,
256 	 * and that zero shift (--> mbits % 8 == 0) results in an
257 	 * all-zero mask.
258 	 */
259 	msk = 0xFFu ^ (0xFFu >> (mbits & 7));
260 	len = mbits >> 3;
261 
262 	/* 3rd check: Do memcmp() over full bytes, if any */
263 	if (len && memcmp(pm1, pm2, len))
264 		return FALSE;
265 
266 	/* 4th check: compare last incomplete byte, if any */
267 	if (msk && ((pm1[len] ^ pm2[len]) & msk))
268 		return FALSE;
269 
270 	/* If none of the above failed, we're successfully through. */
271 	return TRUE;
272 }
273 
274 /*
275  * init_auth - initialize internal data
276  */
277 void
278 init_auth(void)
279 {
280 	size_t newalloc;
281 
282 	/*
283 	 * Initialize hash table and free list
284 	 */
285 	newalloc = authhashbuckets * sizeof(key_hash[0]);
286 
287 	key_hash = erealloc(key_hash, newalloc);
288 	memset(key_hash, '\0', newalloc);
289 
290 	INIT_DLIST(key_listhead, llink);
291 
292 #ifdef DEBUG
293 	atexit(&free_auth_mem);
294 #endif
295 }
296 
297 
298 /*
299  * free_auth_mem - assist in leak detection by freeing all dynamic
300  *		   allocations from this module.
301  */
302 #ifdef DEBUG
303 static void
304 free_auth_mem(void)
305 {
306 	symkey *	sk;
307 	symkey_alloc *	alloc;
308 	symkey_alloc *	next_alloc;
309 
310 	while (NULL != (sk = HEAD_DLIST(key_listhead, llink))) {
311 		freesymkey(sk);
312 	}
313 	free(key_hash);
314 	key_hash = NULL;
315 	cache_keyid = 0;
316 	cache_flags = 0;
317 	cache_keyacclist = NULL;
318 	for (alloc = authallocs; alloc != NULL; alloc = next_alloc) {
319 		next_alloc = alloc->link;
320 		free(alloc->mem);
321 	}
322 	authfreekeys = NULL;
323 	authnumfreekeys = 0;
324 }
325 #endif	/* DEBUG */
326 
327 
328 /*
329  * auth_moremem - get some more free key structures
330  */
331 void
332 auth_moremem(
333 	int	keycount
334 	)
335 {
336 	symkey *	sk;
337 	int		i;
338 #ifdef DEBUG
339 	void *		base;
340 	symkey_alloc *	allocrec;
341 # define MOREMEM_EXTRA_ALLOC	(sizeof(*allocrec))
342 #else
343 # define MOREMEM_EXTRA_ALLOC	(0)
344 #endif
345 
346 	i = (keycount > 0)
347 		? keycount
348 		: MEMINC;
349 	sk = eallocarrayxz(i, sizeof(*sk), MOREMEM_EXTRA_ALLOC);
350 #ifdef DEBUG
351 	base = sk;
352 #endif
353 	authnumfreekeys += i;
354 
355 	for (; i > 0; i--, sk++) {
356 		LINK_SLIST(authfreekeys, sk, llink.f);
357 	}
358 
359 #ifdef DEBUG
360 	allocrec = (void *)sk;
361 	allocrec->mem = base;
362 	LINK_SLIST(authallocs, allocrec, link);
363 #endif
364 }
365 
366 
367 /*
368  * auth_prealloc_symkeys
369  */
370 void
371 auth_prealloc_symkeys(
372 	int	keycount
373 	)
374 {
375 	int	allocated;
376 	int	additional;
377 
378 	allocated = authnumkeys + authnumfreekeys;
379 	additional = keycount - allocated;
380 	if (additional > 0)
381 		auth_moremem(additional);
382 	auth_resize_hashtable();
383 }
384 
385 
386 static u_short
387 auth_log2(size_t x)
388 {
389 	/*
390 	** bithack to calculate floor(log2(x))
391 	**
392 	** This assumes
393 	**   - (sizeof(size_t) is a power of two
394 	**   - CHAR_BITS is a power of two
395 	**   - returning zero for arguments <= 0 is OK.
396 	**
397 	** Does only shifts, masks and sums in integer arithmetic in
398 	** log2(CHAR_BIT*sizeof(size_t)) steps. (that is, 5/6 steps for
399 	** 32bit/64bit size_t)
400 	*/
401 	int	s;
402 	int	r = 0;
403 	size_t  m = ~(size_t)0;
404 
405 	for (s = sizeof(size_t) / 2 * CHAR_BIT; s != 0; s >>= 1) {
406 		m <<= s;
407 		if (x & m)
408 			r += s;
409 		else
410 			x <<= s;
411 	}
412 	return (u_short)r;
413 }
414 
415 int/*BOOL*/
416 ipaddr_match_masked(const sockaddr_u *,const sockaddr_u *,
417 		    unsigned int mbits);
418 
419 static void
420 authcache_flush_id(
421 	keyid_t id
422 	)
423 {
424 	if (cache_keyid == id) {
425 		cache_keyid = 0;
426 		cache_type = 0;
427 		cache_flags = 0;
428 		cache_secret = NULL;
429 		cache_secretsize = 0;
430 		cache_keyacclist = NULL;
431 	}
432 }
433 
434 
435 /*
436  * auth_resize_hashtable
437  *
438  * Size hash table to average 4 or fewer entries per bucket initially,
439  * within the bounds of at least 4 and no more than 15 bits for the hash
440  * table index.  Populate the hash table.
441  */
442 static void
443 auth_resize_hashtable(void)
444 {
445 	u_long		totalkeys;
446 	u_short		hashbits;
447 	u_short		hash;
448 	size_t		newalloc;
449 	symkey *	sk;
450 
451 	totalkeys = authnumkeys + authnumfreekeys;
452 	hashbits = auth_log2(totalkeys / 4) + 1;
453 	hashbits = max(4, hashbits);
454 	hashbits = min(15, hashbits);
455 
456 	authhashbuckets = 1 << hashbits;
457 	authhashmask = authhashbuckets - 1;
458 	newalloc = authhashbuckets * sizeof(key_hash[0]);
459 
460 	key_hash = erealloc(key_hash, newalloc);
461 	memset(key_hash, '\0', newalloc);
462 
463 	ITER_DLIST_BEGIN(key_listhead, sk, llink, symkey)
464 		hash = KEYHASH(sk->keyid);
465 		LINK_SLIST(key_hash[hash], sk, hlink);
466 	ITER_DLIST_END()
467 }
468 
469 
470 /*
471  * allocsymkey - common code to allocate and link in symkey
472  *
473  * secret must be allocated with a free-compatible allocator.  It is
474  * owned by the referring symkey structure, and will be free()d by
475  * freesymkey().
476  */
477 static void
478 allocsymkey(
479 	keyid_t		id,
480 	u_short		flags,
481 	u_short		type,
482 	u_long		lifetime,
483 	size_t		secretsize,
484 	u_char *	secret,
485 	KeyAccT *	ka
486 	)
487 {
488 	symkey *	sk;
489 	symkey **	bucket;
490 
491 	bucket = &key_hash[KEYHASH(id)];
492 
493 
494 	if (authnumfreekeys < 1)
495 		auth_moremem(-1);
496 	UNLINK_HEAD_SLIST(sk, authfreekeys, llink.f);
497 	DEBUG_ENSURE(sk != NULL);
498 	sk->keyid = id;
499 	sk->flags = flags;
500 	sk->type = type;
501 	sk->secretsize = secretsize;
502 	sk->secret = secret;
503 	sk->keyacclist = ka;
504 	sk->lifetime = lifetime;
505 	LINK_SLIST(*bucket, sk, hlink);
506 	LINK_TAIL_DLIST(key_listhead, sk, llink);
507 	authnumfreekeys--;
508 	authnumkeys++;
509 }
510 
511 
512 /*
513  * freesymkey - common code to remove a symkey and recycle its entry.
514  */
515 static void
516 freesymkey(
517 	symkey *	sk
518 	)
519 {
520 	symkey **	bucket;
521 	symkey *	unlinked;
522 
523 	if (NULL == sk)
524 		return;
525 
526 	authcache_flush_id(sk->keyid);
527 	keyacc_all_free(sk->keyacclist);
528 
529 	bucket = &key_hash[KEYHASH(sk->keyid)];
530 	if (sk->secret != NULL) {
531 		memset(sk->secret, '\0', sk->secretsize);
532 		free(sk->secret);
533 	}
534 	UNLINK_SLIST(unlinked, *bucket, sk, hlink, symkey);
535 	DEBUG_ENSURE(sk == unlinked);
536 	UNLINK_DLIST(sk, llink);
537 	memset((char *)sk + offsetof(symkey, symkey_payload), '\0',
538 	       sizeof(*sk) - offsetof(symkey, symkey_payload));
539 	LINK_SLIST(authfreekeys, sk, llink.f);
540 	authnumkeys--;
541 	authnumfreekeys++;
542 }
543 
544 
545 /*
546  * auth_findkey - find a key in the hash table
547  */
548 struct savekey *
549 auth_findkey(
550 	keyid_t		id
551 	)
552 {
553 	symkey *	sk;
554 
555 	for (sk = key_hash[KEYHASH(id)]; sk != NULL; sk = sk->hlink)
556 		if (id == sk->keyid)
557 			return sk;
558 	return NULL;
559 }
560 
561 
562 /*
563  * auth_havekey - return TRUE if the key id is zero or known. The
564  * key needs not to be trusted.
565  */
566 int
567 auth_havekey(
568 	keyid_t		id
569 	)
570 {
571 	return
572 	    (0           == id) ||
573 	    (cache_keyid == id) ||
574 	    (NULL        != auth_findkey(id));
575 }
576 
577 
578 /*
579  * authhavekey - return TRUE and cache the key, if zero or both known
580  *		 and trusted.
581  */
582 int
583 authhavekey(
584 	keyid_t		id
585 	)
586 {
587 	symkey *	sk;
588 
589 	authkeylookups++;
590 	if (0 == id || cache_keyid == id)
591 		return !!(KEY_TRUSTED & cache_flags);
592 
593 	/*
594 	 * Search the bin for the key. If not found, or found but the key
595 	 * type is zero, somebody marked it trusted without specifying a
596 	 * key or key type. In this case consider the key missing.
597 	 */
598 	authkeyuncached++;
599 	sk = auth_findkey(id);
600 	if ((sk == NULL) || (sk->type == 0)) {
601 		authkeynotfound++;
602 		return FALSE;
603 	}
604 
605 	/*
606 	 * If the key is not trusted, the key is not considered found.
607 	 */
608 	if ( ! (KEY_TRUSTED & sk->flags)) {
609 		authnokey++;
610 		return FALSE;
611 	}
612 
613 	/*
614 	 * The key is found and trusted. Initialize the key cache.
615 	 */
616 	cache_keyid = sk->keyid;
617 	cache_type = sk->type;
618 	cache_flags = sk->flags;
619 	cache_secret = sk->secret;
620 	cache_secretsize = sk->secretsize;
621 	cache_keyacclist = sk->keyacclist;
622 
623 	return TRUE;
624 }
625 
626 
627 /*
628  * authtrust - declare a key to be trusted/untrusted
629  */
630 void
631 authtrust(
632 	keyid_t		id,
633 	u_long		trust
634 	)
635 {
636 	symkey *	sk;
637 	u_long		lifetime;
638 
639 	/*
640 	 * Search bin for key; if it does not exist and is untrusted,
641 	 * forget it.
642 	 */
643 
644 	sk = auth_findkey(id);
645 	if (!trust && sk == NULL)
646 		return;
647 
648 	/*
649 	 * There are two conditions remaining. Either it does not
650 	 * exist and is to be trusted or it does exist and is or is
651 	 * not to be trusted.
652 	 */
653 	if (sk != NULL) {
654 		/*
655 		 * Key exists. If it is to be trusted, say so and update
656 		 * its lifetime. If no longer trusted, return it to the
657 		 * free list. Flush the cache first to be sure there are
658 		 * no discrepancies.
659 		 */
660 		authcache_flush_id(id);
661 		if (trust > 0) {
662 			sk->flags |= KEY_TRUSTED;
663 			if (trust > 1)
664 				sk->lifetime = current_time + trust;
665 			else
666 				sk->lifetime = 0;
667 		} else {
668 			freesymkey(sk);
669 		}
670 		return;
671 	}
672 
673 	/*
674 	 * keyid is not present, but the is to be trusted.  We allocate
675 	 * a new key, but do not specify a key type or secret.
676 	 */
677 	if (trust > 1) {
678 		lifetime = current_time + trust;
679 	} else {
680 		lifetime = 0;
681 	}
682 	allocsymkey(id, KEY_TRUSTED, 0, lifetime, 0, NULL, NULL);
683 }
684 
685 
686 /*
687  * authistrusted - determine whether a key is trusted
688  */
689 int
690 authistrusted(
691 	keyid_t		id
692 	)
693 {
694 	symkey *	sk;
695 
696 	if (id == cache_keyid)
697 		return !!(KEY_TRUSTED & cache_flags);
698 
699 	authkeyuncached++;
700 	sk = auth_findkey(id);
701 	if (sk == NULL || !(KEY_TRUSTED & sk->flags)) {
702 		authkeynotfound++;
703 		return FALSE;
704 	}
705 	return TRUE;
706 }
707 
708 
709 /*
710  * authistrustedip - determine if the IP is OK for the keyid
711  */
712  int
713  authistrustedip(
714  	keyid_t		keyno,
715 	sockaddr_u *	sau
716 	)
717 {
718 	symkey *	sk;
719 
720 	if (keyno == cache_keyid) {
721 		return (KEY_TRUSTED & cache_flags) &&
722 		    keyacc_contains(cache_keyacclist, sau, TRUE);
723 	}
724 
725 	if (NULL != (sk = auth_findkey(keyno))) {
726 		authkeyuncached++;
727 		return (KEY_TRUSTED & sk->flags) &&
728 		    keyacc_contains(sk->keyacclist, sau, TRUE);
729 	}
730 
731 	authkeynotfound++;
732 	return FALSE;
733 }
734 
735 /* Note: There are two locations below where 'strncpy()' is used. While
736  * this function is a hazard by itself, it's essential that it is used
737  * here. Bug 1243 involved that the secret was filled with NUL bytes
738  * after the first NUL encountered, and 'strlcpy()' simply does NOT have
739  * this behaviour. So disabling the fix and reverting to the buggy
740  * behaviour due to compatibility issues MUST also fill with NUL and
741  * this needs 'strncpy'. Also, the secret is managed as a byte blob of a
742  * given size, and eventually truncating it and replacing the last byte
743  * with a NUL would be a bug.
744  * perlinger@ntp.org 2015-10-10
745  */
746 void
747 MD5auth_setkey(
748 	keyid_t keyno,
749 	int	keytype,
750 	const u_char *key,
751 	size_t secretsize,
752 	KeyAccT *ka
753 	)
754 {
755 	symkey *	sk;
756 	u_char *	secret;
757 
758 	DEBUG_ENSURE(keytype <= USHRT_MAX);
759 	DEBUG_ENSURE(secretsize < 4 * 1024);
760 	/*
761 	 * See if we already have the key.  If so just stick in the
762 	 * new value.
763 	 */
764 	sk = auth_findkey(keyno);
765 	if (sk != NULL && keyno == sk->keyid) {
766 			/* TALOS-CAN-0054: make sure we have a new buffer! */
767 		if (NULL != sk->secret) {
768 			memset(sk->secret, 0, sk->secretsize);
769 			free(sk->secret);
770 		}
771 		sk->secret = emalloc(secretsize + 1);
772 		sk->type = (u_short)keytype;
773 		sk->secretsize = secretsize;
774 		/* make sure access lists don't leak here! */
775 		if (ka != sk->keyacclist) {
776 			keyacc_all_free(sk->keyacclist);
777 			sk->keyacclist = ka;
778 		}
779 #ifndef DISABLE_BUG1243_FIX
780 		memcpy(sk->secret, key, secretsize);
781 #else
782 		/* >MUST< use 'strncpy()' here! See above! */
783 		strncpy((char *)sk->secret, (const char *)key,
784 			secretsize);
785 #endif
786 		authcache_flush_id(keyno);
787 		return;
788 	}
789 
790 	/*
791 	 * Need to allocate new structure.  Do it.
792 	 */
793 	secret = emalloc(secretsize + 1);
794 #ifndef DISABLE_BUG1243_FIX
795 	memcpy(secret, key, secretsize);
796 #else
797 	/* >MUST< use 'strncpy()' here! See above! */
798 	strncpy((char *)secret, (const char *)key, secretsize);
799 #endif
800 	allocsymkey(keyno, 0, (u_short)keytype, 0,
801 		    secretsize, secret, ka);
802 #ifdef DEBUG
803 	if (debug >= 4) {
804 		size_t	j;
805 
806 		printf("auth_setkey: key %d type %d len %d ", (int)keyno,
807 		    keytype, (int)secretsize);
808 		for (j = 0; j < secretsize; j++) {
809 			printf("%02x", secret[j]);
810 		}
811 		printf("\n");
812 	}
813 #endif
814 }
815 
816 
817 /*
818  * auth_delkeys - delete non-autokey untrusted keys, and clear all info
819  *                except the trusted bit of non-autokey trusted keys, in
820  *		  preparation for rereading the keys file.
821  */
822 void
823 auth_delkeys(void)
824 {
825 	symkey *	sk;
826 
827 	ITER_DLIST_BEGIN(key_listhead, sk, llink, symkey)
828 		if (sk->keyid > NTP_MAXKEY) {	/* autokey */
829 			continue;
830 		}
831 
832 		/*
833 		 * Don't lose info as to which keys are trusted. Make
834 		 * sure there are no dangling pointers!
835 		 */
836 		if (KEY_TRUSTED & sk->flags) {
837 			if (sk->secret != NULL) {
838 				memset(sk->secret, 0, sk->secretsize);
839 				free(sk->secret);
840 				sk->secret = NULL; /* TALOS-CAN-0054 */
841 			}
842 			sk->keyacclist = keyacc_all_free(sk->keyacclist);
843 			sk->secretsize = 0;
844 			sk->lifetime = 0;
845 		} else {
846 			freesymkey(sk);
847 		}
848 	ITER_DLIST_END()
849 }
850 
851 
852 /*
853  * auth_agekeys - delete keys whose lifetimes have expired
854  */
855 void
856 auth_agekeys(void)
857 {
858 	symkey *	sk;
859 
860 	ITER_DLIST_BEGIN(key_listhead, sk, llink, symkey)
861 		if (sk->lifetime > 0 && current_time > sk->lifetime) {
862 			freesymkey(sk);
863 			authkeyexpired++;
864 		}
865 	ITER_DLIST_END()
866 	DPRINTF(1, ("auth_agekeys: at %lu keys %lu expired %lu\n",
867 		    current_time, authnumkeys, authkeyexpired));
868 }
869 
870 
871 /*
872  * authencrypt - generate message authenticator
873  *
874  * Returns length of authenticator field, zero if key not found.
875  */
876 size_t
877 authencrypt(
878 	keyid_t		keyno,
879 	u_int32 *	pkt,
880 	size_t		length
881 	)
882 {
883 	/*
884 	 * A zero key identifier means the sender has not verified
885 	 * the last message was correctly authenticated. The MAC
886 	 * consists of a single word with value zero.
887 	 */
888 	authencryptions++;
889 	pkt[length / 4] = htonl(keyno);
890 	if (0 == keyno) {
891 		return 4;
892 	}
893 	if (!authhavekey(keyno)) {
894 		return 0;
895 	}
896 
897 	return MD5authencrypt(cache_type,
898 			      cache_secret, cache_secretsize,
899 			      pkt, length);
900 }
901 
902 
903 /*
904  * authdecrypt - verify message authenticator
905  *
906  * Returns TRUE if authenticator valid, FALSE if invalid or not found.
907  */
908 int
909 authdecrypt(
910 	keyid_t		keyno,
911 	u_int32 *	pkt,
912 	size_t		length,
913 	size_t		size
914 	)
915 {
916 	/*
917 	 * A zero key identifier means the sender has not verified
918 	 * the last message was correctly authenticated.  For our
919 	 * purpose this is an invalid authenticator.
920 	 */
921 	authdecryptions++;
922 	if (0 == keyno || !authhavekey(keyno) || size < 4) {
923 		return FALSE;
924 	}
925 
926 	return MD5authdecrypt(cache_type,
927 			      cache_secret, cache_secretsize,
928 			      pkt, length, size);
929 }
930