xref: /freebsd/contrib/ntp/include/timespecops.h (revision 4928135658a9d0eaee37003df6137ab363fcb0b4)
1 /*
2  * timespecops.h -- calculations on 'struct timespec' values
3  *
4  * Written by Juergen Perlinger (perlinger@ntp.org) for the NTP project.
5  * The contents of 'html/copyright.html' apply.
6  *
7  * Rationale
8  * ---------
9  *
10  * Doing basic arithmetic on a 'struct timespec' is not exceedingly
11  * hard, but it requires tedious and repetitive code to keep the result
12  * normalised. We consider a timespec normalised when the nanosecond
13  * fraction is in the interval [0 .. 10^9[ ; there are multiple value
14  * pairs of seconds and nanoseconds that denote the same time interval,
15  * but the normalised representation is unique. No two different
16  * intervals can have the same normalised representation.
17  *
18  * Another topic is the representation of negative time intervals.
19  * There's more than one way to this, since both the seconds and the
20  * nanoseconds of a timespec are signed values. IMHO, the easiest way is
21  * to use a complement representation where the nanoseconds are still
22  * normalised, no matter what the sign of the seconds value. This makes
23  * normalisation easier, since the sign of the integer part is
24  * irrelevant, and it removes several sign decision cases during the
25  * calculations.
26  *
27  * As long as no signed integer overflow can occur with the nanosecond
28  * part of the operands, all operations work as expected and produce a
29  * normalised result.
30  *
31  * The exception to this are functions fix a '_fast' suffix, which do no
32  * normalisation on input data and therefore expect the input data to be
33  * normalised.
34  *
35  * Input and output operands may overlap; all input is consumed before
36  * the output is written to.
37  */
38 #ifndef TIMESPECOPS_H
39 #define TIMESPECOPS_H
40 
41 #include <sys/types.h>
42 #include <stdio.h>
43 #include <math.h>
44 
45 #include "ntp.h"
46 #include "timetoa.h"
47 
48 
49 /* nanoseconds per second */
50 #define NANOSECONDS 1000000000
51 
52 /* predicate: returns TRUE if the nanoseconds are in nominal range */
53 #define timespec_isnormal(x) \
54 	((x)->tv_nsec >= 0 && (x)->tv_nsec < NANOSECONDS)
55 
56 /* predicate: returns TRUE if the nanoseconds are out-of-bounds */
57 #define timespec_isdenormal(x)	(!timespec_isnormal(x))
58 
59 /* conversion between l_fp fractions and nanoseconds */
60 #ifdef HAVE_U_INT64
61 # define FTOTVN(tsf)						\
62 	((int32)						\
63 	 (((u_int64)(tsf) * NANOSECONDS + 0x80000000) >> 32))
64 # define TVNTOF(tvu)						\
65 	((u_int32)						\
66 	 ((((u_int64)(tvu) << 32) + NANOSECONDS / 2) /		\
67 	  NANOSECONDS))
68 #else
69 # define NSECFRAC	(FRAC / NANOSECONDS)
70 # define FTOTVN(tsf)						\
71 	((int32)((tsf) / NSECFRAC + 0.5))
72 # define TVNTOF(tvu)						\
73 	((u_int32)((tvu) * NSECFRAC + 0.5))
74 #endif
75 
76 
77 
78 /* make sure nanoseconds are in nominal range */
79 static inline struct timespec
80 normalize_tspec(
81 	struct timespec x
82 	)
83 {
84 #if SIZEOF_LONG > 4
85 	long	z;
86 
87 	/*
88 	 * tv_nsec is of type 'long', and on a 64-bit machine using only
89 	 * loops becomes prohibitive once the upper 32 bits get
90 	 * involved. On the other hand, division by constant should be
91 	 * fast enough; so we do a division of the nanoseconds in that
92 	 * case. The floor adjustment step follows with the standard
93 	 * normalisation loops. And labs() is intentionally not used
94 	 * here: it has implementation-defined behaviour when applied
95 	 * to LONG_MIN.
96 	 */
97 	if (x.tv_nsec < -3l * NANOSECONDS ||
98 	    x.tv_nsec > 3l * NANOSECONDS) {
99 		z = x.tv_nsec / NANOSECONDS;
100 		x.tv_nsec -= z * NANOSECONDS;
101 		x.tv_sec += z;
102 	}
103 #endif
104 	/* since 10**9 is close to 2**32, we don't divide but do a
105 	 * normalisation in a loop; this takes 3 steps max, and should
106 	 * outperform a division even if the mul-by-inverse trick is
107 	 * employed. */
108 	if (x.tv_nsec < 0)
109 		do {
110 			x.tv_nsec += NANOSECONDS;
111 			x.tv_sec--;
112 		} while (x.tv_nsec < 0);
113 	else if (x.tv_nsec >= NANOSECONDS)
114 		do {
115 			x.tv_nsec -= NANOSECONDS;
116 			x.tv_sec++;
117 		} while (x.tv_nsec >= NANOSECONDS);
118 
119 	return x;
120 }
121 
122 /* x = a + b */
123 static inline struct timespec
124 add_tspec(
125 	struct timespec	a,
126 	struct timespec	b
127 	)
128 {
129 	struct timespec	x;
130 
131 	x = a;
132 	x.tv_sec += b.tv_sec;
133 	x.tv_nsec += b.tv_nsec;
134 
135 	return normalize_tspec(x);
136 }
137 
138 /* x = a + b, b is fraction only */
139 static inline struct timespec
140 add_tspec_ns(
141 	struct timespec	a,
142 	long		b
143 	)
144 {
145 	struct timespec x;
146 
147 	x = a;
148 	x.tv_nsec += b;
149 
150 	return normalize_tspec(x);
151 }
152 
153 /* x = a - b */
154 static inline struct timespec
155 sub_tspec(
156 	struct timespec	a,
157 	struct timespec	b
158 	)
159 {
160 	struct timespec x;
161 
162 	x = a;
163 	x.tv_sec -= b.tv_sec;
164 	x.tv_nsec -= b.tv_nsec;
165 
166 	return normalize_tspec(x);
167 }
168 
169 /* x = a - b, b is fraction only */
170 static inline struct timespec
171 sub_tspec_ns(
172 	struct timespec	a,
173 	long		b
174 	)
175 {
176 	struct timespec	x;
177 
178 	x = a;
179 	x.tv_nsec -= b;
180 
181 	return normalize_tspec(x);
182 }
183 
184 /* x = -a */
185 static inline struct timespec
186 neg_tspec(
187 	struct timespec	a
188 	)
189 {
190 	struct timespec	x;
191 
192 	x.tv_sec = -a.tv_sec;
193 	x.tv_nsec = -a.tv_nsec;
194 
195 	return normalize_tspec(x);
196 }
197 
198 /* x = abs(a) */
199 static inline struct timespec
200 abs_tspec(
201 	struct timespec	a
202 	)
203 {
204 	struct timespec	c;
205 
206 	c = normalize_tspec(a);
207 	if (c.tv_sec < 0) {
208 		if (c.tv_nsec != 0) {
209 			c.tv_sec = -c.tv_sec - 1;
210 			c.tv_nsec = NANOSECONDS - c.tv_nsec;
211 		} else {
212 			c.tv_sec = -c.tv_sec;
213 		}
214 	}
215 
216 	return c;
217 }
218 
219 /*
220  * compare previously-normalised a and b
221  * return 1 / 0 / -1 if a < / == / > b
222  */
223 static inline int
224 cmp_tspec(
225 	struct timespec a,
226 	struct timespec b
227 	)
228 {
229 	int r;
230 
231 	r = (a.tv_sec > b.tv_sec) - (a.tv_sec < b.tv_sec);
232 	if (0 == r)
233 		r = (a.tv_nsec > b.tv_nsec) -
234 		    (a.tv_nsec < b.tv_nsec);
235 
236 	return r;
237 }
238 
239 /*
240  * compare possibly-denormal a and b
241  * return 1 / 0 / -1 if a < / == / > b
242  */
243 static inline int
244 cmp_tspec_denorm(
245 	struct timespec	a,
246 	struct timespec	b
247 	)
248 {
249 	return cmp_tspec(normalize_tspec(a), normalize_tspec(b));
250 }
251 
252 /*
253  * test previously-normalised a
254  * return 1 / 0 / -1 if a < / == / > 0
255  */
256 static inline int
257 test_tspec(
258 	struct timespec	a
259 	)
260 {
261 	int		r;
262 
263 	r = (a.tv_sec > 0) - (a.tv_sec < 0);
264 	if (r == 0)
265 		r = (a.tv_nsec > 0);
266 
267 	return r;
268 }
269 
270 /*
271  * test possibly-denormal a
272  * return 1 / 0 / -1 if a < / == / > 0
273  */
274 static inline int
275 test_tspec_denorm(
276 	struct timespec	a
277 	)
278 {
279 	return test_tspec(normalize_tspec(a));
280 }
281 
282 /* return LIB buffer ptr to string rep */
283 static inline const char *
284 tspectoa(
285 	struct timespec	x
286 	)
287 {
288 	return format_time_fraction(x.tv_sec, x.tv_nsec, 9);
289 }
290 
291 /*
292  *  convert to l_fp type, relative and absolute
293  */
294 
295 /* convert from timespec duration to l_fp duration */
296 static inline l_fp
297 tspec_intv_to_lfp(
298 	struct timespec	x
299 	)
300 {
301 	struct timespec	v;
302 	l_fp		y;
303 
304 	v = normalize_tspec(x);
305 	y.l_uf = TVNTOF(v.tv_nsec);
306 	y.l_i = (int32)v.tv_sec;
307 
308 	return y;
309 }
310 
311 /* x must be UN*X epoch, output will be in NTP epoch */
312 static inline l_fp
313 tspec_stamp_to_lfp(
314 	struct timespec	x
315 	)
316 {
317 	l_fp		y;
318 
319 	y = tspec_intv_to_lfp(x);
320 	y.l_ui += JAN_1970;
321 
322 	return y;
323 }
324 
325 /* convert from l_fp type, relative signed/unsigned and absolute */
326 static inline struct timespec
327 lfp_intv_to_tspec(
328 	l_fp		x
329 	)
330 {
331 	struct timespec out;
332 	l_fp		absx;
333 	int		neg;
334 
335 	neg = L_ISNEG(&x);
336 	absx = x;
337 	if (neg) {
338 		L_NEG(&absx);
339 	}
340 	out.tv_nsec = FTOTVN(absx.l_uf);
341 	out.tv_sec = absx.l_i;
342 	if (neg) {
343 		out.tv_sec = -out.tv_sec;
344 		out.tv_nsec = -out.tv_nsec;
345 		out = normalize_tspec(out);
346 	}
347 
348 	return out;
349 }
350 
351 static inline struct timespec
352 lfp_uintv_to_tspec(
353 	l_fp		x
354 	)
355 {
356 	struct timespec	out;
357 
358 	out.tv_nsec = FTOTVN(x.l_uf);
359 	out.tv_sec = x.l_ui;
360 
361 	return out;
362 }
363 
364 /*
365  * absolute (timestamp) conversion. Input is time in NTP epoch, output
366  * is in UN*X epoch. The NTP time stamp will be expanded around the
367  * pivot time *p or the current time, if p is NULL.
368  */
369 static inline struct timespec
370 lfp_stamp_to_tspec(
371 	l_fp		x,
372 	const time_t *	p
373 	)
374 {
375 	struct timespec	out;
376 	vint64		sec;
377 
378 	sec = ntpcal_ntp_to_time(x.l_ui, p);
379 	out.tv_nsec = FTOTVN(x.l_uf);
380 
381 	/* copying a vint64 to a time_t needs some care... */
382 #if SIZEOF_TIME_T <= 4
383 	out.tv_sec = (time_t)sec.d_s.lo;
384 #elif defined(HAVE_INT64)
385 	out.tv_sec = (time_t)sec.q_s;
386 #else
387 	out.tv_sec = ((time_t)sec.d_s.hi << 32) | sec.d_s.lo;
388 #endif
389 
390 	return out;
391 }
392 
393 #endif	/* TIMESPECOPS_H */
394