xref: /freebsd/contrib/ntp/include/ntp_fp.h (revision 6fd05b64b5b65dd4ba9b86482a0634a5f0b96c29)
1 /*
2  * ntp_fp.h - definitions for NTP fixed/floating-point arithmetic
3  */
4 
5 #ifndef NTP_FP_H
6 #define NTP_FP_H
7 
8 #include <sys/types.h>
9 #include <sys/socket.h>
10 #include <netinet/in.h>
11 
12 #include "ntp_types.h"
13 
14 /*
15  * NTP uses two fixed point formats.  The first (l_fp) is the "long"
16  * format and is 64 bits long with the decimal between bits 31 and 32.
17  * This is used for time stamps in the NTP packet header (in network
18  * byte order) and for internal computations of offsets (in local host
19  * byte order). We use the same structure for both signed and unsigned
20  * values, which is a big hack but saves rewriting all the operators
21  * twice. Just to confuse this, we also sometimes just carry the
22  * fractional part in calculations, in both signed and unsigned forms.
23  * Anyway, an l_fp looks like:
24  *
25  *    0			  1		      2			  3
26  *    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
27  *   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
28  *   |			       Integral Part			     |
29  *   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
30  *   |			       Fractional Part			     |
31  *   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
32  *
33  */
34 typedef struct {
35 	union {
36 		u_int32 Xl_ui;
37 		int32 Xl_i;
38 	} Ul_i;
39 	union {
40 		u_int32 Xl_uf;
41 		int32 Xl_f;
42 	} Ul_f;
43 } l_fp;
44 
45 #define l_ui	Ul_i.Xl_ui		/* unsigned integral part */
46 #define	l_i	Ul_i.Xl_i		/* signed integral part */
47 #define	l_uf	Ul_f.Xl_uf		/* unsigned fractional part */
48 #define	l_f	Ul_f.Xl_f		/* signed fractional part */
49 
50 /*
51  * Fractional precision (of an l_fp) is actually the number of
52  * bits in a long.
53  */
54 #define	FRACTION_PREC	(32)
55 
56 
57 /*
58  * The second fixed point format is 32 bits, with the decimal between
59  * bits 15 and 16.  There is a signed version (s_fp) and an unsigned
60  * version (u_fp).  This is used to represent synchronizing distance
61  * and synchronizing dispersion in the NTP packet header (again, in
62  * network byte order) and internally to hold both distance and
63  * dispersion values (in local byte order).  In network byte order
64  * it looks like:
65  *
66  *    0			  1		      2			  3
67  *    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
68  *   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
69  *   |		  Integer Part	     |	   Fraction Part	     |
70  *   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
71  *
72  */
73 typedef int32 s_fp;
74 typedef u_int32 u_fp;
75 
76 /*
77  * A unit second in fp format.  Actually 2**(half_the_bits_in_a_long)
78  */
79 #define	FP_SECOND	(0x10000)
80 
81 /*
82  * Byte order conversions
83  */
84 #define	HTONS_FP(x)	(htonl(x))
85 #define	HTONL_FP(h, n)	do { (n)->l_ui = htonl((h)->l_ui); \
86 			     (n)->l_uf = htonl((h)->l_uf); } while (0)
87 #define	NTOHS_FP(x)	(ntohl(x))
88 #define	NTOHL_FP(n, h)	do { (h)->l_ui = ntohl((n)->l_ui); \
89 			     (h)->l_uf = ntohl((n)->l_uf); } while (0)
90 #define	NTOHL_MFP(ni, nf, hi, hf) \
91 	do { (hi) = ntohl(ni); (hf) = ntohl(nf); } while (0)
92 #define	HTONL_MFP(hi, hf, ni, nf) \
93 	do { (ni) = ntohl(hi); (nf) = ntohl(hf); } while (0)
94 
95 /* funny ones.  Converts ts fractions to net order ts */
96 #define	HTONL_UF(uf, nts) \
97 	do { (nts)->l_ui = 0; (nts)->l_uf = htonl(uf); } while (0)
98 #define	HTONL_F(f, nts) do { (nts)->l_uf = htonl(f); \
99 				if ((f) & 0x80000000) \
100 					(nts)->l_i = -1; \
101 				else \
102 					(nts)->l_i = 0; \
103 			} while (0)
104 
105 /*
106  * Conversions between the two fixed point types
107  */
108 #define	MFPTOFP(x_i, x_f)	(((x_i) >= 0x00010000) ? 0x7fffffff : \
109 				(((x_i) <= -0x00010000) ? 0x80000000 : \
110 				(((x_i)<<16) | (((x_f)>>16)&0xffff))))
111 #define	LFPTOFP(v)		MFPTOFP((v)->l_i, (v)->l_f)
112 
113 #define UFPTOLFP(x, v) ((v)->l_ui = (u_fp)(x)>>16, (v)->l_uf = (x)<<16)
114 #define FPTOLFP(x, v)  (UFPTOLFP((x), (v)), (x) < 0 ? (v)->l_ui -= 0x10000 : 0)
115 
116 #define MAXLFP(v) ((v)->l_ui = 0x7fffffff, (v)->l_uf = 0xffffffff)
117 #define MINLFP(v) ((v)->l_ui = 0x80000000, (v)->l_uf = 0)
118 
119 /*
120  * Primitive operations on long fixed point values.  If these are
121  * reminiscent of assembler op codes it's only because some may
122  * be replaced by inline assembler for particular machines someday.
123  * These are the (kind of inefficient) run-anywhere versions.
124  */
125 #define	M_NEG(v_i, v_f) 	/* v = -v */ \
126 	do { \
127 		if ((v_f) == 0) \
128 			(v_i) = -((s_fp)(v_i)); \
129 		else { \
130 			(v_f) = -((s_fp)(v_f)); \
131 			(v_i) = ~(v_i); \
132 		} \
133 	} while(0)
134 
135 #define	M_NEGM(r_i, r_f, a_i, a_f) 	/* r = -a */ \
136 	do { \
137 		if ((a_f) == 0) { \
138 			(r_f) = 0; \
139 			(r_i) = -(a_i); \
140 		} else { \
141 			(r_f) = -(a_f); \
142 			(r_i) = ~(a_i); \
143 		} \
144 	} while(0)
145 
146 #define M_ADD(r_i, r_f, a_i, a_f) 	/* r += a */ \
147 	do { \
148 		register u_int32 lo_tmp; \
149 		register u_int32 hi_tmp; \
150 		\
151 		lo_tmp = ((r_f) & 0xffff) + ((a_f) & 0xffff); \
152 		hi_tmp = (((r_f) >> 16) & 0xffff) + (((a_f) >> 16) & 0xffff); \
153 		if (lo_tmp & 0x10000) \
154 			hi_tmp++; \
155 		(r_f) = ((hi_tmp & 0xffff) << 16) | (lo_tmp & 0xffff); \
156 		\
157 		(r_i) += (a_i); \
158 		if (hi_tmp & 0x10000) \
159 			(r_i)++; \
160 	} while (0)
161 
162 #define M_ADD3(r_ovr, r_i, r_f, a_ovr, a_i, a_f) /* r += a, three word */ \
163 	do { \
164 		register u_int32 lo_tmp; \
165 		register u_int32 hi_tmp; \
166 		\
167 		lo_tmp = ((r_f) & 0xffff) + ((a_f) & 0xffff); \
168 		hi_tmp = (((r_f) >> 16) & 0xffff) + (((a_f) >> 16) & 0xffff); \
169 		if (lo_tmp & 0x10000) \
170 			hi_tmp++; \
171 		(r_f) = ((hi_tmp & 0xffff) << 16) | (lo_tmp & 0xffff); \
172 		\
173 		lo_tmp = ((r_i) & 0xffff) + ((a_i) & 0xffff); \
174 		if (hi_tmp & 0x10000) \
175 			lo_tmp++; \
176 		hi_tmp = (((r_i) >> 16) & 0xffff) + (((a_i) >> 16) & 0xffff); \
177 		if (lo_tmp & 0x10000) \
178 			hi_tmp++; \
179 		(r_i) = ((hi_tmp & 0xffff) << 16) | (lo_tmp & 0xffff); \
180 		\
181 		(r_ovr) += (a_ovr); \
182 		if (hi_tmp & 0x10000) \
183 			(r_ovr)++; \
184 	} while (0)
185 
186 #define M_SUB(r_i, r_f, a_i, a_f)	/* r -= a */ \
187 	do { \
188 		register u_int32 lo_tmp; \
189 		register u_int32 hi_tmp; \
190 		\
191 		if ((a_f) == 0) { \
192 			(r_i) -= (a_i); \
193 		} else { \
194 			lo_tmp = ((r_f) & 0xffff) + ((-((s_fp)(a_f))) & 0xffff); \
195 			hi_tmp = (((r_f) >> 16) & 0xffff) \
196 			    + (((-((s_fp)(a_f))) >> 16) & 0xffff); \
197 			if (lo_tmp & 0x10000) \
198 				hi_tmp++; \
199 			(r_f) = ((hi_tmp & 0xffff) << 16) | (lo_tmp & 0xffff); \
200 			\
201 			(r_i) += ~(a_i); \
202 			if (hi_tmp & 0x10000) \
203 				(r_i)++; \
204 		} \
205 	} while (0)
206 
207 #define	M_RSHIFTU(v_i, v_f)		/* v >>= 1, v is unsigned */ \
208 	do { \
209 		(v_f) = (u_int32)(v_f) >> 1; \
210 		if ((v_i) & 01) \
211 			(v_f) |= 0x80000000; \
212 		(v_i) = (u_int32)(v_i) >> 1; \
213 	} while (0)
214 
215 #define	M_RSHIFT(v_i, v_f)		/* v >>= 1, v is signed */ \
216 	do { \
217 		(v_f) = (u_int32)(v_f) >> 1; \
218 		if ((v_i) & 01) \
219 			(v_f) |= 0x80000000; \
220 		if ((v_i) & 0x80000000) \
221 			(v_i) = ((v_i) >> 1) | 0x80000000; \
222 		else \
223 			(v_i) = (v_i) >> 1; \
224 	} while (0)
225 
226 #define	M_LSHIFT(v_i, v_f)		/* v <<= 1 */ \
227 	do { \
228 		(v_i) <<= 1; \
229 		if ((v_f) & 0x80000000) \
230 			(v_i) |= 0x1; \
231 		(v_f) <<= 1; \
232 	} while (0)
233 
234 #define	M_LSHIFT3(v_ovr, v_i, v_f)	/* v <<= 1, with overflow */ \
235 	do { \
236 		(v_ovr) <<= 1; \
237 		if ((v_i) & 0x80000000) \
238 			(v_ovr) |= 0x1; \
239 		(v_i) <<= 1; \
240 		if ((v_f) & 0x80000000) \
241 			(v_i) |= 0x1; \
242 		(v_f) <<= 1; \
243 	} while (0)
244 
245 #define	M_ADDUF(r_i, r_f, uf) 		/* r += uf, uf is u_int32 fraction */ \
246 	M_ADD((r_i), (r_f), 0, (uf))	/* let optimizer worry about it */
247 
248 #define	M_SUBUF(r_i, r_f, uf)		/* r -= uf, uf is u_int32 fraction */ \
249 	M_SUB((r_i), (r_f), 0, (uf))	/* let optimizer worry about it */
250 
251 #define	M_ADDF(r_i, r_f, f)		/* r += f, f is a int32 fraction */ \
252 	do { \
253 		if ((f) > 0) \
254 			M_ADD((r_i), (r_f), 0, (f)); \
255 		else if ((f) < 0) \
256 			M_ADD((r_i), (r_f), (-1), (f));\
257 	} while(0)
258 
259 #define	M_ISNEG(v_i, v_f) 		/* v < 0 */ \
260 	(((v_i) & 0x80000000) != 0)
261 
262 #define	M_ISHIS(a_i, a_f, b_i, b_f)	/* a >= b unsigned */ \
263 	(((u_int32)(a_i)) > ((u_int32)(b_i)) || \
264 	  ((a_i) == (b_i) && ((u_int32)(a_f)) >= ((u_int32)(b_f))))
265 
266 #define	M_ISGEQ(a_i, a_f, b_i, b_f)	/* a >= b signed */ \
267 	(((int32)(a_i)) > ((int32)(b_i)) || \
268 	  ((a_i) == (b_i) && ((u_int32)(a_f)) >= ((u_int32)(b_f))))
269 
270 #define	M_ISEQU(a_i, a_f, b_i, b_f)	/* a == b unsigned */ \
271 	((a_i) == (b_i) && (a_f) == (b_f))
272 
273 /*
274  * Operations on the long fp format
275  */
276 #define	L_ADD(r, a)	M_ADD((r)->l_ui, (r)->l_uf, (a)->l_ui, (a)->l_uf)
277 #define	L_SUB(r, a)	M_SUB((r)->l_ui, (r)->l_uf, (a)->l_ui, (a)->l_uf)
278 #define	L_NEG(v)	M_NEG((v)->l_ui, (v)->l_uf)
279 #define L_ADDUF(r, uf)	M_ADDUF((r)->l_ui, (r)->l_uf, (uf))
280 #define L_SUBUF(r, uf)	M_SUBUF((r)->l_ui, (r)->l_uf, (uf))
281 #define	L_ADDF(r, f)	M_ADDF((r)->l_ui, (r)->l_uf, (f))
282 #define	L_RSHIFT(v)	M_RSHIFT((v)->l_i, (v)->l_uf)
283 #define	L_RSHIFTU(v)	M_RSHIFT((v)->l_ui, (v)->l_uf)
284 #define	L_LSHIFT(v)	M_LSHIFT((v)->l_ui, (v)->l_uf)
285 #define	L_CLR(v)	((v)->l_ui = (v)->l_uf = 0)
286 
287 #define	L_ISNEG(v)	(((v)->l_ui & 0x80000000) != 0)
288 #define L_ISZERO(v)	((v)->l_ui == 0 && (v)->l_uf == 0)
289 #define	L_ISHIS(a, b)	((a)->l_ui > (b)->l_ui || \
290 			  ((a)->l_ui == (b)->l_ui && (a)->l_uf >= (b)->l_uf))
291 #define	L_ISGEQ(a, b)	((a)->l_i > (b)->l_i || \
292 			  ((a)->l_i == (b)->l_i && (a)->l_uf >= (b)->l_uf))
293 #define	L_ISEQU(a, b)	M_ISEQU((a)->l_ui, (a)->l_uf, (b)->l_ui, (b)->l_uf)
294 
295 /*
296  * s_fp/double and u_fp/double conversions
297  */
298 #define FRIC		65536.	 		/* 2^16 as a double */
299 #define DTOFP(r)	((s_fp)((r) * FRIC))
300 #define DTOUFP(r)	((u_fp)((r) * FRIC))
301 #define FPTOD(r)	((double)(r) / FRIC)
302 
303 /*
304  * l_fp/double conversions
305  */
306 #define FRAC		4294967296. 		/* 2^32 as a double */
307 #define M_DTOLFP(d, r_i, r_uf) 			/* double to l_fp */ \
308 	do { \
309 		register double d_tmp; \
310 		\
311 		d_tmp = (d); \
312 		if (d_tmp < 0) { \
313 			d_tmp = -d_tmp; \
314 			(r_i) = (int32)(d_tmp); \
315 			(r_uf) = (u_int32)(((d_tmp) - (double)(r_i)) * FRAC); \
316 			M_NEG((r_i), (r_uf)); \
317 		} else { \
318 			(r_i) = (int32)(d_tmp); \
319 			(r_uf) = (u_int32)(((d_tmp) - (double)(r_i)) * FRAC); \
320 		} \
321 	} while (0)
322 #define M_LFPTOD(r_i, r_uf, d) 			/* l_fp to double */ \
323 	do { \
324 		register l_fp l_tmp; \
325 		\
326 		l_tmp.l_i = (r_i); \
327 		l_tmp.l_f = (r_uf); \
328 		if (l_tmp.l_i < 0) { \
329 			M_NEG(l_tmp.l_i, l_tmp.l_uf); \
330 			(d) = -((double)l_tmp.l_i + ((double)l_tmp.l_uf) / FRAC); \
331 		} else { \
332 			(d) = (double)l_tmp.l_i + ((double)l_tmp.l_uf) / FRAC; \
333 		} \
334 	} while (0)
335 #define DTOLFP(d, v) 	M_DTOLFP((d), (v)->l_ui, (v)->l_uf)
336 #define LFPTOD(v, d) 	M_LFPTOD((v)->l_ui, (v)->l_uf, (d))
337 
338 /*
339  * Prototypes
340  */
341 extern	char *	dofptoa		P((u_fp, int, int, int));
342 extern	char *	dolfptoa	P((u_long, u_long, int, int, int));
343 
344 extern	int	atolfp		P((const char *, l_fp *));
345 extern	int	buftvtots	P((const char *, l_fp *));
346 extern	char *	fptoa		P((s_fp, int));
347 extern	char *	fptoms		P((s_fp, int));
348 extern	char *	fptoms		P((s_fp, int));
349 extern	int	hextolfp	P((const char *, l_fp *));
350 extern  void    gpstolfp        P((int, int, unsigned long, l_fp *));
351 extern	int	mstolfp		P((const char *, l_fp *));
352 extern	char *	prettydate	P((l_fp *));
353 extern	char *	gmprettydate	P((l_fp *));
354 extern	char *	uglydate	P((l_fp *));
355 extern  void    mfp_mul         P((int32 *, u_int32 *, int32, u_int32, int32, u_int32));
356 
357 extern	void	get_systime	P((l_fp *));
358 extern	int	step_systime	P((double));
359 extern	int	adj_systime	P((double));
360 
361 #define	lfptoa(_fpv, _ndec)	mfptoa((_fpv)->l_ui, (_fpv)->l_uf, (_ndec))
362 #define	lfptoms(_fpv, _ndec)	mfptoms((_fpv)->l_ui, (_fpv)->l_uf, (_ndec))
363 
364 #define	ntoa(_sin)		numtoa((_sin)->sin_addr.s_addr)
365 #define	ntohost(_sin)		numtohost((_sin)->sin_addr.s_addr)
366 
367 #define	ufptoa(_fpv, _ndec)	dofptoa((_fpv), 0, (_ndec), 0)
368 #define	ufptoms(_fpv, _ndec)	dofptoa((_fpv), 0, (_ndec), 1)
369 #define	ulfptoa(_fpv, _ndec)	dolfptoa((_fpv)->l_ui, (_fpv)->l_uf, 0, (_ndec), 0)
370 #define	ulfptoms(_fpv, _ndec)	dolfptoa((_fpv)->l_ui, (_fpv)->l_uf, 0, (_ndec), 1)
371 #define	umfptoa(_fpi, _fpf, _ndec) dolfptoa((_fpi), (_fpf), 0, (_ndec), 0)
372 
373 #endif /* NTP_FP_H */
374