xref: /freebsd/contrib/ntp/include/ntp_fp.h (revision 389e4940069316fe667ffa263fa7d6390d0a960f)
1 /*
2  * ntp_fp.h - definitions for NTP fixed/floating-point arithmetic
3  */
4 
5 #ifndef NTP_FP_H
6 #define NTP_FP_H
7 
8 #include "ntp_types.h"
9 
10 /*
11  * NTP uses two fixed point formats.  The first (l_fp) is the "long"
12  * format and is 64 bits long with the decimal between bits 31 and 32.
13  * This is used for time stamps in the NTP packet header (in network
14  * byte order) and for internal computations of offsets (in local host
15  * byte order). We use the same structure for both signed and unsigned
16  * values, which is a big hack but saves rewriting all the operators
17  * twice. Just to confuse this, we also sometimes just carry the
18  * fractional part in calculations, in both signed and unsigned forms.
19  * Anyway, an l_fp looks like:
20  *
21  *    0			  1		      2			  3
22  *    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
23  *   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
24  *   |			       Integral Part			     |
25  *   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
26  *   |			       Fractional Part			     |
27  *   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
28  *
29  */
30 typedef struct {
31 	union {
32 		u_int32 Xl_ui;
33 		int32 Xl_i;
34 	} Ul_i;
35 	u_int32	l_uf;
36 } l_fp;
37 
38 #define l_ui	Ul_i.Xl_ui		/* unsigned integral part */
39 #define	l_i	Ul_i.Xl_i		/* signed integral part */
40 
41 /*
42  * Fractional precision (of an l_fp) is actually the number of
43  * bits in a long.
44  */
45 #define	FRACTION_PREC	(32)
46 
47 
48 /*
49  * The second fixed point format is 32 bits, with the decimal between
50  * bits 15 and 16.  There is a signed version (s_fp) and an unsigned
51  * version (u_fp).  This is used to represent synchronizing distance
52  * and synchronizing dispersion in the NTP packet header (again, in
53  * network byte order) and internally to hold both distance and
54  * dispersion values (in local byte order).  In network byte order
55  * it looks like:
56  *
57  *    0			  1		      2			  3
58  *    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
59  *   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
60  *   |		  Integer Part	     |	   Fraction Part	     |
61  *   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
62  *
63  */
64 typedef int32 s_fp;
65 typedef u_int32 u_fp;
66 
67 /*
68  * A unit second in fp format.	Actually 2**(half_the_bits_in_a_long)
69  */
70 #define	FP_SECOND	(0x10000)
71 
72 /*
73  * Byte order conversions
74  */
75 #define	HTONS_FP(x)	(htonl(x))
76 #define	NTOHS_FP(x)	(ntohl(x))
77 
78 #define	NTOHL_MFP(ni, nf, hi, hf)				\
79 	do {							\
80 		(hi) = ntohl(ni);				\
81 		(hf) = ntohl(nf);				\
82 	} while (FALSE)
83 
84 #define	HTONL_MFP(hi, hf, ni, nf)				\
85 	do {							\
86 		(ni) = htonl(hi);				\
87 		(nf) = htonl(hf);				\
88 	} while (FALSE)
89 
90 #define HTONL_FP(h, n)						\
91 	HTONL_MFP((h)->l_ui, (h)->l_uf, (n)->l_ui, (n)->l_uf)
92 
93 #define NTOHL_FP(n, h)						\
94 	NTOHL_MFP((n)->l_ui, (n)->l_uf, (h)->l_ui, (h)->l_uf)
95 
96 /* Convert unsigned ts fraction to net order ts */
97 #define	HTONL_UF(uf, nts)					\
98 	do {							\
99 		(nts)->l_ui = 0;				\
100 		(nts)->l_uf = htonl(uf);			\
101 	} while (FALSE)
102 
103 /*
104  * Conversions between the two fixed point types
105  */
106 #define	MFPTOFP(x_i, x_f)	(((x_i) >= 0x00010000) ? 0x7fffffff : \
107 				(((x_i) <= -0x00010000) ? 0x80000000 : \
108 				(((x_i)<<16) | (((x_f)>>16)&0xffff))))
109 #define	LFPTOFP(v)		MFPTOFP((v)->l_i, (v)->l_uf)
110 
111 #define UFPTOLFP(x, v) ((v)->l_ui = (u_fp)(x)>>16, (v)->l_uf = (x)<<16)
112 #define FPTOLFP(x, v)  (UFPTOLFP((x), (v)), (x) < 0 ? (v)->l_ui -= 0x10000 : 0)
113 
114 #define MAXLFP(v) ((v)->l_ui = 0x7fffffffu, (v)->l_uf = 0xffffffffu)
115 #define MINLFP(v) ((v)->l_ui = 0x80000000u, (v)->l_uf = 0u)
116 
117 /*
118  * Primitive operations on long fixed point values.  If these are
119  * reminiscent of assembler op codes it's only because some may
120  * be replaced by inline assembler for particular machines someday.
121  * These are the (kind of inefficient) run-anywhere versions.
122  */
123 #define	M_NEG(v_i, v_f)		/* v = -v */ \
124 	do { \
125 		(v_f) = ~(v_f) + 1u; \
126 		(v_i) = ~(v_i) + ((v_f) == 0); \
127 	} while (FALSE)
128 
129 #define	M_NEGM(r_i, r_f, a_i, a_f)	/* r = -a */ \
130 	do { \
131 		(r_f) = ~(a_f) + 1u; \
132 		(r_i) = ~(a_i) + ((r_f) == 0); \
133 	} while (FALSE)
134 
135 #define M_ADD(r_i, r_f, a_i, a_f)	/* r += a */ \
136 	do { \
137 		u_int32 add_t = (r_f); \
138 		(r_f) += (a_f); \
139 		(r_i) += (a_i) + ((u_int32)(r_f) < add_t); \
140 	} while (FALSE)
141 
142 #define M_ADD3(r_o, r_i, r_f, a_o, a_i, a_f) /* r += a, three word */ \
143 	do { \
144 		u_int32 add_t, add_c; \
145 		add_t  = (r_f); \
146 		(r_f) += (a_f); \
147 		add_c  = ((u_int32)(r_f) < add_t); \
148 		(r_i) += add_c; \
149 		add_c  = ((u_int32)(r_i) < add_c); \
150 		add_t  = (r_i); \
151 		(r_i) += (a_i); \
152 		add_c |= ((u_int32)(r_i) < add_t); \
153 		(r_o) += (a_o) + add_c; \
154 	} while (FALSE)
155 
156 #define M_SUB(r_i, r_f, a_i, a_f)	/* r -= a */ \
157 	do { \
158 		u_int32 sub_t = (r_f); \
159 		(r_f) -= (a_f); \
160 		(r_i) -= (a_i) + ((u_int32)(r_f) > sub_t); \
161 	} while (FALSE)
162 
163 #define	M_RSHIFTU(v_i, v_f)		/* v >>= 1, v is unsigned */ \
164 	do { \
165 		(v_f) = ((u_int32)(v_f) >> 1) | ((u_int32)(v_i) << 31);	\
166 		(v_i) = ((u_int32)(v_i) >> 1); \
167 	} while (FALSE)
168 
169 #define	M_RSHIFT(v_i, v_f)		/* v >>= 1, v is signed */ \
170 	do { \
171 		(v_f) = ((u_int32)(v_f) >> 1) | ((u_int32)(v_i) << 31);	\
172 		(v_i) = ((u_int32)(v_i) >> 1) | ((u_int32)(v_i) & 0x80000000);	\
173 	} while (FALSE)
174 
175 #define	M_LSHIFT(v_i, v_f)		/* v <<= 1 */ \
176 	do { \
177 		(v_i) = ((u_int32)(v_i) << 1) | ((u_int32)(v_f) >> 31);	\
178 		(v_f) = ((u_int32)(v_f) << 1); \
179 	} while (FALSE)
180 
181 #define	M_LSHIFT3(v_o, v_i, v_f)	/* v <<= 1, with overflow */ \
182 	do { \
183 		(v_o) = ((u_int32)(v_o) << 1) | ((u_int32)(v_i) >> 31);	\
184 		(v_i) = ((u_int32)(v_i) << 1) | ((u_int32)(v_f) >> 31);	\
185 		(v_f) = ((u_int32)(v_f) << 1); \
186 	} while (FALSE)
187 
188 #define	M_ADDUF(r_i, r_f, uf)		/* r += uf, uf is u_int32 fraction */ \
189 	M_ADD((r_i), (r_f), 0, (uf))	/* let optimizer worry about it */
190 
191 #define	M_SUBUF(r_i, r_f, uf)		/* r -= uf, uf is u_int32 fraction */ \
192 	M_SUB((r_i), (r_f), 0, (uf))	/* let optimizer worry about it */
193 
194 #define	M_ADDF(r_i, r_f, f)		/* r += f, f is a int32 fraction */ \
195 	do { \
196 		int32 add_f = (int32)(f); \
197 		if (add_f >= 0) \
198 			M_ADD((r_i), (r_f), 0, (uint32)( add_f)); \
199 		else \
200 			M_SUB((r_i), (r_f), 0, (uint32)(-add_f)); \
201 	} while(0)
202 
203 #define	M_ISNEG(v_i)			/* v < 0 */ \
204 	(((v_i) & 0x80000000) != 0)
205 
206 #define	M_ISGT(a_i, a_f, b_i, b_f)	/* a > b signed */ \
207 	(((u_int32)((a_i) ^ 0x80000000) > (u_int32)((b_i) ^ 0x80000000)) || \
208 	  ((a_i) == (b_i) && ((u_int32)(a_f)) > ((u_int32)(b_f))))
209 
210 #define	M_ISGTU(a_i, a_f, b_i, b_f)	/* a > b unsigned */ \
211 	(((u_int32)(a_i)) > ((u_int32)(b_i)) || \
212 	  ((a_i) == (b_i) && ((u_int32)(a_f)) > ((u_int32)(b_f))))
213 
214 #define	M_ISHIS(a_i, a_f, b_i, b_f)	/* a >= b unsigned */ \
215 	(((u_int32)(a_i)) > ((u_int32)(b_i)) || \
216 	  ((a_i) == (b_i) && ((u_int32)(a_f)) >= ((u_int32)(b_f))))
217 
218 #define	M_ISGEQ(a_i, a_f, b_i, b_f)	/* a >= b signed */ \
219 	(((u_int32)((a_i) ^ 0x80000000) > (u_int32)((b_i) ^ 0x80000000)) || \
220 	  ((a_i) == (b_i) && (u_int32)(a_f) >= (u_int32)(b_f)))
221 
222 #define	M_ISEQU(a_i, a_f, b_i, b_f)	/* a == b unsigned */ \
223 	((u_int32)(a_i) == (u_int32)(b_i) && (u_int32)(a_f) == (u_int32)(b_f))
224 
225 /*
226  * Operations on the long fp format
227  */
228 #define	L_ADD(r, a)	M_ADD((r)->l_ui, (r)->l_uf, (a)->l_ui, (a)->l_uf)
229 #define	L_SUB(r, a)	M_SUB((r)->l_ui, (r)->l_uf, (a)->l_ui, (a)->l_uf)
230 #define	L_NEG(v)	M_NEG((v)->l_ui, (v)->l_uf)
231 #define L_ADDUF(r, uf)	M_ADDUF((r)->l_ui, (r)->l_uf, (uf))
232 #define L_SUBUF(r, uf)	M_SUBUF((r)->l_ui, (r)->l_uf, (uf))
233 #define	L_ADDF(r, f)	M_ADDF((r)->l_ui, (r)->l_uf, (f))
234 #define	L_RSHIFT(v)	M_RSHIFT((v)->l_i, (v)->l_uf)
235 #define	L_RSHIFTU(v)	M_RSHIFTU((v)->l_ui, (v)->l_uf)
236 #define	L_LSHIFT(v)	M_LSHIFT((v)->l_ui, (v)->l_uf)
237 #define	L_CLR(v)	((v)->l_ui = (v)->l_uf = 0)
238 
239 #define	L_ISNEG(v)	M_ISNEG((v)->l_ui)
240 #define L_ISZERO(v)	(((v)->l_ui | (v)->l_uf) == 0)
241 #define	L_ISGT(a, b)	M_ISGT((a)->l_i, (a)->l_uf, (b)->l_i, (b)->l_uf)
242 #define	L_ISGTU(a, b)	M_ISGTU((a)->l_ui, (a)->l_uf, (b)->l_ui, (b)->l_uf)
243 #define	L_ISHIS(a, b)	M_ISHIS((a)->l_ui, (a)->l_uf, (b)->l_ui, (b)->l_uf)
244 #define	L_ISGEQ(a, b)	M_ISGEQ((a)->l_ui, (a)->l_uf, (b)->l_ui, (b)->l_uf)
245 #define	L_ISEQU(a, b)	M_ISEQU((a)->l_ui, (a)->l_uf, (b)->l_ui, (b)->l_uf)
246 
247 /*
248  * s_fp/double and u_fp/double conversions
249  */
250 #define FRIC		65536.0			/* 2^16 as a double */
251 #define DTOFP(r)	((s_fp)((r) * FRIC))
252 #define DTOUFP(r)	((u_fp)((r) * FRIC))
253 #define FPTOD(r)	((double)(r) / FRIC)
254 
255 /*
256  * l_fp/double conversions
257  */
258 #define FRAC		4294967296.0 		/* 2^32 as a double */
259 
260 /*
261  * Use 64 bit integers if available.  Solaris on SPARC has a problem
262  * compiling parsesolaris.c if ntp_fp.h includes math.h, due to
263  * archaic gets() and printf() prototypes used in Solaris kernel
264  * headers.  So far the problem has only been seen with gcc, but it
265  * may also affect Sun compilers, in which case the defined(__GNUC__)
266  * term should be removed.
267  * XSCALE also generates bad code for these, at least with GCC 3.3.5.
268  * This is unrelated to math.h, but the same solution applies.
269  */
270 #if defined(HAVE_U_INT64) && \
271     !(defined(__SVR4) && defined(__sun) && \
272       defined(sparc) && defined(__GNUC__) || \
273       defined(__arm__) && defined(__XSCALE__) && defined(__GNUC__))
274 
275 #include <math.h>	/* ldexp() */
276 
277 #define M_DTOLFP(d, r_ui, r_uf)		/* double to l_fp */	\
278 	do {							\
279 		double	d_tmp;					\
280 		u_int64	q_tmp;					\
281 		int	M_isneg;					\
282 								\
283 		d_tmp = (d);					\
284 		M_isneg = (d_tmp < 0.);				\
285 		if (M_isneg) {					\
286 			d_tmp = -d_tmp;				\
287 		}						\
288 		q_tmp = (u_int64)ldexp(d_tmp, 32);		\
289 		if (M_isneg) {					\
290 			q_tmp = ~q_tmp + 1;			\
291 		}						\
292 		(r_uf) = (u_int32)q_tmp;			\
293 		(r_ui) = (u_int32)(q_tmp >> 32);		\
294 	} while (FALSE)
295 
296 #define M_LFPTOD(r_ui, r_uf, d) 	/* l_fp to double */	\
297 	do {							\
298 		double	d_tmp;					\
299 		u_int64	q_tmp;					\
300 		int	M_isneg;				\
301 								\
302 		q_tmp = ((u_int64)(r_ui) << 32) + (r_uf);	\
303 		M_isneg = M_ISNEG(r_ui);			\
304 		if (M_isneg) {					\
305 			q_tmp = ~q_tmp + 1;			\
306 		}						\
307 		d_tmp = ldexp((double)q_tmp, -32);		\
308 		if (M_isneg) {					\
309 			d_tmp = -d_tmp;				\
310 		}						\
311 		(d) = d_tmp;					\
312 	} while (FALSE)
313 
314 #else /* use only 32 bit unsigned values */
315 
316 #define M_DTOLFP(d, r_ui, r_uf) 		/* double to l_fp */ \
317 	do { \
318 		double d_tmp; \
319 		if ((d_tmp = (d)) < 0) { \
320 			(r_ui) = (u_int32)(-d_tmp); \
321 			(r_uf) = (u_int32)(-(d_tmp + (double)(r_ui)) * FRAC); \
322 			M_NEG((r_ui), (r_uf)); \
323 		} else { \
324 			(r_ui) = (u_int32)d_tmp; \
325 			(r_uf) = (u_int32)((d_tmp - (double)(r_ui)) * FRAC); \
326 		} \
327 	} while (0)
328 #define M_LFPTOD(r_ui, r_uf, d) 		/* l_fp to double */ \
329 	do { \
330 		u_int32 l_thi, l_tlo; \
331 		l_thi = (r_ui); l_tlo = (r_uf); \
332 		if (M_ISNEG(l_thi)) { \
333 			M_NEG(l_thi, l_tlo); \
334 			(d) = -((double)l_thi + (double)l_tlo / FRAC); \
335 		} else { \
336 			(d) = (double)l_thi + (double)l_tlo / FRAC; \
337 		} \
338 	} while (0)
339 #endif
340 
341 #define DTOLFP(d, v) 	M_DTOLFP((d), (v)->l_ui, (v)->l_uf)
342 #define LFPTOD(v, d) 	M_LFPTOD((v)->l_ui, (v)->l_uf, (d))
343 
344 /*
345  * Prototypes
346  */
347 extern	char *	dofptoa		(u_fp, int, short, int);
348 extern	char *	dolfptoa	(u_int32, u_int32, int, short, int);
349 
350 extern	int	atolfp		(const char *, l_fp *);
351 extern	int	buftvtots	(const char *, l_fp *);
352 extern	char *	fptoa		(s_fp, short);
353 extern	char *	fptoms		(s_fp, short);
354 extern	int	hextolfp	(const char *, l_fp *);
355 extern  void	gpstolfp	(u_int, u_int, unsigned long, l_fp *);
356 extern	int	mstolfp		(const char *, l_fp *);
357 extern	char *	prettydate	(l_fp *);
358 extern	char *	gmprettydate	(l_fp *);
359 extern	char *	uglydate	(l_fp *);
360 extern  void	mfp_mul		(int32 *, u_int32 *, int32, u_int32, int32, u_int32);
361 
362 extern	void	set_sys_fuzz	(double);
363 extern	void	init_systime	(void);
364 extern	void	get_systime	(l_fp *);
365 extern	int	step_systime	(double);
366 extern	int	adj_systime	(double);
367 extern	int	clamp_systime	(void);
368 
369 extern	struct tm * ntp2unix_tm (u_int32 ntp, int local);
370 
371 #define	lfptoa(fpv, ndec)	mfptoa((fpv)->l_ui, (fpv)->l_uf, (ndec))
372 #define	lfptoms(fpv, ndec)	mfptoms((fpv)->l_ui, (fpv)->l_uf, (ndec))
373 
374 #define stoa(addr)		socktoa(addr)
375 #define	ntoa(addr)		stoa(addr)
376 #define sptoa(addr)		sockporttoa(addr)
377 #define stohost(addr)		socktohost(addr)
378 
379 #define	ufptoa(fpv, ndec)	dofptoa((fpv), 0, (ndec), 0)
380 #define	ufptoms(fpv, ndec)	dofptoa((fpv), 0, (ndec), 1)
381 #define	ulfptoa(fpv, ndec)	dolfptoa((fpv)->l_ui, (fpv)->l_uf, 0, (ndec), 0)
382 #define	ulfptoms(fpv, ndec)	dolfptoa((fpv)->l_ui, (fpv)->l_uf, 0, (ndec), 1)
383 #define	umfptoa(fpi, fpf, ndec) dolfptoa((fpi), (fpf), 0, (ndec), 0)
384 
385 /*
386  * Optional callback from libntp step_systime() to ntpd.  Optional
387 *  because other libntp clients like ntpdate don't use it.
388  */
389 typedef void (*time_stepped_callback)(void);
390 extern time_stepped_callback	step_callback;
391 
392 /*
393  * Multi-thread locking for get_systime()
394  *
395  * On most systems, get_systime() is used solely by the main ntpd
396  * thread, but on Windows it's also used by the dedicated I/O thread.
397  * The [Bug 2037] changes to get_systime() have it keep state between
398  * calls to ensure time moves in only one direction, which means its
399  * use on Windows needs to be protected against simultaneous execution
400  * to avoid falsely detecting Lamport violations by ensuring only one
401  * thread at a time is in get_systime().
402  */
403 #ifdef SYS_WINNT
404 extern CRITICAL_SECTION get_systime_cs;
405 # define INIT_GET_SYSTIME_CRITSEC()				\
406 		InitializeCriticalSection(&get_systime_cs)
407 # define ENTER_GET_SYSTIME_CRITSEC()				\
408 		EnterCriticalSection(&get_systime_cs)
409 # define LEAVE_GET_SYSTIME_CRITSEC()				\
410 		LeaveCriticalSection(&get_systime_cs)
411 # define INIT_WIN_PRECISE_TIME()				\
412 		init_win_precise_time()
413 #else	/* !SYS_WINNT follows */
414 # define INIT_GET_SYSTIME_CRITSEC()			\
415 		do {} while (FALSE)
416 # define ENTER_GET_SYSTIME_CRITSEC()			\
417 		do {} while (FALSE)
418 # define LEAVE_GET_SYSTIME_CRITSEC()			\
419 		do {} while (FALSE)
420 # define INIT_WIN_PRECISE_TIME()			\
421 		do {} while (FALSE)
422 #endif
423 
424 #endif /* NTP_FP_H */
425