1*276da39aSCy SchubertLeap Second Smearing with NTP 2*276da39aSCy Schubert----------------------------- 3*276da39aSCy Schubert 4*276da39aSCy SchubertBy Martin Burnicki 5*276da39aSCy Schubertwith some edits by Harlan Stenn 6*276da39aSCy Schubert 7*276da39aSCy SchubertThe NTP software protocol and its reference implementation, ntpd, were 8*276da39aSCy Schubertoriginally designed to distribute UTC time over a network as accurately as 9*276da39aSCy Schubertpossible. 10*276da39aSCy Schubert 11*276da39aSCy SchubertUnfortunately, leap seconds are scheduled to be inserted into or deleted 12*276da39aSCy Schubertfrom the UTC time scale in irregular intervals to keep the UTC time scale 13*276da39aSCy Schubertsynchronized with the Earth rotation. Deletions haven't happened, yet, but 14*276da39aSCy Schubertinsertions have happened over 30 times. 15*276da39aSCy Schubert 16*276da39aSCy SchubertThe problem is that POSIX requires 86400 seconds in a day, and there is no 17*276da39aSCy Schubertprescribed way to handle leap seconds in POSIX. 18*276da39aSCy Schubert 19*276da39aSCy SchubertWhenever a leap second is to be handled ntpd either: 20*276da39aSCy Schubert 21*276da39aSCy Schubert- passes the leap second announcement down to the OS kernel (if the OS 22*276da39aSCy Schubertsupports this) and the kernel handles the leap second automatically, or 23*276da39aSCy Schubert 24*276da39aSCy Schubert- applies the leap second correction itself. 25*276da39aSCy Schubert 26*276da39aSCy SchubertNTP servers also pass a leap second warning flag down to their clients via 27*276da39aSCy Schubertthe normal NTP packet exchange, so clients also become aware of an 28*276da39aSCy Schubertapproaching leap second, and can handle the leap second appropriately. 29*276da39aSCy Schubert 30*276da39aSCy Schubert 31*276da39aSCy SchubertThe Problem on Unix-like Systems 32*276da39aSCy Schubert-------------------------------- 33*276da39aSCy SchubertIf a leap second is to be inserted then in most Unix-like systems the OS 34*276da39aSCy Schubertkernel just steps the time back by 1 second at the beginning of the leap 35*276da39aSCy Schubertsecond, so the last second of the UTC day is repeated and thus duplicate 36*276da39aSCy Schuberttimestamps can occur. 37*276da39aSCy Schubert 38*276da39aSCy SchubertUnfortunately there are lots of applications which get confused it the 39*276da39aSCy Schubertsystem time is stepped back, e.g. due to a leap second insertion. Thus, 40*276da39aSCy Schubertmany users have been looking for ways to avoid this, and tried to introduce 41*276da39aSCy Schubertworkarounds which may work properly, or not. 42*276da39aSCy Schubert 43*276da39aSCy SchubertSo even though these Unix kernels normally can handle leap seconds, the way 44*276da39aSCy Schubertthey do this is not optimal for applications. 45*276da39aSCy Schubert 46*276da39aSCy SchubertOne good way to handle the leap second is to use ntp_gettime() instead of 47*276da39aSCy Schubertthe usual calls, because ntp_gettime() includes a "clock state" variable 48*276da39aSCy Schubertthat will actually tell you if the time you are receiving is OK or not, and 49*276da39aSCy Schubertif it is OK, if the current second is an in-progress leap second. But even 50*276da39aSCy Schubertthough this mechanism has been available for about 20 years' time, almost 51*276da39aSCy Schubertnobody uses it. 52*276da39aSCy Schubert 53*276da39aSCy Schubert 54*276da39aSCy SchubertNTP Client for Windows Contains a Workaround 55*276da39aSCy Schubert-------------------------------------------- 56*276da39aSCy SchubertThe Windows system time knows nothing about leap seconds, so for many years 57*276da39aSCy Schubertthe Windows port of ntpd provides a workaround where the system time is 58*276da39aSCy Schubertslewed by the client to compensate the leap second. 59*276da39aSCy Schubert 60*276da39aSCy SchubertThus it is not required to use a smearing NTP server for Windows clients, 61*276da39aSCy Schubertbut of course the smearing server approach also works. 62*276da39aSCy Schubert 63*276da39aSCy Schubert 64*276da39aSCy SchubertThe Leap Smear Approach 65*276da39aSCy Schubert----------------------- 66*276da39aSCy SchubertDue to the reasons mentioned above some support for leap smearing has 67*276da39aSCy Schubertrecently been implemented in ntpd. This means that to insert a leap second 68*276da39aSCy Schubertan NTP server adds a certain increasing "smear" offset to the real UTC time 69*276da39aSCy Schubertsent to its clients, so that after some predefined interval the leap second 70*276da39aSCy Schubertoffset is compensated. The smear interval should be long enough, 71*276da39aSCy Schuberte.g. several hours, so that NTP clients can easily follow the clock drift 72*276da39aSCy Schubertcaused by the smeared time. 73*276da39aSCy Schubert 74*276da39aSCy SchubertDuring the period while the leap smear is being performed, ntpd will include 75*276da39aSCy Schuberta specially-formatted 'refid' in time packets that contain "smeared" time. 76*276da39aSCy SchubertThis refid is of the form 254.x.y.z, where x.y.z are 24 encoded bits of the 77*276da39aSCy Schubertsmear value. 78*276da39aSCy Schubert 79*276da39aSCy SchubertWith this approach the time an NTP server sends to its clients still matches 80*276da39aSCy SchubertUTC before the leap second, up to the beginning of the smear interval, and 81*276da39aSCy Schubertagain corresponds to UTC after the insertion of the leap second has 82*276da39aSCy Schubertfinished, at the end of the smear interval. By examining the first byte of 83*276da39aSCy Schubertthe refid, one can also determine if the server is offering smeared time or 84*276da39aSCy Schubertnot. 85*276da39aSCy Schubert 86*276da39aSCy SchubertOf course, clients which receive the "smeared" time from an NTP server don't 87*276da39aSCy Schuberthave to (and even must not) care about the leap second anymore. Smearing is 88*276da39aSCy Schubertjust transparent to the clients, and the clients don't even notice there's a 89*276da39aSCy Schubertleap second. 90*276da39aSCy Schubert 91*276da39aSCy Schubert 92*276da39aSCy SchubertPros and Cons of the Smearing Approach 93*276da39aSCy Schubert-------------------------------------- 94*276da39aSCy SchubertThe disadvantages of this approach are: 95*276da39aSCy Schubert 96*276da39aSCy Schubert- During the smear interval the time provided by smearing NTP servers 97*276da39aSCy Schubertdiffers significantly from UTC, and thus from the time provided by normal, 98*276da39aSCy Schubertnon-smearing NTP servers. The difference can be up to 1 second, depending 99*276da39aSCy Schuberton the smear algorithm. 100*276da39aSCy Schubert 101*276da39aSCy Schubert- Since smeared time differs from true UTC, and many applications require 102*276da39aSCy Schubertcorrect legal time (UTC), there may be legal consequences to using smeared 103*276da39aSCy Schuberttime. Make sure you check to see if this requirement affects you. 104*276da39aSCy Schubert 105*276da39aSCy SchubertHowever, for applications where it's only important that all computers have 106*276da39aSCy Schubertthe same time and a temporary offset of up to 1 s to UTC is acceptable, a 107*276da39aSCy Schubertbetter approach may be to slew the time in a well defined way, over a 108*276da39aSCy Schubertcertain interval, which is what we call smearing the leap second. 109*276da39aSCy Schubert 110*276da39aSCy Schubert 111*276da39aSCy SchubertThe Motivation to Implement Leap Smearing 112*276da39aSCy Schubert----------------------------------------- 113*276da39aSCy SchubertHere is some historical background for ntpd, related to smearing/slewing 114*276da39aSCy Schuberttime. 115*276da39aSCy Schubert 116*276da39aSCy SchubertUp to ntpd 4.2.4, if kernel support for leap seconds was either not 117*276da39aSCy Schubertavailable or was not enabled, ntpd didn't care about the leap second at all. 118*276da39aSCy SchubertSo if ntpd was run with -x and thus kernel support wasn't used, ntpd saw a 119*276da39aSCy Schubertsudden 1 s offset after the leap second and normally would have stepped the 120*276da39aSCy Schuberttime by -1 s a few minutes later. However, 'ntpd -x' does not step the time 121*276da39aSCy Schubertbut "slews" the 1-second correction, which takes 33 minutes and 20 seconds 122*276da39aSCy Schubertto complete. This could be considered a bug, but certainly this was only an 123*276da39aSCy Schubertaccidental behavior. 124*276da39aSCy Schubert 125*276da39aSCy SchubertHowever, as we learned in the discussion in http://bugs.ntp.org/2745, this 126*276da39aSCy Schubertbehavior was very much appreciated since indeed the time was never stepped 127*276da39aSCy Schubertback, and even though the start of the slewing was somewhat undefined and 128*276da39aSCy Schubertdepended on the poll interval. The system time was off by 1 second for 129*276da39aSCy Schubertseveral minutes before slewing even started. 130*276da39aSCy Schubert 131*276da39aSCy SchubertIn ntpd 4.2.6 some code was added which let ntpd step the time at UTC 132*276da39aSCy Schubertmidnight to insert a leap second, if kernel support was not used. 133*276da39aSCy SchubertUnfortunately this also happened if ntpd was started with -x, so the folks 134*276da39aSCy Schubertwho expected that the time was never stepped when ntpd was run with -x found 135*276da39aSCy Schubertthis wasn't true anymore, and again from the discussion in NTP bug 2745 we 136*276da39aSCy Schubertlearn that there were even some folks who patched ntpd to get the 4.2.4 137*276da39aSCy Schubertbehavior back. 138*276da39aSCy Schubert 139*276da39aSCy SchubertIn 4.2.8 the leap second code was rewritten and some enhancements were 140*276da39aSCy Schubertintroduced, but the resulting code still showed the behavior of 4.2.6, 141*276da39aSCy Schuberti.e. ntpd with -x would still step the time. This has only recently been 142*276da39aSCy Schubertfixed in the current ntpd stable code, but this fix is only available with a 143*276da39aSCy Schubertcertain patch level of ntpd 4.2.8. 144*276da39aSCy Schubert 145*276da39aSCy SchubertSo a possible solution for users who were looking for a way to come over the 146*276da39aSCy Schubertleap second without the time being stepped could have been to check the 147*276da39aSCy Schubertversion of ntpd installed on each of their systems. If it's still 4.2.4 be 148*276da39aSCy Schubertsure to start the client ntpd with -x. If it's 4.2.6 or 4.2.8 it won't work 149*276da39aSCy Schubertanyway except if you had a patched ntpd version instead of the original 150*276da39aSCy Schubertversion. So you'd need to upgrade to the current -stable code to be able to 151*276da39aSCy Schubertrun ntpd with -x and get the desired result, so you'd still have the 152*276da39aSCy Schubertrequirement to check/update/configure every single machine in your network 153*276da39aSCy Schubertthat runs ntpd. 154*276da39aSCy Schubert 155*276da39aSCy SchubertGoogle's leap smear approach is a very efficient solution for this, for 156*276da39aSCy Schubertsites that do not require correct timestamps for legal purposes. You just 157*276da39aSCy Schuberthave to take care that your NTP servers support leap smearing and configure 158*276da39aSCy Schubertthose few servers accordingly. If the smear interval is long enough so that 159*276da39aSCy SchubertNTP clients can follow the smeared time it doesn't matter at all which 160*276da39aSCy Schubertversion of ntpd is installed on a client machine, it just works, and it even 161*276da39aSCy Schubertworks around kernel bugs due to the leap second. 162*276da39aSCy Schubert 163*276da39aSCy SchubertSince all clients follow the same smeared time the time difference between 164*276da39aSCy Schubertthe clients during the smear interval is as small as possible, compared to 165*276da39aSCy Schubertthe -x approach. The current leap second code in ntpd determines the point 166*276da39aSCy Schubertin system time when the leap second is to be inserted, and given a 167*276da39aSCy Schubertparticular smear interval it's easy to determine the start point of the 168*276da39aSCy Schubertsmearing, and the smearing is finished when the leap second ends, i.e. the 169*276da39aSCy Schubertnext UTC day begins. 170*276da39aSCy Schubert 171*276da39aSCy SchubertThe maximum error doesn't exceed what you'd get with the old smearing caused 172*276da39aSCy Schubertby -x in ntpd 4.2.4, so if users could accept the old behavior they would 173*276da39aSCy Schuberteven accept the smearing at the server side. 174*276da39aSCy Schubert 175*276da39aSCy SchubertIn order to affect the local timekeeping as little as possible the leap 176*276da39aSCy Schubertsmear support currently implemented in ntpd does not affect the internal 177*276da39aSCy Schubertsystem time at all. Only the timestamps and refid in outgoing reply packets 178*276da39aSCy Schubert*to clients* are modified by the smear offset, so this makes sure the basic 179*276da39aSCy Schubertfunctionality of ntpd is not accidentally broken. Also peer packets 180*276da39aSCy Schubertexchanged with other NTP servers are based on the real UTC system time and 181*276da39aSCy Schubertthe normal refid, as usual. 182*276da39aSCy Schubert 183*276da39aSCy SchubertThe leap smear implementation is optionally available in ntp-4.2.8p3 and 184*276da39aSCy Schubertlater, and the changes can be tracked via http://bugs.ntp.org/2855. 185*276da39aSCy Schubert 186*276da39aSCy Schubert 187*276da39aSCy SchubertUsing NTP's Leap Second Smearing 188*276da39aSCy Schubert-------------------------------- 189*276da39aSCy Schubert- Leap Second Smearing MUST NOT be used for public servers, e.g. servers 190*276da39aSCy Schubertprovided by metrology institutes, or servers participating in the NTP pool 191*276da39aSCy Schubertproject. There would be a high risk that NTP clients get the time from a 192*276da39aSCy Schubertmixture of smearing and non-smearing NTP servers which could result in 193*276da39aSCy Schubertundefined client behavior. Instead, leap second smearing should only be 194*276da39aSCy Schubertconfigured on time servers providing dedicated clients with time, if all 195*276da39aSCy Schubertthose clients can accept smeared time. 196*276da39aSCy Schubert 197*276da39aSCy Schubert- Leap Second Smearing is NOT configured by default. The only way to get 198*276da39aSCy Schubertthis behavior is to invoke the ./configure script from the NTP source code 199*276da39aSCy Schubertpackage with the --enable-leap-smear parameter before the executables are 200*276da39aSCy Schubertbuilt. 201*276da39aSCy Schubert 202*276da39aSCy Schubert- Even if ntpd has been compiled to enable leap smearing support, leap 203*276da39aSCy Schubertsmearing is only done if explicitly configured. 204*276da39aSCy Schubert 205*276da39aSCy Schubert- The leap smear interval should be at least several hours' long, and up to 206*276da39aSCy Schubert1 day (86400s). If the interval is too short then the applied smear offset 207*276da39aSCy Schubertis applied too quickly for clients to follow. 86400s (1 day) is a good 208*276da39aSCy Schubertchoice. 209*276da39aSCy Schubert 210*276da39aSCy Schubert- If several NTP servers are set up for leap smearing then the *same* smear 211*276da39aSCy Schubertinterval should be configured on each server. 212*276da39aSCy Schubert 213*276da39aSCy Schubert- Smearing NTP servers DO NOT send a leap second warning flag to client time 214*276da39aSCy Schubertrequests. Since the leap second is applied gradually the clients don't even 215*276da39aSCy Schubertnotice there's a leap second being inserted, and thus there will be no log 216*276da39aSCy Schubertmessage or similar related to the leap second be visible on the clients. 217*276da39aSCy Schubert 218*276da39aSCy Schubert- Since clients don't (and must not) become aware of the leap second at all, 219*276da39aSCy Schubertclients getting the time from a smearing NTP server MUST NOT be configured 220*276da39aSCy Schubertto use a leap second file. If they had a leap second file they would apply 221*276da39aSCy Schubertthe leap second twice: the smeared one from the server, plus another one 222*276da39aSCy Schubertinserted by themselves due to the leap second file. As a result, the 223*276da39aSCy Schubertadditional correction would soon be detected and corrected/adjusted. 224*276da39aSCy Schubert 225*276da39aSCy Schubert- Clients MUST NOT be configured to poll both smearing and non-smearing NTP 226*276da39aSCy Schubertservers at the same time. During the smear interval they would get 227*276da39aSCy Schubertdifferent times from different servers and wouldn't know which server(s) to 228*276da39aSCy Schubertaccept. 229*276da39aSCy Schubert 230*276da39aSCy Schubert 231*276da39aSCy SchubertSetting Up A Smearing NTP Server 232*276da39aSCy Schubert-------------------------------- 233*276da39aSCy SchubertIf an NTP server should perform leap smearing then the leap smear interval 234*276da39aSCy Schubert(in seconds) needs to be specified in the NTP configuration file ntp.conf, 235*276da39aSCy Schuberte.g.: 236*276da39aSCy Schubert 237*276da39aSCy Schubert leapsmearinterval 86400 238*276da39aSCy Schubert 239*276da39aSCy SchubertPlease keep in mind the leap smear interval should be between several and 24 240*276da39aSCy Schuberthours' long. With shorter values clients may not be able to follow the 241*276da39aSCy Schubertdrift caused by the smeared time, and with longer values the discrepancy 242*276da39aSCy Schubertbetween system time and UTC will cause more problems when reconciling 243*276da39aSCy Schuberttimestamp differences. 244*276da39aSCy Schubert 245*276da39aSCy SchubertWhen ntpd starts and a smear interval has been specified then a log message 246*276da39aSCy Schubertis generated, e.g.: 247*276da39aSCy Schubert 248*276da39aSCy Schubert ntpd[31120]: config: leap smear interval 86400 s 249*276da39aSCy Schubert 250*276da39aSCy SchubertWhile ntpd is running with a leap smear interval specified the command: 251*276da39aSCy Schubert 252*276da39aSCy Schubert ntpq -c rv 253*276da39aSCy Schubert 254*276da39aSCy Schubertreports the smear status, e.g.: 255*276da39aSCy Schubert 256*276da39aSCy Schubert# ntpq -c rv 257*276da39aSCy Schubertassocid=0 status=4419 leap_add_sec, sync_uhf_radio, 1 event, leap_armed, 258*276da39aSCy Schubertversion="ntpd 4.2.8p3-RC1@1.3349-o Mon Jun 22 14:24:09 UTC 2015 (26)", 259*276da39aSCy Schubertprocessor="i586", system="Linux/3.7.1", leap=01, stratum=1, 260*276da39aSCy Schubertprecision=-18, rootdelay=0.000, rootdisp=1.075, refid=MRS, 261*276da39aSCy Schubertreftime=d93dab96.09666671 Tue, Jun 30 2015 23:58:14.036, 262*276da39aSCy Schubertclock=d93dab9b.3386a8d5 Tue, Jun 30 2015 23:58:19.201, peer=2335, 263*276da39aSCy Schuberttc=3, mintc=3, offset=-0.097015, frequency=44.627, sys_jitter=0.003815, 264*276da39aSCy Schubertclk_jitter=0.451, clk_wander=0.035, tai=35, leapsec=201507010000, 265*276da39aSCy Schubertexpire=201512280000, leapsmearinterval=86400, leapsmearoffset=-932.087 266*276da39aSCy Schubert 267*276da39aSCy SchubertIn the example above 'leapsmearinterval' reports the configured leap smear 268*276da39aSCy Schubertinterval all the time, while the 'leapsmearoffset' value is 0 outside the 269*276da39aSCy Schubertinterval and increases from 0 to -1000 ms over the interval. So this can be 270*276da39aSCy Schubertused to monitor if and how the time sent to clients is smeared. With a 271*276da39aSCy Schubertleapsmearoffset of -.932087, the refid reported in smeared packets would be 272*276da39aSCy Schubert254.196.88.176. 273