1 /* $NetBSD: t_cos.c,v 1.9 2019/05/27 00:10:36 maya Exp $ */ 2 3 /*- 4 * Copyright (c) 2011 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jukka Ruohonen. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include <assert.h> 33 #include <atf-c.h> 34 #include <float.h> 35 #include <math.h> 36 37 static const struct { 38 int angle; 39 double x; 40 double y; 41 float fy; 42 } angles[] = { 43 { -180, -3.141592653589793, -1.0000000000000000, 999 }, 44 { -135, -2.356194490192345, -0.7071067811865476, 999 }, 45 { -90, -1.5707963267948966, 6.123233995736766e-17, -4.3711388e-08 }, 46 { -90, -1.5707963267948968, -1.6081226496766366e-16, -4.3711388e-08 }, 47 { -45, -0.785398163397448, 0.7071067811865478, 999 }, 48 { 0, 0.000000000000000, 1.0000000000000000, 999 }, 49 { 30, 0.523598775598299, 0.8660254037844386, 999 }, 50 { 45, 0.785398163397448, 0.7071067811865478, 999 }, 51 { 60, 1.0471975511965976, 0.5000000000000001, 999 }, 52 { 60, 1.0471975511965979, 0.4999999999999999, 999 }, 53 { 90, 1.570796326794897, -3.8285686989269494e-16, -4.3711388e-08 }, 54 { 120, 2.0943951023931953, -0.4999999999999998, 999 }, 55 { 120, 2.0943951023931957, -0.5000000000000002, 999 }, 56 { 135, 2.356194490192345, -0.7071067811865476, 999 }, 57 { 150, 2.617993877991494, -0.8660254037844386, 999 }, 58 { 180, 3.141592653589793, -1.0000000000000000, 999 }, 59 { 270, 4.712388980384690, -1.8369701987210297e-16, 1.1924881e-08 }, 60 { 360, 6.283185307179586, 1.0000000000000000, 999 }, 61 }; 62 63 #ifdef __HAVE_LONG_DOUBLE 64 /* 65 * cosl(3) 66 */ 67 ATF_TC(cosl_angles); 68 ATF_TC_HEAD(cosl_angles, tc) 69 { 70 atf_tc_set_md_var(tc, "descr", "Test some selected angles"); 71 } 72 73 ATF_TC_BODY(cosl_angles, tc) 74 { 75 /* 76 * XXX The given data is for double, so take that 77 * into account and expect less precise results.. 78 */ 79 const long double eps = DBL_EPSILON; 80 size_t i; 81 82 for (i = 0; i < __arraycount(angles); i++) { 83 int deg = angles[i].angle; 84 long double theta = angles[i].x; 85 long double cos_theta = angles[i].y; 86 87 assert(cos_theta != 0); 88 if (!(fabsl((cosl(theta) - cos_theta)/cos_theta) <= eps)) { 89 atf_tc_fail_nonfatal("cos(%d deg = %.17Lg) = %.17Lg" 90 " != %.17Lg", 91 deg, theta, cosl(theta), cos_theta); 92 } 93 } 94 } 95 96 ATF_TC(cosl_nan); 97 ATF_TC_HEAD(cosl_nan, tc) 98 { 99 atf_tc_set_md_var(tc, "descr", "Test cosl(NaN) == NaN"); 100 } 101 102 ATF_TC_BODY(cosl_nan, tc) 103 { 104 const long double x = 0.0L / 0.0L; 105 106 ATF_CHECK(isnan(x) != 0); 107 ATF_CHECK(isnan(cosl(x)) != 0); 108 } 109 110 ATF_TC(cosl_inf_neg); 111 ATF_TC_HEAD(cosl_inf_neg, tc) 112 { 113 atf_tc_set_md_var(tc, "descr", "Test cosl(-Inf) == NaN"); 114 } 115 116 ATF_TC_BODY(cosl_inf_neg, tc) 117 { 118 const long double x = -1.0L / 0.0L; 119 120 ATF_CHECK(isnan(cosl(x)) != 0); 121 } 122 123 ATF_TC(cosl_inf_pos); 124 ATF_TC_HEAD(cosl_inf_pos, tc) 125 { 126 atf_tc_set_md_var(tc, "descr", "Test cosl(+Inf) == NaN"); 127 } 128 129 ATF_TC_BODY(cosl_inf_pos, tc) 130 { 131 const long double x = 1.0L / 0.0L; 132 133 ATF_CHECK(isnan(cosl(x)) != 0); 134 } 135 136 137 ATF_TC(cosl_zero_neg); 138 ATF_TC_HEAD(cosl_zero_neg, tc) 139 { 140 atf_tc_set_md_var(tc, "descr", "Test cosl(-0.0) == 1.0"); 141 } 142 143 ATF_TC_BODY(cosl_zero_neg, tc) 144 { 145 const long double x = -0.0L; 146 147 ATF_CHECK(cosl(x) == 1.0); 148 } 149 150 ATF_TC(cosl_zero_pos); 151 ATF_TC_HEAD(cosl_zero_pos, tc) 152 { 153 atf_tc_set_md_var(tc, "descr", "Test cosl(+0.0) == 1.0"); 154 } 155 156 ATF_TC_BODY(cosl_zero_pos, tc) 157 { 158 const long double x = 0.0L; 159 160 ATF_CHECK(cosl(x) == 1.0); 161 } 162 #endif 163 164 /* 165 * cos(3) 166 */ 167 ATF_TC(cos_angles); 168 ATF_TC_HEAD(cos_angles, tc) 169 { 170 atf_tc_set_md_var(tc, "descr", "Test some selected angles"); 171 } 172 173 ATF_TC_BODY(cos_angles, tc) 174 { 175 const double eps = DBL_EPSILON; 176 size_t i; 177 178 for (i = 0; i < __arraycount(angles); i++) { 179 int deg = angles[i].angle; 180 double theta = angles[i].x; 181 double cos_theta = angles[i].y; 182 183 assert(cos_theta != 0); 184 if (!(fabs((cos(theta) - cos_theta)/cos_theta) <= eps)) { 185 atf_tc_fail_nonfatal("cos(%d deg = %.17g) = %.17g" 186 " != %.17g", 187 deg, theta, cos(theta), cos_theta); 188 } 189 } 190 } 191 192 ATF_TC(cos_nan); 193 ATF_TC_HEAD(cos_nan, tc) 194 { 195 atf_tc_set_md_var(tc, "descr", "Test cos(NaN) == NaN"); 196 } 197 198 ATF_TC_BODY(cos_nan, tc) 199 { 200 const double x = 0.0L / 0.0L; 201 202 ATF_CHECK(isnan(x) != 0); 203 ATF_CHECK(isnan(cos(x)) != 0); 204 } 205 206 ATF_TC(cos_inf_neg); 207 ATF_TC_HEAD(cos_inf_neg, tc) 208 { 209 atf_tc_set_md_var(tc, "descr", "Test cos(-Inf) == NaN"); 210 } 211 212 ATF_TC_BODY(cos_inf_neg, tc) 213 { 214 const double x = -1.0L / 0.0L; 215 216 ATF_CHECK(isnan(cos(x)) != 0); 217 } 218 219 ATF_TC(cos_inf_pos); 220 ATF_TC_HEAD(cos_inf_pos, tc) 221 { 222 atf_tc_set_md_var(tc, "descr", "Test cos(+Inf) == NaN"); 223 } 224 225 ATF_TC_BODY(cos_inf_pos, tc) 226 { 227 const double x = 1.0L / 0.0L; 228 229 ATF_CHECK(isnan(cos(x)) != 0); 230 } 231 232 233 ATF_TC(cos_zero_neg); 234 ATF_TC_HEAD(cos_zero_neg, tc) 235 { 236 atf_tc_set_md_var(tc, "descr", "Test cos(-0.0) == 1.0"); 237 } 238 239 ATF_TC_BODY(cos_zero_neg, tc) 240 { 241 const double x = -0.0L; 242 243 ATF_CHECK(cos(x) == 1.0); 244 } 245 246 ATF_TC(cos_zero_pos); 247 ATF_TC_HEAD(cos_zero_pos, tc) 248 { 249 atf_tc_set_md_var(tc, "descr", "Test cos(+0.0) == 1.0"); 250 } 251 252 ATF_TC_BODY(cos_zero_pos, tc) 253 { 254 const double x = 0.0L; 255 256 ATF_CHECK(cos(x) == 1.0); 257 } 258 259 /* 260 * cosf(3) 261 */ 262 ATF_TC(cosf_angles); 263 ATF_TC_HEAD(cosf_angles, tc) 264 { 265 atf_tc_set_md_var(tc, "descr", "Test some selected angles"); 266 } 267 268 ATF_TC_BODY(cosf_angles, tc) 269 { 270 const float eps = FLT_EPSILON; 271 size_t i; 272 273 for (i = 0; i < __arraycount(angles); i++) { 274 int deg = angles[i].angle; 275 float theta = angles[i].x; 276 float cos_theta = angles[i].fy; 277 278 /* 279 * Force rounding to float even if FLT_EVAL_METHOD=2, 280 * as is the case on i386. 281 * 282 * The volatile should not be necessary, by C99 Sec. 283 * 5.2.4.2.2. para. 8 on p. 24 which specifies that 284 * assignment and cast remove all extra range and precision, 285 * but seems to be needed to work around a compiler bug. 286 */ 287 volatile float result = cosf(theta); 288 289 if (cos_theta == 999) 290 cos_theta = angles[i].y; 291 292 assert(cos_theta != 0); 293 if (!(fabsf((result - cos_theta)/cos_theta) <= eps)) { 294 atf_tc_fail_nonfatal("cosf(%d deg = %.8g) = %.8g" 295 " != %.8g", deg, theta, result, cos_theta); 296 } 297 } 298 } 299 300 ATF_TC(cosf_nan); 301 ATF_TC_HEAD(cosf_nan, tc) 302 { 303 atf_tc_set_md_var(tc, "descr", "Test cosf(NaN) == NaN"); 304 } 305 306 ATF_TC_BODY(cosf_nan, tc) 307 { 308 const float x = 0.0L / 0.0L; 309 310 ATF_CHECK(isnan(x) != 0); 311 ATF_CHECK(isnan(cosf(x)) != 0); 312 } 313 314 ATF_TC(cosf_inf_neg); 315 ATF_TC_HEAD(cosf_inf_neg, tc) 316 { 317 atf_tc_set_md_var(tc, "descr", "Test cosf(-Inf) == NaN"); 318 } 319 320 ATF_TC_BODY(cosf_inf_neg, tc) 321 { 322 const float x = -1.0L / 0.0L; 323 324 if (isnan(cosf(x)) == 0) { 325 atf_tc_expect_fail("PR lib/45362"); 326 atf_tc_fail("cosf(-Inf) != NaN"); 327 } 328 } 329 330 ATF_TC(cosf_inf_pos); 331 ATF_TC_HEAD(cosf_inf_pos, tc) 332 { 333 atf_tc_set_md_var(tc, "descr", "Test cosf(+Inf) == NaN"); 334 } 335 336 ATF_TC_BODY(cosf_inf_pos, tc) 337 { 338 const float x = 1.0L / 0.0L; 339 340 if (isnan(cosf(x)) == 0) { 341 atf_tc_expect_fail("PR lib/45362"); 342 atf_tc_fail("cosf(+Inf) != NaN"); 343 } 344 } 345 346 347 ATF_TC(cosf_zero_neg); 348 ATF_TC_HEAD(cosf_zero_neg, tc) 349 { 350 atf_tc_set_md_var(tc, "descr", "Test cosf(-0.0) == 1.0"); 351 } 352 353 ATF_TC_BODY(cosf_zero_neg, tc) 354 { 355 const float x = -0.0L; 356 357 ATF_CHECK(cosf(x) == 1.0); 358 } 359 360 ATF_TC(cosf_zero_pos); 361 ATF_TC_HEAD(cosf_zero_pos, tc) 362 { 363 atf_tc_set_md_var(tc, "descr", "Test cosf(+0.0) == 1.0"); 364 } 365 366 ATF_TC_BODY(cosf_zero_pos, tc) 367 { 368 const float x = 0.0L; 369 370 ATF_CHECK(cosf(x) == 1.0); 371 } 372 373 ATF_TP_ADD_TCS(tp) 374 { 375 #ifdef __HAVE_LONG_DOUBLE 376 ATF_TP_ADD_TC(tp, cosl_angles); 377 ATF_TP_ADD_TC(tp, cosl_nan); 378 ATF_TP_ADD_TC(tp, cosl_inf_neg); 379 ATF_TP_ADD_TC(tp, cosl_inf_pos); 380 ATF_TP_ADD_TC(tp, cosl_zero_neg); 381 ATF_TP_ADD_TC(tp, cosl_zero_pos); 382 #endif 383 384 ATF_TP_ADD_TC(tp, cos_angles); 385 ATF_TP_ADD_TC(tp, cos_nan); 386 ATF_TP_ADD_TC(tp, cos_inf_neg); 387 ATF_TP_ADD_TC(tp, cos_inf_pos); 388 ATF_TP_ADD_TC(tp, cos_zero_neg); 389 ATF_TP_ADD_TC(tp, cos_zero_pos); 390 391 ATF_TP_ADD_TC(tp, cosf_angles); 392 ATF_TP_ADD_TC(tp, cosf_nan); 393 ATF_TP_ADD_TC(tp, cosf_inf_neg); 394 ATF_TP_ADD_TC(tp, cosf_inf_pos); 395 ATF_TP_ADD_TC(tp, cosf_zero_neg); 396 ATF_TP_ADD_TC(tp, cosf_zero_pos); 397 398 return atf_no_error(); 399 } 400