1 /* 2 ** $Id: ltable.c $ 3 ** Lua tables (hash) 4 ** See Copyright Notice in lua.h 5 */ 6 7 #define ltable_c 8 #define LUA_CORE 9 10 #include "lprefix.h" 11 12 13 /* 14 ** Implementation of tables (aka arrays, objects, or hash tables). 15 ** Tables keep its elements in two parts: an array part and a hash part. 16 ** Non-negative integer keys are all candidates to be kept in the array 17 ** part. The actual size of the array is the largest 'n' such that 18 ** more than half the slots between 1 and n are in use. 19 ** Hash uses a mix of chained scatter table with Brent's variation. 20 ** A main invariant of these tables is that, if an element is not 21 ** in its main position (i.e. the 'original' position that its hash gives 22 ** to it), then the colliding element is in its own main position. 23 ** Hence even when the load factor reaches 100%, performance remains good. 24 */ 25 26 #include <math.h> 27 #include <limits.h> 28 29 #include "lua.h" 30 31 #include "ldebug.h" 32 #include "ldo.h" 33 #include "lgc.h" 34 #include "lmem.h" 35 #include "lobject.h" 36 #include "lstate.h" 37 #include "lstring.h" 38 #include "ltable.h" 39 #include "lvm.h" 40 41 42 /* 43 ** MAXABITS is the largest integer such that MAXASIZE fits in an 44 ** unsigned int. 45 */ 46 #define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1) 47 48 49 /* 50 ** MAXASIZE is the maximum size of the array part. It is the minimum 51 ** between 2^MAXABITS and the maximum size that, measured in bytes, 52 ** fits in a 'size_t'. 53 */ 54 #define MAXASIZE luaM_limitN(1u << MAXABITS, TValue) 55 56 /* 57 ** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a 58 ** signed int. 59 */ 60 #define MAXHBITS (MAXABITS - 1) 61 62 63 /* 64 ** MAXHSIZE is the maximum size of the hash part. It is the minimum 65 ** between 2^MAXHBITS and the maximum size such that, measured in bytes, 66 ** it fits in a 'size_t'. 67 */ 68 #define MAXHSIZE luaM_limitN(1u << MAXHBITS, Node) 69 70 71 /* 72 ** When the original hash value is good, hashing by a power of 2 73 ** avoids the cost of '%'. 74 */ 75 #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t)))) 76 77 /* 78 ** for other types, it is better to avoid modulo by power of 2, as 79 ** they can have many 2 factors. 80 */ 81 #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1)))) 82 83 84 #define hashstr(t,str) hashpow2(t, (str)->hash) 85 #define hashboolean(t,p) hashpow2(t, p) 86 87 88 #define hashpointer(t,p) hashmod(t, point2uint(p)) 89 90 91 #define dummynode (&dummynode_) 92 93 static const Node dummynode_ = { 94 {{NULL}, LUA_VEMPTY, /* value's value and type */ 95 LUA_VNIL, 0, {NULL}} /* key type, next, and key value */ 96 }; 97 98 99 static const TValue absentkey = {ABSTKEYCONSTANT}; 100 101 102 /* 103 ** Hash for integers. To allow a good hash, use the remainder operator 104 ** ('%'). If integer fits as a non-negative int, compute an int 105 ** remainder, which is faster. Otherwise, use an unsigned-integer 106 ** remainder, which uses all bits and ensures a non-negative result. 107 */ 108 static Node *hashint (const Table *t, lua_Integer i) { 109 lua_Unsigned ui = l_castS2U(i); 110 if (ui <= cast_uint(INT_MAX)) 111 return hashmod(t, cast_int(ui)); 112 else 113 return hashmod(t, ui); 114 } 115 116 117 /* 118 ** Hash for floating-point numbers. 119 ** The main computation should be just 120 ** n = frexp(n, &i); return (n * INT_MAX) + i 121 ** but there are some numerical subtleties. 122 ** In a two-complement representation, INT_MAX does not has an exact 123 ** representation as a float, but INT_MIN does; because the absolute 124 ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the 125 ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal 126 ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when 127 ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with 128 ** INT_MIN. 129 */ 130 #if !defined(l_hashfloat) 131 static int l_hashfloat (lua_Number n) { 132 int i; 133 lua_Integer ni; 134 n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN); 135 if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */ 136 lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL)); 137 return 0; 138 } 139 else { /* normal case */ 140 unsigned int u = cast_uint(i) + cast_uint(ni); 141 return cast_int(u <= cast_uint(INT_MAX) ? u : ~u); 142 } 143 } 144 #endif 145 146 147 /* 148 ** returns the 'main' position of an element in a table (that is, 149 ** the index of its hash value). 150 */ 151 static Node *mainpositionTV (const Table *t, const TValue *key) { 152 switch (ttypetag(key)) { 153 case LUA_VNUMINT: { 154 lua_Integer i = ivalue(key); 155 return hashint(t, i); 156 } 157 case LUA_VNUMFLT: { 158 lua_Number n = fltvalue(key); 159 return hashmod(t, l_hashfloat(n)); 160 } 161 case LUA_VSHRSTR: { 162 TString *ts = tsvalue(key); 163 return hashstr(t, ts); 164 } 165 case LUA_VLNGSTR: { 166 TString *ts = tsvalue(key); 167 return hashpow2(t, luaS_hashlongstr(ts)); 168 } 169 case LUA_VFALSE: 170 return hashboolean(t, 0); 171 case LUA_VTRUE: 172 return hashboolean(t, 1); 173 case LUA_VLIGHTUSERDATA: { 174 void *p = pvalue(key); 175 return hashpointer(t, p); 176 } 177 case LUA_VLCF: { 178 lua_CFunction f = fvalue(key); 179 return hashpointer(t, f); 180 } 181 default: { 182 GCObject *o = gcvalue(key); 183 return hashpointer(t, o); 184 } 185 } 186 } 187 188 189 l_sinline Node *mainpositionfromnode (const Table *t, Node *nd) { 190 TValue key; 191 getnodekey(cast(lua_State *, NULL), &key, nd); 192 return mainpositionTV(t, &key); 193 } 194 195 196 /* 197 ** Check whether key 'k1' is equal to the key in node 'n2'. This 198 ** equality is raw, so there are no metamethods. Floats with integer 199 ** values have been normalized, so integers cannot be equal to 200 ** floats. It is assumed that 'eqshrstr' is simply pointer equality, so 201 ** that short strings are handled in the default case. 202 ** A true 'deadok' means to accept dead keys as equal to their original 203 ** values. All dead keys are compared in the default case, by pointer 204 ** identity. (Only collectable objects can produce dead keys.) Note that 205 ** dead long strings are also compared by identity. 206 ** Once a key is dead, its corresponding value may be collected, and 207 ** then another value can be created with the same address. If this 208 ** other value is given to 'next', 'equalkey' will signal a false 209 ** positive. In a regular traversal, this situation should never happen, 210 ** as all keys given to 'next' came from the table itself, and therefore 211 ** could not have been collected. Outside a regular traversal, we 212 ** have garbage in, garbage out. What is relevant is that this false 213 ** positive does not break anything. (In particular, 'next' will return 214 ** some other valid item on the table or nil.) 215 */ 216 static int equalkey (const TValue *k1, const Node *n2, int deadok) { 217 if ((rawtt(k1) != keytt(n2)) && /* not the same variants? */ 218 !(deadok && keyisdead(n2) && iscollectable(k1))) 219 return 0; /* cannot be same key */ 220 switch (keytt(n2)) { 221 case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE: 222 return 1; 223 case LUA_VNUMINT: 224 return (ivalue(k1) == keyival(n2)); 225 case LUA_VNUMFLT: 226 return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2))); 227 case LUA_VLIGHTUSERDATA: 228 return pvalue(k1) == pvalueraw(keyval(n2)); 229 case LUA_VLCF: 230 return fvalue(k1) == fvalueraw(keyval(n2)); 231 case ctb(LUA_VLNGSTR): 232 return luaS_eqlngstr(tsvalue(k1), keystrval(n2)); 233 default: 234 return gcvalue(k1) == gcvalueraw(keyval(n2)); 235 } 236 } 237 238 239 /* 240 ** True if value of 'alimit' is equal to the real size of the array 241 ** part of table 't'. (Otherwise, the array part must be larger than 242 ** 'alimit'.) 243 */ 244 #define limitequalsasize(t) (isrealasize(t) || ispow2((t)->alimit)) 245 246 247 /* 248 ** Returns the real size of the 'array' array 249 */ 250 LUAI_FUNC unsigned int luaH_realasize (const Table *t) { 251 if (limitequalsasize(t)) 252 return t->alimit; /* this is the size */ 253 else { 254 unsigned int size = t->alimit; 255 /* compute the smallest power of 2 not smaller than 'size' */ 256 size |= (size >> 1); 257 size |= (size >> 2); 258 size |= (size >> 4); 259 size |= (size >> 8); 260 #if (UINT_MAX >> 14) > 3 /* unsigned int has more than 16 bits */ 261 size |= (size >> 16); 262 #if (UINT_MAX >> 30) > 3 263 size |= (size >> 32); /* unsigned int has more than 32 bits */ 264 #endif 265 #endif 266 size++; 267 lua_assert(ispow2(size) && size/2 < t->alimit && t->alimit < size); 268 return size; 269 } 270 } 271 272 273 /* 274 ** Check whether real size of the array is a power of 2. 275 ** (If it is not, 'alimit' cannot be changed to any other value 276 ** without changing the real size.) 277 */ 278 static int ispow2realasize (const Table *t) { 279 return (!isrealasize(t) || ispow2(t->alimit)); 280 } 281 282 283 static unsigned int setlimittosize (Table *t) { 284 t->alimit = luaH_realasize(t); 285 setrealasize(t); 286 return t->alimit; 287 } 288 289 290 #define limitasasize(t) check_exp(isrealasize(t), t->alimit) 291 292 293 294 /* 295 ** "Generic" get version. (Not that generic: not valid for integers, 296 ** which may be in array part, nor for floats with integral values.) 297 ** See explanation about 'deadok' in function 'equalkey'. 298 */ 299 static const TValue *getgeneric (Table *t, const TValue *key, int deadok) { 300 Node *n = mainpositionTV(t, key); 301 for (;;) { /* check whether 'key' is somewhere in the chain */ 302 if (equalkey(key, n, deadok)) 303 return gval(n); /* that's it */ 304 else { 305 int nx = gnext(n); 306 if (nx == 0) 307 return &absentkey; /* not found */ 308 n += nx; 309 } 310 } 311 } 312 313 314 /* 315 ** returns the index for 'k' if 'k' is an appropriate key to live in 316 ** the array part of a table, 0 otherwise. 317 */ 318 static unsigned int arrayindex (lua_Integer k) { 319 if (l_castS2U(k) - 1u < MAXASIZE) /* 'k' in [1, MAXASIZE]? */ 320 return cast_uint(k); /* 'key' is an appropriate array index */ 321 else 322 return 0; 323 } 324 325 326 /* 327 ** returns the index of a 'key' for table traversals. First goes all 328 ** elements in the array part, then elements in the hash part. The 329 ** beginning of a traversal is signaled by 0. 330 */ 331 static unsigned int findindex (lua_State *L, Table *t, TValue *key, 332 unsigned int asize) { 333 unsigned int i; 334 if (ttisnil(key)) return 0; /* first iteration */ 335 i = ttisinteger(key) ? arrayindex(ivalue(key)) : 0; 336 if (i - 1u < asize) /* is 'key' inside array part? */ 337 return i; /* yes; that's the index */ 338 else { 339 const TValue *n = getgeneric(t, key, 1); 340 if (l_unlikely(isabstkey(n))) 341 luaG_runerror(L, "invalid key to 'next'"); /* key not found */ 342 i = cast_int(nodefromval(n) - gnode(t, 0)); /* key index in hash table */ 343 /* hash elements are numbered after array ones */ 344 return (i + 1) + asize; 345 } 346 } 347 348 349 int luaH_next (lua_State *L, Table *t, StkId key) { 350 unsigned int asize = luaH_realasize(t); 351 unsigned int i = findindex(L, t, s2v(key), asize); /* find original key */ 352 for (; i < asize; i++) { /* try first array part */ 353 if (!isempty(&t->array[i])) { /* a non-empty entry? */ 354 setivalue(s2v(key), i + 1); 355 setobj2s(L, key + 1, &t->array[i]); 356 return 1; 357 } 358 } 359 for (i -= asize; cast_int(i) < sizenode(t); i++) { /* hash part */ 360 if (!isempty(gval(gnode(t, i)))) { /* a non-empty entry? */ 361 Node *n = gnode(t, i); 362 getnodekey(L, s2v(key), n); 363 setobj2s(L, key + 1, gval(n)); 364 return 1; 365 } 366 } 367 return 0; /* no more elements */ 368 } 369 370 371 static void freehash (lua_State *L, Table *t) { 372 if (!isdummy(t)) 373 luaM_freearray(L, t->node, cast_sizet(sizenode(t))); 374 } 375 376 377 /* 378 ** {============================================================= 379 ** Rehash 380 ** ============================================================== 381 */ 382 383 /* 384 ** Compute the optimal size for the array part of table 't'. 'nums' is a 385 ** "count array" where 'nums[i]' is the number of integers in the table 386 ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of 387 ** integer keys in the table and leaves with the number of keys that 388 ** will go to the array part; return the optimal size. (The condition 389 ** 'twotoi > 0' in the for loop stops the loop if 'twotoi' overflows.) 390 */ 391 static unsigned int computesizes (unsigned int nums[], unsigned int *pna) { 392 int i; 393 unsigned int twotoi; /* 2^i (candidate for optimal size) */ 394 unsigned int a = 0; /* number of elements smaller than 2^i */ 395 unsigned int na = 0; /* number of elements to go to array part */ 396 unsigned int optimal = 0; /* optimal size for array part */ 397 /* loop while keys can fill more than half of total size */ 398 for (i = 0, twotoi = 1; 399 twotoi > 0 && *pna > twotoi / 2; 400 i++, twotoi *= 2) { 401 a += nums[i]; 402 if (a > twotoi/2) { /* more than half elements present? */ 403 optimal = twotoi; /* optimal size (till now) */ 404 na = a; /* all elements up to 'optimal' will go to array part */ 405 } 406 } 407 lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal); 408 *pna = na; 409 return optimal; 410 } 411 412 413 static int countint (lua_Integer key, unsigned int *nums) { 414 unsigned int k = arrayindex(key); 415 if (k != 0) { /* is 'key' an appropriate array index? */ 416 nums[luaO_ceillog2(k)]++; /* count as such */ 417 return 1; 418 } 419 else 420 return 0; 421 } 422 423 424 /* 425 ** Count keys in array part of table 't': Fill 'nums[i]' with 426 ** number of keys that will go into corresponding slice and return 427 ** total number of non-nil keys. 428 */ 429 static unsigned int numusearray (const Table *t, unsigned int *nums) { 430 int lg; 431 unsigned int ttlg; /* 2^lg */ 432 unsigned int ause = 0; /* summation of 'nums' */ 433 unsigned int i = 1; /* count to traverse all array keys */ 434 unsigned int asize = limitasasize(t); /* real array size */ 435 /* traverse each slice */ 436 for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) { 437 unsigned int lc = 0; /* counter */ 438 unsigned int lim = ttlg; 439 if (lim > asize) { 440 lim = asize; /* adjust upper limit */ 441 if (i > lim) 442 break; /* no more elements to count */ 443 } 444 /* count elements in range (2^(lg - 1), 2^lg] */ 445 for (; i <= lim; i++) { 446 if (!isempty(&t->array[i-1])) 447 lc++; 448 } 449 nums[lg] += lc; 450 ause += lc; 451 } 452 return ause; 453 } 454 455 456 static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) { 457 int totaluse = 0; /* total number of elements */ 458 int ause = 0; /* elements added to 'nums' (can go to array part) */ 459 int i = sizenode(t); 460 while (i--) { 461 Node *n = &t->node[i]; 462 if (!isempty(gval(n))) { 463 if (keyisinteger(n)) 464 ause += countint(keyival(n), nums); 465 totaluse++; 466 } 467 } 468 *pna += ause; 469 return totaluse; 470 } 471 472 473 /* 474 ** Creates an array for the hash part of a table with the given 475 ** size, or reuses the dummy node if size is zero. 476 ** The computation for size overflow is in two steps: the first 477 ** comparison ensures that the shift in the second one does not 478 ** overflow. 479 */ 480 static void setnodevector (lua_State *L, Table *t, unsigned int size) { 481 if (size == 0) { /* no elements to hash part? */ 482 t->node = cast(Node *, dummynode); /* use common 'dummynode' */ 483 t->lsizenode = 0; 484 t->lastfree = NULL; /* signal that it is using dummy node */ 485 } 486 else { 487 int i; 488 int lsize = luaO_ceillog2(size); 489 if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE) 490 luaG_runerror(L, "table overflow"); 491 size = twoto(lsize); 492 t->node = luaM_newvector(L, size, Node); 493 for (i = 0; i < cast_int(size); i++) { 494 Node *n = gnode(t, i); 495 gnext(n) = 0; 496 setnilkey(n); 497 setempty(gval(n)); 498 } 499 t->lsizenode = cast_byte(lsize); 500 t->lastfree = gnode(t, size); /* all positions are free */ 501 } 502 } 503 504 505 /* 506 ** (Re)insert all elements from the hash part of 'ot' into table 't'. 507 */ 508 static void reinsert (lua_State *L, Table *ot, Table *t) { 509 int j; 510 int size = sizenode(ot); 511 for (j = 0; j < size; j++) { 512 Node *old = gnode(ot, j); 513 if (!isempty(gval(old))) { 514 /* doesn't need barrier/invalidate cache, as entry was 515 already present in the table */ 516 TValue k; 517 getnodekey(L, &k, old); 518 luaH_set(L, t, &k, gval(old)); 519 } 520 } 521 } 522 523 524 /* 525 ** Exchange the hash part of 't1' and 't2'. 526 */ 527 static void exchangehashpart (Table *t1, Table *t2) { 528 lu_byte lsizenode = t1->lsizenode; 529 Node *node = t1->node; 530 Node *lastfree = t1->lastfree; 531 t1->lsizenode = t2->lsizenode; 532 t1->node = t2->node; 533 t1->lastfree = t2->lastfree; 534 t2->lsizenode = lsizenode; 535 t2->node = node; 536 t2->lastfree = lastfree; 537 } 538 539 540 /* 541 ** Resize table 't' for the new given sizes. Both allocations (for 542 ** the hash part and for the array part) can fail, which creates some 543 ** subtleties. If the first allocation, for the hash part, fails, an 544 ** error is raised and that is it. Otherwise, it copies the elements from 545 ** the shrinking part of the array (if it is shrinking) into the new 546 ** hash. Then it reallocates the array part. If that fails, the table 547 ** is in its original state; the function frees the new hash part and then 548 ** raises the allocation error. Otherwise, it sets the new hash part 549 ** into the table, initializes the new part of the array (if any) with 550 ** nils and reinserts the elements of the old hash back into the new 551 ** parts of the table. 552 */ 553 void luaH_resize (lua_State *L, Table *t, unsigned int newasize, 554 unsigned int nhsize) { 555 unsigned int i; 556 Table newt; /* to keep the new hash part */ 557 unsigned int oldasize = setlimittosize(t); 558 TValue *newarray; 559 /* create new hash part with appropriate size into 'newt' */ 560 setnodevector(L, &newt, nhsize); 561 if (newasize < oldasize) { /* will array shrink? */ 562 t->alimit = newasize; /* pretend array has new size... */ 563 exchangehashpart(t, &newt); /* and new hash */ 564 /* re-insert into the new hash the elements from vanishing slice */ 565 for (i = newasize; i < oldasize; i++) { 566 if (!isempty(&t->array[i])) 567 luaH_setint(L, t, i + 1, &t->array[i]); 568 } 569 t->alimit = oldasize; /* restore current size... */ 570 exchangehashpart(t, &newt); /* and hash (in case of errors) */ 571 } 572 /* allocate new array */ 573 newarray = luaM_reallocvector(L, t->array, oldasize, newasize, TValue); 574 if (l_unlikely(newarray == NULL && newasize > 0)) { /* allocation failed? */ 575 freehash(L, &newt); /* release new hash part */ 576 luaM_error(L); /* raise error (with array unchanged) */ 577 } 578 /* allocation ok; initialize new part of the array */ 579 exchangehashpart(t, &newt); /* 't' has the new hash ('newt' has the old) */ 580 t->array = newarray; /* set new array part */ 581 t->alimit = newasize; 582 for (i = oldasize; i < newasize; i++) /* clear new slice of the array */ 583 setempty(&t->array[i]); 584 /* re-insert elements from old hash part into new parts */ 585 reinsert(L, &newt, t); /* 'newt' now has the old hash */ 586 freehash(L, &newt); /* free old hash part */ 587 } 588 589 590 void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) { 591 int nsize = allocsizenode(t); 592 luaH_resize(L, t, nasize, nsize); 593 } 594 595 /* 596 ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i 597 */ 598 static void rehash (lua_State *L, Table *t, const TValue *ek) { 599 unsigned int asize; /* optimal size for array part */ 600 unsigned int na; /* number of keys in the array part */ 601 unsigned int nums[MAXABITS + 1]; 602 int i; 603 int totaluse; 604 for (i = 0; i <= MAXABITS; i++) nums[i] = 0; /* reset counts */ 605 setlimittosize(t); 606 na = numusearray(t, nums); /* count keys in array part */ 607 totaluse = na; /* all those keys are integer keys */ 608 totaluse += numusehash(t, nums, &na); /* count keys in hash part */ 609 /* count extra key */ 610 if (ttisinteger(ek)) 611 na += countint(ivalue(ek), nums); 612 totaluse++; 613 /* compute new size for array part */ 614 asize = computesizes(nums, &na); 615 /* resize the table to new computed sizes */ 616 luaH_resize(L, t, asize, totaluse - na); 617 } 618 619 620 621 /* 622 ** }============================================================= 623 */ 624 625 626 Table *luaH_new (lua_State *L) { 627 GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table)); 628 Table *t = gco2t(o); 629 t->metatable = NULL; 630 t->flags = cast_byte(maskflags); /* table has no metamethod fields */ 631 t->array = NULL; 632 t->alimit = 0; 633 setnodevector(L, t, 0); 634 return t; 635 } 636 637 638 void luaH_free (lua_State *L, Table *t) { 639 freehash(L, t); 640 luaM_freearray(L, t->array, luaH_realasize(t)); 641 luaM_free(L, t); 642 } 643 644 645 static Node *getfreepos (Table *t) { 646 if (!isdummy(t)) { 647 while (t->lastfree > t->node) { 648 t->lastfree--; 649 if (keyisnil(t->lastfree)) 650 return t->lastfree; 651 } 652 } 653 return NULL; /* could not find a free place */ 654 } 655 656 657 658 /* 659 ** inserts a new key into a hash table; first, check whether key's main 660 ** position is free. If not, check whether colliding node is in its main 661 ** position or not: if it is not, move colliding node to an empty place and 662 ** put new key in its main position; otherwise (colliding node is in its main 663 ** position), new key goes to an empty position. 664 */ 665 static void luaH_newkey (lua_State *L, Table *t, const TValue *key, 666 TValue *value) { 667 Node *mp; 668 TValue aux; 669 if (l_unlikely(ttisnil(key))) 670 luaG_runerror(L, "table index is nil"); 671 else if (ttisfloat(key)) { 672 lua_Number f = fltvalue(key); 673 lua_Integer k; 674 if (luaV_flttointeger(f, &k, F2Ieq)) { /* does key fit in an integer? */ 675 setivalue(&aux, k); 676 key = &aux; /* insert it as an integer */ 677 } 678 else if (l_unlikely(luai_numisnan(f))) 679 luaG_runerror(L, "table index is NaN"); 680 } 681 if (ttisnil(value)) 682 return; /* do not insert nil values */ 683 mp = mainpositionTV(t, key); 684 if (!isempty(gval(mp)) || isdummy(t)) { /* main position is taken? */ 685 Node *othern; 686 Node *f = getfreepos(t); /* get a free place */ 687 if (f == NULL) { /* cannot find a free place? */ 688 rehash(L, t, key); /* grow table */ 689 /* whatever called 'newkey' takes care of TM cache */ 690 luaH_set(L, t, key, value); /* insert key into grown table */ 691 return; 692 } 693 lua_assert(!isdummy(t)); 694 othern = mainpositionfromnode(t, mp); 695 if (othern != mp) { /* is colliding node out of its main position? */ 696 /* yes; move colliding node into free position */ 697 while (othern + gnext(othern) != mp) /* find previous */ 698 othern += gnext(othern); 699 gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */ 700 *f = *mp; /* copy colliding node into free pos. (mp->next also goes) */ 701 if (gnext(mp) != 0) { 702 gnext(f) += cast_int(mp - f); /* correct 'next' */ 703 gnext(mp) = 0; /* now 'mp' is free */ 704 } 705 setempty(gval(mp)); 706 } 707 else { /* colliding node is in its own main position */ 708 /* new node will go into free position */ 709 if (gnext(mp) != 0) 710 gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */ 711 else lua_assert(gnext(f) == 0); 712 gnext(mp) = cast_int(f - mp); 713 mp = f; 714 } 715 } 716 setnodekey(L, mp, key); 717 luaC_barrierback(L, obj2gco(t), key); 718 lua_assert(isempty(gval(mp))); 719 setobj2t(L, gval(mp), value); 720 } 721 722 723 /* 724 ** Search function for integers. If integer is inside 'alimit', get it 725 ** directly from the array part. Otherwise, if 'alimit' is not 726 ** the real size of the array, the key still can be in the array part. 727 ** In this case, do the "Xmilia trick" to check whether 'key-1' is 728 ** smaller than the real size. 729 ** The trick works as follow: let 'p' be an integer such that 730 ** '2^(p+1) >= alimit > 2^p', or '2^(p+1) > alimit-1 >= 2^p'. 731 ** That is, 2^(p+1) is the real size of the array, and 'p' is the highest 732 ** bit on in 'alimit-1'. What we have to check becomes 'key-1 < 2^(p+1)'. 733 ** We compute '(key-1) & ~(alimit-1)', which we call 'res'; it will 734 ** have the 'p' bit cleared. If the key is outside the array, that is, 735 ** 'key-1 >= 2^(p+1)', then 'res' will have some bit on higher than 'p', 736 ** therefore it will be larger or equal to 'alimit', and the check 737 ** will fail. If 'key-1 < 2^(p+1)', then 'res' has no bit on higher than 738 ** 'p', and as the bit 'p' itself was cleared, 'res' will be smaller 739 ** than 2^p, therefore smaller than 'alimit', and the check succeeds. 740 ** As special cases, when 'alimit' is 0 the condition is trivially false, 741 ** and when 'alimit' is 1 the condition simplifies to 'key-1 < alimit'. 742 ** If key is 0 or negative, 'res' will have its higher bit on, so that 743 ** if cannot be smaller than alimit. 744 */ 745 const TValue *luaH_getint (Table *t, lua_Integer key) { 746 lua_Unsigned alimit = t->alimit; 747 if (l_castS2U(key) - 1u < alimit) /* 'key' in [1, t->alimit]? */ 748 return &t->array[key - 1]; 749 else if (!isrealasize(t) && /* key still may be in the array part? */ 750 (((l_castS2U(key) - 1u) & ~(alimit - 1u)) < alimit)) { 751 t->alimit = cast_uint(key); /* probably '#t' is here now */ 752 return &t->array[key - 1]; 753 } 754 else { /* key is not in the array part; check the hash */ 755 Node *n = hashint(t, key); 756 for (;;) { /* check whether 'key' is somewhere in the chain */ 757 if (keyisinteger(n) && keyival(n) == key) 758 return gval(n); /* that's it */ 759 else { 760 int nx = gnext(n); 761 if (nx == 0) break; 762 n += nx; 763 } 764 } 765 return &absentkey; 766 } 767 } 768 769 770 /* 771 ** search function for short strings 772 */ 773 const TValue *luaH_getshortstr (Table *t, TString *key) { 774 Node *n = hashstr(t, key); 775 lua_assert(key->tt == LUA_VSHRSTR); 776 for (;;) { /* check whether 'key' is somewhere in the chain */ 777 if (keyisshrstr(n) && eqshrstr(keystrval(n), key)) 778 return gval(n); /* that's it */ 779 else { 780 int nx = gnext(n); 781 if (nx == 0) 782 return &absentkey; /* not found */ 783 n += nx; 784 } 785 } 786 } 787 788 789 const TValue *luaH_getstr (Table *t, TString *key) { 790 if (key->tt == LUA_VSHRSTR) 791 return luaH_getshortstr(t, key); 792 else { /* for long strings, use generic case */ 793 TValue ko; 794 setsvalue(cast(lua_State *, NULL), &ko, key); 795 return getgeneric(t, &ko, 0); 796 } 797 } 798 799 800 /* 801 ** main search function 802 */ 803 const TValue *luaH_get (Table *t, const TValue *key) { 804 switch (ttypetag(key)) { 805 case LUA_VSHRSTR: return luaH_getshortstr(t, tsvalue(key)); 806 case LUA_VNUMINT: return luaH_getint(t, ivalue(key)); 807 case LUA_VNIL: return &absentkey; 808 case LUA_VNUMFLT: { 809 lua_Integer k; 810 if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */ 811 return luaH_getint(t, k); /* use specialized version */ 812 /* else... */ 813 } /* FALLTHROUGH */ 814 default: 815 return getgeneric(t, key, 0); 816 } 817 } 818 819 820 /* 821 ** Finish a raw "set table" operation, where 'slot' is where the value 822 ** should have been (the result of a previous "get table"). 823 ** Beware: when using this function you probably need to check a GC 824 ** barrier and invalidate the TM cache. 825 */ 826 void luaH_finishset (lua_State *L, Table *t, const TValue *key, 827 const TValue *slot, TValue *value) { 828 if (isabstkey(slot)) 829 luaH_newkey(L, t, key, value); 830 else 831 setobj2t(L, cast(TValue *, slot), value); 832 } 833 834 835 /* 836 ** beware: when using this function you probably need to check a GC 837 ** barrier and invalidate the TM cache. 838 */ 839 void luaH_set (lua_State *L, Table *t, const TValue *key, TValue *value) { 840 const TValue *slot = luaH_get(t, key); 841 luaH_finishset(L, t, key, slot, value); 842 } 843 844 845 void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) { 846 const TValue *p = luaH_getint(t, key); 847 if (isabstkey(p)) { 848 TValue k; 849 setivalue(&k, key); 850 luaH_newkey(L, t, &k, value); 851 } 852 else 853 setobj2t(L, cast(TValue *, p), value); 854 } 855 856 857 /* 858 ** Try to find a boundary in the hash part of table 't'. From the 859 ** caller, we know that 'j' is zero or present and that 'j + 1' is 860 ** present. We want to find a larger key that is absent from the 861 ** table, so that we can do a binary search between the two keys to 862 ** find a boundary. We keep doubling 'j' until we get an absent index. 863 ** If the doubling would overflow, we try LUA_MAXINTEGER. If it is 864 ** absent, we are ready for the binary search. ('j', being max integer, 865 ** is larger or equal to 'i', but it cannot be equal because it is 866 ** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a 867 ** boundary. ('j + 1' cannot be a present integer key because it is 868 ** not a valid integer in Lua.) 869 */ 870 static lua_Unsigned hash_search (Table *t, lua_Unsigned j) { 871 lua_Unsigned i; 872 if (j == 0) j++; /* the caller ensures 'j + 1' is present */ 873 do { 874 i = j; /* 'i' is a present index */ 875 if (j <= l_castS2U(LUA_MAXINTEGER) / 2) 876 j *= 2; 877 else { 878 j = LUA_MAXINTEGER; 879 if (isempty(luaH_getint(t, j))) /* t[j] not present? */ 880 break; /* 'j' now is an absent index */ 881 else /* weird case */ 882 return j; /* well, max integer is a boundary... */ 883 } 884 } while (!isempty(luaH_getint(t, j))); /* repeat until an absent t[j] */ 885 /* i < j && t[i] present && t[j] absent */ 886 while (j - i > 1u) { /* do a binary search between them */ 887 lua_Unsigned m = (i + j) / 2; 888 if (isempty(luaH_getint(t, m))) j = m; 889 else i = m; 890 } 891 return i; 892 } 893 894 895 static unsigned int binsearch (const TValue *array, unsigned int i, 896 unsigned int j) { 897 while (j - i > 1u) { /* binary search */ 898 unsigned int m = (i + j) / 2; 899 if (isempty(&array[m - 1])) j = m; 900 else i = m; 901 } 902 return i; 903 } 904 905 906 /* 907 ** Try to find a boundary in table 't'. (A 'boundary' is an integer index 908 ** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent 909 ** and 'maxinteger' if t[maxinteger] is present.) 910 ** (In the next explanation, we use Lua indices, that is, with base 1. 911 ** The code itself uses base 0 when indexing the array part of the table.) 912 ** The code starts with 'limit = t->alimit', a position in the array 913 ** part that may be a boundary. 914 ** 915 ** (1) If 't[limit]' is empty, there must be a boundary before it. 916 ** As a common case (e.g., after 't[#t]=nil'), check whether 'limit-1' 917 ** is present. If so, it is a boundary. Otherwise, do a binary search 918 ** between 0 and limit to find a boundary. In both cases, try to 919 ** use this boundary as the new 'alimit', as a hint for the next call. 920 ** 921 ** (2) If 't[limit]' is not empty and the array has more elements 922 ** after 'limit', try to find a boundary there. Again, try first 923 ** the special case (which should be quite frequent) where 'limit+1' 924 ** is empty, so that 'limit' is a boundary. Otherwise, check the 925 ** last element of the array part. If it is empty, there must be a 926 ** boundary between the old limit (present) and the last element 927 ** (absent), which is found with a binary search. (This boundary always 928 ** can be a new limit.) 929 ** 930 ** (3) The last case is when there are no elements in the array part 931 ** (limit == 0) or its last element (the new limit) is present. 932 ** In this case, must check the hash part. If there is no hash part 933 ** or 'limit+1' is absent, 'limit' is a boundary. Otherwise, call 934 ** 'hash_search' to find a boundary in the hash part of the table. 935 ** (In those cases, the boundary is not inside the array part, and 936 ** therefore cannot be used as a new limit.) 937 */ 938 lua_Unsigned luaH_getn (Table *t) { 939 unsigned int limit = t->alimit; 940 if (limit > 0 && isempty(&t->array[limit - 1])) { /* (1)? */ 941 /* there must be a boundary before 'limit' */ 942 if (limit >= 2 && !isempty(&t->array[limit - 2])) { 943 /* 'limit - 1' is a boundary; can it be a new limit? */ 944 if (ispow2realasize(t) && !ispow2(limit - 1)) { 945 t->alimit = limit - 1; 946 setnorealasize(t); /* now 'alimit' is not the real size */ 947 } 948 return limit - 1; 949 } 950 else { /* must search for a boundary in [0, limit] */ 951 unsigned int boundary = binsearch(t->array, 0, limit); 952 /* can this boundary represent the real size of the array? */ 953 if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) { 954 t->alimit = boundary; /* use it as the new limit */ 955 setnorealasize(t); 956 } 957 return boundary; 958 } 959 } 960 /* 'limit' is zero or present in table */ 961 if (!limitequalsasize(t)) { /* (2)? */ 962 /* 'limit' > 0 and array has more elements after 'limit' */ 963 if (isempty(&t->array[limit])) /* 'limit + 1' is empty? */ 964 return limit; /* this is the boundary */ 965 /* else, try last element in the array */ 966 limit = luaH_realasize(t); 967 if (isempty(&t->array[limit - 1])) { /* empty? */ 968 /* there must be a boundary in the array after old limit, 969 and it must be a valid new limit */ 970 unsigned int boundary = binsearch(t->array, t->alimit, limit); 971 t->alimit = boundary; 972 return boundary; 973 } 974 /* else, new limit is present in the table; check the hash part */ 975 } 976 /* (3) 'limit' is the last element and either is zero or present in table */ 977 lua_assert(limit == luaH_realasize(t) && 978 (limit == 0 || !isempty(&t->array[limit - 1]))); 979 if (isdummy(t) || isempty(luaH_getint(t, cast(lua_Integer, limit + 1)))) 980 return limit; /* 'limit + 1' is absent */ 981 else /* 'limit + 1' is also present */ 982 return hash_search(t, limit); 983 } 984 985 986 987 #if defined(LUA_DEBUG) 988 989 /* export these functions for the test library */ 990 991 Node *luaH_mainposition (const Table *t, const TValue *key) { 992 return mainpositionTV(t, key); 993 } 994 995 #endif 996