1 /* 2 ** $Id: ltable.c $ 3 ** Lua tables (hash) 4 ** See Copyright Notice in lua.h 5 */ 6 7 #define ltable_c 8 #define LUA_CORE 9 10 #include "lprefix.h" 11 12 13 /* 14 ** Implementation of tables (aka arrays, objects, or hash tables). 15 ** Tables keep its elements in two parts: an array part and a hash part. 16 ** Non-negative integer keys are all candidates to be kept in the array 17 ** part. The actual size of the array is the largest 'n' such that 18 ** more than half the slots between 1 and n are in use. 19 ** Hash uses a mix of chained scatter table with Brent's variation. 20 ** A main invariant of these tables is that, if an element is not 21 ** in its main position (i.e. the 'original' position that its hash gives 22 ** to it), then the colliding element is in its own main position. 23 ** Hence even when the load factor reaches 100%, performance remains good. 24 */ 25 26 #include <math.h> 27 #include <limits.h> 28 29 #include "lua.h" 30 31 #include "ldebug.h" 32 #include "ldo.h" 33 #include "lgc.h" 34 #include "lmem.h" 35 #include "lobject.h" 36 #include "lstate.h" 37 #include "lstring.h" 38 #include "ltable.h" 39 #include "lvm.h" 40 41 42 /* 43 ** MAXABITS is the largest integer such that MAXASIZE fits in an 44 ** unsigned int. 45 */ 46 #define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1) 47 48 49 /* 50 ** MAXASIZE is the maximum size of the array part. It is the minimum 51 ** between 2^MAXABITS and the maximum size that, measured in bytes, 52 ** fits in a 'size_t'. 53 */ 54 #define MAXASIZE luaM_limitN(1u << MAXABITS, TValue) 55 56 /* 57 ** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a 58 ** signed int. 59 */ 60 #define MAXHBITS (MAXABITS - 1) 61 62 63 /* 64 ** MAXHSIZE is the maximum size of the hash part. It is the minimum 65 ** between 2^MAXHBITS and the maximum size such that, measured in bytes, 66 ** it fits in a 'size_t'. 67 */ 68 #define MAXHSIZE luaM_limitN(1u << MAXHBITS, Node) 69 70 71 #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t)))) 72 73 #define hashstr(t,str) hashpow2(t, (str)->hash) 74 #define hashboolean(t,p) hashpow2(t, p) 75 #define hashint(t,i) hashpow2(t, i) 76 77 78 /* 79 ** for some types, it is better to avoid modulus by power of 2, as 80 ** they tend to have many 2 factors. 81 */ 82 #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1)))) 83 84 85 #define hashpointer(t,p) hashmod(t, point2uint(p)) 86 87 88 #define dummynode (&dummynode_) 89 90 static const Node dummynode_ = { 91 {{NULL}, LUA_VEMPTY, /* value's value and type */ 92 LUA_VNIL, 0, {NULL}} /* key type, next, and key value */ 93 }; 94 95 96 static const TValue absentkey = {ABSTKEYCONSTANT}; 97 98 99 100 /* 101 ** Hash for floating-point numbers. 102 ** The main computation should be just 103 ** n = frexp(n, &i); return (n * INT_MAX) + i 104 ** but there are some numerical subtleties. 105 ** In a two-complement representation, INT_MAX does not has an exact 106 ** representation as a float, but INT_MIN does; because the absolute 107 ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the 108 ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal 109 ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when 110 ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with 111 ** INT_MIN. 112 */ 113 #if !defined(l_hashfloat) 114 static int l_hashfloat (lua_Number n) { 115 int i; 116 lua_Integer ni; 117 n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN); 118 if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */ 119 lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL)); 120 return 0; 121 } 122 else { /* normal case */ 123 unsigned int u = cast_uint(i) + cast_uint(ni); 124 return cast_int(u <= cast_uint(INT_MAX) ? u : ~u); 125 } 126 } 127 #endif 128 129 130 /* 131 ** returns the 'main' position of an element in a table (that is, 132 ** the index of its hash value). The key comes broken (tag in 'ktt' 133 ** and value in 'vkl') so that we can call it on keys inserted into 134 ** nodes. 135 */ 136 static Node *mainposition (const Table *t, int ktt, const Value *kvl) { 137 switch (withvariant(ktt)) { 138 case LUA_VNUMINT: 139 return hashint(t, ivalueraw(*kvl)); 140 case LUA_VNUMFLT: 141 return hashmod(t, l_hashfloat(fltvalueraw(*kvl))); 142 case LUA_VSHRSTR: 143 return hashstr(t, tsvalueraw(*kvl)); 144 case LUA_VLNGSTR: 145 return hashpow2(t, luaS_hashlongstr(tsvalueraw(*kvl))); 146 case LUA_VFALSE: 147 return hashboolean(t, 0); 148 case LUA_VTRUE: 149 return hashboolean(t, 1); 150 case LUA_VLIGHTUSERDATA: 151 return hashpointer(t, pvalueraw(*kvl)); 152 case LUA_VLCF: 153 return hashpointer(t, fvalueraw(*kvl)); 154 default: 155 return hashpointer(t, gcvalueraw(*kvl)); 156 } 157 } 158 159 160 /* 161 ** Returns the main position of an element given as a 'TValue' 162 */ 163 static Node *mainpositionTV (const Table *t, const TValue *key) { 164 return mainposition(t, rawtt(key), valraw(key)); 165 } 166 167 168 /* 169 ** Check whether key 'k1' is equal to the key in node 'n2'. This 170 ** equality is raw, so there are no metamethods. Floats with integer 171 ** values have been normalized, so integers cannot be equal to 172 ** floats. It is assumed that 'eqshrstr' is simply pointer equality, so 173 ** that short strings are handled in the default case. 174 ** A true 'deadok' means to accept dead keys as equal to their original 175 ** values. All dead keys are compared in the default case, by pointer 176 ** identity. (Only collectable objects can produce dead keys.) Note that 177 ** dead long strings are also compared by identity. 178 ** Once a key is dead, its corresponding value may be collected, and 179 ** then another value can be created with the same address. If this 180 ** other value is given to 'next', 'equalkey' will signal a false 181 ** positive. In a regular traversal, this situation should never happen, 182 ** as all keys given to 'next' came from the table itself, and therefore 183 ** could not have been collected. Outside a regular traversal, we 184 ** have garbage in, garbage out. What is relevant is that this false 185 ** positive does not break anything. (In particular, 'next' will return 186 ** some other valid item on the table or nil.) 187 */ 188 static int equalkey (const TValue *k1, const Node *n2, int deadok) { 189 if ((rawtt(k1) != keytt(n2)) && /* not the same variants? */ 190 !(deadok && keyisdead(n2) && iscollectable(k1))) 191 return 0; /* cannot be same key */ 192 switch (keytt(n2)) { 193 case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE: 194 return 1; 195 case LUA_VNUMINT: 196 return (ivalue(k1) == keyival(n2)); 197 case LUA_VNUMFLT: 198 return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2))); 199 case LUA_VLIGHTUSERDATA: 200 return pvalue(k1) == pvalueraw(keyval(n2)); 201 case LUA_VLCF: 202 return fvalue(k1) == fvalueraw(keyval(n2)); 203 case ctb(LUA_VLNGSTR): 204 return luaS_eqlngstr(tsvalue(k1), keystrval(n2)); 205 default: 206 return gcvalue(k1) == gcvalueraw(keyval(n2)); 207 } 208 } 209 210 211 /* 212 ** True if value of 'alimit' is equal to the real size of the array 213 ** part of table 't'. (Otherwise, the array part must be larger than 214 ** 'alimit'.) 215 */ 216 #define limitequalsasize(t) (isrealasize(t) || ispow2((t)->alimit)) 217 218 219 /* 220 ** Returns the real size of the 'array' array 221 */ 222 LUAI_FUNC unsigned int luaH_realasize (const Table *t) { 223 if (limitequalsasize(t)) 224 return t->alimit; /* this is the size */ 225 else { 226 unsigned int size = t->alimit; 227 /* compute the smallest power of 2 not smaller than 'n' */ 228 size |= (size >> 1); 229 size |= (size >> 2); 230 size |= (size >> 4); 231 size |= (size >> 8); 232 size |= (size >> 16); 233 #if (UINT_MAX >> 30) > 3 234 size |= (size >> 32); /* unsigned int has more than 32 bits */ 235 #endif 236 size++; 237 lua_assert(ispow2(size) && size/2 < t->alimit && t->alimit < size); 238 return size; 239 } 240 } 241 242 243 /* 244 ** Check whether real size of the array is a power of 2. 245 ** (If it is not, 'alimit' cannot be changed to any other value 246 ** without changing the real size.) 247 */ 248 static int ispow2realasize (const Table *t) { 249 return (!isrealasize(t) || ispow2(t->alimit)); 250 } 251 252 253 static unsigned int setlimittosize (Table *t) { 254 t->alimit = luaH_realasize(t); 255 setrealasize(t); 256 return t->alimit; 257 } 258 259 260 #define limitasasize(t) check_exp(isrealasize(t), t->alimit) 261 262 263 264 /* 265 ** "Generic" get version. (Not that generic: not valid for integers, 266 ** which may be in array part, nor for floats with integral values.) 267 ** See explanation about 'deadok' in function 'equalkey'. 268 */ 269 static const TValue *getgeneric (Table *t, const TValue *key, int deadok) { 270 Node *n = mainpositionTV(t, key); 271 for (;;) { /* check whether 'key' is somewhere in the chain */ 272 if (equalkey(key, n, deadok)) 273 return gval(n); /* that's it */ 274 else { 275 int nx = gnext(n); 276 if (nx == 0) 277 return &absentkey; /* not found */ 278 n += nx; 279 } 280 } 281 } 282 283 284 /* 285 ** returns the index for 'k' if 'k' is an appropriate key to live in 286 ** the array part of a table, 0 otherwise. 287 */ 288 static unsigned int arrayindex (lua_Integer k) { 289 if (l_castS2U(k) - 1u < MAXASIZE) /* 'k' in [1, MAXASIZE]? */ 290 return cast_uint(k); /* 'key' is an appropriate array index */ 291 else 292 return 0; 293 } 294 295 296 /* 297 ** returns the index of a 'key' for table traversals. First goes all 298 ** elements in the array part, then elements in the hash part. The 299 ** beginning of a traversal is signaled by 0. 300 */ 301 static unsigned int findindex (lua_State *L, Table *t, TValue *key, 302 unsigned int asize) { 303 unsigned int i; 304 if (ttisnil(key)) return 0; /* first iteration */ 305 i = ttisinteger(key) ? arrayindex(ivalue(key)) : 0; 306 if (i - 1u < asize) /* is 'key' inside array part? */ 307 return i; /* yes; that's the index */ 308 else { 309 const TValue *n = getgeneric(t, key, 1); 310 if (unlikely(isabstkey(n))) 311 luaG_runerror(L, "invalid key to 'next'"); /* key not found */ 312 i = cast_int(nodefromval(n) - gnode(t, 0)); /* key index in hash table */ 313 /* hash elements are numbered after array ones */ 314 return (i + 1) + asize; 315 } 316 } 317 318 319 int luaH_next (lua_State *L, Table *t, StkId key) { 320 unsigned int asize = luaH_realasize(t); 321 unsigned int i = findindex(L, t, s2v(key), asize); /* find original key */ 322 for (; i < asize; i++) { /* try first array part */ 323 if (!isempty(&t->array[i])) { /* a non-empty entry? */ 324 setivalue(s2v(key), i + 1); 325 setobj2s(L, key + 1, &t->array[i]); 326 return 1; 327 } 328 } 329 for (i -= asize; cast_int(i) < sizenode(t); i++) { /* hash part */ 330 if (!isempty(gval(gnode(t, i)))) { /* a non-empty entry? */ 331 Node *n = gnode(t, i); 332 getnodekey(L, s2v(key), n); 333 setobj2s(L, key + 1, gval(n)); 334 return 1; 335 } 336 } 337 return 0; /* no more elements */ 338 } 339 340 341 static void freehash (lua_State *L, Table *t) { 342 if (!isdummy(t)) 343 luaM_freearray(L, t->node, cast_sizet(sizenode(t))); 344 } 345 346 347 /* 348 ** {============================================================= 349 ** Rehash 350 ** ============================================================== 351 */ 352 353 /* 354 ** Compute the optimal size for the array part of table 't'. 'nums' is a 355 ** "count array" where 'nums[i]' is the number of integers in the table 356 ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of 357 ** integer keys in the table and leaves with the number of keys that 358 ** will go to the array part; return the optimal size. (The condition 359 ** 'twotoi > 0' in the for loop stops the loop if 'twotoi' overflows.) 360 */ 361 static unsigned int computesizes (unsigned int nums[], unsigned int *pna) { 362 int i; 363 unsigned int twotoi; /* 2^i (candidate for optimal size) */ 364 unsigned int a = 0; /* number of elements smaller than 2^i */ 365 unsigned int na = 0; /* number of elements to go to array part */ 366 unsigned int optimal = 0; /* optimal size for array part */ 367 /* loop while keys can fill more than half of total size */ 368 for (i = 0, twotoi = 1; 369 twotoi > 0 && *pna > twotoi / 2; 370 i++, twotoi *= 2) { 371 a += nums[i]; 372 if (a > twotoi/2) { /* more than half elements present? */ 373 optimal = twotoi; /* optimal size (till now) */ 374 na = a; /* all elements up to 'optimal' will go to array part */ 375 } 376 } 377 lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal); 378 *pna = na; 379 return optimal; 380 } 381 382 383 static int countint (lua_Integer key, unsigned int *nums) { 384 unsigned int k = arrayindex(key); 385 if (k != 0) { /* is 'key' an appropriate array index? */ 386 nums[luaO_ceillog2(k)]++; /* count as such */ 387 return 1; 388 } 389 else 390 return 0; 391 } 392 393 394 /* 395 ** Count keys in array part of table 't': Fill 'nums[i]' with 396 ** number of keys that will go into corresponding slice and return 397 ** total number of non-nil keys. 398 */ 399 static unsigned int numusearray (const Table *t, unsigned int *nums) { 400 int lg; 401 unsigned int ttlg; /* 2^lg */ 402 unsigned int ause = 0; /* summation of 'nums' */ 403 unsigned int i = 1; /* count to traverse all array keys */ 404 unsigned int asize = limitasasize(t); /* real array size */ 405 /* traverse each slice */ 406 for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) { 407 unsigned int lc = 0; /* counter */ 408 unsigned int lim = ttlg; 409 if (lim > asize) { 410 lim = asize; /* adjust upper limit */ 411 if (i > lim) 412 break; /* no more elements to count */ 413 } 414 /* count elements in range (2^(lg - 1), 2^lg] */ 415 for (; i <= lim; i++) { 416 if (!isempty(&t->array[i-1])) 417 lc++; 418 } 419 nums[lg] += lc; 420 ause += lc; 421 } 422 return ause; 423 } 424 425 426 static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) { 427 int totaluse = 0; /* total number of elements */ 428 int ause = 0; /* elements added to 'nums' (can go to array part) */ 429 int i = sizenode(t); 430 while (i--) { 431 Node *n = &t->node[i]; 432 if (!isempty(gval(n))) { 433 if (keyisinteger(n)) 434 ause += countint(keyival(n), nums); 435 totaluse++; 436 } 437 } 438 *pna += ause; 439 return totaluse; 440 } 441 442 443 /* 444 ** Creates an array for the hash part of a table with the given 445 ** size, or reuses the dummy node if size is zero. 446 ** The computation for size overflow is in two steps: the first 447 ** comparison ensures that the shift in the second one does not 448 ** overflow. 449 */ 450 static void setnodevector (lua_State *L, Table *t, unsigned int size) { 451 if (size == 0) { /* no elements to hash part? */ 452 t->node = cast(Node *, dummynode); /* use common 'dummynode' */ 453 t->lsizenode = 0; 454 t->lastfree = NULL; /* signal that it is using dummy node */ 455 } 456 else { 457 int i; 458 int lsize = luaO_ceillog2(size); 459 if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE) 460 luaG_runerror(L, "table overflow"); 461 size = twoto(lsize); 462 t->node = luaM_newvector(L, size, Node); 463 for (i = 0; i < (int)size; i++) { 464 Node *n = gnode(t, i); 465 gnext(n) = 0; 466 setnilkey(n); 467 setempty(gval(n)); 468 } 469 t->lsizenode = cast_byte(lsize); 470 t->lastfree = gnode(t, size); /* all positions are free */ 471 } 472 } 473 474 475 /* 476 ** (Re)insert all elements from the hash part of 'ot' into table 't'. 477 */ 478 static void reinsert (lua_State *L, Table *ot, Table *t) { 479 int j; 480 int size = sizenode(ot); 481 for (j = 0; j < size; j++) { 482 Node *old = gnode(ot, j); 483 if (!isempty(gval(old))) { 484 /* doesn't need barrier/invalidate cache, as entry was 485 already present in the table */ 486 TValue k; 487 getnodekey(L, &k, old); 488 setobjt2t(L, luaH_set(L, t, &k), gval(old)); 489 } 490 } 491 } 492 493 494 /* 495 ** Exchange the hash part of 't1' and 't2'. 496 */ 497 static void exchangehashpart (Table *t1, Table *t2) { 498 lu_byte lsizenode = t1->lsizenode; 499 Node *node = t1->node; 500 Node *lastfree = t1->lastfree; 501 t1->lsizenode = t2->lsizenode; 502 t1->node = t2->node; 503 t1->lastfree = t2->lastfree; 504 t2->lsizenode = lsizenode; 505 t2->node = node; 506 t2->lastfree = lastfree; 507 } 508 509 510 /* 511 ** Resize table 't' for the new given sizes. Both allocations (for 512 ** the hash part and for the array part) can fail, which creates some 513 ** subtleties. If the first allocation, for the hash part, fails, an 514 ** error is raised and that is it. Otherwise, it copies the elements from 515 ** the shrinking part of the array (if it is shrinking) into the new 516 ** hash. Then it reallocates the array part. If that fails, the table 517 ** is in its original state; the function frees the new hash part and then 518 ** raises the allocation error. Otherwise, it sets the new hash part 519 ** into the table, initializes the new part of the array (if any) with 520 ** nils and reinserts the elements of the old hash back into the new 521 ** parts of the table. 522 */ 523 void luaH_resize (lua_State *L, Table *t, unsigned int newasize, 524 unsigned int nhsize) { 525 unsigned int i; 526 Table newt; /* to keep the new hash part */ 527 unsigned int oldasize = setlimittosize(t); 528 TValue *newarray; 529 /* create new hash part with appropriate size into 'newt' */ 530 setnodevector(L, &newt, nhsize); 531 if (newasize < oldasize) { /* will array shrink? */ 532 t->alimit = newasize; /* pretend array has new size... */ 533 exchangehashpart(t, &newt); /* and new hash */ 534 /* re-insert into the new hash the elements from vanishing slice */ 535 for (i = newasize; i < oldasize; i++) { 536 if (!isempty(&t->array[i])) 537 luaH_setint(L, t, i + 1, &t->array[i]); 538 } 539 t->alimit = oldasize; /* restore current size... */ 540 exchangehashpart(t, &newt); /* and hash (in case of errors) */ 541 } 542 /* allocate new array */ 543 newarray = luaM_reallocvector(L, t->array, oldasize, newasize, TValue); 544 if (unlikely(newarray == NULL && newasize > 0)) { /* allocation failed? */ 545 freehash(L, &newt); /* release new hash part */ 546 luaM_error(L); /* raise error (with array unchanged) */ 547 } 548 /* allocation ok; initialize new part of the array */ 549 exchangehashpart(t, &newt); /* 't' has the new hash ('newt' has the old) */ 550 t->array = newarray; /* set new array part */ 551 t->alimit = newasize; 552 for (i = oldasize; i < newasize; i++) /* clear new slice of the array */ 553 setempty(&t->array[i]); 554 /* re-insert elements from old hash part into new parts */ 555 reinsert(L, &newt, t); /* 'newt' now has the old hash */ 556 freehash(L, &newt); /* free old hash part */ 557 } 558 559 560 void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) { 561 int nsize = allocsizenode(t); 562 luaH_resize(L, t, nasize, nsize); 563 } 564 565 /* 566 ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i 567 */ 568 static void rehash (lua_State *L, Table *t, const TValue *ek) { 569 unsigned int asize; /* optimal size for array part */ 570 unsigned int na; /* number of keys in the array part */ 571 unsigned int nums[MAXABITS + 1]; 572 int i; 573 int totaluse; 574 for (i = 0; i <= MAXABITS; i++) nums[i] = 0; /* reset counts */ 575 setlimittosize(t); 576 na = numusearray(t, nums); /* count keys in array part */ 577 totaluse = na; /* all those keys are integer keys */ 578 totaluse += numusehash(t, nums, &na); /* count keys in hash part */ 579 /* count extra key */ 580 if (ttisinteger(ek)) 581 na += countint(ivalue(ek), nums); 582 totaluse++; 583 /* compute new size for array part */ 584 asize = computesizes(nums, &na); 585 /* resize the table to new computed sizes */ 586 luaH_resize(L, t, asize, totaluse - na); 587 } 588 589 590 591 /* 592 ** }============================================================= 593 */ 594 595 596 Table *luaH_new (lua_State *L) { 597 GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table)); 598 Table *t = gco2t(o); 599 t->metatable = NULL; 600 t->flags = cast_byte(maskflags); /* table has no metamethod fields */ 601 t->array = NULL; 602 t->alimit = 0; 603 setnodevector(L, t, 0); 604 return t; 605 } 606 607 608 void luaH_free (lua_State *L, Table *t) { 609 freehash(L, t); 610 luaM_freearray(L, t->array, luaH_realasize(t)); 611 luaM_free(L, t); 612 } 613 614 615 static Node *getfreepos (Table *t) { 616 if (!isdummy(t)) { 617 while (t->lastfree > t->node) { 618 t->lastfree--; 619 if (keyisnil(t->lastfree)) 620 return t->lastfree; 621 } 622 } 623 return NULL; /* could not find a free place */ 624 } 625 626 627 628 /* 629 ** inserts a new key into a hash table; first, check whether key's main 630 ** position is free. If not, check whether colliding node is in its main 631 ** position or not: if it is not, move colliding node to an empty place and 632 ** put new key in its main position; otherwise (colliding node is in its main 633 ** position), new key goes to an empty position. 634 */ 635 TValue *luaH_newkey (lua_State *L, Table *t, const TValue *key) { 636 Node *mp; 637 TValue aux; 638 if (unlikely(ttisnil(key))) 639 luaG_runerror(L, "table index is nil"); 640 else if (ttisfloat(key)) { 641 lua_Number f = fltvalue(key); 642 lua_Integer k; 643 if (luaV_flttointeger(f, &k, F2Ieq)) { /* does key fit in an integer? */ 644 setivalue(&aux, k); 645 key = &aux; /* insert it as an integer */ 646 } 647 else if (unlikely(luai_numisnan(f))) 648 luaG_runerror(L, "table index is NaN"); 649 } 650 mp = mainpositionTV(t, key); 651 if (!isempty(gval(mp)) || isdummy(t)) { /* main position is taken? */ 652 Node *othern; 653 Node *f = getfreepos(t); /* get a free place */ 654 if (f == NULL) { /* cannot find a free place? */ 655 rehash(L, t, key); /* grow table */ 656 /* whatever called 'newkey' takes care of TM cache */ 657 return luaH_set(L, t, key); /* insert key into grown table */ 658 } 659 lua_assert(!isdummy(t)); 660 othern = mainposition(t, keytt(mp), &keyval(mp)); 661 if (othern != mp) { /* is colliding node out of its main position? */ 662 /* yes; move colliding node into free position */ 663 while (othern + gnext(othern) != mp) /* find previous */ 664 othern += gnext(othern); 665 gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */ 666 *f = *mp; /* copy colliding node into free pos. (mp->next also goes) */ 667 if (gnext(mp) != 0) { 668 gnext(f) += cast_int(mp - f); /* correct 'next' */ 669 gnext(mp) = 0; /* now 'mp' is free */ 670 } 671 setempty(gval(mp)); 672 } 673 else { /* colliding node is in its own main position */ 674 /* new node will go into free position */ 675 if (gnext(mp) != 0) 676 gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */ 677 else lua_assert(gnext(f) == 0); 678 gnext(mp) = cast_int(f - mp); 679 mp = f; 680 } 681 } 682 setnodekey(L, mp, key); 683 luaC_barrierback(L, obj2gco(t), key); 684 lua_assert(isempty(gval(mp))); 685 return gval(mp); 686 } 687 688 689 /* 690 ** Search function for integers. If integer is inside 'alimit', get it 691 ** directly from the array part. Otherwise, if 'alimit' is not equal to 692 ** the real size of the array, key still can be in the array part. In 693 ** this case, try to avoid a call to 'luaH_realasize' when key is just 694 ** one more than the limit (so that it can be incremented without 695 ** changing the real size of the array). 696 */ 697 const TValue *luaH_getint (Table *t, lua_Integer key) { 698 if (l_castS2U(key) - 1u < t->alimit) /* 'key' in [1, t->alimit]? */ 699 return &t->array[key - 1]; 700 else if (!limitequalsasize(t) && /* key still may be in the array part? */ 701 (l_castS2U(key) == t->alimit + 1 || 702 l_castS2U(key) - 1u < luaH_realasize(t))) { 703 t->alimit = cast_uint(key); /* probably '#t' is here now */ 704 return &t->array[key - 1]; 705 } 706 else { 707 Node *n = hashint(t, key); 708 for (;;) { /* check whether 'key' is somewhere in the chain */ 709 if (keyisinteger(n) && keyival(n) == key) 710 return gval(n); /* that's it */ 711 else { 712 int nx = gnext(n); 713 if (nx == 0) break; 714 n += nx; 715 } 716 } 717 return &absentkey; 718 } 719 } 720 721 722 /* 723 ** search function for short strings 724 */ 725 const TValue *luaH_getshortstr (Table *t, TString *key) { 726 Node *n = hashstr(t, key); 727 lua_assert(key->tt == LUA_VSHRSTR); 728 for (;;) { /* check whether 'key' is somewhere in the chain */ 729 if (keyisshrstr(n) && eqshrstr(keystrval(n), key)) 730 return gval(n); /* that's it */ 731 else { 732 int nx = gnext(n); 733 if (nx == 0) 734 return &absentkey; /* not found */ 735 n += nx; 736 } 737 } 738 } 739 740 741 const TValue *luaH_getstr (Table *t, TString *key) { 742 if (key->tt == LUA_VSHRSTR) 743 return luaH_getshortstr(t, key); 744 else { /* for long strings, use generic case */ 745 TValue ko; 746 setsvalue(cast(lua_State *, NULL), &ko, key); 747 return getgeneric(t, &ko, 0); 748 } 749 } 750 751 752 /* 753 ** main search function 754 */ 755 const TValue *luaH_get (Table *t, const TValue *key) { 756 switch (ttypetag(key)) { 757 case LUA_VSHRSTR: return luaH_getshortstr(t, tsvalue(key)); 758 case LUA_VNUMINT: return luaH_getint(t, ivalue(key)); 759 case LUA_VNIL: return &absentkey; 760 case LUA_VNUMFLT: { 761 lua_Integer k; 762 if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */ 763 return luaH_getint(t, k); /* use specialized version */ 764 /* else... */ 765 } /* FALLTHROUGH */ 766 default: 767 return getgeneric(t, key, 0); 768 } 769 } 770 771 772 /* 773 ** beware: when using this function you probably need to check a GC 774 ** barrier and invalidate the TM cache. 775 */ 776 TValue *luaH_set (lua_State *L, Table *t, const TValue *key) { 777 const TValue *p = luaH_get(t, key); 778 if (!isabstkey(p)) 779 return cast(TValue *, p); 780 else return luaH_newkey(L, t, key); 781 } 782 783 784 void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) { 785 const TValue *p = luaH_getint(t, key); 786 TValue *cell; 787 if (!isabstkey(p)) 788 cell = cast(TValue *, p); 789 else { 790 TValue k; 791 setivalue(&k, key); 792 cell = luaH_newkey(L, t, &k); 793 } 794 setobj2t(L, cell, value); 795 } 796 797 798 /* 799 ** Try to find a boundary in the hash part of table 't'. From the 800 ** caller, we know that 'j' is zero or present and that 'j + 1' is 801 ** present. We want to find a larger key that is absent from the 802 ** table, so that we can do a binary search between the two keys to 803 ** find a boundary. We keep doubling 'j' until we get an absent index. 804 ** If the doubling would overflow, we try LUA_MAXINTEGER. If it is 805 ** absent, we are ready for the binary search. ('j', being max integer, 806 ** is larger or equal to 'i', but it cannot be equal because it is 807 ** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a 808 ** boundary. ('j + 1' cannot be a present integer key because it is 809 ** not a valid integer in Lua.) 810 */ 811 static lua_Unsigned hash_search (Table *t, lua_Unsigned j) { 812 lua_Unsigned i; 813 if (j == 0) j++; /* the caller ensures 'j + 1' is present */ 814 do { 815 i = j; /* 'i' is a present index */ 816 if (j <= l_castS2U(LUA_MAXINTEGER) / 2) 817 j *= 2; 818 else { 819 j = LUA_MAXINTEGER; 820 if (isempty(luaH_getint(t, j))) /* t[j] not present? */ 821 break; /* 'j' now is an absent index */ 822 else /* weird case */ 823 return j; /* well, max integer is a boundary... */ 824 } 825 } while (!isempty(luaH_getint(t, j))); /* repeat until an absent t[j] */ 826 /* i < j && t[i] present && t[j] absent */ 827 while (j - i > 1u) { /* do a binary search between them */ 828 lua_Unsigned m = (i + j) / 2; 829 if (isempty(luaH_getint(t, m))) j = m; 830 else i = m; 831 } 832 return i; 833 } 834 835 836 static unsigned int binsearch (const TValue *array, unsigned int i, 837 unsigned int j) { 838 while (j - i > 1u) { /* binary search */ 839 unsigned int m = (i + j) / 2; 840 if (isempty(&array[m - 1])) j = m; 841 else i = m; 842 } 843 return i; 844 } 845 846 847 /* 848 ** Try to find a boundary in table 't'. (A 'boundary' is an integer index 849 ** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent 850 ** and 'maxinteger' if t[maxinteger] is present.) 851 ** (In the next explanation, we use Lua indices, that is, with base 1. 852 ** The code itself uses base 0 when indexing the array part of the table.) 853 ** The code starts with 'limit = t->alimit', a position in the array 854 ** part that may be a boundary. 855 ** 856 ** (1) If 't[limit]' is empty, there must be a boundary before it. 857 ** As a common case (e.g., after 't[#t]=nil'), check whether 'limit-1' 858 ** is present. If so, it is a boundary. Otherwise, do a binary search 859 ** between 0 and limit to find a boundary. In both cases, try to 860 ** use this boundary as the new 'alimit', as a hint for the next call. 861 ** 862 ** (2) If 't[limit]' is not empty and the array has more elements 863 ** after 'limit', try to find a boundary there. Again, try first 864 ** the special case (which should be quite frequent) where 'limit+1' 865 ** is empty, so that 'limit' is a boundary. Otherwise, check the 866 ** last element of the array part. If it is empty, there must be a 867 ** boundary between the old limit (present) and the last element 868 ** (absent), which is found with a binary search. (This boundary always 869 ** can be a new limit.) 870 ** 871 ** (3) The last case is when there are no elements in the array part 872 ** (limit == 0) or its last element (the new limit) is present. 873 ** In this case, must check the hash part. If there is no hash part 874 ** or 'limit+1' is absent, 'limit' is a boundary. Otherwise, call 875 ** 'hash_search' to find a boundary in the hash part of the table. 876 ** (In those cases, the boundary is not inside the array part, and 877 ** therefore cannot be used as a new limit.) 878 */ 879 lua_Unsigned luaH_getn (Table *t) { 880 unsigned int limit = t->alimit; 881 if (limit > 0 && isempty(&t->array[limit - 1])) { /* (1)? */ 882 /* there must be a boundary before 'limit' */ 883 if (limit >= 2 && !isempty(&t->array[limit - 2])) { 884 /* 'limit - 1' is a boundary; can it be a new limit? */ 885 if (ispow2realasize(t) && !ispow2(limit - 1)) { 886 t->alimit = limit - 1; 887 setnorealasize(t); /* now 'alimit' is not the real size */ 888 } 889 return limit - 1; 890 } 891 else { /* must search for a boundary in [0, limit] */ 892 unsigned int boundary = binsearch(t->array, 0, limit); 893 /* can this boundary represent the real size of the array? */ 894 if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) { 895 t->alimit = boundary; /* use it as the new limit */ 896 setnorealasize(t); 897 } 898 return boundary; 899 } 900 } 901 /* 'limit' is zero or present in table */ 902 if (!limitequalsasize(t)) { /* (2)? */ 903 /* 'limit' > 0 and array has more elements after 'limit' */ 904 if (isempty(&t->array[limit])) /* 'limit + 1' is empty? */ 905 return limit; /* this is the boundary */ 906 /* else, try last element in the array */ 907 limit = luaH_realasize(t); 908 if (isempty(&t->array[limit - 1])) { /* empty? */ 909 /* there must be a boundary in the array after old limit, 910 and it must be a valid new limit */ 911 unsigned int boundary = binsearch(t->array, t->alimit, limit); 912 t->alimit = boundary; 913 return boundary; 914 } 915 /* else, new limit is present in the table; check the hash part */ 916 } 917 /* (3) 'limit' is the last element and either is zero or present in table */ 918 lua_assert(limit == luaH_realasize(t) && 919 (limit == 0 || !isempty(&t->array[limit - 1]))); 920 if (isdummy(t) || isempty(luaH_getint(t, cast(lua_Integer, limit + 1)))) 921 return limit; /* 'limit + 1' is absent */ 922 else /* 'limit + 1' is also present */ 923 return hash_search(t, limit); 924 } 925 926 927 928 #if defined(LUA_DEBUG) 929 930 /* export these functions for the test library */ 931 932 Node *luaH_mainposition (const Table *t, const TValue *key) { 933 return mainpositionTV(t, key); 934 } 935 936 int luaH_isdummy (const Table *t) { return isdummy(t); } 937 938 #endif 939