1 /* 2 ** $Id: lopcodes.h $ 3 ** Opcodes for Lua virtual machine 4 ** See Copyright Notice in lua.h 5 */ 6 7 #ifndef lopcodes_h 8 #define lopcodes_h 9 10 #include "llimits.h" 11 12 13 /*=========================================================================== 14 We assume that instructions are unsigned 32-bit integers. 15 All instructions have an opcode in the first 7 bits. 16 Instructions can have the following formats: 17 18 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 19 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 20 iABC C(8) | B(8) |k| A(8) | Op(7) | 21 iABx Bx(17) | A(8) | Op(7) | 22 iAsBx sBx (signed)(17) | A(8) | Op(7) | 23 iAx Ax(25) | Op(7) | 24 isJ sJ(25) | Op(7) | 25 26 A signed argument is represented in excess K: the represented value is 27 the written unsigned value minus K, where K is half the maximum for the 28 corresponding unsigned argument. 29 ===========================================================================*/ 30 31 32 enum OpMode {iABC, iABx, iAsBx, iAx, isJ}; /* basic instruction formats */ 33 34 35 /* 36 ** size and position of opcode arguments. 37 */ 38 #define SIZE_C 8 39 #define SIZE_B 8 40 #define SIZE_Bx (SIZE_C + SIZE_B + 1) 41 #define SIZE_A 8 42 #define SIZE_Ax (SIZE_Bx + SIZE_A) 43 #define SIZE_sJ (SIZE_Bx + SIZE_A) 44 45 #define SIZE_OP 7 46 47 #define POS_OP 0 48 49 #define POS_A (POS_OP + SIZE_OP) 50 #define POS_k (POS_A + SIZE_A) 51 #define POS_B (POS_k + 1) 52 #define POS_C (POS_B + SIZE_B) 53 54 #define POS_Bx POS_k 55 56 #define POS_Ax POS_A 57 58 #define POS_sJ POS_A 59 60 61 /* 62 ** limits for opcode arguments. 63 ** we use (signed) 'int' to manipulate most arguments, 64 ** so they must fit in ints. 65 */ 66 67 /* Check whether type 'int' has at least 'b' bits ('b' < 32) */ 68 #define L_INTHASBITS(b) ((UINT_MAX >> ((b) - 1)) >= 1) 69 70 71 #if L_INTHASBITS(SIZE_Bx) 72 #define MAXARG_Bx ((1<<SIZE_Bx)-1) 73 #else 74 #define MAXARG_Bx MAX_INT 75 #endif 76 77 #define OFFSET_sBx (MAXARG_Bx>>1) /* 'sBx' is signed */ 78 79 80 #if L_INTHASBITS(SIZE_Ax) 81 #define MAXARG_Ax ((1<<SIZE_Ax)-1) 82 #else 83 #define MAXARG_Ax MAX_INT 84 #endif 85 86 #if L_INTHASBITS(SIZE_sJ) 87 #define MAXARG_sJ ((1 << SIZE_sJ) - 1) 88 #else 89 #define MAXARG_sJ MAX_INT 90 #endif 91 92 #define OFFSET_sJ (MAXARG_sJ >> 1) 93 94 95 #define MAXARG_A ((1<<SIZE_A)-1) 96 #define MAXARG_B ((1<<SIZE_B)-1) 97 #define MAXARG_C ((1<<SIZE_C)-1) 98 #define OFFSET_sC (MAXARG_C >> 1) 99 100 #define int2sC(i) ((i) + OFFSET_sC) 101 #define sC2int(i) ((i) - OFFSET_sC) 102 103 104 /* creates a mask with 'n' 1 bits at position 'p' */ 105 #define MASK1(n,p) ((~((~(Instruction)0)<<(n)))<<(p)) 106 107 /* creates a mask with 'n' 0 bits at position 'p' */ 108 #define MASK0(n,p) (~MASK1(n,p)) 109 110 /* 111 ** the following macros help to manipulate instructions 112 */ 113 114 #define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0))) 115 #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \ 116 ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP)))) 117 118 #define checkopm(i,m) (getOpMode(GET_OPCODE(i)) == m) 119 120 121 #define getarg(i,pos,size) (cast_int(((i)>>(pos)) & MASK1(size,0))) 122 #define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \ 123 ((cast(Instruction, v)<<pos)&MASK1(size,pos)))) 124 125 #define GETARG_A(i) getarg(i, POS_A, SIZE_A) 126 #define SETARG_A(i,v) setarg(i, v, POS_A, SIZE_A) 127 128 #define GETARG_B(i) check_exp(checkopm(i, iABC), getarg(i, POS_B, SIZE_B)) 129 #define GETARG_sB(i) sC2int(GETARG_B(i)) 130 #define SETARG_B(i,v) setarg(i, v, POS_B, SIZE_B) 131 132 #define GETARG_C(i) check_exp(checkopm(i, iABC), getarg(i, POS_C, SIZE_C)) 133 #define GETARG_sC(i) sC2int(GETARG_C(i)) 134 #define SETARG_C(i,v) setarg(i, v, POS_C, SIZE_C) 135 136 #define TESTARG_k(i) check_exp(checkopm(i, iABC), (cast_int(((i) & (1u << POS_k))))) 137 #define GETARG_k(i) check_exp(checkopm(i, iABC), getarg(i, POS_k, 1)) 138 #define SETARG_k(i,v) setarg(i, v, POS_k, 1) 139 140 #define GETARG_Bx(i) check_exp(checkopm(i, iABx), getarg(i, POS_Bx, SIZE_Bx)) 141 #define SETARG_Bx(i,v) setarg(i, v, POS_Bx, SIZE_Bx) 142 143 #define GETARG_Ax(i) check_exp(checkopm(i, iAx), getarg(i, POS_Ax, SIZE_Ax)) 144 #define SETARG_Ax(i,v) setarg(i, v, POS_Ax, SIZE_Ax) 145 146 #define GETARG_sBx(i) \ 147 check_exp(checkopm(i, iAsBx), getarg(i, POS_Bx, SIZE_Bx) - OFFSET_sBx) 148 #define SETARG_sBx(i,b) SETARG_Bx((i),cast_uint((b)+OFFSET_sBx)) 149 150 #define GETARG_sJ(i) \ 151 check_exp(checkopm(i, isJ), getarg(i, POS_sJ, SIZE_sJ) - OFFSET_sJ) 152 #define SETARG_sJ(i,j) \ 153 setarg(i, cast_uint((j)+OFFSET_sJ), POS_sJ, SIZE_sJ) 154 155 156 #define CREATE_ABCk(o,a,b,c,k) ((cast(Instruction, o)<<POS_OP) \ 157 | (cast(Instruction, a)<<POS_A) \ 158 | (cast(Instruction, b)<<POS_B) \ 159 | (cast(Instruction, c)<<POS_C) \ 160 | (cast(Instruction, k)<<POS_k)) 161 162 #define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \ 163 | (cast(Instruction, a)<<POS_A) \ 164 | (cast(Instruction, bc)<<POS_Bx)) 165 166 #define CREATE_Ax(o,a) ((cast(Instruction, o)<<POS_OP) \ 167 | (cast(Instruction, a)<<POS_Ax)) 168 169 #define CREATE_sJ(o,j,k) ((cast(Instruction, o) << POS_OP) \ 170 | (cast(Instruction, j) << POS_sJ) \ 171 | (cast(Instruction, k) << POS_k)) 172 173 174 #if !defined(MAXINDEXRK) /* (for debugging only) */ 175 #define MAXINDEXRK MAXARG_B 176 #endif 177 178 179 /* 180 ** invalid register that fits in 8 bits 181 */ 182 #define NO_REG MAXARG_A 183 184 185 /* 186 ** R[x] - register 187 ** K[x] - constant (in constant table) 188 ** RK(x) == if k(i) then K[x] else R[x] 189 */ 190 191 192 /* 193 ** Grep "ORDER OP" if you change these enums. Opcodes marked with a (*) 194 ** has extra descriptions in the notes after the enumeration. 195 */ 196 197 typedef enum { 198 /*---------------------------------------------------------------------- 199 name args description 200 ------------------------------------------------------------------------*/ 201 OP_MOVE,/* A B R[A] := R[B] */ 202 OP_LOADI,/* A sBx R[A] := sBx */ 203 OP_LOADF,/* A sBx R[A] := (lua_Number)sBx */ 204 OP_LOADK,/* A Bx R[A] := K[Bx] */ 205 OP_LOADKX,/* A R[A] := K[extra arg] */ 206 OP_LOADFALSE,/* A R[A] := false */ 207 OP_LFALSESKIP,/*A R[A] := false; pc++ (*) */ 208 OP_LOADTRUE,/* A R[A] := true */ 209 OP_LOADNIL,/* A B R[A], R[A+1], ..., R[A+B] := nil */ 210 OP_GETUPVAL,/* A B R[A] := UpValue[B] */ 211 OP_SETUPVAL,/* A B UpValue[B] := R[A] */ 212 213 OP_GETTABUP,/* A B C R[A] := UpValue[B][K[C]:string] */ 214 OP_GETTABLE,/* A B C R[A] := R[B][R[C]] */ 215 OP_GETI,/* A B C R[A] := R[B][C] */ 216 OP_GETFIELD,/* A B C R[A] := R[B][K[C]:string] */ 217 218 OP_SETTABUP,/* A B C UpValue[A][K[B]:string] := RK(C) */ 219 OP_SETTABLE,/* A B C R[A][R[B]] := RK(C) */ 220 OP_SETI,/* A B C R[A][B] := RK(C) */ 221 OP_SETFIELD,/* A B C R[A][K[B]:string] := RK(C) */ 222 223 OP_NEWTABLE,/* A B C k R[A] := {} */ 224 225 OP_SELF,/* A B C R[A+1] := R[B]; R[A] := R[B][RK(C):string] */ 226 227 OP_ADDI,/* A B sC R[A] := R[B] + sC */ 228 229 OP_ADDK,/* A B C R[A] := R[B] + K[C]:number */ 230 OP_SUBK,/* A B C R[A] := R[B] - K[C]:number */ 231 OP_MULK,/* A B C R[A] := R[B] * K[C]:number */ 232 OP_MODK,/* A B C R[A] := R[B] % K[C]:number */ 233 OP_POWK,/* A B C R[A] := R[B] ^ K[C]:number */ 234 OP_DIVK,/* A B C R[A] := R[B] / K[C]:number */ 235 OP_IDIVK,/* A B C R[A] := R[B] // K[C]:number */ 236 237 OP_BANDK,/* A B C R[A] := R[B] & K[C]:integer */ 238 OP_BORK,/* A B C R[A] := R[B] | K[C]:integer */ 239 OP_BXORK,/* A B C R[A] := R[B] ~ K[C]:integer */ 240 241 OP_SHRI,/* A B sC R[A] := R[B] >> sC */ 242 OP_SHLI,/* A B sC R[A] := sC << R[B] */ 243 244 OP_ADD,/* A B C R[A] := R[B] + R[C] */ 245 OP_SUB,/* A B C R[A] := R[B] - R[C] */ 246 OP_MUL,/* A B C R[A] := R[B] * R[C] */ 247 OP_MOD,/* A B C R[A] := R[B] % R[C] */ 248 OP_POW,/* A B C R[A] := R[B] ^ R[C] */ 249 OP_DIV,/* A B C R[A] := R[B] / R[C] */ 250 OP_IDIV,/* A B C R[A] := R[B] // R[C] */ 251 252 OP_BAND,/* A B C R[A] := R[B] & R[C] */ 253 OP_BOR,/* A B C R[A] := R[B] | R[C] */ 254 OP_BXOR,/* A B C R[A] := R[B] ~ R[C] */ 255 OP_SHL,/* A B C R[A] := R[B] << R[C] */ 256 OP_SHR,/* A B C R[A] := R[B] >> R[C] */ 257 258 OP_MMBIN,/* A B C call C metamethod over R[A] and R[B] (*) */ 259 OP_MMBINI,/* A sB C k call C metamethod over R[A] and sB */ 260 OP_MMBINK,/* A B C k call C metamethod over R[A] and K[B] */ 261 262 OP_UNM,/* A B R[A] := -R[B] */ 263 OP_BNOT,/* A B R[A] := ~R[B] */ 264 OP_NOT,/* A B R[A] := not R[B] */ 265 OP_LEN,/* A B R[A] := #R[B] (length operator) */ 266 267 OP_CONCAT,/* A B R[A] := R[A].. ... ..R[A + B - 1] */ 268 269 OP_CLOSE,/* A close all upvalues >= R[A] */ 270 OP_TBC,/* A mark variable A "to be closed" */ 271 OP_JMP,/* sJ pc += sJ */ 272 OP_EQ,/* A B k if ((R[A] == R[B]) ~= k) then pc++ */ 273 OP_LT,/* A B k if ((R[A] < R[B]) ~= k) then pc++ */ 274 OP_LE,/* A B k if ((R[A] <= R[B]) ~= k) then pc++ */ 275 276 OP_EQK,/* A B k if ((R[A] == K[B]) ~= k) then pc++ */ 277 OP_EQI,/* A sB k if ((R[A] == sB) ~= k) then pc++ */ 278 OP_LTI,/* A sB k if ((R[A] < sB) ~= k) then pc++ */ 279 OP_LEI,/* A sB k if ((R[A] <= sB) ~= k) then pc++ */ 280 OP_GTI,/* A sB k if ((R[A] > sB) ~= k) then pc++ */ 281 OP_GEI,/* A sB k if ((R[A] >= sB) ~= k) then pc++ */ 282 283 OP_TEST,/* A k if (not R[A] == k) then pc++ */ 284 OP_TESTSET,/* A B k if (not R[B] == k) then pc++ else R[A] := R[B] (*) */ 285 286 OP_CALL,/* A B C R[A], ... ,R[A+C-2] := R[A](R[A+1], ... ,R[A+B-1]) */ 287 OP_TAILCALL,/* A B C k return R[A](R[A+1], ... ,R[A+B-1]) */ 288 289 OP_RETURN,/* A B C k return R[A], ... ,R[A+B-2] (see note) */ 290 OP_RETURN0,/* return */ 291 OP_RETURN1,/* A return R[A] */ 292 293 OP_FORLOOP,/* A Bx update counters; if loop continues then pc-=Bx; */ 294 OP_FORPREP,/* A Bx <check values and prepare counters>; 295 if not to run then pc+=Bx+1; */ 296 297 OP_TFORPREP,/* A Bx create upvalue for R[A + 3]; pc+=Bx */ 298 OP_TFORCALL,/* A C R[A+4], ... ,R[A+3+C] := R[A](R[A+1], R[A+2]); */ 299 OP_TFORLOOP,/* A Bx if R[A+2] ~= nil then { R[A]=R[A+2]; pc -= Bx } */ 300 301 OP_SETLIST,/* A B C k R[A][C+i] := R[A+i], 1 <= i <= B */ 302 303 OP_CLOSURE,/* A Bx R[A] := closure(KPROTO[Bx]) */ 304 305 OP_VARARG,/* A C R[A], R[A+1], ..., R[A+C-2] = vararg */ 306 307 OP_VARARGPREP,/*A (adjust vararg parameters) */ 308 309 OP_EXTRAARG/* Ax extra (larger) argument for previous opcode */ 310 } OpCode; 311 312 313 #define NUM_OPCODES ((int)(OP_EXTRAARG) + 1) 314 315 316 317 /*=========================================================================== 318 Notes: 319 320 (*) Opcode OP_LFALSESKIP is used to convert a condition to a boolean 321 value, in a code equivalent to (not cond ? false : true). (It 322 produces false and skips the next instruction producing true.) 323 324 (*) Opcodes OP_MMBIN and variants follow each arithmetic and 325 bitwise opcode. If the operation succeeds, it skips this next 326 opcode. Otherwise, this opcode calls the corresponding metamethod. 327 328 (*) Opcode OP_TESTSET is used in short-circuit expressions that need 329 both to jump and to produce a value, such as (a = b or c). 330 331 (*) In OP_CALL, if (B == 0) then B = top - A. If (C == 0), then 332 'top' is set to last_result+1, so next open instruction (OP_CALL, 333 OP_RETURN*, OP_SETLIST) may use 'top'. 334 335 (*) In OP_VARARG, if (C == 0) then use actual number of varargs and 336 set top (like in OP_CALL with C == 0). 337 338 (*) In OP_RETURN, if (B == 0) then return up to 'top'. 339 340 (*) In OP_LOADKX and OP_NEWTABLE, the next instruction is always 341 OP_EXTRAARG. 342 343 (*) In OP_SETLIST, if (B == 0) then real B = 'top'; if k, then 344 real C = EXTRAARG _ C (the bits of EXTRAARG concatenated with the 345 bits of C). 346 347 (*) In OP_NEWTABLE, B is log2 of the hash size (which is always a 348 power of 2) plus 1, or zero for size zero. If not k, the array size 349 is C. Otherwise, the array size is EXTRAARG _ C. 350 351 (*) For comparisons, k specifies what condition the test should accept 352 (true or false). 353 354 (*) In OP_MMBINI/OP_MMBINK, k means the arguments were flipped 355 (the constant is the first operand). 356 357 (*) All 'skips' (pc++) assume that next instruction is a jump. 358 359 (*) In instructions OP_RETURN/OP_TAILCALL, 'k' specifies that the 360 function builds upvalues, which may need to be closed. C > 0 means 361 the function is vararg, so that its 'func' must be corrected before 362 returning; in this case, (C - 1) is its number of fixed parameters. 363 364 (*) In comparisons with an immediate operand, C signals whether the 365 original operand was a float. (It must be corrected in case of 366 metamethods.) 367 368 ===========================================================================*/ 369 370 371 /* 372 ** masks for instruction properties. The format is: 373 ** bits 0-2: op mode 374 ** bit 3: instruction set register A 375 ** bit 4: operator is a test (next instruction must be a jump) 376 ** bit 5: instruction uses 'L->top' set by previous instruction (when B == 0) 377 ** bit 6: instruction sets 'L->top' for next instruction (when C == 0) 378 ** bit 7: instruction is an MM instruction (call a metamethod) 379 */ 380 381 LUAI_DDEC(const lu_byte luaP_opmodes[NUM_OPCODES];) 382 383 #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 7)) 384 #define testAMode(m) (luaP_opmodes[m] & (1 << 3)) 385 #define testTMode(m) (luaP_opmodes[m] & (1 << 4)) 386 #define testITMode(m) (luaP_opmodes[m] & (1 << 5)) 387 #define testOTMode(m) (luaP_opmodes[m] & (1 << 6)) 388 #define testMMMode(m) (luaP_opmodes[m] & (1 << 7)) 389 390 /* "out top" (set top for next instruction) */ 391 #define isOT(i) \ 392 ((testOTMode(GET_OPCODE(i)) && GETARG_C(i) == 0) || \ 393 GET_OPCODE(i) == OP_TAILCALL) 394 395 /* "in top" (uses top from previous instruction) */ 396 #define isIT(i) (testITMode(GET_OPCODE(i)) && GETARG_B(i) == 0) 397 398 #define opmode(mm,ot,it,t,a,m) \ 399 (((mm) << 7) | ((ot) << 6) | ((it) << 5) | ((t) << 4) | ((a) << 3) | (m)) 400 401 402 /* number of list items to accumulate before a SETLIST instruction */ 403 #define LFIELDS_PER_FLUSH 50 404 405 #endif 406